Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆
Temp_Vars: A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2, G1, G2, H1, H2, I1, I2, J1, J2, K1, K2, L1, L2, M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, X1, Y1, Z1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₄ ≤ 50
t₃₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 51 ≤ X₄
t₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁ ≤ X₀
t₃₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₁
t₃₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₁
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁+1, X₂, B1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₀
t₄₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₁
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₀
t₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l13(X₀, X₁, X₂+1, X₃, X₄, X₅+B1, B1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₃₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, B1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₄ ≤ 3
t₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 4 ≤ X₄
t₄₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l15(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀
t₁₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, B1-C1, D1, E1, F1, K1, G1, I1, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: D1+X₁₀+1 ≤ E1 ∧ G1*H1+H1*I1 ≤ 1 ∧ 2 ≤ G1*H1+H1*I1+H1 ∧ H1 ≤ F1 ∧ G1*J1+I1*J1 ≤ 1 ∧ 2 ≤ G1*J1+I1*J1+J1 ∧ F1 ≤ J1 ∧ 1+X₇ ≤ X₈
t₁₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, B1-C1, D1, E1, F1, K1, G1, I1, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+E1 ≤ D1+X₁₀ ∧ G1*H1+H1*I1 ≤ 1 ∧ 2 ≤ G1*H1+H1*I1+H1 ∧ H1 ≤ F1 ∧ G1*J1+I1*J1 ≤ 1 ∧ 2 ≤ G1*J1+I1*J1+J1 ∧ F1 ≤ J1 ∧ 1+X₇ ≤ X₈
t₂₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, B1, C1, C1+X₁₀, D1, X₁₉, X₂₀, X₂₁, E1, F1, K1, G1, X₂₆) :|: E1*H1*I1 ≤ H1 ∧ H1+1 ≤ E1*H1*I1+I1 ∧ E1*J1*L1 ≤ L1 ∧ L1+1 ≤ E1*J1*L1+J1 ∧ E1*M1*N1 ≤ N1 ∧ N1+1 ≤ E1*M1*N1+M1 ∧ J1*O1 ≤ I1+M1*O1 ∧ M1*O1+I1+1 ≤ J1*O1+O1 ∧ K1 ≤ O1 ∧ E1*H1*P1 ≤ H1 ∧ H1+1 ≤ E1*H1*P1+P1 ∧ E1*L1*Q1 ≤ L1 ∧ L1+1 ≤ E1*L1*Q1+Q1 ∧ E1*N1*R1 ≤ N1 ∧ N1+1 ≤ E1*N1*R1+R1 ∧ Q1*S1 ≤ P1+R1*S1 ∧ R1*S1+P1+1 ≤ Q1*S1+S1 ∧ S1 ≤ K1 ∧ E1*H1*T1 ≤ H1 ∧ H1+1 ≤ E1*H1*T1+T1 ∧ E1*L1*U1 ≤ L1 ∧ L1+1 ≤ E1*L1*U1+U1 ∧ E1*N1*V1 ≤ N1 ∧ N1+1 ≤ E1*N1*V1+V1 ∧ U1*W1 ≤ T1+V1*W1 ∧ V1*W1+T1+1 ≤ U1*W1+W1 ∧ E1*X1 ≤ 1 ∧ 2 ≤ E1*X1+X1 ∧ Y1+X1*Y1 ≤ W1 ∧ W1+1 ≤ 2⋅Y1+X1*Y1 ∧ G1 ≤ Y1 ∧ E1*H1*Z1 ≤ H1 ∧ H1+1 ≤ E1*H1*Z1+Z1 ∧ A2*E1*L1 ≤ L1 ∧ L1+1 ≤ A2*E1*L1+A2 ∧ B2*E1*N1 ≤ N1 ∧ N1+1 ≤ B2*E1*N1+B2 ∧ A2*C2 ≤ Z1+B2*C2 ∧ B2*C2+Z1+1 ≤ A2*C2+C2 ∧ D2*E1 ≤ 1 ∧ 2 ≤ D2*E1+D2 ∧ E2+D2*E2 ≤ C2 ∧ C2+1 ≤ 2⋅E2+D2*E2 ∧ E2 ≤ G1 ∧ F2*L1 ≤ H1+F2*N1 ∧ F2*N1+H1+1 ≤ F2*L1+F2 ∧ D1 ≤ F2 ∧ G2*L1 ≤ H1+G2*N1 ∧ G2*N1+H1+1 ≤ G2*L1+G2 ∧ G2 ≤ D1 ∧ H2*I2*L1 ≤ H1*H2+H2*I2*N1 ∧ H2*I2*N1+H1*H2+1 ≤ H2*I2*L1+I2 ∧ B1 ≤ I2 ∧ H2*J2*L1 ≤ H1*H2+H2*J2*N1 ∧ H2*J2*N1+H1*H2+1 ≤ H2*J2*L1+J2 ∧ J2 ≤ B1 ∧ E1*K2 ≤ 1 ∧ 2 ≤ E1*K2+K2 ∧ K2 ≤ F1 ∧ E1*L2 ≤ 1 ∧ 2 ≤ E1*L2+L2 ∧ F1 ≤ L2 ∧ 1+X₇ ≤ X₈
t₁₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₈ ≤ X₇
t₁₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, B1*X₁₈, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, C1, D1, E1, F1, X₂₆) :|: 0 ≤ X₁₉ ∧ C1*K1*X₁₈ ≤ X₁₈ ∧ X₁₈+1 ≤ C1*K1*X₁₈+K1 ∧ E1 ≤ K1 ∧ C1*G1*X₁₈ ≤ X₁₈ ∧ X₁₈+1 ≤ C1*G1*X₁₈+G1 ∧ G1 ≤ E1 ∧ C1*I1 ≤ 1 ∧ 2 ≤ C1*I1+I1 ∧ I1 ≤ D1 ∧ C1*H1 ≤ 1 ∧ 2 ≤ C1*H1+H1 ∧ D1 ≤ H1 ∧ C1*J1*X₁₈ ≤ X₁₈ ∧ X₁₈+1 ≤ C1*J1*X₁₈+J1 ∧ C1*L1 ≤ 1 ∧ 2 ≤ C1*L1+L1 ∧ M1+L1*M1 ≤ J1 ∧ J1+1 ≤ 2⋅M1+L1*M1 ∧ F1 ≤ M1 ∧ C1*N1*X₁₈ ≤ X₁₈ ∧ X₁₈+1 ≤ C1*N1*X₁₈+N1 ∧ C1*O1 ≤ 1 ∧ 2 ≤ C1*O1+O1 ∧ P1+O1*P1 ≤ N1 ∧ N1+1 ≤ 2⋅P1+O1*P1 ∧ P1 ≤ F1
t₂₁: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, -B1*X₁₈, X₁₆, X₁₇, -X₁₈, X₁₉, X₂₀, X₂₁, C1, D1, -E1*X₁₈, F1, X₂₆) :|: C1*E1 ≤ 1 ∧ 2 ≤ C1*E1+E1 ∧ X₁₉+1 ≤ 0 ∧ C1*K1 ≤ 1 ∧ 2 ≤ C1*K1+K1 ∧ K1 ≤ D1 ∧ C1*G1 ≤ 1 ∧ 2 ≤ C1*G1+G1 ∧ D1 ≤ G1 ∧ C1*I1 ≤ 1 ∧ 2 ≤ C1*I1+I1 ∧ C1*H1 ≤ 1 ∧ 2 ≤ C1*H1+H1 ∧ I1*X₁₈+J1+H1*J1 ≤ 0 ∧ 1 ≤ 2⋅J1+H1*J1+I1*X₁₈ ∧ J1 ≤ F1 ∧ C1*L1 ≤ 1 ∧ 2 ≤ C1*L1+L1 ∧ C1*M1 ≤ 1 ∧ 2 ≤ C1*M1+M1 ∧ L1*X₁₈+N1+M1*N1 ≤ 0 ∧ 1 ≤ 2⋅N1+M1*N1+L1*X₁₈ ∧ F1 ≤ N1
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁ ≤ X₀
t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₁ ∧ X₅+1 ≤ 0
t₃₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₁ ∧ 1 ≤ X₅
t₃₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₀ ≤ X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, B1, X₁₁, X₁₂, X₁₃, X₁₄, C1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆+1) :|: 1+X₂₆ ≤ X₂
t₃₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₂₆
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, B1, X₁₁, X₁₂, X₁₃, X₁₄, C1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆+1) :|: X₂₆ ≤ X₀
t₂₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂₆
t₃₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₂₆
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, B1, X₁₁, X₁₂, X₁₃, X₁₄, C1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆+1) :|: 1+X₂₆ ≤ X₁
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, B1, X₁₁, X₁₂, X₁₃, X₁₄, C1, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆+1) :|: X₂₆ ≤ X₀
t₂₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂₆
t₃₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₂
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, C1, B1, 100⋅B1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀ ∧ X₄ ≤ 4
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, F1, B1, 100⋅B1, C1, C1+100⋅B1, D1, E1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₄ ∧ X₂ ≤ X₀ ∧ D1+100⋅B1+1 ≤ E1
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, F1, B1, 100⋅B1, C1, C1+100⋅B1, D1, E1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1+E1 ≤ D1+100⋅B1
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, E1, B1, 100⋅B1, C1, D1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₄ ∧ X₂ ≤ X₀ ∧ C1+100⋅B1+1 ≤ D1
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, E1, B1, 100⋅B1, C1, D1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 5 ≤ X₄ ∧ X₂ ≤ X₀ ∧ 1+D1 ≤ C1+100⋅B1
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, B1, 100⋅B1, C1, C1+100⋅B1, D1, D1+100⋅B1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₂ ≤ X₀ ∧ 5 ≤ X₄
t₂₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₀ ≤ X₁
t₂₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁ ≤ X₀
Cut unsatisfiable transition t₃: l11→l11
Cut unsatisfiable transition t₂₅: l7→l7
Eliminate variables {X₃,X₆,X₉,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅} that do not contribute to the problem
Found invariant 1+X₀ ≤ X₁ for location l11
Found invariant X₄ ≤ 0 ∧ X₃+X₄ ≤ 50 ∧ 0 ≤ X₄ ∧ X₃ ≤ 50+X₄ ∧ X₃ ≤ 50 ∧ 1+X₀ ≤ X₁ for location l2
Found invariant 1 ≤ 0 for location l6
Found invariant X₁ ≤ X₀ for location l15
Found invariant 1 ≤ 0 for location l17
Found invariant 1 ≤ 0 for location l7
Found invariant 1 ≤ 0 for location l5
Found invariant 1 ≤ 0 for location l13
Found invariant 1 ≤ 0 for location l8
Found invariant 1+X₀ ≤ X₁ for location l1
Found invariant 1 ≤ 0 for location l10
Found invariant 1 ≤ 0 for location l16
Found invariant 1 ≤ 0 for location l4
Found invariant 1 ≤ 0 for location l9
Found invariant 1+X₀ ≤ X₁ for location l3
Found invariant 1 ≤ 0 for location l14
Cut unsatisfiable transition t₉₄: l10→l8
Cut unsatisfiable transition t₉₅: l10→l9
Cut unsatisfiable transition t₉₉: l13→l13
Cut unsatisfiable transition t₁₀₀: l13→l2
Cut unsatisfiable transition t₁₀₁: l14→l10
Cut unsatisfiable transition t₁₀₂: l14→l10
Cut unsatisfiable transition t₁₀₅: l16→l17
Cut unsatisfiable transition t₁₀₆: l16→l17
Cut unsatisfiable transition t₁₀₇: l16→l6
Cut unsatisfiable transition t₁₀₈: l16→l8
Cut unsatisfiable transition t₁₀₉: l17→l6
Cut unsatisfiable transition t₁₁₀: l17→l6
Cut unsatisfiable transition t₁₁₁: l2→l13
Cut unsatisfiable transition t₁₁₂: l2→l14
Cut unsatisfiable transition t₁₁₃: l2→l14
Cut unsatisfiable transition t₁₁₅: l4→l4
Cut unsatisfiable transition t₁₁₆: l4→l5
Cut unsatisfiable transition t₁₁₇: l5→l5
Cut unsatisfiable transition t₁₁₈: l5→l7
Cut unsatisfiable transition t₁₁₉: l6→l4
Cut unsatisfiable transition t₁₂₀: l6→l6
Cut unsatisfiable transition t₁₂₁: l7→l8
Cut unsatisfiable transition t₁₂₂: l8→l10
Cut unsatisfiable transition t₁₂₃: l8→l16
Cut unsatisfiable transition t₁₂₄: l8→l16
Cut unsatisfiable transition t₁₂₅: l8→l16
Cut unsatisfiable transition t₁₂₆: l8→l16
Cut unsatisfiable transition t₁₂₇: l8→l16
Cut unsatisfiable transition t₁₂₈: l8→l8
Cut unsatisfiable transition t₁₂₉: l9→l1
Cut unsatisfiable transition t₁₃₀: l9→l9
Cut unreachable locations [l10; l13; l14; l16; l17; l4; l5; l6; l7; l8; l9] from the program graph
Eliminate variables {X₅,X₆,X₇,X₈,X₉,X₁₀} that do not contribute to the problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l11, l12, l15, l2, l3
Transitions:
t₂₃₆: l0(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄)
t₂₃₇: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, 0) :|: X₃ ≤ 50
t₂₃₈: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 51 ≤ X₃
t₂₃₉: l11(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₁
t₂₄₀: l12(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₁
t₂₄₁: l12(X₀, X₁, X₂, X₃, X₄) → l15(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀
t₂₄₂: l15(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁+1, X₂, X₃, X₄) :|: 1+X₀ ≤ X₂
t₂₄₃: l15(X₀, X₁, X₂, X₃, X₄) → l15(X₀, X₁, X₂+1, X₃, X₄) :|: X₂ ≤ X₀
t₂₄₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, 0) :|: X₀ ≤ X₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
new bound:
X₀+X₁+1 {O(n)}
new bound:
X₀+X₂+1 {O(n)}
knowledge_propagation leads to new time bound 2⋅X₀+X₁+X₂+2 {O(n)} for transition t₂₄₂: l15(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁+1, X₂, X₃, X₄) :|: 1+X₀ ≤ X₂
Overall timebound:2⋅X₁+2⋅X₂+4⋅X₀+10 {O(n)}
t₂₃₆: 1 {O(1)}
t₂₃₇: 1 {O(1)}
t₂₃₈: 1 {O(1)}
t₂₃₉: 1 {O(1)}
t₂₄₀: 1 {O(1)}
t₂₄₁: X₀+X₁+1 {O(n)}
t₂₄₂: 2⋅X₀+X₁+X₂+2 {O(n)}
t₂₄₃: X₀+X₂+1 {O(n)}
t₂₄₄: 1 {O(1)}
Overall costbound: 2⋅X₁+2⋅X₂+4⋅X₀+10 {O(n)}
t₂₃₆: 1 {O(1)}
t₂₃₇: 1 {O(1)}
t₂₃₈: 1 {O(1)}
t₂₃₉: 1 {O(1)}
t₂₄₀: 1 {O(1)}
t₂₄₁: X₀+X₁+1 {O(n)}
t₂₄₂: 2⋅X₀+X₁+X₂+2 {O(n)}
t₂₄₃: X₀+X₂+1 {O(n)}
t₂₄₄: 1 {O(1)}
t₂₃₆, X₀: X₀ {O(n)}
t₂₃₆, X₁: X₁ {O(n)}
t₂₃₆, X₂: X₂ {O(n)}
t₂₃₆, X₃: X₃ {O(n)}
t₂₃₆, X₄: X₄ {O(n)}
t₂₃₇, X₀: 2⋅X₀ {O(n)}
t₂₃₇, X₁: 2⋅X₀+3⋅X₁+X₂+2 {O(n)}
t₂₃₇, X₂: 3⋅X₂+X₀+1 {O(n)}
t₂₃₇, X₃: 2⋅X₃ {O(n)}
t₂₃₇, X₄: 0 {O(1)}
t₂₃₈, X₀: 2⋅X₀ {O(n)}
t₂₃₈, X₁: 2⋅X₀+3⋅X₁+X₂+2 {O(n)}
t₂₃₈, X₂: 3⋅X₂+X₀+1 {O(n)}
t₂₃₈, X₃: 2⋅X₃ {O(n)}
t₂₃₈, X₄: 2⋅X₄ {O(n)}
t₂₃₉, X₀: 2⋅X₀ {O(n)}
t₂₃₉, X₁: 2⋅X₀+3⋅X₁+X₂+2 {O(n)}
t₂₃₉, X₂: 3⋅X₂+X₀+1 {O(n)}
t₂₃₉, X₃: 2⋅X₃ {O(n)}
t₂₃₉, X₄: 2⋅X₄ {O(n)}
t₂₄₀, X₀: 2⋅X₀ {O(n)}
t₂₄₀, X₁: 2⋅X₀+3⋅X₁+X₂+2 {O(n)}
t₂₄₀, X₂: 3⋅X₂+X₀+1 {O(n)}
t₂₄₀, X₃: 2⋅X₃ {O(n)}
t₂₄₀, X₄: 2⋅X₄ {O(n)}
t₂₄₁, X₀: X₀ {O(n)}
t₂₄₁, X₁: 2⋅X₀+2⋅X₁+X₂+2 {O(n)}
t₂₄₁, X₂: 2⋅X₂+X₀+1 {O(n)}
t₂₄₁, X₃: X₃ {O(n)}
t₂₄₁, X₄: X₄ {O(n)}
t₂₄₂, X₀: X₀ {O(n)}
t₂₄₂, X₁: 2⋅X₀+2⋅X₁+X₂+2 {O(n)}
t₂₄₂, X₂: 2⋅X₂+X₀+1 {O(n)}
t₂₄₂, X₃: X₃ {O(n)}
t₂₄₂, X₄: X₄ {O(n)}
t₂₄₃, X₀: X₀ {O(n)}
t₂₄₃, X₁: 2⋅X₀+2⋅X₁+X₂+2 {O(n)}
t₂₄₃, X₂: 2⋅X₂+X₀+1 {O(n)}
t₂₄₃, X₃: X₃ {O(n)}
t₂₄₃, X₄: X₄ {O(n)}
t₂₄₄, X₀: 2⋅X₀ {O(n)}
t₂₄₄, X₁: 2⋅X₀+3⋅X₁+X₂+2 {O(n)}
t₂₄₄, X₂: 3⋅X₂+X₀+1 {O(n)}
t₂₄₄, X₃: 2⋅X₃ {O(n)}
t₂₄₄, X₄: 0 {O(1)}