Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: F, G, H
Locations: l0, l1, l2
Transitions:
t₆: l0(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄)
t₁: l1(X₀, X₁, X₂, X₃, X₄) → l1(1+3⋅X₀, X₁, F, H, G) :|: 1 ≤ X₀ ∧ 2⋅G+1 ≤ X₀ ∧ 3⋅F ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 3⋅F ∧ 2⋅G+1 ≤ F ∧ 1 ≤ F
t₂: l1(X₀, X₁, X₂, X₃, X₄) → l1(1+3⋅X₀, X₁, F, H, G) :|: 1 ≤ X₀ ∧ 2⋅G+1 ≤ X₀ ∧ 3⋅F ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 3⋅F ∧ F+1 ≤ 2⋅G ∧ 1 ≤ F
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l1(1+3⋅X₀, X₁, F, H, G) :|: 1 ≤ X₀ ∧ X₀+1 ≤ 2⋅G ∧ 3⋅F ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 3⋅F ∧ 2⋅G+1 ≤ F ∧ 1 ≤ F
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l1(1+3⋅X₀, X₁, F, H, G) :|: 1 ≤ X₀ ∧ X₀+1 ≤ 2⋅G ∧ 3⋅F ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 3⋅F ∧ F+1 ≤ 2⋅G ∧ 1 ≤ F
t₅: l1(X₀, X₁, X₂, X₃, X₄) → l1(F, X₁, X₂, H, F) :|: 1 ≤ 2⋅F ∧ 1 ≤ G ∧ X₀ ≤ 2⋅F ∧ 2⋅F ≤ X₀
t₀: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, F, X₂, X₃, X₄) :|: X₀ ≤ 0
Cut unsatisfiable transition t₂: l1→l1
Cut unsatisfiable transition t₃: l1→l1
Eliminate variables {H,X₁,X₂,X₃,X₄} that do not contribute to the problem
Found invariant X₀ ≤ 0 for location l2
Start: l0
Program_Vars: X₀
Temp_Vars: F, G
Locations: l0, l1, l2
Transitions:
t₂₉: l0(X₀) → l1(X₀)
t₃₀: l1(X₀) → l1(1+3⋅X₀) :|: 1 ≤ X₀ ∧ 2⋅G+1 ≤ X₀ ∧ 3⋅F ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 3⋅F ∧ 2⋅G+1 ≤ F ∧ 1 ≤ F
t₃₁: l1(X₀) → l1(1+3⋅X₀) :|: 1 ≤ X₀ ∧ X₀+1 ≤ 2⋅G ∧ 3⋅F ≤ 3⋅X₀ ∧ 3⋅X₀ ≤ 3⋅F ∧ F+1 ≤ 2⋅G ∧ 1 ≤ F
t₃₂: l1(X₀) → l1(F) :|: 1 ≤ 2⋅F ∧ 1 ≤ G ∧ X₀ ≤ 2⋅F ∧ 2⋅F ≤ X₀
t₃₃: l1(X₀) → l2(X₀) :|: X₀ ≤ 0
Found invariant X₀ ≤ 0 for location l2
Found invariant 1 ≤ X₀ for location n_l1___2
Found invariant 4 ≤ X₀ for location n_l1___3
Found invariant 2 ≤ X₀ for location n_l1___1
Overall timebound:inf {Infinity}
t₂₉: 1 {O(1)}
t₃₀: inf {Infinity}
t₃₁: inf {Infinity}
t₃₂: inf {Infinity}
t₃₃: 1 {O(1)}
Overall costbound: inf {Infinity}
t₂₉: 1 {O(1)}
t₃₀: inf {Infinity}
t₃₁: inf {Infinity}
t₃₂: inf {Infinity}
t₃₃: 1 {O(1)}
t₂₉, X₀: X₀ {O(n)}
t₃₃, X₀: X₀ {O(n)}