Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 2 ≤ X₀
t₁: l0(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: X₀ ≤ 1
t₂: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₀, 2⋅X₀) :|: 2 ≤ X₁
t₅: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃, 2⋅X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃
t₆: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃+1, 2⋅X₃+2) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃
t₈: l2(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₃, 2⋅X₃) :|: 1 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁
t₃: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁
t₄: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃+1) :|: X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁
t₇: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ X₃ ≤ X₁
t₉: l3(X₀, X₁, X₂, X₃) → l1(X₀-1, X₁, X₂, X₃) :|: 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁
t₁₀: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁-1, X₂, X₃) :|: 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
Preprocessing
Eliminate variables {X₂} that do not contribute to the problem
Found invariant 2 ≤ X₁ for location l2
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₁ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
t₂₇: l0(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 2 ≤ X₀
t₂₈: l0(X₀, X₁, X₂) → l1(X₀, X₁-1, X₂) :|: X₀ ≤ 1
t₂₉: l1(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₀) :|: 2 ≤ X₁
t₃₀: l2(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₂) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁
t₃₁: l2(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₂+2) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁
t₃₂: l2(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₂) :|: 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁
t₃₃: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁
t₃₄: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂+1) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁
t₃₅: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁
t₃₆: l3(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁
t₃₇: l3(X₀, X₁, X₂) → l1(X₀, X₁-1, X₂) :|: 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁
MPRF for transition t₃₆: l3(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₀+2 {O(n)}
MPRF for transition t₃₇: l3(X₀, X₁, X₂) → l1(X₀, X₁-1, X₂) :|: 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₁+3 {O(n)}
knowledge_propagation leads to new time bound 2⋅X₀+2⋅X₁+7 {O(n)} for transition t₂₉: l1(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₀) :|: 2 ≤ X₁
MPRF for transition t₃₀: l2(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₂) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
MPRF for transition t₃₁: l2(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₂+2) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22 {O(n^2)}
MPRF for transition t₃₂: l2(X₀, X₁, X₂) → l2(X₀, X₁, 2⋅X₂) :|: 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
MPRF for transition t₃₃: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
MPRF for transition t₃₄: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂+1) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
MPRF for transition t₃₅: l2(X₀, X₁, X₂) → l3(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
Chain transitions t₃₇: l3→l1 and t₂₉: l1→l2 to t₂₄₂: l3→l2
Chain transitions t₃₆: l3→l1 and t₂₉: l1→l2 to t₂₄₃: l3→l2
Chain transitions t₂₈: l0→l1 and t₂₉: l1→l2 to t₂₄₄: l0→l2
Chain transitions t₂₇: l0→l1 and t₂₉: l1→l2 to t₂₄₅: l0→l2
Chain transitions t₃₅: l2→l3 and t₂₄₃: l3→l2 to t₂₄₆: l2→l2
Chain transitions t₃₄: l2→l3 and t₂₄₃: l3→l2 to t₂₄₇: l2→l2
Chain transitions t₃₄: l2→l3 and t₂₄₂: l3→l2 to t₂₄₈: l2→l2
Chain transitions t₃₅: l2→l3 and t₂₄₂: l3→l2 to t₂₄₉: l2→l2
Chain transitions t₃₃: l2→l3 and t₂₄₂: l3→l2 to t₂₅₀: l2→l2
Chain transitions t₃₃: l2→l3 and t₂₄₃: l3→l2 to t₂₅₁: l2→l2
Chain transitions t₃₃: l2→l3 and t₃₇: l3→l1 to t₂₅₂: l2→l1
Chain transitions t₃₄: l2→l3 and t₃₇: l3→l1 to t₂₅₃: l2→l1
Chain transitions t₃₅: l2→l3 and t₃₇: l3→l1 to t₂₅₄: l2→l1
Chain transitions t₃₃: l2→l3 and t₃₆: l3→l1 to t₂₅₅: l2→l1
Chain transitions t₃₄: l2→l3 and t₃₆: l3→l1 to t₂₅₆: l2→l1
Chain transitions t₃₅: l2→l3 and t₃₆: l3→l1 to t₂₅₇: l2→l1
Analysing control-flow refined program
Found invariant 2 ≤ X₁ for location l2
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₁ for location l3
knowledge_propagation leads to new time bound 12⋅X₀⋅X₁+12⋅X₁⋅X₁+16⋅X₀⋅X₀+40⋅X₀+52⋅X₁+45 {O(n^2)} for transition t₂₄₉: l2(X₀, X₁, X₂) -{3}> l2(X₀, X₁-1, 2⋅X₀) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁
MPRF for transition t₂₄₆: l2(X₀, X₁, X₂) -{3}> l2(X₀-1, X₁, 2⋅X₀-2) :|: X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₀ {O(n)}
MPRF for transition t₂₄₇: l2(X₀, X₁, X₂) -{3}> l2(X₀-1, X₁, 2⋅X₀-2) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₂+1 ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₀ {O(n)}
MPRF for transition t₂₄₈: l2(X₀, X₁, X₂) -{3}> l2(X₀, X₁-1, 2⋅X₀) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₂+1 ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₁ {O(n)}
MPRF for transition t₂₅₀: l2(X₀, X₁, X₂) -{3}> l2(X₀, X₁-1, 2⋅X₀) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ 3 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₁ {O(n)}
MPRF for transition t₂₅₁: l2(X₀, X₁, X₂) -{3}> l2(X₀-1, X₁, 2⋅X₀-2) :|: X₂ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₁ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₀ {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 6 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 7 ≤ X₀+X₂ ∧ 5+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___20
Found invariant 4 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___31
Found invariant 2 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___6
Found invariant X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___4
Found invariant X₂ ≤ 1+X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___9
Found invariant X₂ ≤ X₁ ∧ 5 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 6 ≤ X₀+X₂ ∧ 4+X₀ ≤ X₂ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___15
Found invariant 1+X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___27
Found invariant X₂ ≤ 2 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 3 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___22
Found invariant X₂ ≤ 2 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 3 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___19
Found invariant X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___7
Found invariant 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___38
Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant X₂ ≤ 1+X₁ ∧ 4 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___13
Found invariant X₂ ≤ 1+X₁ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___8
Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l2___3
Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___30
Found invariant X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___33
Found invariant 1+X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 9 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___16
Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 4 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 3 ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 2 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 3 ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___10
Found invariant X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₂ ≤ 2+X₀ ∧ X₀+X₂ ≤ 4 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___18
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___12
Found invariant 4 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___35
Found invariant X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___25
Found invariant X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___24
Found invariant X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___29
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___32
Found invariant X₂ ≤ 2 ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 3 ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___11
Found invariant 4 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___17
Found invariant X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l3___14
Found invariant X₂ ≤ X₁ ∧ 5 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 6 ≤ X₀+X₂ ∧ 4+X₀ ≤ X₂ ∧ 5 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 4+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___26
Found invariant 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___34
Found invariant X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___23
Found invariant 4 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l2___21
Found invariant 4 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___36
Found invariant X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___28
Found invariant X₂ ≤ 2 ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 3 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l3___2
Found invariant 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___37
Found invariant X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₂ ≤ 2+X₀ ∧ X₀+X₂ ≤ 4 ∧ 2 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 1 for location n_l3___1
Cut unsatisfiable transition t₆₀₅: n_l3___1→n_l1___7
Cut unsatisfiable transition t₆₁₄: n_l3___2→n_l1___7
All Bounds
Timebounds
Overall timebound:16⋅X₁⋅X₁+24⋅X₀⋅X₀+28⋅X₀⋅X₁+76⋅X₀+94⋅X₁+103 {O(n^2)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 2⋅X₀+2⋅X₁+7 {O(n)}
t₃₀: 4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
t₃₁: 8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22 {O(n^2)}
t₃₂: 4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
t₃₃: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₄: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₅: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₆: 2⋅X₀+2 {O(n)}
t₃₇: 2⋅X₁+3 {O(n)}
Costbounds
Overall costbound: 16⋅X₁⋅X₁+24⋅X₀⋅X₀+28⋅X₀⋅X₁+76⋅X₀+94⋅X₁+103 {O(n^2)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: 2⋅X₀+2⋅X₁+7 {O(n)}
t₃₀: 4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
t₃₁: 8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22 {O(n^2)}
t₃₂: 4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23 {O(n^2)}
t₃₃: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₄: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₅: 4⋅X₀⋅X₁+4⋅X₀+6⋅X₁+7 {O(n^2)}
t₃₆: 2⋅X₀+2 {O(n)}
t₃₇: 2⋅X₁+3 {O(n)}
Sizebounds
t₂₇, X₀: X₀ {O(n)}
t₂₇, X₁: X₁ {O(n)}
t₂₇, X₂: X₂ {O(n)}
t₂₈, X₀: X₀ {O(n)}
t₂₈, X₁: X₁+1 {O(n)}
t₂₈, X₂: X₂ {O(n)}
t₂₉, X₀: 2⋅X₀+1 {O(n)}
t₂₉, X₁: 2⋅X₁+1 {O(n)}
t₂₉, X₂: 8⋅X₀+4 {O(n)}
t₃₀, X₀: 2⋅X₀+1 {O(n)}
t₃₀, X₁: 2⋅X₁+1 {O(n)}
t₃₀, X₂: 26⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)+28⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₁⋅X₁ {O(EXP)}
t₃₁, X₀: 2⋅X₀+1 {O(n)}
t₃₁, X₁: 2⋅X₁+1 {O(n)}
t₃₁, X₂: 26⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)+28⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅8⋅X₁⋅X₁ {O(EXP)}
t₃₂, X₀: 6⋅X₀+3 {O(n)}
t₃₂, X₁: 6⋅X₁+3 {O(n)}
t₃₂, X₂: 104⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)+112⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀+128⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁⋅X₁+16⋅X₀+8 {O(EXP)}
t₃₃, X₀: 2⋅X₀+1 {O(n)}
t₃₃, X₁: 2⋅X₁+1 {O(n)}
t₃₃, X₂: 16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₀+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₁+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅52+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅56⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅64⋅X₁+8⋅X₀+4 {O(EXP)}
t₃₄, X₀: 2⋅X₀+1 {O(n)}
t₃₄, X₁: 2⋅X₁+1 {O(n)}
t₃₄, X₂: 16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₀+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₁+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅52+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅56⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅64⋅X₁+8⋅X₀+7 {O(EXP)}
t₃₅, X₀: 2⋅X₀+1 {O(n)}
t₃₅, X₁: 2⋅X₁+1 {O(n)}
t₃₅, X₂: 16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₀+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₁+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅52+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅56⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅64⋅X₁+8⋅X₀+4 {O(EXP)}
t₃₆, X₀: 2⋅X₀+1 {O(n)}
t₃₆, X₁: 2⋅X₁+1 {O(n)}
t₃₆, X₂: 104⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)+112⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀+128⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₀+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₁+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅52+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅56⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅64⋅X₁+24⋅X₀+15 {O(EXP)}
t₃₇, X₀: 1 {O(1)}
t₃₇, X₁: 2⋅X₁+1 {O(n)}
t₃₇, X₂: 104⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)+112⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀+128⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₀+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₀⋅X₁+16⋅2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₀⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅32⋅X₁⋅X₁+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅52+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅56⋅X₀+2^(4⋅X₀⋅X₁+4⋅X₁⋅X₁+8⋅X₀⋅X₀+20⋅X₀+20⋅X₁+23)⋅2^(8⋅X₀⋅X₀+8⋅X₀⋅X₁+8⋅X₁⋅X₁+20⋅X₀+32⋅X₁+22)⋅64⋅X₁+24⋅X₀+15 {O(EXP)}