Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁
Temp_Vars: G1, H1, I1, J1, K1, L1, M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, X1
Locations: l0, l1, l2, l3, l4
Transitions:
t₁₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l1(J1, 2, K1, L1, K1, X₅, X₆, X₇, X₈, X₉, X₁₀, G1, X₁₂, G1, J1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, H1, I1, G1, X₂₆, K1, M1, X₂₉, X₃₀, X₃₁) :|: 2 ≤ J1
t₁₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(J1, M1, L1, T1, S1, X₅, X₆, X₇, X₈, W1, X₁₀, X₂₃, V1, X₂₃, I1, X₂₃, U1, X1, Q1, X₁₉, X₂₀, X₂₁, X₂₂, G1, H1, K1, N1, R1, X₂₈, X₂₉, X₃₀, X₃₁) :|: O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
t₁₈: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(J1, M1, L1, T1, S1, X₅, X₆, X₇, X₈, X1, X₁₀, G1, W1, X₃, 1, U1, V1, O1, Q1, X₁₉, X₂₀, X₂₁, X₂₂, H1, I1, K1, N1, R1, X₂₈, X₂₉, X₃₀, X₃₁) :|: 1 ≤ 0 ∧ U1+1 ≤ G1
t₁₉: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(J1, M1, L1, T1, S1, X₅, X₆, X₇, X₈, X1, X₁₀, G1, W1, X₃, 1, U1, V1, O1, Q1, X₁₉, X₂₀, X₂₁, X₂₂, H1, I1, K1, N1, R1, X₂₈, X₂₉, X₃₀, X₃₁) :|: 1 ≤ 0 ∧ G1+1 ≤ U1
t₂₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(J1, M1, L1, T1, S1, X₅, X₆, X₇, X₈, X1, X₁₀, G1, W1, X₃, 1, U1, V1, O1, Q1, X₁₉, X₂₀, X₂₁, X₂₂, H1, I1, K1, N1, R1, X₂₈, X₂₉, X₃₀, X₃₁) :|: 1 ≤ 0 ∧ U1+1 ≤ G1
t₂₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(J1, M1, L1, T1, S1, X₅, X₆, X₇, X₈, X1, X₁₀, G1, W1, X₃, 1, U1, V1, O1, Q1, X₁₉, X₂₀, X₂₁, X₂₂, H1, I1, K1, N1, R1, X₂₈, X₂₉, X₃₀, X₃₁) :|: 1 ≤ 0 ∧ G1+1 ≤ U1
t₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l1(X₀, 1+X₁, X₃, G1, X₃, H1, X₁, X₈, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₁+1 ≤ X₀ ∧ 0 ≤ X₁
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(H1, K1, J1, R1, Q1, X₅, X₆, X₇, X₈, X₂, X₁₉, X₁₃, X₁₃, X₁₃, G1, X₂, X₂, X₂, M1, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, I1, L1, N1, X₂₈, X₁₉+1, X₈, S1) :|: X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₃+1 ≤ X₂ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂+1 ≤ X₁₃
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(H1, K1, J1, R1, Q1, X₅, X₆, X₇, X₈, X₂, X₁₉, X₁₃, X₁₃, X₁₃, G1, X₂, X₂, X₂, M1, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, I1, L1, N1, X₂₈, X₁₉+1, X₈, S1) :|: X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₃+1 ≤ X₂ ∧ 0 ≤ K1 ∧ 2 ≤ G1
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(H1, K1, J1, R1, Q1, X₅, X₆, X₇, X₈, X₂, X₁₉, X₁₃, X₁₃, X₁₃, G1, X₂, X₂, X₂, M1, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, I1, L1, N1, X₂₈, X₁₉+1, X₈, S1) :|: X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₂+1 ≤ X₁₃ ∧ 0 ≤ K1 ∧ 2 ≤ G1
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(H1, K1, J1, R1, Q1, X₅, X₆, X₇, X₈, X₂, X₁₉, X₁₃, X₁₃, X₁₃, G1, X₂, X₂, X₂, M1, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, I1, L1, N1, X₂₈, X₁₉+1, X₈, S1) :|: X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₂+1 ≤ X₁₃ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₁₃+1 ≤ X₂
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₂, G1, H1, H1, X₉, X₁₈, X₁₉-1, I1, X₈, X₁₉-1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₉+1 ≤ J1 ∧ 0 ≤ X₁₉ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₂, G1, H1, H1, X₉, X₁₈, X₁₉-1, I1, X₈, X₁₉-1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₉+1 ≤ J1 ∧ 0 ≤ X₁₉ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₂, G1, H1, H1, X₉, X₁₈, X₁₉-1, I1, X₈, X₁₉-1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: J1+1 ≤ X₉ ∧ 0 ≤ X₁₉ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₂, G1, H1, H1, X₉, X₁₈, X₁₉-1, I1, X₈, X₁₉-1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: J1+1 ≤ X₉ ∧ 0 ≤ X₁₉ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, K1, X₁₀, X₁₁, J1, X₁₃, G1, X₁₅, I1, L1, H1, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 2 ≤ G1 ∧ 0 ≤ X₁₉ ∧ X₁₂ ≤ X₉ ∧ X₉ ≤ X₁₂
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₂, G1, H1, H1, X₉, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₉+1 ≤ I1 ∧ 0 ≤ X₁₀ ∧ I1+1 ≤ H1 ∧ 2 ≤ G1
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₂, G1, H1, H1, X₉, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: X₉+1 ≤ I1 ∧ 0 ≤ X₁₀ ∧ H1+1 ≤ I1 ∧ 2 ≤ G1
t₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₂, G1, H1, H1, X₉, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: I1+1 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ I1+1 ≤ H1 ∧ 2 ≤ G1
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₂, G1, H1, H1, X₉, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: I1+1 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ H1+1 ≤ I1 ∧ 2 ≤ G1
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, M1, X₁₀, G1, L1, X₁₃, H1, J1, K1, N1, I1, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 0 ≤ X₁₀ ∧ J1+1 ≤ G1 ∧ 2 ≤ H1 ∧ X₁₂ ≤ X₉ ∧ X₉ ≤ X₁₂
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, M1, X₁₀, G1, L1, X₁₃, H1, J1, K1, N1, I1, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 0 ≤ X₁₀ ∧ G1+1 ≤ J1 ∧ 2 ≤ H1 ∧ X₁₂ ≤ X₉ ∧ X₉ ≤ X₁₂
Show Graph
G
l0
l0
l1
l1
l0->l1
t₁₃
η (X₀) = J1
η (X₁) = 2
η (X₂) = K1
η (X₃) = L1
η (X₄) = K1
η (X₁₁) = G1
η (X₁₃) = G1
η (X₁₄) = J1
η (X₂₃) = H1
η (X₂₄) = I1
η (X₂₅) = G1
η (X₂₇) = K1
η (X₂₈) = M1
τ = 2 ≤ J1
l3
l3
l0->l3
t₁₂
η (X₀) = J1
η (X₁) = M1
η (X₂) = L1
η (X₃) = T1
η (X₄) = S1
η (X₉) = W1
η (X₁₁) = X₂₃
η (X₁₂) = V1
η (X₁₃) = X₂₃
η (X₁₄) = I1
η (X₁₅) = X₂₃
η (X₁₆) = U1
η (X₁₇) = X1
η (X₁₈) = Q1
η (X₂₃) = G1
η (X₂₄) = H1
η (X₂₅) = K1
η (X₂₆) = N1
η (X₂₇) = R1
τ = O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
l0->l3
t₁₈
η (X₀) = J1
η (X₁) = M1
η (X₂) = L1
η (X₃) = T1
η (X₄) = S1
η (X₉) = X1
η (X₁₁) = G1
η (X₁₂) = W1
η (X₁₃) = X₃
η (X₁₄) = 1
η (X₁₅) = U1
η (X₁₆) = V1
η (X₁₇) = O1
η (X₁₈) = Q1
η (X₂₃) = H1
η (X₂₄) = I1
η (X₂₅) = K1
η (X₂₆) = N1
η (X₂₇) = R1
τ = 1 ≤ 0 ∧ U1+1 ≤ G1
l0->l3
t₁₉
η (X₀) = J1
η (X₁) = M1
η (X₂) = L1
η (X₃) = T1
η (X₄) = S1
η (X₉) = X1
η (X₁₁) = G1
η (X₁₂) = W1
η (X₁₃) = X₃
η (X₁₄) = 1
η (X₁₅) = U1
η (X₁₆) = V1
η (X₁₇) = O1
η (X₁₈) = Q1
η (X₂₃) = H1
η (X₂₄) = I1
η (X₂₅) = K1
η (X₂₆) = N1
η (X₂₇) = R1
τ = 1 ≤ 0 ∧ G1+1 ≤ U1
l0->l3
t₂₀
η (X₀) = J1
η (X₁) = M1
η (X₂) = L1
η (X₃) = T1
η (X₄) = S1
η (X₉) = X1
η (X₁₁) = G1
η (X₁₂) = W1
η (X₁₃) = X₃
η (X₁₄) = 1
η (X₁₅) = U1
η (X₁₆) = V1
η (X₁₇) = O1
η (X₁₈) = Q1
η (X₂₃) = H1
η (X₂₄) = I1
η (X₂₅) = K1
η (X₂₆) = N1
η (X₂₇) = R1
τ = 1 ≤ 0 ∧ U1+1 ≤ G1
l0->l3
t₂₁
η (X₀) = J1
η (X₁) = M1
η (X₂) = L1
η (X₃) = T1
η (X₄) = S1
η (X₉) = X1
η (X₁₁) = G1
η (X₁₂) = W1
η (X₁₃) = X₃
η (X₁₄) = 1
η (X₁₅) = U1
η (X₁₆) = V1
η (X₁₇) = O1
η (X₁₈) = Q1
η (X₂₃) = H1
η (X₂₄) = I1
η (X₂₅) = K1
η (X₂₆) = N1
η (X₂₇) = R1
τ = 1 ≤ 0 ∧ G1+1 ≤ U1
l1->l1
t₀
η (X₁) = 1+X₁
η (X₂) = X₃
η (X₃) = G1
η (X₄) = X₃
η (X₅) = H1
η (X₆) = X₁
η (X₇) = X₈
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁
l2
l2
l1->l2
t₁₄
η (X₀) = H1
η (X₁) = K1
η (X₂) = J1
η (X₃) = R1
η (X₄) = Q1
η (X₉) = X₂
η (X₁₀) = X₁₉
η (X₁₁) = X₁₃
η (X₁₂) = X₁₃
η (X₁₄) = G1
η (X₁₅) = X₂
η (X₁₆) = X₂
η (X₁₇) = X₂
η (X₁₈) = M1
η (X₂₅) = I1
η (X₂₆) = L1
η (X₂₇) = N1
η (X₂₉) = X₁₉+1
η (X₃₀) = X₈
η (X₃₁) = S1
τ = X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₃+1 ≤ X₂ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₂+1 ≤ X₁₃
l1->l2
t₁₅
η (X₀) = H1
η (X₁) = K1
η (X₂) = J1
η (X₃) = R1
η (X₄) = Q1
η (X₉) = X₂
η (X₁₀) = X₁₉
η (X₁₁) = X₁₃
η (X₁₂) = X₁₃
η (X₁₄) = G1
η (X₁₅) = X₂
η (X₁₆) = X₂
η (X₁₇) = X₂
η (X₁₈) = M1
η (X₂₅) = I1
η (X₂₆) = L1
η (X₂₇) = N1
η (X₂₉) = X₁₉+1
η (X₃₀) = X₈
η (X₃₁) = S1
τ = X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₁₃+1 ≤ X₂ ∧ 0 ≤ K1 ∧ 2 ≤ G1
l1->l2
t₁₆
η (X₀) = H1
η (X₁) = K1
η (X₂) = J1
η (X₃) = R1
η (X₄) = Q1
η (X₉) = X₂
η (X₁₀) = X₁₉
η (X₁₁) = X₁₃
η (X₁₂) = X₁₃
η (X₁₄) = G1
η (X₁₅) = X₂
η (X₁₆) = X₂
η (X₁₇) = X₂
η (X₁₈) = M1
η (X₂₅) = I1
η (X₂₆) = L1
η (X₂₇) = N1
η (X₂₉) = X₁₉+1
η (X₃₀) = X₈
η (X₃₁) = S1
τ = X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₂+1 ≤ X₁₃ ∧ 0 ≤ K1 ∧ 2 ≤ G1
l1->l2
t₁₇
η (X₀) = H1
η (X₁) = K1
η (X₂) = J1
η (X₃) = R1
η (X₄) = Q1
η (X₉) = X₂
η (X₁₀) = X₁₉
η (X₁₁) = X₁₃
η (X₁₂) = X₁₃
η (X₁₄) = G1
η (X₁₅) = X₂
η (X₁₆) = X₂
η (X₁₇) = X₂
η (X₁₈) = M1
η (X₂₅) = I1
η (X₂₆) = L1
η (X₂₇) = N1
η (X₂₉) = X₁₉+1
η (X₃₀) = X₈
η (X₃₁) = S1
τ = X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₂+1 ≤ X₁₃ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₁₃+1 ≤ X₂
l2->l2
t₇
η (X₁₁) = X₁₂
η (X₁₃) = X₁₂
η (X₁₄) = G1
η (X₁₅) = H1
η (X₁₆) = H1
η (X₁₇) = X₉
η (X₁₉) = X₁₉-1
η (X₂₀) = I1
η (X₂₁) = X₈
η (X₂₂) = X₁₉-1
τ = X₉+1 ≤ J1 ∧ 0 ≤ X₁₉ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1
l2->l2
t₈
η (X₁₁) = X₁₂
η (X₁₃) = X₁₂
η (X₁₄) = G1
η (X₁₅) = H1
η (X₁₆) = H1
η (X₁₇) = X₉
η (X₁₉) = X₁₉-1
η (X₂₀) = I1
η (X₂₁) = X₈
η (X₂₂) = X₁₉-1
τ = X₉+1 ≤ J1 ∧ 0 ≤ X₁₉ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1
l2->l2
t₉
η (X₁₁) = X₁₂
η (X₁₃) = X₁₂
η (X₁₄) = G1
η (X₁₅) = H1
η (X₁₆) = H1
η (X₁₇) = X₉
η (X₁₉) = X₁₉-1
η (X₂₀) = I1
η (X₂₁) = X₈
η (X₂₂) = X₁₉-1
τ = J1+1 ≤ X₉ ∧ 0 ≤ X₁₉ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1
l2->l2
t₁₀
η (X₁₁) = X₁₂
η (X₁₃) = X₁₂
η (X₁₄) = G1
η (X₁₅) = H1
η (X₁₆) = H1
η (X₁₇) = X₉
η (X₁₉) = X₁₉-1
η (X₂₀) = I1
η (X₂₁) = X₈
η (X₂₂) = X₁₉-1
τ = J1+1 ≤ X₉ ∧ 0 ≤ X₁₉ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1
l2->l3
t₁₁
η (X₉) = K1
η (X₁₂) = J1
η (X₁₄) = G1
η (X₁₆) = I1
η (X₁₇) = L1
η (X₁₈) = H1
τ = 2 ≤ G1 ∧ 0 ≤ X₁₉ ∧ X₁₂ ≤ X₉ ∧ X₉ ≤ X₁₂
l4
l4
l4->l2
t₁
η (X₁₁) = X₁₂
η (X₁₃) = X₁₂
η (X₁₄) = G1
η (X₁₅) = H1
η (X₁₆) = H1
η (X₁₇) = X₉
τ = X₉+1 ≤ I1 ∧ 0 ≤ X₁₀ ∧ I1+1 ≤ H1 ∧ 2 ≤ G1
l4->l2
t₂
η (X₁₁) = X₁₂
η (X₁₃) = X₁₂
η (X₁₄) = G1
η (X₁₅) = H1
η (X₁₆) = H1
η (X₁₇) = X₉
τ = X₉+1 ≤ I1 ∧ 0 ≤ X₁₀ ∧ H1+1 ≤ I1 ∧ 2 ≤ G1
l4->l2
t₃
η (X₁₁) = X₁₂
η (X₁₃) = X₁₂
η (X₁₄) = G1
η (X₁₅) = H1
η (X₁₆) = H1
η (X₁₇) = X₉
τ = I1+1 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ I1+1 ≤ H1 ∧ 2 ≤ G1
l4->l2
t₄
η (X₁₁) = X₁₂
η (X₁₃) = X₁₂
η (X₁₄) = G1
η (X₁₅) = H1
η (X₁₆) = H1
η (X₁₇) = X₉
τ = I1+1 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ H1+1 ≤ I1 ∧ 2 ≤ G1
l4->l3
t₅
η (X₉) = M1
η (X₁₁) = G1
η (X₁₂) = L1
η (X₁₄) = H1
η (X₁₅) = J1
η (X₁₆) = K1
η (X₁₇) = N1
η (X₁₈) = I1
τ = 0 ≤ X₁₀ ∧ J1+1 ≤ G1 ∧ 2 ≤ H1 ∧ X₁₂ ≤ X₉ ∧ X₉ ≤ X₁₂
l4->l3
t₆
η (X₉) = M1
η (X₁₁) = G1
η (X₁₂) = L1
η (X₁₄) = H1
η (X₁₅) = J1
η (X₁₆) = K1
η (X₁₇) = N1
η (X₁₈) = I1
τ = 0 ≤ X₁₀ ∧ G1+1 ≤ J1 ∧ 2 ≤ H1 ∧ X₁₂ ≤ X₉ ∧ X₉ ≤ X₁₂
Preprocessing
Cut unreachable locations [l4] from the program graph
Cut unsatisfiable transition t₁₄: l1→l2
Cut unsatisfiable transition t₁₇: l1→l2
Cut unsatisfiable transition t₁₈: l0→l3
Cut unsatisfiable transition t₁₉: l0→l3
Cut unsatisfiable transition t₂₀: l0→l3
Cut unsatisfiable transition t₂₁: l0→l3
Eliminate variables {N1,Q1,S1,X1,X₄,X₅,X₆,X₇,X₈,X₁₀,X₁₁,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₂₀,X₂₁,X₂₂,X₂₄,X₂₅,X₂₆,X₂₇,X₂₈,X₂₉,X₃₀,X₃₁} that do not contribute to the problem
Found invariant X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁ for location l2
Found invariant X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars: G1, H1, I1, J1, K1, L1, M1, O1, P1, R1, T1, U1, V1, W1
Locations: l0, l1, l2, l3
Transitions:
t₃₆: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(J1, 2, K1, L1, X₄, X₅, G1, X₇, H1) :|: 2 ≤ J1
t₃₇: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(J1, M1, L1, T1, W1, V1, X₈, X₇, G1) :|: O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
t₃₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, 1+X₁, X₃, G1, X₄, X₅, X₆, X₇, X₈) :|: X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(H1, K1, J1, R1, X₂, X₆, X₆, X₇, X₈) :|: X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₆+1 ≤ X₂ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(H1, K1, J1, R1, X₂, X₆, X₆, X₇, X₈) :|: X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₂+1 ≤ X₆ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₄₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇-1, X₈) :|: X₄+1 ≤ J1 ∧ 0 ≤ X₇ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
t₄₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇-1, X₈) :|: X₄+1 ≤ J1 ∧ 0 ≤ X₇ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
t₄₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇-1, X₈) :|: J1+1 ≤ X₄ ∧ 0 ≤ X₇ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
t₄₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇-1, X₈) :|: J1+1 ≤ X₄ ∧ 0 ≤ X₇ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
t₄₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, K1, J1, X₆, X₇, X₈) :|: 2 ≤ G1 ∧ 0 ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
Show Graph
G
l0
l0
l1
l1
l0->l1
t₃₆
η (X₀) = J1
η (X₁) = 2
η (X₂) = K1
η (X₃) = L1
η (X₆) = G1
η (X₈) = H1
τ = 2 ≤ J1
l3
l3
l0->l3
t₃₇
η (X₀) = J1
η (X₁) = M1
η (X₂) = L1
η (X₃) = T1
η (X₄) = W1
η (X₅) = V1
η (X₆) = X₈
η (X₈) = G1
τ = O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
l1->l1
t₃₈
η (X₁) = 1+X₁
η (X₂) = X₃
η (X₃) = G1
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₃₉
η (X₀) = H1
η (X₁) = K1
η (X₂) = J1
η (X₃) = R1
η (X₄) = X₂
η (X₅) = X₆
τ = X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₆+1 ≤ X₂ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l2
t₄₀
η (X₀) = H1
η (X₁) = K1
η (X₂) = J1
η (X₃) = R1
η (X₄) = X₂
η (X₅) = X₆
τ = X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₂+1 ≤ X₆ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l2->l2
t₄₁
η (X₆) = X₅
η (X₇) = X₇-1
τ = X₄+1 ≤ J1 ∧ 0 ≤ X₇ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
l2->l2
t₄₂
η (X₆) = X₅
η (X₇) = X₇-1
τ = X₄+1 ≤ J1 ∧ 0 ≤ X₇ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
l2->l2
t₄₃
η (X₆) = X₅
η (X₇) = X₇-1
τ = J1+1 ≤ X₄ ∧ 0 ≤ X₇ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
l2->l2
t₄₄
η (X₆) = X₅
η (X₇) = X₇-1
τ = J1+1 ≤ X₄ ∧ 0 ≤ X₇ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
l2->l3
t₄₅
η (X₄) = K1
η (X₅) = J1
τ = 2 ≤ G1 ∧ 0 ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
Analysing control-flow refined program
Found invariant X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁ for location l2
Found invariant X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Found invariant X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___1
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
TWN: t₄₁: l2→l2
Show Graph
G
l0
l0
l1
l1
l0->l1
t₃₆
η (X₀) = J1
η (X₁) = 2
η (X₂) = K1
η (X₃) = L1
η (X₆) = G1
η (X₈) = H1
τ = 2 ≤ J1
l3
l3
l0->l3
t₃₇
η (X₀) = J1
η (X₁) = M1
η (X₂) = L1
η (X₃) = T1
η (X₄) = W1
η (X₅) = V1
η (X₆) = X₈
η (X₈) = G1
τ = O1 ≤ 0 ∧ I1 ≤ 0 ∧ P1 ≤ 0
l1->l1
t₃₈
η (X₁) = 1+X₁
η (X₂) = X₃
η (X₃) = G1
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₃₉
η (X₀) = H1
η (X₁) = K1
η (X₂) = J1
η (X₃) = R1
η (X₄) = X₂
η (X₅) = X₆
τ = X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₆+1 ≤ X₂ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l2
t₄₀
η (X₀) = H1
η (X₁) = K1
η (X₂) = J1
η (X₃) = R1
η (X₄) = X₂
η (X₅) = X₆
τ = X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ G1 ≤ T1 ∧ 2 ≤ U1 ∧ U1 ≤ K1 ∧ X₂+1 ≤ X₆ ∧ 0 ≤ K1 ∧ 2 ≤ G1 ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l2->l2
t₄₁
η (X₆) = X₅
η (X₇) = X₇-1
τ = X₄+1 ≤ J1 ∧ 0 ≤ X₇ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
l2->l2
t₄₂
η (X₆) = X₅
η (X₇) = X₇-1
τ = X₄+1 ≤ J1 ∧ 0 ≤ X₇ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
l2->l2
t₄₃
η (X₆) = X₅
η (X₇) = X₇-1
τ = J1+1 ≤ X₄ ∧ 0 ≤ X₇ ∧ J1+1 ≤ H1 ∧ 2 ≤ G1 ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
l2->l2
t₄₄
η (X₆) = X₅
η (X₇) = X₇-1
τ = J1+1 ≤ X₄ ∧ 0 ≤ X₇ ∧ H1+1 ≤ J1 ∧ 2 ≤ G1 ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
l2->l3
t₄₅
η (X₄) = K1
η (X₅) = J1
τ = 2 ≤ G1 ∧ 0 ≤ X₇ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₆ ≤ X₅ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₁
cycle: [t₄₁: l2→l2; t₄₂: l2→l2; t₄₃: l2→l2; t₄₄: l2→l2]
loop: (0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇,(X₇) -> (X₇-1)
order: [X₇]
closed-form:
X₇: X₇ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
Stabilization-Threshold for: 0 ≤ X₇
alphas_abs: X₇
M: 0
N: 1
Bound: 2⋅X₇+2 {O(n)}
loop: (0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇,(X₇) -> (X₇-1)
order: [X₇]
closed-form:
X₇: X₇ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
Stabilization-Threshold for: 0 ≤ X₇
alphas_abs: X₇
M: 0
N: 1
Bound: 2⋅X₇+2 {O(n)}
loop: (0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇,(X₇) -> (X₇-1)
order: [X₇]
closed-form:
X₇: X₇ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
Stabilization-Threshold for: 0 ≤ X₇
alphas_abs: X₇
M: 0
N: 1
Bound: 2⋅X₇+2 {O(n)}
loop: (0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇,(X₇) -> (X₇-1)
order: [X₇]
closed-form:
X₇: X₇ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
Stabilization-Threshold for: 0 ≤ X₇
alphas_abs: X₇
M: 0
N: 1
Bound: 2⋅X₇+2 {O(n)}
loop: (0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇,(X₇) -> (X₇-1)
order: [X₇]
closed-form:
X₇: X₇ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
Stabilization-Threshold for: 0 ≤ X₇
alphas_abs: X₇
M: 0
N: 1
Bound: 2⋅X₇+2 {O(n)}
loop: (0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇,(X₇) -> (X₇-1)
order: [X₇]
closed-form:
X₇: X₇ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
Stabilization-Threshold for: 0 ≤ X₇
alphas_abs: X₇
M: 0
N: 1
Bound: 2⋅X₇+2 {O(n)}
loop: (0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇,(X₇) -> (X₇-1)
order: [X₇]
closed-form:
X₇: X₇ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
Stabilization-Threshold for: 0 ≤ X₇
alphas_abs: X₇
M: 0
N: 1
Bound: 2⋅X₇+2 {O(n)}
loop: (0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇ ∨ 0 ≤ X₇,(X₇) -> (X₇-1)
order: [X₇]
closed-form:
X₇: X₇ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
∨ 1 < 0
∨ 0 < X₇ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₇ ∧ X₇ ≤ 0
Stabilization-Threshold for: 0 ≤ X₇
alphas_abs: X₇
M: 0
N: 1
Bound: 2⋅X₇+2 {O(n)}
TWN - Lifting for t₄₁: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₁: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₁: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₁: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₁: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₁: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₁: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₁: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN: t₄₂: l2→l2
TWN - Lifting for t₄₂: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₂: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₂: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₂: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₂: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₂: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₂: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₂: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN: t₄₃: l2→l2
TWN - Lifting for t₄₃: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₃: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₃: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₃: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₃: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₃: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₃: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₃: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN: t₄₄: l2→l2
TWN - Lifting for t₄₄: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₄: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₄: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₄: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₄: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₄: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₄: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₄₀:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₄₀: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
TWN - Lifting for t₄₄: l2→l2 of 2⋅X₇+4 {O(n)}
relevant size-bounds w.r.t. t₃₉:
X₇: 2⋅X₇ {O(n)}
Runtime-bound of t₃₉: 1 {O(1)}
Results in: 4⋅X₇+4 {O(n)}
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₃₆: 1 {O(1)}
t₃₇: 1 {O(1)}
t₃₈: inf {Infinity}
t₃₉: 1 {O(1)}
t₄₀: 1 {O(1)}
t₄₁: 32⋅X₇+32 {O(n)}
t₄₂: 32⋅X₇+32 {O(n)}
t₄₃: 32⋅X₇+32 {O(n)}
t₄₄: 32⋅X₇+32 {O(n)}
t₄₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
t₃₆: 1 {O(1)}
t₃₇: 1 {O(1)}
t₃₈: inf {Infinity}
t₃₉: 1 {O(1)}
t₄₀: 1 {O(1)}
t₄₁: 32⋅X₇+32 {O(n)}
t₄₂: 32⋅X₇+32 {O(n)}
t₄₃: 32⋅X₇+32 {O(n)}
t₄₄: 32⋅X₇+32 {O(n)}
t₄₅: 1 {O(1)}
Sizebounds
t₃₆, X₁: 2 {O(1)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₅: X₅ {O(n)}
t₃₆, X₇: X₇ {O(n)}
t₃₇, X₆: X₈ {O(n)}
t₃₇, X₇: X₇ {O(n)}
t₃₈, X₄: X₄ {O(n)}
t₃₈, X₅: X₅ {O(n)}
t₃₈, X₇: X₇ {O(n)}
t₃₉, X₇: 2⋅X₇ {O(n)}
t₄₀, X₇: 2⋅X₇ {O(n)}
t₄₁, X₇: 4⋅X₇+1 {O(n)}
t₄₂, X₇: 4⋅X₇+1 {O(n)}
t₄₃, X₇: 4⋅X₇+1 {O(n)}
t₄₄, X₇: 4⋅X₇+1 {O(n)}
t₄₅, X₇: 16⋅X₇+4 {O(n)}