Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₃, X₅, 0, X₇, X₈)
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₄ ∧ 0 ≤ X₆
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄ < 0
t₁₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆ < 0
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆, X₈) :|: 0 < X₀
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₆) :|: X₀ ≤ 0
t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(nondef_0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₃
t₁₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < X₇
t₁₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₁
t₂₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ ≤ 0
t₁₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₈: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, nondef_1, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₁: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, X₈)
t₂₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₇, X₇)
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₄-1, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₅, X₅, X₈-1, X₇, X₈)
t₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
Preprocessing
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l6
Found invariant 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l15
Found invariant X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l19
Found invariant 0 ≤ 1+X₆ ∧ X₄ ≤ X₃ for location l12
Found invariant X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l17
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 1+X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l7
Found invariant X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l20
Found invariant 0 ≤ 1+X₆ ∧ X₄ ≤ X₃ for location l21
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 1+X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l5
Found invariant 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l13
Found invariant 0 ≤ 1+X₆ ∧ X₄ ≤ X₃ for location l22
Found invariant 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ 1+X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l8
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l16
Found invariant X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l18
Found invariant 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars: nondef_0, nondef_1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₃, X₅, 0, X₇, X₈)
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₆ ∧ X₄ ≤ X₃
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄ < 0 ∧ 0 ≤ 1+X₆ ∧ X₄ ≤ X₃
t₁₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆ < 0 ∧ 0 ≤ 1+X₆ ∧ X₄ ≤ X₃
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆, X₈) :|: 0 < X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₆) :|: X₀ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₁₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(nondef_0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₁ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ ≤ 0 ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₈: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, nondef_1, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₁: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, X₈) :|: X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ 1+X₆ ∧ X₄ ≤ X₃
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₇, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 1+X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₄-1, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₂₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 1+X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₅, X₅, X₈-1, X₇, X₈) :|: 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ 1+X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃
t₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
MPRF for transition t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆, X₈) :|: 0 < X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₁₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₂₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ ≤ 0 ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₄-1, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₂₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 1+X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₇, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 1+X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₁₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
5⋅X₃⋅X₃+16⋅X₃+8 {O(n^2)}
MPRF for transition t₁₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₃⋅X₃+9⋅X₃+2 {O(n^2)}
MPRF for transition t₁₈: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, nondef_1, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
7⋅X₃⋅X₃+24⋅X₃+14 {O(n^2)}
MPRF for transition t₁₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₁ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₃⋅X₃+10⋅X₃+6 {O(n^2)}
MPRF for transition t₂₁: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, X₈) :|: X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₃⋅X₃+10⋅X₃+6 {O(n^2)}
MPRF for transition t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₆ ∧ X₄ ≤ X₃ of depth 1:
new bound:
3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+18⋅X₃+10 {O(n^3)}
MPRF for transition t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+17⋅X₃+8 {O(n^3)}
MPRF for transition t₁₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(nondef_0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+17⋅X₃+8 {O(n^3)}
MPRF for transition t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₆) :|: X₀ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+17⋅X₃+8 {O(n^3)}
MPRF for transition t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₅, X₅, X₈-1, X₇, X₈) :|: 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ 1+X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+18⋅X₃+9 {O(n^3)}
Chain transitions t₂₅: l8→l12 and t₁₀: l12→l21 to t₂₁₃: l8→l21
Chain transitions t₇: l11→l12 and t₁₀: l12→l21 to t₂₁₄: l11→l21
Chain transitions t₇: l11→l12 and t₉: l12→l21 to t₂₁₅: l11→l21
Chain transitions t₂₅: l8→l12 and t₉: l12→l21 to t₂₁₆: l8→l21
Chain transitions t₇: l11→l12 and t₈: l12→l14 to t₂₁₇: l11→l14
Chain transitions t₂₅: l8→l12 and t₈: l12→l14 to t₂₁₈: l8→l14
Chain transitions t₁₂: l15→l13 and t₁₄: l13→l8 to t₂₁₉: l15→l8
Chain transitions t₁₂: l15→l13 and t₁₃: l13→l16 to t₂₂₀: l15→l16
Chain transitions t₂₁₈: l8→l14 and t₁₁: l14→l15 to t₂₂₁: l8→l15
Chain transitions t₂₁₇: l11→l14 and t₁₁: l14→l15 to t₂₂₂: l11→l15
Chain transitions t₂₂₁: l8→l15 and t₂₁₉: l15→l8 to t₂₂₃: l8→l8
Chain transitions t₂₂₂: l11→l15 and t₂₁₉: l15→l8 to t₂₂₄: l11→l8
Chain transitions t₂₂₂: l11→l15 and t₂₂₀: l15→l16 to t₂₂₅: l11→l16
Chain transitions t₂₂₁: l8→l15 and t₂₂₀: l15→l16 to t₂₂₆: l8→l16
Chain transitions t₂₂₂: l11→l15 and t₁₂: l15→l13 to t₂₂₇: l11→l13
Chain transitions t₂₂₁: l8→l15 and t₁₂: l15→l13 to t₂₂₈: l8→l13
Chain transitions t₂₂₆: l8→l16 and t₁₆: l16→l6 to t₂₂₉: l8→l6
Chain transitions t₂₁: l20→l16 and t₁₆: l16→l6 to t₂₃₀: l20→l6
Chain transitions t₂₁: l20→l16 and t₁₅: l16→l18 to t₂₃₁: l20→l18
Chain transitions t₂₂₆: l8→l16 and t₁₅: l16→l18 to t₂₃₂: l8→l18
Chain transitions t₂₂₅: l11→l16 and t₁₅: l16→l18 to t₂₃₃: l11→l18
Chain transitions t₂₂₅: l11→l16 and t₁₆: l16→l6 to t₂₃₄: l11→l6
Chain transitions t₁₈: l19→l17 and t₂₀: l17→l6 to t₂₃₅: l19→l6
Chain transitions t₁₈: l19→l17 and t₁₉: l17→l20 to t₂₃₆: l19→l20
Chain transitions t₂₃₂: l8→l18 and t₁₇: l18→l19 to t₂₃₇: l8→l19
Chain transitions t₂₃₁: l20→l18 and t₁₇: l18→l19 to t₂₃₈: l20→l19
Chain transitions t₂₃₃: l11→l18 and t₁₇: l18→l19 to t₂₃₉: l11→l19
Chain transitions t₂₃₇: l8→l19 and t₂₃₅: l19→l6 to t₂₄₀: l8→l6
Chain transitions t₂₃₈: l20→l19 and t₂₃₅: l19→l6 to t₂₄₁: l20→l6
Chain transitions t₂₃₈: l20→l19 and t₂₃₆: l19→l20 to t₂₄₂: l20→l20
Chain transitions t₂₃₇: l8→l19 and t₂₃₆: l19→l20 to t₂₄₃: l8→l20
Chain transitions t₂₃₉: l11→l19 and t₂₃₆: l19→l20 to t₂₄₄: l11→l20
Chain transitions t₂₃₉: l11→l19 and t₂₃₅: l19→l6 to t₂₄₅: l11→l6
Chain transitions t₂₃₉: l11→l19 and t₁₈: l19→l17 to t₂₄₆: l11→l17
Chain transitions t₂₃₈: l20→l19 and t₁₈: l19→l17 to t₂₄₇: l20→l17
Chain transitions t₂₃₇: l8→l19 and t₁₈: l19→l17 to t₂₄₈: l8→l17
Chain transitions t₂₃: l7→l5 and t₂₄: l5→l8 to t₂₄₉: l7→l8
Chain transitions t₂₄₀: l8→l6 and t₂₂: l6→l7 to t₂₅₀: l8→l7
Chain transitions t₂₂₉: l8→l6 and t₂₂: l6→l7 to t₂₅₁: l8→l7
Chain transitions t₂₄₁: l20→l6 and t₂₂: l6→l7 to t₂₅₂: l20→l7
Chain transitions t₂₃₀: l20→l6 and t₂₂: l6→l7 to t₂₅₃: l20→l7
Chain transitions t₂₄₅: l11→l6 and t₂₂: l6→l7 to t₂₅₄: l11→l7
Chain transitions t₂₃₄: l11→l6 and t₂₂: l6→l7 to t₂₅₅: l11→l7
Chain transitions t₂₅₁: l8→l7 and t₂₄₉: l7→l8 to t₂₅₆: l8→l8
Chain transitions t₂₅₀: l8→l7 and t₂₄₉: l7→l8 to t₂₅₇: l8→l8
Chain transitions t₂₅₀: l8→l7 and t₂₃: l7→l5 to t₂₅₈: l8→l5
Chain transitions t₂₅₁: l8→l7 and t₂₃: l7→l5 to t₂₅₉: l8→l5
Chain transitions t₂₅₃: l20→l7 and t₂₃: l7→l5 to t₂₆₀: l20→l5
Chain transitions t₂₅₃: l20→l7 and t₂₄₉: l7→l8 to t₂₆₁: l20→l8
Chain transitions t₂₅₂: l20→l7 and t₂₃: l7→l5 to t₂₆₂: l20→l5
Chain transitions t₂₅₂: l20→l7 and t₂₄₉: l7→l8 to t₂₆₃: l20→l8
Chain transitions t₂₅₅: l11→l7 and t₂₃: l7→l5 to t₂₆₄: l11→l5
Chain transitions t₂₅₅: l11→l7 and t₂₄₉: l7→l8 to t₂₆₅: l11→l8
Chain transitions t₂₅₄: l11→l7 and t₂₃: l7→l5 to t₂₆₆: l11→l5
Chain transitions t₂₅₄: l11→l7 and t₂₄₉: l7→l8 to t₂₆₇: l11→l8
Analysing control-flow refined program
Cut unsatisfiable transition t₂₁₄: l11→l21
Cut unsatisfiable transition t₂₃₄: l11→l6
Cut unsatisfiable transition t₂₅₅: l11→l7
Cut unsatisfiable transition t₂₆₄: l11→l5
Cut unsatisfiable transition t₂₆₅: l11→l8
Eliminate variables {X₂} that do not contribute to the problem
Found invariant X₆ ≤ 1+X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l6
Found invariant X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l15
Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l19
Found invariant X₃ ≤ X₂ for location l12
Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l17
Found invariant X₆ ≤ 1+X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l7
Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l20
Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l21
Found invariant X₆ ≤ 1+X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l5
Found invariant X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l13
Found invariant 0 ≤ 1+X₅ for location l22
Found invariant X₇ ≤ 1+X₂ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l8
Found invariant X₆ ≤ 1+X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l16
Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l18
Found invariant X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l14
Cut unsatisfiable transition t₃₈₁: l8→l5
Cut unsatisfiable transition t₃₈₂: l8→l6
Cut unsatisfiable transition t₃₈₅: l8→l7
Cut unsatisfiable transition t₃₈₇: l8→l8
Analysing control-flow refined program
Cut unsatisfiable transition t₁₀: l12→l21
Cut unsatisfiable transition t₆₇₀: n_l12___6→l21
Found invariant X₈ ≤ 1+X₆ ∧ 1 ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location n_l13___3
Found invariant X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l19___3
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l18___9
Found invariant X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₀ ≤ X₈ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l8___2
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l17___7
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l6
Found invariant X₈ ≤ 0 ∧ X₈ ≤ X₆ ∧ X₆+X₈ ≤ 0 ∧ X₈ ≤ X₅ ∧ X₈ ≤ X₄ ∧ X₈ ≤ X₃ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₀+X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l8___7
Found invariant X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l20___1
Found invariant X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l17___2
Found invariant X₈ ≤ 1+X₆ ∧ 1 ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location n_l15___4
Found invariant X₈ ≤ 1+X₆ ∧ 1 ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location n_l14___5
Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location n_l14___10
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l20___6
Found invariant X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₄ for location l12
Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location n_l15___9
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 1+X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l7
Found invariant X₈ ≤ X₇ ∧ X₈ ≤ 1+X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 0 ≤ 1+X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 0 ≤ 1+X₅+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ 1+X₂+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₇ ≤ 1+X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 2+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 2+X₂+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 2+X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ 2+X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l12___1
Found invariant X₇ ≤ 1+X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l16___5
Found invariant 0 ≤ 1+X₆ ∧ X₄ ≤ X₃ for location l21
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 1+X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l5
Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location n_l13___8
Found invariant X₈ ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ 1+X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ 1+X₂+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 1+X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 2+X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l8
Found invariant 0 ≤ 1+X₆ ∧ X₄ ≤ X₃ for location l22
Found invariant X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l16
Found invariant X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l18___4
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l19___8
Found invariant X₈ ≤ 1+X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ 1+X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ X₀ ≤ X₈ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ X₀ ≤ 1+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₀ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l12___6
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₆₅₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l12___1(X₀, X₁, X₂, X₃, X₅, X₅, X₈-1, X₇, X₈) :|: X₆ ≤ X₇ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₂+1 ≤ X₄ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄ ∧ X₆ ≤ X₈ ∧ X₄ ≤ 1+X₅ ∧ X₈ ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 0 ≤ 1+X₅+X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ 1+X₂+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 1+X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 2+X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₆₄₉: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l14___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₆ ≤ X₈ ∧ X₈ ≤ 1+X₆ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₄ ∧ 0 ≤ X₆ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₈ ≤ X₇ ∧ X₈ ≤ 1+X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 0 ≤ 1+X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 0 ≤ 1+X₅+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ 1+X₂+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₇ ≤ 1+X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 2+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ 2+X₂+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 2+X₂+X₅ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ 0 ≤ 2+X₂+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₀
All Bounds
Timebounds
Overall timebound:15⋅X₃⋅X₃⋅X₃+87⋅X₃⋅X₃+162⋅X₃+96 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+18⋅X₃+10 {O(n^3)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+17⋅X₃+8 {O(n^3)}
t₁₂: 3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+17⋅X₃+8 {O(n^3)}
t₁₃: X₃+1 {O(n)}
t₁₄: 3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+17⋅X₃+8 {O(n^3)}
t₁₅: 5⋅X₃⋅X₃+16⋅X₃+8 {O(n^2)}
t₁₆: X₃+1 {O(n)}
t₁₇: 4⋅X₃⋅X₃+9⋅X₃+2 {O(n^2)}
t₁₈: 7⋅X₃⋅X₃+24⋅X₃+14 {O(n^2)}
t₁₉: 3⋅X₃⋅X₃+10⋅X₃+6 {O(n^2)}
t₂₀: X₃+1 {O(n)}
t₂₁: 3⋅X₃⋅X₃+10⋅X₃+6 {O(n^2)}
t₂₂: X₃+1 {O(n)}
t₂₃: X₃+1 {O(n)}
t₂₄: X₃+1 {O(n)}
t₂₅: 3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+18⋅X₃+9 {O(n^3)}
t₂₆: 1 {O(1)}
Costbounds
Overall costbound: 15⋅X₃⋅X₃⋅X₃+87⋅X₃⋅X₃+162⋅X₃+96 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+18⋅X₃+10 {O(n^3)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+17⋅X₃+8 {O(n^3)}
t₁₂: 3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+17⋅X₃+8 {O(n^3)}
t₁₃: X₃+1 {O(n)}
t₁₄: 3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+17⋅X₃+8 {O(n^3)}
t₁₅: 5⋅X₃⋅X₃+16⋅X₃+8 {O(n^2)}
t₁₆: X₃+1 {O(n)}
t₁₇: 4⋅X₃⋅X₃+9⋅X₃+2 {O(n^2)}
t₁₈: 7⋅X₃⋅X₃+24⋅X₃+14 {O(n^2)}
t₁₉: 3⋅X₃⋅X₃+10⋅X₃+6 {O(n^2)}
t₂₀: X₃+1 {O(n)}
t₂₁: 3⋅X₃⋅X₃+10⋅X₃+6 {O(n^2)}
t₂₂: X₃+1 {O(n)}
t₂₃: X₃+1 {O(n)}
t₂₄: X₃+1 {O(n)}
t₂₅: 3⋅X₃⋅X₃⋅X₃+13⋅X₃⋅X₃+18⋅X₃+9 {O(n^3)}
t₂₆: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₃ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: 0 {O(1)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₈, X₂: 2⋅X₃+X₂+4 {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₃+1 {O(n)}
t₈, X₅: 3⋅X₃+X₅+5 {O(n)}
t₈, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₈, X₇: 3⋅X₃⋅X₃+10⋅X₃+X₇+7 {O(n^2)}
t₈, X₈: 6⋅X₃⋅X₃+20⋅X₃+X₈+14 {O(n^2)}
t₉, X₂: 2⋅X₂+2⋅X₃+4 {O(n)}
t₉, X₃: 2⋅X₃ {O(n)}
t₉, X₄: 2⋅X₃+1 {O(n)}
t₉, X₅: 3⋅X₃+X₅+5 {O(n)}
t₉, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₉, X₇: 3⋅X₃⋅X₃+10⋅X₃+2⋅X₇+7 {O(n^2)}
t₉, X₈: 6⋅X₃⋅X₃+20⋅X₃+X₈+14 {O(n^2)}
t₁₀, X₂: 2⋅X₃+X₂+4 {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₃+1 {O(n)}
t₁₀, X₅: 3⋅X₃+5 {O(n)}
t₁₀, X₆: 1 {O(1)}
t₁₀, X₇: 3⋅X₃⋅X₃+10⋅X₃+X₇+7 {O(n^2)}
t₁₀, X₈: 6⋅X₃⋅X₃+20⋅X₃+14 {O(n^2)}
t₁₁, X₂: 2⋅X₃+X₂+4 {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₃+1 {O(n)}
t₁₁, X₅: 3⋅X₃+X₅+5 {O(n)}
t₁₁, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₁, X₇: 3⋅X₃⋅X₃+10⋅X₃+X₇+7 {O(n^2)}
t₁₁, X₈: 6⋅X₃⋅X₃+20⋅X₃+X₈+14 {O(n^2)}
t₁₂, X₂: 2⋅X₃+X₂+4 {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: X₃+1 {O(n)}
t₁₂, X₅: 3⋅X₃+X₅+5 {O(n)}
t₁₂, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₂, X₇: 3⋅X₃⋅X₃+10⋅X₃+X₇+7 {O(n^2)}
t₁₂, X₈: 6⋅X₃⋅X₃+20⋅X₃+X₈+14 {O(n^2)}
t₁₃, X₂: 2⋅X₃+X₂+4 {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: X₃+1 {O(n)}
t₁₃, X₅: 3⋅X₃+X₅+5 {O(n)}
t₁₃, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₃, X₇: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₃, X₈: 6⋅X₃⋅X₃+20⋅X₃+X₈+14 {O(n^2)}
t₁₄, X₂: 2⋅X₃+X₂+4 {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: X₃+1 {O(n)}
t₁₄, X₅: X₃+1 {O(n)}
t₁₄, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₄, X₇: 3⋅X₃⋅X₃+10⋅X₃+X₇+7 {O(n^2)}
t₁₄, X₈: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₅, X₂: 2⋅X₃+X₂+4 {O(n)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₄: X₃+1 {O(n)}
t₁₅, X₅: 3⋅X₃+X₅+5 {O(n)}
t₁₅, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₅, X₇: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₅, X₈: 6⋅X₃⋅X₃+20⋅X₃+X₈+14 {O(n^2)}
t₁₆, X₂: 2⋅X₂+4⋅X₃+8 {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: X₃+1 {O(n)}
t₁₆, X₅: 2⋅X₅+6⋅X₃+10 {O(n)}
t₁₆, X₆: 6⋅X₃⋅X₃+20⋅X₃+14 {O(n^2)}
t₁₆, X₇: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₆, X₈: 12⋅X₃⋅X₃+2⋅X₈+40⋅X₃+28 {O(n^2)}
t₁₇, X₂: 2⋅X₃+X₂+4 {O(n)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: X₃+1 {O(n)}
t₁₇, X₅: 3⋅X₃+X₅+5 {O(n)}
t₁₇, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₇, X₇: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₇, X₈: 6⋅X₃⋅X₃+20⋅X₃+X₈+14 {O(n^2)}
t₁₈, X₂: 2⋅X₃+X₂+4 {O(n)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₄: X₃+1 {O(n)}
t₁₈, X₅: 3⋅X₃+X₅+5 {O(n)}
t₁₈, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₈, X₇: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₈, X₈: 6⋅X₃⋅X₃+20⋅X₃+X₈+14 {O(n^2)}
t₁₉, X₂: 2⋅X₃+X₂+4 {O(n)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: X₃+1 {O(n)}
t₁₉, X₅: 3⋅X₃+X₅+5 {O(n)}
t₁₉, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₉, X₇: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₁₉, X₈: 6⋅X₃⋅X₃+20⋅X₃+X₈+14 {O(n^2)}
t₂₀, X₂: 2⋅X₃+X₂+4 {O(n)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₄: X₃+1 {O(n)}
t₂₀, X₅: 3⋅X₃+X₅+5 {O(n)}
t₂₀, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₂₀, X₇: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₂₀, X₈: 6⋅X₃⋅X₃+20⋅X₃+X₈+14 {O(n^2)}
t₂₁, X₂: 2⋅X₃+X₂+4 {O(n)}
t₂₁, X₃: X₃ {O(n)}
t₂₁, X₄: X₃+1 {O(n)}
t₂₁, X₅: 3⋅X₃+X₅+5 {O(n)}
t₂₁, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₂₁, X₇: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₂₁, X₈: 6⋅X₃⋅X₃+20⋅X₃+X₈+14 {O(n^2)}
t₂₂, X₂: 2⋅X₃+4 {O(n)}
t₂₂, X₃: X₃ {O(n)}
t₂₂, X₄: X₃+1 {O(n)}
t₂₂, X₅: 3⋅X₅+9⋅X₃+15 {O(n)}
t₂₂, X₆: 9⋅X₃⋅X₃+30⋅X₃+21 {O(n^2)}
t₂₂, X₇: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₂₂, X₈: 18⋅X₃⋅X₃+3⋅X₈+60⋅X₃+42 {O(n^2)}
t₂₃, X₂: 2⋅X₃+4 {O(n)}
t₂₃, X₃: X₃ {O(n)}
t₂₃, X₄: X₃+1 {O(n)}
t₂₃, X₅: 3⋅X₅+9⋅X₃+15 {O(n)}
t₂₃, X₆: 9⋅X₃⋅X₃+30⋅X₃+21 {O(n^2)}
t₂₃, X₇: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₂₃, X₈: 18⋅X₃⋅X₃+3⋅X₈+60⋅X₃+42 {O(n^2)}
t₂₄, X₂: 2⋅X₃+4 {O(n)}
t₂₄, X₃: X₃ {O(n)}
t₂₄, X₄: X₃+1 {O(n)}
t₂₄, X₅: 2⋅X₃+4 {O(n)}
t₂₄, X₆: 9⋅X₃⋅X₃+30⋅X₃+21 {O(n^2)}
t₂₄, X₇: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₂₄, X₈: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₂₅, X₂: 2⋅X₃+X₂+4 {O(n)}
t₂₅, X₃: X₃ {O(n)}
t₂₅, X₄: X₃+1 {O(n)}
t₂₅, X₅: 3⋅X₃+5 {O(n)}
t₂₅, X₆: 3⋅X₃⋅X₃+10⋅X₃+7 {O(n^2)}
t₂₅, X₇: 3⋅X₃⋅X₃+10⋅X₃+X₇+7 {O(n^2)}
t₂₅, X₈: 6⋅X₃⋅X₃+20⋅X₃+14 {O(n^2)}
t₂₆, X₂: 3⋅X₂+4⋅X₃+8 {O(n)}
t₂₆, X₃: 3⋅X₃ {O(n)}
t₂₆, X₄: 3⋅X₃+2 {O(n)}
t₂₆, X₅: 6⋅X₃+X₅+10 {O(n)}
t₂₆, X₆: 3⋅X₃⋅X₃+10⋅X₃+8 {O(n^2)}
t₂₆, X₇: 6⋅X₃⋅X₃+20⋅X₃+3⋅X₇+14 {O(n^2)}
t₂₆, X₈: 12⋅X₃⋅X₃+40⋅X₃+X₈+28 {O(n^2)}