Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
t₁₃: l10(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₉: l11(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃) :|: X₂ ≤ X₃
t₁₀: l11(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₃ < X₂
t₁₅: l12(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃)
t₁₁: l13(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂+1, X₃)
t₁: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₂: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₄: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)
t₅: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃)
t₆: l6(X₀, X₁, X₂, X₃) → l7(X₀, 1, X₂, X₃)
t₇: l7(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₁, X₃) :|: X₁ ≤ X₃
t₈: l7(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₃ < X₁
t₁₄: l8(X₀, X₁, X₂, X₃) → l7(X₀, X₀, X₂, X₃)
t₁₂: l9(X₀, X₁, X₂, X₃) → l10(X₁+1, X₁, X₂, X₃)

Preprocessing

Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l11

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₁ for location l12

Found invariant 1 ≤ X₁ for location l7

Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l13

Found invariant 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l8

Found invariant 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l10

Found invariant 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l9

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₁ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
t₁₃: l10(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀
t₉: l11(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃) :|: X₂ ≤ X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₀: l11(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₃ < X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₅: l12(X₀, X₁, X₂, X₃) → l14(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₁
t₁₁: l13(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂+1, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₂: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₄: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)
t₅: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃)
t₆: l6(X₀, X₁, X₂, X₃) → l7(X₀, 1, X₂, X₃)
t₇: l7(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₁, X₃) :|: X₁ ≤ X₃ ∧ 1 ≤ X₁
t₈: l7(X₀, X₁, X₂, X₃) → l12(X₀, X₁, X₂, X₃) :|: X₃ < X₁ ∧ 1 ≤ X₁
t₁₄: l8(X₀, X₁, X₂, X₃) → l7(X₀, X₀, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀
t₁₂: l9(X₀, X₁, X₂, X₃) → l10(X₁+1, X₁, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁

MPRF for transition t₇: l7(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₁, X₃) :|: X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+2 {O(n)}

MPRF for transition t₁₀: l11(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₃ < X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+2 {O(n)}

MPRF for transition t₁₂: l9(X₀, X₁, X₂, X₃) → l10(X₁+1, X₁, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₃+1 {O(n)}

MPRF for transition t₁₃: l10(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₃+1 {O(n)}

MPRF for transition t₁₄: l8(X₀, X₁, X₂, X₃) → l7(X₀, X₀, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₃+1 {O(n)}

MPRF for transition t₉: l11(X₀, X₁, X₂, X₃) → l13(X₀, X₁, X₂, X₃) :|: X₂ ≤ X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

6⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}

MPRF for transition t₁₁: l13(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂+1, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

6⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}

Chain transitions t₁₂: l9→l10 and t₁₃: l10→l8 to t₉₀: l9→l8

Chain transitions t₇: l7→l11 and t₁₀: l11→l9 to t₉₁: l7→l9

Chain transitions t₁₁: l13→l11 and t₁₀: l11→l9 to t₉₂: l13→l9

Chain transitions t₁₁: l13→l11 and t₉: l11→l13 to t₉₃: l13→l13

Chain transitions t₇: l7→l11 and t₉: l11→l13 to t₉₄: l7→l13

Chain transitions t₁₄: l8→l7 and t₉₁: l7→l9 to t₉₅: l8→l9

Chain transitions t₆: l6→l7 and t₉₁: l7→l9 to t₉₆: l6→l9

Chain transitions t₆: l6→l7 and t₉₄: l7→l13 to t₉₇: l6→l13

Chain transitions t₁₄: l8→l7 and t₉₄: l7→l13 to t₉₈: l8→l13

Chain transitions t₆: l6→l7 and t₈: l7→l12 to t₉₉: l6→l12

Chain transitions t₁₄: l8→l7 and t₈: l7→l12 to t₁₀₀: l8→l12

Chain transitions t₆: l6→l7 and t₇: l7→l11 to t₁₀₁: l6→l11

Chain transitions t₁₄: l8→l7 and t₇: l7→l11 to t₁₀₂: l8→l11

Chain transitions t₉₀: l9→l8 and t₉₅: l8→l9 to t₁₀₃: l9→l9

Chain transitions t₉₀: l9→l8 and t₁₄: l8→l7 to t₁₀₄: l9→l7

Chain transitions t₉₀: l9→l8 and t₉₈: l8→l13 to t₁₀₅: l9→l13

Chain transitions t₉₀: l9→l8 and t₁₀₀: l8→l12 to t₁₀₆: l9→l12

Chain transitions t₉₀: l9→l8 and t₁₀₂: l8→l11 to t₁₀₇: l9→l11

Analysing control-flow refined program

Cut unsatisfiable transition t₉₆: l6→l9

Cut unsatisfiable transition t₁₀₃: l9→l9

Eliminate variables {X₀} that do not contribute to the problem

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l11

Found invariant 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l12

Found invariant 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l13

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l10

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l9

Found invariant 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l14

MPRF for transition t₁₄₈: l13(X₀, X₁, X₂) -{2}> l9(X₀, 1+X₁, X₂) :|: X₂ < X₁+1 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂+2 {O(n)}

MPRF for transition t₁₆₀: l9(X₀, X₁, X₂) -{5}> l13(1+X₀, 1+X₀, X₂) :|: 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂+2 {O(n)}

MPRF for transition t₁₄₇: l13(X₀, X₁, X₂) -{2}> l13(X₀, 1+X₁, X₂) :|: 1+X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂⋅X₂+10⋅X₂+12 {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₁₀: l11→l9

Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l11

Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l13___3

Found invariant 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l13___1

Found invariant 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l11___2

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₁ for location l12

Found invariant 1 ≤ X₁ for location l7

Found invariant 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l8

Found invariant 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l10

Found invariant 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l9

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₁ for location l14

knowledge_propagation leads to new time bound X₃+2 {O(n)} for transition t₂₂₃: l11(X₀, X₁, X₂, X₃) → n_l13___3(X₀, X₁, X₂, X₃) :|: X₂ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound X₃+2 {O(n)} for transition t₂₂₅: n_l13___3(X₀, X₁, X₂, X₃) → n_l11___2(X₀, X₁, X₂+1, X₃) :|: X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁

MPRF for transition t₂₂₂: n_l11___2(X₀, X₁, X₂, X₃) → n_l13___1(X₀, X₁, X₂, X₃) :|: 1+X₁ ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁ ∧ X₂ ≤ 1+X₃ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

3⋅X₃⋅X₃+12⋅X₃+10 {O(n^2)}

MPRF for transition t₂₂₄: n_l13___1(X₀, X₁, X₂, X₃) → n_l11___2(X₀, X₁, X₂+1, X₃) :|: 1+X₁ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

3⋅X₃⋅X₃+12⋅X₃+10 {O(n^2)}

MPRF for transition t₂₂₉: n_l11___2(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₃ < X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+2 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:12⋅X₃⋅X₃+28⋅X₃+26 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: X₃+2 {O(n)}
t₈: 1 {O(1)}
t₉: 6⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}
t₁₀: X₃+2 {O(n)}
t₁₁: 6⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}
t₁₂: 2⋅X₃+1 {O(n)}
t₁₃: 2⋅X₃+1 {O(n)}
t₁₄: 2⋅X₃+1 {O(n)}
t₁₅: 1 {O(1)}

Costbounds

Overall costbound: 12⋅X₃⋅X₃+28⋅X₃+26 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: X₃+2 {O(n)}
t₈: 1 {O(1)}
t₉: 6⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}
t₁₀: X₃+2 {O(n)}
t₁₁: 6⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}
t₁₂: 2⋅X₃+1 {O(n)}
t₁₃: 2⋅X₃+1 {O(n)}
t₁₄: 2⋅X₃+1 {O(n)}
t₁₅: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: 1 {O(1)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₇, X₀: 2⋅X₃+X₀+2 {O(n)}
t₇, X₁: 2⋅X₃+2 {O(n)}
t₇, X₂: 2⋅X₃+3 {O(n)}
t₇, X₃: X₃ {O(n)}
t₈, X₀: 2⋅X₃+X₀+2 {O(n)}
t₈, X₁: 2⋅X₃+3 {O(n)}
t₈, X₂: 6⋅X₃⋅X₃+12⋅X₃+X₂+8 {O(n^2)}
t₈, X₃: 2⋅X₃ {O(n)}
t₉, X₀: 2⋅X₃+X₀+2 {O(n)}
t₉, X₁: 2⋅X₃+2 {O(n)}
t₉, X₂: 6⋅X₃⋅X₃+12⋅X₃+8 {O(n^2)}
t₉, X₃: X₃ {O(n)}
t₁₀, X₀: 2⋅X₃+X₀+2 {O(n)}
t₁₀, X₁: 2⋅X₃+2 {O(n)}
t₁₀, X₂: 6⋅X₃⋅X₃+12⋅X₃+8 {O(n^2)}
t₁₀, X₃: X₃ {O(n)}
t₁₁, X₀: 2⋅X₃+X₀+2 {O(n)}
t₁₁, X₁: 2⋅X₃+2 {O(n)}
t₁₁, X₂: 6⋅X₃⋅X₃+12⋅X₃+8 {O(n^2)}
t₁₁, X₃: X₃ {O(n)}
t₁₂, X₀: 2⋅X₃+2 {O(n)}
t₁₂, X₁: 2⋅X₃+2 {O(n)}
t₁₂, X₂: 6⋅X₃⋅X₃+12⋅X₃+8 {O(n^2)}
t₁₂, X₃: X₃ {O(n)}
t₁₃, X₀: 2⋅X₃+2 {O(n)}
t₁₃, X₁: 2⋅X₃+2 {O(n)}
t₁₃, X₂: 6⋅X₃⋅X₃+12⋅X₃+8 {O(n^2)}
t₁₃, X₃: X₃ {O(n)}
t₁₄, X₀: 2⋅X₃+2 {O(n)}
t₁₄, X₁: 2⋅X₃+2 {O(n)}
t₁₄, X₂: 6⋅X₃⋅X₃+12⋅X₃+8 {O(n^2)}
t₁₄, X₃: X₃ {O(n)}
t₁₅, X₀: 2⋅X₃+X₀+2 {O(n)}
t₁₅, X₁: 2⋅X₃+3 {O(n)}
t₁₅, X₂: 6⋅X₃⋅X₃+12⋅X₃+X₂+8 {O(n^2)}
t₁₅, X₃: 2⋅X₃ {O(n)}