Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₃₅: l10(X₀, X₁, X₂, X₃, X₄) → l24(X₀, X₁, X₂, X₃, X₄)
t₆: l11(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄)
t₈: l12(X₀, X₁, X₂, X₃, X₄) → l14(X₀, X₁, X₂, X₃, X₄)
t₇: l13(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄)
t₉: l14(X₀, X₁, X₂, X₃, X₄) → l15(X₀, X₁, X₂, X₃, X₄)
t₁₀: l15(X₀, X₁, X₂, X₃, X₄) → l19(X₀, X₁, X₂, X₃, X₄)
t₃₄: l16(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₀, X₄)
t₃₂: l17(X₀, X₁, X₂, X₃, X₄) → l18(X₃+1, X₁, X₂, X₃, X₄)
t₃₃: l18(X₀, X₁, X₂, X₃, X₄) → l16(X₀, X₁, X₂, X₃, X₄)
t₁₁: l19(X₀, X₁, X₂, X₃, X₄) → l20(X₀, X₁, X₂, X₃, X₄)
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₁₂: l20(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄)
t₂₁: l21(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂
t₂₀: l21(X₀, X₁, X₂, X₃, X₄) → l26(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁
t₃₀: l22(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₁, X₃, X₄)
t₂₉: l22(X₀, X₁, X₂, X₃, X₄) → l23(X₀, X₁, X₂, X₃, X₄)
t₃₁: l23(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₄, X₃, X₄)
t₁₉: l25(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, 0, X₃, X₄)
t₂₃: l26(X₀, X₁, X₂, X₃, X₄) → l27(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ < X₁
t₂₄: l26(X₀, X₁, X₂, X₃, X₄) → l27(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂
t₂₂: l26(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ X₁ ≤ X₃+3+2⋅X₂
t₂₅: l27(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄)
t₂₆: l27(X₀, X₁, X₂, X₃, X₄) → l29(X₀, X₁, X₂, X₃, X₄)
t₂₇: l28(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+1)
t₂₈: l29(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+2)
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₅: l4(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 2
t₄: l4(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: 2 < X₁
t₁₅: l5(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄)
t₁₃: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₁₄: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄)
t₁₆: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, 0, X₄)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 2+X₃
t₁₇: l9(X₀, X₁, X₂, X₃, X₄) → l25(X₀, X₁, X₂, X₃, X₄) :|: X₃+2 ≤ X₁
Preprocessing
Cut unsatisfiable transition t₂₄: l26→l27
Found invariant 3 ≤ X₁ for location l11
Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l25
Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location l27
Found invariant 3 ≤ X₁ for location l6
Found invariant 3 ≤ X₁ for location l15
Found invariant 3 ≤ X₁ for location l19
Found invariant 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l26
Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location l29
Found invariant 3 ≤ X₁ for location l12
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l23
Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l17
Found invariant 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l28
Found invariant 3 ≤ X₁ for location l7
Found invariant 3 ≤ X₁ for location l20
Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l21
Found invariant 3 ≤ X₁ for location l5
Found invariant 3 ≤ X₁ for location l13
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l22
Found invariant 3 ≤ X₁ for location l8
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l16
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l18
Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l9
Found invariant 3 ≤ X₁ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₃₅: l10(X₀, X₁, X₂, X₃, X₄) → l24(X₀, X₁, X₂, X₃, X₄)
t₆: l11(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₈: l12(X₀, X₁, X₂, X₃, X₄) → l14(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₇: l13(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₉: l14(X₀, X₁, X₂, X₃, X₄) → l15(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁₀: l15(X₀, X₁, X₂, X₃, X₄) → l19(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₃₄: l16(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₀, X₄) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₃₂: l17(X₀, X₁, X₂, X₃, X₄) → l18(X₃+1, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₃₃: l18(X₀, X₁, X₂, X₃, X₄) → l16(X₀, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l19(X₀, X₁, X₂, X₃, X₄) → l20(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₁₂: l20(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₂₁: l21(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₀: l21(X₀, X₁, X₂, X₃, X₄) → l26(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₃₀: l22(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₁, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₉: l22(X₀, X₁, X₂, X₃, X₄) → l23(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₃₁: l23(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₄, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₁₉: l25(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, 0, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁
t₂₃: l26(X₀, X₁, X₂, X₃, X₄) → l27(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ < X₁ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₂: l26(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ X₁ ≤ X₃+3+2⋅X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₅: l27(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₂₆: l27(X₀, X₁, X₂, X₃, X₄) → l29(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₂₇: l28(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
t₂₈: l29(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+2) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₅: l4(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 2
t₄: l4(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: 2 < X₁
t₁₅: l5(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁₃: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁₄: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 3 ≤ X₁
t₁₆: l8(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, 0, X₄) :|: 3 ≤ X₁
t₁₈: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 2+X₃ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁
t₁₇: l9(X₀, X₁, X₂, X₃, X₄) → l25(X₀, X₁, X₂, X₃, X₄) :|: X₃+2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁
MPRF for transition t₁₇: l9(X₀, X₁, X₂, X₃, X₄) → l25(X₀, X₁, X₂, X₃, X₄) :|: X₃+2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₁₉: l25(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, 0, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₂₁: l21(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₃₂: l17(X₀, X₁, X₂, X₃, X₄) → l18(X₃+1, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁ {O(n)}
MPRF for transition t₃₃: l18(X₀, X₁, X₂, X₃, X₄) → l16(X₀, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁ {O(n)}
MPRF for transition t₃₄: l16(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₀, X₄) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁ {O(n)}
MPRF for transition t₂₀: l21(X₀, X₁, X₂, X₃, X₄) → l26(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
2⋅X₁⋅X₁+3⋅X₁+1 {O(n^2)}
MPRF for transition t₂₂: l26(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ ≤ X₁ ∧ X₁ ≤ X₃+3+2⋅X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+3⋅X₁+2 {O(n^2)}
MPRF for transition t₂₃: l26(X₀, X₁, X₂, X₃, X₄) → l27(X₀, X₁, X₂, X₃, X₄) :|: 2⋅X₂+3+X₃ < X₁ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₂₅: l27(X₀, X₁, X₂, X₃, X₄) → l28(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₂₆: l27(X₀, X₁, X₂, X₃, X₄) → l29(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₂₇: l28(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₂₈: l29(X₀, X₁, X₂, X₃, X₄) → l22(X₀, X₁, X₂, X₃, 2⋅X₂+2) :|: 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₂₉: l22(X₀, X₁, X₂, X₃, X₄) → l23(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₃₀: l22(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₁, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+2⋅X₁+1 {O(n^2)}
MPRF for transition t₃₁: l23(X₀, X₁, X₂, X₃, X₄) → l21(X₀, X₁, X₄, X₃, X₄) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
Chain transitions t₃₃: l18→l16 and t₃₄: l16→l9 to t₄₆₁: l18→l9
Chain transitions t₂₁: l21→l17 and t₃₂: l17→l18 to t₄₆₂: l21→l18
Chain transitions t₄₆₂: l21→l18 and t₄₆₁: l18→l9 to t₄₆₃: l21→l9
Chain transitions t₄₆₂: l21→l18 and t₃₃: l18→l16 to t₄₆₄: l21→l16
Chain transitions t₁₉: l25→l21 and t₄₆₃: l21→l9 to t₄₆₅: l25→l9
Chain transitions t₃₁: l23→l21 and t₄₆₃: l21→l9 to t₄₆₆: l23→l9
Chain transitions t₃₁: l23→l21 and t₂₀: l21→l26 to t₄₆₇: l23→l26
Chain transitions t₁₉: l25→l21 and t₂₀: l21→l26 to t₄₆₈: l25→l26
Chain transitions t₃₀: l22→l21 and t₂₀: l21→l26 to t₄₆₉: l22→l26
Chain transitions t₃₀: l22→l21 and t₄₆₃: l21→l9 to t₄₇₀: l22→l9
Chain transitions t₃₀: l22→l21 and t₄₆₂: l21→l18 to t₄₇₁: l22→l18
Chain transitions t₃₁: l23→l21 and t₄₆₂: l21→l18 to t₄₇₂: l23→l18
Chain transitions t₁₉: l25→l21 and t₄₆₂: l21→l18 to t₄₇₃: l25→l18
Chain transitions t₃₀: l22→l21 and t₂₁: l21→l17 to t₄₇₄: l22→l17
Chain transitions t₃₁: l23→l21 and t₂₁: l21→l17 to t₄₇₅: l23→l17
Chain transitions t₁₉: l25→l21 and t₂₁: l21→l17 to t₄₇₆: l25→l17
Chain transitions t₃₀: l22→l21 and t₄₆₄: l21→l16 to t₄₇₇: l22→l16
Chain transitions t₃₁: l23→l21 and t₄₆₄: l21→l16 to t₄₇₈: l23→l16
Chain transitions t₁₉: l25→l21 and t₄₆₄: l21→l16 to t₄₇₉: l25→l16
Chain transitions t₂₈: l29→l22 and t₄₇₀: l22→l9 to t₄₈₀: l29→l9
Chain transitions t₂₇: l28→l22 and t₄₇₀: l22→l9 to t₄₈₁: l28→l9
Chain transitions t₂₇: l28→l22 and t₄₆₉: l22→l26 to t₄₈₂: l28→l26
Chain transitions t₂₈: l29→l22 and t₄₆₉: l22→l26 to t₄₈₃: l29→l26
Chain transitions t₂₇: l28→l22 and t₂₉: l22→l23 to t₄₈₄: l28→l23
Chain transitions t₂₈: l29→l22 and t₂₉: l22→l23 to t₄₈₅: l29→l23
Chain transitions t₂₇: l28→l22 and t₃₀: l22→l21 to t₄₈₆: l28→l21
Chain transitions t₂₈: l29→l22 and t₃₀: l22→l21 to t₄₈₇: l29→l21
Chain transitions t₂₇: l28→l22 and t₄₇₁: l22→l18 to t₄₈₈: l28→l18
Chain transitions t₂₈: l29→l22 and t₄₇₁: l22→l18 to t₄₈₉: l29→l18
Chain transitions t₂₇: l28→l22 and t₄₇₄: l22→l17 to t₄₉₀: l28→l17
Chain transitions t₂₈: l29→l22 and t₄₇₄: l22→l17 to t₄₉₁: l29→l17
Chain transitions t₂₇: l28→l22 and t₄₇₇: l22→l16 to t₄₉₂: l28→l16
Chain transitions t₂₈: l29→l22 and t₄₇₇: l22→l16 to t₄₉₃: l29→l16
Chain transitions t₄₈₅: l29→l23 and t₄₆₆: l23→l9 to t₄₉₄: l29→l9
Chain transitions t₄₈₄: l28→l23 and t₄₆₆: l23→l9 to t₄₉₅: l28→l9
Chain transitions t₄₈₄: l28→l23 and t₄₆₇: l23→l26 to t₄₉₆: l28→l26
Chain transitions t₄₈₅: l29→l23 and t₄₆₇: l23→l26 to t₄₉₇: l29→l26
Chain transitions t₄₈₄: l28→l23 and t₃₁: l23→l21 to t₄₉₈: l28→l21
Chain transitions t₄₈₅: l29→l23 and t₃₁: l23→l21 to t₄₉₉: l29→l21
Chain transitions t₄₈₄: l28→l23 and t₄₇₂: l23→l18 to t₅₀₀: l28→l18
Chain transitions t₄₈₅: l29→l23 and t₄₇₂: l23→l18 to t₅₀₁: l29→l18
Chain transitions t₄₈₄: l28→l23 and t₄₇₅: l23→l17 to t₅₀₂: l28→l17
Chain transitions t₄₈₅: l29→l23 and t₄₇₅: l23→l17 to t₅₀₃: l29→l17
Chain transitions t₄₈₄: l28→l23 and t₄₇₈: l23→l16 to t₅₀₄: l28→l16
Chain transitions t₄₈₅: l29→l23 and t₄₇₈: l23→l16 to t₅₀₅: l29→l16
Chain transitions t₁₇: l9→l25 and t₄₆₅: l25→l9 to t₅₀₆: l9→l9
Chain transitions t₁₇: l9→l25 and t₄₆₈: l25→l26 to t₅₀₇: l9→l26
Chain transitions t₁₇: l9→l25 and t₁₉: l25→l21 to t₅₀₈: l9→l21
Chain transitions t₁₇: l9→l25 and t₄₇₃: l25→l18 to t₅₀₉: l9→l18
Chain transitions t₁₇: l9→l25 and t₄₇₆: l25→l17 to t₅₁₀: l9→l17
Chain transitions t₁₇: l9→l25 and t₄₇₉: l25→l16 to t₅₁₁: l9→l16
Chain transitions t₅₀₇: l9→l26 and t₂₂: l26→l28 to t₅₁₂: l9→l28
Chain transitions t₄₉₇: l29→l26 and t₂₂: l26→l28 to t₅₁₃: l29→l28
Chain transitions t₄₉₇: l29→l26 and t₂₃: l26→l27 to t₅₁₄: l29→l27
Chain transitions t₅₀₇: l9→l26 and t₂₃: l26→l27 to t₅₁₅: l9→l27
Chain transitions t₄₈₃: l29→l26 and t₂₃: l26→l27 to t₅₁₆: l29→l27
Chain transitions t₄₈₃: l29→l26 and t₂₂: l26→l28 to t₅₁₇: l29→l28
Chain transitions t₄₉₆: l28→l26 and t₂₃: l26→l27 to t₅₁₈: l28→l27
Chain transitions t₄₉₆: l28→l26 and t₂₂: l26→l28 to t₅₁₉: l28→l28
Chain transitions t₄₈₂: l28→l26 and t₂₃: l26→l27 to t₅₂₀: l28→l27
Chain transitions t₄₈₂: l28→l26 and t₂₂: l26→l28 to t₅₂₁: l28→l28
Chain transitions t₅₁₅: l9→l27 and t₂₆: l27→l29 to t₅₂₂: l9→l29
Chain transitions t₅₁₆: l29→l27 and t₂₆: l27→l29 to t₅₂₃: l29→l29
Chain transitions t₅₁₆: l29→l27 and t₂₅: l27→l28 to t₅₂₄: l29→l28
Chain transitions t₅₁₅: l9→l27 and t₂₅: l27→l28 to t₅₂₅: l9→l28
Chain transitions t₅₁₄: l29→l27 and t₂₅: l27→l28 to t₅₂₆: l29→l28
Chain transitions t₅₁₄: l29→l27 and t₂₆: l27→l29 to t₅₂₇: l29→l29
Chain transitions t₅₂₀: l28→l27 and t₂₅: l27→l28 to t₅₂₈: l28→l28
Chain transitions t₅₂₀: l28→l27 and t₂₆: l27→l29 to t₅₂₉: l28→l29
Chain transitions t₅₁₈: l28→l27 and t₂₅: l27→l28 to t₅₃₀: l28→l28
Chain transitions t₅₁₈: l28→l27 and t₂₆: l27→l29 to t₅₃₁: l28→l29
Analysing control-flow refined program
Cut unsatisfiable transition t₄₈₂: l28→l26
Cut unsatisfiable transition t₄₈₃: l29→l26
Cut unsatisfiable transition t₅₁₆: l29→l27
Cut unsatisfiable transition t₅₁₇: l29→l28
Cut unsatisfiable transition t₅₂₀: l28→l27
Cut unsatisfiable transition t₅₂₁: l28→l28
Cut unsatisfiable transition t₅₂₃: l29→l29
Cut unsatisfiable transition t₅₂₄: l29→l28
Cut unsatisfiable transition t₅₂₈: l28→l28
Cut unsatisfiable transition t₅₂₉: l28→l29
Eliminate variables {X₀,X₄} that do not contribute to the problem
Found invariant 3 ≤ X₀ for location l11
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₀ for location l25
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l27
Found invariant 3 ≤ X₀ for location l6
Found invariant 3 ≤ X₀ for location l15
Found invariant 3 ≤ X₀ for location l19
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l26
Found invariant 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ for location l29
Found invariant 3 ≤ X₀ for location l12
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l23
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l17
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l28
Found invariant 3 ≤ X₀ for location l7
Found invariant 3 ≤ X₀ for location l20
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l21
Found invariant 3 ≤ X₀ for location l5
Found invariant 3 ≤ X₀ for location l13
Found invariant 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l22
Found invariant 3 ≤ X₀ for location l8
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l16
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location l18
Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₀ for location l9
Found invariant 3 ≤ X₀ for location l14
MPRF for transition t₇₁₉: l28(X₀, X₁, X₂) -{6}> l9(X₀, X₀, 1+X₂) :|: 0 < X₀+X₂+3 ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₇₂₀: l28(X₀, X₁, X₂) -{7}> l9(X₀, 1+2⋅X₁, 1+X₂) :|: X₀ < X₂+5+4⋅X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+2 {O(n)}
MPRF for transition t₇₃₆: l29(X₀, X₁, X₂) -{6}> l9(X₀, X₀, 1+X₂) :|: 0 < X₀+X₂+3 ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
X₀+3 {O(n)}
MPRF for transition t₇₃₇: l29(X₀, X₁, X₂) -{7}> l9(X₀, 2+2⋅X₁, 1+X₂) :|: X₀ < X₂+7+4⋅X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
X₀+3 {O(n)}
MPRF for transition t₇₅₃: l9(X₀, X₁, X₂) -{4}> l28(X₀, 0, X₂) :|: X₂+2 ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ X₀ ≤ X₂+3 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₇₅₄: l9(X₀, X₁, X₂) -{5}> l28(X₀, 0, X₂) :|: X₂+2 ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 3+X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₇₅₅: l9(X₀, X₁, X₂) -{5}> l29(X₀, 0, X₂) :|: X₂+2 ≤ X₀ ∧ 3+X₂ ≤ X₀ ∧ 3+X₂ < X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₇₅₆: l9(X₀, X₁, X₂) -{6}> l9(X₀, 0, 1+X₂) :|: X₂+2 ≤ X₀ ∧ X₀ < X₂+3 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₇₁₆: l28(X₀, X₁, X₂) -{5}> l28(X₀, 1+2⋅X₁, X₂) :|: 5+4⋅X₁+X₂ ≤ X₀ ∧ 5+4⋅X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₂+5+4⋅X₁ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+X₀ {O(n^2)}
MPRF for transition t₇₁₇: l28(X₀, X₁, X₂) -{6}> l28(X₀, 1+2⋅X₁, X₂) :|: 5+4⋅X₁+X₂ ≤ X₀ ∧ 5+4⋅X₁+X₂ < X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+X₀ {O(n^2)}
MPRF for transition t₇₁₈: l28(X₀, X₁, X₂) -{6}> l29(X₀, 1+2⋅X₁, X₂) :|: 5+4⋅X₁+X₂ ≤ X₀ ∧ 5+4⋅X₁+X₂ < X₀ ∧ 3+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+18⋅X₀+5 {O(n^2)}
MPRF for transition t₇₃₃: l29(X₀, X₁, X₂) -{5}> l28(X₀, 2+2⋅X₁, X₂) :|: 7+4⋅X₁+X₂ ≤ X₀ ∧ 7+4⋅X₁+X₂ ≤ X₀ ∧ X₀ ≤ X₂+7+4⋅X₁ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+27⋅X₀+10 {O(n^2)}
MPRF for transition t₇₃₄: l29(X₀, X₁, X₂) -{6}> l28(X₀, 2+2⋅X₁, X₂) :|: 7+4⋅X₁+X₂ ≤ X₀ ∧ 7+4⋅X₁+X₂ < X₀ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+27⋅X₀+10 {O(n^2)}
MPRF for transition t₇₃₅: l29(X₀, X₁, X₂) -{6}> l29(X₀, 2+2⋅X₁, X₂) :|: 7+4⋅X₁+X₂ ≤ X₀ ∧ 7+4⋅X₁+X₂ < X₀ ∧ 4+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 4 ≤ X₀ of depth 1:
new bound:
3⋅X₀⋅X₀+X₀ {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₁₂₉₄: n_l21___1→n_l26___17
Found invariant X₄ ≤ 2 ∧ X₄ ≤ 2+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l23___5
Found invariant 3 ≤ X₁ for location l6
Found invariant X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l27___16
Found invariant 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 3+X₂ ≤ X₄ ∧ 10 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l22___10
Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l28___23
Found invariant 3 ≤ X₁ for location l19
Found invariant 2+X₄ ≤ X₁ ∧ 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 3+X₂ ≤ X₄ ∧ 10 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l23___9
Found invariant X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ for location n_l28___15
Found invariant 2+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ for location n_l23___7
Found invariant 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l26___26
Found invariant 3 ≤ X₁ for location l12
Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ for location n_l22___8
Found invariant 3 ≤ X₁ for location l20
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l21___1
Found invariant 3+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 9 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l23___11
Found invariant X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l29___13
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l22___4
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l18
Found invariant 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₁ for location n_l21___20
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l23___2
Found invariant 3 ≤ X₁ for location l14
Found invariant 3 ≤ X₁ for location l11
Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l25
Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 9 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l22___12
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 3+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l22___21
Found invariant X₄ ≤ 2 ∧ X₄ ≤ 2+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l22___6
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 3+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l23___19
Found invariant 3 ≤ X₁ for location l15
Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l27___25
Found invariant 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l29___22
Found invariant X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ for location n_l28___14
Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l17
Found invariant 3 ≤ X₁ for location l7
Found invariant 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location l21
Found invariant 3 ≤ X₁ for location l5
Found invariant 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l28___24
Found invariant 3 ≤ X₁ for location l13
Found invariant 3 ≤ X₁ for location l8
Found invariant X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₁ for location n_l21___18
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 3+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₁ for location n_l21___3
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l16
Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₁ for location l9
Found invariant X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ for location n_l26___17
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₂₉₆: l21(X₀, X₁, X₂, X₃, X₄) → n_l26___26(X₀, X₁, X₂, X₃, X₄) :|: X₂ ≤ 0 ∧ 3+2⋅X₂+X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₁ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₁₇: n_l26___26(X₀, X₁, X₂, X₃, X₄) → n_l27___25(X₀, X₁, X₂, X₃, X₄) :|: X₂ ≤ 0 ∧ 3+2⋅X₂+X₃ < X₁ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₁₈: n_l26___26(X₀, X₁, X₂, X₃, X₄) → n_l28___24(X₀, X₁, X₂, X₁-2⋅X₂-3, X₄) :|: X₂ ≤ 0 ∧ 3+2⋅X₂ ≤ X₁ ∧ X₁ ≤ 2⋅X₂+X₃+3 ∧ 3+2⋅X₂+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₂₁: n_l27___25(X₀, X₁, X₂, X₃, X₄) → n_l28___23(X₀, X₁, X₂, X₃, X₄) :|: 3+X₃ < X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₂₂: n_l27___25(X₀, X₁, X₂, X₃, X₄) → n_l29___22(X₀, X₁, X₂, X₃, X₄) :|: 3+X₃ < X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₂₅: n_l28___23(X₀, X₁, X₂, X₃, X₄) → n_l22___21(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 4+X₃ ≤ X₁ ∧ X₂ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₂₆: n_l28___24(X₀, X₁, X₂, X₃, X₄) → n_l22___4(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: X₁ ≤ X₃+3 ∧ X₂ ≤ 0 ∧ 3 ≤ X₁ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₂₈: n_l29___22(X₀, X₁, X₂, X₃, X₄) → n_l22___6(X₀, X₁, X₂, X₃, 2⋅X₂+2) :|: X₂ ≤ 0 ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₀₁: n_l22___21(X₀, X₁, X₂, X₃, X₄) → n_l21___20(X₀, X₁, X₁, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ X₄ ≤ 1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 3+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₀₂: n_l22___21(X₀, X₁, X₂, X₃, X₄) → n_l23___19(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ X₄ ≤ 1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 3+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₀₃: n_l22___4(X₀, X₁, X₂, X₃, X₄) → n_l21___3(X₀, X₁, X₁, X₃, X₄) :|: X₄ ≤ 1 ∧ X₂ ≤ 0 ∧ X₁ ≤ X₃+3 ∧ 3 ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₀₄: n_l22___4(X₀, X₁, X₂, X₃, X₄) → n_l23___2(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ 1 ∧ X₂ ≤ 0 ∧ X₁ ≤ X₃+3 ∧ 3 ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₀₅: n_l22___6(X₀, X₁, X₂, X₃, X₄) → n_l21___20(X₀, X₁, X₁, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ X₄ ≤ 2 ∧ 2 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 2 ∧ X₄ ≤ 2+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₀₆: n_l22___6(X₀, X₁, X₂, X₃, X₄) → n_l23___5(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ X₄ ≤ 2 ∧ 2 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 2 ∧ X₄ ≤ 2+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₁₀: n_l23___19(X₀, X₁, X₂, X₃, X₄) → n_l21___18(X₀, X₁, X₄, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ X₄ ≤ 1 ∧ X₂ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 3+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₁₁: n_l23___2(X₀, X₁, X₂, X₃, X₄) → n_l21___1(X₀, X₁, X₄, X₃, X₄) :|: X₄ ≤ 1 ∧ X₂ ≤ 0 ∧ X₁ ≤ X₃+3 ∧ 3 ≤ X₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₁₂: n_l23___5(X₀, X₁, X₂, X₃, X₄) → n_l21___18(X₀, X₁, X₄, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ X₄ ≤ 2 ∧ 2 ≤ X₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ X₄ ≤ 2 ∧ X₄ ≤ 2+X₃ ∧ X₄ ≤ 2+X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₄₅: n_l21___1(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 2 ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ 1 ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₃₄₈: n_l21___3(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 3+X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 3+X₃ ∧ X₂ ≤ X₁ ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₁
MPRF for transition t₁₂₉₅: n_l21___18(X₀, X₁, X₂, X₃, X₄) → n_l26___17(X₀, X₁, X₂, X₃, X₄) :|: 4+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₁ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3+2⋅X₂+X₃ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:
new bound:
2⋅X₁⋅X₁+20⋅X₁+30 {O(n^2)}
MPRF for transition t₁₂₉₇: n_l22___10(X₀, X₁, X₂, X₃, X₄) → n_l21___20(X₀, X₁, X₁, X₃, X₄) :|: 1+X₃+X₄ < X₁ ∧ 4 ≤ X₄ ∧ 2⋅X₂+2 ≤ X₄ ∧ X₄ ≤ 2+2⋅X₂ ∧ 0 ≤ X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 3+X₂ ≤ X₄ ∧ 10 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₁₂₉₈: n_l22___10(X₀, X₁, X₂, X₃, X₄) → n_l23___9(X₀, X₁, X₂, X₃, X₄) :|: 1+X₃+X₄ < X₁ ∧ 4 ≤ X₄ ∧ 2⋅X₂+2 ≤ X₄ ∧ X₄ ≤ 2+2⋅X₂ ∧ 0 ≤ X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 3+X₂ ≤ X₄ ∧ 10 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:
new bound:
16⋅X₁⋅X₁+18⋅X₁+3 {O(n^2)}
MPRF for transition t₁₂₉₉: n_l22___12(X₀, X₁, X₂, X₃, X₄) → n_l21___20(X₀, X₁, X₁, X₃, X₄) :|: 2+X₃+X₄ < X₁ ∧ 3 ≤ X₄ ∧ 2⋅X₂+1 ≤ X₄ ∧ X₄ ≤ 1+2⋅X₂ ∧ 0 ≤ X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 9 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₁₃₀₀: n_l22___12(X₀, X₁, X₂, X₃, X₄) → n_l23___11(X₀, X₁, X₂, X₃, X₄) :|: 2+X₃+X₄ < X₁ ∧ 3 ≤ X₄ ∧ 2⋅X₂+1 ≤ X₄ ∧ X₄ ≤ 1+2⋅X₂ ∧ 0 ≤ X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 9 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:
new bound:
2⋅X₁⋅X₁+8⋅X₁+5 {O(n^2)}
MPRF for transition t₁₃₀₇: n_l22___8(X₀, X₁, X₂, X₃, X₄) → n_l21___20(X₀, X₁, X₁, X₃, X₄) :|: 2+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ X₁ ≤ X₃+X₄+2 ∧ 2+X₃+X₄ ≤ X₁ ∧ 2⋅X₂+1 ≤ X₄ ∧ X₄ ≤ 1+2⋅X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ of depth 1:
new bound:
X₁+4 {O(n)}
MPRF for transition t₁₃₀₈: n_l22___8(X₀, X₁, X₂, X₃, X₄) → n_l23___7(X₀, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ X₁ ≤ X₃+X₄+2 ∧ 2+X₃+X₄ ≤ X₁ ∧ 2⋅X₂+1 ≤ X₄ ∧ X₄ ≤ 1+2⋅X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ of depth 1:
new bound:
12⋅X₁⋅X₁+17⋅X₁+4 {O(n^2)}
MPRF for transition t₁₃₀₉: n_l23___11(X₀, X₁, X₂, X₃, X₄) → n_l21___18(X₀, X₁, X₄, X₃, X₄) :|: 2+X₃+X₄ < X₁ ∧ 3 ≤ X₄ ∧ 2⋅X₂+1 ≤ X₄ ∧ X₄ ≤ 1+2⋅X₂ ∧ 0 ≤ X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 3+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 9 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:
new bound:
4⋅X₁⋅X₁+16⋅X₁+13 {O(n^2)}
MPRF for transition t₁₃₁₃: n_l23___7(X₀, X₁, X₂, X₃, X₄) → n_l21___18(X₀, X₁, X₄, X₃, X₄) :|: 2+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ X₁ ≤ X₃+X₄+2 ∧ 2+X₃+X₄ ≤ X₁ ∧ 2⋅X₂+1 ≤ X₄ ∧ X₄ ≤ 1+2⋅X₂ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 2+X₄ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ of depth 1:
new bound:
28⋅X₁⋅X₁+42⋅X₁+14 {O(n^2)}
MPRF for transition t₁₃₁₄: n_l23___9(X₀, X₁, X₂, X₃, X₄) → n_l21___18(X₀, X₁, X₄, X₃, X₄) :|: 1+X₃+X₄ < X₁ ∧ 4 ≤ X₄ ∧ 2⋅X₂+2 ≤ X₄ ∧ X₄ ≤ 2+2⋅X₂ ∧ 0 ≤ X₃ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₄ ∧ 2+X₄ ≤ X₁ ∧ 4 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 3+X₂ ≤ X₄ ∧ 10 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:
new bound:
12⋅X₁⋅X₁+13⋅X₁+1 {O(n^2)}
MPRF for transition t₁₃₁₅: n_l26___17(X₀, X₁, X₂, X₃, X₄) → n_l27___16(X₀, X₁, X₂, X₃, X₄) :|: 3+X₃+2⋅X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+2⋅X₂+X₃ < X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ of depth 1:
new bound:
19⋅X₁⋅X₁+22⋅X₁+2 {O(n^2)}
MPRF for transition t₁₃₁₆: n_l26___17(X₀, X₁, X₂, X₃, X₄) → n_l28___15(X₀, X₁, X₂, X₁-2⋅X₂-3, X₄) :|: 3+X₃+2⋅X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+2⋅X₂ ≤ X₁ ∧ X₁ ≤ 2⋅X₂+X₃+3 ∧ 3+2⋅X₂+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 5 ≤ X₁+X₃ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ of depth 1:
new bound:
6⋅X₁⋅X₁+9⋅X₁+4 {O(n^2)}
MPRF for transition t₁₃₁₉: n_l27___16(X₀, X₁, X₂, X₃, X₄) → n_l28___14(X₀, X₁, X₂, X₃, X₄) :|: 3+X₃+2⋅X₄ < X₁ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 4+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:
new bound:
36⋅X₁⋅X₁+53⋅X₁+33 {O(n^2)}
MPRF for transition t₁₃₂₀: n_l27___16(X₀, X₁, X₂, X₃, X₄) → n_l29___13(X₀, X₁, X₂, X₃, X₄) :|: 3+X₃+2⋅X₄ < X₁ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 4+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:
new bound:
12⋅X₁⋅X₁+20⋅X₁+12 {O(n^2)}
MPRF for transition t₁₃₂₃: n_l28___14(X₀, X₁, X₂, X₃, X₄) → n_l22___12(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 3+X₃+2⋅X₄ < X₁ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:
new bound:
12⋅X₁⋅X₁+25⋅X₁+16 {O(n^2)}
MPRF for transition t₁₃₂₄: n_l28___15(X₀, X₁, X₂, X₃, X₄) → n_l22___8(X₀, X₁, X₂, X₃, 2⋅X₂+1) :|: 3+2⋅X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ X₁ ≤ X₃+2⋅X₄+3 ∧ 3+X₃+2⋅X₄ ≤ X₁ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 4+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ 5+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 5 ≤ X₁ of depth 1:
new bound:
72⋅X₁⋅X₁+133⋅X₁+81 {O(n^2)}
MPRF for transition t₁₃₂₇: n_l29___13(X₀, X₁, X₂, X₃, X₄) → n_l22___10(X₀, X₁, X₂, X₃, 2⋅X₂+2) :|: 3+X₃+2⋅X₄ < X₁ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 4+X₃ ≤ X₁ ∧ 4+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₄ ≤ X₂ ∧ 5+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 7 ≤ X₁+X₄ ∧ 6+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 6 ≤ X₁+X₃ ∧ 5+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 6 ≤ X₁ of depth 1:
new bound:
4⋅X₁⋅X₁+5⋅X₁ {O(n^2)}
MPRF for transition t₁₃₄₆: n_l21___18(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 4 ≤ X₁ of depth 1:
new bound:
X₁+4 {O(n)}
MPRF for transition t₁₃₄₇: n_l21___20(X₀, X₁, X₂, X₃, X₄) → l17(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₃+3+2⋅X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 5 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4+X₃ ≤ X₂ ∧ 4+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 4 ≤ X₂ ∧ 8 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₁ of depth 1:
new bound:
X₁+3 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:11⋅X₁⋅X₁+21⋅X₁+26 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₁₃: 1 {O(1)}
t₁₄: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: X₁+1 {O(n)}
t₁₈: 1 {O(1)}
t₁₉: X₁+1 {O(n)}
t₂₀: 2⋅X₁⋅X₁+3⋅X₁+1 {O(n^2)}
t₂₁: X₁+1 {O(n)}
t₂₂: X₁⋅X₁+3⋅X₁+2 {O(n^2)}
t₂₃: X₁⋅X₁+X₁ {O(n^2)}
t₂₅: X₁⋅X₁+X₁ {O(n^2)}
t₂₆: X₁⋅X₁+X₁ {O(n^2)}
t₂₇: X₁⋅X₁+X₁ {O(n^2)}
t₂₈: X₁⋅X₁+X₁ {O(n^2)}
t₂₉: X₁⋅X₁+X₁ {O(n^2)}
t₃₀: X₁⋅X₁+2⋅X₁+1 {O(n^2)}
t₃₁: X₁⋅X₁+X₁ {O(n^2)}
t₃₂: X₁ {O(n)}
t₃₃: X₁ {O(n)}
t₃₄: X₁ {O(n)}
t₃₅: 1 {O(1)}
Costbounds
Overall costbound: 11⋅X₁⋅X₁+21⋅X₁+26 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 1 {O(1)}
t₁₁: 1 {O(1)}
t₁₂: 1 {O(1)}
t₁₃: 1 {O(1)}
t₁₄: 1 {O(1)}
t₁₅: 1 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: X₁+1 {O(n)}
t₁₈: 1 {O(1)}
t₁₉: X₁+1 {O(n)}
t₂₀: 2⋅X₁⋅X₁+3⋅X₁+1 {O(n^2)}
t₂₁: X₁+1 {O(n)}
t₂₂: X₁⋅X₁+3⋅X₁+2 {O(n^2)}
t₂₃: X₁⋅X₁+X₁ {O(n^2)}
t₂₅: X₁⋅X₁+X₁ {O(n^2)}
t₂₆: X₁⋅X₁+X₁ {O(n^2)}
t₂₇: X₁⋅X₁+X₁ {O(n^2)}
t₂₈: X₁⋅X₁+X₁ {O(n^2)}
t₂₉: X₁⋅X₁+X₁ {O(n^2)}
t₃₀: X₁⋅X₁+2⋅X₁+1 {O(n^2)}
t₃₁: X₁⋅X₁+X₁ {O(n^2)}
t₃₂: X₁ {O(n)}
t₃₃: X₁ {O(n)}
t₃₄: X₁ {O(n)}
t₃₅: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₄ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₁ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₄, X₀: X₀ {O(n)}
t₁₄, X₁: X₁ {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₅, X₀: X₀ {O(n)}
t₁₅, X₁: X₁ {O(n)}
t₁₅, X₂: X₂ {O(n)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: X₁ {O(n)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: 0 {O(1)}
t₁₆, X₄: X₄ {O(n)}
t₁₇, X₀: X₀+X₁ {O(n)}
t₁₇, X₁: X₁ {O(n)}
t₁₇, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁+X₂ {O(EXP)}
t₁₇, X₃: X₁ {O(n)}
t₁₇, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₁₈, X₀: X₁ {O(n)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁ {O(EXP)}
t₁₈, X₃: X₁ {O(n)}
t₁₈, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₁₉, X₀: X₀+X₁ {O(n)}
t₁₉, X₁: X₁ {O(n)}
t₁₉, X₂: 0 {O(1)}
t₁₉, X₃: X₁ {O(n)}
t₁₉, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₀, X₀: X₀+X₁ {O(n)}
t₂₀, X₁: X₁ {O(n)}
t₂₀, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₀, X₃: X₁ {O(n)}
t₂₀, X₄: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₁, X₀: 4⋅X₀+4⋅X₁ {O(n)}
t₂₁, X₁: X₁ {O(n)}
t₂₁, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁ {O(EXP)}
t₂₁, X₃: X₁ {O(n)}
t₂₁, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₂, X₀: X₀+X₁ {O(n)}
t₂₂, X₁: X₁ {O(n)}
t₂₂, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₂, X₃: X₁ {O(n)}
t₂₂, X₄: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₃, X₀: X₀+X₁ {O(n)}
t₂₃, X₁: X₁ {O(n)}
t₂₃, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₃, X₃: X₁ {O(n)}
t₂₃, X₄: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₅, X₀: X₀+X₁ {O(n)}
t₂₅, X₁: X₁ {O(n)}
t₂₅, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₅, X₃: X₁ {O(n)}
t₂₅, X₄: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₆, X₀: X₀+X₁ {O(n)}
t₂₆, X₁: X₁ {O(n)}
t₂₆, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₆, X₃: X₁ {O(n)}
t₂₆, X₄: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅8⋅X₁⋅X₁+X₄ {O(EXP)}
t₂₇, X₀: X₀+X₁ {O(n)}
t₂₇, X₁: X₁ {O(n)}
t₂₇, X₂: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁ {O(EXP)}
t₂₇, X₃: X₁ {O(n)}
t₂₇, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₈, X₀: X₀+X₁ {O(n)}
t₂₈, X₁: X₁ {O(n)}
t₂₈, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₈, X₃: X₁ {O(n)}
t₂₈, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₂₉, X₀: X₀+X₁ {O(n)}
t₂₉, X₁: X₁ {O(n)}
t₂₉, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁ {O(EXP)}
t₂₉, X₃: X₁ {O(n)}
t₂₉, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₃₀, X₀: 2⋅X₀+2⋅X₁ {O(n)}
t₃₀, X₁: X₁ {O(n)}
t₃₀, X₂: 2⋅X₁ {O(n)}
t₃₀, X₃: X₁ {O(n)}
t₃₀, X₄: 2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁ {O(EXP)}
t₃₁, X₀: X₀+X₁ {O(n)}
t₃₁, X₁: X₁ {O(n)}
t₃₁, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₃₁, X₃: X₁ {O(n)}
t₃₁, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁ {O(EXP)}
t₃₂, X₀: X₁ {O(n)}
t₃₂, X₁: X₁ {O(n)}
t₃₂, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁ {O(EXP)}
t₃₂, X₃: X₁ {O(n)}
t₃₂, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₃₃, X₀: X₁ {O(n)}
t₃₃, X₁: X₁ {O(n)}
t₃₃, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁ {O(EXP)}
t₃₃, X₃: X₁ {O(n)}
t₃₃, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₃₄, X₀: X₁ {O(n)}
t₃₄, X₁: X₁ {O(n)}
t₃₄, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁ {O(EXP)}
t₃₄, X₃: X₁ {O(n)}
t₃₄, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+X₄ {O(EXP)}
t₃₅, X₀: X₀+X₁ {O(n)}
t₃₅, X₁: 2⋅X₁ {O(n)}
t₃₅, X₂: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2⋅X₁+X₂ {O(EXP)}
t₃₅, X₃: X₁+X₃ {O(n)}
t₃₅, X₄: 2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁+2⋅2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅X₁⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁+2^(X₁⋅X₁+X₁)⋅2^(X₁⋅X₁+X₁)⋅4⋅X₁⋅X₁+2⋅X₄ {O(EXP)}