Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars: D
Locations: l0, l1, l2
Transitions:
t₃: l0(X₀, X₁, X₂) → l1(X₀, X₁, X₂)
t₀: l1(X₀, X₁, X₂) → l1(1+X₀, 1+X₁, X₂) :|: X₀ ≤ 1
t₁: l1(X₀, X₁, X₂) → l1(1+X₀, 1+X₁, X₂) :|: X₁ ≤ 2 ∧ 2 ≤ X₀
t₂: l1(X₀, X₁, X₂) → l2(X₀, X₁, D) :|: 3 ≤ X₁ ∧ 2 ≤ X₀
Eliminate variables {D,X₂} that do not contribute to the problem
Found invariant 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l2
Start: l0
Program_Vars: X₀, X₁
Temp_Vars:
Locations: l0, l1, l2
Transitions:
t₁₀: l0(X₀, X₁) → l1(X₀, X₁)
t₁₁: l1(X₀, X₁) → l1(1+X₀, 1+X₁) :|: X₀ ≤ 1
t₁₂: l1(X₀, X₁) → l1(1+X₀, 1+X₁) :|: X₁ ≤ 2 ∧ 2 ≤ X₀
t₁₃: l1(X₀, X₁) → l2(X₀, X₁) :|: 3 ≤ X₁ ∧ 2 ≤ X₀
new bound:
X₀+2 {O(n)}
new bound:
X₁+3 {O(n)}
Overall timebound:X₀+X₁+7 {O(n)}
t₁₀: 1 {O(1)}
t₁₁: X₀+2 {O(n)}
t₁₂: X₁+3 {O(n)}
t₁₃: 1 {O(1)}
Overall costbound: X₀+X₁+7 {O(n)}
t₁₀: 1 {O(1)}
t₁₁: X₀+2 {O(n)}
t₁₂: X₁+3 {O(n)}
t₁₃: 1 {O(1)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₁, X₀: 2⋅X₀+2 {O(n)}
t₁₁, X₁: X₀+X₁+2 {O(n)}
t₁₂, X₀: 3⋅X₀+X₁+5 {O(n)}
t₁₂, X₁: 3⋅X₁+X₀+5 {O(n)}
t₁₃, X₀: 6⋅X₀+X₁+7 {O(n)}
t₁₃, X₁: 2⋅X₀+5⋅X₁+7 {O(n)}