Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅)
t₅: l10(X₀, X₁, X₂, X₃, X₄, X₅) → l11(X₀, X₁, X₂, X₃, X₄, X₅)
t₆: l11(X₀, X₁, X₂, X₃, X₄, X₅) → l12(X₀, X₁, X₂, X₃, X₄, X₅)
t₇: l12(X₀, X₁, X₂, X₃, X₄, X₅) → l13(X₀, X₁, X₂, X₃, X₄, X₅)
t₈: l13(X₀, X₁, X₂, X₃, X₄, X₅) → l8(0, X₁, X₂, X₃, X₄, X₅)
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅) → l15(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁+1 < X₅
t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ 1+X₁
t₁₂: l15(X₀, X₁, X₂, X₃, X₄, X₅) → l14(X₀, X₁+1, X₂, X₃, X₄, X₅)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃, X₄, X₅)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l10(X₀, X₁, X₂, X₃, X₄, X₅)
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₂, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ 1+X₁ ∧ X₂+1 < X₅
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁+1 < X₅
t₁₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ 1+X₂
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₀+1, X₃, X₄, X₅)
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅)
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l14(X₀, 0, X₂, X₃, X₄, X₅)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l16(X₀, X₁, X₂, X₃, X₄, X₅)
Preprocessing
Eliminate variables {X₃,X₄} that do not contribute to the problem
Found invariant X₃ ≤ 1+X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 2 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l15
Found invariant X₃ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7
Found invariant X₃ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₀ for location l8
Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 2+X₀ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l16
Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 2+X₀ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l9
Found invariant 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l14
Cut unsatisfiable transition t₅₀: l5→l9
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₃₇: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₃₈: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
t₃₉: l10(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃)
t₄₀: l11(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃)
t₄₁: l12(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃)
t₄₂: l13(X₀, X₁, X₂, X₃) → l8(0, X₁, X₂, X₃)
t₄₃: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: X₁+1 < X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₄: l14(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₃ ≤ 1+X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₅: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁+1, X₂, X₃) :|: 2 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₆: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₄₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₄₈: l4(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃)
t₄₉: l5(X₀, X₁, X₂, X₃) → l8(X₂, X₁, X₂, X₃) :|: X₃ ≤ 1+X₁ ∧ X₂+1 < X₃ ∧ X₃ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₁: l5(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₂: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₀+1, X₃) :|: X₃ ≤ 1+X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₃: l7(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₄: l8(X₀, X₁, X₂, X₃) → l14(X₀, 0, X₂, X₃) :|: 0 ≤ X₀
t₅₅: l9(X₀, X₁, X₂, X₃) → l16(X₀, X₁, X₂, X₃) :|: X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 2+X₀ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₄₉: l5(X₀, X₁, X₂, X₃) → l8(X₂, X₁, X₂, X₃) :|: X₃ ≤ 1+X₁ ∧ X₂+1 < X₃ ∧ X₃ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃ {O(n)}
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₅₄: l8(X₀, X₁, X₂, X₃) → l14(X₀, 0, X₂, X₃) :|: 0 ≤ X₀
MPRF for transition t₄₃: l14(X₀, X₁, X₂, X₃) → l15(X₀, X₁, X₂, X₃) :|: X₁+1 < X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF for transition t₄₄: l14(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₃ ≤ 1+X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₄₅: l15(X₀, X₁, X₂, X₃) → l14(X₀, X₁+1, X₂, X₃) :|: 2 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF for transition t₅₂: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₀+1, X₃) :|: X₃ ≤ 1+X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₃+2 {O(n)}
MPRF for transition t₅₃: l7(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
Chain transitions t₅₄: l8→l14 and t₄₄: l14→l6 to t₁₄₆: l8→l6
Chain transitions t₄₅: l15→l14 and t₄₄: l14→l6 to t₁₄₇: l15→l6
Chain transitions t₄₅: l15→l14 and t₄₃: l14→l15 to t₁₄₈: l15→l15
Chain transitions t₅₄: l8→l14 and t₄₃: l14→l15 to t₁₄₉: l8→l15
Chain transitions t₅₃: l7→l5 and t₅₁: l5→l9 to t₁₅₀: l7→l9
Chain transitions t₅₃: l7→l5 and t₄₉: l5→l8 to t₁₅₁: l7→l8
Chain transitions t₁₄₆: l8→l6 and t₅₂: l6→l7 to t₁₅₂: l8→l7
Chain transitions t₁₄₇: l15→l6 and t₅₂: l6→l7 to t₁₅₃: l15→l7
Chain transitions t₁₅₂: l8→l7 and t₁₅₀: l7→l9 to t₁₅₄: l8→l9
Chain transitions t₁₅₃: l15→l7 and t₁₅₀: l7→l9 to t₁₅₅: l15→l9
Chain transitions t₁₅₃: l15→l7 and t₁₅₁: l7→l8 to t₁₅₆: l15→l8
Chain transitions t₁₅₂: l8→l7 and t₁₅₁: l7→l8 to t₁₅₇: l8→l8
Chain transitions t₁₅₃: l15→l7 and t₅₃: l7→l5 to t₁₅₈: l15→l5
Chain transitions t₁₅₂: l8→l7 and t₅₃: l7→l5 to t₁₅₉: l8→l5
Analysing control-flow refined program
Cut unsatisfiable transition t₁₅₇: l8→l8
Found invariant X₃ ≤ 1+X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 2 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l15
Found invariant X₃ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7
Found invariant X₃ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₀ for location l8
Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 2+X₀ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l16
Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 2+X₀ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l9
Found invariant 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l14
MPRF for transition t₁₅₆: l15(X₀, X₁, X₂, X₃) -{5}> l8(1+X₀, 1+X₁, 1+X₀, X₃) :|: X₃ ≤ 2+X₁ ∧ X₃ ≤ 2+X₁ ∧ 2+X₀ < X₃ ∧ 2 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₀+X₁+1 ∧ 0 ≤ X₀ ∧ X₃ ≤ 2+X₁ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₀+1+X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ 2+X₁ ∧ 0 ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₁+X₀+1 ∧ 0 ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₀+1+X₁ ∧ 0 ≤ X₀ ∧ X₃ ≤ 2+X₁ ∧ 0 ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₁+X₀+1 ∧ 0 ≤ 2⋅X₀ ∧ 0 ≤ 0 ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₀+1+X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+2 {O(n)}
knowledge_propagation leads to new time bound X₃+3 {O(n)} for transition t₁₄₉: l8(X₀, X₁, X₂, X₃) -{2}> l15(X₀, 0, X₂, X₃) :|: 1 < X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀
MPRF for transition t₁₄₈: l15(X₀, X₁, X₂, X₃) -{2}> l15(X₀, 1+X₁, X₂, X₃) :|: 2+X₁ < X₃ ∧ 2 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ X₀+X₁+1 ∧ 0 ≤ X₀ ∧ 2 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+3⋅X₃ {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l14___2
Found invariant X₃ ≤ 1+X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 2 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l15___3
Found invariant X₃ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7
Found invariant X₃ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₀ for location l8
Found invariant 3 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l15___1
Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 2+X₀ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l16
Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ 2+X₀ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l9
Found invariant X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l14
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₂₈₂: l14(X₀, X₁, X₂, X₃) → n_l15___3(X₀, X₁, X₂, X₃) :|: X₁ ≤ 0 ∧ 1+X₁ < X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₃+1 {O(n)} for transition t₂₈₄: n_l15___3(X₀, X₁, X₂, X₃) → n_l14___2(X₀, X₁+1, X₂, X₃) :|: 1 < X₃ ∧ X₁ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₂₈₁: n_l14___2(X₀, X₁, X₂, X₃) → n_l15___1(X₀, X₁, X₂, X₃) :|: 1 ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ < X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+2⋅X₃+1 {O(n^2)}
MPRF for transition t₂₈₃: n_l15___1(X₀, X₁, X₂, X₃) → n_l14___2(X₀, X₁+1, X₂, X₃) :|: 1+X₁ < X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+3⋅X₃+2 {O(n^2)}
MPRF for transition t₂₈₈: n_l14___2(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₃ ≤ 1+X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₃+7 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:2⋅X₃⋅X₃+8⋅X₃+16 {O(n^2)}
t₃₇: 1 {O(1)}
t₃₈: 1 {O(1)}
t₃₉: 1 {O(1)}
t₄₀: 1 {O(1)}
t₄₁: 1 {O(1)}
t₄₂: 1 {O(1)}
t₄₃: X₃⋅X₃+X₃ {O(n^2)}
t₄₄: X₃+1 {O(n)}
t₄₅: X₃⋅X₃+X₃ {O(n^2)}
t₄₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈: 1 {O(1)}
t₄₉: X₃ {O(n)}
t₅₁: 1 {O(1)}
t₅₂: 2⋅X₃+2 {O(n)}
t₅₃: X₃+1 {O(n)}
t₅₄: X₃+1 {O(n)}
t₅₅: 1 {O(1)}
Costbounds
Overall costbound: 2⋅X₃⋅X₃+8⋅X₃+16 {O(n^2)}
t₃₇: 1 {O(1)}
t₃₈: 1 {O(1)}
t₃₉: 1 {O(1)}
t₄₀: 1 {O(1)}
t₄₁: 1 {O(1)}
t₄₂: 1 {O(1)}
t₄₃: X₃⋅X₃+X₃ {O(n^2)}
t₄₄: X₃+1 {O(n)}
t₄₅: X₃⋅X₃+X₃ {O(n^2)}
t₄₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈: 1 {O(1)}
t₄₉: X₃ {O(n)}
t₅₁: 1 {O(1)}
t₅₂: 2⋅X₃+2 {O(n)}
t₅₃: X₃+1 {O(n)}
t₅₄: X₃+1 {O(n)}
t₅₅: 1 {O(1)}
Sizebounds
t₃₇, X₀: X₀ {O(n)}
t₃₇, X₁: X₁ {O(n)}
t₃₇, X₂: X₂ {O(n)}
t₃₇, X₃: X₃ {O(n)}
t₃₈, X₀: X₀ {O(n)}
t₃₈, X₁: X₁ {O(n)}
t₃₈, X₂: X₂ {O(n)}
t₃₈, X₃: X₃ {O(n)}
t₃₉, X₀: X₀ {O(n)}
t₃₉, X₁: X₁ {O(n)}
t₃₉, X₂: X₂ {O(n)}
t₃₉, X₃: X₃ {O(n)}
t₄₀, X₀: X₀ {O(n)}
t₄₀, X₁: X₁ {O(n)}
t₄₀, X₂: X₂ {O(n)}
t₄₀, X₃: X₃ {O(n)}
t₄₁, X₀: X₀ {O(n)}
t₄₁, X₁: X₁ {O(n)}
t₄₁, X₂: X₂ {O(n)}
t₄₁, X₃: X₃ {O(n)}
t₄₂, X₀: 0 {O(1)}
t₄₂, X₁: X₁ {O(n)}
t₄₂, X₂: X₂ {O(n)}
t₄₂, X₃: X₃ {O(n)}
t₄₃, X₀: X₃ {O(n)}
t₄₃, X₁: X₃⋅X₃+X₃ {O(n^2)}
t₄₃, X₂: X₂+X₃+1 {O(n)}
t₄₃, X₃: X₃ {O(n)}
t₄₄, X₀: X₃ {O(n)}
t₄₄, X₁: X₃⋅X₃+X₃ {O(n^2)}
t₄₄, X₂: 2⋅X₂+2⋅X₃+2 {O(n)}
t₄₄, X₃: X₃ {O(n)}
t₄₅, X₀: X₃ {O(n)}
t₄₅, X₁: X₃⋅X₃+X₃ {O(n^2)}
t₄₅, X₂: X₂+X₃+1 {O(n)}
t₄₅, X₃: X₃ {O(n)}
t₄₆, X₀: X₀ {O(n)}
t₄₆, X₁: X₁ {O(n)}
t₄₆, X₂: X₂ {O(n)}
t₄₆, X₃: X₃ {O(n)}
t₄₇, X₀: X₀ {O(n)}
t₄₇, X₁: X₁ {O(n)}
t₄₇, X₂: X₂ {O(n)}
t₄₇, X₃: X₃ {O(n)}
t₄₈, X₀: X₀ {O(n)}
t₄₈, X₁: X₁ {O(n)}
t₄₈, X₂: X₂ {O(n)}
t₄₈, X₃: X₃ {O(n)}
t₄₉, X₀: X₃ {O(n)}
t₄₉, X₁: X₃⋅X₃+X₃ {O(n^2)}
t₄₉, X₂: X₃+1 {O(n)}
t₄₉, X₃: X₃ {O(n)}
t₅₁, X₀: X₃ {O(n)}
t₅₁, X₁: X₃⋅X₃+X₃ {O(n^2)}
t₅₁, X₂: X₃+1 {O(n)}
t₅₁, X₃: X₃ {O(n)}
t₅₂, X₀: X₃ {O(n)}
t₅₂, X₁: X₃⋅X₃+X₃ {O(n^2)}
t₅₂, X₂: X₃+1 {O(n)}
t₅₂, X₃: X₃ {O(n)}
t₅₃, X₀: X₃ {O(n)}
t₅₃, X₁: X₃⋅X₃+X₃ {O(n^2)}
t₅₃, X₂: X₃+1 {O(n)}
t₅₃, X₃: X₃ {O(n)}
t₅₄, X₀: X₃ {O(n)}
t₅₄, X₁: 0 {O(1)}
t₅₄, X₂: X₂+X₃+1 {O(n)}
t₅₄, X₃: X₃ {O(n)}
t₅₅, X₀: X₃ {O(n)}
t₅₅, X₁: X₃⋅X₃+X₃ {O(n^2)}
t₅₅, X₂: X₃+1 {O(n)}
t₅₅, X₃: X₃ {O(n)}