Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₀
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆)
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆)
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₁, X₂, X₃, X₀, X₄, X₅, X₆)
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆) :|: 1 ≤ X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+1 ≤ X₆
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1)
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆)
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁+1 ≤ X₅
t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₁
Preprocessing
Found invariant X₃ ≤ 0 for location l11
Found invariant X₃ ≤ 0 for location l2
Found invariant X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l1
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l10
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l9
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₁, X₂, X₃, X₀, X₄, X₅, X₆)
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆) :|: 1 ≤ X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+1 ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1) :|: X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁+1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
MPRF for transition t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, 1, X₅, X₆) :|: 1 ≤ X₃ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₀⋅X₁+X₁ {O(n^2)}
MPRF for transition t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁+1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+X₁ {O(n^2)}
MPRF for transition t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+X₁ {O(n^2)}
MPRF for transition t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
MPRF for transition t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+1 ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
MPRF for transition t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
Chain transitions t₂: l5→l1 and t₄: l1→l9 to t₁₁₆: l5→l9
Chain transitions t₁₂: l10→l1 and t₄: l1→l9 to t₁₁₇: l10→l9
Chain transitions t₁₂: l10→l1 and t₅: l1→l3 to t₁₁₈: l10→l3
Chain transitions t₂: l5→l1 and t₅: l1→l3 to t₁₁₉: l5→l3
Chain transitions t₇: l9→l10 and t₁₁₇: l10→l9 to t₁₂₀: l9→l9
Chain transitions t₇: l9→l10 and t₁₁₈: l10→l3 to t₁₂₁: l9→l3
Chain transitions t₇: l9→l10 and t₁₂: l10→l1 to t₁₂₂: l9→l1
Chain transitions t₁₂₁: l9→l3 and t₁₃: l3→l5 to t₁₂₃: l9→l5
Chain transitions t₁₁₉: l5→l3 and t₁₃: l3→l5 to t₁₂₄: l5→l5
Chain transitions t₆: l9→l6 and t₉: l6→l8 to t₁₂₅: l9→l8
Chain transitions t₁₀: l7→l6 and t₉: l6→l8 to t₁₂₆: l7→l8
Chain transitions t₁₀: l7→l6 and t₈: l6→l7 to t₁₂₇: l7→l7
Chain transitions t₆: l9→l6 and t₈: l6→l7 to t₁₂₈: l9→l7
Chain transitions t₁₂₅: l9→l8 and t₁₁: l8→l9 to t₁₂₉: l9→l9
Chain transitions t₁₂₆: l7→l8 and t₁₁: l8→l9 to t₁₃₀: l7→l9
Analysing control-flow refined program
Cut unsatisfiable transition t₁₂₆: l7→l8
Cut unsatisfiable transition t₁₃₀: l7→l9
Found invariant X₃ ≤ 0 for location l11
Found invariant X₃ ≤ 0 for location l2
Found invariant X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l1
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l10
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l9
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ for location l3
MPRF for transition t₁₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{2}> l9(X₀, X₁, X₂, X₃, 1, X₃, X₆) :|: 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₁₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{4}> l5(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, X₆) :|: X₁+1 ≤ X₅ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₁₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l5(X₀, X₁, X₂, X₃-1, 1, X₅, X₆) :|: 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 1 ≤ X₃ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₁₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l9(X₀, X₁, X₂, X₃, 1+X₄, X₃, X₆) :|: X₁+1 ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+X₁ {O(n^2)}
MPRF for transition t₁₂₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₂) :|: X₅ ≤ X₁ ∧ X₄+1 ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 0 ∧ 2 ≤ X₂ ∧ 3 ≤ X₅+X₂ ∧ 3 ≤ X₄+X₂ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₃+X₂ ∧ 4 ≤ 2⋅X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₁⋅X₂+3⋅X₀⋅X₀⋅X₁+2⋅X₀⋅X₂+2⋅X₁⋅X₂+3⋅X₀⋅X₁+2⋅X₂ {O(n^3)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant X₃ ≤ 0 for location l11
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___3
Found invariant X₃ ≤ 0 for location l2
Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location n_l9___10
Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l1___11
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___8
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___4
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l9___1
Found invariant X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___12
Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l10___13
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___2
Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l7___6
Found invariant 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₀ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___7
Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l7___9
Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l1
Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l9___14
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ for location l3
Found invariant X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l9___5
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₇₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___14(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₄ ≤ 1 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₈₄: n_l9___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₃ ∧ 1+X₁ ≤ X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₂₈₅: n_l9___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___12(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
MPRF for transition t₂₇₀: n_l10___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___11(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₅ ≤ X₃ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₁+X₀⋅X₀+2⋅X₀+3⋅X₁+1 {O(n^2)}
MPRF for transition t₂₇₁: n_l10___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___2(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₆ ≤ X₂ ∧ 1+X₄ ≤ X₆ ∧ X₃ ≤ X₁ ∧ X₁+1 ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₁+4⋅X₁+X₀+X₃+1 {O(n^2)}
MPRF for transition t₂₇₂: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___10(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: 1+X₁ ≤ X₃ ∧ 2 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₁+3⋅X₁+X₀+2 {O(n^2)}
MPRF for transition t₂₇₄: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___1(X₀, X₁, X₂, X₃, X₄, X₃, X₆) :|: X₃ ≤ X₁ ∧ 2 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₃+X₀+X₃+1 {O(n^2)}
MPRF for transition t₂₇₆: n_l6___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₀+X₀⋅X₁+2⋅X₁+3⋅X₀+X₃+1 {O(n^2)}
MPRF for transition t₂₈₂: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___12(X₀, X₁, X₂, X₃, X₄, X₅, X₂) :|: X₅ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₁ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+2⋅X₁+X₀+X₃+1 {O(n^2)}
MPRF for transition t₂₈₃: n_l9___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₁ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+X₀+X₁+1 {O(n^2)}
MPRF for transition t₂₈₆: n_l9___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₄ ≤ X₂ ∧ 1+X₃ ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₁ ≤ X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀⋅X₁+X₀⋅X₃+2⋅X₁+X₀+X₃+1 {O(n^2)}
MPRF for transition t₃₀₁: n_l1___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₃₀₂: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀+1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₀+X₁ {O(n)}
TWN: t₂₇₇: n_l6___3→n_l8___8
cycle: [t₂₈₇: n_l9___5→n_l6___3; t₂₈₁: n_l8___8→n_l9___5; t₂₇₇: n_l6___3→n_l8___8]
loop: (X₂ ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₁,(X₁,X₂,X₃,X₄,X₅,X₆) -> (X₁,X₂,X₃,X₄,1+X₅,X₂)
order: [X₁; X₂; X₃; X₄; X₅; X₆]
closed-form:
X₁: X₁
X₂: X₂
X₃: X₃
X₄: X₄
X₅: X₅ + [[n != 0]] * n^1
X₆: [[n == 0]] * X₆ + [[n != 0]] * X₂
Termination: true
Formula:
1+X₄ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₄ < X₂ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₄ < X₂ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1 < 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ < X₁ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 < 1 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₃ < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ < X₂
∨ 1+X₅ ≤ X₁ ∧ X₁ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂ ≤ 1+X₄
Stabilization-Threshold for: 1+X₅ ≤ X₁
alphas_abs: X₁+1+X₅
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₅ ≤ X₁
alphas_abs: X₁+X₅
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ ≤ X₅
alphas_abs: X₃+X₅
M: 0
N: 1
Bound: 2⋅X₃+2⋅X₅+2 {O(n)}
TWN - Lifting for t₂₇₇: n_l6___3→n_l8___8 of 2⋅X₃+4⋅X₁+6⋅X₅+12 {O(n)}
relevant size-bounds w.r.t. t₂₇₆:
X₁: X₂ {O(n)}
X₃: X₀ {O(n)}
X₅: 2⋅X₀ {O(n)}
Runtime-bound of t₂₇₆: X₀⋅X₀+X₀⋅X₁+2⋅X₁+3⋅X₀+X₃+1 {O(n^2)}
Results in: 14⋅X₀⋅X₀⋅X₀+14⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₂+4⋅X₀⋅X₁⋅X₂+12⋅X₀⋅X₂+14⋅X₀⋅X₃+4⋅X₂⋅X₃+40⋅X₀⋅X₁+54⋅X₀⋅X₀+8⋅X₁⋅X₂+12⋅X₃+24⋅X₁+4⋅X₂+50⋅X₀+12 {O(n^3)}
TWN: t₂₈₁: n_l8___8→n_l9___5
TWN - Lifting for t₂₈₁: n_l8___8→n_l9___5 of 2⋅X₃+4⋅X₁+6⋅X₅+12 {O(n)}
relevant size-bounds w.r.t. t₂₇₆:
X₁: X₂ {O(n)}
X₃: X₀ {O(n)}
X₅: 2⋅X₀ {O(n)}
Runtime-bound of t₂₇₆: X₀⋅X₀+X₀⋅X₁+2⋅X₁+3⋅X₀+X₃+1 {O(n^2)}
Results in: 14⋅X₀⋅X₀⋅X₀+14⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₂+4⋅X₀⋅X₁⋅X₂+12⋅X₀⋅X₂+14⋅X₀⋅X₃+4⋅X₂⋅X₃+40⋅X₀⋅X₁+54⋅X₀⋅X₀+8⋅X₁⋅X₂+12⋅X₃+24⋅X₁+4⋅X₂+50⋅X₀+12 {O(n^3)}
TWN: t₂₈₇: n_l9___5→n_l6___3
TWN - Lifting for t₂₈₇: n_l9___5→n_l6___3 of 2⋅X₃+4⋅X₁+6⋅X₅+12 {O(n)}
relevant size-bounds w.r.t. t₂₇₆:
X₁: X₂ {O(n)}
X₃: X₀ {O(n)}
X₅: 2⋅X₀ {O(n)}
Runtime-bound of t₂₇₆: X₀⋅X₀+X₀⋅X₁+2⋅X₁+3⋅X₀+X₃+1 {O(n^2)}
Results in: 14⋅X₀⋅X₀⋅X₀+14⋅X₀⋅X₀⋅X₁+4⋅X₀⋅X₀⋅X₂+4⋅X₀⋅X₁⋅X₂+12⋅X₀⋅X₂+14⋅X₀⋅X₃+4⋅X₂⋅X₃+40⋅X₀⋅X₁+54⋅X₀⋅X₀+8⋅X₁⋅X₂+12⋅X₃+24⋅X₁+4⋅X₂+50⋅X₀+12 {O(n^3)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₀+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₀⋅X₁+X₁ {O(n^2)}
t₅: X₀ {O(n)}
t₆: X₀⋅X₁⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
t₇: X₀⋅X₁+X₁ {O(n^2)}
t₈: inf {Infinity}
t₉: X₀⋅X₁⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
t₁₀: inf {Infinity}
t₁₁: X₀⋅X₁⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
t₁₂: X₀⋅X₁+X₁ {O(n^2)}
t₁₃: X₀ {O(n)}
t₁₄: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₀+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₀⋅X₁+X₁ {O(n^2)}
t₅: X₀ {O(n)}
t₆: X₀⋅X₁⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
t₇: X₀⋅X₁+X₁ {O(n^2)}
t₈: inf {Infinity}
t₉: X₀⋅X₁⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
t₁₀: inf {Infinity}
t₁₁: X₀⋅X₁⋅X₂+X₁⋅X₂+X₂ {O(n^3)}
t₁₂: X₀⋅X₁+X₁ {O(n^2)}
t₁₃: X₀ {O(n)}
t₁₄: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₁ {O(n)}
t₁, X₁: X₂ {O(n)}
t₁, X₂: X₃ {O(n)}
t₁, X₃: X₀ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: X₁ {O(n)}
t₂, X₁: X₂ {O(n)}
t₂, X₂: X₃ {O(n)}
t₂, X₃: X₀ {O(n)}
t₂, X₄: 1 {O(1)}
t₂, X₅: X₀⋅X₁⋅X₂+X₁⋅X₂+4⋅X₀+X₂+X₅ {O(n^3)}
t₂, X₆: 2⋅X₃+X₆ {O(n)}
t₃, X₀: 2⋅X₁ {O(n)}
t₃, X₁: 2⋅X₂ {O(n)}
t₃, X₂: 2⋅X₃ {O(n)}
t₃, X₃: 2⋅X₀ {O(n)}
t₃, X₄: X₀⋅X₁+X₁+X₄+2 {O(n^2)}
t₃, X₅: X₀⋅X₁⋅X₂+X₁⋅X₂+2⋅X₅+4⋅X₀+X₂ {O(n^3)}
t₃, X₆: 2⋅X₃+2⋅X₆ {O(n)}
t₄, X₀: X₁ {O(n)}
t₄, X₁: X₂ {O(n)}
t₄, X₂: X₃ {O(n)}
t₄, X₃: X₀ {O(n)}
t₄, X₄: X₀⋅X₁+X₁+1 {O(n^2)}
t₄, X₅: 2⋅X₀ {O(n)}
t₄, X₆: 2⋅X₃+X₆ {O(n)}
t₅, X₀: X₁ {O(n)}
t₅, X₁: X₂ {O(n)}
t₅, X₂: X₃ {O(n)}
t₅, X₃: X₀ {O(n)}
t₅, X₄: X₀⋅X₁+X₁+2 {O(n^2)}
t₅, X₅: X₀⋅X₁⋅X₂+X₁⋅X₂+4⋅X₀+X₂+X₅ {O(n^3)}
t₅, X₆: 2⋅X₃+X₆ {O(n)}
t₆, X₀: X₁ {O(n)}
t₆, X₁: X₂ {O(n)}
t₆, X₂: X₃ {O(n)}
t₆, X₃: X₀ {O(n)}
t₆, X₄: X₀⋅X₁+X₁+1 {O(n^2)}
t₆, X₅: X₀⋅X₁⋅X₂+X₁⋅X₂+2⋅X₀+X₂ {O(n^3)}
t₆, X₆: 2⋅X₃ {O(n)}
t₇, X₀: X₁ {O(n)}
t₇, X₁: X₂ {O(n)}
t₇, X₂: X₃ {O(n)}
t₇, X₃: X₀ {O(n)}
t₇, X₄: X₀⋅X₁+X₁+1 {O(n^2)}
t₇, X₅: X₀⋅X₁⋅X₂+X₁⋅X₂+4⋅X₀+X₂ {O(n^3)}
t₇, X₆: 2⋅X₃+X₆ {O(n)}
t₈, X₀: X₁ {O(n)}
t₈, X₁: X₂ {O(n)}
t₈, X₂: X₃ {O(n)}
t₈, X₃: X₀ {O(n)}
t₈, X₄: X₀⋅X₁+X₁+1 {O(n^2)}
t₈, X₅: X₀⋅X₁⋅X₂+X₁⋅X₂+2⋅X₀+X₂ {O(n^3)}
t₉, X₀: X₁ {O(n)}
t₉, X₁: X₂ {O(n)}
t₉, X₂: X₃ {O(n)}
t₉, X₃: X₀ {O(n)}
t₉, X₄: X₀⋅X₁+X₁+1 {O(n^2)}
t₉, X₅: X₀⋅X₁⋅X₂+X₁⋅X₂+2⋅X₀+X₂ {O(n^3)}
t₉, X₆: 2⋅X₃ {O(n)}
t₁₀, X₀: X₁ {O(n)}
t₁₀, X₁: X₂ {O(n)}
t₁₀, X₂: X₃ {O(n)}
t₁₀, X₃: X₀ {O(n)}
t₁₀, X₄: X₀⋅X₁+X₁+1 {O(n^2)}
t₁₀, X₅: X₀⋅X₁⋅X₂+X₁⋅X₂+2⋅X₀+X₂ {O(n^3)}
t₁₁, X₀: X₁ {O(n)}
t₁₁, X₁: X₂ {O(n)}
t₁₁, X₂: X₃ {O(n)}
t₁₁, X₃: X₀ {O(n)}
t₁₁, X₄: X₀⋅X₁+X₁+1 {O(n^2)}
t₁₁, X₅: X₀⋅X₁⋅X₂+X₁⋅X₂+2⋅X₀+X₂ {O(n^3)}
t₁₁, X₆: 2⋅X₃ {O(n)}
t₁₂, X₀: X₁ {O(n)}
t₁₂, X₁: X₂ {O(n)}
t₁₂, X₂: X₃ {O(n)}
t₁₂, X₃: X₀ {O(n)}
t₁₂, X₄: X₀⋅X₁+X₁+1 {O(n^2)}
t₁₂, X₅: X₀⋅X₁⋅X₂+X₁⋅X₂+4⋅X₀+X₂ {O(n^3)}
t₁₂, X₆: 2⋅X₃+X₆ {O(n)}
t₁₃, X₀: X₁ {O(n)}
t₁₃, X₁: X₂ {O(n)}
t₁₃, X₂: X₃ {O(n)}
t₁₃, X₃: X₀ {O(n)}
t₁₃, X₄: X₀⋅X₁+X₁+2 {O(n^2)}
t₁₃, X₅: X₀⋅X₁⋅X₂+X₁⋅X₂+4⋅X₀+X₂+X₅ {O(n^3)}
t₁₃, X₆: 2⋅X₃+X₆ {O(n)}
t₁₄, X₀: 2⋅X₁ {O(n)}
t₁₄, X₁: 2⋅X₂ {O(n)}
t₁₄, X₂: 2⋅X₃ {O(n)}
t₁₄, X₃: 2⋅X₀ {O(n)}
t₁₄, X₄: X₀⋅X₁+X₁+X₄+2 {O(n^2)}
t₁₄, X₅: X₀⋅X₁⋅X₂+X₁⋅X₂+2⋅X₅+4⋅X₀+X₂ {O(n^3)}
t₁₄, X₆: 2⋅X₃+2⋅X₆ {O(n)}