Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈
Temp_Vars: T
Locations: l0, l1, l2, l3, l4
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l1(3, T, 3, 1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l1(X₀, X₁, X₂, T, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₄+1 ≤ X₂
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l2(X₀, X₁, X₂, X₃, X₄, X₀, 0, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₃, X₃, T) :|: X₂ ≤ X₄
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, T, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₆+1 ≤ X₅
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₀, 0, 1, X₁₁, X₁₂, X₇, X₇, T, X₁₆, X₁₇, X₁₈) :|: X₅ ≤ X₆
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, T, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₉+1 ≤ X₈
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₀, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₈ ≤ X₉

Preprocessing

Eliminate variables {T,X₁,X₃,X₇,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈} that do not contribute to the problem

Found invariant X₄ ≤ 3 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 6 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 3+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 3+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 3+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 3+X₄ ∧ X₃ ≤ 3 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 6 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ 3 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location l2

Found invariant X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location l1

Found invariant X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 3 ≤ X₆ ∧ 6 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 6 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 6 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 6 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 3 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 6 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ 3 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location l4

Found invariant X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ 3+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 3+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 6 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 3 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 6 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ 3 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4
Transitions:
t₁₆: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(3, 3, 0, X₃, X₄, X₅, X₆)
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: X₂+1 ≤ X₁ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀
t₁₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₀, 0, X₅, X₆) :|: X₁ ≤ X₂ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₄+1 ≤ X₃ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 6 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 3+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 3+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 3+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 3+X₄ ∧ X₃ ≤ 3 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 6 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ 3 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₀, 0) :|: X₃ ≤ X₄ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 6 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 3+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 3+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 3+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 3+X₄ ∧ X₃ ≤ 3 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 6 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ 3 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀
t₂₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₆+1 ≤ X₅ ∧ X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ 3+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 3+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 6 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 3 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 6 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ 3 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀
t₂₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₆ ∧ X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ 3+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 3+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 6 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 3 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 6 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ 3 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀

MPRF for transition t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: X₂+1 ≤ X₁ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF for transition t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₄+1 ≤ X₃ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 6 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 3+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 3+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₁ ≤ 3+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 3+X₄ ∧ X₃ ≤ 3 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 6 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ 3 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ of depth 1:

new bound:

4 {O(1)}

MPRF for transition t₂₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₆+1 ≤ X₅ ∧ X₆ ≤ 3 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 6 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 6 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 6 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 6 ∧ X₆ ≤ X₁ ∧ X₁+X₆ ≤ 6 ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 6 ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ 3+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 3+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₁ ≤ 3+X₆ ∧ 3 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 6 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 6 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 6 ∧ X₅ ≤ X₁ ∧ X₁+X₅ ≤ 6 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 6 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 3 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 6 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 6 ∧ X₄ ≤ X₁ ∧ X₁+X₄ ≤ 6 ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 6 ∧ 3 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 6 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 3 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 6 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ 3 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 3 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 6 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 6 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 3 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 6 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 3 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

All Bounds

Timebounds

Overall timebound:18 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: 4 {O(1)}
t₁₈: 1 {O(1)}
t₁₉: 4 {O(1)}
t₂₀: 1 {O(1)}
t₂₁: 6 {O(1)}
t₂₂: 1 {O(1)}

Costbounds

Overall costbound: 18 {O(1)}
t₁₆: 1 {O(1)}
t₁₇: 4 {O(1)}
t₁₈: 1 {O(1)}
t₁₉: 4 {O(1)}
t₂₀: 1 {O(1)}
t₂₁: 6 {O(1)}
t₂₂: 1 {O(1)}

Sizebounds

t₁₆, X₀: 3 {O(1)}
t₁₆, X₁: 3 {O(1)}
t₁₆, X₂: 0 {O(1)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: X₅ {O(n)}
t₁₆, X₆: X₆ {O(n)}
t₁₇, X₀: 3 {O(1)}
t₁₇, X₁: 3 {O(1)}
t₁₇, X₂: 3 {O(1)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₅ {O(n)}
t₁₇, X₆: X₆ {O(n)}
t₁₈, X₀: 3 {O(1)}
t₁₈, X₁: 3 {O(1)}
t₁₈, X₂: 3 {O(1)}
t₁₈, X₃: 3 {O(1)}
t₁₈, X₄: 0 {O(1)}
t₁₈, X₅: X₅ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₉, X₀: 3 {O(1)}
t₁₉, X₁: 3 {O(1)}
t₁₉, X₂: 3 {O(1)}
t₁₉, X₃: 3 {O(1)}
t₁₉, X₄: 3 {O(1)}
t₁₉, X₅: X₅ {O(n)}
t₁₉, X₆: X₆ {O(n)}
t₂₀, X₀: 3 {O(1)}
t₂₀, X₁: 3 {O(1)}
t₂₀, X₂: 3 {O(1)}
t₂₀, X₃: 3 {O(1)}
t₂₀, X₄: 3 {O(1)}
t₂₀, X₅: 3 {O(1)}
t₂₀, X₆: 0 {O(1)}
t₂₁, X₀: 3 {O(1)}
t₂₁, X₁: 3 {O(1)}
t₂₁, X₂: 3 {O(1)}
t₂₁, X₃: 3 {O(1)}
t₂₁, X₄: 3 {O(1)}
t₂₁, X₅: 3 {O(1)}
t₂₁, X₆: 3 {O(1)}
t₂₂, X₀: 3 {O(1)}
t₂₂, X₁: 3 {O(1)}
t₂₂, X₂: 3 {O(1)}
t₂₂, X₃: 3 {O(1)}
t₂₂, X₄: 3 {O(1)}
t₂₂, X₅: 3 {O(1)}
t₂₂, X₆: 3 {O(1)}