Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1
Transitions:
t₀: l0(X₀, X₁, X₂) → l1(X₀, X₁, X₂) :|: 1 ≤ X₀
t₁: l1(X₀, X₁, X₂) → l1(X₀, X₁+X₀, X₂) :|: X₁+1 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ 1 ≤ X₀
t₂: l1(X₀, X₁, X₂) → l1(X₀, X₁, X₁-X₀) :|: X₁+1 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ 1 ≤ X₀
Found invariant 1 ≤ X₀ for location l1
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1
Transitions:
t₀: l0(X₀, X₁, X₂) → l1(X₀, X₁, X₂) :|: 1 ≤ X₀
t₁: l1(X₀, X₁, X₂) → l1(X₀, X₁+X₀, X₂) :|: X₁+1 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀
t₂: l1(X₀, X₁, X₂) → l1(X₀, X₁, X₁-X₀) :|: X₁+1 ≤ X₀ ∧ X₀+1 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀
new bound:
X₀+X₁ {O(n)}
new bound:
X₀+X₂ {O(n)}
Overall timebound:2⋅X₀+X₁+X₂+1 {O(n)}
t₀: 1 {O(1)}
t₁: X₀+X₁ {O(n)}
t₂: X₀+X₂ {O(n)}
Overall costbound: 2⋅X₀+X₁+X₂+1 {O(n)}
t₀: 1 {O(1)}
t₁: X₀+X₁ {O(n)}
t₂: X₀+X₂ {O(n)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: 2⋅X₀⋅X₀+2⋅X₀⋅X₁+2⋅X₀+X₁ {O(n^2)}
t₁, X₂: X₂ {O(n)}
t₂, X₀: 2⋅X₀ {O(n)}
t₂, X₁: 2⋅X₀⋅X₀+2⋅X₀⋅X₁+2⋅X₀+2⋅X₁ {O(n^2)}
t₂, X₂: 2⋅X₀⋅X₀+2⋅X₀⋅X₁+2⋅X₁+4⋅X₀ {O(n^2)}