Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₅-1, X₄, X₅, X₆, X₇)
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₀)
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇) :|: 0 < X₅
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ 0
t₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₄)
t₁₅: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₆
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₅
t₂₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < 0
t₂₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇
t₂₉: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ 0 ≤ X₇
t₁₇: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₅, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₂, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₂₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₇, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₇, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₆
t₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₇-X₅, X₃, X₄, X₅, X₆, X₇)
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
Preprocessing
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l11
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l6
Found invariant 2 ≤ X₄ for location l15
Found invariant X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l19
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l12
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l23
Found invariant 2 ≤ X₄ for location l17
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l7
Found invariant X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l20
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l21
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l13
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l22
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l8
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l10
Found invariant 2 ≤ X₄ for location l16
Found invariant X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l18
Found invariant 2 ≤ X₄ for location l4
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l9
Found invariant 2 ≤ X₄ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1
t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₅-1, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁
t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁
t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₀) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇) :|: 0 < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ 0 ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₁, X₆, X₄) :|: X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁₅: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₂₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < 0 ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₂₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₂₉: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁₇: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₅, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₄
t₃₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₂, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁
t₂₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₇, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₇, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁
t₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₇-X₅, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁
MPRF for transition t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇) :|: 0 < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ of depth 1:
new bound:
2⋅X₄ {O(n)}
MPRF for transition t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ of depth 1:
new bound:
2⋅X₄+1 {O(n)}
MPRF for transition t₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₇-X₅, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF for transition t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₂, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ of depth 1:
new bound:
3⋅X₄+1 {O(n)}
MPRF for transition t₂₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₇, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ of depth 1:
new bound:
3⋅X₄ {O(n)}
MPRF for transition t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₇, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ of depth 1:
new bound:
2⋅X₄ {O(n)}
MPRF for transition t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF for transition t₂₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₅-1, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₀) :|: X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ of depth 1:
new bound:
X₄ {O(n)}
TWN: t₁₅: l21→l23
cycle: [t₁₅: l21→l23; t₁₇: l23→l21]
loop: (X₅ ≤ X₆,(X₅,X₆) -> (X₅,X₆-X₅)
order: [X₅; X₆]
closed-form:
X₅: X₅
X₆: X₆ + [[n != 0]] * -X₅ * n^1
Termination: true
Formula:
X₅ < 0
∨ X₅ < X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
∨ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅
Stabilization-Threshold for: X₅ ≤ X₆
alphas_abs: X₅+X₆
M: 0
N: 1
Bound: 2⋅X₅+2⋅X₆+2 {O(n)}
TWN - Lifting for t₁₅: l21→l23 of 2⋅X₅+2⋅X₆+4 {O(n)}
relevant size-bounds w.r.t. t₁₃:
X₅: X₄ {O(n)}
X₆: 2⋅X₄ {O(n)}
Runtime-bound of t₁₃: 2⋅X₄ {O(n)}
Results in: 12⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
TWN: t₁₇: l23→l21
TWN - Lifting for t₁₇: l23→l21 of 2⋅X₅+2⋅X₆+4 {O(n)}
relevant size-bounds w.r.t. t₁₃:
X₅: X₄ {O(n)}
X₆: 2⋅X₄ {O(n)}
Runtime-bound of t₁₃: 2⋅X₄ {O(n)}
Results in: 12⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
Chain transitions t₂₃: l9→l10 and t₂₄: l10→l11 to t₁₆₉: l9→l11
Chain transitions t₁₆₉: l9→l11 and t₂₅: l11→l12 to t₁₇₀: l9→l12
Chain transitions t₁₇₀: l9→l12 and t₂₆: l12→l13 to t₁₇₁: l9→l13
Chain transitions t₁₇₁: l9→l13 and t₁₄: l13→l22 to t₁₇₂: l9→l22
Chain transitions t₁₂: l20→l13 and t₁₄: l13→l22 to t₁₇₃: l20→l22
Chain transitions t₁₂: l20→l13 and t₁₃: l13→l21 to t₁₇₄: l20→l21
Chain transitions t₁₇₁: l9→l13 and t₁₃: l13→l21 to t₁₇₅: l9→l21
Chain transitions t₁₇₅: l9→l21 and t₁₆: l21→l7 to t₁₇₆: l9→l7
Chain transitions t₁₇: l23→l21 and t₁₆: l21→l7 to t₁₇₇: l23→l7
Chain transitions t₁₇: l23→l21 and t₁₅: l21→l23 to t₁₇₈: l23→l23
Chain transitions t₁₇₅: l9→l21 and t₁₅: l21→l23 to t₁₇₉: l9→l23
Chain transitions t₁₇₄: l20→l21 and t₁₅: l21→l23 to t₁₈₀: l20→l23
Chain transitions t₁₇₄: l20→l21 and t₁₆: l21→l7 to t₁₈₁: l20→l7
Chain transitions t₁₉: l8→l6 and t₂₂: l6→l9 to t₁₈₂: l8→l9
Chain transitions t₁₉: l8→l6 and t₂₁: l6→l9 to t₁₈₃: l8→l9
Chain transitions t₁₉: l8→l6 and t₂₀: l6→l9 to t₁₈₄: l8→l9
Chain transitions t₁₇₆: l9→l7 and t₁₈: l7→l8 to t₁₈₅: l9→l8
Chain transitions t₁₇₇: l23→l7 and t₁₈: l7→l8 to t₁₈₆: l23→l8
Chain transitions t₁₈₁: l20→l7 and t₁₈: l7→l8 to t₁₈₇: l20→l8
Chain transitions t₁₈₅: l9→l8 and t₁₈₄: l8→l9 to t₁₈₈: l9→l9
Chain transitions t₁₈₆: l23→l8 and t₁₈₄: l8→l9 to t₁₈₉: l23→l9
Chain transitions t₁₈₆: l23→l8 and t₁₈₃: l8→l9 to t₁₉₀: l23→l9
Chain transitions t₁₈₅: l9→l8 and t₁₈₃: l8→l9 to t₁₉₁: l9→l9
Chain transitions t₁₈₇: l20→l8 and t₁₈₃: l8→l9 to t₁₉₂: l20→l9
Chain transitions t₁₈₇: l20→l8 and t₁₈₄: l8→l9 to t₁₉₃: l20→l9
Chain transitions t₁₈₇: l20→l8 and t₁₈₂: l8→l9 to t₁₉₄: l20→l9
Chain transitions t₁₈₆: l23→l8 and t₁₈₂: l8→l9 to t₁₉₅: l23→l9
Chain transitions t₁₈₅: l9→l8 and t₁₈₂: l8→l9 to t₁₉₆: l9→l9
Chain transitions t₁₈₇: l20→l8 and t₁₉: l8→l6 to t₁₉₇: l20→l6
Chain transitions t₁₈₆: l23→l8 and t₁₉: l8→l6 to t₁₉₈: l23→l6
Chain transitions t₁₈₅: l9→l8 and t₁₉: l8→l6 to t₁₉₉: l9→l6
Analysing control-flow refined program
Cut unsatisfiable transition t₁₇₃: l20→l22
Cut unsatisfiable transition t₁₇₆: l9→l7
Cut unsatisfiable transition t₁₈₁: l20→l7
Cut unsatisfiable transition t₁₈₅: l9→l8
Cut unsatisfiable transition t₁₈₇: l20→l8
Cut unsatisfiable transition t₁₈₈: l9→l9
Cut unsatisfiable transition t₁₉₀: l23→l9
Cut unsatisfiable transition t₁₉₁: l9→l9
Cut unsatisfiable transition t₁₉₂: l20→l9
Cut unsatisfiable transition t₁₉₃: l20→l9
Cut unsatisfiable transition t₁₉₄: l20→l9
Cut unsatisfiable transition t₁₉₆: l9→l9
Cut unsatisfiable transition t₁₉₇: l20→l6
Cut unsatisfiable transition t₁₉₉: l9→l6
Eliminate variables {X₃} that do not contribute to the problem
Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l11
Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l6
Found invariant 2 ≤ X₃ for location l15
Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l19
Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l12
Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l23
Found invariant 2 ≤ X₃ for location l17
Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l7
Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l20
Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 1+X₁ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l21
Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l13
Found invariant X₆ ≤ X₀ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l22
Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l8
Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l10
Found invariant 2 ≤ X₃ for location l16
Found invariant X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l18
Found invariant 2 ≤ X₃ for location l4
Found invariant X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l9
Found invariant 2 ≤ X₃ for location l14
MPRF for transition t₃₄₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{5}> l9(X₆-X₄, X₁, X₆-X₄, X₃, X₄, X₅-X₄, X₆) :|: X₅ < 2⋅X₄ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₃ {O(n)}
MPRF for transition t₃₄₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{5}> l9(X₆, X₁, X₆-X₄, X₃, X₄, X₅-X₄, X₆) :|: X₅ < 2⋅X₄ ∧ X₄ < X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₃ {O(n)}
MPRF for transition t₃₅₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{6}> l23(X₀, X₁, X₂, X₃, X₄-1, X₃, X₀) :|: 1 < X₄ ∧ X₄ ≤ 1+X₃ ∧ X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₃₃₇: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{2}> l23(X₀, X₁, X₂, X₃, X₄, X₅-X₄, X₆) :|: 2⋅X₄ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
4⋅X₃⋅X₃+8⋅X₃+2 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₁₆: l21→l7
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l11
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l6
Found invariant 2 ≤ X₄ for location l15
Found invariant X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l19
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location n_l21___2
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location n_l23___3
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l12
Found invariant 2 ≤ X₄ for location l17
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l7
Found invariant X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l20
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l21
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l13
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l22
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ for location l8
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l10
Found invariant 2 ≤ X₄ for location l16
Found invariant X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location l18
Found invariant 2 ≤ X₄ for location l4
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₂ ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l9
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ for location n_l23___1
Found invariant 2 ≤ X₄ for location l14
knowledge_propagation leads to new time bound 2⋅X₄ {O(n)} for transition t₄₅₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l23___3(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₅ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ X₇ ≤ 1+X₁ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₄ {O(n)} for transition t₄₆₀: n_l23___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l21___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆-X₅, X₇) :|: X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₇ ≤ 1+X₁ ∧ 1 ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁
MPRF for transition t₄₅₇: n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l23___1(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆, X₇) :|: X₁+1 ≤ X₄ ∧ 0 ≤ X₆ ∧ X₅+X₆ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₁+1 ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ X₇ ≤ 1+X₁ ∧ 1 ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₅ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ of depth 1:
new bound:
6⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
MPRF for transition t₄₅₉: n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l21___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆-X₅, X₇) :|: X₅+X₆ ≤ 1+X₁ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ 1+X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ X₇ ≤ 1+X₁ ∧ X₅ ≤ X₆ ∧ X₄ ≤ 1+X₁ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ of depth 1:
new bound:
8⋅X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₄₆₄: n_l21___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄+1 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:24⋅X₄⋅X₄+34⋅X₄+22 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₁₃: 2⋅X₄ {O(n)}
t₁₄: 1 {O(1)}
t₁₅: 12⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₆: 2⋅X₄+1 {O(n)}
t₁₇: 12⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₈: X₄ {O(n)}
t₁₉: X₄+1 {O(n)}
t₂₀: 3⋅X₄+1 {O(n)}
t₂₁: 3⋅X₄ {O(n)}
t₂₂: 2⋅X₄ {O(n)}
t₂₃: X₄+1 {O(n)}
t₂₄: X₄ {O(n)}
t₂₅: X₄ {O(n)}
t₂₆: X₄ {O(n)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
Costbounds
Overall costbound: 24⋅X₄⋅X₄+34⋅X₄+22 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₁₃: 2⋅X₄ {O(n)}
t₁₄: 1 {O(1)}
t₁₅: 12⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₆: 2⋅X₄+1 {O(n)}
t₁₇: 12⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₈: X₄ {O(n)}
t₁₉: X₄+1 {O(n)}
t₂₀: 3⋅X₄+1 {O(n)}
t₂₁: 3⋅X₄ {O(n)}
t₂₂: 2⋅X₄ {O(n)}
t₂₃: X₄+1 {O(n)}
t₂₄: X₄ {O(n)}
t₂₅: X₄ {O(n)}
t₂₆: X₄ {O(n)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₄ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₄ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₄ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₇ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₄ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₄ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₄ {O(n)}
t₁₃, X₀: X₄⋅X₄+2⋅X₄+X₀ {O(n^2)}
t₁₃, X₁: X₄ {O(n)}
t₁₃, X₂: 3⋅X₄⋅X₄+6⋅X₄+X₂ {O(n^2)}
t₁₃, X₃: X₃+X₄ {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: X₄ {O(n)}
t₁₃, X₆: 2⋅X₄ {O(n)}
t₁₃, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₄, X₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₄, X₁: X₄ {O(n)}
t₁₄, X₂: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₁₄, X₃: X₄ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: 0 {O(1)}
t₁₄, X₆: 4⋅X₄ {O(n)}
t₁₄, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₅, X₀: X₄⋅X₄+2⋅X₄+X₀ {O(n^2)}
t₁₅, X₁: X₄ {O(n)}
t₁₅, X₂: 3⋅X₄⋅X₄+6⋅X₄+X₂ {O(n^2)}
t₁₅, X₃: X₃+X₄ {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: X₄ {O(n)}
t₁₅, X₆: 2⋅X₄ {O(n)}
t₁₅, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₆, X₀: X₄⋅X₄+2⋅X₄+X₀ {O(n^2)}
t₁₆, X₁: X₄ {O(n)}
t₁₆, X₂: 3⋅X₄⋅X₄+6⋅X₄+X₂ {O(n^2)}
t₁₆, X₃: X₃+X₄ {O(n)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: X₄ {O(n)}
t₁₆, X₆: 2⋅X₄ {O(n)}
t₁₆, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₇, X₀: X₄⋅X₄+2⋅X₄+X₀ {O(n^2)}
t₁₇, X₁: X₄ {O(n)}
t₁₇, X₂: 3⋅X₄⋅X₄+6⋅X₄+X₂ {O(n^2)}
t₁₇, X₃: X₃+X₄ {O(n)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₄ {O(n)}
t₁₇, X₆: 2⋅X₄ {O(n)}
t₁₇, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₈, X₀: X₄⋅X₄+2⋅X₄+X₀ {O(n^2)}
t₁₈, X₁: X₄ {O(n)}
t₁₈, X₂: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₈, X₃: X₃+X₄ {O(n)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: X₄ {O(n)}
t₁₈, X₆: 2⋅X₄ {O(n)}
t₁₈, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₉, X₀: X₄⋅X₄+2⋅X₄+X₀ {O(n^2)}
t₁₉, X₁: X₄ {O(n)}
t₁₉, X₂: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₉, X₃: X₃+X₄ {O(n)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: X₄ {O(n)}
t₁₉, X₆: 2⋅X₄ {O(n)}
t₁₉, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₀, X₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₀, X₁: X₄ {O(n)}
t₂₀, X₂: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₀, X₃: X₃+X₄ {O(n)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: X₄ {O(n)}
t₂₀, X₆: 0 {O(1)}
t₂₀, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₁, X₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₁, X₁: X₄ {O(n)}
t₂₁, X₂: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₁, X₃: X₃+X₄ {O(n)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: X₄ {O(n)}
t₂₁, X₆: 2⋅X₄ {O(n)}
t₂₁, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₂, X₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₂, X₁: X₄ {O(n)}
t₂₂, X₂: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₂, X₃: X₃+X₄ {O(n)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: X₄ {O(n)}
t₂₂, X₆: 2⋅X₄ {O(n)}
t₂₂, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₃, X₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₃, X₁: X₄ {O(n)}
t₂₃, X₂: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₃, X₃: 3⋅X₃+3⋅X₄ {O(n)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: X₄ {O(n)}
t₂₃, X₆: 4⋅X₄ {O(n)}
t₂₃, X₇: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₄, X₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₄, X₁: X₄ {O(n)}
t₂₄, X₂: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₄, X₃: X₄ {O(n)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: X₄ {O(n)}
t₂₄, X₆: 4⋅X₄ {O(n)}
t₂₄, X₇: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₅, X₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₅, X₁: X₄ {O(n)}
t₂₅, X₂: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₅, X₃: X₄ {O(n)}
t₂₅, X₄: X₄ {O(n)}
t₂₅, X₅: X₄ {O(n)}
t₂₅, X₆: 4⋅X₄ {O(n)}
t₂₅, X₇: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₆, X₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₆, X₁: X₄ {O(n)}
t₂₆, X₂: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₆, X₃: X₄ {O(n)}
t₂₆, X₄: X₄ {O(n)}
t₂₆, X₅: X₄ {O(n)}
t₂₆, X₆: 4⋅X₄ {O(n)}
t₂₆, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₇, X₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₇, X₁: X₄ {O(n)}
t₂₇, X₂: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₇, X₃: X₄ {O(n)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₅: 0 {O(1)}
t₂₇, X₆: 4⋅X₄ {O(n)}
t₂₇, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₈, X₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₈, X₁: X₄ {O(n)}
t₂₈, X₂: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₈, X₃: X₄ {O(n)}
t₂₈, X₄: X₄ {O(n)}
t₂₈, X₅: 0 {O(1)}
t₂₈, X₆: 4⋅X₄ {O(n)}
t₂₈, X₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₉, X₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₉, X₁: X₄ {O(n)}
t₂₉, X₂: 3⋅X₄⋅X₄+6⋅X₄ {O(n^2)}
t₂₉, X₃: X₄ {O(n)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₅: 0 {O(1)}
t₂₉, X₆: 4⋅X₄ {O(n)}
t₂₉, X₇: 0 {O(1)}
t₃₀, X₀: 3⋅X₄⋅X₄+6⋅X₄+X₀ {O(n^2)}
t₃₀, X₁: 3⋅X₄+X₁ {O(n)}
t₃₀, X₂: 9⋅X₄⋅X₄+18⋅X₄+X₂ {O(n^2)}
t₃₀, X₃: 3⋅X₄+X₃ {O(n)}
t₃₀, X₄: 4⋅X₄ {O(n)}
t₃₀, X₅: X₅ {O(n)}
t₃₀, X₆: 12⋅X₄+X₆ {O(n)}
t₃₀, X₇: 2⋅X₄⋅X₄+4⋅X₄+X₇ {O(n^2)}