Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁
Temp_Vars: Q1, R1, S1, T1, U1, V1
Locations: l0, l1, l10, l11, l12, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l1(3, 43690, 3, Q1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l1(X₀, X₁, Q1, R1, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: X₄ ≤ 149
t₂₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l2(X₂, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₂, X₂) :|: 150 ≤ X₄
t₁₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, 0, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: X₂₄ ≤ 7
t₁₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃+7, X₂₄, X₂₅, X₂₆+3, X₂₇+3, X₂₈-7, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: 8 ≤ X₂₄
t₁₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄+1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: 4 ≤ X₂₅
t₁₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅+1, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: X₂₅ ≤ 3
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, 0, 0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: X₅ ≤ 49
t₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: 50 ≤ X₅
t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: 50 ≤ X₇
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, Q1, X₇+1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: X₇ ≤ 49
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 0, 0, Q1, 0, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: X₈ ≤ 99
t₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, 98, Q1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, 100, X₄₀, X₄₁) :|: 100 ≤ X₈
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+2, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: 32 ≤ X₁₂
t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, Q1, R1, S1, X₁₂+2, T1, U1, V1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: X₁₂ ≤ 31
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆-1, Q1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: 0 ≤ X₁₆
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l7(X₀, X₁₇, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, 0, Q1, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₁₇, X₃₉, X₄₀, X₄₁) :|: X₁₆+1 ≤ 0
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈+1, Q1, R1, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: X₁₈ ≤ 49
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, 17, 2, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₁, X₃₁, X₁, 1, Q1, X₀, 1, R1, X₃₈, X₃₉, X₄₀, X₄₁) :|: 50 ≤ X₁₈
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂+1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: X₂₂ ≤ X₂₁
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, 1, X₂₄, X₂₅, 0, 13, 8, X₃₀, X₃₀, X₃₀, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: 1+X₂₁ ≤ X₂₂
t₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, 0, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: X₂₃ ≤ 8
t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁) :|: 9 ≤ X₂₃
Show Graph
G
l0
l0
l1
l1
l0->l1
t₀
η (X₀) = 3
η (X₁) = 43690
η (X₂) = 3
η (X₃) = Q1
η (X₄) = 0
l1->l1
t₁
η (X₂) = Q1
η (X₃) = R1
η (X₄) = X₄+1
τ = X₄ ≤ 149
l2
l2
l1->l2
t₂₂
η (X₀) = X₂
η (X₅) = 0
η (X₄₀) = X₂
η (X₄₁) = X₂
τ = 150 ≤ X₄
l10
l10
l12
l12
l10->l12
t₁₀
η (X₂₅) = 0
τ = X₂₄ ≤ 7
l9
l9
l10->l9
t₁₃
η (X₂₃) = X₂₃+7
η (X₂₆) = X₂₆+3
η (X₂₇) = X₂₇+3
η (X₂₈) = X₂₈-7
τ = 8 ≤ X₂₄
l11
l11
l12->l10
t₁₂
η (X₂₄) = X₂₄+1
τ = 4 ≤ X₂₅
l12->l12
t₁₁
η (X₂₅) = X₂₅+1
τ = X₂₅ ≤ 3
l3
l3
l2->l3
t₂
η (X₆) = 0
η (X₇) = 0
τ = X₅ ≤ 49
l4
l4
l2->l4
t₂₁
η (X₈) = 0
τ = 50 ≤ X₅
l3->l2
t₂₀
η (X₅) = X₅+1
τ = 50 ≤ X₇
l3->l3
t₃
η (X₆) = Q1
η (X₇) = X₇+1
τ = X₇ ≤ 49
l5
l5
l4->l5
t₄
η (X₉) = 0
η (X₁₀) = 0
η (X₁₁) = Q1
η (X₁₂) = 0
τ = X₈ ≤ 99
l6
l6
l4->l6
t₁₉
η (X₁₆) = 98
η (X₁₇) = Q1
η (X₃₉) = 100
τ = 100 ≤ X₈
l5->l4
t₁₈
η (X₈) = X₈+2
τ = 32 ≤ X₁₂
l5->l5
t₅
η (X₉) = Q1
η (X₁₀) = R1
η (X₁₁) = S1
η (X₁₂) = X₁₂+2
η (X₁₃) = T1
η (X₁₄) = U1
η (X₁₅) = V1
τ = X₁₂ ≤ 31
l6->l6
t₆
η (X₁₆) = X₁₆-1
η (X₁₇) = Q1
τ = 0 ≤ X₁₆
l7
l7
l6->l7
t₁₇
η (X₁) = X₁₇
η (X₁₈) = 0
η (X₁₉) = Q1
η (X₃₈) = X₁₇
τ = X₁₆+1 ≤ 0
l7->l7
t₇
η (X₁₈) = X₁₈+1
η (X₁₉) = Q1
η (X₂₀) = R1
τ = X₁₈ ≤ 49
l8
l8
l7->l8
t₁₆
η (X₂₁) = 17
η (X₂₂) = 2
η (X₃₀) = X₁
η (X₃₂) = X₁
η (X₃₃) = 1
η (X₃₄) = Q1
η (X₃₅) = X₀
η (X₃₆) = 1
η (X₃₇) = R1
τ = 50 ≤ X₁₈
l8->l8
t₈
η (X₂₂) = X₂₂+1
τ = X₂₂ ≤ X₂₁
l8->l9
t₁₅
η (X₂₃) = 1
η (X₂₆) = 0
η (X₂₇) = 13
η (X₂₈) = 8
η (X₂₉) = X₃₀
η (X₃₁) = X₃₀
τ = 1+X₂₁ ≤ X₂₂
l9->l10
t₉
η (X₂₄) = 0
τ = X₂₃ ≤ 8
l9->l11
t₁₄
τ = 9 ≤ X₂₃
Preprocessing
Eliminate variables {Q1,R1,S1,T1,U1,V1,X₀,X₁,X₂,X₃,X₆,X₉,X₁₀,X₁₁,X₁₃,X₁₄,X₁₅,X₁₇,X₁₉,X₂₀,X₂₆,X₂₇,X₂₈,X₂₉,X₃₀,X₃₁,X₃₂,X₃₃,X₃₄,X₃₅,X₃₆,X₃₇,X₃₈,X₃₉,X₄₀,X₄₁} that do not contribute to the problem
Found invariant 9 ≤ X₉ ∧ 27 ≤ X₈+X₉ ∧ X₈ ≤ 9+X₉ ∧ 26 ≤ X₇+X₉ ∧ X₇ ≤ 8+X₉ ∧ 59 ≤ X₆+X₉ ∧ X₆ ≤ 41+X₉ ∧ 8 ≤ X₅+X₉ ∧ 10+X₅ ≤ X₉ ∧ 109 ≤ X₃+X₉ ∧ 59 ≤ X₁+X₉ ∧ 159 ≤ X₀+X₉ ∧ X₀ ≤ 141+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ for location l11
Found invariant 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ for location l2
Found invariant X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ for location l6
Found invariant 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ for location l12
Found invariant X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ for location l7
Found invariant X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ for location l5
Found invariant X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ for location l8
Found invariant X₀ ≤ 150 ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ for location l10
Found invariant 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ for location l4
Found invariant 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ for location l9
Found invariant X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₅₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
t₅₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, 0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
t₅₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0) :|: X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₅₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+7, X₁₀, X₁₁) :|: 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₅₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₆₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁+1) :|: X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₆₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₆₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, 0, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₆₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₆₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₆₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₆₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, 98, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₆₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃+2, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₆₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄+2, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₆₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₇₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₇₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₇₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 17, 2, X₉, X₁₀, X₁₁) :|: 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₇₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁) :|: X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₇₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₇₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
t₇₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
MPRF for transition t₅₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀ of depth 1:
new bound:
150 {O(1)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
MPRF for transition t₆₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ of depth 1:
new bound:
50 {O(1)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
TWN: t₆₄: l3→l3
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
cycle: [t₆₄: l3→l3]
loop: (X₂ ≤ 49,(X₂) -> (X₂+1)
order: [X₂]
closed-form:
X₂: X₂ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₂ < 49 ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ 49 ∧ 49 ≤ X₂
Stabilization-Threshold for: X₂ ≤ 49
alphas_abs: X₂+49
M: 0
N: 1
Bound: 2⋅X₂+100 {O(n)}
TWN - Lifting for t₆₄: l3→l3 of 2⋅X₂+102 {O(n)}
relevant size-bounds w.r.t. t₆₁:
X₂: 0 {O(1)}
Runtime-bound of t₆₁: 50 {O(1)}
Results in: 5100 {O(1)}
knowledge_propagation leads to new time bound 5100 {O(1)} for transition t₆₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
MPRF for transition t₆₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ of depth 1:
new bound:
100 {O(1)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
TWN: t₆₈: l5→l5
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
cycle: [t₆₈: l5→l5]
loop: (X₄ ≤ 31,(X₄) -> (X₄+2)
order: [X₄]
closed-form:
X₄: X₄ + [[n != 0]] * 2 * n^1
Termination: true
Formula:
2 < 0
∨ X₄ < 31 ∧ 2 ≤ 0 ∧ 0 ≤ 2
∨ 2 ≤ 0 ∧ 0 ≤ 2 ∧ X₄ ≤ 31 ∧ 31 ≤ X₄
Stabilization-Threshold for: X₄ ≤ 31
alphas_abs: X₄+31
M: 0
N: 1
Bound: 2⋅X₄+64 {O(n)}
TWN - Lifting for t₆₈: l5→l5 of 2⋅X₄+66 {O(n)}
relevant size-bounds w.r.t. t₆₅:
X₄: 0 {O(1)}
Runtime-bound of t₆₅: 100 {O(1)}
Results in: 6600 {O(1)}
knowledge_propagation leads to new time bound 6600 {O(1)} for transition t₆₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃+2, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
MPRF for transition t₆₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ of depth 1:
new bound:
99 {O(1)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
MPRF for transition t₇₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ of depth 1:
new bound:
50 {O(1)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
MPRF for transition t₇₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁) :|: X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ of depth 1:
new bound:
21 {O(1)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
MPRF for transition t₇₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ of depth 1:
new bound:
1500 {O(1)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
MPRF for transition t₅₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0) :|: X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ of depth 1:
new bound:
12000 {O(1)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
MPRF for transition t₅₈: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+7, X₁₀, X₁₁) :|: 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ of depth 1:
new bound:
51000 {O(1)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
MPRF for transition t₅₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ of depth 1:
new bound:
12000 {O(1)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
MPRF for transition t₆₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁+1) :|: X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀ of depth 1:
new bound:
X₁₁+252000 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₄
η (X₀) = 0
l1->l1
t₅₅
η (X₀) = X₀+1
τ = X₀ ≤ 149 ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l2
l2
l1->l2
t₅₆
η (X₁) = 0
τ = 150 ≤ X₀ ∧ X₀ ≤ 150 ∧ 0 ≤ X₀
l10
l10
l12
l12
l10->l12
t₅₇
η (X₁₁) = 0
τ = X₁₀ ≤ 7 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9
l9
l10->l9
t₅₈
η (X₉) = X₉+7
τ = 8 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l11
l11
l12->l10
t₅₉
η (X₁₀) = X₁₀+1
τ = 4 ≤ X₁₁ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l12->l12
t₆₀
η (X₁₁) = X₁₁+1
τ = X₁₁ ≤ 3 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 1 ≤ X₁₁+X₉ ∧ X₁₁ ≤ 3+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ X₈ ≤ 18+X₁₁ ∧ X₁₁+X₈ ≤ 22 ∧ X₈ ≤ 18+X₁₀ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 18 ≤ X₁₁+X₈ ∧ 14+X₁₁ ≤ X₈ ∧ 18 ≤ X₁₀+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ X₇ ≤ 17+X₁₁ ∧ X₁₁+X₇ ≤ 21 ∧ X₇ ≤ 17+X₁₀ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 17 ≤ X₁₁+X₇ ∧ 13+X₁₁ ≤ X₇ ∧ 17 ≤ X₁₀+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ 50+X₁₁ ∧ X₁₁+X₆ ≤ 54 ∧ X₆ ≤ 50+X₁₀ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 50 ≤ X₁₁+X₆ ∧ 46+X₁₁ ≤ X₆ ∧ 50 ≤ X₁₀+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁₁ ∧ X₁₁+X₅ ≤ 3 ∧ 1+X₅ ≤ X₁₀ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁₁+X₅ ∧ X₁₁ ≤ 5+X₅ ∧ 0 ≤ 1+X₁₀+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 100 ≤ X₁₁+X₃ ∧ 96+X₁₁ ≤ X₃ ∧ 100 ≤ X₁₀+X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ X₁₁ ≤ 4 ∧ X₁₁ ≤ 4+X₁₀ ∧ 46+X₁₁ ≤ X₁ ∧ 146+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 154 ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 50 ≤ X₁+X₁₁ ∧ 150 ≤ X₀+X₁₁ ∧ X₀ ≤ 150+X₁₁ ∧ 0 ≤ X₁₀ ∧ 50 ≤ X₁+X₁₀ ∧ 150 ≤ X₀+X₁₀ ∧ X₀ ≤ 150+X₁₀ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3
l3
l2->l3
t₆₁
η (X₂) = 0
τ = X₁ ≤ 49 ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l4
l4
l2->l4
t₆₂
η (X₃) = 0
τ = 50 ≤ X₁ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l2
t₆₃
η (X₁) = X₁+1
τ = 50 ≤ X₂ ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l3->l3
t₆₄
η (X₂) = X₂+1
τ = X₂ ≤ 49 ∧ X₂ ≤ 50 ∧ X₂ ≤ 50+X₁ ∧ 100+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 200 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 150 ≤ X₀+X₂ ∧ X₀ ≤ 150+X₂ ∧ 0 ≤ X₁ ∧ 150 ≤ X₀+X₁ ∧ X₀ ≤ 150+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5
l5
l4->l5
t₆₅
η (X₄) = 0
τ = X₃ ≤ 99 ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6
l6
l4->l6
t₆₆
η (X₅) = 98
τ = 100 ≤ X₃ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l4
t₆₇
η (X₃) = X₃+2
τ = 32 ≤ X₄ ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l5->l5
t₆₈
η (X₄) = X₄+2
τ = X₄ ≤ 31 ∧ X₄ ≤ 33 ∧ X₄ ≤ 33+X₃ ∧ 17+X₄ ≤ X₁ ∧ 117+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 183 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 50 ≤ X₁+X₄ ∧ 150 ≤ X₀+X₄ ∧ X₀ ≤ 150+X₄ ∧ 0 ≤ X₃ ∧ 50 ≤ X₁+X₃ ∧ 150 ≤ X₀+X₃ ∧ X₀ ≤ 150+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l6->l6
t₆₉
η (X₅) = X₅-1
τ = 0 ≤ X₅ ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7
l7
l6->l7
t₇₀
η (X₆) = 0
τ = X₅+1 ≤ 0 ∧ X₅ ≤ 98 ∧ 2+X₅ ≤ X₃ ∧ X₅ ≤ 48+X₁ ∧ 52+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 248 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l7->l7
t₇₁
η (X₆) = X₆+1
τ = X₆ ≤ 49 ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8
l8
l7->l8
t₇₂
η (X₇) = 17
η (X₈) = 2
τ = 50 ≤ X₆ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 100 ≤ X₃+X₆ ∧ 50 ≤ X₁+X₆ ∧ 150 ≤ X₀+X₆ ∧ X₀ ≤ 150+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l8
t₇₃
η (X₈) = X₈+1
τ = X₈ ≤ X₇ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l8->l9
t₇₄
η (X₉) = 1
τ = 1+X₇ ≤ X₈ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 2 ≤ X₈ ∧ 19 ≤ X₇+X₈ ∧ X₇ ≤ 15+X₈ ∧ 52 ≤ X₆+X₈ ∧ X₆ ≤ 48+X₈ ∧ 1 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 102 ≤ X₃+X₈ ∧ 52 ≤ X₁+X₈ ∧ 152 ≤ X₀+X₈ ∧ X₀ ≤ 148+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l10
t₇₅
η (X₁₀) = 0
τ = X₉ ≤ 8 ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
l9->l11
t₇₆
τ = 9 ≤ X₉ ∧ 1 ≤ X₉ ∧ 19 ≤ X₈+X₉ ∧ X₈ ≤ 17+X₉ ∧ 18 ≤ X₇+X₉ ∧ X₇ ≤ 16+X₉ ∧ 51 ≤ X₆+X₉ ∧ X₆ ≤ 49+X₉ ∧ 0 ≤ X₅+X₉ ∧ 2+X₅ ≤ X₉ ∧ 101 ≤ X₃+X₉ ∧ 51 ≤ X₁+X₉ ∧ 151 ≤ X₀+X₉ ∧ X₀ ≤ 149+X₉ ∧ X₈ ≤ 18 ∧ X₈ ≤ 1+X₇ ∧ X₇+X₈ ≤ 35 ∧ 32+X₈ ≤ X₆ ∧ X₆+X₈ ≤ 68 ∧ X₈ ≤ 19+X₅ ∧ X₅+X₈ ≤ 17 ∧ 82+X₈ ≤ X₃ ∧ 32+X₈ ≤ X₁ ∧ 132+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 168 ∧ 18 ≤ X₈ ∧ 35 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 68 ≤ X₆+X₈ ∧ X₆ ≤ 32+X₈ ∧ 17 ≤ X₅+X₈ ∧ 19+X₅ ≤ X₈ ∧ 118 ≤ X₃+X₈ ∧ 68 ≤ X₁+X₈ ∧ 168 ≤ X₀+X₈ ∧ X₀ ≤ 132+X₈ ∧ X₇ ≤ 17 ∧ 33+X₇ ≤ X₆ ∧ X₆+X₇ ≤ 67 ∧ X₇ ≤ 18+X₅ ∧ X₅+X₇ ≤ 16 ∧ 83+X₇ ≤ X₃ ∧ 33+X₇ ≤ X₁ ∧ 133+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 167 ∧ 17 ≤ X₇ ∧ 67 ≤ X₆+X₇ ∧ X₆ ≤ 33+X₇ ∧ 16 ≤ X₅+X₇ ∧ 18+X₅ ≤ X₇ ∧ 117 ≤ X₃+X₇ ∧ 67 ≤ X₁+X₇ ∧ 167 ≤ X₀+X₇ ∧ X₀ ≤ 133+X₇ ∧ X₆ ≤ 50 ∧ X₆ ≤ 51+X₅ ∧ X₅+X₆ ≤ 49 ∧ 50+X₆ ≤ X₃ ∧ X₆ ≤ X₁ ∧ 100+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 200 ∧ 50 ≤ X₆ ∧ 49 ≤ X₅+X₆ ∧ 51+X₅ ≤ X₆ ∧ 150 ≤ X₃+X₆ ∧ 100 ≤ X₁+X₆ ∧ 200 ≤ X₀+X₆ ∧ X₀ ≤ 100+X₆ ∧ 1+X₅ ≤ 0 ∧ 101+X₅ ≤ X₃ ∧ 51+X₅ ≤ X₁ ∧ 151+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 149 ∧ 0 ≤ 1+X₅ ∧ 99 ≤ X₃+X₅ ∧ 49 ≤ X₁+X₅ ∧ 149 ≤ X₀+X₅ ∧ X₀ ≤ 151+X₅ ∧ 100 ≤ X₃ ∧ 150 ≤ X₁+X₃ ∧ 250 ≤ X₀+X₃ ∧ X₀ ≤ 50+X₃ ∧ 50 ≤ X₁ ∧ 200 ≤ X₀+X₁ ∧ X₀ ≤ 100+X₁ ∧ X₀ ≤ 150 ∧ 150 ≤ X₀
All Bounds
Timebounds
Overall timebound:X₁₁+352378 {O(n)}
t₅₄: 1 {O(1)}
t₅₅: 150 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 12000 {O(1)}
t₅₈: 51000 {O(1)}
t₅₉: 12000 {O(1)}
t₆₀: X₁₁+252000 {O(n)}
t₆₁: 50 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: 5100 {O(1)}
t₆₄: 5100 {O(1)}
t₆₅: 100 {O(1)}
t₆₆: 1 {O(1)}
t₆₇: 6600 {O(1)}
t₆₈: 6600 {O(1)}
t₆₉: 99 {O(1)}
t₇₀: 1 {O(1)}
t₇₁: 50 {O(1)}
t₇₂: 1 {O(1)}
t₇₃: 21 {O(1)}
t₇₄: 1 {O(1)}
t₇₅: 1500 {O(1)}
t₇₆: 1 {O(1)}
Costbounds
Overall costbound: X₁₁+352378 {O(n)}
t₅₄: 1 {O(1)}
t₅₅: 150 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 12000 {O(1)}
t₅₈: 51000 {O(1)}
t₅₉: 12000 {O(1)}
t₆₀: X₁₁+252000 {O(n)}
t₆₁: 50 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: 5100 {O(1)}
t₆₄: 5100 {O(1)}
t₆₅: 100 {O(1)}
t₆₆: 1 {O(1)}
t₆₇: 6600 {O(1)}
t₆₈: 6600 {O(1)}
t₆₉: 99 {O(1)}
t₇₀: 1 {O(1)}
t₇₁: 50 {O(1)}
t₇₂: 1 {O(1)}
t₇₃: 21 {O(1)}
t₇₄: 1 {O(1)}
t₇₅: 1500 {O(1)}
t₇₆: 1 {O(1)}
Sizebounds
t₅₄, X₀: 0 {O(1)}
t₅₄, X₁: X₁ {O(n)}
t₅₄, X₂: X₂ {O(n)}
t₅₄, X₃: X₃ {O(n)}
t₅₄, X₄: X₄ {O(n)}
t₅₄, X₅: X₅ {O(n)}
t₅₄, X₆: X₆ {O(n)}
t₅₄, X₇: X₇ {O(n)}
t₅₄, X₈: X₈ {O(n)}
t₅₄, X₉: X₉ {O(n)}
t₅₄, X₁₀: X₁₀ {O(n)}
t₅₄, X₁₁: X₁₁ {O(n)}
t₅₅, X₀: 150 {O(1)}
t₅₅, X₁: X₁ {O(n)}
t₅₅, X₂: X₂ {O(n)}
t₅₅, X₃: X₃ {O(n)}
t₅₅, X₄: X₄ {O(n)}
t₅₅, X₅: X₅ {O(n)}
t₅₅, X₆: X₆ {O(n)}
t₅₅, X₇: X₇ {O(n)}
t₅₅, X₈: X₈ {O(n)}
t₅₅, X₉: X₉ {O(n)}
t₅₅, X₁₀: X₁₀ {O(n)}
t₅₅, X₁₁: X₁₁ {O(n)}
t₅₆, X₀: 150 {O(1)}
t₅₆, X₁: 0 {O(1)}
t₅₆, X₂: X₂ {O(n)}
t₅₆, X₃: X₃ {O(n)}
t₅₆, X₄: X₄ {O(n)}
t₅₆, X₅: X₅ {O(n)}
t₅₆, X₆: X₆ {O(n)}
t₅₆, X₇: X₇ {O(n)}
t₅₆, X₈: X₈ {O(n)}
t₅₆, X₉: X₉ {O(n)}
t₅₆, X₁₀: X₁₀ {O(n)}
t₅₆, X₁₁: X₁₁ {O(n)}
t₅₇, X₀: 150 {O(1)}
t₅₇, X₁: 50 {O(1)}
t₅₇, X₂: 50 {O(1)}
t₅₇, X₃: 101 {O(1)}
t₅₇, X₄: 33 {O(1)}
t₅₇, X₅: 1 {O(1)}
t₅₇, X₆: 50 {O(1)}
t₅₇, X₇: 17 {O(1)}
t₅₇, X₈: 18 {O(1)}
t₅₇, X₉: 8 {O(1)}
t₅₇, X₁₀: 7 {O(1)}
t₅₇, X₁₁: 0 {O(1)}
t₅₈, X₀: 150 {O(1)}
t₅₈, X₁: 50 {O(1)}
t₅₈, X₂: 50 {O(1)}
t₅₈, X₃: 101 {O(1)}
t₅₈, X₄: 33 {O(1)}
t₅₈, X₅: 1 {O(1)}
t₅₈, X₆: 50 {O(1)}
t₅₈, X₇: 17 {O(1)}
t₅₈, X₈: 18 {O(1)}
t₅₈, X₉: 15 {O(1)}
t₅₈, X₁₀: 8 {O(1)}
t₅₈, X₁₁: 4 {O(1)}
t₅₉, X₀: 150 {O(1)}
t₅₉, X₁: 50 {O(1)}
t₅₉, X₂: 50 {O(1)}
t₅₉, X₃: 101 {O(1)}
t₅₉, X₄: 33 {O(1)}
t₅₉, X₅: 1 {O(1)}
t₅₉, X₆: 50 {O(1)}
t₅₉, X₇: 17 {O(1)}
t₅₉, X₈: 18 {O(1)}
t₅₉, X₉: 8 {O(1)}
t₅₉, X₁₀: 8 {O(1)}
t₅₉, X₁₁: 4 {O(1)}
t₆₀, X₀: 150 {O(1)}
t₆₀, X₁: 50 {O(1)}
t₆₀, X₂: 50 {O(1)}
t₆₀, X₃: 101 {O(1)}
t₆₀, X₄: 33 {O(1)}
t₆₀, X₅: 1 {O(1)}
t₆₀, X₆: 50 {O(1)}
t₆₀, X₇: 17 {O(1)}
t₆₀, X₈: 18 {O(1)}
t₆₀, X₉: 8 {O(1)}
t₆₀, X₁₀: 7 {O(1)}
t₆₀, X₁₁: 4 {O(1)}
t₆₁, X₀: 150 {O(1)}
t₆₁, X₁: 49 {O(1)}
t₆₁, X₂: 0 {O(1)}
t₆₁, X₃: X₃ {O(n)}
t₆₁, X₄: X₄ {O(n)}
t₆₁, X₅: X₅ {O(n)}
t₆₁, X₆: X₆ {O(n)}
t₆₁, X₇: X₇ {O(n)}
t₆₁, X₈: X₈ {O(n)}
t₆₁, X₉: X₉ {O(n)}
t₆₁, X₁₀: X₁₀ {O(n)}
t₆₁, X₁₁: X₁₁ {O(n)}
t₆₂, X₀: 150 {O(1)}
t₆₂, X₁: 50 {O(1)}
t₆₂, X₂: 50 {O(1)}
t₆₂, X₃: 0 {O(1)}
t₆₂, X₄: X₄ {O(n)}
t₆₂, X₅: X₅ {O(n)}
t₆₂, X₆: X₆ {O(n)}
t₆₂, X₇: X₇ {O(n)}
t₆₂, X₈: X₈ {O(n)}
t₆₂, X₉: X₉ {O(n)}
t₆₂, X₁₀: X₁₀ {O(n)}
t₆₂, X₁₁: X₁₁ {O(n)}
t₆₃, X₀: 150 {O(1)}
t₆₃, X₁: 50 {O(1)}
t₆₃, X₂: 50 {O(1)}
t₆₃, X₃: X₃ {O(n)}
t₆₃, X₄: X₄ {O(n)}
t₆₃, X₅: X₅ {O(n)}
t₆₃, X₆: X₆ {O(n)}
t₆₃, X₇: X₇ {O(n)}
t₆₃, X₈: X₈ {O(n)}
t₆₃, X₉: X₉ {O(n)}
t₆₃, X₁₀: X₁₀ {O(n)}
t₆₃, X₁₁: X₁₁ {O(n)}
t₆₄, X₀: 150 {O(1)}
t₆₄, X₁: 49 {O(1)}
t₆₄, X₂: 50 {O(1)}
t₆₄, X₃: X₃ {O(n)}
t₆₄, X₄: X₄ {O(n)}
t₆₄, X₅: X₅ {O(n)}
t₆₄, X₆: X₆ {O(n)}
t₆₄, X₇: X₇ {O(n)}
t₆₄, X₈: X₈ {O(n)}
t₆₄, X₉: X₉ {O(n)}
t₆₄, X₁₀: X₁₀ {O(n)}
t₆₄, X₁₁: X₁₁ {O(n)}
t₆₅, X₀: 150 {O(1)}
t₆₅, X₁: 50 {O(1)}
t₆₅, X₂: 50 {O(1)}
t₆₅, X₃: 99 {O(1)}
t₆₅, X₄: 0 {O(1)}
t₆₅, X₅: X₅ {O(n)}
t₆₅, X₆: X₆ {O(n)}
t₆₅, X₇: X₇ {O(n)}
t₆₅, X₈: X₈ {O(n)}
t₆₅, X₉: X₉ {O(n)}
t₆₅, X₁₀: X₁₀ {O(n)}
t₆₅, X₁₁: X₁₁ {O(n)}
t₆₆, X₀: 150 {O(1)}
t₆₆, X₁: 50 {O(1)}
t₆₆, X₂: 50 {O(1)}
t₆₆, X₃: 101 {O(1)}
t₆₆, X₄: 33 {O(1)}
t₆₆, X₅: 98 {O(1)}
t₆₆, X₆: X₆ {O(n)}
t₆₆, X₇: X₇ {O(n)}
t₆₆, X₈: X₈ {O(n)}
t₆₆, X₉: X₉ {O(n)}
t₆₆, X₁₀: X₁₀ {O(n)}
t₆₆, X₁₁: X₁₁ {O(n)}
t₆₇, X₀: 150 {O(1)}
t₆₇, X₁: 50 {O(1)}
t₆₇, X₂: 50 {O(1)}
t₆₇, X₃: 101 {O(1)}
t₆₇, X₄: 33 {O(1)}
t₆₇, X₅: X₅ {O(n)}
t₆₇, X₆: X₆ {O(n)}
t₆₇, X₇: X₇ {O(n)}
t₆₇, X₈: X₈ {O(n)}
t₆₇, X₉: X₉ {O(n)}
t₆₇, X₁₀: X₁₀ {O(n)}
t₆₇, X₁₁: X₁₁ {O(n)}
t₆₈, X₀: 150 {O(1)}
t₆₈, X₁: 50 {O(1)}
t₆₈, X₂: 50 {O(1)}
t₆₈, X₃: 99 {O(1)}
t₆₈, X₄: 33 {O(1)}
t₆₈, X₅: X₅ {O(n)}
t₆₈, X₆: X₆ {O(n)}
t₆₈, X₇: X₇ {O(n)}
t₆₈, X₈: X₈ {O(n)}
t₆₈, X₉: X₉ {O(n)}
t₆₈, X₁₀: X₁₀ {O(n)}
t₆₈, X₁₁: X₁₁ {O(n)}
t₆₉, X₀: 150 {O(1)}
t₆₉, X₁: 50 {O(1)}
t₆₉, X₂: 50 {O(1)}
t₆₉, X₃: 101 {O(1)}
t₆₉, X₄: 33 {O(1)}
t₆₉, X₅: 97 {O(1)}
t₆₉, X₆: X₆ {O(n)}
t₆₉, X₇: X₇ {O(n)}
t₆₉, X₈: X₈ {O(n)}
t₆₉, X₉: X₉ {O(n)}
t₆₉, X₁₀: X₁₀ {O(n)}
t₆₉, X₁₁: X₁₁ {O(n)}
t₇₀, X₀: 150 {O(1)}
t₇₀, X₁: 50 {O(1)}
t₇₀, X₂: 50 {O(1)}
t₇₀, X₃: 101 {O(1)}
t₇₀, X₄: 33 {O(1)}
t₇₀, X₅: 1 {O(1)}
t₇₀, X₆: 0 {O(1)}
t₇₀, X₇: X₇ {O(n)}
t₇₀, X₈: X₈ {O(n)}
t₇₀, X₉: X₉ {O(n)}
t₇₀, X₁₀: X₁₀ {O(n)}
t₇₀, X₁₁: X₁₁ {O(n)}
t₇₁, X₀: 150 {O(1)}
t₇₁, X₁: 50 {O(1)}
t₇₁, X₂: 50 {O(1)}
t₇₁, X₃: 101 {O(1)}
t₇₁, X₄: 33 {O(1)}
t₇₁, X₅: 1 {O(1)}
t₇₁, X₆: 50 {O(1)}
t₇₁, X₇: X₇ {O(n)}
t₇₁, X₈: X₈ {O(n)}
t₇₁, X₉: X₉ {O(n)}
t₇₁, X₁₀: X₁₀ {O(n)}
t₇₁, X₁₁: X₁₁ {O(n)}
t₇₂, X₀: 150 {O(1)}
t₇₂, X₁: 50 {O(1)}
t₇₂, X₂: 50 {O(1)}
t₇₂, X₃: 101 {O(1)}
t₇₂, X₄: 33 {O(1)}
t₇₂, X₅: 1 {O(1)}
t₇₂, X₆: 50 {O(1)}
t₇₂, X₇: 17 {O(1)}
t₇₂, X₈: 2 {O(1)}
t₇₂, X₉: X₉ {O(n)}
t₇₂, X₁₀: X₁₀ {O(n)}
t₇₂, X₁₁: X₁₁ {O(n)}
t₇₃, X₀: 150 {O(1)}
t₇₃, X₁: 50 {O(1)}
t₇₃, X₂: 50 {O(1)}
t₇₃, X₃: 101 {O(1)}
t₇₃, X₄: 33 {O(1)}
t₇₃, X₅: 1 {O(1)}
t₇₃, X₆: 50 {O(1)}
t₇₃, X₇: 17 {O(1)}
t₇₃, X₈: 18 {O(1)}
t₇₃, X₉: X₉ {O(n)}
t₇₃, X₁₀: X₁₀ {O(n)}
t₇₃, X₁₁: X₁₁ {O(n)}
t₇₄, X₀: 150 {O(1)}
t₇₄, X₁: 50 {O(1)}
t₇₄, X₂: 50 {O(1)}
t₇₄, X₃: 101 {O(1)}
t₇₄, X₄: 33 {O(1)}
t₇₄, X₅: 1 {O(1)}
t₇₄, X₆: 50 {O(1)}
t₇₄, X₇: 17 {O(1)}
t₇₄, X₈: 18 {O(1)}
t₇₄, X₉: 1 {O(1)}
t₇₄, X₁₀: X₁₀ {O(n)}
t₇₄, X₁₁: X₁₁ {O(n)}
t₇₅, X₀: 150 {O(1)}
t₇₅, X₁: 50 {O(1)}
t₇₅, X₂: 50 {O(1)}
t₇₅, X₃: 101 {O(1)}
t₇₅, X₄: 33 {O(1)}
t₇₅, X₅: 1 {O(1)}
t₇₅, X₆: 50 {O(1)}
t₇₅, X₇: 17 {O(1)}
t₇₅, X₈: 18 {O(1)}
t₇₅, X₉: 8 {O(1)}
t₇₅, X₁₀: 0 {O(1)}
t₇₅, X₁₁: X₁₁+4 {O(n)}
t₇₆, X₀: 150 {O(1)}
t₇₆, X₁: 50 {O(1)}
t₇₆, X₂: 50 {O(1)}
t₇₆, X₃: 101 {O(1)}
t₇₆, X₄: 33 {O(1)}
t₇₆, X₅: 1 {O(1)}
t₇₆, X₆: 50 {O(1)}
t₇₆, X₇: 17 {O(1)}
t₇₆, X₈: 18 {O(1)}
t₇₆, X₉: 15 {O(1)}
t₇₆, X₁₀: 8 {O(1)}
t₇₆, X₁₁: 4 {O(1)}