Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E, F, G
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃)
t₅₂: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+1)
t₄₃: l10(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁+1
t₄₂: l10(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀
t₅₈: l11(X₀, X₁, X₂, X₃) → l19(X₀, X₁, X₂, X₃)
t₄₁: l12(X₀, X₁, X₂, X₃) → l10(X₀, 0, X₂, X₃)
t₆: l13(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃) :|: 1 ≤ X₂
t₅: l13(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₇: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₈: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E
t₉: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: X₂+2 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₁₀: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₁: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E
t₁₂: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂+2 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₁₃: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₄: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₅: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₁₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₇: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₁₈: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₁₉: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₀: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₂₁: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ F ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₂: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₂₃: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₂₄: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₅: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂
t₂₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E
t₂₇: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ X₂+2 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₂₈: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ F ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₂₉: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ X₂+2 ≤ 0 ∧ G ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂+1 ≤ 2⋅G ∧ 2⋅G ≤ 2+X₂
t₃₀: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ X₂+2 ≤ 0 ∧ G ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅G ∧ 2⋅G ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₁: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₂: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ E ∧ 2⋅E ≤ 0 ∧ 0 ≤ 1+2⋅E ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₃₃: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 1 ≤ 0 ∧ F ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₄: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ 0 ≤ F ∧ 2⋅F ≤ 0 ∧ 0 ≤ 1+2⋅F ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₅: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: X₂+2 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₃₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: X₂+2 ≤ 0 ∧ F ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₃₇: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, -1, X₃) :|: 1 ≤ 0 ∧ E ≤ 0 ∧ F ≤ 0 ∧ X₂+1 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂
t₃₈: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: X₂+2 ≤ 0 ∧ F ≤ 0 ∧ G ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅G ∧ 2⋅G ≤ 2+X₂
t₃₉: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: X₂+2 ≤ 0 ∧ F ≤ 0 ∧ G ≤ 0 ∧ E ≤ 0 ∧ X₂+1 ≤ 2⋅F ∧ 2⋅F ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅G ∧ 2⋅G ≤ 2+X₂ ∧ X₂+1 ≤ 2⋅E ∧ 2⋅E ≤ 2+X₂
t₄₀: l16(X₀, X₁, X₂, X₃) → l17(X₀, X₁+1, X₂, X₃)
t₄: l17(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁
t₃: l17(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₁, X₃) :|: 1+X₁ ≤ X₀
t₂: l18(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2
t₁: l18(X₀, X₁, X₂, X₃) → l17(X₀, 1, X₂, X₃) :|: 3 ≤ X₀
t₅₃: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+2)
t₄₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀
t₄₈: l3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁+4+2⋅X₂ ≤ X₀
t₄₉: l3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁
t₅₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₅₁: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₅₄: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃)
t₅₅: l5(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₀, X₃)
t₅₆: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₃, X₃)
t₄₅: l7(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁+3+2⋅X₂ ≤ X₀
t₄₆: l7(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁
t₅₇: l8(X₀, X₁, X₂, X₃) → l10(X₀, X₁+1, X₂, X₃)
t₄₄: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, 0, X₃)
Preprocessing
Cut unsatisfiable transition t₇: l14→l15
Cut unsatisfiable transition t₉: l14→l15
Cut unsatisfiable transition t₁₀: l14→l16
Cut unsatisfiable transition t₁₂: l14→l16
Cut unsatisfiable transition t₁₄: l15→l13
Cut unsatisfiable transition t₁₅: l15→l13
Cut unsatisfiable transition t₁₆: l15→l13
Cut unsatisfiable transition t₁₇: l15→l13
Cut unsatisfiable transition t₁₈: l15→l13
Cut unsatisfiable transition t₁₉: l15→l13
Cut unsatisfiable transition t₂₀: l15→l13
Cut unsatisfiable transition t₂₁: l15→l13
Cut unsatisfiable transition t₂₂: l15→l13
Cut unsatisfiable transition t₂₃: l15→l13
Cut unsatisfiable transition t₂₄: l15→l13
Cut unsatisfiable transition t₂₅: l15→l13
Cut unsatisfiable transition t₂₇: l15→l13
Cut unsatisfiable transition t₂₈: l15→l13
Cut unsatisfiable transition t₂₉: l15→l13
Cut unsatisfiable transition t₃₀: l15→l13
Cut unsatisfiable transition t₃₁: l15→l13
Cut unsatisfiable transition t₃₂: l15→l13
Cut unsatisfiable transition t₃₃: l15→l13
Cut unsatisfiable transition t₃₄: l15→l13
Cut unsatisfiable transition t₃₅: l15→l13
Cut unsatisfiable transition t₃₆: l15→l13
Cut unsatisfiable transition t₃₇: l15→l13
Cut unsatisfiable transition t₃₈: l15→l13
Cut unsatisfiable transition t₄₉: l3→l4
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l2
Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l6
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l15
Found invariant X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location l12
Found invariant X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l7
Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l13
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l8
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l1
Found invariant 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l16
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l4
Found invariant 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l9
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l3
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l14
Cut unsatisfiable transition t₁₃: l15→l13
Cut unsatisfiable transition t₃₉: l15→l13
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E, F, G
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l18(X₀, X₁, X₂, X₃)
t₅₂: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+1) :|: 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₃: l10(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₂: l10(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₈: l11(X₀, X₁, X₂, X₃) → l19(X₀, X₁, X₂, X₃)
t₄₁: l12(X₀, X₁, X₂, X₃) → l10(X₀, 0, X₂, X₃) :|: X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀
t₆: l13(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃) :|: 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅: l13(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₈: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₁₁: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₀: l16(X₀, X₁, X₂, X₃) → l17(X₀, X₁+1, X₂, X₃) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄: l17(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₃: l17(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₁, X₃) :|: 1+X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₂: l18(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2
t₁: l18(X₀, X₁, X₂, X₃) → l17(X₀, 1, X₂, X₃) :|: 3 ≤ X₀
t₅₃: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+2) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
t₄₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₈: l3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
t₅₁: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
t₅₄: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₅: l5(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₀, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₆: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₃, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₅: l7(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₆: l7(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₇: l8(X₀, X₁, X₂, X₃) → l10(X₀, X₁+1, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₄: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, 0, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
MPRF for transition t₃: l17(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₁, X₃) :|: 1+X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₅: l13(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₁₁: l14(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₄₀: l16(X₀, X₁, X₂, X₃) → l17(X₀, X₁+1, X₂, X₃) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₆: l13(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃) :|: 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+7⋅X₀+8 {O(n^2)}
MPRF for transition t₈: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+9⋅X₀+9 {O(n^2)}
MPRF for transition t₂₆: l15(X₀, X₁, X₂, X₃) → l13(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+6⋅X₀+6 {O(n^2)}
Chain transitions t₃: l17→l13 and t₅: l13→l16 to t₃₁₇: l17→l16
Chain transitions t₂₆: l15→l13 and t₅: l13→l16 to t₃₁₈: l15→l16
Chain transitions t₂₆: l15→l13 and t₆: l13→l14 to t₃₁₉: l15→l14
Chain transitions t₃: l17→l13 and t₆: l13→l14 to t₃₂₀: l17→l14
Chain transitions t₃₂₀: l17→l14 and t₁₁: l14→l16 to t₃₂₁: l17→l16
Chain transitions t₃₁₉: l15→l14 and t₁₁: l14→l16 to t₃₂₂: l15→l16
Chain transitions t₃₁₉: l15→l14 and t₈: l14→l15 to t₃₂₃: l15→l15
Chain transitions t₃₂₀: l17→l14 and t₈: l14→l15 to t₃₂₄: l17→l15
Chain transitions t₃₂₁: l17→l16 and t₄₀: l16→l17 to t₃₂₅: l17→l17
Chain transitions t₃₁₇: l17→l16 and t₄₀: l16→l17 to t₃₂₆: l17→l17
Chain transitions t₃₂₂: l15→l16 and t₄₀: l16→l17 to t₃₂₇: l15→l17
Chain transitions t₃₁₈: l15→l16 and t₄₀: l16→l17 to t₃₂₈: l15→l17
Analysing control-flow refined program
Cut unsatisfiable transition t₃₁₇: l17→l16
Cut unsatisfiable transition t₃₂₆: l17→l17
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l2
Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l6
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l15
Found invariant X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location l12
Found invariant X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l7
Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l13
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l8
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l1
Found invariant 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l16
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l4
Found invariant 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l9
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l3
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l14
MPRF for transition t₃₂₄: l17(X₀, X₁, X₂, X₃) -{3}> l15(X₀, X₁, X₁, X₃) :|: 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ Temp_Int₁₀₉₄ ∧ 2⋅Temp_Int₁₀₉₄ ≤ X₁+1 ∧ X₁ ≤ 2⋅Temp_Int₁₀₉₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ 2⋅X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ 2⋅X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₃₂₅: l17(X₀, X₁, X₂, X₃) -{4}> l17(X₀, X₁+1, X₁, X₃) :|: 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ Temp_Int₁₀₇₉ ∧ 2⋅Temp_Int₁₀₇₉ ≤ X₁+1 ∧ X₁ ≤ 2⋅Temp_Int₁₀₇₉ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ 2⋅X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ 2⋅X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ 2⋅X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀+1 {O(n)}
MPRF for transition t₃₂₇: l15(X₀, X₁, X₂, X₃) -{4}> l17(X₀, X₁+1, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ 2 ≤ E ∧ 1 ≤ E ∧ 0 ≤ Temp_Int₁₀₈₄ ∧ 2⋅Temp_Int₁₀₈₄ ≤ E ∧ E ≤ 1+2⋅Temp_Int₁₀₈₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ E ≤ X₁+1 ∧ E ≤ X₀ ∧ 1 ≤ E ∧ 2 ≤ X₁+E ∧ 4 ≤ X₀+E ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ E ≤ X₁+1 ∧ E ≤ X₀ ∧ 2 ≤ E ∧ 3 ≤ X₁+E ∧ 5 ≤ X₀+E ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ E ≤ X₁+1 ∧ E ≤ X₀ ∧ 1 ≤ E ∧ 2 ≤ X₁+E ∧ 4 ≤ X₀+E ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₃₂₈: l15(X₀, X₁, X₂, X₃) -{3}> l17(X₀, X₁+1, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ E ≤ 1 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ E ≤ X₁+1 ∧ E ≤ X₀ ∧ 1 ≤ E ∧ 2 ≤ X₁+E ∧ 4 ≤ X₀+E ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ E ≤ X₁+1 ∧ E ≤ X₀ ∧ 1 ≤ E ∧ 2 ≤ X₁+E ∧ 4 ≤ X₀+E ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₃₂₃: l15(X₀, X₁, X₂, X₃) -{3}> l15(X₀, X₁, E-1, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ 2 ≤ E ∧ 1 ≤ E ∧ 0 ≤ Temp_Int₁₀₈₉ ∧ 2⋅Temp_Int₁₀₈₉ ≤ E ∧ E ≤ 1+2⋅Temp_Int₁₀₈₉ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ E ≤ X₁+1 ∧ E ≤ X₀ ∧ 1 ≤ E ∧ 2 ≤ X₁+E ∧ 4 ≤ X₀+E ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ E ≤ X₁+1 ∧ E ≤ X₀ ∧ 2 ≤ E ∧ 3 ≤ X₁+E ∧ 5 ≤ X₀+E ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+5⋅X₀+3 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₄: l17→l12
Cut unsatisfiable transition t₅₁₈: n_l13___8→l16
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l2
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l14___7
Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l6
Found invariant 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l14___3
Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l17___1
Found invariant 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l13___4
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l15___6
Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location l12
Found invariant 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l15___2
Found invariant X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l17___9
Found invariant X₁ ≤ 1 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l7
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l16___5
Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l13___8
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l8
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l1
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10
Found invariant X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l16
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l4
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l9
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l3
MPRF for transition t₄₉₃: n_l13___8(X₀, X₁, X₂, X₃) → n_l14___7(X₀, X₁, X₂, X₃) :|: 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₄₉₅: n_l14___3(X₀, X₁, X₂, X₃) → n_l16___5(X₀, X₁, Arg2_P, X₃) :|: 1+2⋅X₂ ≤ X₁ ∧ 1 ≤ Arg2_P ∧ Arg2_P ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₄₉₆: n_l14___7(X₀, X₁, X₂, X₃) → n_l15___6(X₀, X₁, Arg2_P, X₃) :|: X₁ ≤ X₂ ∧ 1 ≤ Arg2_P ∧ Arg2_P ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₄₉₇: n_l14___7(X₀, X₁, X₂, X₃) → n_l16___5(X₀, X₁, Arg2_P, X₃) :|: X₁ ≤ X₂ ∧ 1 ≤ Arg2_P ∧ Arg2_P ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₄₉₉: n_l15___6(X₀, X₁, X₂, X₃) → n_l13___4(X₀, X₁, Arg2_P, X₃) :|: X₁ ≤ X₂ ∧ X₂ ≤ 2+2⋅Arg2_P ∧ 1+2⋅Arg2_P ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₅₀₀: l16(X₀, X₁, X₂, X₃) → n_l17___9(X₀, X₁+1, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₅₀₁: n_l16___5(X₀, X₁, X₂, X₃) → n_l17___1(X₀, X₁+1, X₂, X₃) :|: 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+3 {O(n)}
MPRF for transition t₅₀₂: n_l17___1(X₀, X₁, X₂, X₃) → n_l13___8(X₀, X₁, X₁, X₃) :|: 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₅₀₄: n_l17___9(X₀, X₁, X₂, X₃) → n_l13___8(X₀, X₁, X₁, X₃) :|: 2 ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 3 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₅₁₇: n_l13___4(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+3 {O(n)}
MPRF for transition t₄₉₂: n_l13___4(X₀, X₁, X₂, X₃) → n_l14___3(X₀, X₁, X₂, X₃) :|: 1+2⋅X₂ ≤ X₁ ∧ 0 ≤ 1+2⋅X₂ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
4⋅X₀⋅X₀+21⋅X₀+29 {O(n^2)}
MPRF for transition t₄₉₄: n_l14___3(X₀, X₁, X₂, X₃) → n_l15___2(X₀, X₁, Arg2_P, X₃) :|: 1+2⋅X₂ ≤ X₁ ∧ 1 ≤ Arg2_P ∧ Arg2_P ≤ X₁ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
4⋅X₀⋅X₀+21⋅X₀+29 {O(n^2)}
MPRF for transition t₄₉₈: n_l15___2(X₀, X₁, X₂, X₃) → n_l13___4(X₀, X₁, Arg2_P, X₃) :|: 1+2⋅X₂ ≤ X₁ ∧ X₂ ≤ 2+2⋅Arg2_P ∧ 1+2⋅Arg2_P ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₀ ∧ 2+X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 7 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
4⋅X₀⋅X₀+21⋅X₀+29 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
MPRF for transition t₄₂: l10(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: 2+X₁ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₄₄: l9(X₀, X₁, X₂, X₃) → l7(X₀, X₁, 0, X₃) :|: 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₄₆: l7(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₅₇: l8(X₀, X₁, X₂, X₃) → l10(X₀, X₁+1, X₂, X₃) :|: 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀+3 {O(n)}
MPRF for transition t₄₅: l7(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
6⋅X₀⋅X₀+14⋅X₀+8 {O(n^2)}
MPRF for transition t₄₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
MPRF for transition t₄₈: l3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁+4+2⋅X₂ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
MPRF for transition t₅₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
MPRF for transition t₅₁: l4(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
MPRF for transition t₅₂: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+1) :|: 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
MPRF for transition t₅₃: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, 2⋅X₂+2) :|: 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
MPRF for transition t₅₄: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
MPRF for transition t₅₅: l5(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₀, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
MPRF for transition t₅₆: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₃, X₃) :|: 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
Chain transitions t₅₀: l4→l1 and t₅₂: l1→l5 to t₉₇₆: l4→l5
Chain transitions t₄₇: l3→l1 and t₅₂: l1→l5 to t₉₇₇: l3→l5
Chain transitions t₅₇: l8→l10 and t₄₂: l10→l9 to t₉₇₈: l8→l9
Chain transitions t₄₁: l12→l10 and t₄₂: l10→l9 to t₉₇₉: l12→l9
Chain transitions t₄₁: l12→l10 and t₄₃: l10→l11 to t₉₈₀: l12→l11
Chain transitions t₅₇: l8→l10 and t₄₃: l10→l11 to t₉₈₁: l8→l11
Chain transitions t₅₁: l4→l2 and t₅₃: l2→l5 to t₉₈₂: l4→l5
Chain transitions t₄₅: l7→l3 and t₉₇₇: l3→l5 to t₉₈₃: l7→l5
Chain transitions t₄₅: l7→l3 and t₄₈: l3→l4 to t₉₈₄: l7→l4
Chain transitions t₄₅: l7→l3 and t₄₇: l3→l1 to t₉₈₅: l7→l1
Chain transitions t₉₈₄: l7→l4 and t₉₈₂: l4→l5 to t₉₈₆: l7→l5
Chain transitions t₉₈₄: l7→l4 and t₉₇₆: l4→l5 to t₉₈₇: l7→l5
Chain transitions t₉₈₄: l7→l4 and t₅₁: l4→l2 to t₉₈₈: l7→l2
Chain transitions t₉₈₄: l7→l4 and t₅₀: l4→l1 to t₉₈₉: l7→l1
Chain transitions t₉₈₇: l7→l5 and t₅₅: l5→l7 to t₉₉₀: l7→l7
Chain transitions t₉₈₆: l7→l5 and t₅₅: l5→l7 to t₉₉₁: l7→l7
Chain transitions t₉₈₆: l7→l5 and t₅₄: l5→l6 to t₉₉₂: l7→l6
Chain transitions t₉₈₇: l7→l5 and t₅₄: l5→l6 to t₉₉₃: l7→l6
Chain transitions t₉₈₃: l7→l5 and t₅₄: l5→l6 to t₉₉₄: l7→l6
Chain transitions t₉₈₃: l7→l5 and t₅₅: l5→l7 to t₉₉₅: l7→l7
Chain transitions t₉₉₄: l7→l6 and t₅₆: l6→l7 to t₉₉₆: l7→l7
Chain transitions t₉₉₃: l7→l6 and t₅₆: l6→l7 to t₉₉₇: l7→l7
Chain transitions t₉₉₂: l7→l6 and t₅₆: l6→l7 to t₉₉₈: l7→l7
Chain transitions t₄₆: l7→l8 and t₉₇₈: l8→l9 to t₉₉₉: l7→l9
Chain transitions t₄₆: l7→l8 and t₉₈₁: l8→l11 to t₁₀₀₀: l7→l11
Chain transitions t₄₆: l7→l8 and t₅₇: l8→l10 to t₁₀₀₁: l7→l10
Chain transitions t₉₉₉: l7→l9 and t₄₄: l9→l7 to t₁₀₀₂: l7→l7
Chain transitions t₉₇₉: l12→l9 and t₄₄: l9→l7 to t₁₀₀₃: l12→l7
Analysing control-flow refined program
Cut unsatisfiable transition t₉₈₀: l12→l11
Eliminate variables {X₃} that do not contribute to the problem
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l2
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l6
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l15
Found invariant X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location l12
Found invariant X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l7
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l5
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l13
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l8
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l1
Found invariant 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l16
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l4
Found invariant 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l9
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l3
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l14
MPRF for transition t₁₀₅₁: l13(X₀, X₁, X₂) → l16(X₀, X₁, X₂) :|: X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₁₀₅₃: l14(X₀, X₁, X₂) → l16(X₀, X₁, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₁₀₅₅: l16(X₀, X₁, X₂) → l17(X₀, X₁+1, X₂) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₁₀₅₇: l17(X₀, X₁, X₂) → l13(X₀, X₁, X₁) :|: 1+X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₁₀₅₀: l13(X₀, X₁, X₂) → l14(X₀, X₁, X₂) :|: 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+11⋅X₀+14 {O(n^2)}
MPRF for transition t₁₀₅₂: l14(X₀, X₁, X₂) → l15(X₀, X₁, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
4⋅X₀⋅X₀+16⋅X₀+16 {O(n^2)}
MPRF for transition t₁₀₅₄: l15(X₀, X₁, X₂) → l13(X₀, X₁, E-1) :|: 0 ≤ X₂ ∧ 0 ≤ F ∧ 2⋅F ≤ X₂+1 ∧ X₂ ≤ 2⋅F ∧ 0 ≤ G ∧ 2⋅G ≤ X₂+1 ∧ X₂ ≤ 2⋅G ∧ 0 ≤ E ∧ 2⋅E ≤ X₂+1 ∧ X₂ ≤ 2⋅E ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+10⋅X₀+12 {O(n^2)}
MPRF for transition t₁₀₇₉: l7(X₀, X₁, X₂) -{4}> l7(X₀, 1+X₁, 0) :|: X₀ ≤ 2⋅X₂+2+X₁ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₁₀₇₃: l7(X₀, X₁, X₂) -{5}> l7(X₀, X₁, X₀) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ X₁+4+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀⋅X₀+5⋅X₀+6 {O(n^2)}
MPRF for transition t₁₀₇₄: l7(X₀, X₁, X₂) -{5}> l7(X₀, X₁, X₀) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ X₁+4+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀⋅X₀+5⋅X₀+6 {O(n^2)}
MPRF for transition t₁₀₇₅: l7(X₀, X₁, X₂) -{4}> l7(X₀, X₁, X₀) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀⋅X₀+4⋅X₀+4 {O(n^2)}
MPRF for transition t₁₀₇₆: l7(X₀, X₁, X₂) -{5}> l7(X₀, X₁, 1+2⋅X₂) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ X₀ ≤ 2⋅X₂+3+X₁ ∧ 2⋅X₂+3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+4⋅X₀+1 {O(n^2)}
MPRF for transition t₁₀₇₇: l7(X₀, X₁, X₂) -{6}> l7(X₀, X₁, 1+2⋅X₂) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ X₁+4+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+4⋅X₀+1 {O(n^2)}
MPRF for transition t₁₀₇₈: l7(X₀, X₁, X₂) -{6}> l7(X₀, X₁, 2+2⋅X₂) :|: X₁+3+2⋅X₂ ≤ X₀ ∧ X₁+4+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+4⋅X₀+1 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l6___3
Found invariant X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l4___15
Found invariant 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 8 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l6___13
Found invariant X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___18
Found invariant X₃ ≤ X₂ ∧ 4+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 4+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 6 ≤ X₀+X₂ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l3___17
Found invariant 2+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___19
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l2___5
Found invariant X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location l12
Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l5___4
Found invariant 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l10
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l14
Found invariant X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l1___12
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___24
Found invariant 3+X₃ ≤ X₀ ∧ 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 9 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l6___9
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l1___6
Found invariant X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l6___1
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l4___22
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l15
Found invariant 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l5___14
Found invariant X₃ ≤ X₂ ∧ 5+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 7 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l2___11
Found invariant 3 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 9 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l5___10
Found invariant X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location n_l5___2
Found invariant 4 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 3+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l5___8
Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l5___21
Found invariant X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17
Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l7
Found invariant 4+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ 5+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location n_l1___16
Found invariant 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l1___23
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l13
Found invariant X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l8
Found invariant 2+X₃ ≤ X₀ ∧ 4 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 3+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ 5+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 6+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 6 ≤ X₀ for location n_l6___7
Found invariant X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l16
Found invariant 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l9
Found invariant X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀ for location n_l6___20
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₅₁₀: l7(X₀, X₁, X₂, X₃) → n_l3___24(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₄₈₅: n_l3___24(X₀, X₁, X₂, X₃) → n_l1___23(X₀, X₁, Arg2_P, X₃) :|: X₂ ≤ 0 ∧ X₀ ≤ X₁+2⋅X₂+3 ∧ 3+X₁+2⋅X₂ ≤ X₀ ∧ X₀ ≤ X₁+2⋅Arg2_P+3 ∧ 3+X₁+2⋅Arg2_P ≤ X₀ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 3+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₄₈₆: n_l3___24(X₀, X₁, X₂, X₃) → n_l4___22(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ 4+X₁+2⋅X₂ ≤ X₀ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₄₈₉: n_l4___22(X₀, X₁, X₂, X₃) → n_l1___6(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 4+X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₄₉₀: n_l4___22(X₀, X₁, X₂, X₃) → n_l2___5(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 4+X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₄₇₉: n_l1___23(X₀, X₁, X₂, X₃) → n_l5___21(X₀, X₁, X₂, 2⋅X₂+1) :|: X₀ ≤ X₁+3 ∧ X₂ ≤ 0 ∧ 3 ≤ X₀ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₄₈₀: n_l1___6(X₀, X₁, X₂, X₃) → n_l5___4(X₀, X₁, X₂, 2⋅X₂+1) :|: 4+X₁ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₄₈₂: n_l2___5(X₀, X₁, X₂, X₃) → n_l5___2(X₀, X₁, X₂, 2⋅X₂+2) :|: X₂ ≤ 0 ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 4+X₂ ≤ X₀ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₄₉₅: n_l5___2(X₀, X₁, X₂, X₃) → n_l6___1(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₄₉₆: n_l5___2(X₀, X₁, X₂, X₃) → n_l7___19(X₀, X₁, X₀, X₃) :|: 4+X₁ ≤ X₀ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₄₉₇: n_l5___21(X₀, X₁, X₂, X₃) → n_l6___20(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁+3 ∧ X₂ ≤ 0 ∧ X₃ ≤ 1 ∧ 3 ≤ X₀ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₄₉₈: n_l5___21(X₀, X₁, X₂, X₃) → n_l7___19(X₀, X₁, X₀, X₃) :|: X₀ ≤ X₁+3 ∧ X₂ ≤ 0 ∧ X₃ ≤ 1 ∧ 3 ≤ X₀ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₄₉₉: n_l5___4(X₀, X₁, X₂, X₃) → n_l6___3(X₀, X₁, X₂, X₃) :|: 4+X₁ ≤ X₀ ∧ X₃ ≤ 1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₅₀₀: n_l5___4(X₀, X₁, X₂, X₃) → n_l7___19(X₀, X₁, X₀, X₃) :|: 4+X₁ ≤ X₀ ∧ X₃ ≤ 1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₅₀₃: n_l6___1(X₀, X₁, X₂, X₃) → n_l7___18(X₀, X₁, X₃, X₃) :|: 4+X₁ ≤ X₀ ∧ X₃ ≤ 2 ∧ 2 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 2 ∧ X₃ ≤ 2+X₂ ∧ X₂+X₃ ≤ 2 ∧ X₃ ≤ 2+X₁ ∧ 2+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 6 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₅₀₅: n_l6___20(X₀, X₁, X₂, X₃) → n_l7___18(X₀, X₁, X₃, X₃) :|: X₀ ≤ X₁+3 ∧ X₂ ≤ 0 ∧ X₃ ≤ 1 ∧ 3 ≤ X₀ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 3+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₅₀₆: n_l6___3(X₀, X₁, X₂, X₃) → n_l7___18(X₀, X₁, X₃, X₃) :|: 4+X₁ ≤ X₀ ∧ X₃ ≤ 1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 0 ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₃ ≤ 1 ∧ X₃ ≤ 1+X₂ ∧ X₂+X₃ ≤ 1 ∧ X₃ ≤ 1+X₁ ∧ 3+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 4+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀
All Bounds
Timebounds
Overall timebound:40⋅X₀⋅X₀+82⋅X₀+49 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₀+2 {O(n)}
t₄: 1 {O(1)}
t₅: X₀+1 {O(n)}
t₆: 2⋅X₀⋅X₀+7⋅X₀+8 {O(n^2)}
t₈: 3⋅X₀⋅X₀+9⋅X₀+9 {O(n^2)}
t₁₁: X₀+1 {O(n)}
t₂₆: 2⋅X₀⋅X₀+6⋅X₀+6 {O(n^2)}
t₄₀: X₀+1 {O(n)}
t₄₁: 1 {O(1)}
t₄₂: X₀+1 {O(n)}
t₄₃: 1 {O(1)}
t₄₄: X₀+1 {O(n)}
t₄₅: 6⋅X₀⋅X₀+14⋅X₀+8 {O(n^2)}
t₄₆: X₀+1 {O(n)}
t₄₇: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₄₈: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₀: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₁: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₂: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₃: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₄: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₅: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₆: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₇: 3⋅X₀+3 {O(n)}
t₅₈: 1 {O(1)}
Costbounds
Overall costbound: 40⋅X₀⋅X₀+82⋅X₀+49 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₀+2 {O(n)}
t₄: 1 {O(1)}
t₅: X₀+1 {O(n)}
t₆: 2⋅X₀⋅X₀+7⋅X₀+8 {O(n^2)}
t₈: 3⋅X₀⋅X₀+9⋅X₀+9 {O(n^2)}
t₁₁: X₀+1 {O(n)}
t₂₆: 2⋅X₀⋅X₀+6⋅X₀+6 {O(n^2)}
t₄₀: X₀+1 {O(n)}
t₄₁: 1 {O(1)}
t₄₂: X₀+1 {O(n)}
t₄₃: 1 {O(1)}
t₄₄: X₀+1 {O(n)}
t₄₅: 6⋅X₀⋅X₀+14⋅X₀+8 {O(n^2)}
t₄₆: X₀+1 {O(n)}
t₄₇: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₄₈: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₀: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₁: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₂: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₃: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₄: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₅: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₆: 3⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₅₇: 3⋅X₀+3 {O(n)}
t₅₈: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: 1 {O(1)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₀+2 {O(n)}
t₃, X₂: X₀+3 {O(n)}
t₃, X₃: X₃ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₀+2 {O(n)}
t₄, X₂: X₀+3 {O(n)}
t₄, X₃: X₃ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₀+2 {O(n)}
t₅, X₂: 0 {O(1)}
t₅, X₃: X₃ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₀+2 {O(n)}
t₆, X₂: X₀+3 {O(n)}
t₆, X₃: X₃ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₀+2 {O(n)}
t₈, X₂: X₀+3 {O(n)}
t₈, X₃: X₃ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₀+2 {O(n)}
t₁₁, X₂: X₀+3 {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₂₆, X₀: X₀ {O(n)}
t₂₆, X₁: X₀+2 {O(n)}
t₂₆, X₂: X₀+3 {O(n)}
t₂₆, X₃: X₃ {O(n)}
t₄₀, X₀: X₀ {O(n)}
t₄₀, X₁: X₀+2 {O(n)}
t₄₀, X₂: X₀+3 {O(n)}
t₄₀, X₃: X₃ {O(n)}
t₄₁, X₀: X₀ {O(n)}
t₄₁, X₁: 0 {O(1)}
t₄₁, X₂: X₀+3 {O(n)}
t₄₁, X₃: X₃ {O(n)}
t₄₂, X₀: X₀ {O(n)}
t₄₂, X₁: 3⋅X₀+3 {O(n)}
t₄₂, X₂: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀+3⋅X₀+3 {O(EXP)}
t₄₂, X₃: 12⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+16⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀+X₃ {O(EXP)}
t₄₃, X₀: X₀ {O(n)}
t₄₃, X₁: 3⋅X₀+3 {O(n)}
t₄₃, X₂: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀+2⋅X₀ {O(EXP)}
t₄₃, X₃: 12⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+16⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀+X₃ {O(EXP)}
t₄₄, X₀: X₀ {O(n)}
t₄₄, X₁: 3⋅X₀+3 {O(n)}
t₄₄, X₂: 0 {O(1)}
t₄₄, X₃: 12⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+16⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀+X₃ {O(EXP)}
t₄₅, X₀: X₀ {O(n)}
t₄₅, X₁: 3⋅X₀+3 {O(n)}
t₄₅, X₂: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀ {O(EXP)}
t₄₅, X₃: 24⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅32⋅X₀+X₃ {O(EXP)}
t₄₆, X₀: X₀ {O(n)}
t₄₆, X₁: 3⋅X₀+3 {O(n)}
t₄₆, X₂: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀+2⋅X₀ {O(EXP)}
t₄₆, X₃: 12⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+16⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀+X₃ {O(EXP)}
t₄₇, X₀: X₀ {O(n)}
t₄₇, X₁: 3⋅X₀+3 {O(n)}
t₄₇, X₂: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀ {O(EXP)}
t₄₇, X₃: 24⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅32⋅X₀+X₃ {O(EXP)}
t₄₈, X₀: X₀ {O(n)}
t₄₈, X₁: 3⋅X₀+3 {O(n)}
t₄₈, X₂: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀ {O(EXP)}
t₄₈, X₃: 24⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅32⋅X₀+X₃ {O(EXP)}
t₅₀, X₀: X₀ {O(n)}
t₅₀, X₁: 3⋅X₀+3 {O(n)}
t₅₀, X₂: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀ {O(EXP)}
t₅₀, X₃: 24⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅32⋅X₀+X₃ {O(EXP)}
t₅₁, X₀: X₀ {O(n)}
t₅₁, X₁: 3⋅X₀+3 {O(n)}
t₅₁, X₂: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀ {O(EXP)}
t₅₁, X₃: 24⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅32⋅X₀+X₃ {O(EXP)}
t₅₂, X₀: X₀ {O(n)}
t₅₂, X₁: 3⋅X₀+3 {O(n)}
t₅₂, X₂: 12⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+16⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀ {O(EXP)}
t₅₂, X₃: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀ {O(EXP)}
t₅₃, X₀: X₀ {O(n)}
t₅₃, X₁: 3⋅X₀+3 {O(n)}
t₅₃, X₂: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀ {O(EXP)}
t₅₃, X₃: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀ {O(EXP)}
t₅₄, X₀: X₀ {O(n)}
t₅₄, X₁: 3⋅X₀+3 {O(n)}
t₅₄, X₂: 12⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+16⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀ {O(EXP)}
t₅₄, X₃: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀ {O(EXP)}
t₅₅, X₀: X₀ {O(n)}
t₅₅, X₁: 3⋅X₀+3 {O(n)}
t₅₅, X₂: 2⋅X₀ {O(n)}
t₅₅, X₃: 12⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+16⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀ {O(EXP)}
t₅₆, X₀: X₀ {O(n)}
t₅₆, X₁: 3⋅X₀+3 {O(n)}
t₅₆, X₂: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀ {O(EXP)}
t₅₆, X₃: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀ {O(EXP)}
t₅₇, X₀: X₀ {O(n)}
t₅₇, X₁: 3⋅X₀+3 {O(n)}
t₅₇, X₂: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀+2⋅X₀ {O(EXP)}
t₅₇, X₃: 12⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+16⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀+X₃ {O(EXP)}
t₅₈, X₀: 2⋅X₀ {O(n)}
t₅₈, X₁: 3⋅X₀+X₁+3 {O(n)}
t₅₈, X₂: 2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀+2⋅X₀+X₂ {O(EXP)}
t₅₈, X₃: 12⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀⋅X₀+16⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅6⋅X₀⋅X₀+2^(3⋅X₀⋅X₀+4⋅X₀)⋅2^(3⋅X₀⋅X₀+4⋅X₀)⋅8⋅X₀+2⋅X₃ {O(EXP)}