Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: M, N
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(1, 1, 10, M, N, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅+1 ≤ X₂
t₂₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ X₅
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, 0, 0, X₈, X₉, X₁₀, X₁₁) :|: X₅+1 ≤ X₂
t₂₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ X₅
t₂₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(0, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, 0, X₁₀, X₁₁) :|: X₂ ≤ X₇ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, 1, X₇+1, 1, X₉, X₁₀, X₁₁) :|: X₆+1 ≤ 0 ∧ X₇+1 ≤ X₂
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, 1, X₇+1, 1, X₉, X₁₀, X₁₁) :|: 1 ≤ X₆ ∧ X₇+1 ≤ X₂
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, 1, X₇+1, 1, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇+1, 0, X₉, X₁₀, X₁₁) :|: N+1 ≤ M ∧ X₇+1 ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇+1, 0, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ X₂ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆
t₂₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀+1 ≤ 0 ∧ X₂ ≤ X₇
t₂₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₀ ∧ X₂ ≤ X₇
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, 0, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, 0, X₁₁) :|: 2+X₅ ≤ X₂ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁+1 ≤ 0 ∧ 2+X₅ ≤ X₂
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₁ ∧ 2+X₅ ≤ X₂
t₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀+1 ≤ 0 ∧ X₂ ≤ X₅+1
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₀ ∧ X₂ ≤ X₅+1
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1) :|: X₂ ≤ X₅+1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(1, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: X₆+1 ≤ 0
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(1, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 1 ≤ X₆
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(0, X₁, X₂, X₃, X₄, X₅+1, 0, X₇, X₈, 0, X₁₀, X₁₁) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, 1, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, 1, X₁₁) :|: N+1 ≤ M
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, 0, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, 0, X₁₁)
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0) :|: X₁+1 ≤ 0
t₁₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0) :|: 1 ≤ X₁
t₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, 0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 1) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
Preprocessing
Cut unsatisfiable transition t₃: l3→l3
Eliminate variables {X₃,X₄,X₈,X₉,X₁₀,X₁₁} that do not contribute to the problem
Found invariant 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ for location l2
Found invariant X₃ ≤ 8 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 18 ∧ X₃ ≤ 7+X₁ ∧ X₁+X₃ ≤ 9 ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 9 ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ for location l6
Found invariant 9 ≤ X₃ ∧ 19 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 9 ≤ X₁+X₃ ∧ 8+X₁ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 10+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 9+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l7
Found invariant 10 ≤ X₅ ∧ 10 ≤ X₄+X₅ ∧ 9+X₄ ≤ X₅ ∧ 10 ≤ X₃+X₅ ∧ 20 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 11 ≤ X₁+X₅ ∧ 9+X₁ ≤ X₅ ∧ 9+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l5
Found invariant 9 ≤ X₃ ∧ 19 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 9 ≤ X₁+X₃ ∧ 8+X₁ ≤ X₃ ∧ 9 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 10+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ for location l8
Found invariant X₃ ≤ 10 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 20 ∧ X₃ ≤ 9+X₁ ∧ X₁+X₃ ≤ 11 ∧ X₃ ≤ 9+X₀ ∧ X₀+X₃ ≤ 11 ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 9+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l1
Found invariant 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 10+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ for location l4
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 for location l3
Cut unsatisfiable transition t₇₉: l4→l6
Cut unsatisfiable transition t₈₁: l4→l7
Cut unsatisfiable transition t₈₄: l5→l2
Cut unsatisfiable transition t₈₉: l7→l8
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: M, N
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₆₆: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l1(1, 1, 10, 0, X₄, X₅)
t₆₇: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃+1, X₄, X₅) :|: X₃+1 ≤ X₂ ∧ X₃ ≤ 10 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 20 ∧ X₃ ≤ 9+X₁ ∧ X₁+X₃ ≤ 11 ∧ X₃ ≤ 9+X₀ ∧ X₀+X₃ ≤ 11 ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 9+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₆₈: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, 0, X₄, X₅) :|: X₂ ≤ X₃ ∧ X₃ ≤ 10 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 20 ∧ X₃ ≤ 9+X₁ ∧ X₁+X₃ ≤ 11 ∧ X₃ ≤ 9+X₀ ∧ X₀+X₃ ≤ 11 ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 9+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₆₉: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, 0, 0) :|: X₃+1 ≤ X₂ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
t₇₀: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, 0, X₄, X₅) :|: X₂ ≤ X₃ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
t₇₁: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l2(0, X₁, X₂, X₃+1, X₄, X₅) :|: X₂ ≤ X₅ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
t₇₂: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, 1, X₅+1) :|: 1 ≤ X₄ ∧ X₅+1 ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
t₇₃: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, 1, X₅+1) :|: X₅+1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
t₇₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, 0, X₅+1) :|: N+1 ≤ M ∧ X₅+1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
t₇₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, 0, X₅+1) :|: X₅+1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
t₇₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀+1 ≤ 0 ∧ X₂ ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
t₇₇: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₀ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
t₇₈: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, 0, X₂, X₃+1, X₄, X₅) :|: 2+X₃ ≤ X₂ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 10+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
t₈₀: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₁ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 10+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
t₈₂: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₀ ∧ X₂ ≤ X₃+1 ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 10+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
t₈₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l8(0, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ X₃+1 ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 10+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
t₈₅: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(1, X₁, X₂, X₃+1, X₄, X₅) :|: 1 ≤ X₄ ∧ 10 ≤ X₅ ∧ 10 ≤ X₄+X₅ ∧ 9+X₄ ≤ X₅ ∧ 10 ≤ X₃+X₅ ∧ 20 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 11 ≤ X₁+X₅ ∧ 9+X₁ ≤ X₅ ∧ 9+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
t₈₆: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(0, X₁, X₂, X₃+1, 0, X₅) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 10 ≤ X₅ ∧ 10 ≤ X₄+X₅ ∧ 9+X₄ ≤ X₅ ∧ 10 ≤ X₃+X₅ ∧ 20 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 11 ≤ X₁+X₅ ∧ 9+X₁ ≤ X₅ ∧ 9+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
t₈₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, 1, X₂, X₃+1, X₄, X₅) :|: N+1 ≤ M ∧ X₃ ≤ 8 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 18 ∧ X₃ ≤ 7+X₁ ∧ X₁+X₃ ≤ 9 ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 9 ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
t₈₈: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, 0, X₂, X₃+1, X₄, X₅) :|: X₃ ≤ 8 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 18 ∧ X₃ ≤ 7+X₁ ∧ X₁+X₃ ≤ 9 ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 9 ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀
t₉₀: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₁ ∧ 9 ≤ X₃ ∧ 19 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 9 ≤ X₁+X₃ ∧ 8+X₁ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 10+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 9+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₉₁: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, 0, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 9 ≤ X₃ ∧ 19 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 9 ≤ X₁+X₃ ∧ 8+X₁ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ 8+X₀ ≤ X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 10+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 9+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
MPRF for transition t₆₇: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₃+1, X₄, X₅) :|: X₃+1 ≤ X₂ ∧ X₃ ≤ 10 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 20 ∧ X₃ ≤ 9+X₁ ∧ X₁+X₃ ≤ 11 ∧ X₃ ≤ 9+X₀ ∧ X₀+X₃ ≤ 11 ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 9+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ of depth 1:
new bound:
11 {O(1)}
MPRF for transition t₆₉: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, 0, 0) :|: X₃+1 ≤ X₂ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ of depth 1:
new bound:
10 {O(1)}
TWN: t₇₄: l3→l3
cycle: [t₇₄: l3→l3; t₇₅: l3→l3]
loop: (X₅+1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∨ X₅+1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄,(X₂,X₄,X₅) -> (X₂,0,X₅+1)
order: [X₂; X₄; X₅]
closed-form:
X₂: X₂
X₄: [[n == 0]] * X₄
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₅+1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₂ ∧ X₂ ≤ X₅+1
∨ 1 < 0
∨ X₅+1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅+1 ≤ X₂ ∧ X₂ ≤ X₅+1
Stabilization-Threshold for: X₅+1 ≤ X₂
alphas_abs: X₅+1+X₂
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₅+4 {O(n)}
TWN - Lifting for t₇₄: l3→l3 of 2⋅X₂+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₆₉:
X₂: 10 {O(1)}
X₅: 0 {O(1)}
Runtime-bound of t₆₉: 10 {O(1)}
Results in: 260 {O(1)}
TWN: t₇₅: l3→l3
TWN - Lifting for t₇₅: l3→l3 of 2⋅X₂+2⋅X₅+6 {O(n)}
relevant size-bounds w.r.t. t₆₉:
X₂: 10 {O(1)}
X₅: 0 {O(1)}
Runtime-bound of t₆₉: 10 {O(1)}
Results in: 260 {O(1)}
knowledge_propagation leads to new time bound 530 {O(1)} for transition t₇₃: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, 1, X₅+1) :|: X₅+1 ≤ X₂ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1
MPRF for transition t₇₁: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l2(0, X₁, X₂, X₃+1, X₄, X₅) :|: X₂ ≤ X₅ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
10 {O(1)}
MPRF for transition t₇₂: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, 1, X₅+1) :|: 1 ≤ X₄ ∧ X₅+1 ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
100 {O(1)}
MPRF for transition t₇₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀+1 ≤ 0 ∧ X₂ ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
30 {O(1)}
MPRF for transition t₇₇: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₀ ∧ X₂ ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 10 ≤ X₂+X₅ ∧ X₂ ≤ 10+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
120 {O(1)}
MPRF for transition t₈₅: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(1, X₁, X₂, X₃+1, X₄, X₅) :|: 1 ≤ X₄ ∧ 10 ≤ X₅ ∧ 10 ≤ X₄+X₅ ∧ 9+X₄ ≤ X₅ ∧ 10 ≤ X₃+X₅ ∧ 20 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 11 ≤ X₁+X₅ ∧ 9+X₁ ≤ X₅ ∧ 9+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
1061 {O(1)}
MPRF for transition t₈₆: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l2(0, X₁, X₂, X₃+1, 0, X₅) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 10 ≤ X₅ ∧ 10 ≤ X₄+X₅ ∧ 9+X₄ ≤ X₅ ∧ 10 ≤ X₃+X₅ ∧ 20 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 11 ≤ X₁+X₅ ∧ 9+X₁ ≤ X₅ ∧ 9+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 9+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 2 ∧ X₀+X₄ ≤ 2 ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 10 ≤ X₂+X₄ ∧ X₂ ≤ 10+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ 1+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 of depth 1:
new bound:
10 {O(1)}
MPRF for transition t₇₈: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, 0, X₂, X₃+1, X₄, X₅) :|: 2+X₃ ≤ X₂ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 10+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ of depth 1:
new bound:
10 {O(1)}
MPRF for transition t₈₀: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₁ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 10+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ of depth 1:
new bound:
9 {O(1)}
MPRF for transition t₈₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, 1, X₂, X₃+1, X₄, X₅) :|: N+1 ≤ M ∧ X₃ ≤ 8 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 18 ∧ X₃ ≤ 7+X₁ ∧ X₁+X₃ ≤ 9 ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 9 ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ of depth 1:
new bound:
50 {O(1)}
MPRF for transition t₈₈: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, 0, X₂, X₃+1, X₄, X₅) :|: X₃ ≤ 8 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 18 ∧ X₃ ≤ 7+X₁ ∧ X₁+X₃ ≤ 9 ∧ X₃ ≤ 8+X₀ ∧ X₀+X₃ ≤ 9 ∧ 0 ≤ X₃ ∧ 10 ≤ X₂+X₃ ∧ X₂ ≤ 10+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 10 ∧ X₂ ≤ 9+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 10+X₀ ∧ X₀+X₂ ≤ 11 ∧ 10 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 9+X₁ ≤ X₂ ∧ 10 ≤ X₀+X₂ ∧ 9+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 2 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 0 ≤ X₀ of depth 1:
new bound:
1 {O(1)}
All Bounds
Timebounds
Overall timebound:2479 {O(1)}
t₆₆: 1 {O(1)}
t₆₇: 11 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: 10 {O(1)}
t₇₀: 1 {O(1)}
t₇₁: 10 {O(1)}
t₇₂: 100 {O(1)}
t₇₃: 530 {O(1)}
t₇₄: 260 {O(1)}
t₇₅: 260 {O(1)}
t₇₆: 30 {O(1)}
t₇₇: 120 {O(1)}
t₇₈: 10 {O(1)}
t₈₀: 9 {O(1)}
t₈₂: 1 {O(1)}
t₈₃: 1 {O(1)}
t₈₅: 1061 {O(1)}
t₈₆: 10 {O(1)}
t₈₇: 50 {O(1)}
t₈₈: 1 {O(1)}
t₉₀: 1 {O(1)}
t₉₁: 1 {O(1)}
Costbounds
Overall costbound: 2479 {O(1)}
t₆₆: 1 {O(1)}
t₆₇: 11 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: 10 {O(1)}
t₇₀: 1 {O(1)}
t₇₁: 10 {O(1)}
t₇₂: 100 {O(1)}
t₇₃: 530 {O(1)}
t₇₄: 260 {O(1)}
t₇₅: 260 {O(1)}
t₇₆: 30 {O(1)}
t₇₇: 120 {O(1)}
t₇₈: 10 {O(1)}
t₈₀: 9 {O(1)}
t₈₂: 1 {O(1)}
t₈₃: 1 {O(1)}
t₈₅: 1061 {O(1)}
t₈₆: 10 {O(1)}
t₈₇: 50 {O(1)}
t₈₈: 1 {O(1)}
t₉₀: 1 {O(1)}
t₉₁: 1 {O(1)}
Sizebounds
t₆₆, X₀: 1 {O(1)}
t₆₆, X₁: 1 {O(1)}
t₆₆, X₂: 10 {O(1)}
t₆₆, X₃: 0 {O(1)}
t₆₆, X₄: X₄ {O(n)}
t₆₆, X₅: X₅ {O(n)}
t₆₇, X₀: 1 {O(1)}
t₆₇, X₁: 1 {O(1)}
t₆₇, X₂: 10 {O(1)}
t₆₇, X₃: 10 {O(1)}
t₆₇, X₄: X₄ {O(n)}
t₆₇, X₅: X₅ {O(n)}
t₆₈, X₀: 1 {O(1)}
t₆₈, X₁: 1 {O(1)}
t₆₈, X₂: 10 {O(1)}
t₆₈, X₃: 0 {O(1)}
t₆₈, X₄: X₄ {O(n)}
t₆₈, X₅: X₅ {O(n)}
t₆₉, X₀: 1 {O(1)}
t₆₉, X₁: 1 {O(1)}
t₆₉, X₂: 10 {O(1)}
t₆₉, X₃: 9 {O(1)}
t₆₉, X₄: 0 {O(1)}
t₆₉, X₅: 0 {O(1)}
t₇₀, X₀: 1 {O(1)}
t₇₀, X₁: 1 {O(1)}
t₇₀, X₂: 10 {O(1)}
t₇₀, X₃: 0 {O(1)}
t₇₀, X₄: 2 {O(1)}
t₇₀, X₅: 200 {O(1)}
t₇₁, X₀: 0 {O(1)}
t₇₁, X₁: 1 {O(1)}
t₇₁, X₂: 10 {O(1)}
t₇₁, X₃: 76 {O(1)}
t₇₁, X₄: 1 {O(1)}
t₇₁, X₅: 40 {O(1)}
t₇₂, X₀: 3 {O(1)}
t₇₂, X₁: 1 {O(1)}
t₇₂, X₂: 10 {O(1)}
t₇₂, X₃: 27 {O(1)}
t₇₂, X₄: 1 {O(1)}
t₇₂, X₅: 10 {O(1)}
t₇₃, X₀: 3 {O(1)}
t₇₃, X₁: 1 {O(1)}
t₇₃, X₂: 10 {O(1)}
t₇₃, X₃: 27 {O(1)}
t₇₃, X₄: 1 {O(1)}
t₇₃, X₅: 10 {O(1)}
t₇₄, X₀: 1 {O(1)}
t₇₄, X₁: 1 {O(1)}
t₇₄, X₂: 10 {O(1)}
t₇₄, X₃: 9 {O(1)}
t₇₄, X₄: 0 {O(1)}
t₇₄, X₅: 10 {O(1)}
t₇₅, X₀: 1 {O(1)}
t₇₅, X₁: 1 {O(1)}
t₇₅, X₂: 10 {O(1)}
t₇₅, X₃: 9 {O(1)}
t₇₅, X₄: 0 {O(1)}
t₇₅, X₅: 10 {O(1)}
t₇₆, X₀: 8 {O(1)}
t₇₆, X₁: 1 {O(1)}
t₇₆, X₂: 10 {O(1)}
t₇₆, X₃: 72 {O(1)}
t₇₆, X₄: 1 {O(1)}
t₇₆, X₅: 40 {O(1)}
t₇₇, X₀: 1 {O(1)}
t₇₇, X₁: 1 {O(1)}
t₇₇, X₂: 10 {O(1)}
t₇₇, X₃: 72 {O(1)}
t₇₇, X₄: 1 {O(1)}
t₇₇, X₅: 40 {O(1)}
t₇₈, X₀: 1 {O(1)}
t₇₈, X₁: 0 {O(1)}
t₇₈, X₂: 10 {O(1)}
t₇₈, X₃: 9 {O(1)}
t₇₈, X₄: 2 {O(1)}
t₇₈, X₅: 200 {O(1)}
t₈₀, X₀: 1 {O(1)}
t₈₀, X₁: 1 {O(1)}
t₈₀, X₂: 10 {O(1)}
t₈₀, X₃: 8 {O(1)}
t₈₀, X₄: 2 {O(1)}
t₈₀, X₅: 200 {O(1)}
t₈₂, X₀: 1 {O(1)}
t₈₂, X₁: 1 {O(1)}
t₈₂, X₂: 10 {O(1)}
t₈₂, X₃: 27 {O(1)}
t₈₂, X₄: 6 {O(1)}
t₈₂, X₅: 600 {O(1)}
t₈₃, X₀: 0 {O(1)}
t₈₃, X₁: 1 {O(1)}
t₈₃, X₂: 10 {O(1)}
t₈₃, X₃: 27 {O(1)}
t₈₃, X₄: 6 {O(1)}
t₈₃, X₅: 600 {O(1)}
t₈₅, X₀: 1 {O(1)}
t₈₅, X₁: 1 {O(1)}
t₈₅, X₂: 10 {O(1)}
t₈₅, X₃: 146 {O(1)}
t₈₅, X₄: 1 {O(1)}
t₈₅, X₅: 80 {O(1)}
t₈₆, X₀: 0 {O(1)}
t₈₆, X₁: 1 {O(1)}
t₈₆, X₂: 10 {O(1)}
t₈₆, X₃: 146 {O(1)}
t₈₆, X₄: 0 {O(1)}
t₈₆, X₅: 80 {O(1)}
t₈₇, X₀: 1 {O(1)}
t₈₇, X₁: 1 {O(1)}
t₈₇, X₂: 10 {O(1)}
t₈₇, X₃: 9 {O(1)}
t₈₇, X₄: 2 {O(1)}
t₈₇, X₅: 200 {O(1)}
t₈₈, X₀: 1 {O(1)}
t₈₈, X₁: 0 {O(1)}
t₈₈, X₂: 10 {O(1)}
t₈₈, X₃: 9 {O(1)}
t₈₈, X₄: 2 {O(1)}
t₈₈, X₅: 200 {O(1)}
t₉₀, X₀: 1 {O(1)}
t₉₀, X₁: 1 {O(1)}
t₉₀, X₂: 10 {O(1)}
t₉₀, X₃: 27 {O(1)}
t₉₀, X₄: 6 {O(1)}
t₉₀, X₅: 600 {O(1)}
t₉₁, X₀: 1 {O(1)}
t₉₁, X₁: 0 {O(1)}
t₉₁, X₂: 10 {O(1)}
t₉₁, X₃: 27 {O(1)}
t₉₁, X₄: 6 {O(1)}
t₉₁, X₅: 600 {O(1)}