Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l6(X₀, X₁, X₂)
t₄: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₂ ≤ X₁
t₅: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁+1 ≤ X₂
t₆: l2(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1)
t₇: l3(X₀, X₁, X₂) → l4(X₀+1, X₁, X₂)
t₂: l4(X₀, X₁, X₂) → l1(X₀, X₁, X₀) :|: X₀ ≤ X₁
t₃: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁+1 ≤ X₀
t₈: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂)
t₁: l6(X₀, X₁, X₂) → l4(1, X₁, X₂)

Preprocessing

Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l7

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l5

Found invariant X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₀ for location l4

Found invariant X₂ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l6(X₀, X₁, X₂)
t₄: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₂ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆: l2(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1) :|: X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇: l3(X₀, X₁, X₂) → l4(X₀+1, X₁, X₂) :|: X₂ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₂: l4(X₀, X₁, X₂) → l1(X₀, X₁, X₀) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀
t₃: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁+1 ≤ X₀ ∧ 1 ≤ X₀
t₈: l5(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: 1+X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁: l6(X₀, X₁, X₂) → l4(1, X₁, X₂)

MPRF for transition t₂: l4(X₀, X₁, X₂) → l1(X₀, X₁, X₀) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁+2 {O(n)}

MPRF for transition t₅: l1(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁+2 {O(n)}

MPRF for transition t₇: l3(X₀, X₁, X₂) → l4(X₀+1, X₁, X₂) :|: X₂ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁+1 {O(n)}

MPRF for transition t₄: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₂ ≤ X₁ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁⋅X₁+2⋅X₁ {O(n^2)}

MPRF for transition t₆: l2(X₀, X₁, X₂) → l1(X₀, X₁, X₂+1) :|: X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁⋅X₁+2⋅X₁ {O(n^2)}

Chain transitions t₂: l4→l1 and t₅: l1→l3 to t₅₅: l4→l3

Chain transitions t₆: l2→l1 and t₅: l1→l3 to t₅₆: l2→l3

Chain transitions t₆: l2→l1 and t₄: l1→l2 to t₅₇: l2→l2

Chain transitions t₂: l4→l1 and t₄: l1→l2 to t₅₈: l4→l2

Chain transitions t₅₅: l4→l3 and t₇: l3→l4 to t₅₉: l4→l4

Chain transitions t₅₆: l2→l3 and t₇: l3→l4 to t₆₀: l2→l4

Analysing control-flow refined program

Cut unsatisfiable transition t₅₅: l4→l3

Cut unsatisfiable transition t₅₉: l4→l4

Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l7

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l5

Found invariant X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₀ for location l4

Found invariant X₂ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3

MPRF for transition t₅₈: l4(X₀, X₁, X₂) -{2}> l2(X₀, X₁, X₀) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1+X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁+X₀ ∧ 2 ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁+2 {O(n)}

MPRF for transition t₆₀: l2(X₀, X₁, X₂) -{3}> l4(X₀+1, X₁, 1+X₂) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ X₂+1 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁+2 {O(n)}

MPRF for transition t₅₇: l2(X₀, X₁, X₂) -{2}> l2(X₀, X₁, 1+X₂) :|: 1+X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ X₂+1 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁⋅X₁+3⋅X₁ {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₅: l1→l3

Found invariant X₂ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___2

Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___1

Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___3

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l7

Found invariant 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l5

Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₀ for location l4

Found invariant X₂ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3

knowledge_propagation leads to new time bound X₁+2 {O(n)} for transition t₁₁₆: l1(X₀, X₁, X₂) → n_l2___3(X₀, X₁, X₂) :|: X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₁+2 {O(n)} for transition t₁₁₈: n_l2___3(X₀, X₁, X₂) → n_l1___2(X₀, X₁, X₂+1) :|: X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

MPRF for transition t₁₁₅: n_l1___2(X₀, X₁, X₂) → n_l2___1(X₀, X₁, X₂) :|: 1+X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₁⋅X₁+13⋅X₁+12 {O(n^2)}

MPRF for transition t₁₁₇: n_l2___1(X₀, X₁, X₂) → n_l1___2(X₀, X₁, X₂+1) :|: 1+X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₁⋅X₁+12⋅X₁+10 {O(n^2)}

MPRF for transition t₁₂₂: n_l1___2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁+2 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:4⋅X₁⋅X₁+8⋅X₁+9 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁+2 {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₁⋅X₁+2⋅X₁ {O(n^2)}
t₅: X₁+2 {O(n)}
t₆: 2⋅X₁⋅X₁+2⋅X₁ {O(n^2)}
t₇: 2⋅X₁+1 {O(n)}
t₈: 1 {O(1)}

Costbounds

Overall costbound: 4⋅X₁⋅X₁+8⋅X₁+9 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁+2 {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₁⋅X₁+2⋅X₁ {O(n^2)}
t₅: X₁+2 {O(n)}
t₆: 2⋅X₁⋅X₁+2⋅X₁ {O(n^2)}
t₇: 2⋅X₁+1 {O(n)}
t₈: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₁, X₀: 1 {O(1)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₂, X₀: 2⋅X₁+2 {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: 2⋅X₁+3 {O(n)}
t₃, X₀: 2⋅X₁+3 {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: 2⋅X₁⋅X₁+4⋅X₁+X₂+3 {O(n^2)}
t₄, X₀: 2⋅X₁+2 {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: 2⋅X₁⋅X₁+4⋅X₁+3 {O(n^2)}
t₅, X₀: 2⋅X₁+2 {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: 2⋅X₁⋅X₁+4⋅X₁+3 {O(n^2)}
t₆, X₀: 2⋅X₁+2 {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: 2⋅X₁⋅X₁+4⋅X₁+3 {O(n^2)}
t₇, X₀: 2⋅X₁+2 {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: 2⋅X₁⋅X₁+4⋅X₁+3 {O(n^2)}
t₈, X₀: 2⋅X₁+3 {O(n)}
t₈, X₁: 2⋅X₁ {O(n)}
t₈, X₂: 2⋅X₁⋅X₁+4⋅X₁+X₂+3 {O(n^2)}