Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l1(1, X₂, X₂, X₃)
t₁: l1(X₀, X₁, X₂, X₃) → l1(X₀, E, X₂, E) :|: X₀+2 ≤ X₁ ∧ X₂+1 ≤ (E)²
t₂: l1(X₀, X₁, X₂, X₃) → l1(E, X₁, X₂, E) :|: X₀+2 ≤ X₁ ∧ (E)² ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₀+1
Eliminate variables {X₃} that do not contribute to the problem
Found invariant X₁ ≤ 1+X₀ for location l2
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars: E
Locations: l0, l1, l2
Transitions:
t₈: l0(X₀, X₁, X₂) → l1(1, X₂, X₂)
t₉: l1(X₀, X₁, X₂) → l1(X₀, E, X₂) :|: X₀+2 ≤ X₁ ∧ X₂+1 ≤ (E)²
t₁₀: l1(X₀, X₁, X₂) → l1(E, X₁, X₂) :|: X₀+2 ≤ X₁ ∧ (E)² ≤ X₂
t₁₁: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₁ ≤ X₀+1
Found invariant X₁ ≤ 1+X₀ for location l2
Found invariant X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l1
Found invariant 3 ≤ X₂ for location n_l1___1
Overall timebound:inf {Infinity}
t₈: 1 {O(1)}
t₉: inf {Infinity}
t₁₀: inf {Infinity}
t₁₁: 1 {O(1)}
Overall costbound: inf {Infinity}
t₈: 1 {O(1)}
t₉: inf {Infinity}
t₁₀: inf {Infinity}
t₁₁: 1 {O(1)}
t₈, X₀: 1 {O(1)}
t₈, X₁: X₂ {O(n)}
t₈, X₂: X₂ {O(n)}
t₉, X₂: X₂ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₁, X₂: 3⋅X₂ {O(n)}