Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆
Temp_Vars: B1, C1, D1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(0, 0, 2⋅X₃, X₃, 4⋅X₃, 4⋅X₃+3, 4⋅X₃+4, X₃, B1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆)
t₃₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₃
t₃₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₃ ≤ X₉
t₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₃
t₄₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₃ ≤ X₉
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₅+1 ≤ 0 ∧ X₁₆ ≤ 0
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1 ≤ X₁₅ ∧ X₁₆ ≤ 0
t₁₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 0, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₆ ≤ 0 ∧ X₁₅ ≤ 0 ∧ 0 ≤ X₁₅
t₄₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1 ≤ X₁₆
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₃
t₃₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₃ ≤ X₉
t₃₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆+1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₄ ≤ X₉
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+2, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₄
t₁₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, 2⋅X₉, B1, 1-B1, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₂
t₃₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, 0, X₂₆) :|: 1+X₂ ≤ X₉
t₃₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, C1, X₂₆) :|: D1+1 ≤ 0 ∧ 1+X₂ ≤ X₉
t₃₅: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, C1, X₂₆) :|: 1 ≤ D1 ∧ 1+X₂ ≤ X₉
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆+1, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₃ ≤ X₉
t₁₁: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₃
t₃₈: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₁₆+X₂) :|: 1+X₃ ≤ X₉
t₁₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₃
t₁₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, 0, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₁₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, B1, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₁+1 ≤ 0
t₁₇: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, B1, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1 ≤ X₁₁
t₂₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, 0, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, 0, X₂₅, X₂₆) :|: X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, B1, X₂₅, X₂₆) :|: X₁₁+1 ≤ 0
t₂₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, B1, X₂₅, X₂₆) :|: 1 ≤ X₁₁
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, 0, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, C1, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₁+1 ≤ 0
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, C1, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1 ≤ X₁₁
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, 0, X₂₄, X₂₅, X₂₆) :|: X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, C1, X₂₄, X₂₅, X₂₆) :|: X₁₁+1 ≤ 0
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, C1, X₂₄, X₂₅, X₂₆) :|: 1 ≤ X₁₁
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, 2⋅X₉, X₁₈, X₁₉, X₂₀, 0, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₃
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, 2⋅X₉, X₁₈, X₁₉, X₂₀, C1, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: D1+1 ≤ 0 ∧ X₉ ≤ X₃
t₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, B1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, 2⋅X₉, X₁₈, X₁₉, X₂₀, C1, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1 ≤ D1 ∧ X₉ ≤ X₃
t₃₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁+X₀, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄+1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₃ ≤ X₉
t₄₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l1(X₀, B1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₁₃ ≤ X₁₄
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₄ ≤ X₁₃
t₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, 1, 0, 0, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₂
t₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀+B1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, C1, 1-C1, B1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 2 ≤ C1 ∧ X₉ ≤ X₂
t₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l8(X₀+B1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, C1, 1-C1, B1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: C1 ≤ 0 ∧ X₉ ≤ X₂
t₄₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₂ ≤ X₉
t₄₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₁₅+1 ≤ 0 ∧ 1+X₃ ≤ X₉
t₄₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1 ≤ X₁₅ ∧ 1+X₃ ≤ X₉
t₄₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, 0, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: 1+X₃ ≤ X₉ ∧ X₁₅ ≤ 0 ∧ 0 ≤ X₁₅
t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆) :|: X₉ ≤ X₃
Preprocessing
Cut unsatisfiable transition t₅: l10→l10
Cut unsatisfiable transition t₁₀: l16→l16
Cut unsatisfiable transition t₁₁: l15→l15
Eliminate variables {X₀,X₁,X₅,X₆,X₇,X₈,X₁₀,X₁₂,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆} that do not contribute to the problem
Found invariant X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ for location l11
Found invariant 1+X₅ ≤ X₆ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ for location l2
Found invariant 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ for location l6
Found invariant X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ for location l15
Found invariant X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ for location l12
Found invariant 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ for location l17
Found invariant 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ for location l7
Found invariant 1 ≤ 0 for location l5
Found invariant X₈ ≤ 0 ∧ X₈ ≤ X₇ ∧ X₇+X₈ ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ for location l13
Found invariant 1+X₅ ≤ X₆ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ for location l1
Found invariant 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ for location l10
Found invariant X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ for location l16
Found invariant 1 ≤ 0 for location l4
Found invariant 1+X₀ ≤ X₃ for location l9
Found invariant 1 ≤ 0 for location l3
Found invariant 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ for location l14
Cut unsatisfiable transition t₁₀₃: l1→l1
Cut unsatisfiable transition t₁₁₀: l12→l12
Cut unsatisfiable transition t₁₁₄: l14→l14
Cut unsatisfiable transition t₁₂₃: l3→l6
Cut unsatisfiable transition t₁₂₄: l3→l6
Cut unsatisfiable transition t₁₂₅: l3→l6
Cut unsatisfiable transition t₁₂₆: l4→l5
Cut unsatisfiable transition t₁₂₇: l4→l5
Cut unsatisfiable transition t₁₂₈: l4→l5
Cut unsatisfiable transition t₁₂₉: l5→l3
Cut unsatisfiable transition t₁₃₀: l5→l3
Cut unsatisfiable transition t₁₃₁: l5→l3
Cut unsatisfiable transition t₁₃₂: l6→l4
Cut unsatisfiable transition t₁₃₃: l6→l4
Cut unsatisfiable transition t₁₃₄: l6→l4
Cut unreachable locations [l3; l4; l5] from the program graph
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars: B1, C1, D1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l6, l7, l8, l9
Transitions:
t₁₀₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(2⋅X₁, X₁, 4⋅X₁, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₀₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₁ ≤ X₃ ∧ 1+X₅ ≤ X₆ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₀₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₁ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₀₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇+1 ≤ 0 ∧ X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₀₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1 ≤ X₇ ∧ X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₀₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈) :|: X₈ ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₀₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₁₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₁ ≤ X₃ ∧ X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: 1+X₂ ≤ X₃ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₇ ∧ X₇+X₈ ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃+2, X₄, X₅, X₆, X₇, X₈) :|: X₃ ≤ X₂ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₇ ∧ X₇+X₈ ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₁₅: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, B1, X₅, X₆, X₇, X₈) :|: 1+X₀ ≤ X₃ ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₁₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, B1, X₅, X₆, X₇, X₈) :|: D1+1 ≤ 0 ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₁₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, B1, X₅, X₆, X₇, X₈) :|: 1 ≤ D1 ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₁₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: 1+X₁ ≤ X₃ ∧ X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₁₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₁ ≤ X₃ ∧ X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₂₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₂₁: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄+1 ≤ 0 ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₂₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₃₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈) :|: 1+X₁ ≤ X₃ ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₃₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₅ ≤ X₆ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₃₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃+1, 0, X₅, X₆, X₇, X₈) :|: X₃ ≤ X₀
t₁₃₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃+1, 1-C1, X₅, X₆, X₇, X₈) :|: 2 ≤ C1 ∧ X₃ ≤ X₀
t₁₄₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃+1, 1-C1, X₅, X₆, X₇, X₈) :|: C1 ≤ 0 ∧ X₃ ≤ X₀
t₁₄₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₀ ≤ X₃
t₁₄₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇+1 ≤ 0 ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₄₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1 ≤ X₇ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃
t₁₄₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈) :|: 1+X₁ ≤ X₃ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 1+X₀ ≤ X₃
t₁₄₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈) :|: X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃
MPRF for transition t₁₃₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃+1, 0, X₅, X₆, X₇, X₈) :|: X₃ ≤ X₀ of depth 1:
new bound:
2⋅X₁+X₃+1 {O(n)}
MPRF for transition t₁₃₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃+1, 1-C1, X₅, X₆, X₇, X₈) :|: 2 ≤ C1 ∧ X₃ ≤ X₀ of depth 1:
new bound:
2⋅X₁+X₃+1 {O(n)}
MPRF for transition t₁₄₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃+1, 1-C1, X₅, X₆, X₇, X₈) :|: C1 ≤ 0 ∧ X₃ ≤ X₀ of depth 1:
new bound:
2⋅X₁+X₃+1 {O(n)}
MPRF for transition t₁₄₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈) :|: X₃ ≤ X₁ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
13⋅X₃+22⋅X₁+10 {O(n)}
MPRF for transition t₁₀₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇+1 ≤ 0 ∧ X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₈+2 {O(n)}
MPRF for transition t₁₀₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1 ≤ X₇ ∧ X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₈+2 {O(n)}
MPRF for transition t₁₀₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈) :|: X₈ ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₈+2 {O(n)}
MPRF for transition t₁₀₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₅+24⋅X₆+2 {O(n)}
MPRF for transition t₁₁₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₁ ≤ X₃ ∧ X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₈+2 {O(n)}
MPRF for transition t₁₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: 1+X₂ ≤ X₃ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₇ ∧ X₇+X₈ ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₈+2 {O(n)}
MPRF for transition t₁₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃+2, X₄, X₅, X₆, X₇, X₈) :|: X₃ ≤ X₂ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₇ ∧ X₇+X₈ ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
117⋅X₃+390⋅X₁+84 {O(n)}
MPRF for transition t₁₁₅: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, B1, X₅, X₆, X₇, X₈) :|: 1+X₀ ≤ X₃ ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₅+24⋅X₆+2 {O(n)}
MPRF for transition t₁₁₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, B1, X₅, X₆, X₇, X₈) :|: D1+1 ≤ 0 ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₅+24⋅X₆+2 {O(n)}
MPRF for transition t₁₁₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, B1, X₅, X₆, X₇, X₈) :|: 1 ≤ D1 ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₅+24⋅X₆+2 {O(n)}
MPRF for transition t₁₁₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1) :|: 1+X₁ ≤ X₃ ∧ X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₈+2 {O(n)}
MPRF for transition t₁₁₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₁ ≤ X₃ ∧ X₈ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₈+2 {O(n)}
MPRF for transition t₁₂₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₅+24⋅X₆+2 {O(n)}
MPRF for transition t₁₂₁: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄+1 ≤ 0 ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₅+24⋅X₆+2 {O(n)}
MPRF for transition t₁₂₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₅+24⋅X₆+2 {O(n)}
MPRF for transition t₁₃₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈) :|: 1+X₁ ≤ X₃ ∧ 1 ≤ X₈ ∧ X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₅+24⋅X₆+2 {O(n)}
MPRF for transition t₁₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆ ≤ X₅ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ of depth 1:
new bound:
24⋅X₅+24⋅X₆+2 {O(n)}
All Bounds
Timebounds
Overall timebound:133⋅X₃+168⋅X₈+216⋅X₅+216⋅X₆+418⋅X₁+137 {O(n)}
t₁₀₂: 1 {O(1)}
t₁₀₄: 1 {O(1)}
t₁₀₅: 1 {O(1)}
t₁₀₆: 24⋅X₈+2 {O(n)}
t₁₀₇: 24⋅X₈+2 {O(n)}
t₁₀₈: 24⋅X₈+2 {O(n)}
t₁₀₉: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₁₁: 24⋅X₈+2 {O(n)}
t₁₁₂: 24⋅X₈+2 {O(n)}
t₁₁₃: 117⋅X₃+390⋅X₁+84 {O(n)}
t₁₁₅: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₁₆: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₁₇: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₁₈: 24⋅X₈+2 {O(n)}
t₁₁₉: 24⋅X₈+2 {O(n)}
t₁₂₀: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₂₁: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₂₂: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₃₅: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₃₆: 1 {O(1)}
t₁₃₇: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₃₈: 2⋅X₁+X₃+1 {O(n)}
t₁₃₉: 2⋅X₁+X₃+1 {O(n)}
t₁₄₀: 2⋅X₁+X₃+1 {O(n)}
t₁₄₁: 1 {O(1)}
t₁₄₂: 1 {O(1)}
t₁₄₃: 1 {O(1)}
t₁₄₄: 1 {O(1)}
t₁₄₅: 13⋅X₃+22⋅X₁+10 {O(n)}
Costbounds
Overall costbound: 133⋅X₃+168⋅X₈+216⋅X₅+216⋅X₆+418⋅X₁+137 {O(n)}
t₁₀₂: 1 {O(1)}
t₁₀₄: 1 {O(1)}
t₁₀₅: 1 {O(1)}
t₁₀₆: 24⋅X₈+2 {O(n)}
t₁₀₇: 24⋅X₈+2 {O(n)}
t₁₀₈: 24⋅X₈+2 {O(n)}
t₁₀₉: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₁₁: 24⋅X₈+2 {O(n)}
t₁₁₂: 24⋅X₈+2 {O(n)}
t₁₁₃: 117⋅X₃+390⋅X₁+84 {O(n)}
t₁₁₅: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₁₆: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₁₇: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₁₈: 24⋅X₈+2 {O(n)}
t₁₁₉: 24⋅X₈+2 {O(n)}
t₁₂₀: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₂₁: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₂₂: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₃₅: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₃₆: 1 {O(1)}
t₁₃₇: 24⋅X₅+24⋅X₆+2 {O(n)}
t₁₃₈: 2⋅X₁+X₃+1 {O(n)}
t₁₃₉: 2⋅X₁+X₃+1 {O(n)}
t₁₄₀: 2⋅X₁+X₃+1 {O(n)}
t₁₄₁: 1 {O(1)}
t₁₄₂: 1 {O(1)}
t₁₄₃: 1 {O(1)}
t₁₄₄: 1 {O(1)}
t₁₄₅: 13⋅X₃+22⋅X₁+10 {O(n)}
Sizebounds
t₁₀₂, X₀: 2⋅X₁ {O(n)}
t₁₀₂, X₁: X₁ {O(n)}
t₁₀₂, X₂: 4⋅X₁ {O(n)}
t₁₀₂, X₃: X₃ {O(n)}
t₁₀₂, X₄: X₄ {O(n)}
t₁₀₂, X₅: X₅ {O(n)}
t₁₀₂, X₆: X₆ {O(n)}
t₁₀₂, X₇: X₇ {O(n)}
t₁₀₂, X₈: X₈ {O(n)}
t₁₀₄, X₀: 96⋅X₁ {O(n)}
t₁₀₄, X₁: 48⋅X₁ {O(n)}
t₁₀₄, X₂: 192⋅X₁ {O(n)}
t₁₀₄, X₃: 1128⋅X₁+468⋅X₃+336 {O(n)}
t₁₀₄, X₅: 48⋅X₅ {O(n)}
t₁₀₄, X₆: 24⋅X₅+72⋅X₆+2 {O(n)}
t₁₀₄, X₇: 32⋅X₇ {O(n)}
t₁₀₄, X₈: 48⋅X₈+1 {O(n)}
t₁₀₅, X₀: 32⋅X₁ {O(n)}
t₁₀₅, X₁: 16⋅X₁ {O(n)}
t₁₀₅, X₂: 64⋅X₁ {O(n)}
t₁₀₅, X₃: 116⋅X₁+78⋅X₃+56 {O(n)}
t₁₀₅, X₅: 16⋅X₅ {O(n)}
t₁₀₅, X₆: 16⋅X₆ {O(n)}
t₁₀₅, X₇: 16⋅X₇ {O(n)}
t₁₀₅, X₈: 16⋅X₈ {O(n)}
t₁₀₆, X₀: 48⋅X₁ {O(n)}
t₁₀₆, X₁: 24⋅X₁ {O(n)}
t₁₀₆, X₂: 96⋅X₁ {O(n)}
t₁₀₆, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₀₆, X₅: 24⋅X₅ {O(n)}
t₁₀₆, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₀₆, X₇: 16⋅X₇ {O(n)}
t₁₀₆, X₈: 24⋅X₈+1 {O(n)}
t₁₀₇, X₀: 48⋅X₁ {O(n)}
t₁₀₇, X₁: 24⋅X₁ {O(n)}
t₁₀₇, X₂: 96⋅X₁ {O(n)}
t₁₀₇, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₀₇, X₅: 24⋅X₅ {O(n)}
t₁₀₇, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₀₇, X₇: 16⋅X₇ {O(n)}
t₁₀₇, X₈: 24⋅X₈+1 {O(n)}
t₁₀₈, X₀: 48⋅X₁ {O(n)}
t₁₀₈, X₁: 24⋅X₁ {O(n)}
t₁₀₈, X₂: 96⋅X₁ {O(n)}
t₁₀₈, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₀₈, X₅: 24⋅X₅ {O(n)}
t₁₀₈, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₀₈, X₇: 0 {O(1)}
t₁₀₈, X₈: 24⋅X₈+1 {O(n)}
t₁₀₉, X₀: 48⋅X₁ {O(n)}
t₁₀₉, X₁: 24⋅X₁ {O(n)}
t₁₀₉, X₂: 96⋅X₁ {O(n)}
t₁₀₉, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₀₉, X₅: 24⋅X₅ {O(n)}
t₁₀₉, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₀₉, X₇: 16⋅X₇ {O(n)}
t₁₀₉, X₈: 24⋅X₈+1 {O(n)}
t₁₁₁, X₀: 48⋅X₁ {O(n)}
t₁₁₁, X₁: 24⋅X₁ {O(n)}
t₁₁₁, X₂: 96⋅X₁ {O(n)}
t₁₁₁, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₁₁, X₅: 24⋅X₅ {O(n)}
t₁₁₁, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₁₁, X₇: 16⋅X₇ {O(n)}
t₁₁₁, X₈: 24⋅X₈+1 {O(n)}
t₁₁₂, X₀: 48⋅X₁ {O(n)}
t₁₁₂, X₁: 24⋅X₁ {O(n)}
t₁₁₂, X₂: 96⋅X₁ {O(n)}
t₁₁₂, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₁₂, X₅: 24⋅X₅ {O(n)}
t₁₁₂, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₁₂, X₇: 0 {O(1)}
t₁₁₂, X₈: 24⋅X₈+1 {O(n)}
t₁₁₃, X₀: 48⋅X₁ {O(n)}
t₁₁₃, X₁: 24⋅X₁ {O(n)}
t₁₁₃, X₂: 96⋅X₁ {O(n)}
t₁₁₃, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₁₃, X₅: 24⋅X₅ {O(n)}
t₁₁₃, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₁₃, X₇: 0 {O(1)}
t₁₁₃, X₈: 24⋅X₈+1 {O(n)}
t₁₁₅, X₀: 48⋅X₁ {O(n)}
t₁₁₅, X₁: 24⋅X₁ {O(n)}
t₁₁₅, X₂: 96⋅X₁ {O(n)}
t₁₁₅, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₁₅, X₅: 24⋅X₅ {O(n)}
t₁₁₅, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₁₅, X₇: 16⋅X₇ {O(n)}
t₁₁₅, X₈: 24⋅X₈+1 {O(n)}
t₁₁₆, X₀: 48⋅X₁ {O(n)}
t₁₁₆, X₁: 24⋅X₁ {O(n)}
t₁₁₆, X₂: 96⋅X₁ {O(n)}
t₁₁₆, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₁₆, X₅: 24⋅X₅ {O(n)}
t₁₁₆, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₁₆, X₇: 16⋅X₇ {O(n)}
t₁₁₆, X₈: 24⋅X₈+1 {O(n)}
t₁₁₇, X₀: 48⋅X₁ {O(n)}
t₁₁₇, X₁: 24⋅X₁ {O(n)}
t₁₁₇, X₂: 96⋅X₁ {O(n)}
t₁₁₇, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₁₇, X₅: 24⋅X₅ {O(n)}
t₁₁₇, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₁₇, X₇: 16⋅X₇ {O(n)}
t₁₁₇, X₈: 24⋅X₈+1 {O(n)}
t₁₁₈, X₀: 48⋅X₁ {O(n)}
t₁₁₈, X₁: 24⋅X₁ {O(n)}
t₁₁₈, X₂: 96⋅X₁ {O(n)}
t₁₁₈, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₁₈, X₅: 24⋅X₅ {O(n)}
t₁₁₈, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₁₈, X₇: 16⋅X₇ {O(n)}
t₁₁₈, X₈: 24⋅X₈+1 {O(n)}
t₁₁₉, X₀: 48⋅X₁ {O(n)}
t₁₁₉, X₁: 24⋅X₁ {O(n)}
t₁₁₉, X₂: 96⋅X₁ {O(n)}
t₁₁₉, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₁₉, X₅: 24⋅X₅ {O(n)}
t₁₁₉, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₁₉, X₇: 16⋅X₇ {O(n)}
t₁₁₉, X₈: 24⋅X₈+1 {O(n)}
t₁₂₀, X₀: 48⋅X₁ {O(n)}
t₁₂₀, X₁: 24⋅X₁ {O(n)}
t₁₂₀, X₂: 96⋅X₁ {O(n)}
t₁₂₀, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₂₀, X₄: 0 {O(1)}
t₁₂₀, X₅: 24⋅X₅ {O(n)}
t₁₂₀, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₂₀, X₇: 16⋅X₇ {O(n)}
t₁₂₀, X₈: 24⋅X₈+1 {O(n)}
t₁₂₁, X₀: 48⋅X₁ {O(n)}
t₁₂₁, X₁: 24⋅X₁ {O(n)}
t₁₂₁, X₂: 96⋅X₁ {O(n)}
t₁₂₁, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₂₁, X₅: 24⋅X₅ {O(n)}
t₁₂₁, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₂₁, X₇: 16⋅X₇ {O(n)}
t₁₂₁, X₈: 24⋅X₈+1 {O(n)}
t₁₂₂, X₀: 48⋅X₁ {O(n)}
t₁₂₂, X₁: 24⋅X₁ {O(n)}
t₁₂₂, X₂: 96⋅X₁ {O(n)}
t₁₂₂, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₂₂, X₅: 24⋅X₅ {O(n)}
t₁₂₂, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₂₂, X₇: 16⋅X₇ {O(n)}
t₁₂₂, X₈: 24⋅X₈+1 {O(n)}
t₁₃₅, X₀: 48⋅X₁ {O(n)}
t₁₃₅, X₁: 24⋅X₁ {O(n)}
t₁₃₅, X₂: 96⋅X₁ {O(n)}
t₁₃₅, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₃₅, X₅: 24⋅X₅ {O(n)}
t₁₃₅, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₃₅, X₇: 16⋅X₇ {O(n)}
t₁₃₅, X₈: 24⋅X₈+1 {O(n)}
t₁₃₆, X₀: 96⋅X₁ {O(n)}
t₁₃₆, X₁: 48⋅X₁ {O(n)}
t₁₃₆, X₂: 192⋅X₁ {O(n)}
t₁₃₆, X₃: 1128⋅X₁+468⋅X₃+336 {O(n)}
t₁₃₆, X₅: 48⋅X₅ {O(n)}
t₁₃₆, X₆: 24⋅X₅+72⋅X₆+2 {O(n)}
t₁₃₆, X₇: 32⋅X₇ {O(n)}
t₁₃₆, X₈: 48⋅X₈+1 {O(n)}
t₁₃₇, X₀: 48⋅X₁ {O(n)}
t₁₃₇, X₁: 24⋅X₁ {O(n)}
t₁₃₇, X₂: 96⋅X₁ {O(n)}
t₁₃₇, X₃: 351⋅X₃+954⋅X₁+252 {O(n)}
t₁₃₇, X₅: 24⋅X₅ {O(n)}
t₁₃₇, X₆: 24⋅X₅+48⋅X₆+2 {O(n)}
t₁₃₇, X₇: 16⋅X₇ {O(n)}
t₁₃₇, X₈: 24⋅X₈+1 {O(n)}
t₁₃₈, X₀: 2⋅X₁ {O(n)}
t₁₃₈, X₁: X₁ {O(n)}
t₁₃₈, X₂: 4⋅X₁ {O(n)}
t₁₃₈, X₃: 4⋅X₃+6⋅X₁+3 {O(n)}
t₁₃₈, X₄: 0 {O(1)}
t₁₃₈, X₅: X₅ {O(n)}
t₁₃₈, X₆: X₆ {O(n)}
t₁₃₈, X₇: X₇ {O(n)}
t₁₃₈, X₈: X₈ {O(n)}
t₁₃₉, X₀: 2⋅X₁ {O(n)}
t₁₃₉, X₁: X₁ {O(n)}
t₁₃₉, X₂: 4⋅X₁ {O(n)}
t₁₃₉, X₃: 4⋅X₃+6⋅X₁+3 {O(n)}
t₁₃₉, X₅: X₅ {O(n)}
t₁₃₉, X₆: X₆ {O(n)}
t₁₃₉, X₇: X₇ {O(n)}
t₁₃₉, X₈: X₈ {O(n)}
t₁₄₀, X₀: 2⋅X₁ {O(n)}
t₁₄₀, X₁: X₁ {O(n)}
t₁₄₀, X₂: 4⋅X₁ {O(n)}
t₁₄₀, X₃: 4⋅X₃+6⋅X₁+3 {O(n)}
t₁₄₀, X₅: X₅ {O(n)}
t₁₄₀, X₆: X₆ {O(n)}
t₁₄₀, X₇: X₇ {O(n)}
t₁₄₀, X₈: X₈ {O(n)}
t₁₄₁, X₀: 8⋅X₁ {O(n)}
t₁₄₁, X₁: 4⋅X₁ {O(n)}
t₁₄₁, X₂: 16⋅X₁ {O(n)}
t₁₄₁, X₃: 13⋅X₃+18⋅X₁+9 {O(n)}
t₁₄₁, X₅: 4⋅X₅ {O(n)}
t₁₄₁, X₆: 4⋅X₆ {O(n)}
t₁₄₁, X₇: 4⋅X₇ {O(n)}
t₁₄₁, X₈: 4⋅X₈ {O(n)}
t₁₄₂, X₀: 16⋅X₁ {O(n)}
t₁₄₂, X₁: 8⋅X₁ {O(n)}
t₁₄₂, X₂: 32⋅X₁ {O(n)}
t₁₄₂, X₃: 39⋅X₃+58⋅X₁+28 {O(n)}
t₁₄₂, X₅: 8⋅X₅ {O(n)}
t₁₄₂, X₆: 8⋅X₆ {O(n)}
t₁₄₂, X₇: 8⋅X₇ {O(n)}
t₁₄₂, X₈: 8⋅X₈ {O(n)}
t₁₄₃, X₀: 16⋅X₁ {O(n)}
t₁₄₃, X₁: 8⋅X₁ {O(n)}
t₁₄₃, X₂: 32⋅X₁ {O(n)}
t₁₄₃, X₃: 39⋅X₃+58⋅X₁+28 {O(n)}
t₁₄₃, X₅: 8⋅X₅ {O(n)}
t₁₄₃, X₆: 8⋅X₆ {O(n)}
t₁₄₃, X₇: 8⋅X₇ {O(n)}
t₁₄₃, X₈: 8⋅X₈ {O(n)}
t₁₄₄, X₀: 16⋅X₁ {O(n)}
t₁₄₄, X₁: 8⋅X₁ {O(n)}
t₁₄₄, X₂: 32⋅X₁ {O(n)}
t₁₄₄, X₃: 39⋅X₃+58⋅X₁+28 {O(n)}
t₁₄₄, X₅: 8⋅X₅ {O(n)}
t₁₄₄, X₆: 8⋅X₆ {O(n)}
t₁₄₄, X₇: 0 {O(1)}
t₁₄₄, X₈: 8⋅X₈ {O(n)}
t₁₄₅, X₀: 8⋅X₁ {O(n)}
t₁₄₅, X₁: 4⋅X₁ {O(n)}
t₁₄₅, X₂: 16⋅X₁ {O(n)}
t₁₄₅, X₃: 26⋅X₃+40⋅X₁+19 {O(n)}
t₁₄₅, X₅: 4⋅X₅ {O(n)}
t₁₄₅, X₆: 4⋅X₆ {O(n)}
t₁₄₅, X₇: 4⋅X₇ {O(n)}
t₁₄₅, X₈: 4⋅X₈ {O(n)}