Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+X₁, X₁+X₂, X₂-1, X₃, X₄, X₅, X₆) :|: 1 ≤ X₀
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₀ ≤ 0
t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆) :|: 1 ≤ X₃
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
Preprocessing
Found invariant X₂ ≤ X₆ ∧ X₀ ≤ 0 for location l2
Found invariant X₂ ≤ X₆ for location l1
Found invariant X₂ ≤ X₆ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ X₀ ≤ 0 for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀+X₁, X₁+X₂, X₂-1, X₃, X₄, X₅, X₆) :|: 1 ≤ X₀ ∧ X₂ ≤ X₆
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ X₂ ≤ X₆
t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆) :|: 1 ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0
MPRF for transition t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₅, X₆, X₃, X₄, X₅, X₆) :|: 1 ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0 of depth 1:
new bound:
X₃+1 {O(n)}
TWN: t₁: l1→l1
cycle: [t₁: l1→l1]
loop: (1 ≤ X₀,(X₀,X₁,X₂) -> (X₀+X₁,X₁+X₂,X₂-1)
order: [X₂; X₁; X₀]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1
X₁: X₁ + [[n != 0]] * X₂ * n^1 + [[n != 0, n != 1]] * -1/2 * n^2 + [[n != 0, n != 1]] * 1/2 * n^1
X₀: X₀ + [[n != 0]] * X₁ * n^1 + [[n != 0, n != 1]] * 1/2⋅X₂ * n^2 + [[n != 0, n != 1]] * -1/2⋅X₂ * n^1 + [[n != 0, n != 1, n != 2]] * -1/6 * n^3 + [[n != 0, n != 1, n != 2]] * 1/2 * n^2 + [[n != 0, n != 1, n != 2]] * -1/3 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < 3⋅X₂+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0
∨ 6 < 6⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 6+6⋅X₀+6⋅X₁+3⋅X₂
M: 0
N: 3
Bound: 12⋅X₀+12⋅X₁+6⋅X₂+16 {O(n)}
loop: (1 ≤ X₀,(X₀,X₁,X₂) -> (X₀+X₁,X₁+X₂,X₂-1)
order: [X₂; X₁; X₀]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1
X₁: X₁ + [[n != 0]] * X₂ * n^1 + [[n != 0, n != 1]] * -1/2 * n^2 + [[n != 0, n != 1]] * 1/2 * n^1
X₀: X₀ + [[n != 0]] * X₁ * n^1 + [[n != 0, n != 1]] * 1/2⋅X₂ * n^2 + [[n != 0, n != 1]] * -1/2⋅X₂ * n^1 + [[n != 0, n != 1, n != 2]] * -1/6 * n^3 + [[n != 0, n != 1, n != 2]] * 1/2 * n^2 + [[n != 0, n != 1, n != 2]] * -1/3 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < 3⋅X₂+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0
∨ 6 < 6⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 6+6⋅X₀+6⋅X₁+3⋅X₂
M: 0
N: 3
Bound: 12⋅X₀+12⋅X₁+6⋅X₂+16 {O(n)}
TWN - Lifting for t₁: l1→l1 of 12⋅X₀+12⋅X₁+6⋅X₂+18 {O(n)}
relevant size-bounds w.r.t. t₃:
X₀: X₄ {O(n)}
X₁: X₅ {O(n)}
X₂: X₆ {O(n)}
Runtime-bound of t₃: X₃+1 {O(n)}
Results in: 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+12⋅X₄+12⋅X₅+18⋅X₃+6⋅X₆+18 {O(n^2)}
TWN - Lifting for t₁: l1→l1 of 12⋅X₀+12⋅X₁+6⋅X₂+18 {O(n)}
relevant size-bounds w.r.t. t₀:
X₀: X₄ {O(n)}
X₁: X₅ {O(n)}
X₂: X₆ {O(n)}
Runtime-bound of t₀: 1 {O(1)}
Results in: 12⋅X₄+12⋅X₅+6⋅X₆+18 {O(n)}
knowledge_propagation leads to new time bound 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+12⋅X₆+19⋅X₃+24⋅X₄+24⋅X₅+38 {O(n^2)} for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ X₂ ≤ X₆
Chain transitions t₂: l1→l2 and t₄: l2→l3 to t₄₂: l1→l3
Chain transitions t₂: l1→l2 and t₃: l2→l1 to t₄₃: l1→l1
Analysing control-flow refined program
Found invariant X₂ ≤ X₆ ∧ X₀ ≤ 0 for location l2
Found invariant X₂ ≤ X₆ for location l1
Found invariant X₂ ≤ X₆ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ X₀ ≤ 0 for location l3
MPRF for transition t₄₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{2}> l1(X₄, X₅, X₆, X₃-1, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 2 ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0 ∧ X₂ ≤ X₆ of depth 1:
new bound:
12⋅X₃⋅X₃⋅X₄+12⋅X₃⋅X₃⋅X₅+6⋅X₃⋅X₃⋅X₆+12⋅X₃⋅X₆+18⋅X₃⋅X₃+24⋅X₃⋅X₄+24⋅X₃⋅X₅+37⋅X₃ {O(n^3)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 1+X₂ ≤ X₆ ∧ 1 ≤ X₄ for location n_l1___6
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ X₀ ≤ 0 for location n_l2___5
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l1___3
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l2___2
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ for location l1
Found invariant X₂ ≤ X₆ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ X₀ ≤ 0 for location l3
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l1___1
Found invariant 1+X₂ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₀ ≤ 0 for location n_l2___4
Cut unsatisfiable transition t₈₂: n_l1___3→n_l2___2
MPRF for transition t₈₁: n_l1___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___6(X₀+X₁, X₁+X₂, X₂-1, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₆ ≤ X₂ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₈₈: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___3(X₄, X₅, X₆, X₃, X₄, X₅, X₆) :|: 1+X₂ ≤ X₆ ∧ X₁ ≤ X₀+X₂ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ X₀ ≤ 0 of depth 1:
new bound:
X₃+1 {O(n)}
TWN: t₈₃: n_l1___6→n_l1___6
cycle: [t₈₃: n_l1___6→n_l1___6]
loop: (X₁ ≤ X₀+X₂ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀,(X₀,X₁,X₂,X₆) -> (X₀+X₁,X₁+X₂,X₂-1,X₆)
order: [X₂; X₁; X₀; X₆]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1
X₁: X₁ + [[n != 0]] * X₂ * n^1 + [[n != 0, n != 1]] * -1/2 * n^2 + [[n != 0, n != 1]] * 1/2 * n^1
X₀: X₀ + [[n != 0]] * X₁ * n^1 + [[n != 0, n != 1]] * 1/2⋅X₂ * n^2 + [[n != 0, n != 1]] * -1/2⋅X₂ * n^1 + [[n != 0, n != 1, n != 2]] * -1/6 * n^3 + [[n != 0, n != 1, n != 2]] * 1/2 * n^2 + [[n != 0, n != 1, n != 2]] * -1/3 * n^1
X₆: X₆
Termination: true
Formula:
0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 1 < 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 1 < 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 3⋅X₂+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 3⋅X₂+3 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 6 < 6⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 < 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 < 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 6+6⋅X₀+6⋅X₁+3⋅X₂
M: 0
N: 3
Bound: 12⋅X₀+12⋅X₁+6⋅X₂+16 {O(n)}
Stabilization-Threshold for: 1+X₂ ≤ X₆
alphas_abs: 1+X₂+X₆
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₆+4 {O(n)}
Stabilization-Threshold for: X₁ ≤ X₀+X₂
alphas_abs: 11+6⋅X₀+6⋅X₁+9⋅X₂
M: 0
N: 3
Bound: 12⋅X₀+12⋅X₁+18⋅X₂+26 {O(n)}
loop: (X₁ ≤ X₀+X₂ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀,(X₀,X₁,X₂,X₆) -> (X₀+X₁,X₁+X₂,X₂-1,X₆)
order: [X₂; X₁; X₀; X₆]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1
X₁: X₁ + [[n != 0]] * X₂ * n^1 + [[n != 0, n != 1]] * -1/2 * n^2 + [[n != 0, n != 1]] * 1/2 * n^1
X₀: X₀ + [[n != 0]] * X₁ * n^1 + [[n != 0, n != 1]] * 1/2⋅X₂ * n^2 + [[n != 0, n != 1]] * -1/2⋅X₂ * n^1 + [[n != 0, n != 1, n != 2]] * -1/6 * n^3 + [[n != 0, n != 1, n != 2]] * 1/2 * n^2 + [[n != 0, n != 1, n != 2]] * -1/3 * n^1
X₆: X₆
Termination: true
Formula:
0 < 1 ∧ 1 < 0
∨ 1 < 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 1 < 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 1 < 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 1 < 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 1 < 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 1 < 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 3⋅X₂+3 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1 < 0
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 3⋅X₂+3 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 < 3⋅X₂+3 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 < 3⋅X₂+3 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 < 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 3⋅X₂+2 < 6⋅X₁ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 6 < 6⋅X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 < 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 6 < 6⋅X₀ ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 < 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 < 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 0 < 3⋅X₂+6 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 9⋅X₂+11 < 6⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 6⋅X₁ < 6⋅X₀+6⋅X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11
∨ 0 ≤ 3⋅X₂+3 ∧ 3⋅X₂+3 ≤ 0 ∧ 3⋅X₂+2 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 3⋅X₂+2 ∧ 6 ≤ 6⋅X₀ ∧ 6⋅X₀ ≤ 6 ∧ 1+X₂ ≤ X₆ ∧ X₆ ≤ 1+X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 3⋅X₂+6 ∧ 3⋅X₂+6 ≤ 0 ∧ 9⋅X₂+11 ≤ 6⋅X₁ ∧ 6⋅X₁ ≤ 9⋅X₂+11 ∧ 6⋅X₁ ≤ 6⋅X₀+6⋅X₂ ∧ 6⋅X₀+6⋅X₂ ≤ 6⋅X₁
Stabilization-Threshold for: 1 ≤ X₀
alphas_abs: 6+6⋅X₀+6⋅X₁+3⋅X₂
M: 0
N: 3
Bound: 12⋅X₀+12⋅X₁+6⋅X₂+16 {O(n)}
Stabilization-Threshold for: 1+X₂ ≤ X₆
alphas_abs: 1+X₂+X₆
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₆+4 {O(n)}
Stabilization-Threshold for: X₁ ≤ X₀+X₂
alphas_abs: 11+6⋅X₀+6⋅X₁+9⋅X₂
M: 0
N: 3
Bound: 12⋅X₀+12⋅X₁+18⋅X₂+26 {O(n)}
TWN - Lifting for t₈₃: n_l1___6→n_l1___6 of 2⋅X₆+24⋅X₀+24⋅X₁+26⋅X₂+48 {O(n)}
relevant size-bounds w.r.t. t₈₁:
X₀: X₄+X₅ {O(n)}
X₁: X₅+X₆ {O(n)}
X₂: X₆+1 {O(n)}
X₆: X₆ {O(n)}
Runtime-bound of t₈₁: X₃+1 {O(n)}
Results in: 24⋅X₃⋅X₄+48⋅X₃⋅X₅+52⋅X₃⋅X₆+24⋅X₄+48⋅X₅+52⋅X₆+74⋅X₃+74 {O(n^2)}
TWN - Lifting for t₈₃: n_l1___6→n_l1___6 of 2⋅X₆+24⋅X₀+24⋅X₁+26⋅X₂+48 {O(n)}
relevant size-bounds w.r.t. t₈₅:
X₀: X₄+X₅ {O(n)}
X₁: X₅+X₆ {O(n)}
X₂: X₆+1 {O(n)}
X₆: X₆ {O(n)}
Runtime-bound of t₈₅: 1 {O(1)}
Results in: 24⋅X₄+48⋅X₅+52⋅X₆+74 {O(n)}
knowledge_propagation leads to new time bound 24⋅X₃⋅X₄+48⋅X₃⋅X₅+52⋅X₃⋅X₆+104⋅X₆+48⋅X₄+75⋅X₃+96⋅X₅+150 {O(n^2)} for transition t₈₄: n_l1___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___4(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₁ ≤ X₀+X₂ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ 0 ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₄
MPRF for transition t₈₀: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___2(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ 0 ∧ X₆ ≤ X₂ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₈₇: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___1(X₄, X₅, X₆, X₃, X₄, X₅, X₆) :|: 0 ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 0 ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 of depth 1:
new bound:
X₃+1 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:12⋅X₃⋅X₆+24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₆+38⋅X₃+48⋅X₄+48⋅X₅+77 {O(n^2)}
t₀: 1 {O(1)}
t₁: 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+12⋅X₆+18⋅X₃+24⋅X₄+24⋅X₅+36 {O(n^2)}
t₂: 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+12⋅X₆+19⋅X₃+24⋅X₄+24⋅X₅+38 {O(n^2)}
t₃: X₃+1 {O(n)}
t₄: 1 {O(1)}
Costbounds
Overall costbound: 12⋅X₃⋅X₆+24⋅X₃⋅X₄+24⋅X₃⋅X₅+24⋅X₆+38⋅X₃+48⋅X₄+48⋅X₅+77 {O(n^2)}
t₀: 1 {O(1)}
t₁: 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+12⋅X₆+18⋅X₃+24⋅X₄+24⋅X₅+36 {O(n^2)}
t₂: 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+12⋅X₆+19⋅X₃+24⋅X₄+24⋅X₅+38 {O(n^2)}
t₃: X₃+1 {O(n)}
t₄: 1 {O(1)}
Sizebounds
t₀, X₀: X₄ {O(n)}
t₀, X₁: X₅ {O(n)}
t₀, X₂: X₆ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: 1296⋅X₃⋅X₃⋅X₃⋅X₄⋅X₆⋅X₆+1296⋅X₃⋅X₃⋅X₃⋅X₅⋅X₆⋅X₆+1728⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₄+1728⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅+216⋅X₃⋅X₃⋅X₃⋅X₆⋅X₆⋅X₆+2592⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₆+2592⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₆+5184⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅+5184⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅⋅X₆+10368⋅X₃⋅X₃⋅X₄⋅X₄⋅X₄+10368⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅+1440⋅X₃⋅X₃⋅X₆⋅X₆⋅X₆+15552⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅+16128⋅X₃⋅X₃⋅X₄⋅X₄⋅X₆+16128⋅X₃⋅X₃⋅X₅⋅X₅⋅X₆+1944⋅X₃⋅X₃⋅X₃⋅X₆⋅X₆+31104⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅+31104⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+32256⋅X₃⋅X₃⋅X₄⋅X₅⋅X₆+7776⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄+7776⋅X₃⋅X₃⋅X₃⋅X₄⋅X₆+7776⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅+7776⋅X₃⋅X₃⋅X₃⋅X₅⋅X₆+8352⋅X₃⋅X₃⋅X₄⋅X₆⋅X₆+8352⋅X₃⋅X₃⋅X₅⋅X₆⋅X₆+11664⋅X₃⋅X₃⋅X₃⋅X₄+11664⋅X₃⋅X₃⋅X₃⋅X₅+12600⋅X₃⋅X₃⋅X₆⋅X₆+17856⋅X₃⋅X₄⋅X₆⋅X₆+17856⋅X₃⋅X₅⋅X₆⋅X₆+20736⋅X₃⋅X₄⋅X₄⋅X₄+20736⋅X₃⋅X₅⋅X₅⋅X₅+3168⋅X₃⋅X₆⋅X₆⋅X₆+33408⋅X₃⋅X₄⋅X₄⋅X₆+33408⋅X₃⋅X₅⋅X₅⋅X₆+46944⋅X₃⋅X₃⋅X₄⋅X₄+46944⋅X₃⋅X₃⋅X₅⋅X₅+48672⋅X₃⋅X₃⋅X₄⋅X₆+48672⋅X₃⋅X₃⋅X₅⋅X₆+5832⋅X₃⋅X₃⋅X₃⋅X₆+62208⋅X₃⋅X₄⋅X₄⋅X₅+62208⋅X₃⋅X₄⋅X₅⋅X₅+66816⋅X₃⋅X₄⋅X₅⋅X₆+93888⋅X₃⋅X₃⋅X₄⋅X₅+101472⋅X₃⋅X₄⋅X₆+101496⋅X₃⋅X₅⋅X₆+12672⋅X₄⋅X₆⋅X₆+12672⋅X₅⋅X₆⋅X₆+13824⋅X₄⋅X₄⋅X₄+13824⋅X₅⋅X₅⋅X₅+188976⋅X₃⋅X₄⋅X₅+2304⋅X₆⋅X₆⋅X₆+23040⋅X₄⋅X₄⋅X₆+23040⋅X₅⋅X₅⋅X₆+27120⋅X₃⋅X₆⋅X₆+36720⋅X₃⋅X₃⋅X₆+41472⋅X₄⋅X₄⋅X₅+41472⋅X₄⋅X₅⋅X₅+46080⋅X₄⋅X₅⋅X₆+5832⋅X₃⋅X₃⋅X₃+70848⋅X₃⋅X₃⋅X₄+70848⋅X₃⋅X₃⋅X₅+94464⋅X₃⋅X₄⋅X₄+94512⋅X₃⋅X₅⋅X₅+126816⋅X₄⋅X₅+143436⋅X₃⋅X₄+143508⋅X₃⋅X₅+19392⋅X₆⋅X₆+35640⋅X₃⋅X₃+63360⋅X₄⋅X₄+63456⋅X₅⋅X₅+70464⋅X₄⋅X₆+70512⋅X₅⋅X₆+77046⋅X₃⋅X₆+53872⋅X₆+72594⋅X₃+96794⋅X₄+96940⋅X₅+49284 {O(n^6)}
t₁, X₁: 144⋅X₃⋅X₃⋅X₄⋅X₄+144⋅X₃⋅X₃⋅X₄⋅X₆+144⋅X₃⋅X₃⋅X₅⋅X₅+144⋅X₃⋅X₃⋅X₅⋅X₆+288⋅X₃⋅X₃⋅X₄⋅X₅+36⋅X₃⋅X₃⋅X₆⋅X₆+1152⋅X₃⋅X₄⋅X₅+168⋅X₃⋅X₆⋅X₆+216⋅X₃⋅X₃⋅X₆+432⋅X₃⋅X₃⋅X₄+432⋅X₃⋅X₃⋅X₅+576⋅X₃⋅X₄⋅X₄+576⋅X₃⋅X₅⋅X₅+624⋅X₃⋅X₄⋅X₆+624⋅X₃⋅X₅⋅X₆+1152⋅X₄⋅X₅+1740⋅X₃⋅X₄+1740⋅X₃⋅X₅+192⋅X₆⋅X₆+324⋅X₃⋅X₃+576⋅X₄⋅X₄+576⋅X₅⋅X₅+672⋅X₄⋅X₆+672⋅X₅⋅X₆+942⋅X₃⋅X₆+1024⋅X₆+1314⋅X₃+1752⋅X₄+1754⋅X₅+1332 {O(n^4)}
t₁, X₂: 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+14⋅X₆+18⋅X₃+24⋅X₄+24⋅X₅+36 {O(n^2)}
t₁, X₃: 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+12⋅X₆+20⋅X₃+24⋅X₄+24⋅X₅+38 {O(n^2)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: 1296⋅X₃⋅X₃⋅X₃⋅X₄⋅X₆⋅X₆+1296⋅X₃⋅X₃⋅X₃⋅X₅⋅X₆⋅X₆+1728⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₄+1728⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅+216⋅X₃⋅X₃⋅X₃⋅X₆⋅X₆⋅X₆+2592⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₆+2592⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₆+5184⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅+5184⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅⋅X₆+10368⋅X₃⋅X₃⋅X₄⋅X₄⋅X₄+10368⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅+1440⋅X₃⋅X₃⋅X₆⋅X₆⋅X₆+15552⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅+16128⋅X₃⋅X₃⋅X₄⋅X₄⋅X₆+16128⋅X₃⋅X₃⋅X₅⋅X₅⋅X₆+1944⋅X₃⋅X₃⋅X₃⋅X₆⋅X₆+31104⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅+31104⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+32256⋅X₃⋅X₃⋅X₄⋅X₅⋅X₆+7776⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄+7776⋅X₃⋅X₃⋅X₃⋅X₄⋅X₆+7776⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅+7776⋅X₃⋅X₃⋅X₃⋅X₅⋅X₆+8352⋅X₃⋅X₃⋅X₄⋅X₆⋅X₆+8352⋅X₃⋅X₃⋅X₅⋅X₆⋅X₆+11664⋅X₃⋅X₃⋅X₃⋅X₄+11664⋅X₃⋅X₃⋅X₃⋅X₅+12600⋅X₃⋅X₃⋅X₆⋅X₆+17856⋅X₃⋅X₄⋅X₆⋅X₆+17856⋅X₃⋅X₅⋅X₆⋅X₆+20736⋅X₃⋅X₄⋅X₄⋅X₄+20736⋅X₃⋅X₅⋅X₅⋅X₅+3168⋅X₃⋅X₆⋅X₆⋅X₆+33408⋅X₃⋅X₄⋅X₄⋅X₆+33408⋅X₃⋅X₅⋅X₅⋅X₆+46944⋅X₃⋅X₃⋅X₄⋅X₄+46944⋅X₃⋅X₃⋅X₅⋅X₅+48672⋅X₃⋅X₃⋅X₄⋅X₆+48672⋅X₃⋅X₃⋅X₅⋅X₆+5832⋅X₃⋅X₃⋅X₃⋅X₆+62208⋅X₃⋅X₄⋅X₄⋅X₅+62208⋅X₃⋅X₄⋅X₅⋅X₅+66816⋅X₃⋅X₄⋅X₅⋅X₆+93888⋅X₃⋅X₃⋅X₄⋅X₅+101472⋅X₃⋅X₄⋅X₆+101496⋅X₃⋅X₅⋅X₆+12672⋅X₄⋅X₆⋅X₆+12672⋅X₅⋅X₆⋅X₆+13824⋅X₄⋅X₄⋅X₄+13824⋅X₅⋅X₅⋅X₅+188976⋅X₃⋅X₄⋅X₅+2304⋅X₆⋅X₆⋅X₆+23040⋅X₄⋅X₄⋅X₆+23040⋅X₅⋅X₅⋅X₆+27120⋅X₃⋅X₆⋅X₆+36720⋅X₃⋅X₃⋅X₆+41472⋅X₄⋅X₄⋅X₅+41472⋅X₄⋅X₅⋅X₅+46080⋅X₄⋅X₅⋅X₆+5832⋅X₃⋅X₃⋅X₃+70848⋅X₃⋅X₃⋅X₄+70848⋅X₃⋅X₃⋅X₅+94464⋅X₃⋅X₄⋅X₄+94512⋅X₃⋅X₅⋅X₅+126816⋅X₄⋅X₅+143436⋅X₃⋅X₄+143508⋅X₃⋅X₅+19392⋅X₆⋅X₆+35640⋅X₃⋅X₃+63360⋅X₄⋅X₄+63456⋅X₅⋅X₅+70464⋅X₄⋅X₆+70512⋅X₅⋅X₆+77046⋅X₃⋅X₆+53872⋅X₆+72594⋅X₃+96796⋅X₄+96940⋅X₅+49284 {O(n^6)}
t₂, X₁: 144⋅X₃⋅X₃⋅X₄⋅X₄+144⋅X₃⋅X₃⋅X₄⋅X₆+144⋅X₃⋅X₃⋅X₅⋅X₅+144⋅X₃⋅X₃⋅X₅⋅X₆+288⋅X₃⋅X₃⋅X₄⋅X₅+36⋅X₃⋅X₃⋅X₆⋅X₆+1152⋅X₃⋅X₄⋅X₅+168⋅X₃⋅X₆⋅X₆+216⋅X₃⋅X₃⋅X₆+432⋅X₃⋅X₃⋅X₄+432⋅X₃⋅X₃⋅X₅+576⋅X₃⋅X₄⋅X₄+576⋅X₃⋅X₅⋅X₅+624⋅X₃⋅X₄⋅X₆+624⋅X₃⋅X₅⋅X₆+1152⋅X₄⋅X₅+1740⋅X₃⋅X₄+1740⋅X₃⋅X₅+192⋅X₆⋅X₆+324⋅X₃⋅X₃+576⋅X₄⋅X₄+576⋅X₅⋅X₅+672⋅X₄⋅X₆+672⋅X₅⋅X₆+942⋅X₃⋅X₆+1024⋅X₆+1314⋅X₃+1752⋅X₄+1756⋅X₅+1332 {O(n^4)}
t₂, X₂: 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+16⋅X₆+18⋅X₃+24⋅X₄+24⋅X₅+36 {O(n^2)}
t₂, X₃: 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+12⋅X₆+20⋅X₃+24⋅X₄+24⋅X₅+38 {O(n^2)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₃, X₀: X₄ {O(n)}
t₃, X₁: X₅ {O(n)}
t₃, X₂: X₆ {O(n)}
t₃, X₃: 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+12⋅X₆+20⋅X₃+24⋅X₄+24⋅X₅+38 {O(n^2)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₄, X₀: 1296⋅X₃⋅X₃⋅X₃⋅X₄⋅X₆⋅X₆+1296⋅X₃⋅X₃⋅X₃⋅X₅⋅X₆⋅X₆+1728⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₄+1728⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅+216⋅X₃⋅X₃⋅X₃⋅X₆⋅X₆⋅X₆+2592⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₆+2592⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₆+5184⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅+5184⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅⋅X₆+10368⋅X₃⋅X₃⋅X₄⋅X₄⋅X₄+10368⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅+1440⋅X₃⋅X₃⋅X₆⋅X₆⋅X₆+15552⋅X₃⋅X₃⋅X₃⋅X₄⋅X₅+16128⋅X₃⋅X₃⋅X₄⋅X₄⋅X₆+16128⋅X₃⋅X₃⋅X₅⋅X₅⋅X₆+1944⋅X₃⋅X₃⋅X₃⋅X₆⋅X₆+31104⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅+31104⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+32256⋅X₃⋅X₃⋅X₄⋅X₅⋅X₆+7776⋅X₃⋅X₃⋅X₃⋅X₄⋅X₄+7776⋅X₃⋅X₃⋅X₃⋅X₄⋅X₆+7776⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅+7776⋅X₃⋅X₃⋅X₃⋅X₅⋅X₆+8352⋅X₃⋅X₃⋅X₄⋅X₆⋅X₆+8352⋅X₃⋅X₃⋅X₅⋅X₆⋅X₆+11664⋅X₃⋅X₃⋅X₃⋅X₄+11664⋅X₃⋅X₃⋅X₃⋅X₅+12600⋅X₃⋅X₃⋅X₆⋅X₆+17856⋅X₃⋅X₄⋅X₆⋅X₆+17856⋅X₃⋅X₅⋅X₆⋅X₆+20736⋅X₃⋅X₄⋅X₄⋅X₄+20736⋅X₃⋅X₅⋅X₅⋅X₅+3168⋅X₃⋅X₆⋅X₆⋅X₆+33408⋅X₃⋅X₄⋅X₄⋅X₆+33408⋅X₃⋅X₅⋅X₅⋅X₆+46944⋅X₃⋅X₃⋅X₄⋅X₄+46944⋅X₃⋅X₃⋅X₅⋅X₅+48672⋅X₃⋅X₃⋅X₄⋅X₆+48672⋅X₃⋅X₃⋅X₅⋅X₆+5832⋅X₃⋅X₃⋅X₃⋅X₆+62208⋅X₃⋅X₄⋅X₄⋅X₅+62208⋅X₃⋅X₄⋅X₅⋅X₅+66816⋅X₃⋅X₄⋅X₅⋅X₆+93888⋅X₃⋅X₃⋅X₄⋅X₅+101472⋅X₃⋅X₄⋅X₆+101496⋅X₃⋅X₅⋅X₆+12672⋅X₄⋅X₆⋅X₆+12672⋅X₅⋅X₆⋅X₆+13824⋅X₄⋅X₄⋅X₄+13824⋅X₅⋅X₅⋅X₅+188976⋅X₃⋅X₄⋅X₅+2304⋅X₆⋅X₆⋅X₆+23040⋅X₄⋅X₄⋅X₆+23040⋅X₅⋅X₅⋅X₆+27120⋅X₃⋅X₆⋅X₆+36720⋅X₃⋅X₃⋅X₆+41472⋅X₄⋅X₄⋅X₅+41472⋅X₄⋅X₅⋅X₅+46080⋅X₄⋅X₅⋅X₆+5832⋅X₃⋅X₃⋅X₃+70848⋅X₃⋅X₃⋅X₄+70848⋅X₃⋅X₃⋅X₅+94464⋅X₃⋅X₄⋅X₄+94512⋅X₃⋅X₅⋅X₅+126816⋅X₄⋅X₅+143436⋅X₃⋅X₄+143508⋅X₃⋅X₅+19392⋅X₆⋅X₆+35640⋅X₃⋅X₃+63360⋅X₄⋅X₄+63456⋅X₅⋅X₅+70464⋅X₄⋅X₆+70512⋅X₅⋅X₆+77046⋅X₃⋅X₆+53872⋅X₆+72594⋅X₃+96796⋅X₄+96940⋅X₅+49284 {O(n^6)}
t₄, X₁: 144⋅X₃⋅X₃⋅X₄⋅X₄+144⋅X₃⋅X₃⋅X₄⋅X₆+144⋅X₃⋅X₃⋅X₅⋅X₅+144⋅X₃⋅X₃⋅X₅⋅X₆+288⋅X₃⋅X₃⋅X₄⋅X₅+36⋅X₃⋅X₃⋅X₆⋅X₆+1152⋅X₃⋅X₄⋅X₅+168⋅X₃⋅X₆⋅X₆+216⋅X₃⋅X₃⋅X₆+432⋅X₃⋅X₃⋅X₄+432⋅X₃⋅X₃⋅X₅+576⋅X₃⋅X₄⋅X₄+576⋅X₃⋅X₅⋅X₅+624⋅X₃⋅X₄⋅X₆+624⋅X₃⋅X₅⋅X₆+1152⋅X₄⋅X₅+1740⋅X₃⋅X₄+1740⋅X₃⋅X₅+192⋅X₆⋅X₆+324⋅X₃⋅X₃+576⋅X₄⋅X₄+576⋅X₅⋅X₅+672⋅X₄⋅X₆+672⋅X₅⋅X₆+942⋅X₃⋅X₆+1024⋅X₆+1314⋅X₃+1752⋅X₄+1756⋅X₅+1332 {O(n^4)}
t₄, X₂: 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+16⋅X₆+18⋅X₃+24⋅X₄+24⋅X₅+36 {O(n^2)}
t₄, X₃: 12⋅X₃⋅X₄+12⋅X₃⋅X₅+6⋅X₃⋅X₆+12⋅X₆+20⋅X₃+24⋅X₄+24⋅X₅+38 {O(n^2)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}