Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ < X₁₁
t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈
t₃₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ 0
t₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₉
t₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ ≤ 0
t₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₉, X₁₀, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₀
t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₅, X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₁₆: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 0
t₁₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₆
t₁₄: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₅: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, nondef_0, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀
t₁₀: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0
t₁₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₁+1, X₃, X₄, X₀-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₃: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ 0
t₂₂: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃
t₃₀: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₄: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂-1, X₈, X₉, X₁₀, X₁₁)
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₂
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₅, X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ 0
t₂₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁)
Preprocessing
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l11
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l25
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l27
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l24
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l15
Found invariant X₉ ≤ 0 for location l19
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l26
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l29
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l12
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l23
Found invariant X₉ ≤ 0 for location l17
Found invariant 1 ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l28
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₂ ≤ 1+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₉ for location l21
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₂ ≤ 1+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l13
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l22
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l10
Found invariant X₉ ≤ 0 for location l18
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l9
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ < X₁₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₃₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0
t₃₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0
t₃₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0
t₃₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ 0
t₃₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ 0
t₃₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ 0
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ 0
t₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₉
t₈: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ ≤ 0 ∧ 1 ≤ X₉
t₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₉, X₁₀, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₀ ∧ 1 ≤ X₉
t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₅, X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₁₆: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₁₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₁₄: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₅: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, nondef_0, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₁₀: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0 ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₁₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₁+1, X₃, X₄, X₀-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₂₃: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ 0 ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₂: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₃₀: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₄: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₂ ≤ 1+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂-1, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₂ ≤ 1+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₂ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₅, X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₂₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
MPRF for transition t₉: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₉+1 {O(n)}
MPRF for transition t₁₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₁+1, X₃, X₄, X₀-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉ {O(n)}
MPRF for transition t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₂ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₉+X₁₀+1 {O(n)}
MPRF for transition t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₅, X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉ {O(n)}
MPRF for transition t₁₄: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁₀+2⋅X₉+1 {O(n)}
MPRF for transition t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₅, X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉ {O(n)}
knowledge_propagation leads to new time bound 2⋅X₁₀+2⋅X₉+1 {O(n)} for transition t₁₅: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, nondef_0, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₁₀+2⋅X₉+1 {O(n)} for transition t₁₆: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₁₀+2⋅X₉+1 {O(n)} for transition t₁₇: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 4⋅X₁₀+4⋅X₉+2 {O(n)} for transition t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂-1, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 4⋅X₁₀+4⋅X₉+2 {O(n)} for transition t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₂ ≤ 1+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 4⋅X₁₀+4⋅X₉+2 {O(n)} for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₂ ≤ 1+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
MPRF for transition t₂₂: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
10⋅X₁₀+10⋅X₉+4 {O(n)}
MPRF for transition t₂₄: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
10⋅X₁₀+10⋅X₉+4 {O(n)}
MPRF for transition t₂₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
10⋅X₁₀+10⋅X₉+4 {O(n)}
TWN: t₂₅: l12→l10
cycle: [t₂₅: l12→l10; t₂₇: l10→l11; t₂₈: l11→l9; t₂₉: l9→l12]
loop: (X₈ < X₁₁,(X₈,X₁₁) -> (X₈+1,X₁₁)
order: [X₈; X₁₁]
closed-form:
X₈: X₈ + [[n != 0]] * n^1
X₁₁: X₁₁
Termination: true
Formula:
1 < 0
∨ X₈ < X₁₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₈ < X₁₁
alphas_abs: X₈+X₁₁
M: 0
N: 1
Bound: 2⋅X₁₁+2⋅X₈+2 {O(n)}
TWN - Lifting for t₂₅: l12→l10 of 2⋅X₁₁+2⋅X₈+4 {O(n)}
relevant size-bounds w.r.t. t₂₄:
X₈: 0 {O(1)}
X₁₁: 2⋅X₁₁ {O(n)}
Runtime-bound of t₂₄: 10⋅X₁₀+10⋅X₉+4 {O(n)}
Results in: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
TWN: t₂₇: l10→l11
TWN - Lifting for t₂₇: l10→l11 of 2⋅X₁₁+2⋅X₈+4 {O(n)}
relevant size-bounds w.r.t. t₂₄:
X₈: 0 {O(1)}
X₁₁: 2⋅X₁₁ {O(n)}
Runtime-bound of t₂₄: 10⋅X₁₀+10⋅X₉+4 {O(n)}
Results in: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
TWN: t₂₈: l11→l9
TWN - Lifting for t₂₈: l11→l9 of 2⋅X₁₁+2⋅X₈+4 {O(n)}
relevant size-bounds w.r.t. t₂₄:
X₈: 0 {O(1)}
X₁₁: 2⋅X₁₁ {O(n)}
Runtime-bound of t₂₄: 10⋅X₁₀+10⋅X₉+4 {O(n)}
Results in: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
TWN: t₂₉: l9→l12
TWN - Lifting for t₂₉: l9→l12 of 2⋅X₁₁+2⋅X₈+4 {O(n)}
relevant size-bounds w.r.t. t₂₄:
X₈: 0 {O(1)}
X₁₁: 2⋅X₁₁ {O(n)}
Runtime-bound of t₂₄: 10⋅X₁₀+10⋅X₉+4 {O(n)}
Results in: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
Chain transitions t₂₅: l12→l10 and t₂₇: l10→l11 to t₂₂₅: l12→l11
Chain transitions t₂₂₅: l12→l11 and t₂₈: l11→l9 to t₂₂₆: l12→l9
Chain transitions t₂₉: l9→l12 and t₂₂₆: l12→l9 to t₂₂₇: l9→l9
Chain transitions t₂₄: l29→l12 and t₂₂₆: l12→l9 to t₂₂₈: l29→l9
Chain transitions t₂₄: l29→l12 and t₂₆: l12→l27 to t₂₂₉: l29→l27
Chain transitions t₂₉: l9→l12 and t₂₆: l12→l27 to t₂₃₀: l9→l27
Chain transitions t₂₄: l29→l12 and t₂₂₅: l12→l11 to t₂₃₁: l29→l11
Chain transitions t₂₉: l9→l12 and t₂₂₅: l12→l11 to t₂₃₂: l9→l11
Chain transitions t₂₄: l29→l12 and t₂₅: l12→l10 to t₂₃₃: l29→l10
Chain transitions t₂₉: l9→l12 and t₂₅: l12→l10 to t₂₃₄: l9→l10
Chain transitions t₂₃₀: l9→l27 and t₂₂: l27→l29 to t₂₃₅: l9→l29
Chain transitions t₂₂₉: l29→l27 and t₂₂: l27→l29 to t₂₃₆: l29→l29
Chain transitions t₂₂₉: l29→l27 and t₂₃: l27→l28 to t₂₃₇: l29→l28
Chain transitions t₂₃₀: l9→l27 and t₂₃: l27→l28 to t₂₃₈: l9→l28
Chain transitions t₁₀: l25→l27 and t₂₃: l27→l28 to t₂₃₉: l25→l28
Chain transitions t₁₀: l25→l27 and t₂₂: l27→l29 to t₂₄₀: l25→l29
Analysing control-flow refined program
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l11
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l25
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l27
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l24
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l15
Found invariant X₉ ≤ 0 for location l19
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l26
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l29
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l12
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l23
Found invariant X₉ ≤ 0 for location l17
Found invariant 1 ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l28
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₂ ≤ 1+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₉ for location l21
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₂ ≤ 1+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l13
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l22
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l10
Found invariant X₉ ≤ 0 for location l18
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l9
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l14
MPRF for transition t₂₂₈: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) -{4}> l9(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: 0 < X₁₁ ∧ 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 0 ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ 2⋅X₃ ∧ 0 ≤ 0 ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1 ≤ X₁₁ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 0 ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ 2⋅X₃ ∧ 0 ≤ 0 ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1 ≤ X₁₁ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 0 ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ 2⋅X₃ ∧ 0 ≤ 0 ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
5⋅X₁₀+5⋅X₉+2 {O(n)}
MPRF for transition t₂₃₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) -{3}> l29(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₇, 1+X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈+1 ∧ 0 < X₄ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₄+X₈+1 ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 0 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈+1 ∧ X₀ ≤ X₈+1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
5⋅X₁₀+5⋅X₉+2 {O(n)}
MPRF for transition t₂₃₆: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) -{3}> l29(X₀, X₁, X₂, X₃-1, X₃-1, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ 0 ∧ 1 < X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 0 ∧ 0 ≤ 0 ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ 2⋅X₃ ∧ 0 ≤ 0 ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀+1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
5⋅X₁₀+5⋅X₉+2 {O(n)}
TWN: t₂₂₇: l9→l9
cycle: [t₂₂₇: l9→l9]
loop: (1+X₈ < X₁₁,(X₈,X₁₁) -> (1+X₈,X₁₁)
order: [X₈; X₁₁]
closed-form:
X₈: X₈ + [[n != 0]] * n^1
X₁₁: X₁₁
Termination: true
Formula:
1 < 0
∨ 1+X₈ < X₁₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 1+X₈ < X₁₁
alphas_abs: 1+X₈+X₁₁
M: 0
N: 1
Bound: 2⋅X₁₁+2⋅X₈+4 {O(n)}
TWN - Lifting for t₂₂₇: l9→l9 of 2⋅X₁₁+2⋅X₈+6 {O(n)}
relevant size-bounds w.r.t. t₂₂₈:
X₈: 0 {O(1)}
X₁₁: X₁₁ {O(n)}
Runtime-bound of t₂₂₈: 5⋅X₁₀+5⋅X₉+2 {O(n)}
Results in: 10⋅X₁₀⋅X₁₁+10⋅X₁₁⋅X₉+30⋅X₁₀+30⋅X₉+4⋅X₁₁+12 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l25
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l27
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l24
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l10___3
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l15
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l9___1
Found invariant X₉ ≤ 0 for location l19
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l26
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l11___2
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l29
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l23
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l12
Found invariant X₉ ≤ 0 for location l17
Found invariant 1 ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₁₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l28
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₂ ≤ 1+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l11___6
Found invariant 1 ≤ X₉ for location l21
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ X₂ ≤ 1+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l13
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l22
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l12___4
Found invariant X₉ ≤ 0 for location l18
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l10___7
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l9___5
Found invariant 1 ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ 0 for location l14
knowledge_propagation leads to new time bound 10⋅X₁₀+10⋅X₉+4 {O(n)} for transition t₄₄₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l10___7(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₄+1 ∧ X₈ ≤ 0 ∧ X₈ < X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 0 ≤ X₈ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₄ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₈ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 10⋅X₁₀+10⋅X₉+4 {O(n)} for transition t₄₃₉: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l11___6(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₁ ∧ X₃ ≤ X₄+1 ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 10⋅X₁₀+10⋅X₉+4 {O(n)} for transition t₄₄₁: n_l11___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l9___5(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₄+1 ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 10⋅X₁₀+10⋅X₉+4 {O(n)} for transition t₄₄₅: n_l9___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___4(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₄+1 ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
MPRF for transition t₄₃₈: n_l10___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l11___2(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ < X₁₁ ∧ 1 ≤ X₈ ∧ X₃ ≤ X₄+1 ∧ 1+X₈ ≤ X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
20⋅X₁₀⋅X₁₁+20⋅X₁₁⋅X₉+10⋅X₁₀+10⋅X₉+8⋅X₁₁+4 {O(n^2)}
MPRF for transition t₄₄₀: n_l11___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l9___1(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ X₃ ≤ X₄+1 ∧ 1+X₈ ≤ X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
20⋅X₁₀⋅X₁₁+20⋅X₁₁⋅X₉+10⋅X₁₀+10⋅X₉+8⋅X₁₁+4 {O(n^2)}
MPRF for transition t₄₄₂: n_l12___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l10___3(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₄+1 ∧ 1 ≤ X₈ ∧ X₈ ≤ X₁₁ ∧ X₈ < X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ 1+X₄ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₈ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
20⋅X₁₀⋅X₁₁+20⋅X₁₁⋅X₉+20⋅X₁₀+20⋅X₉+8⋅X₁₁+8 {O(n^2)}
MPRF for transition t₄₄₄: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___4(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁) :|: 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ X₃ ≤ X₄+1 ∧ 1+X₈ ≤ X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
20⋅X₁₀⋅X₁₁+20⋅X₁₁⋅X₉+10⋅X₁₀+10⋅X₉+8⋅X₁₁+4 {O(n^2)}
MPRF for transition t₄₅₁: n_l12___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
10⋅X₁₀+10⋅X₉+4 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:160⋅X₁₀⋅X₁₁+160⋅X₁₁⋅X₉+211⋅X₁₀+216⋅X₉+64⋅X₁₁+106 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: X₉+1 {O(n)}
t₁₀: 1 {O(1)}
t₁₁: X₉ {O(n)}
t₁₂: 2⋅X₉+X₁₀+1 {O(n)}
t₁₃: X₉ {O(n)}
t₁₄: 2⋅X₁₀+2⋅X₉+1 {O(n)}
t₁₅: 2⋅X₁₀+2⋅X₉+1 {O(n)}
t₁₆: 2⋅X₁₀+2⋅X₉+1 {O(n)}
t₁₇: 2⋅X₁₀+2⋅X₉+1 {O(n)}
t₁₈: X₉ {O(n)}
t₁₉: 4⋅X₁₀+4⋅X₉+2 {O(n)}
t₂₀: 4⋅X₁₀+4⋅X₉+2 {O(n)}
t₂₁: 4⋅X₁₀+4⋅X₉+2 {O(n)}
t₂₂: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₃: 1 {O(1)}
t₂₄: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₅: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₆: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₇: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₈: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₉: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 1 {O(1)}
Costbounds
Overall costbound: 160⋅X₁₀⋅X₁₁+160⋅X₁₁⋅X₉+211⋅X₁₀+216⋅X₉+64⋅X₁₁+106 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: X₉+1 {O(n)}
t₁₀: 1 {O(1)}
t₁₁: X₉ {O(n)}
t₁₂: 2⋅X₉+X₁₀+1 {O(n)}
t₁₃: X₉ {O(n)}
t₁₄: 2⋅X₁₀+2⋅X₉+1 {O(n)}
t₁₅: 2⋅X₁₀+2⋅X₉+1 {O(n)}
t₁₆: 2⋅X₁₀+2⋅X₉+1 {O(n)}
t₁₇: 2⋅X₁₀+2⋅X₉+1 {O(n)}
t₁₈: X₉ {O(n)}
t₁₉: 4⋅X₁₀+4⋅X₉+2 {O(n)}
t₂₀: 4⋅X₁₀+4⋅X₉+2 {O(n)}
t₂₁: 4⋅X₁₀+4⋅X₉+2 {O(n)}
t₂₂: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₃: 1 {O(1)}
t₂₄: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₅: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₆: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₇: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₈: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₉: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₉ {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: X₁₀ {O(n)}
t₄, X₁₁: X₁₁ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₅, X₁₁: X₁₁ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₆, X₁₁: X₁₁ {O(n)}
t₇, X₀: X₉ {O(n)}
t₇, X₁: X₁₀ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₇, X₁₁: X₁₁ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₈, X₈: X₈ {O(n)}
t₈, X₉: X₉ {O(n)}
t₈, X₁₀: X₁₀ {O(n)}
t₈, X₁₁: X₁₁ {O(n)}
t₉, X₀: X₉ {O(n)}
t₉, X₁: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₉, X₂: 15⋅X₁₀+15⋅X₉+X₂+6 {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: 3⋅X₉+X₅ {O(n)}
t₉, X₇: 10⋅X₁₀+10⋅X₉+X₇+6 {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₉, X₁₁: X₁₁ {O(n)}
t₁₀, X₀: 0 {O(1)}
t₁₀, X₁: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₁₀, X₂: 15⋅X₁₀+15⋅X₉+6 {O(n)}
t₁₀, X₃: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₁₀, X₄: 2⋅X₄ {O(n)}
t₁₀, X₅: 3⋅X₉ {O(n)}
t₁₀, X₇: 2⋅X₇+20⋅X₁₀+20⋅X₉+12 {O(n)}
t₁₀, X₈: 2⋅X₈ {O(n)}
t₁₀, X₉: 2⋅X₉ {O(n)}
t₁₀, X₁₀: 2⋅X₁₀ {O(n)}
t₁₀, X₁₁: 2⋅X₁₁ {O(n)}
t₁₁, X₀: X₉ {O(n)}
t₁₁, X₁: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₁, X₂: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₉ {O(n)}
t₁₁, X₇: 10⋅X₁₀+10⋅X₉+X₇+6 {O(n)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₁, X₁₀: X₁₀ {O(n)}
t₁₁, X₁₁: X₁₁ {O(n)}
t₁₂, X₀: X₉ {O(n)}
t₁₂, X₁: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₂, X₂: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₉ {O(n)}
t₁₂, X₇: 10⋅X₁₀+10⋅X₉+X₇+6 {O(n)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₉ {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₂, X₁₁: X₁₁ {O(n)}
t₁₃, X₀: X₉ {O(n)}
t₁₃, X₁: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₃, X₂: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: 2⋅X₉ {O(n)}
t₁₃, X₇: 10⋅X₁₀+10⋅X₉+X₇+6 {O(n)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₉ {O(n)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₁₃, X₁₁: X₁₁ {O(n)}
t₁₄, X₀: X₉ {O(n)}
t₁₄, X₁: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₄, X₂: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: X₉ {O(n)}
t₁₄, X₇: 10⋅X₁₀+10⋅X₉+X₇+6 {O(n)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₄, X₁₁: X₁₁ {O(n)}
t₁₅, X₀: X₉ {O(n)}
t₁₅, X₁: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₅, X₂: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: X₉ {O(n)}
t₁₅, X₇: 10⋅X₁₀+10⋅X₉+X₇+6 {O(n)}
t₁₅, X₈: X₈ {O(n)}
t₁₅, X₉: X₉ {O(n)}
t₁₅, X₁₀: X₁₀ {O(n)}
t₁₅, X₁₁: X₁₁ {O(n)}
t₁₆, X₀: X₉ {O(n)}
t₁₆, X₁: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₆, X₂: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: X₉ {O(n)}
t₁₆, X₇: 10⋅X₁₀+10⋅X₉+X₇+6 {O(n)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₉ {O(n)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₁₆, X₁₁: X₁₁ {O(n)}
t₁₇, X₀: X₉ {O(n)}
t₁₇, X₁: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₇, X₂: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₉ {O(n)}
t₁₇, X₇: 10⋅X₁₀+10⋅X₉+X₇+6 {O(n)}
t₁₇, X₈: X₈ {O(n)}
t₁₇, X₉: X₉ {O(n)}
t₁₇, X₁₀: X₁₀ {O(n)}
t₁₇, X₁₁: X₁₁ {O(n)}
t₁₈, X₀: X₉ {O(n)}
t₁₈, X₁: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₈, X₂: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: X₉ {O(n)}
t₁₈, X₆: 0 {O(1)}
t₁₈, X₇: 10⋅X₁₀+10⋅X₉+X₇+6 {O(n)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₉ {O(n)}
t₁₈, X₁₀: X₁₀ {O(n)}
t₁₈, X₁₁: X₁₁ {O(n)}
t₁₉, X₀: X₉ {O(n)}
t₁₉, X₁: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₉, X₂: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: X₉ {O(n)}
t₁₉, X₇: 10⋅X₁₀+10⋅X₉+6 {O(n)}
t₁₉, X₈: X₈ {O(n)}
t₁₉, X₉: X₉ {O(n)}
t₁₉, X₁₀: X₁₀ {O(n)}
t₁₉, X₁₁: X₁₁ {O(n)}
t₂₀, X₀: X₉ {O(n)}
t₂₀, X₁: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₂₀, X₂: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: X₉ {O(n)}
t₂₀, X₇: 10⋅X₁₀+10⋅X₉+6 {O(n)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₉ {O(n)}
t₂₀, X₁₀: X₁₀ {O(n)}
t₂₀, X₁₁: X₁₁ {O(n)}
t₂₁, X₀: X₉ {O(n)}
t₂₁, X₁: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₂₁, X₂: 5⋅X₁₀+5⋅X₉+2 {O(n)}
t₂₁, X₃: X₃ {O(n)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: X₉ {O(n)}
t₂₁, X₇: 10⋅X₁₀+10⋅X₉+6 {O(n)}
t₂₁, X₈: X₈ {O(n)}
t₂₁, X₉: X₉ {O(n)}
t₂₁, X₁₀: X₁₀ {O(n)}
t₂₁, X₁₁: X₁₁ {O(n)}
t₂₂, X₀: 0 {O(1)}
t₂₂, X₁: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₂, X₂: 15⋅X₁₀+15⋅X₉+6 {O(n)}
t₂₂, X₃: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₂, X₄: 2⋅X₄+20⋅X₁₀+20⋅X₉+8 {O(n)}
t₂₂, X₅: 3⋅X₉ {O(n)}
t₂₂, X₇: 2⋅X₇+20⋅X₁₀+20⋅X₉+12 {O(n)}
t₂₂, X₈: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+2⋅X₈+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₂, X₉: 2⋅X₉ {O(n)}
t₂₂, X₁₀: 2⋅X₁₀ {O(n)}
t₂₂, X₁₁: 2⋅X₁₁ {O(n)}
t₂₃, X₀: 0 {O(1)}
t₂₃, X₁: 20⋅X₁₀+20⋅X₉+8 {O(n)}
t₂₃, X₂: 30⋅X₁₀+30⋅X₉+12 {O(n)}
t₂₃, X₃: 20⋅X₁₀+20⋅X₉+8 {O(n)}
t₂₃, X₄: 2⋅X₄+20⋅X₁₀+20⋅X₉+8 {O(n)}
t₂₃, X₅: 6⋅X₉ {O(n)}
t₂₃, X₇: 4⋅X₇+40⋅X₁₀+40⋅X₉+24 {O(n)}
t₂₃, X₈: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+2⋅X₈+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₃, X₉: 4⋅X₉ {O(n)}
t₂₃, X₁₀: 4⋅X₁₀ {O(n)}
t₂₃, X₁₁: 4⋅X₁₁ {O(n)}
t₂₄, X₀: 0 {O(1)}
t₂₄, X₁: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₄, X₂: 15⋅X₁₀+15⋅X₉+6 {O(n)}
t₂₄, X₃: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₄, X₄: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₄, X₅: 3⋅X₉ {O(n)}
t₂₄, X₇: 2⋅X₇+20⋅X₁₀+20⋅X₉+12 {O(n)}
t₂₄, X₈: 0 {O(1)}
t₂₄, X₉: 2⋅X₉ {O(n)}
t₂₄, X₁₀: 2⋅X₁₀ {O(n)}
t₂₄, X₁₁: 2⋅X₁₁ {O(n)}
t₂₅, X₀: 0 {O(1)}
t₂₅, X₁: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₅, X₂: 15⋅X₁₀+15⋅X₉+6 {O(n)}
t₂₅, X₃: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₅, X₄: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₅, X₅: 3⋅X₉ {O(n)}
t₂₅, X₇: 2⋅X₇+20⋅X₁₀+20⋅X₉+12 {O(n)}
t₂₅, X₈: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₅, X₉: 2⋅X₉ {O(n)}
t₂₅, X₁₀: 2⋅X₁₀ {O(n)}
t₂₅, X₁₁: 2⋅X₁₁ {O(n)}
t₂₆, X₀: 0 {O(1)}
t₂₆, X₁: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₆, X₂: 15⋅X₁₀+15⋅X₉+6 {O(n)}
t₂₆, X₃: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₆, X₄: 20⋅X₁₀+20⋅X₉+8 {O(n)}
t₂₆, X₅: 3⋅X₉ {O(n)}
t₂₆, X₇: 2⋅X₇+20⋅X₁₀+20⋅X₉+12 {O(n)}
t₂₆, X₈: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₆, X₉: 2⋅X₉ {O(n)}
t₂₆, X₁₀: 2⋅X₁₀ {O(n)}
t₂₆, X₁₁: 2⋅X₁₁ {O(n)}
t₂₇, X₀: 0 {O(1)}
t₂₇, X₁: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₇, X₂: 15⋅X₁₀+15⋅X₉+6 {O(n)}
t₂₇, X₃: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₇, X₄: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₇, X₅: 3⋅X₉ {O(n)}
t₂₇, X₇: 2⋅X₇+20⋅X₁₀+20⋅X₉+12 {O(n)}
t₂₇, X₈: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₇, X₉: 2⋅X₉ {O(n)}
t₂₇, X₁₀: 2⋅X₁₀ {O(n)}
t₂₇, X₁₁: 2⋅X₁₁ {O(n)}
t₂₈, X₀: 0 {O(1)}
t₂₈, X₁: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₈, X₂: 15⋅X₁₀+15⋅X₉+6 {O(n)}
t₂₈, X₃: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₈, X₄: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₈, X₅: 3⋅X₉ {O(n)}
t₂₈, X₇: 2⋅X₇+20⋅X₁₀+20⋅X₉+12 {O(n)}
t₂₈, X₈: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₈, X₉: 2⋅X₉ {O(n)}
t₂₈, X₁₀: 2⋅X₁₀ {O(n)}
t₂₈, X₁₁: 2⋅X₁₁ {O(n)}
t₂₉, X₀: 0 {O(1)}
t₂₉, X₁: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₉, X₂: 15⋅X₁₀+15⋅X₉+6 {O(n)}
t₂₉, X₃: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₉, X₄: 10⋅X₁₀+10⋅X₉+4 {O(n)}
t₂₉, X₅: 3⋅X₉ {O(n)}
t₂₉, X₇: 2⋅X₇+20⋅X₁₀+20⋅X₉+12 {O(n)}
t₂₉, X₈: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₂₉, X₉: 2⋅X₉ {O(n)}
t₂₉, X₁₀: 2⋅X₁₀ {O(n)}
t₂₉, X₁₁: 2⋅X₁₁ {O(n)}
t₃₀, X₀: 0 {O(1)}
t₃₀, X₁: 20⋅X₁₀+20⋅X₉+8 {O(n)}
t₃₀, X₂: 30⋅X₁₀+30⋅X₉+12 {O(n)}
t₃₀, X₃: 20⋅X₁₀+20⋅X₉+8 {O(n)}
t₃₀, X₄: 2⋅X₄+20⋅X₁₀+20⋅X₉+8 {O(n)}
t₃₀, X₅: 6⋅X₉ {O(n)}
t₃₀, X₇: 4⋅X₇+40⋅X₁₀+40⋅X₉+24 {O(n)}
t₃₀, X₈: 40⋅X₁₀⋅X₁₁+40⋅X₁₁⋅X₉+16⋅X₁₁+2⋅X₈+40⋅X₁₀+40⋅X₉+16 {O(n^2)}
t₃₀, X₉: 4⋅X₉ {O(n)}
t₃₀, X₁₀: 4⋅X₁₀ {O(n)}
t₃₀, X₁₁: 4⋅X₁₁ {O(n)}
t₃₁, X₀: X₀ {O(n)}
t₃₁, X₁: X₁ {O(n)}
t₃₁, X₂: X₂ {O(n)}
t₃₁, X₃: X₃ {O(n)}
t₃₁, X₄: X₄ {O(n)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: X₇ {O(n)}
t₃₁, X₈: X₈ {O(n)}
t₃₁, X₉: X₉ {O(n)}
t₃₁, X₁₀: X₁₀ {O(n)}
t₃₁, X₁₁: X₁₁ {O(n)}
t₃₂, X₀: X₀ {O(n)}
t₃₂, X₁: X₁ {O(n)}
t₃₂, X₂: X₂ {O(n)}
t₃₂, X₃: X₃ {O(n)}
t₃₂, X₄: X₄ {O(n)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: X₆ {O(n)}
t₃₂, X₇: X₇ {O(n)}
t₃₂, X₈: X₈ {O(n)}
t₃₂, X₉: X₉ {O(n)}
t₃₂, X₁₀: X₁₀ {O(n)}
t₃₂, X₁₁: X₁₁ {O(n)}
t₃₃, X₀: X₀ {O(n)}
t₃₃, X₁: X₁ {O(n)}
t₃₃, X₂: X₂ {O(n)}
t₃₃, X₃: X₃ {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₅: X₅ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₃, X₇: X₇ {O(n)}
t₃₃, X₈: X₈ {O(n)}
t₃₃, X₉: X₉ {O(n)}
t₃₃, X₁₀: X₁₀ {O(n)}
t₃₃, X₁₁: X₁₁ {O(n)}
t₃₄, X₀: X₀ {O(n)}
t₃₄, X₁: X₁ {O(n)}
t₃₄, X₂: X₂ {O(n)}
t₃₄, X₃: X₃ {O(n)}
t₃₄, X₄: X₄ {O(n)}
t₃₄, X₅: X₅ {O(n)}
t₃₄, X₆: X₆ {O(n)}
t₃₄, X₇: X₇ {O(n)}
t₃₄, X₈: X₈ {O(n)}
t₃₄, X₉: X₉ {O(n)}
t₃₄, X₁₀: X₁₀ {O(n)}
t₃₄, X₁₁: X₁₁ {O(n)}
t₃₅, X₀: X₀ {O(n)}
t₃₅, X₁: X₁ {O(n)}
t₃₅, X₂: X₂ {O(n)}
t₃₅, X₃: X₃ {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₅, X₅: X₅ {O(n)}
t₃₅, X₆: X₆ {O(n)}
t₃₅, X₇: X₇ {O(n)}
t₃₅, X₈: X₈ {O(n)}
t₃₅, X₉: X₉ {O(n)}
t₃₅, X₁₀: X₁₀ {O(n)}
t₃₅, X₁₁: X₁₁ {O(n)}
t₃₆, X₀: X₀ {O(n)}
t₃₆, X₁: X₁ {O(n)}
t₃₆, X₂: X₂ {O(n)}
t₃₆, X₃: X₃ {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₅: X₅ {O(n)}
t₃₆, X₆: X₆ {O(n)}
t₃₆, X₇: X₇ {O(n)}
t₃₆, X₈: X₈ {O(n)}
t₃₆, X₉: X₉ {O(n)}
t₃₆, X₁₀: X₁₀ {O(n)}
t₃₆, X₁₁: X₁₁ {O(n)}