Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < X₆
t₁₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₄, X₈) :|: X₆ ≤ X₃
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈)
t₂₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇)
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ ≤ X₆+X₇
t₁₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆+X₇ < X₈
t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈)
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇, X₈)

Preprocessing

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l11

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l6

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l19

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l23

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location l7

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l20

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l21

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location l5

Found invariant X₂ ≤ X₆ for location l13

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location l22

Found invariant X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l8

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l10

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l9

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < X₆ ∧ X₂ ≤ X₆
t₁₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₄, X₈) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₀: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇, X₈)
t₂₅: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁

MPRF for transition t₁₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₄, X₈) :|: X₆ ≤ X₃ ∧ X₂ ≤ X₆ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF for transition t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF for transition t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₆+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF for transition t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF for transition t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₁, X₇, X₈) :|: 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF for transition t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF for transition t₁₅: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+4⋅X₄+4⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF for transition t₁₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆+X₇ < X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

4⋅X₂⋅X₄+4⋅X₂⋅X₅+4⋅X₃⋅X₄+4⋅X₃⋅X₅+8⋅X₄+8⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF for transition t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF for transition t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+4⋅X₄+4⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+4⋅X₄+4⋅X₅+X₂+X₃+2 {O(n^2)}

MPRF for transition t₁₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ ≤ X₆+X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+2⋅X₂⋅X₄+2⋅X₃⋅X₄+4⋅X₂⋅X₅+4⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+10⋅X₅+4⋅X₄+X₂+X₃+3 {O(n^3)}

knowledge_propagation leads to new time bound 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+2⋅X₂⋅X₄+2⋅X₃⋅X₄+4⋅X₂⋅X₅+4⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+10⋅X₅+4⋅X₄+X₂+X₃+3 {O(n^3)} for transition t₁₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃

Chain transitions t₁₄: l8→l10 and t₂₂: l10→l11 to t₁₈₇: l8→l11

Chain transitions t₁₈₇: l8→l11 and t₂₃: l11→l9 to t₁₈₈: l8→l9

Chain transitions t₂₄: l9→l13 and t₁₁: l13→l8 to t₁₈₉: l9→l8

Chain transitions t₁₀: l18→l13 and t₁₁: l13→l8 to t₁₉₀: l18→l8

Chain transitions t₁₀: l18→l13 and t₁₂: l13→l19 to t₁₉₁: l18→l19

Chain transitions t₂₄: l9→l13 and t₁₂: l13→l19 to t₁₉₂: l9→l19

Chain transitions t₁₃: l8→l20 and t₁₅: l20→l21 to t₁₉₃: l8→l21

Chain transitions t₁₉₃: l8→l21 and t₁₇: l21→l6 to t₁₉₄: l8→l6

Chain transitions t₁₈: l22→l21 and t₁₇: l21→l6 to t₁₉₅: l22→l6

Chain transitions t₁₈: l22→l21 and t₁₆: l21→l22 to t₁₉₆: l22→l22

Chain transitions t₁₉₃: l8→l21 and t₁₆: l21→l22 to t₁₉₇: l8→l22

Chain transitions t₂₀: l7→l5 and t₂₁: l5→l8 to t₁₉₈: l7→l8

Chain transitions t₁₉₄: l8→l6 and t₁₉: l6→l7 to t₁₉₉: l8→l7

Chain transitions t₁₉₅: l22→l6 and t₁₉: l6→l7 to t₂₀₀: l22→l7

Chain transitions t₁₉₉: l8→l7 and t₁₉₈: l7→l8 to t₂₀₁: l8→l8

Chain transitions t₂₀₀: l22→l7 and t₁₉₈: l7→l8 to t₂₀₂: l22→l8

Chain transitions t₂₀₀: l22→l7 and t₂₀: l7→l5 to t₂₀₃: l22→l5

Chain transitions t₁₉₉: l8→l7 and t₂₀: l7→l5 to t₂₀₄: l8→l5

Chain transitions t₁₈₈: l8→l9 and t₁₈₉: l9→l8 to t₂₀₅: l8→l8

Chain transitions t₁₈₈: l8→l9 and t₁₉₂: l9→l19 to t₂₀₆: l8→l19

Chain transitions t₁₈₈: l8→l9 and t₂₄: l9→l13 to t₂₀₇: l8→l13

Analysing control-flow refined program

Eliminate variables {X₀,X₁} that do not contribute to the problem

Found invariant 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l11

Found invariant 1+X₄ ≤ X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l6

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l19

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l23

Found invariant 1+X₄ ≤ X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l7

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l20

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l21

Found invariant 1+X₄ ≤ X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l5

Found invariant X₀ ≤ X₄ for location l13

Found invariant X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l22

Found invariant X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l8

Found invariant 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l10

Found invariant 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l9

MPRF for transition t₂₇₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{5}> l8(X₀, X₁, X₂, X₃, 1+X₄, X₂, X₆) :|: X₃ < X₅ ∧ 1+X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

TWN: t₂₇₁: l8→l8

cycle: [t₂₇₁: l8→l8]
loop: (X₅ ≤ X₃ ∧ 2⋅X₅ < 0,(X₃,X₅) -> (X₃,1+X₅)
order: [X₃; X₅]
closed-form:
X₃: X₃
X₅: X₅ + [[n != 0]] * n^1

Termination: true
Formula:

2 < 0 ∧ 1 < 0
∨ 2 < 0 ∧ X₅ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₃ ∧ X₃ ≤ X₅
∨ 2⋅X₅ < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 1 < 0
∨ 2⋅X₅ < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₅ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2⋅X₅ < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₃ ∧ X₃ ≤ X₅

Stabilization-Threshold for: 2⋅X₅ < 0
alphas_abs: 2⋅X₅
M: 0
N: 1
Bound: 4⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₅ ≤ X₃
alphas_abs: X₅+X₃
M: 0
N: 1
Bound: 2⋅X₃+2⋅X₅+2 {O(n)}
loop: (X₅ ≤ X₃ ∧ 2⋅X₅ < 0,(X₃,X₅) -> (X₃,1+X₅)
order: [X₃; X₅]
closed-form:
X₃: X₃
X₅: X₅ + [[n != 0]] * n^1

Termination: true
Formula:

2 < 0 ∧ 1 < 0
∨ 2 < 0 ∧ X₅ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₃ ∧ X₃ ≤ X₅
∨ 2⋅X₅ < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 1 < 0
∨ 2⋅X₅ < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₅ < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 2⋅X₅ < 0 ∧ 2 ≤ 0 ∧ 0 ≤ 2 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₃ ∧ X₃ ≤ X₅

Stabilization-Threshold for: 2⋅X₅ < 0
alphas_abs: 2⋅X₅
M: 0
N: 1
Bound: 4⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₅ ≤ X₃
alphas_abs: X₅+X₃
M: 0
N: 1
Bound: 2⋅X₃+2⋅X₅+2 {O(n)}

TWN - Lifting for t₂₇₁: l8→l8 of 2⋅X₃+6⋅X₅+6 {O(n)}

relevant size-bounds w.r.t. t₂₇₂:
X₃: X₃ {O(n)}
X₅: 4⋅X₂ {O(n)}
Runtime-bound of t₂₇₂: X₀+X₁+1 {O(n)}
Results in: 2⋅X₀⋅X₃+2⋅X₁⋅X₃+24⋅X₀⋅X₂+24⋅X₁⋅X₂+2⋅X₃+24⋅X₂+6⋅X₀+6⋅X₁+6 {O(n^2)}

TWN - Lifting for t₂₇₁: l8→l8 of 2⋅X₃+6⋅X₅+6 {O(n)}

relevant size-bounds w.r.t. t₂₅₀:
X₃: X₃ {O(n)}
X₅: X₂ {O(n)}
Runtime-bound of t₂₅₀: 1 {O(1)}
Results in: 2⋅X₃+6⋅X₂+6 {O(n)}

MPRF for transition t₂₅₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{5}> l8(X₀, X₁, X₂, X₃, X₄, 1+X₅, 1+X₆) :|: X₄+X₅ < X₆+1 ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

4⋅X₀⋅X₂+4⋅X₁⋅X₂+X₀⋅X₃+X₁⋅X₃+2⋅X₃+5⋅X₂+X₀+X₁+2 {O(n^2)}

MPRF for transition t₂₆₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l22(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅) :|: X₅ ≤ X₃ ∧ 0 ≤ 2⋅X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

4⋅X₀⋅X₂+4⋅X₁⋅X₂+X₀⋅X₃+X₁⋅X₃+2⋅X₃+5⋅X₂+X₀+X₁+2 {O(n^2)}

MPRF for transition t₂₅₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{2}> l22(X₀, X₁, X₂, X₃, X₄, X₅, 1+X₆) :|: 1+X₆ ≤ X₄+X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

16⋅X₀⋅X₀⋅X₂⋅X₃+16⋅X₁⋅X₁⋅X₂⋅X₃+2⋅X₀⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₁⋅X₃⋅X₃+32⋅X₀⋅X₀⋅X₂⋅X₂+32⋅X₀⋅X₁⋅X₂⋅X₃+32⋅X₁⋅X₁⋅X₂⋅X₂+4⋅X₀⋅X₁⋅X₃⋅X₃+64⋅X₀⋅X₁⋅X₂⋅X₂+102⋅X₀⋅X₂⋅X₃+102⋅X₁⋅X₂⋅X₃+12⋅X₁⋅X₁⋅X₃+196⋅X₀⋅X₀⋅X₂+25⋅X₀⋅X₀⋅X₃+276⋅X₀⋅X₁⋅X₂+37⋅X₀⋅X₁⋅X₃+440⋅X₀⋅X₂⋅X₂+440⋅X₁⋅X₂⋅X₂+8⋅X₀⋅X₃⋅X₃+8⋅X₁⋅X₃⋅X₃+80⋅X₁⋅X₁⋅X₂+140⋅X₂⋅X₃+18⋅X₁⋅X₁+310⋅X₁⋅X₂+42⋅X₁⋅X₃+455⋅X₀⋅X₂+47⋅X₀⋅X₀+500⋅X₂⋅X₂+65⋅X₀⋅X₁+68⋅X₀⋅X₃+8⋅X₃⋅X₃+121⋅X₀+330⋅X₂+36⋅X₃+62⋅X₁+X₆+53 {O(n^4)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l11

Found invariant 1+X₆ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 for location n_l5___1

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l5___5

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l21___12

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l19

Found invariant X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l20___13

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l6___10

Found invariant X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l7___6

Found invariant 1+X₃ ≤ X₆ ∧ X₂ ≤ X₆ for location l23

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l22___8

Found invariant 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 for location n_l7___2

Found invariant X₇ ≤ X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l20___3

Found invariant X₂ ≤ X₆ for location l13

Found invariant X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l8

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l21___9

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l6___7

Found invariant X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ for location n_l8___4

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ for location l10

Found invariant 1+X₅ ≤ X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ X₂ ≤ X₆ ∧ X₁ ≤ 1+X₆ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ 1+X₂ ≤ X₁ for location l9

Found invariant X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ for location n_l22___11

knowledge_propagation leads to new time bound X₂+X₃+1 {O(n)} for transition t₄₄₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₄ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃

knowledge_propagation leads to new time bound X₂+X₃+1 {O(n)} for transition t₄₃₁: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₇ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃

MPRF for transition t₄₃₂: n_l20___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆-X₇) :|: X₀ ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₅ {O(n^2)}

MPRF for transition t₄₃₃: n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l22___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₈ ≤ X₆+X₇ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+4⋅X₄+X₂+X₃+1 {O(n^2)}

MPRF for transition t₄₃₄: n_l21___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l6___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₆+X₇ < X₈ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

5⋅X₂⋅X₄+5⋅X₃⋅X₄+2⋅X₀+7⋅X₄+X₂+X₃+1 {O(n^2)}

MPRF for transition t₄₃₆: n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆+X₇ < X₈ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₂+X₃+X₅+1 {O(n^2)}

MPRF for transition t₄₃₇: n_l22___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₄+X₈ ≤ X₆ ∧ X₆ ≤ X₅+X₈ ∧ X₈ ≤ X₆ ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀+X₂+X₃+2 {O(n^2)}

MPRF for transition t₄₃₉: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₀ < 1 ∧ X₀ ≤ X₇+1 ∧ X₀+X₈ ≤ X₆+1 ∧ 1+X₆ ≤ X₀+X₈ ∧ X₀ ≤ X₇+1 ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ X₆ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ 1+X₇ ≤ X₀ ∧ 1+X₆ ≤ X₈ ∧ 1+X₂ ≤ X₈ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+2⋅X₄+X₅+1 {O(n^2)}

MPRF for transition t₄₄₀: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀, X₈) :|: X₀+X₆ < 1+X₈ ∧ X₀ ≤ X₇+1 ∧ X₀ ≤ X₇+1 ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ 1+X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ 1+X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₂+X₃+X₅+1 {O(n^2)}

MPRF for transition t₄₄₁: n_l6___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___2(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2⋅X₇ < 0 ∧ X₆ ≤ X₇+X₈ ∧ X₇+X₈ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

3⋅X₂⋅X₄+3⋅X₃⋅X₄+2⋅X₂+2⋅X₃+4⋅X₄+X₅+3 {O(n^2)}

MPRF for transition t₄₄₂: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___6(X₇+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆+X₇ < X₈ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+X₂+X₃+X₅+1 {O(n^2)}

MPRF for transition t₄₄₃: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀-1, X₈) :|: X₀ < 1 ∧ X₀ ≤ X₇+1 ∧ X₀+X₈ ≤ X₆+1 ∧ 1+X₆ ≤ X₀+X₈ ∧ X₀ ≤ X₇+1 ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ X₆ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ 1+X₇ ≤ X₀ ∧ 1+X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 2+X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₀ ∧ 1+X₀+X₇ ≤ 0 ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1+X₀+X₄ ≤ 0 ∧ X₂ ≤ X₃ ∧ X₀ ≤ 0 of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+2⋅X₄+X₀ {O(n^2)}

MPRF for transition t₄₄₄: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₀-1, X₈) :|: X₀+X₆ < 1+X₈ ∧ X₀ ≤ X₇+1 ∧ X₀ ≤ X₇+1 ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ X₆ ∧ 1+X₄ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₇ ≤ X₀ ∧ X₆ ≤ X₃ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ 1+X₅ ∧ 1+X₇ ≤ X₀ ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ X₇ ∧ X₀ ≤ 1+X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₅+2⋅X₃⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+3⋅X₅+4⋅X₄+X₂+X₃+1 {O(n^2)}

MPRF for transition t₄₄₆: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l20___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₀ ≤ X₇ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

2⋅X₂⋅X₄+2⋅X₃⋅X₄+X₂⋅X₅+X₃⋅X₅+2⋅X₄+2⋅X₅+X₀ {O(n^2)}

MPRF for transition t₄₅₈: n_l8___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ < X₇ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₂ ≤ X₃ ∧ X₇ ≤ 1+X₅ ∧ X₇ ≤ X₀ ∧ 1+X₄ ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₃ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF for transition t₄₃₅: n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l22___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ ≤ X₆+X₇ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

16⋅X₂⋅X₃⋅X₄⋅X₄+16⋅X₂⋅X₃⋅X₄⋅X₅+2⋅X₂⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₃⋅X₅⋅X₅+8⋅X₂⋅X₂⋅X₄⋅X₄+8⋅X₂⋅X₂⋅X₄⋅X₅+8⋅X₃⋅X₃⋅X₄⋅X₄+8⋅X₃⋅X₃⋅X₄⋅X₅+16⋅X₂⋅X₃⋅X₄+2⋅X₀⋅X₂⋅X₅+2⋅X₀⋅X₃⋅X₅+24⋅X₂⋅X₄⋅X₄+24⋅X₂⋅X₄⋅X₅+24⋅X₃⋅X₄⋅X₄+24⋅X₃⋅X₄⋅X₅+4⋅X₀⋅X₂⋅X₄+4⋅X₀⋅X₃⋅X₄+4⋅X₂⋅X₂⋅X₅+4⋅X₃⋅X₃⋅X₅+6⋅X₂⋅X₅⋅X₅+6⋅X₃⋅X₅⋅X₅+8⋅X₂⋅X₂⋅X₄+8⋅X₂⋅X₃⋅X₅+8⋅X₃⋅X₃⋅X₄+13⋅X₂⋅X₅+13⋅X₃⋅X₅+14⋅X₂⋅X₄+14⋅X₃⋅X₄+16⋅X₄⋅X₄+2⋅X₀⋅X₅+2⋅X₂⋅X₂+2⋅X₃⋅X₃+20⋅X₄⋅X₅+4⋅X₀⋅X₂+4⋅X₀⋅X₃+4⋅X₂⋅X₃+4⋅X₅⋅X₅+8⋅X₀⋅X₄+10⋅X₅+3⋅X₀+4⋅X₂+4⋅X₃+6⋅X₄+1 {O(n^4)}

MPRF for transition t₄₃₈: n_l22___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l21___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: X₈ ≤ X₆+X₇ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₇ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₄ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₂ ≤ X₆ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₃ of depth 1:

new bound:

16⋅X₂⋅X₃⋅X₄⋅X₄+16⋅X₂⋅X₃⋅X₄⋅X₅+2⋅X₂⋅X₂⋅X₅⋅X₅+2⋅X₃⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₃⋅X₅⋅X₅+8⋅X₂⋅X₂⋅X₄⋅X₄+8⋅X₂⋅X₂⋅X₄⋅X₅+8⋅X₃⋅X₃⋅X₄⋅X₄+8⋅X₃⋅X₃⋅X₄⋅X₅+12⋅X₂⋅X₂⋅X₄+12⋅X₂⋅X₃⋅X₅+12⋅X₃⋅X₃⋅X₄+2⋅X₀⋅X₂⋅X₅+2⋅X₀⋅X₃⋅X₅+24⋅X₂⋅X₃⋅X₄+24⋅X₂⋅X₄⋅X₄+24⋅X₃⋅X₄⋅X₄+26⋅X₂⋅X₄⋅X₅+26⋅X₃⋅X₄⋅X₅+4⋅X₀⋅X₂⋅X₄+4⋅X₀⋅X₃⋅X₄+6⋅X₂⋅X₂⋅X₅+6⋅X₃⋅X₃⋅X₅+7⋅X₂⋅X₅⋅X₅+7⋅X₃⋅X₅⋅X₅+16⋅X₄⋅X₄+17⋅X₂⋅X₅+17⋅X₃⋅X₅+21⋅X₂⋅X₄+21⋅X₃⋅X₄+22⋅X₄⋅X₅+3⋅X₀⋅X₅+4⋅X₂⋅X₂+4⋅X₃⋅X₃+6⋅X₀⋅X₂+6⋅X₀⋅X₃+6⋅X₅⋅X₅+8⋅X₀⋅X₄+8⋅X₂⋅X₃+10⋅X₄+10⋅X₅+4⋅X₀+8⋅X₂+8⋅X₃+2 {O(n^4)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:8⋅X₂⋅X₄⋅X₅+8⋅X₂⋅X₅⋅X₅+8⋅X₃⋅X₄⋅X₅+8⋅X₃⋅X₅⋅X₅+16⋅X₂⋅X₄+16⋅X₃⋅X₄+16⋅X₄⋅X₅+16⋅X₅⋅X₅+20⋅X₂⋅X₅+20⋅X₃⋅X₅+13⋅X₂+13⋅X₃+32⋅X₄+44⋅X₅+36 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: X₂+X₃+1 {O(n)}
t₁₂: 1 {O(1)}
t₁₃: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}
t₁₄: X₂+X₃+1 {O(n)}
t₁₅: 2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+4⋅X₄+4⋅X₅+X₂+X₃+2 {O(n^2)}
t₁₆: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+2⋅X₂⋅X₄+2⋅X₃⋅X₄+4⋅X₂⋅X₅+4⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+10⋅X₅+4⋅X₄+X₂+X₃+3 {O(n^3)}
t₁₇: 4⋅X₂⋅X₄+4⋅X₂⋅X₅+4⋅X₃⋅X₄+4⋅X₃⋅X₅+8⋅X₄+8⋅X₅+X₂+X₃+2 {O(n^2)}
t₁₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+2⋅X₂⋅X₄+2⋅X₃⋅X₄+4⋅X₂⋅X₅+4⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+10⋅X₅+4⋅X₄+X₂+X₃+3 {O(n^3)}
t₁₉: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}
t₂₀: 2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+4⋅X₄+4⋅X₅+X₂+X₃+2 {O(n^2)}
t₂₁: 2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+4⋅X₄+4⋅X₅+X₂+X₃+2 {O(n^2)}
t₂₂: X₂+X₃+1 {O(n)}
t₂₃: X₂+X₃+1 {O(n)}
t₂₄: X₂+X₃+1 {O(n)}
t₂₅: 1 {O(1)}

Costbounds

Overall costbound: 8⋅X₂⋅X₄⋅X₅+8⋅X₂⋅X₅⋅X₅+8⋅X₃⋅X₄⋅X₅+8⋅X₃⋅X₅⋅X₅+16⋅X₂⋅X₄+16⋅X₃⋅X₄+16⋅X₄⋅X₅+16⋅X₅⋅X₅+20⋅X₂⋅X₅+20⋅X₃⋅X₅+13⋅X₂+13⋅X₃+32⋅X₄+44⋅X₅+36 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: X₂+X₃+1 {O(n)}
t₁₂: 1 {O(1)}
t₁₃: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}
t₁₄: X₂+X₃+1 {O(n)}
t₁₅: 2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+4⋅X₄+4⋅X₅+X₂+X₃+2 {O(n^2)}
t₁₆: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+2⋅X₂⋅X₄+2⋅X₃⋅X₄+4⋅X₂⋅X₅+4⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+10⋅X₅+4⋅X₄+X₂+X₃+3 {O(n^3)}
t₁₇: 4⋅X₂⋅X₄+4⋅X₂⋅X₅+4⋅X₃⋅X₄+4⋅X₃⋅X₅+8⋅X₄+8⋅X₅+X₂+X₃+2 {O(n^2)}
t₁₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+2⋅X₂⋅X₄+2⋅X₃⋅X₄+4⋅X₂⋅X₅+4⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+10⋅X₅+4⋅X₄+X₂+X₃+3 {O(n^3)}
t₁₉: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₄+2⋅X₅+X₂+X₃+2 {O(n^2)}
t₂₀: 2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+4⋅X₄+4⋅X₅+X₂+X₃+2 {O(n^2)}
t₂₁: 2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+4⋅X₄+4⋅X₅+X₂+X₃+2 {O(n^2)}
t₂₂: X₂+X₃+1 {O(n)}
t₂₃: X₂+X₃+1 {O(n)}
t₂₄: X₂+X₃+1 {O(n)}
t₂₅: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇ {O(n)}
t₈, X₈: X₈ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇ {O(n)}
t₉, X₈: X₈ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₂ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₀, X₈: X₈ {O(n)}
t₁₁, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₁₁, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₁, X₇: 2⋅X₄ {O(n)}
t₁₁, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₄+6⋅X₂⋅X₅+6⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₄+14⋅X₅+5⋅X₃+7⋅X₂+X₈+9 {O(n^3)}
t₁₂, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₀+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₂, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₂, X₂: 2⋅X₂ {O(n)}
t₁₂, X₃: 2⋅X₃ {O(n)}
t₁₂, X₄: 2⋅X₄ {O(n)}
t₁₂, X₅: 2⋅X₅ {O(n)}
t₁₂, X₆: 3⋅X₂+X₃+1 {O(n)}
t₁₂, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+X₇+2 {O(n^2)}
t₁₂, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₄+6⋅X₂⋅X₅+6⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₄+14⋅X₅+2⋅X₈+5⋅X₃+7⋅X₂+9 {O(n^3)}
t₁₃, X₀: 2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+2⋅X₂+2⋅X₃+4⋅X₅+8⋅X₄+X₀+4 {O(n^2)}
t₁₃, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₃, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₃, X₈: 8⋅X₂⋅X₄⋅X₅+8⋅X₂⋅X₅⋅X₅+8⋅X₃⋅X₄⋅X₅+8⋅X₃⋅X₅⋅X₅+12⋅X₂⋅X₅+12⋅X₃⋅X₅+16⋅X₄⋅X₅+16⋅X₅⋅X₅+8⋅X₂⋅X₄+8⋅X₃⋅X₄+10⋅X₃+14⋅X₂+24⋅X₄+28⋅X₅+X₈+18 {O(n^3)}
t₁₄, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₁₄, X₁: 2⋅X₁+2⋅X₃+4⋅X₂+2 {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₄, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₄, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₄+6⋅X₂⋅X₅+6⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₄+14⋅X₅+5⋅X₃+7⋅X₂+X₈+9 {O(n^3)}
t₁₅, X₀: 2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+2⋅X₂+2⋅X₃+4⋅X₅+8⋅X₄+X₀+4 {O(n^2)}
t₁₅, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₅, X₂: X₂ {O(n)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: X₅ {O(n)}
t₁₅, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₅, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₅, X₈: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₃+2⋅X₅+3⋅X₂+4⋅X₄+3 {O(n^2)}
t₁₆, X₀: 2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+2⋅X₂+2⋅X₃+4⋅X₅+8⋅X₄+X₀+4 {O(n^2)}
t₁₆, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: X₅ {O(n)}
t₁₆, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₆, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₆, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+5⋅X₂⋅X₅+5⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₅+3⋅X₃+4⋅X₂+8⋅X₄+6 {O(n^3)}
t₁₇, X₀: 4⋅X₂⋅X₄+4⋅X₂⋅X₅+4⋅X₃⋅X₄+4⋅X₃⋅X₅+16⋅X₄+2⋅X₀+4⋅X₂+4⋅X₃+8⋅X₅+8 {O(n^2)}
t₁₇, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₇, X₂: X₂ {O(n)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₅ {O(n)}
t₁₇, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₇, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₇, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₄+6⋅X₂⋅X₅+6⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₄+14⋅X₅+5⋅X₃+7⋅X₂+9 {O(n^3)}
t₁₈, X₀: 2⋅X₂⋅X₄+2⋅X₂⋅X₅+2⋅X₃⋅X₄+2⋅X₃⋅X₅+2⋅X₂+2⋅X₃+4⋅X₅+8⋅X₄+X₀+4 {O(n^2)}
t₁₈, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: X₅ {O(n)}
t₁₈, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₈, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₈, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+3⋅X₂⋅X₄+3⋅X₃⋅X₄+5⋅X₂⋅X₅+5⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₅+3⋅X₃+4⋅X₂+8⋅X₄+6 {O(n^3)}
t₁₉, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₉, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₁₉, X₂: X₂ {O(n)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: X₅ {O(n)}
t₁₉, X₆: 2⋅X₂+X₃+1 {O(n)}
t₁₉, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₁₉, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₄+6⋅X₂⋅X₅+6⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₄+14⋅X₅+5⋅X₃+7⋅X₂+9 {O(n^3)}
t₂₀, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₀, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₂₀, X₂: X₂ {O(n)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: X₅ {O(n)}
t₂₀, X₆: 2⋅X₂+X₃+1 {O(n)}
t₂₀, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₀, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₄+6⋅X₂⋅X₅+6⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₄+14⋅X₅+5⋅X₃+7⋅X₂+9 {O(n^3)}
t₂₁, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₁, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₂₁, X₂: X₂ {O(n)}
t₂₁, X₃: X₃ {O(n)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: X₅ {O(n)}
t₂₁, X₆: 2⋅X₂+X₃+1 {O(n)}
t₂₁, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₁, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₄+6⋅X₂⋅X₅+6⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₄+14⋅X₅+5⋅X₃+7⋅X₂+9 {O(n^3)}
t₂₂, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₂₂, X₁: 2⋅X₂+X₃+1 {O(n)}
t₂₂, X₂: X₂ {O(n)}
t₂₂, X₃: X₃ {O(n)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: 2⋅X₂+X₃+1 {O(n)}
t₂₂, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₂, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₄+6⋅X₂⋅X₅+6⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₄+14⋅X₅+5⋅X₃+7⋅X₂+X₈+9 {O(n^3)}
t₂₃, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₂₃, X₁: 2⋅X₂+X₃+1 {O(n)}
t₂₃, X₂: X₂ {O(n)}
t₂₃, X₃: X₃ {O(n)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: 2⋅X₂+X₃+1 {O(n)}
t₂₃, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₃, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₄+6⋅X₂⋅X₅+6⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₄+14⋅X₅+5⋅X₃+7⋅X₂+X₈+9 {O(n^3)}
t₂₄, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+4⋅X₄+X₀+X₂+X₃+2 {O(n^2)}
t₂₄, X₁: 2⋅X₂+X₃+1 {O(n)}
t₂₄, X₂: X₂ {O(n)}
t₂₄, X₃: X₃ {O(n)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: X₅ {O(n)}
t₂₄, X₆: 2⋅X₂+X₃+1 {O(n)}
t₂₄, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₄, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₄+6⋅X₂⋅X₅+6⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₄+14⋅X₅+5⋅X₃+7⋅X₂+X₈+9 {O(n^3)}
t₂₅, X₀: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₀+2⋅X₅+4⋅X₄+X₂+X₃+2 {O(n^2)}
t₂₅, X₁: 2⋅X₂+X₁+X₃+1 {O(n)}
t₂₅, X₂: 2⋅X₂ {O(n)}
t₂₅, X₃: 2⋅X₃ {O(n)}
t₂₅, X₄: 2⋅X₄ {O(n)}
t₂₅, X₅: 2⋅X₅ {O(n)}
t₂₅, X₆: 3⋅X₂+X₃+1 {O(n)}
t₂₅, X₇: X₂⋅X₄+X₂⋅X₅+X₃⋅X₄+X₃⋅X₅+2⋅X₅+6⋅X₄+X₂+X₃+X₇+2 {O(n^2)}
t₂₅, X₈: 4⋅X₂⋅X₄⋅X₅+4⋅X₂⋅X₅⋅X₅+4⋅X₃⋅X₄⋅X₅+4⋅X₃⋅X₅⋅X₅+4⋅X₂⋅X₄+4⋅X₃⋅X₄+6⋅X₂⋅X₅+6⋅X₃⋅X₅+8⋅X₄⋅X₅+8⋅X₅⋅X₅+12⋅X₄+14⋅X₅+2⋅X₈+5⋅X₃+7⋅X₂+9 {O(n^3)}