Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃
Temp_Vars: C2, D2, E2, F2, G2, H2, I2, J2, K2, L2, M2, N2, O2, P2, Q2, R2, S2
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₅₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l1(X₁₃, 2, D2, H2, D2, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, C2, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, C2, X₄₅, D2, I2, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: 2 ≤ X₁₃
t₅₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(C2, I2, H2, N2, M2, X₅, X₆, X₇, X₈, K2, X₁₀, X₁₁, X₁₂, J2, X₁₄, P2, O2, Q2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, R2, X₂₉, X₃₀, E2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, D2, G2, F2, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: L2 ≤ 0 ∧ X₁₃ ≤ 0 ∧ J2 ≤ 0
t₅₆: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(C2, I2, H2, M2, F2, X₅, X₆, X₇, X₈, J2, X₁₀, X₁₁, X₁₂, 1, X₉, O2, N2, P2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, Q2, X₂₉, X₃₀, G2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, D2, K2, E2, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: X₁₃ ≤ 1 ∧ 1 ≤ X₁₃
t₅₇: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(C2, I2, H2, N2, M2, X₅, X₆, X₇, X₈, K2, X₁₀, X₁₁, X₁₂, 1, J2, P2, O2, Q2, R2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, L2, X₂₉, X₃₀, E2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, D2, G2, F2, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, S2) :|: 1 ≤ 0 ∧ S2+1 ≤ J2 ∧ X₁₃ ≤ 1 ∧ 1 ≤ X₁₃
t₅₈: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(C2, I2, H2, N2, M2, X₅, X₆, X₇, X₈, K2, X₁₀, X₁₁, X₁₂, 1, J2, P2, O2, Q2, R2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, L2, X₂₉, X₃₀, E2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, D2, G2, F2, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, S2) :|: 1 ≤ 0 ∧ J2+1 ≤ S2 ∧ X₁₃ ≤ 1 ∧ 1 ≤ X₁₃
t₅₉: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(C2, I2, H2, N2, M2, X₅, X₆, X₇, X₈, K2, X₁₀, X₁₁, X₁₂, 1, J2, P2, O2, Q2, R2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, L2, X₂₉, X₃₀, E2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, D2, G2, F2, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, S2) :|: 1 ≤ 0 ∧ S2+1 ≤ J2 ∧ X₁₃ ≤ 1 ∧ 1 ≤ X₁₃
t₆₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(C2, I2, H2, N2, M2, X₅, X₆, X₇, X₈, K2, X₁₀, X₁₁, X₁₂, 1, J2, P2, O2, Q2, R2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, L2, X₂₉, X₃₀, E2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, D2, G2, F2, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, S2) :|: 1 ≤ 0 ∧ J2+1 ≤ S2 ∧ X₁₃ ≤ 1 ∧ 1 ≤ X₁₃
t₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l1(X₀, 1+X₁, X₃, C2, X₃, D2, X₁, X₈, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: X₁+1 ≤ X₀ ∧ 0 ≤ X₁
t₅₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(C2, I2, H2, N2, M2, X₅, X₆, X₇, X₈, K2, X₁₀, X₁₁, X₁₂, J2, X₁₄, P2, O2, Q2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, R2, X₂₉, X₃₀, E2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, D2, G2, F2, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: 2 ≤ L2 ∧ L2 ≤ X₄₈ ∧ 2 ≤ J2 ∧ J2 ≤ X₄₈ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₁ ∧ X₁₄ ≤ X₉ ∧ X₉ ≤ X₁₄
t₅₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(C2, I2, H2, M2, F2, X₅, X₆, X₇, X₈, X₉, X₉, X₃₀, 0, J2, X₁₄, X₁₄, N2, X₉, N2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀, G2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, D2, K2, E2, X₄₇, X₃₀+1, X₂₁, X₈, O2, P2, X₅₃) :|: 2 ≤ Q2 ∧ Q2 ≤ X₄₈ ∧ 2 ≤ J2 ∧ J2 ≤ X₄₈ ∧ X₁₀+1 ≤ X₁₄ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₄₈ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉
t₅₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(C2, I2, H2, M2, F2, X₅, X₆, X₇, X₈, X₉, X₉, X₃₀, 0, J2, X₁₄, X₁₄, N2, X₉, N2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀, G2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, D2, K2, E2, X₄₇, X₃₀+1, X₂₁, X₈, O2, P2, X₅₃) :|: 2 ≤ Q2 ∧ Q2 ≤ X₄₈ ∧ 2 ≤ J2 ∧ J2 ≤ X₄₈ ∧ X₁₄+1 ≤ X₁₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₄₈ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉
t₄₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, H2, X₁₀, X₁₁, X₁₂, C2, D2, K2, J2, G2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, E2, X₂₉, X₃₀, I2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, F2, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: 0 ≤ X₁₂ ∧ 0 ≤ X₃₀ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₁₀+1 ≤ D2 ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
t₄₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, H2, X₁₀, X₁₁, X₁₂, C2, D2, K2, J2, G2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, E2, X₂₉, X₃₀, I2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, F2, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: 0 ≤ X₁₂ ∧ 0 ≤ X₃₀ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₁₀ ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
t₄₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, H2, X₁₀, X₁₁, X₁₂, C2, D2, K2, J2, G2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, E2, X₂₉, X₃₀, I2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, F2, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: 0 ≤ X₁₂ ∧ 0 ≤ X₃₀ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₁₀+1 ≤ D2 ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
t₅₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, H2, X₁₀, X₁₁, X₁₂, C2, D2, K2, J2, G2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, E2, X₂₉, X₃₀, I2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, F2, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: 0 ≤ X₁₂ ∧ 0 ≤ X₃₀ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₁₀ ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
t₃₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: K2+1 ≤ J2 ∧ X₉+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₃₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: K2+1 ≤ J2 ∧ X₉+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₃₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: K2+1 ≤ J2 ∧ X₉+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₃₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: K2+1 ≤ J2 ∧ X₉+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₃₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: K2+1 ≤ J2 ∧ J2+1 ≤ X₉ ∧ I2+1 ≤ J2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₃₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: K2+1 ≤ J2 ∧ J2+1 ≤ X₉ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₃₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: K2+1 ≤ J2 ∧ J2+1 ≤ X₉ ∧ J2+1 ≤ I2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: K2+1 ≤ J2 ∧ J2+1 ≤ X₉ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₃₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: J2+1 ≤ K2 ∧ X₉+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₄₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: J2+1 ≤ K2 ∧ X₉+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₄₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: J2+1 ≤ K2 ∧ X₉+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₄₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: J2+1 ≤ K2 ∧ X₉+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₄₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: J2+1 ≤ K2 ∧ J2+1 ≤ X₉ ∧ I2+1 ≤ J2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₄₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: J2+1 ≤ K2 ∧ J2+1 ≤ X₉ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₄₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: J2+1 ≤ K2 ∧ J2+1 ≤ X₉ ∧ J2+1 ≤ I2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₄₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀-1, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, H2, I2, X₂₁, X₈, X₁₀, X₁₂+1, X₃₀-1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: J2+1 ≤ K2 ∧ J2+1 ≤ X₉ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
t₁₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, H2, X₁₀, X₁₁, X₁₂, C2, D2, K2, J2, G2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, E2, X₂₉, X₃₀, I2, F2, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: 0 ≤ X₁₁ ∧ F2+1 ≤ D2 ∧ 2 ≤ C2 ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, H2, X₁₀, X₁₁, X₁₂, C2, D2, K2, J2, G2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, E2, X₂₉, X₃₀, I2, F2, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: 0 ≤ X₁₁ ∧ D2+1 ≤ F2 ∧ 2 ≤ C2 ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: F2+1 ≤ E2 ∧ X₉+1 ≤ E2 ∧ X₁₀+1 ≤ E2 ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: F2+1 ≤ E2 ∧ X₉+1 ≤ E2 ∧ X₁₀+1 ≤ E2 ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: F2+1 ≤ E2 ∧ X₉+1 ≤ E2 ∧ E2+1 ≤ X₁₀ ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: F2+1 ≤ E2 ∧ X₉+1 ≤ E2 ∧ E2+1 ≤ X₁₀ ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: F2+1 ≤ E2 ∧ E2+1 ≤ X₉ ∧ X₁₀+1 ≤ E2 ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: F2+1 ≤ E2 ∧ E2+1 ≤ X₉ ∧ X₁₀+1 ≤ E2 ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: F2+1 ≤ E2 ∧ E2+1 ≤ X₉ ∧ E2+1 ≤ X₁₀ ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: F2+1 ≤ E2 ∧ E2+1 ≤ X₉ ∧ E2+1 ≤ X₁₀ ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: E2+1 ≤ F2 ∧ X₉+1 ≤ E2 ∧ X₁₀+1 ≤ E2 ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: E2+1 ≤ F2 ∧ X₉+1 ≤ E2 ∧ X₁₀+1 ≤ E2 ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: E2+1 ≤ F2 ∧ X₉+1 ≤ E2 ∧ E2+1 ≤ X₁₀ ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: E2+1 ≤ F2 ∧ X₉+1 ≤ E2 ∧ E2+1 ≤ X₁₀ ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: E2+1 ≤ F2 ∧ E2+1 ≤ X₉ ∧ X₁₀+1 ≤ E2 ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: E2+1 ≤ F2 ∧ E2+1 ≤ X₉ ∧ X₁₀+1 ≤ E2 ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: E2+1 ≤ F2 ∧ E2+1 ≤ X₉ ∧ E2+1 ≤ X₁₀ ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1+X₃₀, 1, C2, X₁₅, X₁₅, D2, X₉, D2, H2, X₂₁, X₂₁, X₈, X₁₀, I2, J2, K2, G2, X₉, X₃₀, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: E2+1 ≤ F2 ∧ E2+1 ≤ X₉ ∧ E2+1 ≤ X₁₀ ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
t₂₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, H2, X₁₀, X₁₁, X₁₂, C2, D2, K2, J2, G2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, E2, X₂₉, X₃₀, I2, X₃₂, X₃₃, X₃₄, F2, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: 0 ≤ X₂₉ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₁₀+1 ≤ D2 ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, H2, X₁₀, X₁₁, X₁₂, C2, D2, K2, J2, G2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, E2, X₂₉, X₃₀, I2, X₃₂, X₃₃, X₃₄, F2, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: 0 ≤ X₂₉ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₁₀ ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
t₂₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, H2, X₁₀, X₁₁, X₁₂, C2, D2, K2, J2, G2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, E2, X₂₉, X₃₀, I2, X₃₂, X₃₃, X₃₄, F2, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: 0 ≤ X₂₉ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₁₀+1 ≤ D2 ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
t₃₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, H2, X₁₀, X₁₁, X₁₂, C2, D2, K2, J2, G2, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, E2, X₂₉, X₃₀, I2, X₃₂, X₃₃, X₃₄, F2, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: 0 ≤ X₂₉ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₁₀ ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀, X₃₁, X₃₂, H2, I2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: X₁₀+1 ≤ J2 ∧ X₉+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
t₂₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀, X₃₁, X₃₂, H2, I2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: X₁₀+1 ≤ J2 ∧ X₉+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀, X₃₁, X₃₂, H2, I2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: X₁₀+1 ≤ J2 ∧ J2+1 ≤ X₉ ∧ I2+1 ≤ J2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
t₂₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀, X₃₁, X₃₂, H2, I2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: X₁₀+1 ≤ J2 ∧ J2+1 ≤ X₉ ∧ J2+1 ≤ I2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
t₂₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀, X₃₁, X₃₂, H2, I2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: J2+1 ≤ X₁₀ ∧ X₉+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀, X₃₁, X₃₂, H2, I2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: J2+1 ≤ X₁₀ ∧ X₉+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀, X₃₁, X₃₂, H2, I2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: J2+1 ≤ X₁₀ ∧ J2+1 ≤ X₉ ∧ I2+1 ≤ J2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, C2, X₁₅, X₁₅, D2, X₉, D2, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₉, X₂₉, X₃₀, X₃₁, X₃₂, H2, I2, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃) :|: J2+1 ≤ X₁₀ ∧ J2+1 ≤ X₉ ∧ J2+1 ≤ I2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
Show Graph
G
l0
l0
l1
l1
l0->l1
t₅₂
η (X₀) = X₁₃
η (X₁) = 2
η (X₂) = D2
η (X₃) = H2
η (X₄) = D2
η (X₁₄) = C2
η (X₄₄) = C2
η (X₄₆) = D2
η (X₄₇) = I2
τ = 2 ≤ X₁₃
l2
l2
l0->l2
t₅₁
η (X₀) = C2
η (X₁) = I2
η (X₂) = H2
η (X₃) = N2
η (X₄) = M2
η (X₉) = K2
η (X₁₃) = J2
η (X₁₅) = P2
η (X₁₆) = O2
η (X₁₇) = Q2
η (X₂₈) = R2
η (X₃₁) = E2
η (X₄₄) = D2
η (X₄₅) = G2
η (X₄₆) = F2
τ = L2 ≤ 0 ∧ X₁₃ ≤ 0 ∧ J2 ≤ 0
l0->l2
t₅₆
η (X₀) = C2
η (X₁) = I2
η (X₂) = H2
η (X₃) = M2
η (X₄) = F2
η (X₉) = J2
η (X₁₃) = 1
η (X₁₄) = X₉
η (X₁₅) = O2
η (X₁₆) = N2
η (X₁₇) = P2
η (X₂₈) = Q2
η (X₃₁) = G2
η (X₄₄) = D2
η (X₄₅) = K2
η (X₄₆) = E2
τ = X₁₃ ≤ 1 ∧ 1 ≤ X₁₃
l0->l2
t₅₇
η (X₀) = C2
η (X₁) = I2
η (X₂) = H2
η (X₃) = N2
η (X₄) = M2
η (X₉) = K2
η (X₁₃) = 1
η (X₁₄) = J2
η (X₁₅) = P2
η (X₁₆) = O2
η (X₁₇) = Q2
η (X₁₈) = R2
η (X₂₈) = L2
η (X₃₁) = E2
η (X₄₄) = D2
η (X₄₅) = G2
η (X₄₆) = F2
η (X₅₃) = S2
τ = 1 ≤ 0 ∧ S2+1 ≤ J2 ∧ X₁₃ ≤ 1 ∧ 1 ≤ X₁₃
l0->l2
t₅₈
η (X₀) = C2
η (X₁) = I2
η (X₂) = H2
η (X₃) = N2
η (X₄) = M2
η (X₉) = K2
η (X₁₃) = 1
η (X₁₄) = J2
η (X₁₅) = P2
η (X₁₆) = O2
η (X₁₇) = Q2
η (X₁₈) = R2
η (X₂₈) = L2
η (X₃₁) = E2
η (X₄₄) = D2
η (X₄₅) = G2
η (X₄₆) = F2
η (X₅₃) = S2
τ = 1 ≤ 0 ∧ J2+1 ≤ S2 ∧ X₁₃ ≤ 1 ∧ 1 ≤ X₁₃
l0->l2
t₅₉
η (X₀) = C2
η (X₁) = I2
η (X₂) = H2
η (X₃) = N2
η (X₄) = M2
η (X₉) = K2
η (X₁₃) = 1
η (X₁₄) = J2
η (X₁₅) = P2
η (X₁₆) = O2
η (X₁₇) = Q2
η (X₁₈) = R2
η (X₂₈) = L2
η (X₃₁) = E2
η (X₄₄) = D2
η (X₄₅) = G2
η (X₄₆) = F2
η (X₅₃) = S2
τ = 1 ≤ 0 ∧ S2+1 ≤ J2 ∧ X₁₃ ≤ 1 ∧ 1 ≤ X₁₃
l0->l2
t₆₀
η (X₀) = C2
η (X₁) = I2
η (X₂) = H2
η (X₃) = N2
η (X₄) = M2
η (X₉) = K2
η (X₁₃) = 1
η (X₁₄) = J2
η (X₁₅) = P2
η (X₁₆) = O2
η (X₁₇) = Q2
η (X₁₈) = R2
η (X₂₈) = L2
η (X₃₁) = E2
η (X₄₄) = D2
η (X₄₅) = G2
η (X₄₆) = F2
η (X₅₃) = S2
τ = 1 ≤ 0 ∧ J2+1 ≤ S2 ∧ X₁₃ ≤ 1 ∧ 1 ≤ X₁₃
l1->l1
t₀
η (X₁) = 1+X₁
η (X₂) = X₃
η (X₃) = C2
η (X₄) = X₃
η (X₅) = D2
η (X₆) = X₁
η (X₇) = X₈
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁
l1->l2
t₅₅
η (X₀) = C2
η (X₁) = I2
η (X₂) = H2
η (X₃) = N2
η (X₄) = M2
η (X₉) = K2
η (X₁₃) = J2
η (X₁₅) = P2
η (X₁₆) = O2
η (X₁₇) = Q2
η (X₂₈) = R2
η (X₃₁) = E2
η (X₄₄) = D2
η (X₄₅) = G2
η (X₄₆) = F2
τ = 2 ≤ L2 ∧ L2 ≤ X₄₈ ∧ 2 ≤ J2 ∧ J2 ≤ X₄₈ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₄₈ ∧ 0 ≤ X₁ ∧ X₁₄ ≤ X₉ ∧ X₉ ≤ X₁₄
l3
l3
l1->l3
t₅₃
η (X₀) = C2
η (X₁) = I2
η (X₂) = H2
η (X₃) = M2
η (X₄) = F2
η (X₁₀) = X₉
η (X₁₁) = X₃₀
η (X₁₂) = 0
η (X₁₃) = J2
η (X₁₅) = X₁₄
η (X₁₆) = N2
η (X₁₇) = X₉
η (X₁₈) = N2
η (X₂₈) = X₉
η (X₃₁) = G2
η (X₄₄) = D2
η (X₄₅) = K2
η (X₄₆) = E2
η (X₄₈) = X₃₀+1
η (X₄₉) = X₂₁
η (X₅₀) = X₈
η (X₅₁) = O2
η (X₅₂) = P2
τ = 2 ≤ Q2 ∧ Q2 ≤ X₄₈ ∧ 2 ≤ J2 ∧ J2 ≤ X₄₈ ∧ X₁₀+1 ≤ X₁₄ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₄₈ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉
l1->l3
t₅₄
η (X₀) = C2
η (X₁) = I2
η (X₂) = H2
η (X₃) = M2
η (X₄) = F2
η (X₁₀) = X₉
η (X₁₁) = X₃₀
η (X₁₂) = 0
η (X₁₃) = J2
η (X₁₅) = X₁₄
η (X₁₆) = N2
η (X₁₇) = X₉
η (X₁₈) = N2
η (X₂₈) = X₉
η (X₃₁) = G2
η (X₄₄) = D2
η (X₄₅) = K2
η (X₄₆) = E2
η (X₄₈) = X₃₀+1
η (X₄₉) = X₂₁
η (X₅₀) = X₈
η (X₅₁) = O2
η (X₅₂) = P2
τ = 2 ≤ Q2 ∧ Q2 ≤ X₄₈ ∧ 2 ≤ J2 ∧ J2 ≤ X₄₈ ∧ X₁₄+1 ≤ X₁₀ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₄₈ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ ∧ X₉ ≤ X₁₀ ∧ X₁₀ ≤ X₉
l3->l2
t₄₇
η (X₉) = H2
η (X₁₃) = C2
η (X₁₄) = D2
η (X₁₅) = K2
η (X₁₆) = J2
η (X₁₇) = G2
η (X₂₈) = E2
η (X₃₁) = I2
η (X₄₃) = F2
τ = 0 ≤ X₁₂ ∧ 0 ≤ X₃₀ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₁₀+1 ≤ D2 ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
l3->l2
t₄₈
η (X₉) = H2
η (X₁₃) = C2
η (X₁₄) = D2
η (X₁₅) = K2
η (X₁₆) = J2
η (X₁₇) = G2
η (X₂₈) = E2
η (X₃₁) = I2
η (X₄₃) = F2
τ = 0 ≤ X₁₂ ∧ 0 ≤ X₃₀ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₁₀ ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
l3->l2
t₄₉
η (X₉) = H2
η (X₁₃) = C2
η (X₁₄) = D2
η (X₁₅) = K2
η (X₁₆) = J2
η (X₁₇) = G2
η (X₂₈) = E2
η (X₃₁) = I2
η (X₄₃) = F2
τ = 0 ≤ X₁₂ ∧ 0 ≤ X₃₀ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₁₀+1 ≤ D2 ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
l3->l2
t₅₀
η (X₉) = H2
η (X₁₃) = C2
η (X₁₄) = D2
η (X₁₅) = K2
η (X₁₆) = J2
η (X₁₇) = G2
η (X₂₈) = E2
η (X₃₁) = I2
η (X₄₃) = F2
τ = 0 ≤ X₁₂ ∧ 0 ≤ X₃₀ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₁₀ ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
l3->l3
t₃₁
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = K2+1 ≤ J2 ∧ X₉+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₃₂
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = K2+1 ≤ J2 ∧ X₉+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₃₃
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = K2+1 ≤ J2 ∧ X₉+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₃₄
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = K2+1 ≤ J2 ∧ X₉+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₃₅
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₉ ∧ I2+1 ≤ J2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₃₆
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₉ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₃₇
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₉ ∧ J2+1 ≤ I2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₃₈
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₉ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₃₉
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = J2+1 ≤ K2 ∧ X₉+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₄₀
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = J2+1 ≤ K2 ∧ X₉+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₄₁
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = J2+1 ≤ K2 ∧ X₉+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₄₂
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = J2+1 ≤ K2 ∧ X₉+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₄₃
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₉ ∧ I2+1 ≤ J2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₄₄
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₉ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₄₅
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₉ ∧ J2+1 ≤ I2 ∧ X₁₀+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l3->l3
t₄₆
η (X₁₂) = X₁₂+1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₀) = X₃₀-1
η (X₃₆) = H2
η (X₃₇) = I2
η (X₃₈) = X₂₁
η (X₃₉) = X₈
η (X₄₀) = X₁₀
η (X₄₁) = X₁₂+1
η (X₄₂) = X₃₀-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₉ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₁₀ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₃₀
l4
l4
l4->l2
t₁₇
η (X₉) = H2
η (X₁₃) = C2
η (X₁₄) = D2
η (X₁₅) = K2
η (X₁₆) = J2
η (X₁₇) = G2
η (X₂₈) = E2
η (X₃₁) = I2
η (X₃₂) = F2
τ = 0 ≤ X₁₁ ∧ F2+1 ≤ D2 ∧ 2 ≤ C2 ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
l4->l2
t₁₈
η (X₉) = H2
η (X₁₃) = C2
η (X₁₄) = D2
η (X₁₅) = K2
η (X₁₆) = J2
η (X₁₇) = G2
η (X₂₈) = E2
η (X₃₁) = I2
η (X₃₂) = F2
τ = 0 ≤ X₁₁ ∧ D2+1 ≤ F2 ∧ 2 ≤ C2 ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
l4->l3
t₁
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = F2+1 ≤ E2 ∧ X₉+1 ≤ E2 ∧ X₁₀+1 ≤ E2 ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₂
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = F2+1 ≤ E2 ∧ X₉+1 ≤ E2 ∧ X₁₀+1 ≤ E2 ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₃
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = F2+1 ≤ E2 ∧ X₉+1 ≤ E2 ∧ E2+1 ≤ X₁₀ ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₄
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = F2+1 ≤ E2 ∧ X₉+1 ≤ E2 ∧ E2+1 ≤ X₁₀ ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₅
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = F2+1 ≤ E2 ∧ E2+1 ≤ X₉ ∧ X₁₀+1 ≤ E2 ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₆
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = F2+1 ≤ E2 ∧ E2+1 ≤ X₉ ∧ X₁₀+1 ≤ E2 ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₇
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = F2+1 ≤ E2 ∧ E2+1 ≤ X₉ ∧ E2+1 ≤ X₁₀ ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₈
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = F2+1 ≤ E2 ∧ E2+1 ≤ X₉ ∧ E2+1 ≤ X₁₀ ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₉
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = E2+1 ≤ F2 ∧ X₉+1 ≤ E2 ∧ X₁₀+1 ≤ E2 ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₁₀
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = E2+1 ≤ F2 ∧ X₉+1 ≤ E2 ∧ X₁₀+1 ≤ E2 ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₁₁
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = E2+1 ≤ F2 ∧ X₉+1 ≤ E2 ∧ E2+1 ≤ X₁₀ ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₁₂
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = E2+1 ≤ F2 ∧ X₉+1 ≤ E2 ∧ E2+1 ≤ X₁₀ ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₁₃
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = E2+1 ≤ F2 ∧ E2+1 ≤ X₉ ∧ X₁₀+1 ≤ E2 ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₁₄
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = E2+1 ≤ F2 ∧ E2+1 ≤ X₉ ∧ X₁₀+1 ≤ E2 ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₁₅
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = E2+1 ≤ F2 ∧ E2+1 ≤ X₉ ∧ E2+1 ≤ X₁₀ ∧ G2+1 ≤ E2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l4->l3
t₁₆
η (X₁₁) = 1+X₃₀
η (X₁₂) = 1
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₁₉) = H2
η (X₂₀) = X₂₁
η (X₂₂) = X₈
η (X₂₃) = X₁₀
η (X₂₄) = I2
η (X₂₅) = J2
η (X₂₆) = K2
η (X₂₇) = G2
η (X₂₈) = X₉
η (X₂₉) = X₃₀
τ = E2+1 ≤ F2 ∧ E2+1 ≤ X₉ ∧ E2+1 ≤ X₁₀ ∧ E2+1 ≤ G2 ∧ 0 ≤ X₁₁ ∧ 2 ≤ C2 ∧ X₁₂ ≤ 1 ∧ 1 ≤ X₁₂
l5
l5
l5->l2
t₂₇
η (X₉) = H2
η (X₁₃) = C2
η (X₁₄) = D2
η (X₁₅) = K2
η (X₁₆) = J2
η (X₁₇) = G2
η (X₂₈) = E2
η (X₃₁) = I2
η (X₃₅) = F2
τ = 0 ≤ X₂₉ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₁₀+1 ≤ D2 ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
l5->l2
t₂₈
η (X₉) = H2
η (X₁₃) = C2
η (X₁₄) = D2
η (X₁₅) = K2
η (X₁₆) = J2
η (X₁₇) = G2
η (X₂₈) = E2
η (X₃₁) = I2
η (X₃₅) = F2
τ = 0 ≤ X₂₉ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₁₀ ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
l5->l2
t₂₉
η (X₉) = H2
η (X₁₃) = C2
η (X₁₄) = D2
η (X₁₅) = K2
η (X₁₆) = J2
η (X₁₇) = G2
η (X₂₈) = E2
η (X₃₁) = I2
η (X₃₅) = F2
τ = 0 ≤ X₂₉ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₁₀+1 ≤ D2 ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
l5->l2
t₃₀
η (X₉) = H2
η (X₁₃) = C2
η (X₁₄) = D2
η (X₁₅) = K2
η (X₁₆) = J2
η (X₁₇) = G2
η (X₂₈) = E2
η (X₃₁) = I2
η (X₃₅) = F2
τ = 0 ≤ X₂₉ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₁₀ ∧ X₉ ≤ X₁₅ ∧ X₁₅ ≤ X₉
l5->l3
t₁₉
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₃) = H2
η (X₃₄) = I2
τ = X₁₀+1 ≤ J2 ∧ X₉+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
l5->l3
t₂₀
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₃) = H2
η (X₃₄) = I2
τ = X₁₀+1 ≤ J2 ∧ X₉+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
l5->l3
t₂₁
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₃) = H2
η (X₃₄) = I2
τ = X₁₀+1 ≤ J2 ∧ J2+1 ≤ X₉ ∧ I2+1 ≤ J2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
l5->l3
t₂₂
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₃) = H2
η (X₃₄) = I2
τ = X₁₀+1 ≤ J2 ∧ J2+1 ≤ X₉ ∧ J2+1 ≤ I2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
l5->l3
t₂₃
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₃) = H2
η (X₃₄) = I2
τ = J2+1 ≤ X₁₀ ∧ X₉+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
l5->l3
t₂₄
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₃) = H2
η (X₃₄) = I2
τ = J2+1 ≤ X₁₀ ∧ X₉+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
l5->l3
t₂₅
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₃) = H2
η (X₃₄) = I2
τ = J2+1 ≤ X₁₀ ∧ J2+1 ≤ X₉ ∧ I2+1 ≤ J2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
l5->l3
t₂₆
η (X₁₃) = C2
η (X₁₄) = X₁₅
η (X₁₆) = D2
η (X₁₇) = X₉
η (X₁₈) = D2
η (X₂₈) = X₉
η (X₃₃) = H2
η (X₃₄) = I2
τ = J2+1 ≤ X₁₀ ∧ J2+1 ≤ X₉ ∧ J2+1 ≤ I2 ∧ 2 ≤ C2 ∧ 0 ≤ X₂₉
Preprocessing
Cut unreachable locations [l4; l5] from the program graph
Cut unsatisfiable transition t₅₇: l0→l2
Cut unsatisfiable transition t₅₈: l0→l2
Cut unsatisfiable transition t₅₉: l0→l2
Cut unsatisfiable transition t₆₀: l0→l2
Eliminate variables {E2,M2,N2,R2,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₁₁,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆,X₂₇,X₂₈,X₂₉,X₃₁,X₃₂,X₃₃,X₃₄,X₃₅,X₃₆,X₃₇,X₃₈,X₃₉,X₄₀,X₄₁,X₄₂,X₄₃,X₄₄,X₄₅,X₄₆,X₄₇,X₄₉,X₅₀,X₅₁,X₅₂,X₅₃} that do not contribute to the problem
Found invariant X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Found invariant 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ for location l3
Cut unsatisfiable transition t₉₉: l3→l3
Cut unsatisfiable transition t₁₀₁: l3→l3
Cut unsatisfiable transition t₁₀₂: l3→l3
Cut unsatisfiable transition t₁₀₄: l3→l3
Cut unsatisfiable transition t₁₀₇: l3→l3
Cut unsatisfiable transition t₁₀₉: l3→l3
Cut unsatisfiable transition t₁₁₀: l3→l3
Cut unsatisfiable transition t₁₁₂: l3→l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: C2, D2, F2, G2, H2, I2, J2, K2, L2, O2, P2, Q2
Locations: l0, l1, l2, l3
Transitions:
t₈₇: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₅, 2, X₂, X₃, X₄, X₅, C2, X₇, X₈, X₉) :|: 2 ≤ X₅
t₈₈: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(C2, I2, K2, X₃, X₄, J2, X₆, P2, X₈, X₉) :|: L2 ≤ 0 ∧ X₅ ≤ 0 ∧ J2 ≤ 0
t₈₉: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(C2, I2, J2, X₃, X₄, 1, X₂, O2, X₈, X₉) :|: X₅ ≤ 1 ∧ 1 ≤ X₅
t₉₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, 1+X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(C2, I2, K2, X₃, X₄, J2, X₆, P2, X₈, X₉) :|: 2 ≤ L2 ∧ L2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(C2, I2, X₂, X₂, 0, J2, X₆, X₆, X₈, X₈+1) :|: 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₃+1 ≤ X₆ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(C2, I2, X₂, X₂, 0, J2, X₆, X₆, X₈, X₈+1) :|: 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₆+1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, H2, X₃, X₄, C2, D2, K2, X₈, X₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₉₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, H2, X₃, X₄, C2, D2, K2, X₈, X₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₉₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, H2, X₃, X₄, C2, D2, K2, X₈, X₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₉₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, H2, X₃, X₄, C2, D2, K2, X₈, X₉) :|: 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₉₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₁₀₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₁₀₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₁₀₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₁₀₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₁₀₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₁₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
t₁₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
Show Graph
G
l0
l0
l1
l1
l0->l1
t₈₇
η (X₀) = X₅
η (X₁) = 2
η (X₆) = C2
τ = 2 ≤ X₅
l2
l2
l0->l2
t₈₈
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = L2 ≤ 0 ∧ X₅ ≤ 0 ∧ J2 ≤ 0
l0->l2
t₈₉
η (X₀) = C2
η (X₁) = I2
η (X₂) = J2
η (X₅) = 1
η (X₆) = X₂
η (X₇) = O2
τ = X₅ ≤ 1 ∧ 1 ≤ X₅
l1->l1
t₉₀
η (X₁) = 1+X₁
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l2
t₉₁
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = 2 ≤ L2 ∧ L2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3
l3
l1->l3
t₉₂
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₃+1 ≤ X₆ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l3
t₉₃
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₆+1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3->l2
t₉₄
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₅
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₆
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₇
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₉₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₀
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₅
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₆
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₁
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
MPRF for transition t₉₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, 1+X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₅+3 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₈₇
η (X₀) = X₅
η (X₁) = 2
η (X₆) = C2
τ = 2 ≤ X₅
l2
l2
l0->l2
t₈₈
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = L2 ≤ 0 ∧ X₅ ≤ 0 ∧ J2 ≤ 0
l0->l2
t₈₉
η (X₀) = C2
η (X₁) = I2
η (X₂) = J2
η (X₅) = 1
η (X₆) = X₂
η (X₇) = O2
τ = X₅ ≤ 1 ∧ 1 ≤ X₅
l1->l1
t₉₀
η (X₁) = 1+X₁
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l2
t₉₁
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = 2 ≤ L2 ∧ L2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3
l3
l1->l3
t₉₂
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₃+1 ≤ X₆ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l3
t₉₃
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₆+1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3->l2
t₉₄
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₅
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₆
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₇
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₉₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₀
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₅
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₆
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₁
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
MPRF for transition t₉₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₈₇
η (X₀) = X₅
η (X₁) = 2
η (X₆) = C2
τ = 2 ≤ X₅
l2
l2
l0->l2
t₈₈
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = L2 ≤ 0 ∧ X₅ ≤ 0 ∧ J2 ≤ 0
l0->l2
t₈₉
η (X₀) = C2
η (X₁) = I2
η (X₂) = J2
η (X₅) = 1
η (X₆) = X₂
η (X₇) = O2
τ = X₅ ≤ 1 ∧ 1 ≤ X₅
l1->l1
t₉₀
η (X₁) = 1+X₁
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l2
t₉₁
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = 2 ≤ L2 ∧ L2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3
l3
l1->l3
t₉₂
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₃+1 ≤ X₆ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l3
t₉₃
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₆+1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3->l2
t₉₄
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₅
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₆
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₇
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₉₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₀
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₅
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₆
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₁
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
MPRF for transition t₁₀₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₈₇
η (X₀) = X₅
η (X₁) = 2
η (X₆) = C2
τ = 2 ≤ X₅
l2
l2
l0->l2
t₈₈
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = L2 ≤ 0 ∧ X₅ ≤ 0 ∧ J2 ≤ 0
l0->l2
t₈₉
η (X₀) = C2
η (X₁) = I2
η (X₂) = J2
η (X₅) = 1
η (X₆) = X₂
η (X₇) = O2
τ = X₅ ≤ 1 ∧ 1 ≤ X₅
l1->l1
t₉₀
η (X₁) = 1+X₁
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l2
t₉₁
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = 2 ≤ L2 ∧ L2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3
l3
l1->l3
t₉₂
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₃+1 ≤ X₆ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l3
t₉₃
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₆+1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3->l2
t₉₄
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₅
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₆
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₇
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₉₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₀
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₅
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₆
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₁
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
MPRF for transition t₁₀₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₈₇
η (X₀) = X₅
η (X₁) = 2
η (X₆) = C2
τ = 2 ≤ X₅
l2
l2
l0->l2
t₈₈
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = L2 ≤ 0 ∧ X₅ ≤ 0 ∧ J2 ≤ 0
l0->l2
t₈₉
η (X₀) = C2
η (X₁) = I2
η (X₂) = J2
η (X₅) = 1
η (X₆) = X₂
η (X₇) = O2
τ = X₅ ≤ 1 ∧ 1 ≤ X₅
l1->l1
t₉₀
η (X₁) = 1+X₁
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l2
t₉₁
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = 2 ≤ L2 ∧ L2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3
l3
l1->l3
t₉₂
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₃+1 ≤ X₆ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l3
t₉₃
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₆+1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3->l2
t₉₄
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₅
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₆
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₇
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₉₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₀
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₅
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₆
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₁
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
MPRF for transition t₁₀₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₈₇
η (X₀) = X₅
η (X₁) = 2
η (X₆) = C2
τ = 2 ≤ X₅
l2
l2
l0->l2
t₈₈
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = L2 ≤ 0 ∧ X₅ ≤ 0 ∧ J2 ≤ 0
l0->l2
t₈₉
η (X₀) = C2
η (X₁) = I2
η (X₂) = J2
η (X₅) = 1
η (X₆) = X₂
η (X₇) = O2
τ = X₅ ≤ 1 ∧ 1 ≤ X₅
l1->l1
t₉₀
η (X₁) = 1+X₁
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l2
t₉₁
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = 2 ≤ L2 ∧ L2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3
l3
l1->l3
t₉₂
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₃+1 ≤ X₆ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l3
t₉₃
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₆+1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3->l2
t₉₄
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₅
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₆
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₇
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₉₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₀
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₅
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₆
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₁
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
MPRF for transition t₁₀₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₈₇
η (X₀) = X₅
η (X₁) = 2
η (X₆) = C2
τ = 2 ≤ X₅
l2
l2
l0->l2
t₈₈
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = L2 ≤ 0 ∧ X₅ ≤ 0 ∧ J2 ≤ 0
l0->l2
t₈₉
η (X₀) = C2
η (X₁) = I2
η (X₂) = J2
η (X₅) = 1
η (X₆) = X₂
η (X₇) = O2
τ = X₅ ≤ 1 ∧ 1 ≤ X₅
l1->l1
t₉₀
η (X₁) = 1+X₁
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l2
t₉₁
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = 2 ≤ L2 ∧ L2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3
l3
l1->l3
t₉₂
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₃+1 ≤ X₆ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l3
t₉₃
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₆+1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3->l2
t₉₄
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₅
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₆
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₇
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₉₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₀
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₅
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₆
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₁
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
MPRF for transition t₁₀₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₈₇
η (X₀) = X₅
η (X₁) = 2
η (X₆) = C2
τ = 2 ≤ X₅
l2
l2
l0->l2
t₈₈
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = L2 ≤ 0 ∧ X₅ ≤ 0 ∧ J2 ≤ 0
l0->l2
t₈₉
η (X₀) = C2
η (X₁) = I2
η (X₂) = J2
η (X₅) = 1
η (X₆) = X₂
η (X₇) = O2
τ = X₅ ≤ 1 ∧ 1 ≤ X₅
l1->l1
t₉₀
η (X₁) = 1+X₁
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l2
t₉₁
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = 2 ≤ L2 ∧ L2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3
l3
l1->l3
t₉₂
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₃+1 ≤ X₆ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l3
t₉₃
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₆+1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3->l2
t₉₄
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₅
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₆
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₇
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₉₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₀
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₅
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₆
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₁
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
MPRF for transition t₁₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₈₇
η (X₀) = X₅
η (X₁) = 2
η (X₆) = C2
τ = 2 ≤ X₅
l2
l2
l0->l2
t₈₈
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = L2 ≤ 0 ∧ X₅ ≤ 0 ∧ J2 ≤ 0
l0->l2
t₈₉
η (X₀) = C2
η (X₁) = I2
η (X₂) = J2
η (X₅) = 1
η (X₆) = X₂
η (X₇) = O2
τ = X₅ ≤ 1 ∧ 1 ≤ X₅
l1->l1
t₉₀
η (X₁) = 1+X₁
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l2
t₉₁
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = 2 ≤ L2 ∧ L2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3
l3
l1->l3
t₉₂
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₃+1 ≤ X₆ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l3
t₉₃
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₆+1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3->l2
t₉₄
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₅
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₆
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₇
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₉₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₀
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₅
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₆
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₁
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
MPRF for transition t₁₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, C2, X₇, X₇, X₈-1, X₉) :|: J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ of depth 1:
new bound:
4⋅X₈+2 {O(n)}
Show Graph
G
l0
l0
l1
l1
l0->l1
t₈₇
η (X₀) = X₅
η (X₁) = 2
η (X₆) = C2
τ = 2 ≤ X₅
l2
l2
l0->l2
t₈₈
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = L2 ≤ 0 ∧ X₅ ≤ 0 ∧ J2 ≤ 0
l0->l2
t₈₉
η (X₀) = C2
η (X₁) = I2
η (X₂) = J2
η (X₅) = 1
η (X₆) = X₂
η (X₇) = O2
τ = X₅ ≤ 1 ∧ 1 ≤ X₅
l1->l1
t₉₀
η (X₁) = 1+X₁
τ = X₁+1 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l2
t₉₁
η (X₀) = C2
η (X₁) = I2
η (X₂) = K2
η (X₅) = J2
η (X₇) = P2
τ = 2 ≤ L2 ∧ L2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3
l3
l1->l3
t₉₂
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₃+1 ≤ X₆ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l1->l3
t₉₃
η (X₀) = C2
η (X₁) = I2
η (X₃) = X₂
η (X₄) = 0
η (X₅) = J2
η (X₇) = X₆
η (X₉) = X₈+1
τ = 2 ≤ Q2 ∧ Q2 ≤ X₉ ∧ 2 ≤ J2 ∧ J2 ≤ X₉ ∧ X₆+1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₉ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
l3->l2
t₉₄
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₅
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ F2+1 ≤ D2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₆
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ X₃+1 ≤ D2 ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l2
t₉₇
η (X₂) = H2
η (X₅) = C2
η (X₆) = D2
η (X₇) = K2
τ = 0 ≤ X₄ ∧ 0 ≤ X₈ ∧ 2 ≤ C2 ∧ D2+1 ≤ F2 ∧ D2+1 ≤ X₃ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₉₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₀
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₅
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = K2+1 ≤ J2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₆
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ I2+1 ≤ J2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₀₈
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ X₂+1 ≤ J2 ∧ J2+1 ≤ I2 ∧ X₃+1 ≤ J2 ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₁
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ I2+1 ≤ J2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
l3->l3
t₁₁₃
η (X₄) = X₄+1
η (X₅) = C2
η (X₆) = X₇
η (X₈) = X₈-1
τ = J2+1 ≤ K2 ∧ J2+1 ≤ X₂ ∧ J2+1 ≤ I2 ∧ J2+1 ≤ X₃ ∧ 0 ≤ G2 ∧ 2 ≤ C2 ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₉ ∧ X₇ ≤ X₆ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃
All Bounds
Timebounds
Overall timebound:32⋅X₈+X₅+29 {O(n)}
t₈₇: 1 {O(1)}
t₈₈: 1 {O(1)}
t₈₉: 1 {O(1)}
t₉₀: X₅+3 {O(n)}
t₉₁: 1 {O(1)}
t₉₂: 1 {O(1)}
t₉₃: 1 {O(1)}
t₉₄: 1 {O(1)}
t₉₅: 1 {O(1)}
t₉₆: 1 {O(1)}
t₉₇: 1 {O(1)}
t₉₈: 4⋅X₈+2 {O(n)}
t₁₀₀: 4⋅X₈+2 {O(n)}
t₁₀₃: 4⋅X₈+2 {O(n)}
t₁₀₅: 4⋅X₈+2 {O(n)}
t₁₀₆: 4⋅X₈+2 {O(n)}
t₁₀₈: 4⋅X₈+2 {O(n)}
t₁₁₁: 4⋅X₈+2 {O(n)}
t₁₁₃: 4⋅X₈+2 {O(n)}
Costbounds
Overall costbound: 32⋅X₈+X₅+29 {O(n)}
t₈₇: 1 {O(1)}
t₈₈: 1 {O(1)}
t₈₉: 1 {O(1)}
t₉₀: X₅+3 {O(n)}
t₉₁: 1 {O(1)}
t₉₂: 1 {O(1)}
t₉₃: 1 {O(1)}
t₉₄: 1 {O(1)}
t₉₅: 1 {O(1)}
t₉₆: 1 {O(1)}
t₉₇: 1 {O(1)}
t₉₈: 4⋅X₈+2 {O(n)}
t₁₀₀: 4⋅X₈+2 {O(n)}
t₁₀₃: 4⋅X₈+2 {O(n)}
t₁₀₅: 4⋅X₈+2 {O(n)}
t₁₀₆: 4⋅X₈+2 {O(n)}
t₁₀₈: 4⋅X₈+2 {O(n)}
t₁₁₁: 4⋅X₈+2 {O(n)}
t₁₁₃: 4⋅X₈+2 {O(n)}
Sizebounds
t₈₇, X₀: X₅ {O(n)}
t₈₇, X₁: 2 {O(1)}
t₈₇, X₂: X₂ {O(n)}
t₈₇, X₃: X₃ {O(n)}
t₈₇, X₄: X₄ {O(n)}
t₈₇, X₅: X₅ {O(n)}
t₈₇, X₇: X₇ {O(n)}
t₈₇, X₈: X₈ {O(n)}
t₈₇, X₉: X₉ {O(n)}
t₈₈, X₃: X₃ {O(n)}
t₈₈, X₄: X₄ {O(n)}
t₈₈, X₆: X₆ {O(n)}
t₈₈, X₈: X₈ {O(n)}
t₈₈, X₉: X₉ {O(n)}
t₈₉, X₃: X₃ {O(n)}
t₈₉, X₄: X₄ {O(n)}
t₈₉, X₅: 1 {O(1)}
t₈₉, X₆: X₂ {O(n)}
t₈₉, X₈: X₈ {O(n)}
t₈₉, X₉: X₉ {O(n)}
t₉₀, X₀: X₅ {O(n)}
t₉₀, X₁: X₅+5 {O(n)}
t₉₀, X₂: X₂ {O(n)}
t₉₀, X₃: X₃ {O(n)}
t₉₀, X₄: X₄ {O(n)}
t₉₀, X₅: X₅ {O(n)}
t₉₀, X₇: X₇ {O(n)}
t₉₀, X₈: X₈ {O(n)}
t₉₀, X₉: X₉ {O(n)}
t₉₁, X₃: 2⋅X₃ {O(n)}
t₉₁, X₄: 2⋅X₄ {O(n)}
t₉₁, X₈: 2⋅X₈ {O(n)}
t₉₁, X₉: 2⋅X₉ {O(n)}
t₉₂, X₂: 2⋅X₂ {O(n)}
t₉₂, X₃: 2⋅X₂ {O(n)}
t₉₂, X₄: 0 {O(1)}
t₉₂, X₈: 2⋅X₈ {O(n)}
t₉₂, X₉: 2⋅X₈+2 {O(n)}
t₉₃, X₂: 2⋅X₂ {O(n)}
t₉₃, X₃: 2⋅X₂ {O(n)}
t₉₃, X₄: 0 {O(1)}
t₉₃, X₈: 2⋅X₈ {O(n)}
t₉₃, X₉: 2⋅X₈+2 {O(n)}
t₉₄, X₃: 32⋅X₂ {O(n)}
t₉₄, X₄: 256⋅X₈+128 {O(n)}
t₉₄, X₈: 32⋅X₈+8 {O(n)}
t₉₄, X₉: 32⋅X₈+32 {O(n)}
t₉₅, X₃: 32⋅X₂ {O(n)}
t₉₅, X₄: 256⋅X₈+128 {O(n)}
t₉₅, X₈: 32⋅X₈+8 {O(n)}
t₉₅, X₉: 32⋅X₈+32 {O(n)}
t₉₆, X₃: 32⋅X₂ {O(n)}
t₉₆, X₄: 256⋅X₈+128 {O(n)}
t₉₆, X₈: 32⋅X₈+8 {O(n)}
t₉₆, X₉: 32⋅X₈+32 {O(n)}
t₉₇, X₃: 32⋅X₂ {O(n)}
t₉₇, X₄: 256⋅X₈+128 {O(n)}
t₉₇, X₈: 32⋅X₈+8 {O(n)}
t₉₇, X₉: 32⋅X₈+32 {O(n)}
t₉₈, X₂: 4⋅X₂ {O(n)}
t₉₈, X₃: 4⋅X₂ {O(n)}
t₉₈, X₄: 32⋅X₈+16 {O(n)}
t₉₈, X₈: 4⋅X₈+1 {O(n)}
t₉₈, X₉: 4⋅X₈+4 {O(n)}
t₁₀₀, X₂: 4⋅X₂ {O(n)}
t₁₀₀, X₃: 4⋅X₂ {O(n)}
t₁₀₀, X₄: 32⋅X₈+16 {O(n)}
t₁₀₀, X₈: 4⋅X₈+1 {O(n)}
t₁₀₀, X₉: 4⋅X₈+4 {O(n)}
t₁₀₃, X₂: 4⋅X₂ {O(n)}
t₁₀₃, X₃: 4⋅X₂ {O(n)}
t₁₀₃, X₄: 32⋅X₈+16 {O(n)}
t₁₀₃, X₈: 4⋅X₈+1 {O(n)}
t₁₀₃, X₉: 4⋅X₈+4 {O(n)}
t₁₀₅, X₂: 4⋅X₂ {O(n)}
t₁₀₅, X₃: 4⋅X₂ {O(n)}
t₁₀₅, X₄: 32⋅X₈+16 {O(n)}
t₁₀₅, X₈: 4⋅X₈+1 {O(n)}
t₁₀₅, X₉: 4⋅X₈+4 {O(n)}
t₁₀₆, X₂: 4⋅X₂ {O(n)}
t₁₀₆, X₃: 4⋅X₂ {O(n)}
t₁₀₆, X₄: 32⋅X₈+16 {O(n)}
t₁₀₆, X₈: 4⋅X₈+1 {O(n)}
t₁₀₆, X₉: 4⋅X₈+4 {O(n)}
t₁₀₈, X₂: 4⋅X₂ {O(n)}
t₁₀₈, X₃: 4⋅X₂ {O(n)}
t₁₀₈, X₄: 32⋅X₈+16 {O(n)}
t₁₀₈, X₈: 4⋅X₈+1 {O(n)}
t₁₀₈, X₉: 4⋅X₈+4 {O(n)}
t₁₁₁, X₂: 4⋅X₂ {O(n)}
t₁₁₁, X₃: 4⋅X₂ {O(n)}
t₁₁₁, X₄: 32⋅X₈+16 {O(n)}
t₁₁₁, X₈: 4⋅X₈+1 {O(n)}
t₁₁₁, X₉: 4⋅X₈+4 {O(n)}
t₁₁₃, X₂: 4⋅X₂ {O(n)}
t₁₁₃, X₃: 4⋅X₂ {O(n)}
t₁₁₃, X₄: 32⋅X₈+16 {O(n)}
t₁₁₃, X₈: 4⋅X₈+1 {O(n)}
t₁₁₃, X₉: 4⋅X₈+4 {O(n)}