Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₅+1, X₅, X₆, X₇)
t₂₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₅
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₀, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₅ < X₀
t₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₇, X₁, X₂, X₃, X₄, 0, X₆, X₇)
t₁₄: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: X₃ ≤ 0
t₁₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, nondef_0, X₄, X₅, X₆, X₇)
t₂₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁-1, X₂, X₃, X₄, X₅, X₂-1, X₇)
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₆+1, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₆+1
t₁₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₆+1, X₃, X₄, X₅, X₆, X₇) :|: X₆+1 < X₁
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₁, X₁, X₂, X₃, X₄, X₄, X₆, X₇)
Preprocessing
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11
Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6
Found invariant X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₅ for location l19
Found invariant X₀ ≤ X₇ ∧ 0 ≤ X₅ for location l12
Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l17
Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₅ for location l20
Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10
Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l16
Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l18
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef_0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₅+1, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₅ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₀, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₅ < X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅
t₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₇, X₁, X₂, X₃, X₄, 0, X₆, X₇)
t₁₄: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: X₃ ≤ 0 ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, nondef_0, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₂₂: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₅
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁-1, X₂, X₃, X₄, X₅, X₂-1, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₆+1, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₆+1 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₆+1, X₃, X₄, X₅, X₆, X₇) :|: X₆+1 < X₁ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₁, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
MPRF for transition t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₀, X₂, X₃, X₄, X₅, X₅, X₇) :|: X₅ < X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ of depth 1:
new bound:
X₇ {O(n)}
MPRF for transition t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₆+1, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₆+1 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₇ {O(n)}
MPRF for transition t₁₄: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
5⋅X₇ {O(n)}
MPRF for transition t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₇ {O(n)}
MPRF for transition t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₇+2 {O(n)}
MPRF for transition t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁-1, X₂, X₃, X₄, X₅, X₂-1, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₇+1 {O(n)}
MPRF for transition t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₅+1, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₇ {O(n)}
MPRF for transition t₂₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₇+1 {O(n)}
MPRF for transition t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₁, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₇ {O(n)}
MPRF for transition t₁₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₆+1, X₃, X₄, X₅, X₆, X₇) :|: X₆+1 < X₁ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₇⋅X₇+X₇ {O(n^2)}
MPRF for transition t₁₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₇⋅X₇+X₇ {O(n^2)}
MPRF for transition t₁₃: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, nondef_0, X₄, X₅, X₆, X₇) :|: 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₇⋅X₇+2⋅X₇ {O(n^2)}
MPRF for transition t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: X₃ ≤ 0 ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₇⋅X₇+X₇ {O(n^2)}
Chain transitions t₁₁: l8→l10 and t₁₉: l10→l11 to t₁₄₀: l8→l11
Chain transitions t₁₄₀: l8→l11 and t₂₀: l11→l9 to t₁₄₁: l8→l9
Chain transitions t₂₁: l9→l12 and t₈: l12→l8 to t₁₄₂: l9→l8
Chain transitions t₇: l15→l12 and t₈: l12→l8 to t₁₄₃: l15→l8
Chain transitions t₇: l15→l12 and t₉: l12→l19 to t₁₄₄: l15→l19
Chain transitions t₂₁: l9→l12 and t₉: l12→l19 to t₁₄₅: l9→l19
Chain transitions t₁₃: l18→l16 and t₁₅: l16→l8 to t₁₄₆: l18→l8
Chain transitions t₁₃: l18→l16 and t₁₄: l16→l6 to t₁₄₇: l18→l6
Chain transitions t₁₀: l8→l17 and t₁₂: l17→l18 to t₁₄₈: l8→l18
Chain transitions t₁₄₈: l8→l18 and t₁₄₆: l18→l8 to t₁₄₉: l8→l8
Chain transitions t₁₄₈: l8→l18 and t₁₄₇: l18→l6 to t₁₅₀: l8→l6
Chain transitions t₁₄₈: l8→l18 and t₁₃: l18→l16 to t₁₅₁: l8→l16
Chain transitions t₁₇: l7→l5 and t₁₈: l5→l8 to t₁₅₂: l7→l8
Chain transitions t₁₅₀: l8→l6 and t₁₆: l6→l7 to t₁₅₃: l8→l7
Chain transitions t₁₅₃: l8→l7 and t₁₅₂: l7→l8 to t₁₅₄: l8→l8
Chain transitions t₁₅₃: l8→l7 and t₁₇: l7→l5 to t₁₅₅: l8→l5
Chain transitions t₁₄₁: l8→l9 and t₁₄₂: l9→l8 to t₁₅₆: l8→l8
Chain transitions t₁₄₁: l8→l9 and t₁₄₅: l9→l19 to t₁₅₇: l8→l19
Chain transitions t₁₄₁: l8→l9 and t₂₁: l9→l12 to t₁₅₈: l8→l12
Analysing control-flow refined program
Eliminate variables {Temp_Int₉₇₅,X₂,X₃,X₄} that do not contribute to the problem
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6
Found invariant X₀ ≤ X₄ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ for location l19
Found invariant X₀ ≤ X₄ ∧ 0 ≤ X₂ for location l12
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l17
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant X₀ ≤ X₄ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ for location l20
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l16
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l18
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9
MPRF for transition t₂₀₆: l8(X₀, X₁, X₂, X₃, X₄) -{7}> l8(X₀, X₁-1, X₂, X₃, X₄) :|: X₃+1 < X₁ ∧ 0 < Temp_Int₉₆₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₂₀₇: l8(X₀, X₁, X₂, X₃, X₄) -{5}> l8(X₁, X₁, 1+X₂, 1+X₂, X₄) :|: X₁ ≤ X₃+1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₂₀₅: l8(X₀, X₁, X₂, X₃, X₄) -{4}> l8(X₀, X₁, X₂, 1+X₃, X₄) :|: X₃+1 < X₁ ∧ Temp_Int₉₅₉ ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₄⋅X₄+3⋅X₄ {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 4 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l18___2
Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l18___9
Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6
Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l16___8
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 4 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l17___3
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l17___6
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l8___7
Found invariant X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₅ for location l19
Found invariant X₀ ≤ X₇ ∧ 0 ≤ X₅ for location l12
Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l17___10
Found invariant X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₅ for location l20
Found invariant 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l16___4
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 1+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l16___1
Found invariant 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l18___5
knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₃₃₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___3(X₀, X₁, X₆+1, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 1+X₆ ∧ 1+X₆ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1+X₆ < X₁ ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₀ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ 1+X₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₇+1 {O(n)} for transition t₃₃₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___10(X₀, X₁, X₆+1, X₃, X₄, X₅, X₆, X₇) :|: 1+X₆ < X₁ ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₀ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₇+1 {O(n)} for transition t₃₂₇: n_l17___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___9(X₀, X₁, X₂, X₃, X₄, X₅, X₂-1, X₇) :|: 1+X₆ < X₁ ∧ X₂ ≤ X₆+1 ∧ X₂ ≤ X₆+1 ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₀ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₅ ≤ X₂ ∧ X₀ ≤ X₇ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₃₂₈: n_l17___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___2(X₀, X₁, X₂, X₃, X₄, X₅, X₂-1, X₇) :|: 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ X₂ < X₁ ∧ X₂ ≤ X₆+1 ∧ X₂ ≤ X₆+1 ∧ X₀ ≤ X₇ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₅ ≤ X₂ ∧ X₀ ≤ X₇ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 4 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₃₃₀: n_l18___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___1(X₀, X₁, X₂, NoDet0, X₄, Arg5_P, X₂-1, Arg7_P) :|: 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₆+1 ∧ X₀ ≤ Arg7_P ∧ 1+Arg5_P ≤ X₂ ∧ 0 ≤ Arg5_P ∧ X₂ ≤ X₆+1 ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ X₇ ∧ 1+X₂ ≤ X₁ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₆ ≤ X₂ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 4 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₇+1 {O(n)} for transition t₃₃₂: n_l18___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___8(X₀, X₁, X₂, NoDet0, X₄, Arg5_P, X₂-1, Arg7_P) :|: X₂ ≤ X₆+1 ∧ X₀ ≤ Arg7_P ∧ 1+Arg5_P ≤ X₂ ∧ 0 ≤ Arg5_P ∧ X₂ ≤ X₆+1 ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₆ ≤ X₂ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₃₄₃: n_l16___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₇+1 {O(n)} for transition t₃₄₅: n_l16___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₃₂₄: n_l16___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___7(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 1+X₁ ≤ X₀ ∧ X₂ ≤ X₆+1 ∧ X₃ ≤ 0 ∧ X₂ ≤ X₆+1 ∧ X₀ ≤ X₇ ∧ 1+X₂ ≤ X₁ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₅ ≤ X₂ ∧ X₀ ≤ X₇ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 4 ≤ X₂+X₇ ∧ 2+X₂ ≤ X₇ ∧ 5 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 3+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₇+1 {O(n)} for transition t₃₂₆: n_l16___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___7(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: X₂ ≤ X₆+1 ∧ X₃ ≤ 0 ∧ X₂ ≤ X₆+1 ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₅ ≤ X₂ ∧ X₀ ≤ X₇ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₃₂₅: n_l16___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l8___7(X₀, X₁, X₂, X₃, X₄, X₅, X₂, X₇) :|: 2+X₅ ≤ X₂ ∧ X₂ ≤ X₆+1 ∧ X₃ ≤ 0 ∧ X₂ ≤ X₆+1 ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₅ ≤ X₂ ∧ X₀ ≤ X₇ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
6⋅X₇⋅X₇+7⋅X₇ {O(n^2)}
MPRF for transition t₃₂₉: n_l17___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₂-1, X₇) :|: X₃ ≤ 0 ∧ X₂ < X₁ ∧ 2+X₅ ≤ X₂ ∧ X₂ ≤ X₆+1 ∧ X₂ ≤ X₆+1 ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₅ ≤ X₂ ∧ X₀ ≤ X₇ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₆ ≤ X₂ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
6⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
MPRF for transition t₃₃₁: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l16___4(X₀, X₁, X₂, NoDet0, X₄, Arg5_P, X₂-1, Arg7_P) :|: X₃ ≤ 0 ∧ 2+X₅ ≤ X₂ ∧ X₂ ≤ X₆+1 ∧ X₀ ≤ Arg7_P ∧ 1+Arg5_P ≤ X₂ ∧ 0 ≤ Arg5_P ∧ X₂ ≤ X₆+1 ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₆ ≤ X₂ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 3+X₃ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
12⋅X₇⋅X₇+11⋅X₇ {O(n^2)}
MPRF for transition t₃₃₅: n_l8___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l17___6(X₀, X₁, X₆+1, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ 1+X₅ ≤ X₆ ∧ X₃ ≤ 0 ∧ 1+X₆ < X₁ ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₀ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅ ∧ 1+X₆ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₇ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
3⋅X₇⋅X₇+2⋅X₇ {O(n^2)}
MPRF for transition t₃₄₂: n_l8___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₆+1, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₆+1 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 2+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₆ ≤ X₂ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₇+1 {O(n)}
MPRF for transition t₃₄₄: n_l16___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 4 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 3 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 2+X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 5 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 6 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ X₂ ∧ 2+X₆ ≤ X₁ ∧ 2+X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 4 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 2+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₇+2 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:6⋅X₇⋅X₇+20⋅X₇+14 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: X₇ {O(n)}
t₉: 1 {O(1)}
t₁₀: X₇⋅X₇+X₇ {O(n^2)}
t₁₁: X₇ {O(n)}
t₁₂: 2⋅X₇⋅X₇+X₇ {O(n^2)}
t₁₃: 2⋅X₇⋅X₇+2⋅X₇ {O(n^2)}
t₁₄: 5⋅X₇ {O(n)}
t₁₅: X₇⋅X₇+X₇ {O(n^2)}
t₁₆: 2⋅X₇ {O(n)}
t₁₇: 2⋅X₇+2 {O(n)}
t₁₈: X₇+1 {O(n)}
t₁₉: X₇ {O(n)}
t₂₀: X₇+1 {O(n)}
t₂₁: X₇ {O(n)}
t₂₂: 1 {O(1)}
Costbounds
Overall costbound: 6⋅X₇⋅X₇+20⋅X₇+14 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: X₇ {O(n)}
t₉: 1 {O(1)}
t₁₀: X₇⋅X₇+X₇ {O(n^2)}
t₁₁: X₇ {O(n)}
t₁₂: 2⋅X₇⋅X₇+X₇ {O(n^2)}
t₁₃: 2⋅X₇⋅X₇+2⋅X₇ {O(n^2)}
t₁₄: 5⋅X₇ {O(n)}
t₁₅: X₇⋅X₇+X₇ {O(n^2)}
t₁₆: 2⋅X₇ {O(n)}
t₁₇: 2⋅X₇+2 {O(n)}
t₁₈: X₇+1 {O(n)}
t₁₉: X₇ {O(n)}
t₂₀: X₇+1 {O(n)}
t₂₁: X₇ {O(n)}
t₂₂: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₇, X₀: X₇ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: 0 {O(1)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₇ {O(n)}
t₈, X₀: X₇ {O(n)}
t₈, X₁: 2⋅X₇ {O(n)}
t₈, X₂: 2⋅X₇⋅X₇+5⋅X₇+X₂+3 {O(n^2)}
t₈, X₄: X₄+X₇ {O(n)}
t₈, X₅: X₇ {O(n)}
t₈, X₆: X₇ {O(n)}
t₈, X₇: X₇ {O(n)}
t₉, X₀: 2⋅X₇ {O(n)}
t₉, X₁: 6⋅X₇+X₁ {O(n)}
t₉, X₂: 2⋅X₇⋅X₇+5⋅X₇+X₂+3 {O(n^2)}
t₉, X₄: X₄+X₇ {O(n)}
t₉, X₅: X₇ {O(n)}
t₉, X₆: 2⋅X₇⋅X₇+5⋅X₇+X₆ {O(n^2)}
t₉, X₇: 2⋅X₇ {O(n)}
t₁₀, X₀: X₇ {O(n)}
t₁₀, X₁: 2⋅X₇ {O(n)}
t₁₀, X₂: X₇⋅X₇+2⋅X₇ {O(n^2)}
t₁₀, X₄: X₄+X₇ {O(n)}
t₁₀, X₅: X₇ {O(n)}
t₁₀, X₆: 2⋅X₇⋅X₇+5⋅X₇ {O(n^2)}
t₁₀, X₇: X₇ {O(n)}
t₁₁, X₀: X₇ {O(n)}
t₁₁, X₁: 6⋅X₇ {O(n)}
t₁₁, X₂: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₁₁, X₄: 3⋅X₄+3⋅X₇ {O(n)}
t₁₁, X₅: X₇ {O(n)}
t₁₁, X₆: 2⋅X₇⋅X₇+5⋅X₇ {O(n^2)}
t₁₁, X₇: X₇ {O(n)}
t₁₂, X₀: X₇ {O(n)}
t₁₂, X₁: 2⋅X₇ {O(n)}
t₁₂, X₂: X₇⋅X₇+2⋅X₇ {O(n^2)}
t₁₂, X₄: X₄+X₇ {O(n)}
t₁₂, X₅: X₇ {O(n)}
t₁₂, X₆: 2⋅X₇⋅X₇+5⋅X₇ {O(n^2)}
t₁₂, X₇: X₇ {O(n)}
t₁₃, X₀: X₇ {O(n)}
t₁₃, X₁: 2⋅X₇ {O(n)}
t₁₃, X₂: X₇⋅X₇+2⋅X₇ {O(n^2)}
t₁₃, X₄: X₄+X₇ {O(n)}
t₁₃, X₅: X₇ {O(n)}
t₁₃, X₆: 2⋅X₇⋅X₇+5⋅X₇ {O(n^2)}
t₁₃, X₇: X₇ {O(n)}
t₁₄, X₀: X₇ {O(n)}
t₁₄, X₁: 2⋅X₇ {O(n)}
t₁₄, X₂: X₇⋅X₇+2⋅X₇ {O(n^2)}
t₁₄, X₄: X₄+X₇ {O(n)}
t₁₄, X₅: X₇ {O(n)}
t₁₄, X₆: 2⋅X₇⋅X₇+5⋅X₇ {O(n^2)}
t₁₄, X₇: X₇ {O(n)}
t₁₅, X₀: X₇ {O(n)}
t₁₅, X₁: 2⋅X₇ {O(n)}
t₁₅, X₂: X₇⋅X₇+2⋅X₇ {O(n^2)}
t₁₅, X₄: X₄+X₇ {O(n)}
t₁₅, X₅: X₇ {O(n)}
t₁₅, X₆: X₇⋅X₇+2⋅X₇ {O(n^2)}
t₁₅, X₇: X₇ {O(n)}
t₁₆, X₀: X₇ {O(n)}
t₁₆, X₁: 2⋅X₇ {O(n)}
t₁₆, X₂: X₇⋅X₇+2⋅X₇ {O(n^2)}
t₁₆, X₄: X₄+X₇ {O(n)}
t₁₆, X₅: X₇ {O(n)}
t₁₆, X₆: 2⋅X₇⋅X₇+5⋅X₇ {O(n^2)}
t₁₆, X₇: X₇ {O(n)}
t₁₇, X₀: X₇ {O(n)}
t₁₇, X₁: 2⋅X₇ {O(n)}
t₁₇, X₂: X₇⋅X₇+2⋅X₇ {O(n^2)}
t₁₇, X₄: X₄+X₇ {O(n)}
t₁₇, X₅: X₇ {O(n)}
t₁₇, X₆: 2⋅X₇⋅X₇+5⋅X₇ {O(n^2)}
t₁₇, X₇: X₇ {O(n)}
t₁₈, X₀: X₇ {O(n)}
t₁₈, X₁: 2⋅X₇ {O(n)}
t₁₈, X₂: X₇⋅X₇+2⋅X₇ {O(n^2)}
t₁₈, X₄: X₄+X₇ {O(n)}
t₁₈, X₅: X₇ {O(n)}
t₁₈, X₆: X₇⋅X₇+2⋅X₇ {O(n^2)}
t₁₈, X₇: X₇ {O(n)}
t₁₉, X₀: X₇ {O(n)}
t₁₉, X₁: 6⋅X₇ {O(n)}
t₁₉, X₂: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₁₉, X₄: X₇ {O(n)}
t₁₉, X₅: X₇ {O(n)}
t₁₉, X₆: 2⋅X₇⋅X₇+5⋅X₇ {O(n^2)}
t₁₉, X₇: X₇ {O(n)}
t₂₀, X₀: X₇ {O(n)}
t₂₀, X₁: 6⋅X₇ {O(n)}
t₂₀, X₂: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₂₀, X₄: X₇ {O(n)}
t₂₀, X₅: X₇ {O(n)}
t₂₀, X₆: 2⋅X₇⋅X₇+5⋅X₇ {O(n^2)}
t₂₀, X₇: X₇ {O(n)}
t₂₁, X₀: X₇ {O(n)}
t₂₁, X₁: 6⋅X₇ {O(n)}
t₂₁, X₂: 2⋅X₇⋅X₇+5⋅X₇+3 {O(n^2)}
t₂₁, X₄: X₇ {O(n)}
t₂₁, X₅: X₇ {O(n)}
t₂₁, X₆: 2⋅X₇⋅X₇+5⋅X₇ {O(n^2)}
t₂₁, X₇: X₇ {O(n)}
t₂₂, X₀: 2⋅X₇ {O(n)}
t₂₂, X₁: 6⋅X₇+X₁ {O(n)}
t₂₂, X₂: 2⋅X₇⋅X₇+5⋅X₇+X₂+3 {O(n^2)}
t₂₂, X₄: X₄+X₇ {O(n)}
t₂₂, X₅: X₇ {O(n)}
t₂₂, X₆: 2⋅X₇⋅X₇+5⋅X₇+X₆ {O(n^2)}
t₂₂, X₇: 2⋅X₇ {O(n)}