Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃+1 ≤ X₁
t₂: l1(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃
t₇: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₂
t₉: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃)
t₁₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, X₃+1)
t₄: l5(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: E+1 ≤ 0
t₅: l5(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 1 ≤ E
t₆: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃)
t₁₁: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃)
t₁: l7(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁

Preprocessing

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l4

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: E
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₃: l1(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃+1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₂: l1(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₂+1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₈: l2(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₉: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₀: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, X₃+1) :|: 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄: l5(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: E+1 ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅: l5(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: 1 ≤ E ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆: l5(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁: l7(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁

Chain transitions t₁: l7→l1 and t₂: l1→l6 to t₁₄₆: l7→l6

Chain transitions t₁₀: l4→l1 and t₂: l1→l6 to t₁₄₇: l4→l6

Chain transitions t₁₀: l4→l1 and t₃: l1→l5 to t₁₄₈: l4→l5

Chain transitions t₁: l7→l1 and t₃: l1→l5 to t₁₄₉: l7→l5

Chain transitions t₉: l3→l1 and t₃: l1→l5 to t₁₅₀: l3→l5

Chain transitions t₉: l3→l1 and t₂: l1→l6 to t₁₅₁: l3→l6

Chain transitions t₅: l5→l2 and t₈: l2→l4 to t₁₅₂: l5→l4

Chain transitions t₄: l5→l2 and t₈: l2→l4 to t₁₅₃: l5→l4

Chain transitions t₄: l5→l2 and t₇: l2→l3 to t₁₅₄: l5→l3

Chain transitions t₅: l5→l2 and t₇: l2→l3 to t₁₅₅: l5→l3

Chain transitions t₁₅₅: l5→l3 and t₁₅₁: l3→l6 to t₁₅₆: l5→l6

Chain transitions t₁₅₄: l5→l3 and t₁₅₁: l3→l6 to t₁₅₇: l5→l6

Chain transitions t₁₅₄: l5→l3 and t₁₅₀: l3→l5 to t₁₅₈: l5→l5

Chain transitions t₁₅₅: l5→l3 and t₁₅₀: l3→l5 to t₁₅₉: l5→l5

Chain transitions t₁₅₄: l5→l3 and t₉: l3→l1 to t₁₆₀: l5→l1

Chain transitions t₁₅₅: l5→l3 and t₉: l3→l1 to t₁₆₁: l5→l1

Chain transitions t₁₅₃: l5→l4 and t₁₄₇: l4→l6 to t₁₆₂: l5→l6

Chain transitions t₁₅₂: l5→l4 and t₁₄₇: l4→l6 to t₁₆₃: l5→l6

Chain transitions t₁₅₂: l5→l4 and t₁₄₈: l4→l5 to t₁₆₄: l5→l5

Chain transitions t₁₅₃: l5→l4 and t₁₄₈: l4→l5 to t₁₆₅: l5→l5

Chain transitions t₁₅₂: l5→l4 and t₁₀: l4→l1 to t₁₆₆: l5→l1

Chain transitions t₁₅₃: l5→l4 and t₁₀: l4→l1 to t₁₆₇: l5→l1

Analysing control-flow refined program

Cut unsatisfiable transition t₁₄₆: l7→l6

Cut unsatisfiable transition t₁₅₆: l5→l6

Cut unsatisfiable transition t₁₅₇: l5→l6

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l4

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3

MPRF for transition t₁₆₄: l5(X₀, X₁, X₂, X₃) -{4}> l5(X₀, X₁, 0, 1+X₃) :|: 1 ≤ E ∧ X₀ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₃+1 ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 0 ∧ 2 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF for transition t₁₆₅: l5(X₀, X₁, X₂, X₃) -{4}> l5(X₀, X₁, 0, 1+X₃) :|: E+1 ≤ 0 ∧ X₀ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₃+1 ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 0 ∧ 2 ≤ X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁+1 {O(n)}

TWN: t₁₅₈: l5→l5

cycle: [t₁₅₈: l5→l5; t₁₅₉: l5→l5]
loop: (X₂+1 ≤ X₀ ∧ X₃+1 ≤ X₁ ∨ X₂+1 ≤ X₀ ∧ X₃+1 ≤ X₁,(X₀,X₁,X₂,X₃) -> (X₀,X₁,1+X₂,X₃)
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂ + [[n != 0]] * n^1
X₃: X₃

Termination: true
Formula:

X₃+1 < X₁ ∧ 1 < 0
∨ X₃+1 < X₁ ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 < 0
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 < X₁ ∧ 1 < 0
∨ X₃+1 < X₁ ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 < 0
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1

Stabilization-Threshold for: X₂+1 ≤ X₀
alphas_abs: X₂+1+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}
loop: (X₂+1 ≤ X₀ ∧ X₃+1 ≤ X₁ ∨ X₂+1 ≤ X₀ ∧ X₃+1 ≤ X₁,(X₀,X₁,X₂,X₃) -> (X₀,X₁,1+X₂,X₃)
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂ + [[n != 0]] * n^1
X₃: X₃

Termination: true
Formula:

X₃+1 < X₁ ∧ 1 < 0
∨ X₃+1 < X₁ ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 < 0
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 < X₁ ∧ 1 < 0
∨ X₃+1 < X₁ ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 < 0
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1

Stabilization-Threshold for: X₂+1 ≤ X₀
alphas_abs: X₂+1+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}
loop: (X₂+1 ≤ X₀ ∧ X₃+1 ≤ X₁ ∨ X₂+1 ≤ X₀ ∧ X₃+1 ≤ X₁,(X₀,X₁,X₂,X₃) -> (X₀,X₁,1+X₂,X₃)
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂ + [[n != 0]] * n^1
X₃: X₃

Termination: true
Formula:

X₃+1 < X₁ ∧ 1 < 0
∨ X₃+1 < X₁ ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 < 0
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 < X₁ ∧ 1 < 0
∨ X₃+1 < X₁ ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 < 0
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1

Stabilization-Threshold for: X₂+1 ≤ X₀
alphas_abs: X₂+1+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}
loop: (X₂+1 ≤ X₀ ∧ X₃+1 ≤ X₁ ∨ X₂+1 ≤ X₀ ∧ X₃+1 ≤ X₁,(X₀,X₁,X₂,X₃) -> (X₀,X₁,1+X₂,X₃)
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂ + [[n != 0]] * n^1
X₃: X₃

Termination: true
Formula:

X₃+1 < X₁ ∧ 1 < 0
∨ X₃+1 < X₁ ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 < 0
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 < X₁ ∧ 1 < 0
∨ X₃+1 < X₁ ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 < 0
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1

Stabilization-Threshold for: X₂+1 ≤ X₀
alphas_abs: X₂+1+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}
loop: (X₂+1 ≤ X₀ ∧ X₃+1 ≤ X₁ ∨ X₂+1 ≤ X₀ ∧ X₃+1 ≤ X₁,(X₀,X₁,X₂,X₃) -> (X₀,X₁,1+X₂,X₃)
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂ + [[n != 0]] * n^1
X₃: X₃

Termination: true
Formula:

X₃+1 < X₁ ∧ 1 < 0
∨ X₃+1 < X₁ ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 < 0
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 < X₁ ∧ 1 < 0
∨ X₃+1 < X₁ ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 < 0
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1

Stabilization-Threshold for: X₂+1 ≤ X₀
alphas_abs: X₂+1+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}
loop: (X₂+1 ≤ X₀ ∧ X₃+1 ≤ X₁ ∨ X₂+1 ≤ X₀ ∧ X₃+1 ≤ X₁,(X₀,X₁,X₂,X₃) -> (X₀,X₁,1+X₂,X₃)
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂ + [[n != 0]] * n^1
X₃: X₃

Termination: true
Formula:

X₃+1 < X₁ ∧ 1 < 0
∨ X₃+1 < X₁ ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 < 0
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 < X₁ ∧ 1 < 0
∨ X₃+1 < X₁ ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 < X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 < 0
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ X₂+1 < X₀ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₃+1 ≤ X₁ ∧ X₁ ≤ X₃+1 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₂+1 ≤ X₀ ∧ X₀ ≤ X₂+1

Stabilization-Threshold for: X₂+1 ≤ X₀
alphas_abs: X₂+1+X₀
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}

TWN - Lifting for t₁₅₈: l5→l5 of 2⋅X₀+2⋅X₂+7 {O(n)}

relevant size-bounds w.r.t. t₁₄₉:
X₀: X₀ {O(n)}
X₂: 0 {O(1)}
Runtime-bound of t₁₄₉: 1 {O(1)}
Results in: 2⋅X₀+7 {O(n)}

TWN - Lifting for t₁₅₈: l5→l5 of 2⋅X₀+2⋅X₂+7 {O(n)}

relevant size-bounds w.r.t. t₁₆₅:
X₀: X₀ {O(n)}
X₂: 0 {O(1)}
Runtime-bound of t₁₆₅: X₁+1 {O(n)}
Results in: 2⋅X₀⋅X₁+2⋅X₀+7⋅X₁+7 {O(n^2)}

TWN - Lifting for t₁₅₈: l5→l5 of 2⋅X₀+2⋅X₂+7 {O(n)}

relevant size-bounds w.r.t. t₁₆₄:
X₀: X₀ {O(n)}
X₂: 0 {O(1)}
Runtime-bound of t₁₆₄: X₁+1 {O(n)}
Results in: 2⋅X₀⋅X₁+2⋅X₀+7⋅X₁+7 {O(n^2)}

TWN - Lifting for t₁₅₈: l5→l5 of 2⋅X₀+2⋅X₂+7 {O(n)}

relevant size-bounds w.r.t. t₁₄₉:
X₀: X₀ {O(n)}
X₂: 0 {O(1)}
Runtime-bound of t₁₄₉: 1 {O(1)}
Results in: 2⋅X₀+7 {O(n)}

TWN - Lifting for t₁₅₈: l5→l5 of 2⋅X₀+2⋅X₂+7 {O(n)}

relevant size-bounds w.r.t. t₁₆₅:
X₀: X₀ {O(n)}
X₂: 0 {O(1)}
Runtime-bound of t₁₆₅: X₁+1 {O(n)}
Results in: 2⋅X₀⋅X₁+2⋅X₀+7⋅X₁+7 {O(n^2)}

TWN - Lifting for t₁₅₈: l5→l5 of 2⋅X₀+2⋅X₂+7 {O(n)}

relevant size-bounds w.r.t. t₁₆₄:
X₀: X₀ {O(n)}
X₂: 0 {O(1)}
Runtime-bound of t₁₆₄: X₁+1 {O(n)}
Results in: 2⋅X₀⋅X₁+2⋅X₀+7⋅X₁+7 {O(n^2)}

TWN: t₁₅₉: l5→l5

TWN - Lifting for t₁₅₉: l5→l5 of 2⋅X₀+2⋅X₂+7 {O(n)}

relevant size-bounds w.r.t. t₁₄₉:
X₀: X₀ {O(n)}
X₂: 0 {O(1)}
Runtime-bound of t₁₄₉: 1 {O(1)}
Results in: 2⋅X₀+7 {O(n)}

TWN - Lifting for t₁₅₉: l5→l5 of 2⋅X₀+2⋅X₂+7 {O(n)}

relevant size-bounds w.r.t. t₁₆₅:
X₀: X₀ {O(n)}
X₂: 0 {O(1)}
Runtime-bound of t₁₆₅: X₁+1 {O(n)}
Results in: 2⋅X₀⋅X₁+2⋅X₀+7⋅X₁+7 {O(n^2)}

TWN - Lifting for t₁₅₉: l5→l5 of 2⋅X₀+2⋅X₂+7 {O(n)}

relevant size-bounds w.r.t. t₁₆₄:
X₀: X₀ {O(n)}
X₂: 0 {O(1)}
Runtime-bound of t₁₆₄: X₁+1 {O(n)}
Results in: 2⋅X₀⋅X₁+2⋅X₀+7⋅X₁+7 {O(n^2)}

TWN - Lifting for t₁₅₉: l5→l5 of 2⋅X₀+2⋅X₂+7 {O(n)}

relevant size-bounds w.r.t. t₁₄₉:
X₀: X₀ {O(n)}
X₂: 0 {O(1)}
Runtime-bound of t₁₄₉: 1 {O(1)}
Results in: 2⋅X₀+7 {O(n)}

TWN - Lifting for t₁₅₉: l5→l5 of 2⋅X₀+2⋅X₂+7 {O(n)}

relevant size-bounds w.r.t. t₁₆₅:
X₀: X₀ {O(n)}
X₂: 0 {O(1)}
Runtime-bound of t₁₆₅: X₁+1 {O(n)}
Results in: 2⋅X₀⋅X₁+2⋅X₀+7⋅X₁+7 {O(n^2)}

TWN - Lifting for t₁₅₉: l5→l5 of 2⋅X₀+2⋅X₂+7 {O(n)}

relevant size-bounds w.r.t. t₁₆₄:
X₀: X₀ {O(n)}
X₂: 0 {O(1)}
Runtime-bound of t₁₆₄: X₁+1 {O(n)}
Results in: 2⋅X₀⋅X₁+2⋅X₀+7⋅X₁+7 {O(n^2)}

Analysing control-flow refined program

Cut unsatisfiable transition t₂: l1→l6

Cut unsatisfiable transition t₄₃₅: n_l1___9→l6

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___7

Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___9

Found invariant X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___4

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l3___6

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___11

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___8

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___2

Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___5

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___12

Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___1

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___10

Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___3

MPRF for transition t₄₀₅: n_l1___4(X₀, X₁, X₂, X₃) → n_l5___3(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₀ ∧ X₂ ≤ 0 ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF for transition t₄₀₈: n_l2___2(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁+1 {O(n)}

MPRF for transition t₄₁₀: n_l2___7(X₀, X₁, X₂, X₃) → n_l4___5(X₀, X₁, X₀, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF for transition t₄₁₁: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₀+2⋅X₁ {O(n)}

MPRF for transition t₄₁₄: n_l4___5(X₀, X₁, X₂, X₃) → n_l1___4(X₀, X₁, 0, X₃+1) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF for transition t₄₁₇: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF for transition t₄₁₈: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁ {O(n)}

MPRF for transition t₄₀₆: n_l1___9(X₀, X₁, X₂, X₃) → n_l5___8(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

8⋅X₀⋅X₁+2⋅X₀+2 {O(n^2)}

MPRF for transition t₄₀₉: n_l2___7(X₀, X₁, X₂, X₃) → n_l3___6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

16⋅X₀⋅X₁+4⋅X₀+1 {O(n^2)}

MPRF for transition t₄₁₃: n_l3___6(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

8⋅X₀⋅X₁+2⋅X₀+1 {O(n^2)}

MPRF for transition t₄₁₉: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1 ≤ X₂ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

16⋅X₀⋅X₁+4⋅X₀+1 {O(n^2)}

MPRF for transition t₄₂₀: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1 ≤ X₂ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

16⋅X₀⋅X₁+4⋅X₀+1 {O(n^2)}

CFR: Improvement to new bound with the following program:

new bound:

Infinite

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: Arg2_P
Locations: l0, l1, l6, l7, l8, n_l1___4, n_l1___9, n_l2___11, n_l2___2, n_l2___7, n_l3___1, n_l3___10, n_l3___6, n_l4___5, n_l5___12, n_l5___3, n_l5___8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₄₀₄: l1(X₀, X₁, X₂, X₃) → n_l5___12(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₂ ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁: l7(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁
t₄₃₄: n_l1___4(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₀₅: n_l1___4(X₀, X₁, X₂, X₃) → n_l5___3(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₀ ∧ X₂ ≤ 0 ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₀₆: n_l1___9(X₀, X₁, X₂, X₃) → n_l5___8(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₀₇: n_l2___11(X₀, X₁, X₂, X₃) → n_l3___10(X₀, X₁, X₂, X₃) :|: X₃ ≤ 0 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₀₈: n_l2___2(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₀₉: n_l2___7(X₀, X₁, X₂, X₃) → n_l3___6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₀: n_l2___7(X₀, X₁, X₂, X₃) → n_l4___5(X₀, X₁, X₀, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₁: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₂: n_l3___10(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: X₃ ≤ 0 ∧ X₂ ≤ 0 ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₃: n_l3___6(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀
t₄₁₄: n_l4___5(X₀, X₁, X₂, X₃) → n_l1___4(X₀, X₁, 0, X₃+1) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₃₆: n_l5___12(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₅: n_l5___12(X₀, X₁, X₂, X₃) → n_l2___11(X₀, X₁, Arg2_P, X₃) :|: X₃ ≤ 0 ∧ X₂ ≤ 0 ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₆: n_l5___12(X₀, X₁, X₂, X₃) → n_l2___11(X₀, X₁, Arg2_P, X₃) :|: X₃ ≤ 0 ∧ X₂ ≤ 0 ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₃₇: n_l5___3(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₇: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₈: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₃₈: n_l5___8(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₉: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1 ≤ X₂ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₂₀: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1 ≤ X₂ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀

CFR: Improvement to new bound with the following program:

new bound:

64⋅X₀⋅X₁+14⋅X₁+18⋅X₀+7 {O(n^2)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars: Arg2_P
Locations: l0, l1, l6, l7, l8, n_l1___4, n_l1___9, n_l2___11, n_l2___2, n_l2___7, n_l3___1, n_l3___10, n_l3___6, n_l4___5, n_l5___12, n_l5___3, n_l5___8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₄₀₄: l1(X₀, X₁, X₂, X₃) → n_l5___12(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₃ ≤ 0 ∧ X₂ ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁: l7(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0) :|: 1 ≤ X₀ ∧ X₀+1 ≤ X₁
t₄₃₄: n_l1___4(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₀₅: n_l1___4(X₀, X₁, X₂, X₃) → n_l5___3(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₀ ∧ X₂ ≤ 0 ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₀₆: n_l1___9(X₀, X₁, X₂, X₃) → n_l5___8(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₀₇: n_l2___11(X₀, X₁, X₂, X₃) → n_l3___10(X₀, X₁, X₂, X₃) :|: X₃ ≤ 0 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₀₈: n_l2___2(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₀₉: n_l2___7(X₀, X₁, X₂, X₃) → n_l3___6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₀: n_l2___7(X₀, X₁, X₂, X₃) → n_l4___5(X₀, X₁, X₀, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₁: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₂: n_l3___10(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: X₃ ≤ 0 ∧ X₂ ≤ 0 ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₃: n_l3___6(X₀, X₁, X₂, X₃) → n_l1___9(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀
t₄₁₄: n_l4___5(X₀, X₁, X₂, X₃) → n_l1___4(X₀, X₁, 0, X₃+1) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₃₆: n_l5___12(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₅: n_l5___12(X₀, X₁, X₂, X₃) → n_l2___11(X₀, X₁, Arg2_P, X₃) :|: X₃ ≤ 0 ∧ X₂ ≤ 0 ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₆: n_l5___12(X₀, X₁, X₂, X₃) → n_l2___11(X₀, X₁, Arg2_P, X₃) :|: X₃ ≤ 0 ∧ X₂ ≤ 0 ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₃₇: n_l5___3(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₇: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₈: n_l5___3(X₀, X₁, X₂, X₃) → n_l2___2(X₀, X₁, Arg2_P, X₃) :|: 1 ≤ X₃ ∧ X₂ ≤ 0 ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₃₈: n_l5___8(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₁₉: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1 ≤ X₂ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₂₀: n_l5___8(X₀, X₁, X₂, X₃) → n_l2___7(X₀, X₁, Arg2_P, X₃) :|: 1 ≤ X₂ ∧ 0 ≤ Arg2_P ∧ Arg2_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₀ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:64⋅X₀⋅X₁+14⋅X₁+18⋅X₀+19 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₁₁: 1 {O(1)}
t₄₀₄: 1 {O(1)}
t₄₀₅: 2⋅X₁ {O(n)}
t₄₀₆: 8⋅X₀⋅X₁+2⋅X₀+2 {O(n^2)}
t₄₀₇: 1 {O(1)}
t₄₀₈: 2⋅X₁+1 {O(n)}
t₄₀₉: 16⋅X₀⋅X₁+4⋅X₀+1 {O(n^2)}
t₄₁₀: 2⋅X₁ {O(n)}
t₄₁₁: 2⋅X₀+2⋅X₁ {O(n)}
t₄₁₂: 1 {O(1)}
t₄₁₃: 8⋅X₀⋅X₁+2⋅X₀+1 {O(n^2)}
t₄₁₄: 2⋅X₁ {O(n)}
t₄₁₅: 1 {O(1)}
t₄₁₆: 1 {O(1)}
t₄₁₇: 2⋅X₁ {O(n)}
t₄₁₈: 2⋅X₁ {O(n)}
t₄₁₉: 16⋅X₀⋅X₁+4⋅X₀+1 {O(n^2)}
t₄₂₀: 16⋅X₀⋅X₁+4⋅X₀+1 {O(n^2)}
t₄₃₄: 1 {O(1)}
t₄₃₆: 1 {O(1)}
t₄₃₇: 1 {O(1)}
t₄₃₈: 1 {O(1)}

Costbounds

Overall costbound: 64⋅X₀⋅X₁+14⋅X₁+18⋅X₀+19 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₁₁: 1 {O(1)}
t₄₀₄: 1 {O(1)}
t₄₀₅: 2⋅X₁ {O(n)}
t₄₀₆: 8⋅X₀⋅X₁+2⋅X₀+2 {O(n^2)}
t₄₀₇: 1 {O(1)}
t₄₀₈: 2⋅X₁+1 {O(n)}
t₄₀₉: 16⋅X₀⋅X₁+4⋅X₀+1 {O(n^2)}
t₄₁₀: 2⋅X₁ {O(n)}
t₄₁₁: 2⋅X₀+2⋅X₁ {O(n)}
t₄₁₂: 1 {O(1)}
t₄₁₃: 8⋅X₀⋅X₁+2⋅X₀+1 {O(n^2)}
t₄₁₄: 2⋅X₁ {O(n)}
t₄₁₅: 1 {O(1)}
t₄₁₆: 1 {O(1)}
t₄₁₇: 2⋅X₁ {O(n)}
t₄₁₈: 2⋅X₁ {O(n)}
t₄₁₉: 16⋅X₀⋅X₁+4⋅X₀+1 {O(n^2)}
t₄₂₀: 16⋅X₀⋅X₁+4⋅X₀+1 {O(n^2)}
t₄₃₄: 1 {O(1)}
t₄₃₆: 1 {O(1)}
t₄₃₇: 1 {O(1)}
t₄₃₈: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: 0 {O(1)}
t₁, X₃: 0 {O(1)}
t₁₁, X₀: 7⋅X₀ {O(n)}
t₁₁, X₁: 7⋅X₁ {O(n)}
t₁₁, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₁₁, X₃: 6⋅X₁ {O(n)}
t₄₀₄, X₀: X₀ {O(n)}
t₄₀₄, X₁: X₁ {O(n)}
t₄₀₄, X₂: 0 {O(1)}
t₄₀₄, X₃: 0 {O(1)}
t₄₀₅, X₀: 2⋅X₀ {O(n)}
t₄₀₅, X₁: 2⋅X₁ {O(n)}
t₄₀₅, X₂: 0 {O(1)}
t₄₀₅, X₃: 2⋅X₁ {O(n)}
t₄₀₆, X₀: 2⋅X₀ {O(n)}
t₄₀₆, X₁: 2⋅X₁ {O(n)}
t₄₀₆, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₄₀₆, X₃: 2⋅X₁ {O(n)}
t₄₀₇, X₀: 2⋅X₀ {O(n)}
t₄₀₇, X₁: 2⋅X₁ {O(n)}
t₄₀₇, X₂: 0 {O(1)}
t₄₀₇, X₃: 0 {O(1)}
t₄₀₈, X₀: 2⋅X₀ {O(n)}
t₄₀₈, X₁: 2⋅X₁ {O(n)}
t₄₀₈, X₂: 0 {O(1)}
t₄₀₈, X₃: 2⋅X₁ {O(n)}
t₄₀₉, X₀: 2⋅X₀ {O(n)}
t₄₀₉, X₁: 2⋅X₁ {O(n)}
t₄₀₉, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₄₀₉, X₃: 2⋅X₁ {O(n)}
t₄₁₀, X₀: 2⋅X₀ {O(n)}
t₄₁₀, X₁: 2⋅X₁ {O(n)}
t₄₁₀, X₂: 4⋅X₀ {O(n)}
t₄₁₀, X₃: 2⋅X₁ {O(n)}
t₄₁₁, X₀: 2⋅X₀ {O(n)}
t₄₁₁, X₁: 2⋅X₁ {O(n)}
t₄₁₁, X₂: 1 {O(1)}
t₄₁₁, X₃: 2⋅X₁ {O(n)}
t₄₁₂, X₀: 2⋅X₀ {O(n)}
t₄₁₂, X₁: 2⋅X₁ {O(n)}
t₄₁₂, X₂: 1 {O(1)}
t₄₁₂, X₃: 0 {O(1)}
t₄₁₃, X₀: 2⋅X₀ {O(n)}
t₄₁₃, X₁: 2⋅X₁ {O(n)}
t₄₁₃, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₄₁₃, X₃: 2⋅X₁ {O(n)}
t₄₁₄, X₀: 2⋅X₀ {O(n)}
t₄₁₄, X₁: 2⋅X₁ {O(n)}
t₄₁₄, X₂: 0 {O(1)}
t₄₁₄, X₃: 2⋅X₁ {O(n)}
t₄₁₅, X₀: X₀ {O(n)}
t₄₁₅, X₁: X₁ {O(n)}
t₄₁₅, X₂: 0 {O(1)}
t₄₁₅, X₃: 0 {O(1)}
t₄₁₆, X₀: X₀ {O(n)}
t₄₁₆, X₁: X₁ {O(n)}
t₄₁₆, X₂: 0 {O(1)}
t₄₁₆, X₃: 0 {O(1)}
t₄₁₇, X₀: 2⋅X₀ {O(n)}
t₄₁₇, X₁: 2⋅X₁ {O(n)}
t₄₁₇, X₂: 0 {O(1)}
t₄₁₇, X₃: 2⋅X₁ {O(n)}
t₄₁₈, X₀: 2⋅X₀ {O(n)}
t₄₁₈, X₁: 2⋅X₁ {O(n)}
t₄₁₈, X₂: 0 {O(1)}
t₄₁₈, X₃: 2⋅X₁ {O(n)}
t₄₁₉, X₀: 2⋅X₀ {O(n)}
t₄₁₉, X₁: 2⋅X₁ {O(n)}
t₄₁₉, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₄₁₉, X₃: 2⋅X₁ {O(n)}
t₄₂₀, X₀: 2⋅X₀ {O(n)}
t₄₂₀, X₁: 2⋅X₁ {O(n)}
t₄₂₀, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₄₂₀, X₃: 2⋅X₁ {O(n)}
t₄₃₄, X₀: 2⋅X₀ {O(n)}
t₄₃₄, X₁: 2⋅X₁ {O(n)}
t₄₃₄, X₂: 0 {O(1)}
t₄₃₄, X₃: 2⋅X₁ {O(n)}
t₄₃₆, X₀: X₀ {O(n)}
t₄₃₆, X₁: X₁ {O(n)}
t₄₃₆, X₂: 0 {O(1)}
t₄₃₆, X₃: 0 {O(1)}
t₄₃₇, X₀: 2⋅X₀ {O(n)}
t₄₃₇, X₁: 2⋅X₁ {O(n)}
t₄₃₇, X₂: 0 {O(1)}
t₄₃₇, X₃: 2⋅X₁ {O(n)}
t₄₃₈, X₀: 2⋅X₀ {O(n)}
t₄₃₈, X₁: 2⋅X₁ {O(n)}
t₄₃₈, X₂: 8⋅X₀⋅X₁+2⋅X₀+3 {O(n^2)}
t₄₃₈, X₃: 2⋅X₁ {O(n)}