Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁
Temp_Vars: A2, B2, C2, D2, E2, F2, G2, H2, I2, J2, K2, L2, M2, N2, O2, P2, Q2, R2, S2, T2, U2, V2
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₄₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l4(2, E2, F2, A2, X₄, X₅, A2, E2, A2, X₉, X₁₀, F2, F2, G2, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, C2, D2, H2, X₄₉, X₅₀, X₅₁) :|: 2 ≤ E2
t₅₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(H2, E2, G2, X₄₆, X₄, X₅, X₄₆, D2, F2, I2, J2, B2, K2, O2, X₄₆, P2, Q2, R2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, U2, X₃₉, T2, S2, V2, X₄₃, X₄₄, X₄₅, A2, C2, X₄₈, X₄₉, X₅₀, X₅₁) :|: L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
t₅₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(H2, E2, G2, X₁₃, X₄, X₅, A2, 1, F2, I2, J2, B2, K2, O2, P2, Q2, R2, S2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, V2, X₃₉, U2, T2, L2, X₄₃, X₄₄, X₄₅, C2, D2, X₄₈, X₄₉, X₅₀, X₅₁) :|: 1 ≤ 0 ∧ P2+1 ≤ A2
t₅₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(H2, E2, G2, X₁₃, X₄, X₅, A2, 1, F2, I2, J2, B2, K2, O2, P2, Q2, R2, S2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, V2, X₃₉, U2, T2, L2, X₄₃, X₄₄, X₄₅, C2, D2, X₄₈, X₄₉, X₅₀, X₅₁) :|: 1 ≤ 0 ∧ A2+1 ≤ P2
t₅₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(H2, E2, G2, X₁₃, X₄, X₅, A2, 1, F2, I2, J2, B2, K2, O2, P2, Q2, R2, S2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, V2, X₃₉, U2, T2, L2, X₄₃, X₄₄, X₄₅, C2, D2, X₄₈, X₄₉, X₅₀, X₅₁) :|: 1 ≤ 0 ∧ P2+1 ≤ A2
t₅₅: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(H2, E2, G2, X₁₃, X₄, X₅, A2, 1, F2, I2, J2, B2, K2, O2, P2, Q2, R2, S2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, V2, X₃₉, U2, T2, L2, X₄₃, X₄₄, X₄₅, C2, D2, X₄₈, X₄₉, X₅₀, X₅₁) :|: 1 ≤ 0 ∧ A2+1 ≤ P2
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄-1, 1+X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₁₇, E2, X₁₉, 1+X₅, X₄-1, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄-1, 1+X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₁₇, E2, X₁₉, 1+X₅, X₄-1, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄-1, 1+X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₁₇, E2, X₁₉, 1+X₅, X₄-1, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₁₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄-1, 1+X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₁₇, E2, X₁₉, 1+X₅, X₄-1, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄-1, 1+X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₁₇, E2, X₁₉, 1+X₅, X₄-1, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄-1, 1+X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₁₇, E2, X₁₉, 1+X₅, X₄-1, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄-1, 1+X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₁₇, E2, X₁₉, 1+X₅, X₄-1, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄-1, 1+X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₁₇, E2, X₁₉, 1+X₅, X₄-1, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₄₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₄₃+1, X₃, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, C2, D2, E2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₁₄, X₄₃, X₃, X₁₄, X₁₄, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₁₉, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₁₄ ∧ X₁₄+1 ≤ X₃ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆
t₄₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₄₃+1, X₃, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, C2, D2, E2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₁₄, X₄₃, X₃, X₁₄, X₁₄, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₁₉, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₁₄ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆
t₄₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₄₃+1, X₃, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, C2, D2, E2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₁₄, X₄₃, X₃, X₁₄, X₁₄, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₁₉, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₁₄+1 ≤ X₃ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆
t₅₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₄₃+1, X₃, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, C2, D2, E2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₁₄, X₄₃, X₃, X₁₄, X₁₄, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₁₉, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₁₄+1 ≤ X₃ ∧ X₃+1 ≤ X₁₄ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆
t₃₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃-1, X₁₉, X₄₃-1, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₃₈+1 ≤ E2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ E2+1 ≤ C2
t₃₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃-1, X₁₉, X₄₃-1, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₃₈+1 ≤ E2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ C2+1 ≤ E2
t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃-1, X₁₉, X₄₃-1, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₃₈+1 ≤ E2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ E2+1 ≤ C2
t₃₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃-1, X₁₉, X₄₃-1, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₃₈+1 ≤ E2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ C2+1 ≤ E2
t₃₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃-1, X₁₉, X₄₃-1, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: E2+1 ≤ X₃₈ ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ E2+1 ≤ C2
t₃₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃-1, X₁₉, X₄₃-1, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: E2+1 ≤ X₃₈ ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ C2+1 ≤ E2
t₃₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃-1, X₁₉, X₄₃-1, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: E2+1 ≤ X₃₈ ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ E2+1 ≤ C2
t₄₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃-1, X₁₉, X₄₃-1, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: E2+1 ≤ X₃₈ ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ C2+1 ≤ E2
t₄₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, A2, X₈, X₉, C2, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, F2, X₃₉, E2, D2, G2, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: 2 ≤ A2 ∧ 0 ≤ X₄₃ ∧ X₄₀ ≤ X₃₈ ∧ X₃₈ ≤ X₄₀
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄, X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, D2, E2, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₁₇+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₃₀ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄, X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, D2, E2, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₁₇+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₃₀ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄, X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, D2, E2, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₁₇+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₃₀ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄, X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, D2, E2, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₁₇+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₃₀ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄, X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, D2, E2, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: F2+1 ≤ X₁₇ ∧ E2+1 ≤ F2 ∧ 0 ≤ X₃₀ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄, X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, D2, E2, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: F2+1 ≤ X₁₇ ∧ E2+1 ≤ F2 ∧ 0 ≤ X₃₀ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄, X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, D2, E2, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: F2+1 ≤ X₁₇ ∧ F2+1 ≤ E2 ∧ 0 ≤ X₃₀ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄, X₅, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, D2, E2, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: F2+1 ≤ X₁₇ ∧ F2+1 ≤ E2 ∧ 0 ≤ X₃₀ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
t₄₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₄₃+1, X₃, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, C2, D2, E2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₁₄, X₄₃, X₃, X₁₄, X₁₄, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₁₉, X₁₉, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₃₀ ∧ X₃+1 ≤ X₁₄ ∧ X₁₄+1 ≤ X₃ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
t₄₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₄₃+1, X₃, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, C2, D2, E2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₁₄, X₄₃, X₃, X₁₄, X₁₄, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₁₉, X₁₉, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₃₀ ∧ X₃+1 ≤ X₁₄ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
t₄₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₄₃+1, X₃, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, C2, D2, E2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₁₄, X₄₃, X₃, X₁₄, X₁₄, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₁₉, X₁₉, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₃₀ ∧ X₁₄+1 ≤ X₃ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
t₄₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₃, X₄, X₄₃+1, X₃, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, C2, D2, E2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₁₄, X₄₃, X₃, X₁₄, X₁₄, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₁₉, X₁₉, F2) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₃₀ ∧ X₁₄+1 ≤ X₃ ∧ X₃+1 ≤ X₁₄ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
t₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₄, C2, E2, X₃, X₄, 0, X₃, A2, D2, F2, G2, H2, I2, J2, X₂, X₂, X₃, X₂, X₁₉, X₁₉, B2, K2, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₄, C2, E2, X₃, X₄, 0, X₃, A2, D2, F2, G2, H2, I2, J2, X₂, X₂, X₃, X₂, X₁₉, X₁₉, B2, K2, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l4(1+X₀, X₁, X₁₃, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₃, A2, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, C2, X₀, X₁₉, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₀+1 ≤ X₁ ∧ 0 ≤ X₀
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄, 1, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, 1+X₄, X₁₉, E2, F2, X₄, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₁₇+1 ≤ G2 ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ G2+1 ≤ C2 ∧ A2 ≤ H2 ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
t₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄, 1, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, 1+X₄, X₁₉, E2, F2, X₄, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₁₇+1 ≤ G2 ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ C2+1 ≤ G2 ∧ A2 ≤ H2 ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄, 1, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, 1+X₄, X₁₉, E2, F2, X₄, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: G2+1 ≤ X₁₇ ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ G2+1 ≤ C2 ∧ A2 ≤ H2 ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l1(X₀, X₁, X₂, X₁₆, X₄, 1, X₁₆, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, C2, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, D2, 1+X₄, X₁₉, E2, F2, X₄, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: G2+1 ≤ X₁₇ ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ C2+1 ≤ G2 ∧ A2 ≤ H2 ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
t₂₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₃₈+1 ≤ D2 ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ D2+1 ≤ C2
t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₃₈+1 ≤ D2 ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ C2+1 ≤ D2
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₃₈+1 ≤ D2 ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ D2+1 ≤ C2
t₂₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: X₃₈+1 ≤ D2 ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ C2+1 ≤ D2
t₂₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: D2+1 ≤ X₃₈ ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ D2+1 ≤ C2
t₂₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: D2+1 ≤ X₃₈ ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ C2+1 ≤ D2
t₂₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: D2+1 ≤ X₃₈ ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ D2+1 ≤ C2
t₃₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l2(X₀, X₁, X₂, X₄₀, X₄, X₅, X₄₀, A2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, C2, X₃₈, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: D2+1 ≤ X₃₈ ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ C2+1 ≤ D2
t₃₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, A2, C2, X₈, X₉, D2, X₁₁, X₁₂, X₁₃, E2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, H2, X₃₉, G2, F2, I2, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: 0 ≤ X₃₉ ∧ E2+1 ≤ A2 ∧ 2 ≤ C2 ∧ X₄₀ ≤ X₃₈ ∧ X₃₈ ≤ X₄₀
t₃₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, A2, C2, X₈, X₉, D2, X₁₁, X₁₂, X₁₃, E2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, H2, X₃₉, G2, F2, I2, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁) :|: 0 ≤ X₃₉ ∧ A2+1 ≤ E2 ∧ 2 ≤ C2 ∧ X₄₀ ≤ X₃₈ ∧ X₃₈ ≤ X₄₀
Show Graph
G
l0
l0
l4
l4
l0->l4
t₄₂
η (X₀) = 2
η (X₁) = E2
η (X₂) = F2
η (X₃) = A2
η (X₆) = A2
η (X₇) = E2
η (X₈) = A2
η (X₁₁) = F2
η (X₁₂) = F2
η (X₁₃) = G2
η (X₄₆) = C2
η (X₄₇) = D2
η (X₄₈) = H2
τ = 2 ≤ E2
l6
l6
l0->l6
t₅₁
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₄₆
η (X₆) = X₄₆
η (X₇) = D2
η (X₈) = F2
η (X₉) = I2
η (X₁₀) = J2
η (X₁₁) = B2
η (X₁₂) = K2
η (X₁₃) = O2
η (X₁₄) = X₄₆
η (X₁₅) = P2
η (X₁₆) = Q2
η (X₁₇) = R2
η (X₃₈) = U2
η (X₄₀) = T2
η (X₄₁) = S2
η (X₄₂) = V2
η (X₄₆) = A2
η (X₄₇) = C2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l0->l6
t₅₂
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = A2
η (X₇) = 1
η (X₈) = F2
η (X₉) = I2
η (X₁₀) = J2
η (X₁₁) = B2
η (X₁₂) = K2
η (X₁₃) = O2
η (X₁₄) = P2
η (X₁₅) = Q2
η (X₁₆) = R2
η (X₁₇) = S2
η (X₃₈) = V2
η (X₄₀) = U2
η (X₄₁) = T2
η (X₄₂) = L2
η (X₄₆) = C2
η (X₄₇) = D2
τ = 1 ≤ 0 ∧ P2+1 ≤ A2
l0->l6
t₅₃
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = A2
η (X₇) = 1
η (X₈) = F2
η (X₉) = I2
η (X₁₀) = J2
η (X₁₁) = B2
η (X₁₂) = K2
η (X₁₃) = O2
η (X₁₄) = P2
η (X₁₅) = Q2
η (X₁₆) = R2
η (X₁₇) = S2
η (X₃₈) = V2
η (X₄₀) = U2
η (X₄₁) = T2
η (X₄₂) = L2
η (X₄₆) = C2
η (X₄₇) = D2
τ = 1 ≤ 0 ∧ A2+1 ≤ P2
l0->l6
t₅₄
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = A2
η (X₇) = 1
η (X₈) = F2
η (X₉) = I2
η (X₁₀) = J2
η (X₁₁) = B2
η (X₁₂) = K2
η (X₁₃) = O2
η (X₁₄) = P2
η (X₁₅) = Q2
η (X₁₆) = R2
η (X₁₇) = S2
η (X₃₈) = V2
η (X₄₀) = U2
η (X₄₁) = T2
η (X₄₂) = L2
η (X₄₆) = C2
η (X₄₇) = D2
τ = 1 ≤ 0 ∧ P2+1 ≤ A2
l0->l6
t₅₅
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = A2
η (X₇) = 1
η (X₈) = F2
η (X₉) = I2
η (X₁₀) = J2
η (X₁₁) = B2
η (X₁₂) = K2
η (X₁₃) = O2
η (X₁₄) = P2
η (X₁₅) = Q2
η (X₁₆) = R2
η (X₁₇) = S2
η (X₃₈) = V2
η (X₄₀) = U2
η (X₄₁) = T2
η (X₄₂) = L2
η (X₄₆) = C2
η (X₄₇) = D2
τ = 1 ≤ 0 ∧ A2+1 ≤ P2
l1
l1
l1->l1
t₁₅
η (X₃) = X₁₆
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₂₅) = D2
η (X₃₃) = X₁₇
η (X₃₄) = E2
η (X₃₅) = X₁₉
η (X₃₆) = 1+X₅
η (X₃₇) = X₄-1
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l1->l1
t₁₆
η (X₃) = X₁₆
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₂₅) = D2
η (X₃₃) = X₁₇
η (X₃₄) = E2
η (X₃₅) = X₁₉
η (X₃₆) = 1+X₅
η (X₃₇) = X₄-1
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l1->l1
t₁₇
η (X₃) = X₁₆
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₂₅) = D2
η (X₃₃) = X₁₇
η (X₃₄) = E2
η (X₃₅) = X₁₉
η (X₃₆) = 1+X₅
η (X₃₇) = X₄-1
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l1->l1
t₁₈
η (X₃) = X₁₆
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₂₅) = D2
η (X₃₃) = X₁₇
η (X₃₄) = E2
η (X₃₅) = X₁₉
η (X₃₆) = 1+X₅
η (X₃₇) = X₄-1
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l1->l1
t₁₉
η (X₃) = X₁₆
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₂₅) = D2
η (X₃₃) = X₁₇
η (X₃₄) = E2
η (X₃₅) = X₁₉
η (X₃₆) = 1+X₅
η (X₃₇) = X₄-1
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l1->l1
t₂₀
η (X₃) = X₁₆
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₂₅) = D2
η (X₃₃) = X₁₇
η (X₃₄) = E2
η (X₃₅) = X₁₉
η (X₃₆) = 1+X₅
η (X₃₇) = X₄-1
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l1->l1
t₂₁
η (X₃) = X₁₆
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₂₅) = D2
η (X₃₃) = X₁₇
η (X₃₄) = E2
η (X₃₅) = X₁₉
η (X₃₆) = 1+X₅
η (X₃₇) = X₄-1
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l1->l1
t₂₂
η (X₃) = X₁₆
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₂₅) = D2
η (X₃₃) = X₁₇
η (X₃₄) = E2
η (X₃₅) = X₁₉
η (X₃₆) = 1+X₅
η (X₃₇) = X₄-1
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l2
l2
l1->l2
t₄₇
η (X₅) = X₄₃+1
η (X₆) = X₃
η (X₇) = A2
η (X₁₅) = C2
η (X₁₆) = D2
η (X₁₇) = E2
η (X₃₈) = X₁₄
η (X₃₉) = X₄₃
η (X₄₀) = X₃
η (X₄₁) = X₁₄
η (X₄₂) = X₁₄
η (X₅₀) = X₁₉
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₁₄ ∧ X₁₄+1 ≤ X₃ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆
l1->l2
t₄₈
η (X₅) = X₄₃+1
η (X₆) = X₃
η (X₇) = A2
η (X₁₅) = C2
η (X₁₆) = D2
η (X₁₇) = E2
η (X₃₈) = X₁₄
η (X₃₉) = X₄₃
η (X₄₀) = X₃
η (X₄₁) = X₁₄
η (X₄₂) = X₁₄
η (X₅₀) = X₁₉
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₁₄ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆
l1->l2
t₄₉
η (X₅) = X₄₃+1
η (X₆) = X₃
η (X₇) = A2
η (X₁₅) = C2
η (X₁₆) = D2
η (X₁₇) = E2
η (X₃₈) = X₁₄
η (X₃₉) = X₄₃
η (X₄₀) = X₃
η (X₄₁) = X₁₄
η (X₄₂) = X₁₄
η (X₅₀) = X₁₉
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₁₄+1 ≤ X₃ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆
l1->l2
t₅₀
η (X₅) = X₄₃+1
η (X₆) = X₃
η (X₇) = A2
η (X₁₅) = C2
η (X₁₆) = D2
η (X₁₇) = E2
η (X₃₈) = X₁₄
η (X₃₉) = X₄₃
η (X₄₀) = X₃
η (X₄₁) = X₁₄
η (X₄₂) = X₁₄
η (X₅₀) = X₁₉
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₁₄+1 ≤ X₃ ∧ X₃+1 ≤ X₁₄ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆
l2->l2
t₃₃
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₂₅) = D2
η (X₄₁) = C2
η (X₄₂) = X₃₈
η (X₄₃) = X₄₃-1
η (X₄₄) = X₁₉
η (X₄₅) = X₄₃-1
τ = X₃₈+1 ≤ E2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ E2+1 ≤ C2
l2->l2
t₃₄
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₂₅) = D2
η (X₄₁) = C2
η (X₄₂) = X₃₈
η (X₄₃) = X₄₃-1
η (X₄₄) = X₁₉
η (X₄₅) = X₄₃-1
τ = X₃₈+1 ≤ E2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ C2+1 ≤ E2
l2->l2
t₃₅
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₂₅) = D2
η (X₄₁) = C2
η (X₄₂) = X₃₈
η (X₄₃) = X₄₃-1
η (X₄₄) = X₁₉
η (X₄₅) = X₄₃-1
τ = X₃₈+1 ≤ E2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ E2+1 ≤ C2
l2->l2
t₃₆
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₂₅) = D2
η (X₄₁) = C2
η (X₄₂) = X₃₈
η (X₄₃) = X₄₃-1
η (X₄₄) = X₁₉
η (X₄₅) = X₄₃-1
τ = X₃₈+1 ≤ E2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ C2+1 ≤ E2
l2->l2
t₃₇
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₂₅) = D2
η (X₄₁) = C2
η (X₄₂) = X₃₈
η (X₄₃) = X₄₃-1
η (X₄₄) = X₁₉
η (X₄₅) = X₄₃-1
τ = E2+1 ≤ X₃₈ ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ E2+1 ≤ C2
l2->l2
t₃₈
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₂₅) = D2
η (X₄₁) = C2
η (X₄₂) = X₃₈
η (X₄₃) = X₄₃-1
η (X₄₄) = X₁₉
η (X₄₅) = X₄₃-1
τ = E2+1 ≤ X₃₈ ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ C2+1 ≤ E2
l2->l2
t₃₉
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₂₅) = D2
η (X₄₁) = C2
η (X₄₂) = X₃₈
η (X₄₃) = X₄₃-1
η (X₄₄) = X₁₉
η (X₄₅) = X₄₃-1
τ = E2+1 ≤ X₃₈ ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ E2+1 ≤ C2
l2->l2
t₄₀
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₂₅) = D2
η (X₄₁) = C2
η (X₄₂) = X₃₈
η (X₄₃) = X₄₃-1
η (X₄₄) = X₁₉
η (X₄₅) = X₄₃-1
τ = E2+1 ≤ X₃₈ ∧ 0 ≤ X₄₃ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ C2+1 ≤ E2
l2->l6
t₄₁
η (X₇) = A2
η (X₁₀) = C2
η (X₃₈) = F2
η (X₄₀) = E2
η (X₄₁) = D2
η (X₄₂) = G2
τ = 2 ≤ A2 ∧ 0 ≤ X₄₃ ∧ X₄₀ ≤ X₃₈ ∧ X₃₈ ≤ X₄₀
l3
l3
l3->l1
t₇
η (X₃) = X₁₆
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₃₁) = D2
η (X₃₂) = E2
τ = X₁₇+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₃₀ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l3->l1
t₈
η (X₃) = X₁₆
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₃₁) = D2
η (X₃₂) = E2
τ = X₁₇+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₃₀ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l3->l1
t₉
η (X₃) = X₁₆
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₃₁) = D2
η (X₃₂) = E2
τ = X₁₇+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₃₀ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l3->l1
t₁₀
η (X₃) = X₁₆
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₃₁) = D2
η (X₃₂) = E2
τ = X₁₇+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₃₀ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l3->l1
t₁₁
η (X₃) = X₁₆
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₃₁) = D2
η (X₃₂) = E2
τ = F2+1 ≤ X₁₇ ∧ E2+1 ≤ F2 ∧ 0 ≤ X₃₀ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l3->l1
t₁₂
η (X₃) = X₁₆
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₃₁) = D2
η (X₃₂) = E2
τ = F2+1 ≤ X₁₇ ∧ E2+1 ≤ F2 ∧ 0 ≤ X₃₀ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l3->l1
t₁₃
η (X₃) = X₁₆
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₃₁) = D2
η (X₃₂) = E2
τ = F2+1 ≤ X₁₇ ∧ F2+1 ≤ E2 ∧ 0 ≤ X₃₀ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2
l3->l1
t₁₄
η (X₃) = X₁₆
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₃₁) = D2
η (X₃₂) = E2
τ = F2+1 ≤ X₁₇ ∧ F2+1 ≤ E2 ∧ 0 ≤ X₃₀ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2
l3->l2
t₄₃
η (X₅) = X₄₃+1
η (X₆) = X₃
η (X₇) = A2
η (X₁₅) = C2
η (X₁₆) = D2
η (X₁₇) = E2
η (X₃₈) = X₁₄
η (X₃₉) = X₄₃
η (X₄₀) = X₃
η (X₄₁) = X₁₄
η (X₄₂) = X₁₄
η (X₄₉) = X₁₉
η (X₅₀) = X₁₉
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₃₀ ∧ X₃+1 ≤ X₁₄ ∧ X₁₄+1 ≤ X₃ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
l3->l2
t₄₄
η (X₅) = X₄₃+1
η (X₆) = X₃
η (X₇) = A2
η (X₁₅) = C2
η (X₁₆) = D2
η (X₁₇) = E2
η (X₃₈) = X₁₄
η (X₃₉) = X₄₃
η (X₄₀) = X₃
η (X₄₁) = X₁₄
η (X₄₂) = X₁₄
η (X₄₉) = X₁₉
η (X₅₀) = X₁₉
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₃₀ ∧ X₃+1 ≤ X₁₄ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
l3->l2
t₄₅
η (X₅) = X₄₃+1
η (X₆) = X₃
η (X₇) = A2
η (X₁₅) = C2
η (X₁₆) = D2
η (X₁₇) = E2
η (X₃₈) = X₁₄
η (X₃₉) = X₄₃
η (X₄₀) = X₃
η (X₄₁) = X₁₄
η (X₄₂) = X₁₄
η (X₄₉) = X₁₉
η (X₅₀) = X₁₉
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₃₀ ∧ X₁₄+1 ≤ X₃ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
l3->l2
t₄₆
η (X₅) = X₄₃+1
η (X₆) = X₃
η (X₇) = A2
η (X₁₅) = C2
η (X₁₆) = D2
η (X₁₇) = E2
η (X₃₈) = X₁₄
η (X₃₉) = X₄₃
η (X₄₀) = X₃
η (X₄₁) = X₁₄
η (X₄₂) = X₁₄
η (X₄₉) = X₁₉
η (X₅₀) = X₁₉
η (X₅₁) = F2
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₃₀ ∧ X₁₄+1 ≤ X₃ ∧ X₃+1 ≤ X₁₄ ∧ X₁₆ ≤ X₁₇ ∧ X₁₇ ≤ X₁₆ ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
l4->l1
t₀
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = X₃
η (X₇) = A2
η (X₈) = D2
η (X₉) = F2
η (X₁₀) = G2
η (X₁₁) = H2
η (X₁₂) = I2
η (X₁₃) = J2
η (X₁₄) = X₂
η (X₁₅) = X₂
η (X₁₆) = X₃
η (X₁₇) = X₂
η (X₁₈) = X₁₉
η (X₂₀) = B2
η (X₂₁) = K2
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l4->l1
t₁
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = X₃
η (X₇) = A2
η (X₈) = D2
η (X₉) = F2
η (X₁₀) = G2
η (X₁₁) = H2
η (X₁₂) = I2
η (X₁₃) = J2
η (X₁₄) = X₂
η (X₁₅) = X₂
η (X₁₆) = X₃
η (X₁₇) = X₂
η (X₁₈) = X₁₉
η (X₂₀) = B2
η (X₂₁) = K2
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
l4->l4
t₂
η (X₀) = 1+X₀
η (X₂) = X₁₃
η (X₁₂) = X₁₃
η (X₁₃) = A2
η (X₂₂) = C2
η (X₂₃) = X₀
η (X₂₄) = X₁₉
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀
l5
l5
l5->l1
t₃
η (X₃) = X₁₆
η (X₅) = 1
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₂₅) = D2
η (X₂₆) = 1+X₄
η (X₂₇) = X₁₉
η (X₂₈) = E2
η (X₂₉) = F2
η (X₃₀) = X₄
τ = X₁₇+1 ≤ G2 ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ G2+1 ≤ C2 ∧ A2 ≤ H2 ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
l5->l1
t₄
η (X₃) = X₁₆
η (X₅) = 1
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₂₅) = D2
η (X₂₆) = 1+X₄
η (X₂₇) = X₁₉
η (X₂₈) = E2
η (X₂₉) = F2
η (X₃₀) = X₄
τ = X₁₇+1 ≤ G2 ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ C2+1 ≤ G2 ∧ A2 ≤ H2 ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
l5->l1
t₅
η (X₃) = X₁₆
η (X₅) = 1
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₂₅) = D2
η (X₂₆) = 1+X₄
η (X₂₇) = X₁₉
η (X₂₈) = E2
η (X₂₉) = F2
η (X₃₀) = X₄
τ = G2+1 ≤ X₁₇ ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ G2+1 ≤ C2 ∧ A2 ≤ H2 ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
l5->l1
t₆
η (X₃) = X₁₆
η (X₅) = 1
η (X₆) = X₁₆
η (X₇) = A2
η (X₁₄) = C2
η (X₁₅) = C2
η (X₂₅) = D2
η (X₂₆) = 1+X₄
η (X₂₇) = X₁₉
η (X₂₈) = E2
η (X₂₉) = F2
η (X₃₀) = X₄
τ = G2+1 ≤ X₁₇ ∧ 0 ≤ X₀ ∧ 2 ≤ A2 ∧ C2+1 ≤ G2 ∧ A2 ≤ H2 ∧ X₅ ≤ 1 ∧ 1 ≤ X₅
l7
l7
l7->l2
t₂₃
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₄₁) = C2
η (X₄₂) = X₃₈
τ = X₃₈+1 ≤ D2 ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ D2+1 ≤ C2
l7->l2
t₂₄
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₄₁) = C2
η (X₄₂) = X₃₈
τ = X₃₈+1 ≤ D2 ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ C2+1 ≤ D2
l7->l2
t₂₅
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₄₁) = C2
η (X₄₂) = X₃₈
τ = X₃₈+1 ≤ D2 ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ D2+1 ≤ C2
l7->l2
t₂₆
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₄₁) = C2
η (X₄₂) = X₃₈
τ = X₃₈+1 ≤ D2 ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ C2+1 ≤ D2
l7->l2
t₂₇
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₄₁) = C2
η (X₄₂) = X₃₈
τ = D2+1 ≤ X₃₈ ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ D2+1 ≤ C2
l7->l2
t₂₈
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₄₁) = C2
η (X₄₂) = X₃₈
τ = D2+1 ≤ X₃₈ ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₄₀ ∧ C2+1 ≤ D2
l7->l2
t₂₉
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₄₁) = C2
η (X₄₂) = X₃₈
τ = D2+1 ≤ X₃₈ ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ D2+1 ≤ C2
l7->l2
t₃₀
η (X₃) = X₄₀
η (X₆) = X₄₀
η (X₇) = A2
η (X₁₄) = C2
η (X₄₁) = C2
η (X₄₂) = X₃₈
τ = D2+1 ≤ X₃₈ ∧ 0 ≤ X₃₉ ∧ 2 ≤ A2 ∧ X₄₀+1 ≤ C2 ∧ C2+1 ≤ D2
l7->l6
t₃₁
η (X₆) = A2
η (X₇) = C2
η (X₁₀) = D2
η (X₁₄) = E2
η (X₃₈) = H2
η (X₄₀) = G2
η (X₄₁) = F2
η (X₄₂) = I2
τ = 0 ≤ X₃₉ ∧ E2+1 ≤ A2 ∧ 2 ≤ C2 ∧ X₄₀ ≤ X₃₈ ∧ X₃₈ ≤ X₄₀
l7->l6
t₃₂
η (X₆) = A2
η (X₇) = C2
η (X₁₀) = D2
η (X₁₄) = E2
η (X₃₈) = H2
η (X₄₀) = G2
η (X₄₁) = F2
η (X₄₂) = I2
τ = 0 ≤ X₃₉ ∧ A2+1 ≤ E2 ∧ 2 ≤ C2 ∧ X₄₀ ≤ X₃₈ ∧ X₃₈ ≤ X₄₀
Preprocessing
Cut unreachable locations [l3; l5; l7] from the program graph
Cut unsatisfiable transition t₄₇: l1→l2
Cut unsatisfiable transition t₅₀: l1→l2
Cut unsatisfiable transition t₅₂: l0→l6
Cut unsatisfiable transition t₅₃: l0→l6
Cut unsatisfiable transition t₅₄: l0→l6
Cut unsatisfiable transition t₅₅: l0→l6
Eliminate variables {I2,K2,P2,S2,V2,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₅,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆,X₂₇,X₂₈,X₂₉,X₃₀,X₃₁,X₃₂,X₃₃,X₃₄,X₃₅,X₃₆,X₃₇,X₃₉,X₄₁,X₄₂,X₄₄,X₄₅,X₄₇,X₄₈,X₄₉,X₅₀,X₅₁} that do not contribute to the problem
Found invariant 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀ for location l2
Found invariant X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀ for location l1
Found invariant 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃
Temp_Vars: A2, B2, C2, D2, E2, F2, G2, H2, J2, L2, M2, N2, O2, Q2, R2, T2, U2
Locations: l0, l1, l2, l4, l6
Transitions:
t₁₀₆: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(2, E2, F2, A2, X₄, X₅, G2, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, C2) :|: 2 ≤ E2
t₁₀₇: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(H2, E2, G2, X₁₃, X₄, X₅, O2, X₁₃, Q2, R2, U2, T2, X₁₂, A2) :|: L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
t₁₀₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₈, X₄-1, 1+X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
t₁₀₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₈, X₄-1, 1+X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
t₁₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₈, X₄-1, 1+X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
t₁₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₈, X₄-1, 1+X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
t₁₁₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₈, X₄-1, 1+X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
t₁₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₈, X₄-1, 1+X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
t₁₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₈, X₄-1, 1+X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
t₁₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₈, X₄-1, 1+X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
t₁₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₃, X₄, X₁₂+1, X₆, X₇, D2, E2, X₇, X₃, X₁₂, X₁₃) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₇ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
t₁₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₃, X₄, X₁₂+1, X₆, X₇, D2, E2, X₇, X₃, X₁₂, X₁₃) :|: 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₇+1 ≤ X₃ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
t₁₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
t₁₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
t₁₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
t₁₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
t₁₂₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
t₁₂₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
t₁₂₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
t₁₂₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
t₁₂₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, F2, E2, X₁₂, X₁₃) :|: 2 ≤ A2 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
t₁₂₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₄, C2, E2, X₃, X₄, 0, J2, X₂, X₃, X₂, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
t₁₂₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₄, C2, E2, X₃, X₄, 0, J2, X₂, X₃, X₂, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
t₁₂₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(1+X₀, X₁, X₆, X₃, X₄, X₅, A2, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₆
η (X₀) = 2
η (X₁) = E2
η (X₂) = F2
η (X₃) = A2
η (X₆) = G2
η (X₁₃) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₇
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = O2
η (X₇) = X₁₃
η (X₈) = Q2
η (X₉) = R2
η (X₁₀) = U2
η (X₁₁) = T2
η (X₁₃) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₈
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₀₉
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₆
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₇ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l2
t₁₁₇
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₇+1 ≤ X₃ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₈
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l6
t₁₂₆
η (X₁₀) = F2
η (X₁₁) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l4->l1
t₁₂₇
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₉
η (X₀) = 1+X₀
η (X₂) = X₆
η (X₆) = A2
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
Analysing control-flow refined program
Found invariant 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀ for location l2
Found invariant 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location n_l4___1
Found invariant X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀ for location l1
Found invariant 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l4
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
TWN: t₁₀₈: l1→l1
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₆
η (X₀) = 2
η (X₁) = E2
η (X₂) = F2
η (X₃) = A2
η (X₆) = G2
η (X₁₃) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₇
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = O2
η (X₇) = X₁₃
η (X₈) = Q2
η (X₉) = R2
η (X₁₀) = U2
η (X₁₁) = T2
η (X₁₃) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₈
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₀₉
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₆
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₇ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l2
t₁₁₇
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₇+1 ≤ X₃ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₈
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l6
t₁₂₆
η (X₁₀) = F2
η (X₁₁) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l4->l1
t₁₂₇
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₉
η (X₀) = 1+X₀
η (X₂) = X₆
η (X₆) = A2
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
cycle: [t₁₀₈: l1→l1; t₁₀₉: l1→l1; t₁₁₀: l1→l1; t₁₁₁: l1→l1; t₁₁₂: l1→l1; t₁₁₃: l1→l1; t₁₁₄: l1→l1; t₁₁₅: l1→l1]
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄ ∨ 0 ≤ X₅ ∧ 0 ≤ X₄,(X₄,X₅) -> (X₄-1,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₄ ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 0
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₈: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₀₉: l1→l1
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₀₉: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₁₀: l1→l1
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₀: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₁₁: l1→l1
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₁: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₁₂: l1→l1
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₂: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₁₃: l1→l1
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₃: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₁₄: l1→l1
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₄: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN: t₁₁₅: l1→l1
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₈:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₈: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
TWN - Lifting for t₁₁₅: l1→l1 of 2⋅X₄+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₁₂₇:
X₄: 2⋅X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₁₂₇: 1 {O(1)}
Results in: 4⋅X₄+6 {O(n)}
MPRF for transition t₁₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
64⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₆
η (X₀) = 2
η (X₁) = E2
η (X₂) = F2
η (X₃) = A2
η (X₆) = G2
η (X₁₃) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₇
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = O2
η (X₇) = X₁₃
η (X₈) = Q2
η (X₉) = R2
η (X₁₀) = U2
η (X₁₁) = T2
η (X₁₃) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₈
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₀₉
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₆
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₇ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l2
t₁₁₇
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₇+1 ≤ X₃ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₈
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l6
t₁₂₆
η (X₁₀) = F2
η (X₁₁) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l4->l1
t₁₂₇
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₉
η (X₀) = 1+X₀
η (X₂) = X₆
η (X₆) = A2
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
64⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₆
η (X₀) = 2
η (X₁) = E2
η (X₂) = F2
η (X₃) = A2
η (X₆) = G2
η (X₁₃) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₇
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = O2
η (X₇) = X₁₃
η (X₈) = Q2
η (X₉) = R2
η (X₁₀) = U2
η (X₁₁) = T2
η (X₁₃) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₈
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₀₉
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₆
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₇ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l2
t₁₁₇
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₇+1 ≤ X₃ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₈
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l6
t₁₂₆
η (X₁₀) = F2
η (X₁₁) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l4->l1
t₁₂₇
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₉
η (X₀) = 1+X₀
η (X₂) = X₆
η (X₆) = A2
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
64⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₆
η (X₀) = 2
η (X₁) = E2
η (X₂) = F2
η (X₃) = A2
η (X₆) = G2
η (X₁₃) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₇
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = O2
η (X₇) = X₁₃
η (X₈) = Q2
η (X₉) = R2
η (X₁₀) = U2
η (X₁₁) = T2
η (X₁₃) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₈
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₀₉
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₆
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₇ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l2
t₁₁₇
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₇+1 ≤ X₃ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₈
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l6
t₁₂₆
η (X₁₀) = F2
η (X₁₁) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l4->l1
t₁₂₇
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₉
η (X₀) = 1+X₀
η (X₂) = X₆
η (X₆) = A2
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
64⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₆
η (X₀) = 2
η (X₁) = E2
η (X₂) = F2
η (X₃) = A2
η (X₆) = G2
η (X₁₃) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₇
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = O2
η (X₇) = X₁₃
η (X₈) = Q2
η (X₉) = R2
η (X₁₀) = U2
η (X₁₁) = T2
η (X₁₃) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₈
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₀₉
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₆
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₇ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l2
t₁₁₇
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₇+1 ≤ X₃ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₈
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l6
t₁₂₆
η (X₁₀) = F2
η (X₁₁) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l4->l1
t₁₂₇
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₉
η (X₀) = 1+X₀
η (X₂) = X₆
η (X₆) = A2
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₂₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
64⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₆
η (X₀) = 2
η (X₁) = E2
η (X₂) = F2
η (X₃) = A2
η (X₆) = G2
η (X₁₃) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₇
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = O2
η (X₇) = X₁₃
η (X₈) = Q2
η (X₉) = R2
η (X₁₀) = U2
η (X₁₁) = T2
η (X₁₃) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₈
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₀₉
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₆
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₇ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l2
t₁₁₇
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₇+1 ≤ X₃ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₈
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l6
t₁₂₆
η (X₁₀) = F2
η (X₁₁) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l4->l1
t₁₂₇
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₉
η (X₀) = 1+X₀
η (X₂) = X₆
η (X₆) = A2
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₂₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
64⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₆
η (X₀) = 2
η (X₁) = E2
η (X₂) = F2
η (X₃) = A2
η (X₆) = G2
η (X₁₃) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₇
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = O2
η (X₇) = X₁₃
η (X₈) = Q2
η (X₉) = R2
η (X₁₀) = U2
η (X₁₁) = T2
η (X₁₃) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₈
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₀₉
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₆
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₇ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l2
t₁₁₇
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₇+1 ≤ X₃ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₈
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l6
t₁₂₆
η (X₁₀) = F2
η (X₁₁) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l4->l1
t₁₂₇
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₉
η (X₀) = 1+X₀
η (X₂) = X₆
η (X₆) = A2
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₂₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
64⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₆
η (X₀) = 2
η (X₁) = E2
η (X₂) = F2
η (X₃) = A2
η (X₆) = G2
η (X₁₃) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₇
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = O2
η (X₇) = X₁₃
η (X₈) = Q2
η (X₉) = R2
η (X₁₀) = U2
η (X₁₁) = T2
η (X₁₃) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₈
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₀₉
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₆
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₇ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l2
t₁₁₇
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₇+1 ≤ X₃ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₈
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l6
t₁₂₆
η (X₁₀) = F2
η (X₁₁) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l4->l1
t₁₂₇
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₉
η (X₀) = 1+X₀
η (X₂) = X₆
η (X₆) = A2
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₂₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₁₁, X₄, X₅, X₆, C2, X₈, X₉, X₁₀, X₁₁, X₁₂-1, X₁₃) :|: E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
64⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l4
l4
l0->l4
t₁₀₆
η (X₀) = 2
η (X₁) = E2
η (X₂) = F2
η (X₃) = A2
η (X₆) = G2
η (X₁₃) = C2
τ = 2 ≤ E2
l6
l6
l0->l6
t₁₀₇
η (X₀) = H2
η (X₁) = E2
η (X₂) = G2
η (X₃) = X₁₃
η (X₆) = O2
η (X₇) = X₁₃
η (X₈) = Q2
η (X₉) = R2
η (X₁₀) = U2
η (X₁₁) = T2
η (X₁₃) = A2
τ = L2 ≤ 0 ∧ M2 ≤ 0 ∧ D2 ≤ 0 ∧ N2 ≤ 0
l1
l1
l1->l1
t₁₀₈
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₀₉
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₀
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₁
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = G2+1 ≤ F2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₂
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₃
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ E2+1 ≤ F2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₄
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ F2+1 ≤ C2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l1
t₁₁₅
η (X₃) = X₈
η (X₄) = X₄-1
η (X₅) = 1+X₅
η (X₇) = C2
τ = F2+1 ≤ G2 ∧ F2+1 ≤ E2 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ C2+1 ≤ F2 ∧ 2 ≤ A2 ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₁₆
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃+1 ≤ X₇ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l1->l2
t₁₁₇
η (X₅) = X₁₂+1
η (X₈) = D2
η (X₉) = E2
η (X₁₀) = X₇
η (X₁₁) = X₃
τ = 2 ≤ G2 ∧ 2 ≤ A2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ X₇+1 ≤ X₃ ∧ X₈ ≤ X₉ ∧ X₉ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₀
l2->l2
t₁₁₈
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₁₉
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₀
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₁
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ E2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₂
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₃
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ C2+1 ≤ X₁₁ ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₄
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ E2+1 ≤ C2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l2
t₁₂₅
η (X₃) = X₁₁
η (X₇) = C2
η (X₁₂) = X₁₂-1
τ = E2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ A2 ∧ X₁₁+1 ≤ C2 ∧ C2+1 ≤ E2 ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l2->l6
t₁₂₆
η (X₁₀) = F2
η (X₁₁) = E2
τ = 2 ≤ A2 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀
l4->l1
t₁₂₇
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₃+1 ≤ X₂ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l1
t₁₂₈
η (X₀) = X₄
η (X₁) = C2
η (X₂) = E2
η (X₅) = 0
η (X₆) = J2
η (X₇) = X₂
η (X₈) = X₃
η (X₉) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ X₂+1 ≤ X₃ ∧ 2 ≤ A2 ∧ A2 ≤ B2 ∧ A2 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l4->l4
t₁₂₉
η (X₀) = 1+X₀
η (X₂) = X₆
η (X₆) = A2
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₁₀₆: 1 {O(1)}
t₁₀₇: 1 {O(1)}
t₁₀₈: 64⋅X₄+96 {O(n)}
t₁₀₉: 64⋅X₄+96 {O(n)}
t₁₁₀: 64⋅X₄+96 {O(n)}
t₁₁₁: 64⋅X₄+96 {O(n)}
t₁₁₂: 64⋅X₄+96 {O(n)}
t₁₁₃: 64⋅X₄+96 {O(n)}
t₁₁₄: 64⋅X₄+96 {O(n)}
t₁₁₅: 64⋅X₄+96 {O(n)}
t₁₁₆: 1 {O(1)}
t₁₁₇: 1 {O(1)}
t₁₁₈: 64⋅X₁₂+2 {O(n)}
t₁₁₉: 64⋅X₁₂+2 {O(n)}
t₁₂₀: 64⋅X₁₂+2 {O(n)}
t₁₂₁: 64⋅X₁₂+2 {O(n)}
t₁₂₂: 64⋅X₁₂+2 {O(n)}
t₁₂₃: 64⋅X₁₂+2 {O(n)}
t₁₂₄: 64⋅X₁₂+2 {O(n)}
t₁₂₅: 64⋅X₁₂+2 {O(n)}
t₁₂₆: 1 {O(1)}
t₁₂₇: 1 {O(1)}
t₁₂₈: 1 {O(1)}
t₁₂₉: inf {Infinity}
Costbounds
Overall costbound: inf {Infinity}
t₁₀₆: 1 {O(1)}
t₁₀₇: 1 {O(1)}
t₁₀₈: 64⋅X₄+96 {O(n)}
t₁₀₉: 64⋅X₄+96 {O(n)}
t₁₁₀: 64⋅X₄+96 {O(n)}
t₁₁₁: 64⋅X₄+96 {O(n)}
t₁₁₂: 64⋅X₄+96 {O(n)}
t₁₁₃: 64⋅X₄+96 {O(n)}
t₁₁₄: 64⋅X₄+96 {O(n)}
t₁₁₅: 64⋅X₄+96 {O(n)}
t₁₁₆: 1 {O(1)}
t₁₁₇: 1 {O(1)}
t₁₁₈: 64⋅X₁₂+2 {O(n)}
t₁₁₉: 64⋅X₁₂+2 {O(n)}
t₁₂₀: 64⋅X₁₂+2 {O(n)}
t₁₂₁: 64⋅X₁₂+2 {O(n)}
t₁₂₂: 64⋅X₁₂+2 {O(n)}
t₁₂₃: 64⋅X₁₂+2 {O(n)}
t₁₂₄: 64⋅X₁₂+2 {O(n)}
t₁₂₅: 64⋅X₁₂+2 {O(n)}
t₁₂₆: 1 {O(1)}
t₁₂₇: 1 {O(1)}
t₁₂₈: 1 {O(1)}
t₁₂₉: inf {Infinity}
Sizebounds
t₁₀₆, X₀: 2 {O(1)}
t₁₀₆, X₄: X₄ {O(n)}
t₁₀₆, X₅: X₅ {O(n)}
t₁₀₆, X₇: X₇ {O(n)}
t₁₀₆, X₈: X₈ {O(n)}
t₁₀₆, X₉: X₉ {O(n)}
t₁₀₆, X₁₀: X₁₀ {O(n)}
t₁₀₆, X₁₁: X₁₁ {O(n)}
t₁₀₆, X₁₂: X₁₂ {O(n)}
t₁₀₇, X₃: X₁₃ {O(n)}
t₁₀₇, X₄: X₄ {O(n)}
t₁₀₇, X₅: X₅ {O(n)}
t₁₀₇, X₇: X₁₃ {O(n)}
t₁₀₇, X₁₂: X₁₂ {O(n)}
t₁₀₈, X₀: 4⋅X₄ {O(n)}
t₁₀₈, X₄: 4⋅X₄+1 {O(n)}
t₁₀₈, X₅: 512⋅X₄+768 {O(n)}
t₁₀₈, X₁₀: 4⋅X₁₀ {O(n)}
t₁₀₈, X₁₁: 4⋅X₁₁ {O(n)}
t₁₀₈, X₁₂: 4⋅X₁₂ {O(n)}
t₁₀₉, X₀: 4⋅X₄ {O(n)}
t₁₀₉, X₄: 4⋅X₄+1 {O(n)}
t₁₀₉, X₅: 512⋅X₄+768 {O(n)}
t₁₀₉, X₁₀: 4⋅X₁₀ {O(n)}
t₁₀₉, X₁₁: 4⋅X₁₁ {O(n)}
t₁₀₉, X₁₂: 4⋅X₁₂ {O(n)}
t₁₁₀, X₀: 4⋅X₄ {O(n)}
t₁₁₀, X₄: 4⋅X₄+1 {O(n)}
t₁₁₀, X₅: 512⋅X₄+768 {O(n)}
t₁₁₀, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₀, X₁₁: 4⋅X₁₁ {O(n)}
t₁₁₀, X₁₂: 4⋅X₁₂ {O(n)}
t₁₁₁, X₀: 4⋅X₄ {O(n)}
t₁₁₁, X₄: 4⋅X₄+1 {O(n)}
t₁₁₁, X₅: 512⋅X₄+768 {O(n)}
t₁₁₁, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₁, X₁₁: 4⋅X₁₁ {O(n)}
t₁₁₁, X₁₂: 4⋅X₁₂ {O(n)}
t₁₁₂, X₀: 4⋅X₄ {O(n)}
t₁₁₂, X₄: 4⋅X₄+1 {O(n)}
t₁₁₂, X₅: 512⋅X₄+768 {O(n)}
t₁₁₂, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₂, X₁₁: 4⋅X₁₁ {O(n)}
t₁₁₂, X₁₂: 4⋅X₁₂ {O(n)}
t₁₁₃, X₀: 4⋅X₄ {O(n)}
t₁₁₃, X₄: 4⋅X₄+1 {O(n)}
t₁₁₃, X₅: 512⋅X₄+768 {O(n)}
t₁₁₃, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₃, X₁₁: 4⋅X₁₁ {O(n)}
t₁₁₃, X₁₂: 4⋅X₁₂ {O(n)}
t₁₁₄, X₀: 4⋅X₄ {O(n)}
t₁₁₄, X₄: 4⋅X₄+1 {O(n)}
t₁₁₄, X₅: 512⋅X₄+768 {O(n)}
t₁₁₄, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₄, X₁₁: 4⋅X₁₁ {O(n)}
t₁₁₄, X₁₂: 4⋅X₁₂ {O(n)}
t₁₁₅, X₀: 4⋅X₄ {O(n)}
t₁₁₅, X₄: 4⋅X₄+1 {O(n)}
t₁₁₅, X₅: 512⋅X₄+768 {O(n)}
t₁₁₅, X₁₀: 4⋅X₁₀ {O(n)}
t₁₁₅, X₁₁: 4⋅X₁₁ {O(n)}
t₁₁₅, X₁₂: 4⋅X₁₂ {O(n)}
t₁₁₆, X₀: 32⋅X₄ {O(n)}
t₁₁₆, X₄: 32⋅X₄+8 {O(n)}
t₁₁₆, X₅: 32⋅X₁₂+8 {O(n)}
t₁₁₆, X₁₂: 32⋅X₁₂ {O(n)}
t₁₁₇, X₀: 32⋅X₄ {O(n)}
t₁₁₇, X₄: 32⋅X₄+8 {O(n)}
t₁₁₇, X₅: 32⋅X₁₂+8 {O(n)}
t₁₁₇, X₁₂: 32⋅X₁₂ {O(n)}
t₁₁₈, X₀: 64⋅X₄ {O(n)}
t₁₁₈, X₄: 64⋅X₄+16 {O(n)}
t₁₁₈, X₅: 64⋅X₁₂+16 {O(n)}
t₁₁₈, X₁₂: 64⋅X₁₂+1 {O(n)}
t₁₁₉, X₀: 64⋅X₄ {O(n)}
t₁₁₉, X₄: 64⋅X₄+16 {O(n)}
t₁₁₉, X₅: 64⋅X₁₂+16 {O(n)}
t₁₁₉, X₁₂: 64⋅X₁₂+1 {O(n)}
t₁₂₀, X₀: 64⋅X₄ {O(n)}
t₁₂₀, X₄: 64⋅X₄+16 {O(n)}
t₁₂₀, X₅: 64⋅X₁₂+16 {O(n)}
t₁₂₀, X₁₂: 64⋅X₁₂+1 {O(n)}
t₁₂₁, X₀: 64⋅X₄ {O(n)}
t₁₂₁, X₄: 64⋅X₄+16 {O(n)}
t₁₂₁, X₅: 64⋅X₁₂+16 {O(n)}
t₁₂₁, X₁₂: 64⋅X₁₂+1 {O(n)}
t₁₂₂, X₀: 64⋅X₄ {O(n)}
t₁₂₂, X₄: 64⋅X₄+16 {O(n)}
t₁₂₂, X₅: 64⋅X₁₂+16 {O(n)}
t₁₂₂, X₁₂: 64⋅X₁₂+1 {O(n)}
t₁₂₃, X₀: 64⋅X₄ {O(n)}
t₁₂₃, X₄: 64⋅X₄+16 {O(n)}
t₁₂₃, X₅: 64⋅X₁₂+16 {O(n)}
t₁₂₃, X₁₂: 64⋅X₁₂+1 {O(n)}
t₁₂₄, X₀: 64⋅X₄ {O(n)}
t₁₂₄, X₄: 64⋅X₄+16 {O(n)}
t₁₂₄, X₅: 64⋅X₁₂+16 {O(n)}
t₁₂₄, X₁₂: 64⋅X₁₂+1 {O(n)}
t₁₂₅, X₀: 64⋅X₄ {O(n)}
t₁₂₅, X₄: 64⋅X₄+16 {O(n)}
t₁₂₅, X₅: 64⋅X₁₂+16 {O(n)}
t₁₂₅, X₁₂: 64⋅X₁₂+1 {O(n)}
t₁₂₆, X₀: 384⋅X₄ {O(n)}
t₁₂₆, X₄: 384⋅X₄+96 {O(n)}
t₁₂₆, X₅: 384⋅X₁₂+96 {O(n)}
t₁₂₆, X₁₂: 384⋅X₁₂+6 {O(n)}
t₁₂₇, X₀: 2⋅X₄ {O(n)}
t₁₂₇, X₄: 2⋅X₄ {O(n)}
t₁₂₇, X₅: 0 {O(1)}
t₁₂₇, X₁₀: 2⋅X₁₀ {O(n)}
t₁₂₇, X₁₁: 2⋅X₁₁ {O(n)}
t₁₂₇, X₁₂: 2⋅X₁₂ {O(n)}
t₁₂₈, X₀: 2⋅X₄ {O(n)}
t₁₂₈, X₄: 2⋅X₄ {O(n)}
t₁₂₈, X₅: 0 {O(1)}
t₁₂₈, X₁₀: 2⋅X₁₀ {O(n)}
t₁₂₈, X₁₁: 2⋅X₁₁ {O(n)}
t₁₂₈, X₁₂: 2⋅X₁₂ {O(n)}
t₁₂₉, X₄: X₄ {O(n)}
t₁₂₉, X₅: X₅ {O(n)}
t₁₂₉, X₇: X₇ {O(n)}
t₁₂₉, X₈: X₈ {O(n)}
t₁₂₉, X₉: X₉ {O(n)}
t₁₂₉, X₁₀: X₁₀ {O(n)}
t₁₂₉, X₁₁: X₁₁ {O(n)}
t₁₂₉, X₁₂: X₁₂ {O(n)}