Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef_0, nondef_1, nondef_2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₃, X₅, X₆)
t₁₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ nondef_0 ≤ 0 ∧ 0 ≤ nondef_0 ∧ nondef_0 ≤ 0
t₁₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ X₄ ∧ X₄ < 2⋅nondef_0+2 ∧ nondef_0 ≤ 0
t₁₅: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < 0 ∧ nondef_0 ≤ 0 ∧ X₄ ≤ 2⋅nondef_0 ∧ 2⋅nondef_0 < X₄+2 ∧ nondef_0 ≤ 0
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(nondef_0, X₁, X₂, X₃, X₄, 0, X₆) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ nondef_0 ≤ 0 ∧ 0 ≤ nondef_0 ∧ 0 < nondef_0
t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(nondef_0, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ X₄ ∧ X₄ < 2⋅nondef_0+2 ∧ 0 < nondef_0
t₁₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(nondef_0, X₁, X₂, X₃, X₄, 0, X₆) :|: X₄ < 0 ∧ nondef_0 ≤ 0 ∧ X₄ ≤ 2⋅nondef_0 ∧ 2⋅nondef_0 < X₄+2 ∧ 0 < nondef_0
t₁₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆
t₂₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < X₀
t₂₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ < nondef_2
t₂₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: nondef_2 ≤ X₂
t₂₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₈: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, nondef_1, X₃, X₄, X₅, X₅)
t₂₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₀)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₁, X₆)
t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₅+1, X₂, X₃, X₄, X₅, X₆)
t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₀, X₅, X₆) :|: X₃ ≤ X₅
t₁₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₃

Preprocessing

Cut unsatisfiable transition t₁₀: l14→l9

Cut unsatisfiable transition t₁₂: l14→l9

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l15

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l19

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l17

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l7

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l20

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l16

Found invariant 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l18

Found invariant X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l9

Found invariant X₄ ≤ X₃ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef_0, nondef_1, nondef_2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₃, X₅, X₆)
t₁₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ nondef_0 ≤ 0 ∧ 0 ≤ nondef_0 ∧ nondef_0 ≤ 0 ∧ X₄ ≤ X₃
t₁₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ X₄ ∧ X₄ < 2⋅nondef_0+2 ∧ nondef_0 ≤ 0 ∧ X₄ ≤ X₃
t₁₅: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < 0 ∧ nondef_0 ≤ 0 ∧ X₄ ≤ 2⋅nondef_0 ∧ 2⋅nondef_0 < X₄+2 ∧ nondef_0 ≤ 0 ∧ X₄ ≤ X₃
t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(nondef_0, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ X₄ ∧ X₄ < 2⋅nondef_0+2 ∧ 0 < nondef_0 ∧ X₄ ≤ X₃
t₁₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < X₀ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ < nondef_2 ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: nondef_2 ≤ X₂ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ X₄ ≤ X₃
t₁₈: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, nondef_1, X₃, X₄, X₅, X₅) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₀) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₁, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₅+1, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₀, X₅, X₆) :|: X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₃ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

MPRF for transition t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(nondef_0, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef_0 ∧ 2⋅nondef_0 ≤ X₄ ∧ X₄ < 2⋅nondef_0+2 ∧ 0 < nondef_0 ∧ X₄ ≤ X₃ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₁₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₀, X₅, X₆) :|: X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₁₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₃ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+3⋅X₃+2 {O(n^2)}

MPRF for transition t₁₈: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, nondef_1, X₃, X₄, X₅, X₅) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₂₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < X₀ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+3⋅X₃+2 {O(n^2)}

MPRF for transition t₂₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: nondef_2 ≤ X₂ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₅+1, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₂₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₂₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₁, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₁₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₃⋅X₃⋅X₃⋅X₃+10⋅X₃⋅X₃⋅X₃+12⋅X₃⋅X₃+2⋅X₃ {O(n^4)}

MPRF for transition t₂₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ < nondef_2 ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃ {O(n^4)}

MPRF for transition t₂₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₀) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃ {O(n^4)}

Chain transitions t₁₇: l9→l14 and t₁₁: l14→l9 to t₂₈₂: l9→l9

Chain transitions t₉: l13→l14 and t₁₁: l14→l9 to t₂₈₃: l13→l9

Chain transitions t₉: l13→l14 and t₁₅: l14→l17 to t₂₈₄: l13→l17

Chain transitions t₁₇: l9→l14 and t₁₅: l14→l17 to t₂₈₅: l9→l17

Chain transitions t₉: l13→l14 and t₁₄: l14→l17 to t₂₈₆: l13→l17

Chain transitions t₁₇: l9→l14 and t₁₄: l14→l17 to t₂₈₇: l9→l17

Chain transitions t₉: l13→l14 and t₁₃: l14→l17 to t₂₈₈: l13→l17

Chain transitions t₁₇: l9→l14 and t₁₃: l14→l17 to t₂₈₉: l9→l17

Chain transitions t₂₃: l19→l15 and t₂₀: l15→l7 to t₂₉₀: l19→l7

Chain transitions t₁₈: l18→l15 and t₂₀: l15→l7 to t₂₉₁: l18→l7

Chain transitions t₁₈: l18→l15 and t₁₉: l15→l16 to t₂₉₂: l18→l16

Chain transitions t₂₃: l19→l15 and t₁₉: l15→l16 to t₂₉₃: l19→l16

Chain transitions t₂₉₃: l19→l16 and t₂₂: l16→l7 to t₂₉₄: l19→l7

Chain transitions t₂₉₂: l18→l16 and t₂₂: l16→l7 to t₂₉₅: l18→l7

Chain transitions t₂₉₂: l18→l16 and t₂₁: l16→l19 to t₂₉₆: l18→l19

Chain transitions t₂₉₃: l19→l16 and t₂₁: l16→l19 to t₂₉₇: l19→l19

Chain transitions t₁₆: l9→l18 and t₂₉₅: l18→l7 to t₂₉₈: l9→l7

Chain transitions t₁₆: l9→l18 and t₂₉₁: l18→l7 to t₂₉₉: l9→l7

Chain transitions t₁₆: l9→l18 and t₂₉₆: l18→l19 to t₃₀₀: l9→l19

Chain transitions t₁₆: l9→l18 and t₂₉₂: l18→l16 to t₃₀₁: l9→l16

Chain transitions t₁₆: l9→l18 and t₁₈: l18→l15 to t₃₀₂: l9→l15

Chain transitions t₂₅: l8→l6 and t₂₆: l6→l9 to t₃₀₃: l8→l9

Chain transitions t₂₉₉: l9→l7 and t₂₄: l7→l8 to t₃₀₄: l9→l8

Chain transitions t₂₉₈: l9→l7 and t₂₄: l7→l8 to t₃₀₅: l9→l8

Chain transitions t₂₉₄: l19→l7 and t₂₄: l7→l8 to t₃₀₆: l19→l8

Chain transitions t₂₉₀: l19→l7 and t₂₄: l7→l8 to t₃₀₇: l19→l8

Chain transitions t₃₀₅: l9→l8 and t₃₀₃: l8→l9 to t₃₀₈: l9→l9

Chain transitions t₃₀₄: l9→l8 and t₃₀₃: l8→l9 to t₃₀₉: l9→l9

Chain transitions t₃₀₄: l9→l8 and t₂₅: l8→l6 to t₃₁₀: l9→l6

Chain transitions t₃₀₅: l9→l8 and t₂₅: l8→l6 to t₃₁₁: l9→l6

Chain transitions t₃₀₇: l19→l8 and t₂₅: l8→l6 to t₃₁₂: l19→l6

Chain transitions t₃₀₇: l19→l8 and t₃₀₃: l8→l9 to t₃₁₃: l19→l9

Chain transitions t₃₀₆: l19→l8 and t₂₅: l8→l6 to t₃₁₄: l19→l6

Chain transitions t₃₀₆: l19→l8 and t₃₀₃: l8→l9 to t₃₁₅: l19→l9

Analysing control-flow refined program

Cut unsatisfiable transition t₂₈₅: l9→l17

Cut unsatisfiable transition t₂₈₉: l9→l17

Eliminate variables {X₁} that do not contribute to the problem

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l6

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l15

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l19

Found invariant X₃ ≤ 1 ∧ X₃ ≤ X₂ for location l17

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l7

Found invariant X₃ ≤ 1 ∧ X₃ ≤ X₂ for location l20

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l8

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l16

Found invariant 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l18

Found invariant X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l9

Found invariant X₃ ≤ X₂ for location l14

Analysing control-flow refined program

Cut unsatisfiable transition t₁₇: l9→l14

Eliminate variables {NoDet0,X₂} that do not contribute to the problem

Found invariant 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l16___13

Found invariant 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l18___19

Found invariant 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___3

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___1

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l19___16

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l8___2

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l7___15

Found invariant 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l7___12

Found invariant 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l19___11

Found invariant 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l9___7

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l15___5

Found invariant 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l9___20

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location n_l18___25

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___22

Found invariant 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l15___14

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___21

Found invariant 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 4 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l7___10

Found invariant X₃ ≤ 1 ∧ X₃ ≤ X₂ for location l17

Found invariant 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 4 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l8___9

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location n_l7___23

Found invariant X₃ ≤ 1 ∧ X₃ ≤ X₂ for location l20

Found invariant 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l8___4

Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ 2+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location n_l15___24

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l16___17

Found invariant 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 4 ≤ X₂+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l6___8

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l9

Found invariant X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l15___18

Found invariant 1+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l18___6

Found invariant X₃ ≤ X₂ for location l14

All Bounds

Timebounds

Overall timebound:4⋅X₃⋅X₃⋅X₃⋅X₃+18⋅X₃⋅X₃⋅X₃+27⋅X₃⋅X₃+20⋅X₃+20 {O(n^4)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₁: X₃+1 {O(n)}
t₁₃: 1 {O(1)}
t₁₄: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₆: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₇: X₃+1 {O(n)}
t₁₈: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₉: 2⋅X₃⋅X₃⋅X₃⋅X₃+10⋅X₃⋅X₃⋅X₃+12⋅X₃⋅X₃+2⋅X₃ {O(n^4)}
t₂₀: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₂₁: X₃⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃ {O(n^4)}
t₂₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₃: X₃⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃ {O(n^4)}
t₂₄: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₇: 1 {O(1)}

Costbounds

Overall costbound: 4⋅X₃⋅X₃⋅X₃⋅X₃+18⋅X₃⋅X₃⋅X₃+27⋅X₃⋅X₃+20⋅X₃+20 {O(n^4)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₁: X₃+1 {O(n)}
t₁₃: 1 {O(1)}
t₁₄: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₆: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₇: X₃+1 {O(n)}
t₁₈: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₉: 2⋅X₃⋅X₃⋅X₃⋅X₃+10⋅X₃⋅X₃⋅X₃+12⋅X₃⋅X₃+2⋅X₃ {O(n^4)}
t₂₀: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₂₁: X₃⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃ {O(n^4)}
t₂₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₃: X₃⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃⋅X₃+4⋅X₃⋅X₃ {O(n^4)}
t₂₄: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₇: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₃ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₁₁, X₁: X₃⋅X₃+2⋅X₃+X₁ {O(n^2)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₅: 0 {O(1)}
t₁₁, X₆: 3⋅X₃⋅X₃+6⋅X₃+X₆ {O(n^2)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₁ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: 0 {O(1)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁₄, X₁: X₃⋅X₃+2⋅X₃+X₁ {O(n^2)}
t₁₄, X₃: 2⋅X₃ {O(n)}
t₁₄, X₄: 1 {O(1)}
t₁₄, X₅: X₃⋅X₃+2⋅X₃+X₅ {O(n^2)}
t₁₄, X₆: 3⋅X₃⋅X₃+6⋅X₃+X₆ {O(n^2)}
t₁₅, X₀: X₀ {O(n)}
t₁₅, X₁: X₁ {O(n)}
t₁₅, X₂: X₂ {O(n)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₄: X₃ {O(n)}
t₁₅, X₅: X₅ {O(n)}
t₁₅, X₆: X₆ {O(n)}
t₁₆, X₁: 2⋅X₃⋅X₃+4⋅X₃+X₁ {O(n^2)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₆, X₆: 6⋅X₃⋅X₃+12⋅X₃+X₆ {O(n^2)}
t₁₇, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₇, X₆: 3⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
t₁₈, X₁: 2⋅X₃⋅X₃+4⋅X₃+X₁ {O(n^2)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₈, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₉, X₁: 2⋅X₃⋅X₃+4⋅X₃+X₁ {O(n^2)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₉, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₀, X₁: 4⋅X₃⋅X₃+2⋅X₁+8⋅X₃ {O(n^2)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₀, X₆: 2⋅X₃⋅X₃+4⋅X₃ {O(n^2)}
t₂₁, X₁: 2⋅X₃⋅X₃+4⋅X₃+X₁ {O(n^2)}
t₂₁, X₃: X₃ {O(n)}
t₂₁, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₁, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₂, X₁: 2⋅X₃⋅X₃+4⋅X₃+X₁ {O(n^2)}
t₂₂, X₃: X₃ {O(n)}
t₂₂, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₂, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₃, X₁: 2⋅X₃⋅X₃+4⋅X₃+X₁ {O(n^2)}
t₂₃, X₃: X₃ {O(n)}
t₂₃, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₃, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₄, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₄, X₃: X₃ {O(n)}
t₂₄, X₅: 2⋅X₃⋅X₃+4⋅X₃ {O(n^2)}
t₂₄, X₆: 3⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
t₂₅, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₅, X₃: X₃ {O(n)}
t₂₅, X₅: 2⋅X₃⋅X₃+4⋅X₃ {O(n^2)}
t₂₅, X₆: 3⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
t₂₆, X₁: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₆, X₃: X₃ {O(n)}
t₂₆, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₆, X₆: 3⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
t₂₇, X₁: X₃⋅X₃+2⋅X₃+3⋅X₁ {O(n^2)}
t₂₇, X₃: 4⋅X₃ {O(n)}
t₂₇, X₄: X₃+1 {O(n)}
t₂₇, X₅: X₃⋅X₃+2⋅X₃+3⋅X₅ {O(n^2)}
t₂₇, X₆: 3⋅X₃⋅X₃+3⋅X₆+6⋅X₃ {O(n^2)}