Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂
Temp_Vars: A1, B1, C1, X, Y, Z
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l1(1, X, Y, Z, A1, B1, C1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l2(X₀, X, Y, Z, A1, B1, C1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: X₀ ≤ 0
t₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l2(X₀, X, Y, Z, A1, B1, C1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 2 ≤ X₀
t₂₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 1+X₇ ≤ X₈
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: X₈ ≤ X₇
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₇+2-X₈, 1, 0, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: X₈ ≤ 0 ∧ X₈ ≤ X₇
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₇+2-X₈, 1, 0, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 2 ≤ X₈ ∧ X₈ ≤ X₇
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, 1, 1, 0, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 1 ≤ X₇ ∧ X₈ ≤ 1 ∧ 1 ≤ X₈
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 2+X₀ ≤ 0 ∧ 1+X₇ ≤ X₈
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 0 ≤ X₀ ∧ 1+X₇ ≤ X₈
t₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l5(-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 1+X₇ ≤ X₈ ∧ X₀+1 ≤ 0 ∧ 0 ≤ 1+X₀
t₂₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 1+X₉ ≤ X₁₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁+2, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: X₁₀ ≤ X₉
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 2⋅X ≤ X₁₅ ∧ X₁₅+1 ≤ 3⋅X ∧ 2+X ≤ X₁₆
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 2⋅X ≤ X₁₅ ∧ X₁₅+1 ≤ 3⋅X ∧ X₁₆ ≤ X+1
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l4(X₀, X₁, X₂, X₃, X₁₃, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X, Y, X₁₅, X₁₆+1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂+2) :|: 1+X₉ ≤ X₁₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X, X₁₂, X₁₃, X₁₄, X₁₅, 1, Y, Z, A1, B1, X₂₁, X₂₂) :|: X₁₀ ≤ 0 ∧ X₁₀ ≤ X₉ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X, X₁₂, X₁₃, X₁₄, X₁₅, 1, Y, Z, A1, B1, X₂₁, X₂₂) :|: X₁₀ ≤ X₉ ∧ 2 ≤ X₁₀ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 2, 1, X₁₂, X₁₃, X₁₄, X₁₅, 1, X, Y, Z, A1, X₂₁, X₂₂) :|: 1 ≤ X₉ ∧ X₁₀ ≤ 1 ∧ 1 ≤ X₁₀ ∧ X₁₆ ≤ 1 ∧ 1 ≤ X₁₆
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: X₁₆ ≤ 0 ∧ X₁₀ ≤ X₉
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) :|: 2 ≤ X₁₆ ∧ X₁₀ ≤ X₉
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₉+2-X₁₀, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X, Y, Z, A1, B1, X₂₂) :|: X₁₀ ≤ 0
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₉+2-X₁₀, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X, Y, Z, A1, B1, X₂₂) :|: 2 ≤ X₁₀
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 2, 1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X, Y, Z, A1, B1, X₂₂) :|: X₁₀ ≤ 1 ∧ 1 ≤ X₁₀
Preprocessing
Eliminate variables {A1,B1,C1,Y,Z,X₁,X₂,X₃,X₄,X₅,X₆,X₁₁,X₁₂,X₁₃,X₁₄,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂} that do not contribute to the problem
Found invariant X₂ ≤ X₁ for location l6
Found invariant X₄ ≤ X₃ ∧ X₂ ≤ X₁ for location l7
Found invariant 1+X₁ ≤ X₂ for location l5
Found invariant X₀ ≤ 1 ∧ 1 ≤ X₀ for location l1
Found invariant X₂ ≤ X₁ for location l4
Found invariant X₂ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: X
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₅₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(1, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 1 ∧ 1 ≤ X₀
t₅₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0
t₅₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₀
t₅₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₁ ≤ X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₅₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₅₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁
t₅₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₂ ∧ X₂ ≤ X₁
t₅₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, 1, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₅₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2+X₀ ≤ 0 ∧ 1+X₁ ≤ X₂
t₅₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₀ ∧ 1+X₁ ≤ X₂
t₆₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(-1, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₁ ≤ X₂ ∧ X₀+1 ≤ 0 ∧ 0 ≤ 1+X₀
t₆₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: 1+X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₆₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₄ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₆₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: 2⋅X ≤ X₅ ∧ X₅+1 ≤ 3⋅X ∧ 2+X ≤ X₆ ∧ X₂ ≤ X₁
t₆₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2⋅X ≤ X₅ ∧ X₅+1 ≤ 3⋅X ∧ X₆ ≤ X+1 ∧ X₂ ≤ X₁
t₆₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: 1+X₃ ≤ X₄ ∧ X₂ ≤ X₁
t₆₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, 1) :|: X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₂ ≤ X₁
t₆₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, 1) :|: X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₂ ≤ X₁
t₆₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, 2, X₅, 1) :|: 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₂ ≤ X₁
t₆₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₂ ≤ X₁
t₇₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₂ ≤ X₁
t₇₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₂ ≤ X₁
t₇₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 2 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₂ ≤ X₁
t₇₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, 2, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₂ ≤ X₁
MPRF for transition t₅₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+X₂+1 {O(n)}
MPRF for transition t₆₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: 1+X₃ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+X₂+1 {O(n)}
MPRF for transition t₆₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₄ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+X₄+1 {O(n)}
MPRF for transition t₅₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF for transition t₅₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₂ ∧ X₂ ≤ X₁ of depth 1:
new bound:
2⋅X₁+2⋅X₂+2 {O(n)}
MPRF for transition t₅₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, 1, X₃, X₄, X₅, X₆) :|: 1 ≤ X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
2⋅X₂+4 {O(n)}
MPRF for transition t₆₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: 2⋅X ≤ X₅ ∧ X₅+1 ≤ 3⋅X ∧ 2+X ≤ X₆ ∧ X₂ ≤ X₁ of depth 1:
new bound:
2⋅X₁+2⋅X₂+2 {O(n)}
MPRF for transition t₆₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2⋅X ≤ X₅ ∧ X₅+1 ≤ 3⋅X ∧ X₆ ≤ X+1 ∧ X₂ ≤ X₁ of depth 1:
new bound:
2⋅X₅+4⋅X₆+6 {O(n)}
MPRF for transition t₆₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, 1) :|: X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₂ ≤ X₁ of depth 1:
new bound:
2⋅X₄+2 {O(n)}
MPRF for transition t₆₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, 1) :|: X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₂ ≤ X₁ of depth 1:
new bound:
2⋅X₄+4⋅X₃ {O(n)}
MPRF for transition t₆₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, 2, X₅, 1) :|: 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₂ ≤ X₁ of depth 1:
new bound:
2⋅X₄+4⋅X₃ {O(n)}
MPRF for transition t₆₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₂ ≤ X₁ of depth 1:
new bound:
2⋅X₃+2⋅X₄+2 {O(n)}
MPRF for transition t₇₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₂ ≤ X₁ of depth 1:
new bound:
2⋅X₃+2⋅X₄+2 {O(n)}
MPRF for transition t₇₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₂ ≤ X₁ of depth 1:
new bound:
2⋅X₄+2 {O(n)}
MPRF for transition t₇₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 2 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₂ ≤ X₁ of depth 1:
new bound:
2⋅X₄+4⋅X₃ {O(n)}
MPRF for transition t₇₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, 2, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₂ ≤ X₁ of depth 1:
new bound:
2⋅X₄+4 {O(n)}
knowledge_propagation leads to new time bound 12⋅X₃+12⋅X₄+2⋅X₅+4⋅X₆+14 {O(n)} for transition t₆₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: 1+X₃ ≤ X₄ ∧ X₂ ≤ X₁
All Bounds
Timebounds
Overall timebound:10⋅X₂+29⋅X₃+29⋅X₄+4⋅X₅+6⋅X₁+8⋅X₆+52 {O(n)}
t₅₀: 1 {O(1)}
t₅₁: 1 {O(1)}
t₅₂: 1 {O(1)}
t₅₃: 1 {O(1)}
t₅₄: X₁+X₂+1 {O(n)}
t₅₅: 2⋅X₂+2 {O(n)}
t₅₆: 2⋅X₁+2⋅X₂+2 {O(n)}
t₅₇: 2⋅X₂+4 {O(n)}
t₅₈: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: X₁+X₂+1 {O(n)}
t₆₂: X₃+X₄+1 {O(n)}
t₆₃: 2⋅X₁+2⋅X₂+2 {O(n)}
t₆₄: 2⋅X₅+4⋅X₆+6 {O(n)}
t₆₅: 12⋅X₃+12⋅X₄+2⋅X₅+4⋅X₆+14 {O(n)}
t₆₆: 2⋅X₄+2 {O(n)}
t₆₇: 2⋅X₄+4⋅X₃ {O(n)}
t₆₈: 2⋅X₄+4⋅X₃ {O(n)}
t₆₉: 2⋅X₃+2⋅X₄+2 {O(n)}
t₇₀: 2⋅X₃+2⋅X₄+2 {O(n)}
t₇₁: 2⋅X₄+2 {O(n)}
t₇₂: 2⋅X₄+4⋅X₃ {O(n)}
t₇₃: 2⋅X₄+4 {O(n)}
Costbounds
Overall costbound: 10⋅X₂+29⋅X₃+29⋅X₄+4⋅X₅+6⋅X₁+8⋅X₆+52 {O(n)}
t₅₀: 1 {O(1)}
t₅₁: 1 {O(1)}
t₅₂: 1 {O(1)}
t₅₃: 1 {O(1)}
t₅₄: X₁+X₂+1 {O(n)}
t₅₅: 2⋅X₂+2 {O(n)}
t₅₆: 2⋅X₁+2⋅X₂+2 {O(n)}
t₅₇: 2⋅X₂+4 {O(n)}
t₅₈: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: X₁+X₂+1 {O(n)}
t₆₂: X₃+X₄+1 {O(n)}
t₆₃: 2⋅X₁+2⋅X₂+2 {O(n)}
t₆₄: 2⋅X₅+4⋅X₆+6 {O(n)}
t₆₅: 12⋅X₃+12⋅X₄+2⋅X₅+4⋅X₆+14 {O(n)}
t₆₆: 2⋅X₄+2 {O(n)}
t₆₇: 2⋅X₄+4⋅X₃ {O(n)}
t₆₈: 2⋅X₄+4⋅X₃ {O(n)}
t₆₉: 2⋅X₃+2⋅X₄+2 {O(n)}
t₇₀: 2⋅X₃+2⋅X₄+2 {O(n)}
t₇₁: 2⋅X₄+2 {O(n)}
t₇₂: 2⋅X₄+4⋅X₃ {O(n)}
t₇₃: 2⋅X₄+4 {O(n)}
Sizebounds
t₅₀, X₀: 1 {O(1)}
t₅₀, X₁: X₁ {O(n)}
t₅₀, X₂: X₂ {O(n)}
t₅₀, X₃: X₃ {O(n)}
t₅₀, X₄: X₄ {O(n)}
t₅₀, X₅: X₅ {O(n)}
t₅₀, X₆: X₆ {O(n)}
t₅₁, X₀: X₀ {O(n)}
t₅₁, X₁: X₁ {O(n)}
t₅₁, X₂: X₂ {O(n)}
t₅₁, X₃: X₃ {O(n)}
t₅₁, X₄: X₄ {O(n)}
t₅₁, X₅: X₅ {O(n)}
t₅₁, X₆: X₆ {O(n)}
t₅₂, X₀: X₀ {O(n)}
t₅₂, X₁: X₁ {O(n)}
t₅₂, X₂: X₂ {O(n)}
t₅₂, X₃: X₃ {O(n)}
t₅₂, X₄: X₄ {O(n)}
t₅₂, X₅: X₅ {O(n)}
t₅₂, X₆: X₆ {O(n)}
t₅₃, X₀: 1 {O(1)}
t₅₃, X₁: 2⋅X₁ {O(n)}
t₅₃, X₂: 3⋅X₂+X₁+1 {O(n)}
t₅₃, X₃: 2⋅X₃ {O(n)}
t₅₃, X₄: 3⋅X₄+X₃+1 {O(n)}
t₅₃, X₅: 2⋅X₅ {O(n)}
t₅₃, X₆: 2⋅X₆ {O(n)}
t₅₄, X₀: 1 {O(1)}
t₅₄, X₁: X₁ {O(n)}
t₅₄, X₂: 2⋅X₂+X₁+1 {O(n)}
t₅₄, X₃: X₃ {O(n)}
t₅₄, X₄: 2⋅X₄+X₃+1 {O(n)}
t₅₄, X₅: X₅ {O(n)}
t₅₄, X₆: X₆ {O(n)}
t₅₅, X₀: 2⋅X₀ {O(n)}
t₅₅, X₁: 2⋅X₁ {O(n)}
t₅₅, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₅₅, X₃: 2⋅X₃ {O(n)}
t₅₅, X₄: 6⋅X₄+8⋅X₃+5 {O(n)}
t₅₅, X₅: 2⋅X₅ {O(n)}
t₅₅, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+6⋅X₆+17 {O(n)}
t₅₆, X₀: 2⋅X₀ {O(n)}
t₅₆, X₁: 2⋅X₁ {O(n)}
t₅₆, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₅₆, X₃: 2⋅X₃ {O(n)}
t₅₆, X₄: 6⋅X₄+8⋅X₃+5 {O(n)}
t₅₆, X₅: 2⋅X₅ {O(n)}
t₅₆, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+6⋅X₆+17 {O(n)}
t₅₇, X₀: 2⋅X₀ {O(n)}
t₅₇, X₁: 2⋅X₁ {O(n)}
t₅₇, X₂: 1 {O(1)}
t₅₇, X₃: 2⋅X₃ {O(n)}
t₅₇, X₄: 6⋅X₄+8⋅X₃+5 {O(n)}
t₅₇, X₅: 2⋅X₅ {O(n)}
t₅₇, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+6⋅X₆+17 {O(n)}
t₅₈, X₀: 3⋅X₀ {O(n)}
t₅₈, X₁: 3⋅X₁ {O(n)}
t₅₈, X₂: 2⋅X₁+5⋅X₂+3 {O(n)}
t₅₈, X₃: 3⋅X₃ {O(n)}
t₅₈, X₄: 7⋅X₄+8⋅X₃+5 {O(n)}
t₅₈, X₅: 3⋅X₅ {O(n)}
t₅₈, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+7⋅X₆+17 {O(n)}
t₅₉, X₀: 4⋅X₀+1 {O(n)}
t₅₉, X₁: 6⋅X₁ {O(n)}
t₅₉, X₂: 3⋅X₁+9⋅X₂+4 {O(n)}
t₅₉, X₃: 6⋅X₃ {O(n)}
t₅₉, X₄: 11⋅X₄+9⋅X₃+6 {O(n)}
t₅₉, X₅: 6⋅X₅ {O(n)}
t₅₉, X₆: 10⋅X₆+12⋅X₃+12⋅X₄+2⋅X₅+17 {O(n)}
t₆₀, X₀: 1 {O(1)}
t₆₀, X₁: 3⋅X₁ {O(n)}
t₆₀, X₂: 2⋅X₁+5⋅X₂+3 {O(n)}
t₆₀, X₃: 3⋅X₃ {O(n)}
t₆₀, X₄: 7⋅X₄+8⋅X₃+5 {O(n)}
t₆₀, X₅: 3⋅X₅ {O(n)}
t₆₀, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+7⋅X₆+17 {O(n)}
t₆₁, X₀: 1 {O(1)}
t₆₁, X₁: X₁ {O(n)}
t₆₁, X₂: 2⋅X₂+X₁+1 {O(n)}
t₆₁, X₃: X₃ {O(n)}
t₆₁, X₄: 2⋅X₄+X₃+1 {O(n)}
t₆₁, X₅: X₅ {O(n)}
t₆₁, X₆: X₆ {O(n)}
t₆₂, X₀: 1 {O(1)}
t₆₂, X₁: X₁ {O(n)}
t₆₂, X₂: 2⋅X₂+X₁+1 {O(n)}
t₆₂, X₃: X₃ {O(n)}
t₆₂, X₄: 2⋅X₄+X₃+1 {O(n)}
t₆₂, X₅: X₅ {O(n)}
t₆₂, X₆: X₆ {O(n)}
t₆₃, X₀: 2⋅X₀ {O(n)}
t₆₃, X₁: 2⋅X₁ {O(n)}
t₆₃, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₆₃, X₃: 2⋅X₃ {O(n)}
t₆₃, X₄: 6⋅X₄+8⋅X₃+5 {O(n)}
t₆₃, X₅: 2⋅X₅ {O(n)}
t₆₃, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+6⋅X₆+17 {O(n)}
t₆₄, X₀: 2⋅X₀ {O(n)}
t₆₄, X₁: 2⋅X₁ {O(n)}
t₆₄, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₆₄, X₃: 2⋅X₃ {O(n)}
t₆₄, X₄: 6⋅X₄+8⋅X₃+5 {O(n)}
t₆₄, X₅: 2⋅X₅ {O(n)}
t₆₄, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+6⋅X₆+17 {O(n)}
t₆₅, X₀: 2⋅X₀ {O(n)}
t₆₅, X₁: 2⋅X₁ {O(n)}
t₆₅, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₆₅, X₃: 2⋅X₃ {O(n)}
t₆₅, X₄: 6⋅X₄+8⋅X₃+5 {O(n)}
t₆₅, X₅: 2⋅X₅ {O(n)}
t₆₅, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+6⋅X₆+17 {O(n)}
t₆₆, X₀: 2⋅X₀ {O(n)}
t₆₆, X₁: 2⋅X₁ {O(n)}
t₆₆, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₆₆, X₃: 2⋅X₃ {O(n)}
t₆₆, X₄: 6⋅X₄+8⋅X₃+5 {O(n)}
t₆₆, X₅: 2⋅X₅ {O(n)}
t₆₆, X₆: 1 {O(1)}
t₆₇, X₀: 2⋅X₀ {O(n)}
t₆₇, X₁: 2⋅X₁ {O(n)}
t₆₇, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₆₇, X₃: 2⋅X₃ {O(n)}
t₆₇, X₄: 6⋅X₄+8⋅X₃+5 {O(n)}
t₆₇, X₅: 2⋅X₅ {O(n)}
t₆₇, X₆: 1 {O(1)}
t₆₈, X₀: 2⋅X₀ {O(n)}
t₆₈, X₁: 2⋅X₁ {O(n)}
t₆₈, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₆₈, X₃: 2⋅X₃ {O(n)}
t₆₈, X₄: 2 {O(1)}
t₆₈, X₅: 2⋅X₅ {O(n)}
t₆₈, X₆: 1 {O(1)}
t₆₉, X₀: 2⋅X₀ {O(n)}
t₆₉, X₁: 2⋅X₁ {O(n)}
t₆₉, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₆₉, X₃: 2⋅X₃ {O(n)}
t₆₉, X₄: 6⋅X₄+8⋅X₃+5 {O(n)}
t₆₉, X₅: 2⋅X₅ {O(n)}
t₆₉, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+6⋅X₆+17 {O(n)}
t₇₀, X₀: 2⋅X₀ {O(n)}
t₇₀, X₁: 2⋅X₁ {O(n)}
t₇₀, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₇₀, X₃: 2⋅X₃ {O(n)}
t₇₀, X₄: 6⋅X₄+8⋅X₃+5 {O(n)}
t₇₀, X₅: 2⋅X₅ {O(n)}
t₇₀, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+6⋅X₆+17 {O(n)}
t₇₁, X₀: 2⋅X₀ {O(n)}
t₇₁, X₁: 2⋅X₁ {O(n)}
t₇₁, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₇₁, X₃: 2⋅X₃ {O(n)}
t₇₁, X₄: 6⋅X₄+8⋅X₃+5 {O(n)}
t₇₁, X₅: 2⋅X₅ {O(n)}
t₇₁, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+6⋅X₆+17 {O(n)}
t₇₂, X₀: 2⋅X₀ {O(n)}
t₇₂, X₁: 2⋅X₁ {O(n)}
t₇₂, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₇₂, X₃: 2⋅X₃ {O(n)}
t₇₂, X₄: 6⋅X₄+8⋅X₃+5 {O(n)}
t₇₂, X₅: 2⋅X₅ {O(n)}
t₇₂, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+6⋅X₆+17 {O(n)}
t₇₃, X₀: 2⋅X₀ {O(n)}
t₇₃, X₁: 2⋅X₁ {O(n)}
t₇₃, X₂: 2⋅X₁+4⋅X₂+3 {O(n)}
t₇₃, X₃: 2⋅X₃ {O(n)}
t₇₃, X₄: 2 {O(1)}
t₇₃, X₅: 2⋅X₅ {O(n)}
t₇₃, X₆: 12⋅X₃+12⋅X₄+2⋅X₅+6⋅X₆+17 {O(n)}