Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₁₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₆-X₁, X₃, X₄, X₅, X₆)
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₁₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₁
t₁₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅
t₁₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅-X₁, X₆)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: X₄ < 1
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 1 < X₄
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₂, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < 0
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₁, X₅, X₀)

Preprocessing

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l11

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l6

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l12

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l7

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l8

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l10

Found invariant X₄ ≤ X₃ for location l4

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l9

Found invariant X₄ ≤ 1+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₁₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₆-X₁, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0 ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅-X₁, X₆) :|: X₄ ≤ 1+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: X₄ < 1 ∧ X₄ ≤ X₃
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 1 < X₄ ∧ X₄ ≤ X₃
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₂, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃

MPRF for transition t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 1 < X₄ ∧ X₄ ≤ X₃ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₂, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₁₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₄ ∧ 1+X₁ ≤ X₃ of depth 1:

new bound:

X₃ {O(n)}

Chain transitions t₁₃: l12→l10 and t₁₅: l10→l7 to t₃₁₈: l12→l7

Chain transitions t₇: l4→l12 and t₃₁₈: l12→l7 to t₃₁₉: l4→l7

Chain transitions t₆: l4→l12 and t₃₁₈: l12→l7 to t₃₂₀: l4→l7

Chain transitions t₆: l4→l12 and t₁₂: l12→l14 to t₃₂₁: l4→l14

Chain transitions t₇: l4→l12 and t₁₂: l12→l14 to t₃₂₂: l4→l14

Chain transitions t₁₄: l14→l12 and t₁₂: l12→l14 to t₃₂₃: l14→l14

Chain transitions t₁₄: l14→l12 and t₃₁₈: l12→l7 to t₃₂₄: l14→l7

Chain transitions t₁₄: l14→l12 and t₁₃: l12→l10 to t₃₂₅: l14→l10

Chain transitions t₆: l4→l12 and t₁₃: l12→l10 to t₃₂₆: l4→l10

Chain transitions t₇: l4→l12 and t₁₃: l12→l10 to t₃₂₇: l4→l10

Chain transitions t₂₁: l9→l4 and t₃₂₀: l4→l7 to t₃₂₈: l9→l7

Chain transitions t₄: l1→l4 and t₃₂₀: l4→l7 to t₃₂₉: l1→l7

Chain transitions t₄: l1→l4 and t₃₁₉: l4→l7 to t₃₃₀: l1→l7

Chain transitions t₂₁: l9→l4 and t₃₁₉: l4→l7 to t₃₃₁: l9→l7

Chain transitions t₄: l1→l4 and t₃₂₂: l4→l14 to t₃₃₂: l1→l14

Chain transitions t₂₁: l9→l4 and t₃₂₂: l4→l14 to t₃₃₃: l9→l14

Chain transitions t₄: l1→l4 and t₃₂₁: l4→l14 to t₃₃₄: l1→l14

Chain transitions t₂₁: l9→l4 and t₃₂₁: l4→l14 to t₃₃₅: l9→l14

Chain transitions t₄: l1→l4 and t₇: l4→l12 to t₃₃₆: l1→l12

Chain transitions t₂₁: l9→l4 and t₇: l4→l12 to t₃₃₇: l9→l12

Chain transitions t₄: l1→l4 and t₆: l4→l12 to t₃₃₈: l1→l12

Chain transitions t₂₁: l9→l4 and t₆: l4→l12 to t₃₃₉: l9→l12

Chain transitions t₄: l1→l4 and t₅: l4→l11 to t₃₄₀: l1→l11

Chain transitions t₂₁: l9→l4 and t₅: l4→l11 to t₃₄₁: l9→l11

Chain transitions t₄: l1→l4 and t₃₂₇: l4→l10 to t₃₄₂: l1→l10

Chain transitions t₂₁: l9→l4 and t₃₂₇: l4→l10 to t₃₄₃: l9→l10

Chain transitions t₄: l1→l4 and t₃₂₆: l4→l10 to t₃₄₄: l1→l10

Chain transitions t₂₁: l9→l4 and t₃₂₆: l4→l10 to t₃₄₅: l9→l10

Chain transitions t₁₉: l8→l6 and t₂₀: l6→l9 to t₃₄₆: l8→l9

Chain transitions t₁₈: l8→l6 and t₂₀: l6→l9 to t₃₄₇: l8→l9

Chain transitions t₁₇: l8→l6 and t₂₀: l6→l9 to t₃₄₈: l8→l9

Chain transitions t₃₃₁: l9→l7 and t₁₆: l7→l8 to t₃₄₉: l9→l8

Chain transitions t₃₂₈: l9→l7 and t₁₆: l7→l8 to t₃₅₀: l9→l8

Chain transitions t₃₂₄: l14→l7 and t₁₆: l7→l8 to t₃₅₁: l14→l8

Chain transitions t₃₃₀: l1→l7 and t₁₆: l7→l8 to t₃₅₂: l1→l8

Chain transitions t₃₂₉: l1→l7 and t₁₆: l7→l8 to t₃₅₃: l1→l8

Chain transitions t₃₅₀: l9→l8 and t₃₄₈: l8→l9 to t₃₅₄: l9→l9

Chain transitions t₃₄₉: l9→l8 and t₃₄₈: l8→l9 to t₃₅₅: l9→l9

Chain transitions t₃₄₉: l9→l8 and t₃₄₇: l8→l9 to t₃₅₆: l9→l9

Chain transitions t₃₅₀: l9→l8 and t₃₄₇: l8→l9 to t₃₅₇: l9→l9

Chain transitions t₃₅₁: l14→l8 and t₃₄₇: l8→l9 to t₃₅₈: l14→l9

Chain transitions t₃₅₁: l14→l8 and t₃₄₈: l8→l9 to t₃₅₉: l14→l9

Chain transitions t₃₅₁: l14→l8 and t₃₄₆: l8→l9 to t₃₆₀: l14→l9

Chain transitions t₃₄₉: l9→l8 and t₃₄₆: l8→l9 to t₃₆₁: l9→l9

Chain transitions t₃₅₀: l9→l8 and t₃₄₆: l8→l9 to t₃₆₂: l9→l9

Chain transitions t₃₅₃: l1→l8 and t₃₄₆: l8→l9 to t₃₆₃: l1→l9

Chain transitions t₃₅₃: l1→l8 and t₃₄₇: l8→l9 to t₃₆₄: l1→l9

Chain transitions t₃₅₃: l1→l8 and t₃₄₈: l8→l9 to t₃₆₅: l1→l9

Chain transitions t₃₅₃: l1→l8 and t₁₉: l8→l6 to t₃₆₆: l1→l6

Chain transitions t₃₅₁: l14→l8 and t₁₉: l8→l6 to t₃₆₇: l14→l6

Chain transitions t₃₄₉: l9→l8 and t₁₉: l8→l6 to t₃₆₈: l9→l6

Chain transitions t₃₅₀: l9→l8 and t₁₉: l8→l6 to t₃₆₉: l9→l6

Chain transitions t₃₅₂: l1→l8 and t₁₉: l8→l6 to t₃₇₀: l1→l6

Chain transitions t₃₅₂: l1→l8 and t₃₄₆: l8→l9 to t₃₇₁: l1→l9

Chain transitions t₃₅₂: l1→l8 and t₃₄₇: l8→l9 to t₃₇₂: l1→l9

Chain transitions t₃₅₂: l1→l8 and t₃₄₈: l8→l9 to t₃₇₃: l1→l9

Chain transitions t₃₅₂: l1→l8 and t₁₈: l8→l6 to t₃₇₄: l1→l6

Chain transitions t₃₅₃: l1→l8 and t₁₈: l8→l6 to t₃₇₅: l1→l6

Chain transitions t₃₅₁: l14→l8 and t₁₈: l8→l6 to t₃₇₆: l14→l6

Chain transitions t₃₄₉: l9→l8 and t₁₈: l8→l6 to t₃₇₇: l9→l6

Chain transitions t₃₅₀: l9→l8 and t₁₈: l8→l6 to t₃₇₈: l9→l6

Chain transitions t₃₅₂: l1→l8 and t₁₇: l8→l6 to t₃₇₉: l1→l6

Chain transitions t₃₅₃: l1→l8 and t₁₇: l8→l6 to t₃₈₀: l1→l6

Chain transitions t₃₅₁: l14→l8 and t₁₇: l8→l6 to t₃₈₁: l14→l6

Chain transitions t₃₄₉: l9→l8 and t₁₇: l8→l6 to t₃₈₂: l9→l6

Chain transitions t₃₅₀: l9→l8 and t₁₇: l8→l6 to t₃₈₃: l9→l6

Analysing control-flow refined program

Cut unsatisfiable transition t₃₂₈: l9→l7

Cut unsatisfiable transition t₃₂₉: l1→l7

Cut unsatisfiable transition t₃₃₀: l1→l7

Cut unsatisfiable transition t₃₃₁: l9→l7

Cut unsatisfiable transition t₃₃₄: l1→l14

Cut unsatisfiable transition t₃₃₅: l9→l14

Cut unsatisfiable transition t₃₃₈: l1→l12

Cut unsatisfiable transition t₃₃₉: l9→l12

Cut unsatisfiable transition t₃₄₂: l1→l10

Cut unsatisfiable transition t₃₄₃: l9→l10

Cut unsatisfiable transition t₃₄₄: l1→l10

Cut unsatisfiable transition t₃₄₅: l9→l10

Cut unsatisfiable transition t₃₄₉: l9→l8

Cut unsatisfiable transition t₃₅₀: l9→l8

Cut unsatisfiable transition t₃₅₂: l1→l8

Cut unsatisfiable transition t₃₅₃: l1→l8

Cut unsatisfiable transition t₃₅₄: l9→l9

Cut unsatisfiable transition t₃₅₅: l9→l9

Cut unsatisfiable transition t₃₅₆: l9→l9

Cut unsatisfiable transition t₃₅₇: l9→l9

Cut unsatisfiable transition t₃₅₈: l14→l9

Cut unsatisfiable transition t₃₆₁: l9→l9

Cut unsatisfiable transition t₃₆₂: l9→l9

Cut unsatisfiable transition t₃₆₃: l1→l9

Cut unsatisfiable transition t₃₆₄: l1→l9

Cut unsatisfiable transition t₃₆₅: l1→l9

Cut unsatisfiable transition t₃₆₆: l1→l6

Cut unsatisfiable transition t₃₆₈: l9→l6

Cut unsatisfiable transition t₃₆₉: l9→l6

Cut unsatisfiable transition t₃₇₀: l1→l6

Cut unsatisfiable transition t₃₇₁: l1→l9

Cut unsatisfiable transition t₃₇₂: l1→l9

Cut unsatisfiable transition t₃₇₃: l1→l9

Cut unsatisfiable transition t₃₇₄: l1→l6

Cut unsatisfiable transition t₃₇₅: l1→l6

Cut unsatisfiable transition t₃₇₆: l14→l6

Cut unsatisfiable transition t₃₇₇: l9→l6

Cut unsatisfiable transition t₃₇₈: l9→l6

Cut unsatisfiable transition t₃₇₉: l1→l6

Cut unsatisfiable transition t₃₈₀: l1→l6

Cut unsatisfiable transition t₃₈₂: l9→l6

Cut unsatisfiable transition t₃₈₃: l9→l6

Eliminate variables {X₂} that do not contribute to the problem

Found invariant X₅ ≤ X₂ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l11

Found invariant X₅ ≤ X₂ ∧ X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ for location l6

Found invariant X₅ ≤ X₂ ∧ X₄ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l12

Found invariant X₅ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l7

Found invariant X₅ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l8

Found invariant X₅ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l10

Found invariant X₅ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l4

Found invariant X₅ ≤ X₂ ∧ X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ for location l9

Found invariant X₅ ≤ X₂ ∧ X₄ ≤ X₂ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l14

MPRF for transition t₇₈₈: l14(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l9(X₅-X₁, X₁, X₂, X₃, X₄-X₁, X₅) :|: X₄ < 2⋅X₁ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₂ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₂ {O(n)}

MPRF for transition t₇₈₉: l14(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l9(X₅, X₁, X₂, X₃, X₄-X₁, X₅) :|: X₄ < 2⋅X₁ ∧ X₁ < X₄ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₂ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₂ {O(n)}

MPRF for transition t₇₉₅: l9(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l14(X₀, X₁-1, X₂, X₁, X₂, X₀) :|: 1 < X₁ ∧ X₁ ≤ 1+X₂ ∧ X₅ ≤ X₂ ∧ X₀ ≤ X₅ ∧ 2+X₄ ≤ X₂ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF for transition t₇₈₃: l14(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l14(X₀, X₁, X₂, X₃, X₄-X₁, X₅) :|: 2⋅X₁ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₂ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

8⋅X₂⋅X₂+15⋅X₂+2 {O(n^2)}

Analysing control-flow refined program

Cut unsatisfiable transition t₉₃₅: l4→n_l12___16

Cut unsatisfiable transition t₉₃₇: n_l4___3→n_l12___16

Cut unsatisfiable transition t₉₆₆: n_l4___5→l11

Cut unreachable locations [n_l12___13; n_l12___16; n_l14___11; n_l14___14] from the program graph

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l11

Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location n_l14___2

Found invariant X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ for location n_l4___3

Found invariant 1+X₂ ≤ X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ for location n_l9___4

Found invariant X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁ for location n_l4___5

Found invariant 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location n_l7___10

Found invariant 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location n_l12___1

Found invariant X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location n_l12___15

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location n_l8___9

Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ for location n_l6___7

Found invariant X₆ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁ for location n_l6___8

Found invariant X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁ for location n_l9___6

Found invariant X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l4

Found invariant 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location n_l10___12

MPRF for transition t₉₂₄: n_l10___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___10(X₀, X₁, X₆-X₁, X₃, X₁+1, X₅, X₆) :|: 1+X₅ < X₄ ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₉₂₅: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___12(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 1 < X₄ ∧ 0 ≤ X₅ ∧ X₅ < X₁ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₉₂₉: n_l12___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 0 < X₅ ∧ 1 < X₄ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₉₃₆: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₉₃₈: n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ 1 < X₄ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₉₃₉: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___4(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₃ {O(n)}

MPRF for transition t₉₄₀: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___6(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₉₄₁: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___9(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ X₁+1 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₉₄₂: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___7(X₂, X₁, X₂, X₃, X₁+1, 0, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₉₄₃: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___8(X₆, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₉₄₄: n_l9___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___3(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₉₄₅: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___5(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: 1+X₅ ≤ X₁ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

TWN: t₉₂₆: n_l12___1→n_l14___2

cycle: [t₉₂₆: n_l12___1→n_l14___2; t₉₃₃: n_l14___2→n_l12___1]
loop: (1 < X₄ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ 0 ≤ 0 ∧ 0 < X₁ ∧ X₁ ≤ X₅ ∧ 2⋅X₁ ≤ X₅ ∧ 0 ≤ 0,(X₁,X₄,X₅) -> (X₁,X₁+1,X₅-X₁)
order: [X₁; X₄; X₅]
closed-form:
X₁: X₁
X₄: [[n == 0]] * X₄ + [[n != 0]] * X₁+1
X₅: X₅ + [[n != 0]] * -X₁ * n^1

Termination: true
Formula:

X₁ < 0 ∧ 0 < X₁
∨ X₁ < 0 ∧ X₁ < X₅ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < X₁
∨ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 0 < X₁
∨ 2⋅X₁ < X₅ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ < 0 ∧ 0 < X₁
∨ 2⋅X₁ < X₅ ∧ X₁ < X₅ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < X₁
∨ 2⋅X₁ < X₅ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 0 < X₁
∨ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2⋅X₁ ≤ X₅ ∧ X₅ ≤ 2⋅X₁ ∧ X₁ < 0 ∧ 0 < X₁
∨ 2⋅X₁ ≤ X₅ ∧ X₅ ≤ 2⋅X₁ ∧ X₁ < X₅ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 < X₁
∨ 2⋅X₁ ≤ X₅ ∧ X₅ ≤ 2⋅X₁ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ 0 < X₁

Stabilization-Threshold for: 2⋅X₁ ≤ X₅
alphas_abs: 2⋅X₁+X₅
M: 0
N: 1
Bound: 2⋅X₅+4⋅X₁+2 {O(n)}
Stabilization-Threshold for: X₁ ≤ X₅
alphas_abs: X₁+X₅
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₅+2 {O(n)}

TWN - Lifting for t₉₂₆: n_l12___1→n_l14___2 of 4⋅X₅+6⋅X₁+8 {O(n)}

relevant size-bounds w.r.t. t₉₂₉:
X₁: X₃ {O(n)}
X₅: 3⋅X₃ {O(n)}
Runtime-bound of t₉₂₉: X₃+1 {O(n)}
Results in: 18⋅X₃⋅X₃+26⋅X₃+8 {O(n^2)}

TWN: t₉₃₃: n_l14___2→n_l12___1

TWN - Lifting for t₉₃₃: n_l14___2→n_l12___1 of 4⋅X₅+6⋅X₁+8 {O(n)}

relevant size-bounds w.r.t. t₉₂₉:
X₁: X₃ {O(n)}
X₅: 3⋅X₃ {O(n)}
Runtime-bound of t₉₂₉: X₃+1 {O(n)}
Results in: 18⋅X₃⋅X₃+26⋅X₃+8 {O(n^2)}

CFR: Improvement to new bound with the following program:

new bound:

Infinite

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l11, l13, l2, l3, l4, l5, n_l10___12, n_l12___1, n_l12___15, n_l14___2, n_l4___3, n_l4___5, n_l6___7, n_l6___8, n_l7___10, n_l8___9, n_l9___4, n_l9___6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0 ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₉₃₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉₂₄: n_l10___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___10(X₀, X₁, X₆-X₁, X₃, X₁+1, X₅, X₆) :|: 1+X₅ < X₄ ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₂₅: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___12(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 1 < X₄ ∧ 0 ≤ X₅ ∧ X₅ < X₁ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₂₆: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 1 < X₄ ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₂₉: n_l12___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 0 < X₅ ∧ 1 < X₄ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₃₃: n_l14___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___1(X₀, X₁, X₂, X₃, X₁+1, X₅-X₁, X₆) :|: 1 < X₄ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₆₅: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₉₃₆: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₉₃₈: n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ 1 < X₄ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁
t₉₃₉: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___4(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₉₄₀: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___6(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁
t₉₄₁: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___9(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ X₁+1 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₄₂: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___7(X₂, X₁, X₂, X₃, X₁+1, 0, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₄₃: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___8(X₆, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₄₄: n_l9___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___3(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₉₄₅: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___5(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: 1+X₅ ≤ X₁ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁

CFR: Improvement to new bound with the following program:

new bound:

36⋅X₃⋅X₃+65⋅X₃+20 {O(n^2)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l11, l13, l2, l3, l4, l5, n_l10___12, n_l12___1, n_l12___15, n_l14___2, n_l4___3, n_l4___5, n_l6___7, n_l6___8, n_l7___10, n_l8___9, n_l9___4, n_l9___6
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₃) :|: 0 < X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < 0 ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₉₃₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉₂₄: n_l10___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___10(X₀, X₁, X₆-X₁, X₃, X₁+1, X₅, X₆) :|: 1+X₅ < X₄ ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₂₅: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___12(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 1 < X₄ ∧ 0 ≤ X₅ ∧ X₅ < X₁ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₂₆: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 1 < X₄ ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₂₉: n_l12___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l14___2(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: X₁+1 ≤ X₄ ∧ 0 < X₅ ∧ 1 < X₄ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₃₃: n_l14___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___1(X₀, X₁, X₂, X₃, X₁+1, X₅-X₁, X₆) :|: 1 < X₄ ∧ X₁+1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₆₅: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₉₃₆: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ X₀ ∧ X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₉₃₈: n_l4___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l12___15(X₀, X₄-1, X₂, X₃, X₄, X₃, X₆) :|: 0 < X₃ ∧ 1 < X₄ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ 1 < X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁
t₉₃₉: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___4(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₉₄₀: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___6(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ X₄ ≤ 1+X₁ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁
t₉₄₁: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___9(X₀, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ X₁+1 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₄₂: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___7(X₂, X₁, X₂, X₃, X₁+1, 0, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₄₃: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___8(X₆, X₁, X₂, X₃, X₁+1, X₅, X₆) :|: 1+X₆ ≤ X₂+X₃ ∧ 1+X₂+X₅ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₂+X₄ ≤ X₆+1 ∧ 1+X₆ ≤ X₂+X₄ ∧ X₁+X₂ ≤ X₆ ∧ X₆ ≤ X₁+X₂ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₉₄₄: n_l9___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___3(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₀+X₁ ≤ X₆ ∧ X₆ ≤ X₀+X₁ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₂ ≤ X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁
t₉₄₅: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___5(X₀, X₁, X₂, X₃, X₁, X₅, X₀) :|: 1+X₅ ≤ X₁ ∧ 0 < X₅ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₁+X₂ ∧ X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₆ ∧ X₆ ≤ X₀ ∧ X₁+1 ≤ X₄ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1+X₁ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₆ ≤ X₀ ∧ 2+X₂ ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 5 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2+X₂ ≤ X₀ ∧ 2 ≤ X₁

All Bounds

Timebounds

Overall timebound:36⋅X₃⋅X₃+65⋅X₃+32 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₉₂₄: X₃+1 {O(n)}
t₉₂₅: X₃+1 {O(n)}
t₉₂₆: 18⋅X₃⋅X₃+26⋅X₃+8 {O(n^2)}
t₉₂₉: X₃+1 {O(n)}
t₉₃₃: 18⋅X₃⋅X₃+26⋅X₃+8 {O(n^2)}
t₉₃₄: 1 {O(1)}
t₉₃₆: X₃+1 {O(n)}
t₉₃₈: X₃ {O(n)}
t₉₃₉: 2⋅X₃ {O(n)}
t₉₄₀: X₃ {O(n)}
t₉₄₁: X₃ {O(n)}
t₉₄₂: X₃ {O(n)}
t₉₄₃: X₃ {O(n)}
t₉₄₄: X₃ {O(n)}
t₉₄₅: X₃ {O(n)}
t₉₆₅: 1 {O(1)}

Costbounds

Overall costbound: 36⋅X₃⋅X₃+65⋅X₃+32 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₉₂₄: X₃+1 {O(n)}
t₉₂₅: X₃+1 {O(n)}
t₉₂₆: 18⋅X₃⋅X₃+26⋅X₃+8 {O(n^2)}
t₉₂₉: X₃+1 {O(n)}
t₉₃₃: 18⋅X₃⋅X₃+26⋅X₃+8 {O(n^2)}
t₉₃₄: 1 {O(1)}
t₉₃₆: X₃+1 {O(n)}
t₉₃₈: X₃ {O(n)}
t₉₃₉: 2⋅X₃ {O(n)}
t₉₄₀: X₃ {O(n)}
t₉₄₁: X₃ {O(n)}
t₉₄₂: X₃ {O(n)}
t₉₄₃: X₃ {O(n)}
t₉₄₄: X₃ {O(n)}
t₉₄₅: X₃ {O(n)}
t₉₆₅: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₃ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₃ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 1 {O(1)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₃ {O(n)}
t₈, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₈, X₁: 1 {O(1)}
t₈, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: 1 {O(1)}
t₈, X₅: 0 {O(1)}
t₈, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉, X₀: X₃⋅X₃+3⋅X₃+X₀ {O(n^2)}
t₉, X₁: X₁+1 {O(n)}
t₉, X₂: X₃⋅X₃+3⋅X₃+X₂ {O(n^2)}
t₉, X₃: 2⋅X₃ {O(n)}
t₉, X₄: 1 {O(1)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₃⋅X₃+4⋅X₃ {O(n^2)}
t₁₀, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₀, X₁: 1 {O(1)}
t₁₀, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: 1 {O(1)}
t₁₀, X₅: 0 {O(1)}
t₁₀, X₆: 0 {O(1)}
t₁₁, X₀: 3⋅X₃⋅X₃+2⋅X₀+9⋅X₃ {O(n^2)}
t₁₁, X₁: 2⋅X₁+3 {O(n)}
t₁₁, X₂: 3⋅X₃⋅X₃+2⋅X₂+9⋅X₃ {O(n^2)}
t₁₁, X₃: 5⋅X₃ {O(n)}
t₁₁, X₄: X₄+3 {O(n)}
t₁₁, X₅: 2⋅X₅ {O(n)}
t₁₁, X₆: 2⋅X₃⋅X₃+7⋅X₃+X₆ {O(n^2)}
t₉₂₄, X₀: 2⋅X₃⋅X₃+6⋅X₃+X₀ {O(n^2)}
t₉₂₄, X₁: X₃ {O(n)}
t₉₂₄, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₂₄, X₃: X₃ {O(n)}
t₉₂₄, X₄: X₃+1 {O(n)}
t₉₂₄, X₅: 3⋅X₃ {O(n)}
t₉₂₄, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₂₅, X₀: 2⋅X₃⋅X₃+6⋅X₃+X₀ {O(n^2)}
t₉₂₅, X₁: X₃ {O(n)}
t₉₂₅, X₂: 2⋅X₃⋅X₃+6⋅X₃+X₂ {O(n^2)}
t₉₂₅, X₃: X₃ {O(n)}
t₉₂₅, X₄: X₃+1 {O(n)}
t₉₂₅, X₅: 3⋅X₃ {O(n)}
t₉₂₅, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₂₆, X₀: 2⋅X₃⋅X₃+6⋅X₃+X₀ {O(n^2)}
t₉₂₆, X₁: X₃ {O(n)}
t₉₂₆, X₂: 2⋅X₃⋅X₃+6⋅X₃+X₂ {O(n^2)}
t₉₂₆, X₃: X₃ {O(n)}
t₉₂₆, X₄: X₃+1 {O(n)}
t₉₂₆, X₅: 3⋅X₃ {O(n)}
t₉₂₆, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₂₉, X₀: 2⋅X₃⋅X₃+6⋅X₃+X₀ {O(n^2)}
t₉₂₉, X₁: X₃ {O(n)}
t₉₂₉, X₂: 2⋅X₃⋅X₃+6⋅X₃+X₂ {O(n^2)}
t₉₂₉, X₃: X₃ {O(n)}
t₉₂₉, X₄: 3⋅X₃+3 {O(n)}
t₉₂₉, X₅: 3⋅X₃ {O(n)}
t₉₂₉, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₃₃, X₀: 2⋅X₃⋅X₃+6⋅X₃+X₀ {O(n^2)}
t₉₃₃, X₁: X₃ {O(n)}
t₉₃₃, X₂: 2⋅X₃⋅X₃+6⋅X₃+X₂ {O(n^2)}
t₉₃₃, X₃: X₃ {O(n)}
t₉₃₃, X₄: 2⋅X₃+2 {O(n)}
t₉₃₃, X₅: 3⋅X₃ {O(n)}
t₉₃₃, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₃₄, X₀: X₀ {O(n)}
t₉₃₄, X₁: X₃ {O(n)}
t₉₃₄, X₂: X₂ {O(n)}
t₉₃₄, X₃: X₃ {O(n)}
t₉₃₄, X₄: X₃ {O(n)}
t₉₃₄, X₅: X₃ {O(n)}
t₉₃₄, X₆: X₃ {O(n)}
t₉₃₆, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₃₆, X₁: X₃ {O(n)}
t₉₃₆, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₃₆, X₃: X₃ {O(n)}
t₉₃₆, X₄: X₃ {O(n)}
t₉₃₆, X₅: X₃ {O(n)}
t₉₃₆, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₃₈, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₃₈, X₁: X₃ {O(n)}
t₉₃₈, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₃₈, X₃: X₃ {O(n)}
t₉₃₈, X₄: X₃ {O(n)}
t₉₃₈, X₅: X₃ {O(n)}
t₉₃₈, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₃₉, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₃₉, X₁: X₃ {O(n)}
t₉₃₉, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₃₉, X₃: X₃ {O(n)}
t₉₃₉, X₄: X₃+1 {O(n)}
t₉₃₉, X₅: 0 {O(1)}
t₉₃₉, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₀, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₀, X₁: X₃ {O(n)}
t₉₄₀, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₀, X₃: X₃ {O(n)}
t₉₄₀, X₄: X₃+1 {O(n)}
t₉₄₀, X₅: 3⋅X₃ {O(n)}
t₉₄₀, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₁, X₀: 2⋅X₃⋅X₃+6⋅X₃+X₀ {O(n^2)}
t₉₄₁, X₁: X₃ {O(n)}
t₉₄₁, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₁, X₃: X₃ {O(n)}
t₉₄₁, X₄: X₃+1 {O(n)}
t₉₄₁, X₅: 3⋅X₃ {O(n)}
t₉₄₁, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₂, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₂, X₁: X₃ {O(n)}
t₉₄₂, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₂, X₃: X₃ {O(n)}
t₉₄₂, X₄: X₃+1 {O(n)}
t₉₄₂, X₅: 0 {O(1)}
t₉₄₂, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₃, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₃, X₁: X₃ {O(n)}
t₉₄₃, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₃, X₃: X₃ {O(n)}
t₉₄₃, X₄: X₃+1 {O(n)}
t₉₄₃, X₅: 3⋅X₃ {O(n)}
t₉₄₃, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₄, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₄, X₁: X₃ {O(n)}
t₉₄₄, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₄, X₃: X₃ {O(n)}
t₉₄₄, X₄: X₃ {O(n)}
t₉₄₄, X₅: 0 {O(1)}
t₉₄₄, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₅, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₅, X₁: X₃ {O(n)}
t₉₄₅, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₄₅, X₃: X₃ {O(n)}
t₉₄₅, X₄: X₃ {O(n)}
t₉₄₅, X₅: 3⋅X₃ {O(n)}
t₉₄₅, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₆₅, X₀: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₆₅, X₁: 1 {O(1)}
t₉₆₅, X₂: X₃⋅X₃+3⋅X₃ {O(n^2)}
t₉₆₅, X₃: X₃ {O(n)}
t₉₆₅, X₄: 1 {O(1)}
t₉₆₅, X₅: 0 {O(1)}
t₉₆₅, X₆: X₃⋅X₃+3⋅X₃ {O(n^2)}