Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂
Temp_Vars: N
Locations: l0, l1, l10, l11, l12, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(50, 5, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, 0, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₂ ≤ X₁
t₂₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₁, 0, X₇, X₈, X₉, X₁₀, X₁₁, X₀) :|: 1+X₁ ≤ X₂
t₁₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆+1, N, X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₆
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, 0, X₁₂) :|: X₆+1 ≤ 0
t₁₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₅ ≤ X₇
t₁₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, N, X₉, X₁₀, X₁₁, X₁₂) :|: X₇ ≤ X₅
t₂₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₁ ≤ X₄
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃+N, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₄ ≤ X₁ ∧ X₂+1 ≤ X₄
t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃+N, X₄+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃+N, X₂+1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₄ ≤ X₁ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆+1, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₆+1 ≤ X₅
t₂₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, X₄, X₅, 1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₅ ≤ X₆
t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇+1, N, X₉, X₁₀, X₁₁, X₁₂) :|: X₇ ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆+1, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₅ ≤ X₇
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, N, 0, X₁₀, X₁₁, X₁₂) :|: X₆+1 ≤ 0 ∧ X₇ ≤ X₅
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, N, 0, X₁₀, X₁₁, X₁₂) :|: 1 ≤ X₆ ∧ X₇ ≤ X₅
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₅-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₅ ≤ X₆
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, N, X₉, X₁₀, X₁₁, X₁₂) :|: X₆ ≤ X₅
t₂₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₅ ≤ X₇
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, N, 0, X₁₀, X₁₁, X₁₂) :|: X₇ ≤ X₅
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₆ ≤ X₉
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, N, X₉+1, X₁₀, X₁₁, X₁₂) :|: X₉+1 ≤ X₆
t₂₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 1+X₆ ≤ X₉
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, N, X₉+1, X₁₀, X₁₁, X₁₂) :|: X₉ ≤ X₆
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₆ ≤ X₇
t₁₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1, N, X₉, X₁₀, X₁₁, X₁₂) :|: X₇+1 ≤ X₆

Preprocessing

Eliminate variables {N,X₀,X₃,X₈,X₁₀,X₁₁,X₁₂} that do not contribute to the problem

Found invariant X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ for location l11

Found invariant X₂ ≤ 6 ∧ X₂ ≤ 6+X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 11 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 5+X₂ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ for location l2

Found invariant X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 11 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 5 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 10 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ for location l6

Found invariant 1+X₄ ≤ 0 ∧ 6+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 4 ∧ 7+X₄ ≤ X₁ ∧ 6+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 4 ∧ 0 ≤ 1+X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ 6+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ 6+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ for location l12

Found invariant X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 8 ∧ 1+X₆ ≤ X₃ ∧ X₃+X₆ ≤ 9 ∧ 2+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 4+X₆ ∧ 5 ≤ X₃+X₆ ∧ X₃ ≤ 5+X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₀ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ X₅ ≤ 4+X₄ ∧ X₄+X₅ ≤ 9 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 7 ≤ X₃+X₅ ∧ X₃ ≤ 3+X₅ ∧ 8 ≤ X₁+X₅ ∧ 7 ≤ X₀+X₅ ∧ X₀ ≤ 3+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ for location l7

Found invariant X₄ ≤ 6 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 11 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ for location l5

Found invariant X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 9 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 10 ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 10 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 4+X₆ ∧ 5 ≤ X₃+X₆ ∧ X₃ ≤ 5+X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₀ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ X₅ ≤ 5+X₄ ∧ X₄+X₅ ≤ 9 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ for location l8

Found invariant 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ for location l1

Found invariant X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ 1+X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ 6+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ 6+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ for location l10

Found invariant X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ for location l4

Found invariant X₅ ≤ 5 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 5+X₅ ∧ 5 ≤ X₃+X₅ ∧ X₃ ≤ 5+X₅ ∧ 6 ≤ X₁+X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 5+X₅ ∧ X₄ ≤ 5 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 10 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ for location l9

Found invariant X₄ ≤ 6 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ for location l3

Cut unsatisfiable transition t₇₆: l4→l7

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₆₁: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(5, 0, X₂, X₃, X₄, X₅, X₆)
t₆₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, 0, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₆₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₀, 0, X₅, X₆) :|: 1+X₀ ≤ X₁ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₆₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₄+1, X₆) :|: 0 ≤ X₄ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ 1+X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ 6+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ 6+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₆₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+1 ≤ 0 ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ 1+X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ 6+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ 6+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₆₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄-1, X₅, X₆) :|: 1+X₃ ≤ X₅ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₆₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₅ ≤ X₃ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₆₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₀ ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 6+X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 11 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 5+X₂ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₆₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 6+X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 11 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 5+X₂ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₇₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ 6 ∧ X₂ ≤ 6+X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 11 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 5+X₂ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₇₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₁+1, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 6 ∧ X₂ ≤ 6+X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 11 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 5+X₂ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₇₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₄+1, X₆) :|: X₄+1 ≤ X₃ ∧ X₄ ≤ 6 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₇₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, 1, X₅, X₆) :|: X₃ ≤ X₄ ∧ X₄ ≤ 6 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₇₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, 0, X₅+1, X₆) :|: X₅ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₇₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₄+1, X₆) :|: 1+X₃ ≤ X₅ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₇₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, 0) :|: 1 ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₇₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆) :|: 1+X₃ ≤ X₄ ∧ X₄ ≤ 6 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 11 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₇₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, 0, X₆) :|: X₄ ≤ X₃ ∧ X₄ ≤ 6 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 11 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₈₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1+X₃ ≤ X₅ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 11 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 5 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 10 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₈₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, 0) :|: X₅ ≤ X₃ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 11 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 5 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 10 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₈₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₄ ≤ X₆ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 8 ∧ 1+X₆ ≤ X₃ ∧ X₃+X₆ ≤ 9 ∧ 2+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 4+X₆ ∧ 5 ≤ X₃+X₆ ∧ X₃ ≤ 5+X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₀ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ X₅ ≤ 4+X₄ ∧ X₄+X₅ ≤ 9 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 7 ≤ X₃+X₅ ∧ X₃ ≤ 3+X₅ ∧ 8 ≤ X₁+X₅ ∧ 7 ≤ X₀+X₅ ∧ X₀ ≤ 3+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₈₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₆+1 ≤ X₄ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 8 ∧ 1+X₆ ≤ X₃ ∧ X₃+X₆ ≤ 9 ∧ 2+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 4+X₆ ∧ 5 ≤ X₃+X₆ ∧ X₃ ≤ 5+X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₀ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ X₅ ≤ 4+X₄ ∧ X₄+X₅ ≤ 9 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 7 ≤ X₃+X₅ ∧ X₃ ≤ 3+X₅ ∧ 8 ≤ X₁+X₅ ∧ 7 ≤ X₀+X₅ ∧ X₀ ≤ 3+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₈₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 1+X₄ ≤ X₆ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 9 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 10 ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 10 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 4+X₆ ∧ 5 ≤ X₃+X₆ ∧ X₃ ≤ 5+X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₀ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ X₅ ≤ 5+X₄ ∧ X₄+X₅ ≤ 9 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₈₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₆ ≤ X₄ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 9 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 10 ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 10 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 4+X₆ ∧ 5 ≤ X₃+X₆ ∧ X₃ ≤ 5+X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₀ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ X₅ ≤ 5+X₄ ∧ X₄+X₅ ≤ 9 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₈₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₄ ≤ X₅ ∧ X₅ ≤ 5 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 5+X₅ ∧ 5 ≤ X₃+X₅ ∧ X₃ ≤ 5+X₅ ∧ 6 ≤ X₁+X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 5+X₅ ∧ X₄ ≤ 5 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 10 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀
t₈₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₅+1 ≤ X₄ ∧ X₅ ≤ 5 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 5+X₅ ∧ 5 ≤ X₃+X₅ ∧ X₃ ≤ 5+X₅ ∧ 6 ≤ X₁+X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 5+X₅ ∧ X₄ ≤ 5 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 10 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀

MPRF for transition t₆₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, 0, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₆₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 6+X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 11 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 5+X₂ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

37 {O(1)}

MPRF for transition t₇₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₁+1, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 6 ∧ X₂ ≤ 6+X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 11 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 5+X₂ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

36 {O(1)}

TWN: t₇₀: l2→l2

cycle: [t₆₉: l2→l2; t₇₀: l2→l2]
loop: (X₂ ≤ X₀ ∧ X₁+1 ≤ X₂ ∨ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀,(X₀,X₁,X₂) -> (X₀,X₁,X₂+1)
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂ + [[n != 0]] * n^1

Termination: true
Formula:

0 < 1 ∧ 1 < 0
∨ 0 < 1 ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
∨ X₁+1 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₁+1 < X₂ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁+1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ X₁+1 ∧ 1 < 0
∨ X₁+1 ≤ X₂ ∧ X₂ ≤ X₁+1 ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁+1 ≤ X₂ ∧ X₂ ≤ X₁+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
∨ 1 < 0
∨ 1 < 0 ∧ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂
∨ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₂ < X₀ ∧ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂

Stabilization-Threshold for: X₂ ≤ X₀
alphas_abs: X₂+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+2 {O(n)}
Stabilization-Threshold for: 1+X₂ ≤ X₁
alphas_abs: 1+X₂+X₁
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+4 {O(n)}
Stabilization-Threshold for: X₁+1 ≤ X₂
alphas_abs: X₁+1+X₂
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+4 {O(n)}
loop: (X₂ ≤ X₀ ∧ X₁+1 ≤ X₂ ∨ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀,(X₀,X₁,X₂) -> (X₀,X₁,X₂+1)
order: [X₀; X₁; X₂]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂ + [[n != 0]] * n^1

Termination: true
Formula:

0 < 1 ∧ 1 < 0
∨ 0 < 1 ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 0 < 1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
∨ X₁+1 < X₂ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 1 < 0
∨ X₁+1 < X₂ ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁+1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
∨ 0 ≤ 1 ∧ 1 ≤ 0 ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ X₁+1 ∧ 1 < 0
∨ X₁+1 ≤ X₂ ∧ X₂ ≤ X₁+1 ∧ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₁+1 ≤ X₂ ∧ X₂ ≤ X₁+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
∨ 1 < 0
∨ 1 < 0 ∧ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂
∨ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0
∨ X₂ < X₀ ∧ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 < 0
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₂ < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ 1+X₂

Stabilization-Threshold for: X₂ ≤ X₀
alphas_abs: X₂+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+2 {O(n)}
Stabilization-Threshold for: 1+X₂ ≤ X₁
alphas_abs: 1+X₂+X₁
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+4 {O(n)}
Stabilization-Threshold for: X₁+1 ≤ X₂
alphas_abs: X₁+1+X₂
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+4 {O(n)}

TWN - Lifting for t₇₀: l2→l2 of 2⋅X₀+4⋅X₁+6⋅X₂+12 {O(n)}

relevant size-bounds w.r.t. t₇₁:
X₀: 5 {O(1)}
X₁: 5 {O(1)}
X₂: 6 {O(1)}
Runtime-bound of t₇₁: 36 {O(1)}
Results in: 2808 {O(1)}

TWN - Lifting for t₇₀: l2→l2 of 2⋅X₀+4⋅X₁+6⋅X₂+12 {O(n)}

relevant size-bounds w.r.t. t₆₂:
X₀: 5 {O(1)}
X₁: 5 {O(1)}
X₂: 0 {O(1)}
Runtime-bound of t₆₂: 6 {O(1)}
Results in: 252 {O(1)}

knowledge_propagation leads to new time bound 3133 {O(1)} for transition t₆₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₀ ≤ X₂ ∧ X₂ ≤ 6 ∧ X₂ ≤ 6+X₁ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 11 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 5+X₂ ∧ 0 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 5+X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀

MPRF for transition t₇₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₄+1, X₆) :|: X₄+1 ≤ X₃ ∧ X₄ ≤ 6 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 11 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

18 {O(1)}

MPRF for transition t₇₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, 0, X₅+1, X₆) :|: X₅ ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

35 {O(1)}

MPRF for transition t₇₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₄+1, X₆) :|: 1+X₃ ≤ X₅ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

25 {O(1)}

MPRF for transition t₇₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, 0) :|: 1 ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

25 {O(1)}

MPRF for transition t₈₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1+X₃ ≤ X₅ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 11 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 5 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 10 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

10 {O(1)}

MPRF for transition t₈₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, 0) :|: X₅ ≤ X₃ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 11 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 5 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 10 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

442 {O(1)}

MPRF for transition t₈₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₄ ≤ X₆ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 8 ∧ 1+X₆ ≤ X₃ ∧ X₃+X₆ ≤ 9 ∧ 2+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 4+X₆ ∧ 5 ≤ X₃+X₆ ∧ X₃ ≤ 5+X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₀ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ X₅ ≤ 4+X₄ ∧ X₄+X₅ ≤ 9 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 7 ≤ X₃+X₅ ∧ X₃ ≤ 3+X₅ ∧ 8 ≤ X₁+X₅ ∧ 7 ≤ X₀+X₅ ∧ X₀ ≤ 3+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

25 {O(1)}

MPRF for transition t₈₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₆+1 ≤ X₄ ∧ X₆ ≤ 4 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 9 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 8 ∧ 1+X₆ ≤ X₃ ∧ X₃+X₆ ≤ 9 ∧ 2+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 9 ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ 4+X₆ ∧ 5 ≤ X₃+X₆ ∧ X₃ ≤ 5+X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₀ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ X₅ ≤ 4+X₄ ∧ X₄+X₅ ≤ 9 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 7 ≤ X₃+X₅ ∧ X₃ ≤ 3+X₅ ∧ 8 ≤ X₁+X₅ ∧ 7 ≤ X₀+X₅ ∧ X₀ ≤ 3+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

465 {O(1)}

MPRF for transition t₈₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 1+X₄ ≤ X₆ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 9 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 10 ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 10 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 4+X₆ ∧ 5 ≤ X₃+X₆ ∧ X₃ ≤ 5+X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₀ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ X₅ ≤ 5+X₄ ∧ X₄+X₅ ≤ 9 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

25 {O(1)}

MPRF for transition t₈₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₆ ≤ X₄ ∧ X₆ ≤ 5 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 10 ∧ X₆ ≤ 1+X₄ ∧ X₄+X₆ ≤ 9 ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 10 ∧ 1+X₆ ≤ X₁ ∧ X₆ ≤ X₀ ∧ X₀+X₆ ≤ 10 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 5+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ 4+X₆ ∧ 5 ≤ X₃+X₆ ∧ X₃ ≤ 5+X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ X₀ ≤ 5+X₆ ∧ X₅ ≤ 5 ∧ X₅ ≤ 5+X₄ ∧ X₄+X₅ ≤ 9 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

105 {O(1)}

MPRF for transition t₇₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, 0, X₆) :|: X₄ ≤ X₃ ∧ X₄ ≤ 6 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 11 ∧ X₄ ≤ X₁ ∧ X₄ ≤ 1+X₀ ∧ X₀+X₄ ≤ 11 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

8 {O(1)}

MPRF for transition t₈₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: X₄ ≤ X₅ ∧ X₅ ≤ 5 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 5+X₅ ∧ 5 ≤ X₃+X₅ ∧ X₃ ≤ 5+X₅ ∧ 6 ≤ X₁+X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 5+X₅ ∧ X₄ ≤ 5 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 10 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

41 {O(1)}

MPRF for transition t₈₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₅+1 ≤ X₄ ∧ X₅ ≤ 5 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 10 ∧ 1+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 10 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 5+X₅ ∧ 5 ≤ X₃+X₅ ∧ X₃ ≤ 5+X₅ ∧ 6 ≤ X₁+X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 5+X₅ ∧ X₄ ≤ 5 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 10 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₀+X₄ ≤ 10 ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ X₃ ≤ 4+X₄ ∧ 7 ≤ X₁+X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ 4+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

36 {O(1)}

MPRF for transition t₆₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₄+1, X₆) :|: 0 ≤ X₄ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ 1+X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ 6+X₄ ∧ 5 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ 6+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

6 {O(1)}

MPRF for transition t₆₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄-1, X₅, X₆) :|: 1+X₃ ≤ X₅ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

15 {O(1)}

MPRF for transition t₆₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₅ ≤ X₃ ∧ X₅ ≤ 6 ∧ X₅ ≤ 6+X₄ ∧ X₄+X₅ ≤ 10 ∧ X₅ ≤ 1+X₃ ∧ X₃+X₅ ≤ 11 ∧ X₅ ≤ X₁ ∧ X₅ ≤ 1+X₀ ∧ X₀+X₅ ≤ 11 ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ X₃ ≤ 4+X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ X₀ ≤ 4+X₅ ∧ X₄ ≤ 4 ∧ 1+X₄ ≤ X₃ ∧ X₃+X₄ ≤ 9 ∧ 2+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ X₀+X₄ ≤ 9 ∧ 0 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ 5+X₄ ∧ 6 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₀ ≤ 5+X₄ ∧ X₃ ≤ 5 ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ 5 ≤ X₃ ∧ 11 ≤ X₁+X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 6 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 5 ≤ X₀ of depth 1:

new bound:

135 {O(1)}

All Bounds

Timebounds

Overall timebound:7693 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 6 {O(1)}
t₆₃: 1 {O(1)}
t₆₄: 6 {O(1)}
t₆₅: 1 {O(1)}
t₆₆: 15 {O(1)}
t₆₇: 135 {O(1)}
t₆₈: 3133 {O(1)}
t₆₉: 37 {O(1)}
t₇₀: 3060 {O(1)}
t₇₁: 36 {O(1)}
t₇₂: 18 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 35 {O(1)}
t₇₅: 25 {O(1)}
t₇₇: 25 {O(1)}
t₇₈: 1 {O(1)}
t₇₉: 8 {O(1)}
t₈₀: 10 {O(1)}
t₈₁: 442 {O(1)}
t₈₂: 25 {O(1)}
t₈₃: 465 {O(1)}
t₈₄: 25 {O(1)}
t₈₅: 105 {O(1)}
t₈₆: 41 {O(1)}
t₈₇: 36 {O(1)}

Costbounds

Overall costbound: 7693 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 6 {O(1)}
t₆₃: 1 {O(1)}
t₆₄: 6 {O(1)}
t₆₅: 1 {O(1)}
t₆₆: 15 {O(1)}
t₆₇: 135 {O(1)}
t₆₈: 3133 {O(1)}
t₆₉: 37 {O(1)}
t₇₀: 3060 {O(1)}
t₇₁: 36 {O(1)}
t₇₂: 18 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 35 {O(1)}
t₇₅: 25 {O(1)}
t₇₇: 25 {O(1)}
t₇₈: 1 {O(1)}
t₇₉: 8 {O(1)}
t₈₀: 10 {O(1)}
t₈₁: 442 {O(1)}
t₈₂: 25 {O(1)}
t₈₃: 465 {O(1)}
t₈₄: 25 {O(1)}
t₈₅: 105 {O(1)}
t₈₆: 41 {O(1)}
t₈₇: 36 {O(1)}

Sizebounds

t₆₁, X₀: 5 {O(1)}
t₆₁, X₁: 0 {O(1)}
t₆₁, X₂: X₂ {O(n)}
t₆₁, X₃: X₃ {O(n)}
t₆₁, X₄: X₄ {O(n)}
t₆₁, X₅: X₅ {O(n)}
t₆₁, X₆: X₆ {O(n)}
t₆₂, X₀: 5 {O(1)}
t₆₂, X₁: 5 {O(1)}
t₆₂, X₂: 0 {O(1)}
t₆₂, X₃: X₃ {O(n)}
t₆₂, X₄: X₄ {O(n)}
t₆₂, X₅: X₅ {O(n)}
t₆₂, X₆: X₆ {O(n)}
t₆₃, X₀: 5 {O(1)}
t₆₃, X₁: 17 {O(1)}
t₆₃, X₂: 6 {O(1)}
t₆₃, X₃: 5 {O(1)}
t₆₃, X₄: 0 {O(1)}
t₆₃, X₅: X₅ {O(n)}
t₆₃, X₆: X₆ {O(n)}
t₆₄, X₀: 5 {O(1)}
t₆₄, X₁: 17 {O(1)}
t₆₄, X₂: 6 {O(1)}
t₆₄, X₃: 5 {O(1)}
t₆₄, X₄: 4 {O(1)}
t₆₄, X₅: 5 {O(1)}
t₆₄, X₆: 5 {O(1)}
t₆₅, X₀: 5 {O(1)}
t₆₅, X₁: 17 {O(1)}
t₆₅, X₂: 6 {O(1)}
t₆₅, X₃: 5 {O(1)}
t₆₅, X₄: 1 {O(1)}
t₆₅, X₅: 6 {O(1)}
t₆₅, X₆: 5 {O(1)}
t₆₆, X₀: 5 {O(1)}
t₆₆, X₁: 17 {O(1)}
t₆₆, X₂: 6 {O(1)}
t₆₆, X₃: 5 {O(1)}
t₆₆, X₄: 3 {O(1)}
t₆₆, X₅: 6 {O(1)}
t₆₆, X₆: 5 {O(1)}
t₆₇, X₀: 5 {O(1)}
t₆₇, X₁: 17 {O(1)}
t₆₇, X₂: 6 {O(1)}
t₆₇, X₃: 5 {O(1)}
t₆₇, X₄: 4 {O(1)}
t₆₇, X₅: 6 {O(1)}
t₆₇, X₆: 5 {O(1)}
t₆₈, X₀: 5 {O(1)}
t₆₈, X₁: 17 {O(1)}
t₆₈, X₂: 6 {O(1)}
t₆₈, X₃: X₃ {O(n)}
t₆₈, X₄: X₄ {O(n)}
t₆₈, X₅: X₅ {O(n)}
t₆₈, X₆: X₆ {O(n)}
t₆₉, X₀: 5 {O(1)}
t₆₉, X₁: 4 {O(1)}
t₆₉, X₂: 6 {O(1)}
t₆₉, X₃: X₃ {O(n)}
t₆₉, X₄: X₄ {O(n)}
t₆₉, X₅: X₅ {O(n)}
t₆₉, X₆: X₆ {O(n)}
t₇₀, X₀: 5 {O(1)}
t₇₀, X₁: 5 {O(1)}
t₇₀, X₂: 6 {O(1)}
t₇₀, X₃: X₃ {O(n)}
t₇₀, X₄: X₄ {O(n)}
t₇₀, X₅: X₅ {O(n)}
t₇₀, X₆: X₆ {O(n)}
t₇₁, X₀: 5 {O(1)}
t₇₁, X₁: 5 {O(1)}
t₇₁, X₂: 6 {O(1)}
t₇₁, X₃: X₃ {O(n)}
t₇₁, X₄: X₄ {O(n)}
t₇₁, X₅: X₅ {O(n)}
t₇₁, X₆: X₆ {O(n)}
t₇₂, X₀: 5 {O(1)}
t₇₂, X₁: 17 {O(1)}
t₇₂, X₂: 6 {O(1)}
t₇₂, X₃: 5 {O(1)}
t₇₂, X₄: 4 {O(1)}
t₇₂, X₅: 5 {O(1)}
t₇₂, X₆: X₆+5 {O(n)}
t₇₃, X₀: 5 {O(1)}
t₇₃, X₁: 17 {O(1)}
t₇₃, X₂: 6 {O(1)}
t₇₃, X₃: 5 {O(1)}
t₇₃, X₄: 1 {O(1)}
t₇₃, X₅: 6 {O(1)}
t₇₃, X₆: 5 {O(1)}
t₇₄, X₀: 5 {O(1)}
t₇₄, X₁: 17 {O(1)}
t₇₄, X₂: 6 {O(1)}
t₇₄, X₃: 5 {O(1)}
t₇₄, X₄: 0 {O(1)}
t₇₄, X₅: 6 {O(1)}
t₇₄, X₆: X₆+5 {O(n)}
t₇₅, X₀: 5 {O(1)}
t₇₅, X₁: 17 {O(1)}
t₇₅, X₂: 6 {O(1)}
t₇₅, X₃: 5 {O(1)}
t₇₅, X₄: 4 {O(1)}
t₇₅, X₅: 5 {O(1)}
t₇₅, X₆: X₆+9 {O(n)}
t₇₇, X₀: 5 {O(1)}
t₇₇, X₁: 17 {O(1)}
t₇₇, X₂: 6 {O(1)}
t₇₇, X₃: 5 {O(1)}
t₇₇, X₄: 4 {O(1)}
t₇₇, X₅: 5 {O(1)}
t₇₇, X₆: 0 {O(1)}
t₇₈, X₀: 5 {O(1)}
t₇₈, X₁: 17 {O(1)}
t₇₈, X₂: 6 {O(1)}
t₇₈, X₃: 5 {O(1)}
t₇₈, X₄: 4 {O(1)}
t₇₈, X₅: 5 {O(1)}
t₇₈, X₆: 5 {O(1)}
t₇₉, X₀: 5 {O(1)}
t₇₉, X₁: 17 {O(1)}
t₇₉, X₂: 6 {O(1)}
t₇₉, X₃: 5 {O(1)}
t₇₉, X₄: 5 {O(1)}
t₇₉, X₅: 0 {O(1)}
t₇₉, X₆: 5 {O(1)}
t₈₀, X₀: 5 {O(1)}
t₈₀, X₁: 17 {O(1)}
t₈₀, X₂: 6 {O(1)}
t₈₀, X₃: 5 {O(1)}
t₈₀, X₄: 6 {O(1)}
t₈₀, X₅: 6 {O(1)}
t₈₀, X₆: 5 {O(1)}
t₈₁, X₀: 5 {O(1)}
t₈₁, X₁: 17 {O(1)}
t₈₁, X₂: 6 {O(1)}
t₈₁, X₃: 5 {O(1)}
t₈₁, X₄: 4 {O(1)}
t₈₁, X₅: 5 {O(1)}
t₈₁, X₆: 0 {O(1)}
t₈₂, X₀: 5 {O(1)}
t₈₂, X₁: 17 {O(1)}
t₈₂, X₂: 6 {O(1)}
t₈₂, X₃: 5 {O(1)}
t₈₂, X₄: 4 {O(1)}
t₈₂, X₅: 6 {O(1)}
t₈₂, X₆: 4 {O(1)}
t₈₃, X₀: 5 {O(1)}
t₈₃, X₁: 17 {O(1)}
t₈₃, X₂: 6 {O(1)}
t₈₃, X₃: 5 {O(1)}
t₈₃, X₄: 4 {O(1)}
t₈₃, X₅: 5 {O(1)}
t₈₃, X₆: 4 {O(1)}
t₈₄, X₀: 5 {O(1)}
t₈₄, X₁: 17 {O(1)}
t₈₄, X₂: 6 {O(1)}
t₈₄, X₃: 5 {O(1)}
t₈₄, X₄: 4 {O(1)}
t₈₄, X₅: 6 {O(1)}
t₈₄, X₆: 5 {O(1)}
t₈₅, X₀: 5 {O(1)}
t₈₅, X₁: 17 {O(1)}
t₈₅, X₂: 6 {O(1)}
t₈₅, X₃: 5 {O(1)}
t₈₅, X₄: 4 {O(1)}
t₈₅, X₅: 5 {O(1)}
t₈₅, X₆: 5 {O(1)}
t₈₆, X₀: 5 {O(1)}
t₈₆, X₁: 17 {O(1)}
t₈₆, X₂: 6 {O(1)}
t₈₆, X₃: 5 {O(1)}
t₈₆, X₄: 6 {O(1)}
t₈₆, X₅: 5 {O(1)}
t₈₆, X₆: 5 {O(1)}
t₈₇, X₀: 5 {O(1)}
t₈₇, X₁: 17 {O(1)}
t₈₇, X₂: 6 {O(1)}
t₈₇, X₃: 5 {O(1)}
t₈₇, X₄: 5 {O(1)}
t₈₇, X₅: 5 {O(1)}
t₈₇, X₆: 5 {O(1)}