Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃
Temp_Vars: O, P
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, 3, P, 0, 0, 3, P, 2, X₁₂, X₁₃) :|: P ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, 3, P, 0, 0, 3, P, 2, X₁₂, X₁₃) :|: P ≤ 7 ∧ 5 ≤ P
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂+1, X₂+1, X₄+1, X₄+1, 3, 4, 1, 0, 3, 4, 2, X₁₂, X₁₃)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, 0, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, 0, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 7, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 7, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 3, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 3, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(0, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 0, P, 4, 3, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 6, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 6, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 6, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, P, O, 1, 0, P, O, 2, X₁₂, X₁₃) :|: 1 ≤ X₁₂ ∧ X₄+1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ X₂+1 ≤ X₁₃ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 1 ≤ X₇
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂, X₂, X₄, X₄, P, O, 1, 0, P, O, 2, X₁₂, X₁₃) :|: 1 ≤ X₁₂ ∧ X₄+1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ X₂+1 ≤ X₁₃ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₇ ≤ 1 ∧ 1 ≤ X₇
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(0, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 0, P, 4, 2, X₁₂, X₁₃) :|: X₄+2 ≤ X₁₂ ∧ X₂+2 ≤ X₁₃ ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁₃ ∧ P ≤ 7 ∧ 1 ≤ P
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 7, X₁₂, X₁₃) :|: X₁₂ ≤ X₄ ∧ X₁₃ ≤ X₂ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₂₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(0, X₂, X₂, X₄, X₄, P, O, X₇, 0, P, O, 7, X₁₂, X₁₃) :|: X₁₂ ≤ X₄ ∧ X₁₃ ≤ X₂ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(0, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 0, P, 4, 7, X₁₂, X₁₃) :|: X₁₂ ≤ X₄+1 ∧ X₁₃ ≤ X₂+1 ∧ P ≤ 7 ∧ 1 ≤ P
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂, X₂, X₄, X₄, P, O, X₇, 1, P, O, 7, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(1, X₂+1, X₂+1, X₄+1, X₄+1, P, 4, 1, 1, P, 4, 7, X₁₂, X₁₃) :|: P ≤ 7 ∧ 1 ≤ P
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(P, X₂, X₂, X₄, X₄, O, 2, 0, P, O, 2, 4, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(P, X₂, X₂, X₄, X₄, O, 7, 1, P, O, 7, 4, X₁₂, X₁₃) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₇ ≤ 1 ∧ 1 ≤ X₇
Preprocessing
Eliminate variables {X₀,X₁,X₃,X₅,X₆,X₈,X₉,X₁₀,X₁₁} that do not contribute to the problem
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l2
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l6
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l5
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l4
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: O, P
Locations: l0, l1, l2, l3, l4, l5, l6
Transitions:
t₅₃: l0(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₅₄: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 0, X₃, X₄) :|: P ≤ 7 ∧ P ≤ 3 ∧ 1 ≤ P
t₅₅: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 0, X₃, X₄) :|: P ≤ 7 ∧ 5 ≤ P
t₅₆: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀+1, X₁+1, 1, X₃, X₄)
t₅₇: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, 0, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P
t₅₈: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, 0, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P
t₅₉: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P
t₆₀: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₂: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₃: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₄: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₅: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₆: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₇: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₈: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₆₉: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 1, X₃, X₄) :|: 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₀+1 ≤ X₄ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₀: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, 1, X₃, X₄) :|: 1 ≤ X₃ ∧ X₁+1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₀+1 ≤ X₄ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₁: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀+1, X₁+1, 1, X₃, X₄) :|: X₁+2 ≤ X₃ ∧ X₀+2 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₂: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₄ ≤ X₀ ∧ O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₃: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ X₁ ∧ X₄ ≤ X₀ ∧ O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₄: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀+1, X₁+1, 1, X₃, X₄) :|: X₃ ≤ X₁+1 ∧ X₄ ≤ X₀+1 ∧ P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₅: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ O ≤ 3 ∧ 1 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₆: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 7 ∧ 5 ≤ O ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₇: l5(X₀, X₁, X₂, X₃, X₄) → l3(X₀+1, X₁+1, 1, X₃, X₄) :|: P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₈: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 0, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
t₇₉: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 1, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂
MPRF for transition t₇₁: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀+1, X₁+1, 1, X₃, X₄) :|: X₁+2 ≤ X₃ ∧ X₀+2 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ P ≤ 7 ∧ 1 ≤ P ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ of depth 1:
new bound:
3⋅X₁+3⋅X₃+4 {O(n)}
MPRF for transition t₇₈: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, 0, X₃, X₄) :|: O ≤ 7 ∧ P ≤ 1 ∧ 0 ≤ P ∧ 1 ≤ O ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ of depth 1:
new bound:
9⋅X₁+9⋅X₃+19 {O(n)}
Chain transitions t₇₁: l5→l2 and t₆₅: l2→l4 to t₁₇₉₃: l5→l4
Chain transitions t₇₀: l5→l2 and t₆₅: l2→l4 to t₁₇₉₄: l5→l4
Chain transitions t₇₀: l5→l2 and t₆₄: l2→l4 to t₁₇₉₅: l5→l4
Chain transitions t₇₁: l5→l2 and t₆₄: l2→l4 to t₁₇₉₆: l5→l4
Chain transitions t₆₉: l5→l2 and t₆₄: l2→l4 to t₁₇₉₇: l5→l4
Chain transitions t₆₉: l5→l2 and t₆₅: l2→l4 to t₁₇₉₈: l5→l4
Chain transitions t₆₉: l5→l2 and t₆₃: l2→l4 to t₁₇₉₉: l5→l4
Chain transitions t₇₀: l5→l2 and t₆₃: l2→l4 to t₁₈₀₀: l5→l4
Chain transitions t₇₁: l5→l2 and t₆₃: l2→l4 to t₁₈₀₁: l5→l4
Chain transitions t₅₆: l1→l2 and t₆₃: l2→l4 to t₁₈₀₂: l1→l4
Chain transitions t₅₆: l1→l2 and t₆₄: l2→l4 to t₁₈₀₃: l1→l4
Chain transitions t₅₆: l1→l2 and t₆₅: l2→l4 to t₁₈₀₄: l1→l4
Chain transitions t₅₆: l1→l2 and t₆₂: l2→l3 to t₁₈₀₅: l1→l3
Chain transitions t₆₉: l5→l2 and t₆₂: l2→l3 to t₁₈₀₆: l5→l3
Chain transitions t₇₀: l5→l2 and t₆₂: l2→l3 to t₁₈₀₇: l5→l3
Chain transitions t₇₁: l5→l2 and t₆₂: l2→l3 to t₁₈₀₈: l5→l3
Chain transitions t₅₅: l1→l2 and t₆₂: l2→l3 to t₁₈₀₉: l1→l3
Chain transitions t₅₅: l1→l2 and t₆₃: l2→l4 to t₁₈₁₀: l1→l4
Chain transitions t₅₅: l1→l2 and t₆₄: l2→l4 to t₁₈₁₁: l1→l4
Chain transitions t₅₅: l1→l2 and t₆₅: l2→l4 to t₁₈₁₂: l1→l4
Chain transitions t₅₅: l1→l2 and t₆₁: l2→l3 to t₁₈₁₃: l1→l3
Chain transitions t₅₆: l1→l2 and t₆₁: l2→l3 to t₁₈₁₄: l1→l3
Chain transitions t₆₉: l5→l2 and t₆₁: l2→l3 to t₁₈₁₅: l5→l3
Chain transitions t₇₀: l5→l2 and t₆₁: l2→l3 to t₁₈₁₆: l5→l3
Chain transitions t₇₁: l5→l2 and t₆₁: l2→l3 to t₁₈₁₇: l5→l3
Chain transitions t₅₄: l1→l2 and t₆₁: l2→l3 to t₁₈₁₈: l1→l3
Chain transitions t₅₄: l1→l2 and t₆₂: l2→l3 to t₁₈₁₉: l1→l3
Chain transitions t₅₄: l1→l2 and t₆₃: l2→l4 to t₁₈₂₀: l1→l4
Chain transitions t₅₄: l1→l2 and t₆₄: l2→l4 to t₁₈₂₁: l1→l4
Chain transitions t₅₄: l1→l2 and t₆₅: l2→l4 to t₁₈₂₂: l1→l4
Chain transitions t₅₄: l1→l2 and t₆₀: l2→l3 to t₁₈₂₃: l1→l3
Chain transitions t₅₅: l1→l2 and t₆₀: l2→l3 to t₁₈₂₄: l1→l3
Chain transitions t₅₆: l1→l2 and t₆₀: l2→l3 to t₁₈₂₅: l1→l3
Chain transitions t₆₉: l5→l2 and t₆₀: l2→l3 to t₁₈₂₆: l5→l3
Chain transitions t₇₀: l5→l2 and t₆₀: l2→l3 to t₁₈₂₇: l5→l3
Chain transitions t₇₁: l5→l2 and t₆₀: l2→l3 to t₁₈₂₈: l5→l3
Chain transitions t₁₈₀₁: l5→l4 and t₆₈: l4→l6 to t₁₈₂₉: l5→l6
Chain transitions t₁₈₀₀: l5→l4 and t₆₈: l4→l6 to t₁₈₃₀: l5→l6
Chain transitions t₁₈₀₀: l5→l4 and t₆₇: l4→l6 to t₁₈₃₁: l5→l6
Chain transitions t₁₈₀₁: l5→l4 and t₆₇: l4→l6 to t₁₈₃₂: l5→l6
Chain transitions t₁₇₉₉: l5→l4 and t₆₇: l4→l6 to t₁₈₃₃: l5→l6
Chain transitions t₁₇₉₉: l5→l4 and t₆₈: l4→l6 to t₁₈₃₄: l5→l6
Chain transitions t₁₇₉₉: l5→l4 and t₆₆: l4→l6 to t₁₈₃₅: l5→l6
Chain transitions t₁₈₀₀: l5→l4 and t₆₆: l4→l6 to t₁₈₃₆: l5→l6
Chain transitions t₁₈₀₁: l5→l4 and t₆₆: l4→l6 to t₁₈₃₇: l5→l6
Chain transitions t₁₇₉₈: l5→l4 and t₆₆: l4→l6 to t₁₈₃₈: l5→l6
Chain transitions t₁₇₉₈: l5→l4 and t₆₇: l4→l6 to t₁₈₃₉: l5→l6
Chain transitions t₁₇₉₈: l5→l4 and t₆₈: l4→l6 to t₁₈₄₀: l5→l6
Chain transitions t₁₇₉₇: l5→l4 and t₆₆: l4→l6 to t₁₈₄₁: l5→l6
Chain transitions t₁₇₉₇: l5→l4 and t₆₇: l4→l6 to t₁₈₄₂: l5→l6
Chain transitions t₁₇₉₇: l5→l4 and t₆₈: l4→l6 to t₁₈₄₃: l5→l6
Chain transitions t₁₇₉₆: l5→l4 and t₆₆: l4→l6 to t₁₈₄₄: l5→l6
Chain transitions t₁₇₉₆: l5→l4 and t₆₇: l4→l6 to t₁₈₄₅: l5→l6
Chain transitions t₁₇₉₆: l5→l4 and t₆₈: l4→l6 to t₁₈₄₆: l5→l6
Chain transitions t₁₇₉₅: l5→l4 and t₆₆: l4→l6 to t₁₈₄₇: l5→l6
Chain transitions t₁₇₉₅: l5→l4 and t₆₇: l4→l6 to t₁₈₄₈: l5→l6
Chain transitions t₁₇₉₅: l5→l4 and t₆₈: l4→l6 to t₁₈₄₉: l5→l6
Chain transitions t₁₇₉₄: l5→l4 and t₆₆: l4→l6 to t₁₈₅₀: l5→l6
Chain transitions t₁₇₉₄: l5→l4 and t₆₇: l4→l6 to t₁₈₅₁: l5→l6
Chain transitions t₁₇₉₄: l5→l4 and t₆₈: l4→l6 to t₁₈₅₂: l5→l6
Chain transitions t₁₇₉₃: l5→l4 and t₆₆: l4→l6 to t₁₈₅₃: l5→l6
Chain transitions t₁₇₉₃: l5→l4 and t₆₇: l4→l6 to t₁₈₅₄: l5→l6
Chain transitions t₁₇₉₃: l5→l4 and t₆₈: l4→l6 to t₁₈₅₅: l5→l6
Chain transitions t₁₈₂₂: l1→l4 and t₆₆: l4→l6 to t₁₈₅₆: l1→l6
Chain transitions t₁₈₂₂: l1→l4 and t₆₇: l4→l6 to t₁₈₅₇: l1→l6
Chain transitions t₁₈₂₂: l1→l4 and t₆₈: l4→l6 to t₁₈₅₈: l1→l6
Chain transitions t₁₈₂₁: l1→l4 and t₆₆: l4→l6 to t₁₈₅₉: l1→l6
Chain transitions t₁₈₂₁: l1→l4 and t₆₇: l4→l6 to t₁₈₆₀: l1→l6
Chain transitions t₁₈₂₁: l1→l4 and t₆₈: l4→l6 to t₁₈₆₁: l1→l6
Chain transitions t₁₈₂₀: l1→l4 and t₆₆: l4→l6 to t₁₈₆₂: l1→l6
Chain transitions t₁₈₂₀: l1→l4 and t₆₇: l4→l6 to t₁₈₆₃: l1→l6
Chain transitions t₁₈₂₀: l1→l4 and t₆₈: l4→l6 to t₁₈₆₄: l1→l6
Chain transitions t₁₈₁₂: l1→l4 and t₆₆: l4→l6 to t₁₈₆₅: l1→l6
Chain transitions t₁₈₁₂: l1→l4 and t₆₇: l4→l6 to t₁₈₆₆: l1→l6
Chain transitions t₁₈₁₂: l1→l4 and t₆₈: l4→l6 to t₁₈₆₇: l1→l6
Chain transitions t₁₈₁₁: l1→l4 and t₆₆: l4→l6 to t₁₈₆₈: l1→l6
Chain transitions t₁₈₁₁: l1→l4 and t₆₇: l4→l6 to t₁₈₆₉: l1→l6
Chain transitions t₁₈₁₁: l1→l4 and t₆₈: l4→l6 to t₁₈₇₀: l1→l6
Chain transitions t₁₈₁₀: l1→l4 and t₆₆: l4→l6 to t₁₈₇₁: l1→l6
Chain transitions t₁₈₁₀: l1→l4 and t₆₇: l4→l6 to t₁₈₇₂: l1→l6
Chain transitions t₁₈₁₀: l1→l4 and t₆₈: l4→l6 to t₁₈₇₃: l1→l6
Chain transitions t₁₈₀₄: l1→l4 and t₆₆: l4→l6 to t₁₈₇₄: l1→l6
Chain transitions t₁₈₀₄: l1→l4 and t₆₇: l4→l6 to t₁₈₇₅: l1→l6
Chain transitions t₁₈₀₄: l1→l4 and t₆₈: l4→l6 to t₁₈₇₆: l1→l6
Chain transitions t₁₈₀₃: l1→l4 and t₆₆: l4→l6 to t₁₈₇₇: l1→l6
Chain transitions t₁₈₀₃: l1→l4 and t₆₇: l4→l6 to t₁₈₇₈: l1→l6
Chain transitions t₁₈₀₃: l1→l4 and t₆₈: l4→l6 to t₁₈₇₉: l1→l6
Chain transitions t₁₈₀₂: l1→l4 and t₆₆: l4→l6 to t₁₈₈₀: l1→l6
Chain transitions t₁₈₀₂: l1→l4 and t₆₇: l4→l6 to t₁₈₈₁: l1→l6
Chain transitions t₁₈₀₂: l1→l4 and t₆₈: l4→l6 to t₁₈₈₂: l1→l6
Chain transitions t₇₉: l6→l5 and t₁₈₅₅: l5→l6 to t₁₈₈₃: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₅₅: l5→l6 to t₁₈₈₄: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₅₄: l5→l6 to t₁₈₈₅: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₅₄: l5→l6 to t₁₈₈₆: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₅₃: l5→l6 to t₁₈₈₇: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₅₃: l5→l6 to t₁₈₈₈: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₅₂: l5→l6 to t₁₈₈₉: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₅₂: l5→l6 to t₁₈₉₀: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₅₁: l5→l6 to t₁₈₉₁: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₅₁: l5→l6 to t₁₈₉₂: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₅₀: l5→l6 to t₁₈₉₃: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₅₀: l5→l6 to t₁₈₉₄: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₄₉: l5→l6 to t₁₈₉₅: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₄₉: l5→l6 to t₁₈₉₆: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₄₈: l5→l6 to t₁₈₉₇: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₄₈: l5→l6 to t₁₈₉₈: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₄₇: l5→l6 to t₁₈₉₉: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₄₇: l5→l6 to t₁₉₀₀: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₄₆: l5→l6 to t₁₉₀₁: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₄₆: l5→l6 to t₁₉₀₂: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₄₅: l5→l6 to t₁₉₀₃: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₄₅: l5→l6 to t₁₉₀₄: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₄₄: l5→l6 to t₁₉₀₅: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₄₄: l5→l6 to t₁₉₀₆: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₄₃: l5→l6 to t₁₉₀₇: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₄₃: l5→l6 to t₁₉₀₈: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₄₂: l5→l6 to t₁₉₀₉: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₄₂: l5→l6 to t₁₉₁₀: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₄₁: l5→l6 to t₁₉₁₁: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₄₁: l5→l6 to t₁₉₁₂: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₄₀: l5→l6 to t₁₉₁₃: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₄₀: l5→l6 to t₁₉₁₄: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₃₉: l5→l6 to t₁₉₁₅: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₃₉: l5→l6 to t₁₉₁₆: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₃₈: l5→l6 to t₁₉₁₇: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₃₈: l5→l6 to t₁₉₁₈: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₃₇: l5→l6 to t₁₉₁₉: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₃₇: l5→l6 to t₁₉₂₀: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₃₆: l5→l6 to t₁₉₂₁: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₃₆: l5→l6 to t₁₉₂₂: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₃₅: l5→l6 to t₁₉₂₃: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₃₅: l5→l6 to t₁₉₂₄: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₃₄: l5→l6 to t₁₉₂₅: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₃₄: l5→l6 to t₁₉₂₆: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₃₃: l5→l6 to t₁₉₂₇: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₃₃: l5→l6 to t₁₉₂₈: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₃₂: l5→l6 to t₁₉₂₉: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₃₂: l5→l6 to t₁₉₃₀: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₃₁: l5→l6 to t₁₉₃₁: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₃₁: l5→l6 to t₁₉₃₂: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₃₀: l5→l6 to t₁₉₃₃: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₃₀: l5→l6 to t₁₉₃₄: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₂₉: l5→l6 to t₁₉₃₅: l6→l6
Chain transitions t₇₉: l6→l5 and t₁₈₂₉: l5→l6 to t₁₉₃₆: l6→l6
Chain transitions t₇₈: l6→l5 and t₁₈₀₁: l5→l4 to t₁₉₃₇: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₈₀₁: l5→l4 to t₁₉₃₈: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₈₀₀: l5→l4 to t₁₉₃₉: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₈₀₀: l5→l4 to t₁₉₄₀: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₇₉₉: l5→l4 to t₁₉₄₁: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₇₉₉: l5→l4 to t₁₉₄₂: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₇₉₈: l5→l4 to t₁₉₄₃: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₇₉₈: l5→l4 to t₁₉₄₄: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₇₉₇: l5→l4 to t₁₉₄₅: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₇₉₇: l5→l4 to t₁₉₄₆: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₇₉₆: l5→l4 to t₁₉₄₇: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₇₉₆: l5→l4 to t₁₉₄₈: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₇₉₅: l5→l4 to t₁₉₄₉: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₇₉₅: l5→l4 to t₁₉₅₀: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₇₉₄: l5→l4 to t₁₉₅₁: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₇₉₄: l5→l4 to t₁₉₅₂: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₇₉₃: l5→l4 to t₁₉₅₃: l6→l4
Chain transitions t₇₉: l6→l5 and t₁₇₉₃: l5→l4 to t₁₉₅₄: l6→l4
Chain transitions t₇₈: l6→l5 and t₁₈₂₈: l5→l3 to t₁₉₅₅: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₈₂₈: l5→l3 to t₁₉₅₆: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₈₂₇: l5→l3 to t₁₉₅₇: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₈₂₇: l5→l3 to t₁₉₅₈: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₈₂₆: l5→l3 to t₁₉₅₉: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₈₂₆: l5→l3 to t₁₉₆₀: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₈₁₇: l5→l3 to t₁₉₆₁: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₈₁₇: l5→l3 to t₁₉₆₂: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₈₁₆: l5→l3 to t₁₉₆₃: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₈₁₆: l5→l3 to t₁₉₆₄: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₈₁₅: l5→l3 to t₁₉₆₅: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₈₁₅: l5→l3 to t₁₉₆₆: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₈₀₈: l5→l3 to t₁₉₆₇: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₈₀₈: l5→l3 to t₁₉₆₈: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₈₀₇: l5→l3 to t₁₉₆₉: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₈₀₇: l5→l3 to t₁₉₇₀: l6→l3
Chain transitions t₇₈: l6→l5 and t₁₈₀₆: l5→l3 to t₁₉₇₁: l6→l3
Chain transitions t₇₉: l6→l5 and t₁₈₀₆: l5→l3 to t₁₉₇₂: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₇: l5→l3 to t₁₉₇₃: l6→l3
Chain transitions t₇₉: l6→l5 and t₇₇: l5→l3 to t₁₉₇₄: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₆: l5→l3 to t₁₉₇₅: l6→l3
Chain transitions t₇₉: l6→l5 and t₇₆: l5→l3 to t₁₉₇₆: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₅: l5→l3 to t₁₉₇₇: l6→l3
Chain transitions t₇₉: l6→l5 and t₇₅: l5→l3 to t₁₉₇₈: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₄: l5→l3 to t₁₉₇₉: l6→l3
Chain transitions t₇₉: l6→l5 and t₇₄: l5→l3 to t₁₉₈₀: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₃: l5→l3 to t₁₉₈₁: l6→l3
Chain transitions t₇₉: l6→l5 and t₇₃: l5→l3 to t₁₉₈₂: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₂: l5→l3 to t₁₉₈₃: l6→l3
Chain transitions t₇₉: l6→l5 and t₇₂: l5→l3 to t₁₉₈₄: l6→l3
Chain transitions t₇₈: l6→l5 and t₇₁: l5→l2 to t₁₉₈₅: l6→l2
Chain transitions t₇₉: l6→l5 and t₇₁: l5→l2 to t₁₉₈₆: l6→l2
Chain transitions t₇₈: l6→l5 and t₇₀: l5→l2 to t₁₉₈₇: l6→l2
Chain transitions t₇₉: l6→l5 and t₇₀: l5→l2 to t₁₉₈₈: l6→l2
Chain transitions t₇₈: l6→l5 and t₆₉: l5→l2 to t₁₉₈₉: l6→l2
Chain transitions t₇₉: l6→l5 and t₆₉: l5→l2 to t₁₉₉₀: l6→l2
Analysing control-flow refined program
Analysing control-flow refined program
Cut unsatisfiable transition t₃₂₉₇: n_l5___7→l3
Cut unsatisfiable transition t₃₂₉₈: n_l5___8→l3
Cut unsatisfiable transition t₃₃₀₅: n_l5___7→l3
Cut unsatisfiable transition t₃₃₀₆: n_l5___8→l3
Cut unsatisfiable transition t₃₃₄₅: n_l5___7→l3
Cut unsatisfiable transition t₃₃₄₆: n_l5___8→l3
Cut unsatisfiable transition t₃₃₅₃: n_l5___7→l3
Cut unsatisfiable transition t₃₃₅₄: n_l5___8→l3
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l6___9
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l2
Found invariant X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l5___1
Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l4___18
Found invariant X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l4___17
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l6___4
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l5___5
Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l6___16
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l6___10
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l4___12
Found invariant X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___14
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l5___2
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___6
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___8
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l5___7
Found invariant X₂ ≤ 1 ∧ 0 ≤ X₂ for location l3
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l2___13
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l4___11
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ for location n_l5___3
Found invariant X₂ ≤ 1 ∧ 1 ≤ X₂ for location n_l6___15
MPRF for transition t₃₁₉₄: n_l2___13(X₀, X₁, X₂, X₃, X₄) → n_l4___11(X₀+1, X₁+1, 1, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₄ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ X₂ ≤ 1 ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ X₂ ≤ 1 ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
168⋅X₀+168⋅X₄+202 {O(n)}
MPRF for transition t₃₂₀₃: n_l4___11(X₀, X₁, X₂, X₃, X₄) → n_l6___4(X₀+1, X₁+1, 1, X₃, X₄) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₃₂₀₄: n_l4___11(X₀, X₁, X₂, X₃, X₄) → n_l6___9(X₀, X₁, Arg2_P, X₃, X₄) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ Arg2_P ≤ 1 ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+103 {O(n)}
MPRF for transition t₃₂₀₅: n_l4___11(X₀, X₁, X₂, X₃, X₄) → n_l6___9(X₀, X₁, Arg2_P, X₃, X₄) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ Arg2_P ≤ 1 ∧ 0 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+103 {O(n)}
MPRF for transition t₃₂₀₈: n_l4___12(X₀, X₁, X₂, X₃, X₄) → n_l6___9(X₀+1, X₁+1, 1, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+103 {O(n)}
MPRF for transition t₃₂₁₉: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l2___13(X₀, X₁, 1, Arg3_P, Arg4_P) :|: X₀ ≤ 1+X₄ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ Arg4_P ∧ 1+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₃₂₂₀: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l2___13(X₀+1, X₁+1, 1, Arg3_P, Arg4_P) :|: X₀ ≤ 1+X₄ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₃₂₂₁: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l2___13(X₀, X₁, 1, Arg3_P, Arg4_P) :|: X₀ ≤ 1+X₄ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ Arg4_P ∧ 1+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₃₂₂₂: n_l5___3(X₀, X₁, X₂, X₃, X₄) → n_l2___13(X₀+1, X₁+1, 1, Arg3_P, Arg4_P) :|: X₀ ≤ 1+X₄ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₃₂₂₃: n_l5___5(X₀, X₁, X₂, X₃, X₄) → n_l2___13(X₀, X₁, 1, Arg3_P, Arg4_P) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ Arg4_P ∧ 1+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+99 {O(n)}
MPRF for transition t₃₂₂₄: n_l5___5(X₀, X₁, X₂, X₃, X₄) → n_l2___13(X₀+1, X₁+1, 1, Arg3_P, Arg4_P) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+103 {O(n)}
MPRF for transition t₃₂₂₅: n_l5___5(X₀, X₁, X₂, X₃, X₄) → n_l2___13(X₀, X₁, 1, Arg3_P, Arg4_P) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ Arg4_P ∧ 1+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+99 {O(n)}
MPRF for transition t₃₂₂₆: n_l5___6(X₀, X₁, X₂, X₃, X₄) → n_l2___13(X₀+1, X₁+1, 1, Arg3_P, Arg4_P) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+103 {O(n)}
MPRF for transition t₃₂₂₈: n_l5___7(X₀, X₁, X₂, X₃, X₄) → n_l2___13(X₀+1, X₁+1, 1, Arg3_P, Arg4_P) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₃₂₃₀: n_l5___8(X₀, X₁, X₂, X₃, X₄) → n_l2___13(X₀+1, X₁+1, 1, Arg3_P, Arg4_P) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 0 ∧ 2+X₀ ≤ Arg4_P ∧ 2+X₁ ≤ Arg3_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg4_P ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 0 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+99 {O(n)}
MPRF for transition t₃₂₃₂: n_l6___10(X₀, X₁, X₂, X₃, X₄) → n_l5___8(X₀, X₁, 0, X₃, X₄) :|: 1+X₀ ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+99 {O(n)}
MPRF for transition t₃₂₃₆: n_l6___4(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, X₁, 1, X₃, X₄) :|: X₀ ≤ 1+X₄ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+99 {O(n)}
MPRF for transition t₃₂₃₇: n_l6___4(X₀, X₁, X₂, X₃, X₄) → n_l5___3(X₀, X₁, 0, X₃, X₄) :|: X₀ ≤ 1+X₄ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ 1+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ 1+X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₃+84⋅X₄+103 {O(n)}
MPRF for transition t₃₂₃₈: n_l6___9(X₀, X₁, X₂, X₃, X₄) → n_l5___5(X₀, X₁, 1, X₃, X₄) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₁+84⋅X₃+103 {O(n)}
MPRF for transition t₃₂₃₉: n_l6___9(X₀, X₁, X₂, X₃, X₄) → n_l5___6(X₀, X₁, 0, X₃, X₄) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 0 ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ of depth 1:
new bound:
84⋅X₀+84⋅X₄+103 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₅₃: 1 {O(1)}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 1 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: inf {Infinity}
t₆₄: inf {Infinity}
t₆₅: inf {Infinity}
t₆₆: inf {Infinity}
t₆₇: inf {Infinity}
t₆₈: inf {Infinity}
t₆₉: inf {Infinity}
t₇₀: inf {Infinity}
t₇₁: 3⋅X₁+3⋅X₃+4 {O(n)}
t₇₂: 1 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 1 {O(1)}
t₇₅: 1 {O(1)}
t₇₆: 1 {O(1)}
t₇₇: 1 {O(1)}
t₇₈: 9⋅X₁+9⋅X₃+19 {O(n)}
t₇₉: inf {Infinity}
Costbounds
Overall costbound: inf {Infinity}
t₅₃: 1 {O(1)}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 1 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 1 {O(1)}
t₆₃: inf {Infinity}
t₆₄: inf {Infinity}
t₆₅: inf {Infinity}
t₆₆: inf {Infinity}
t₆₇: inf {Infinity}
t₆₈: inf {Infinity}
t₆₉: inf {Infinity}
t₇₀: inf {Infinity}
t₇₁: 3⋅X₁+3⋅X₃+4 {O(n)}
t₇₂: 1 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 1 {O(1)}
t₇₅: 1 {O(1)}
t₇₆: 1 {O(1)}
t₇₇: 1 {O(1)}
t₇₈: 9⋅X₁+9⋅X₃+19 {O(n)}
t₇₉: inf {Infinity}
Sizebounds
t₅₃, X₀: X₀ {O(n)}
t₅₃, X₁: X₁ {O(n)}
t₅₃, X₂: X₂ {O(n)}
t₅₃, X₃: X₃ {O(n)}
t₅₃, X₄: X₄ {O(n)}
t₅₄, X₀: X₀ {O(n)}
t₅₄, X₁: X₁ {O(n)}
t₅₄, X₂: 0 {O(1)}
t₅₄, X₃: X₃ {O(n)}
t₅₄, X₄: X₄ {O(n)}
t₅₅, X₀: X₀ {O(n)}
t₅₅, X₁: X₁ {O(n)}
t₅₅, X₂: 0 {O(1)}
t₅₅, X₃: X₃ {O(n)}
t₅₅, X₄: X₄ {O(n)}
t₅₆, X₀: X₀+1 {O(n)}
t₅₆, X₁: X₁+1 {O(n)}
t₅₆, X₂: 1 {O(1)}
t₅₆, X₃: X₃ {O(n)}
t₅₆, X₄: X₄ {O(n)}
t₅₇, X₀: X₀ {O(n)}
t₅₇, X₁: X₁ {O(n)}
t₅₇, X₂: 0 {O(1)}
t₅₇, X₃: X₃ {O(n)}
t₅₇, X₄: X₄ {O(n)}
t₅₈, X₀: X₀ {O(n)}
t₅₈, X₁: X₁ {O(n)}
t₅₈, X₂: 0 {O(1)}
t₅₈, X₃: X₃ {O(n)}
t₅₈, X₄: X₄ {O(n)}
t₅₉, X₀: X₀+1 {O(n)}
t₅₉, X₁: X₁+1 {O(n)}
t₅₉, X₂: 1 {O(1)}
t₅₉, X₃: X₃ {O(n)}
t₅₉, X₄: X₄ {O(n)}
t₆₀, X₂: 1 {O(1)}
t₆₀, X₃: 12⋅X₃ {O(n)}
t₆₀, X₄: 12⋅X₄ {O(n)}
t₆₁, X₂: 1 {O(1)}
t₆₁, X₃: 12⋅X₃ {O(n)}
t₆₁, X₄: 12⋅X₄ {O(n)}
t₆₂, X₂: 1 {O(1)}
t₆₂, X₃: 12⋅X₃ {O(n)}
t₆₂, X₄: 12⋅X₄ {O(n)}
t₆₃, X₂: 1 {O(1)}
t₆₃, X₃: 3⋅X₃ {O(n)}
t₆₃, X₄: 3⋅X₄ {O(n)}
t₆₄, X₂: 1 {O(1)}
t₆₄, X₃: 3⋅X₃ {O(n)}
t₆₄, X₄: 3⋅X₄ {O(n)}
t₆₅, X₂: 1 {O(1)}
t₆₅, X₃: 3⋅X₃ {O(n)}
t₆₅, X₄: 3⋅X₄ {O(n)}
t₆₆, X₂: 1 {O(1)}
t₆₆, X₃: 3⋅X₃ {O(n)}
t₆₆, X₄: 3⋅X₄ {O(n)}
t₆₇, X₂: 1 {O(1)}
t₆₇, X₃: 3⋅X₃ {O(n)}
t₆₇, X₄: 3⋅X₄ {O(n)}
t₆₈, X₂: 1 {O(1)}
t₆₈, X₃: 3⋅X₃ {O(n)}
t₆₈, X₄: 3⋅X₄ {O(n)}
t₆₉, X₂: 1 {O(1)}
t₆₉, X₃: 3⋅X₃ {O(n)}
t₆₉, X₄: 3⋅X₄ {O(n)}
t₇₀, X₂: 1 {O(1)}
t₇₀, X₃: 3⋅X₃ {O(n)}
t₇₀, X₄: 3⋅X₄ {O(n)}
t₇₁, X₂: 1 {O(1)}
t₇₁, X₃: 3⋅X₃ {O(n)}
t₇₁, X₄: 3⋅X₄ {O(n)}
t₇₂, X₂: 1 {O(1)}
t₇₂, X₃: 6⋅X₃ {O(n)}
t₇₂, X₄: 6⋅X₄ {O(n)}
t₇₃, X₂: 1 {O(1)}
t₇₃, X₃: 6⋅X₃ {O(n)}
t₇₃, X₄: 6⋅X₄ {O(n)}
t₇₄, X₂: 1 {O(1)}
t₇₄, X₃: 6⋅X₃ {O(n)}
t₇₄, X₄: 6⋅X₄ {O(n)}
t₇₅, X₂: 1 {O(1)}
t₇₅, X₃: 6⋅X₃ {O(n)}
t₇₅, X₄: 6⋅X₄ {O(n)}
t₇₆, X₂: 1 {O(1)}
t₇₆, X₃: 6⋅X₃ {O(n)}
t₇₆, X₄: 6⋅X₄ {O(n)}
t₇₇, X₂: 1 {O(1)}
t₇₇, X₃: 6⋅X₃ {O(n)}
t₇₇, X₄: 6⋅X₄ {O(n)}
t₇₈, X₂: 0 {O(1)}
t₇₈, X₃: 3⋅X₃ {O(n)}
t₇₈, X₄: 3⋅X₄ {O(n)}
t₇₉, X₂: 1 {O(1)}
t₇₉, X₃: 3⋅X₃ {O(n)}
t₇₉, X₄: 3⋅X₄ {O(n)}