Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁
Temp_Vars: G1, H1, I1, J1, K1, L1, M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l1(1+H1, X₁, X₂, X₃, X₄, G1, G1, G1, G1, 1+L1, G1, X₁₁, X₁₂, X₁₃, X₁₄, J1, K1, X₁₇, X₁₈, X₁₉, I1, N1, O1, P1, Q1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 0 ≤ X₀ ∧ 0 ≤ M1 ∧ 1+X₉ ≤ X₁₆ ∧ 0 ≤ H1
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l2(G1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, K1, X₁₀, X₁₁, 0, X₁₃, 0, H1, J1, 0, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, L1, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 0 ≤ X₀ ∧ 0 ≤ I1 ∧ X₁₆ ≤ X₉ ∧ 0 ≤ G1
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(G1, N1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, I1, J1, Q1, 0, X₁₃, H1, K1, L1, M1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, V1, O1, P1, T1, U1, X₃₀, X₃₁) :|: 0 ≤ X₀ ∧ 0 ≤ R1 ∧ 0 ≤ S1 ∧ X₁₆ ≤ X₉ ∧ 1 ≤ O1
t₁₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l3(G1, N1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, I1, J1, Q1, 0, X₁₃, H1, K1, L1, M1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, V1, O1, P1, T1, U1, X₃₀, X₃₁) :|: 0 ≤ X₀ ∧ 0 ≤ R1 ∧ 0 ≤ S1 ∧ X₁₆ ≤ X₉ ∧ O1+1 ≤ 0
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l1(X₉, X₁, X₂, X₃, G1, H1, H1, H1, H1, 1+X₉, H1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁)
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l1(1+H1, X₁, X₂, X₃, X₄, G1, G1, G1, G1, 1+X₉, G1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 0 ≤ H1 ∧ 0 ≤ X₀
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l7(G1, X₁₁, 0, 0, X₄, X₅, X₆, X₇, X₁₁, X₉, X₁₀, X₁₁, X₁₁, X₁₁, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 1 ≤ H1 ∧ 1 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l8(G1, X₁, X₁, 0, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ G1
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l8(G1, X₁, X₁, 0, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 1 ≤ X₀ ∧ X₁+1 ≤ 0 ∧ 1 ≤ G1
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l1(H1, X₁, X₂, X₃, X₄, G1, G1, G1, G1, 1+H1, G1, X₁₁, X₁₂, X₁₃, X₁₄, J1, K1, X₁₇, X₁₈, X₁₉, L1, I1, N1, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, O1, P1) :|: 1 ≤ Q1
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, K1, 0, X₁₁, 0, X₁₃, G1, H1, J1, G1, L1, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: 1 ≤ G1 ∧ I1 ≤ 0
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, K1, 0, X₁₁, 0, X₁₃, G1, H1, J1, G1, L1, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: G1+1 ≤ 0 ∧ I1 ≤ 0
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, G1, K1, 0, X₁₁, 0, X₁₃, 0, H1, J1, 0, L1, 0, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁) :|: I1 ≤ 0

Preprocessing

Cut unreachable locations [l4; l5; l6] from the program graph

Eliminate variables {P1,T1,U1,V1,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₁₀,X₁₂,X₁₃,X₁₄,X₁₅,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆,X₂₇,X₂₈,X₂₉,X₃₀,X₃₁} that do not contribute to the problem

Found invariant 0 ≤ X₀ for location l2

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ for location l7

Found invariant 1 ≤ X₀ for location l8

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: G1, H1, I1, J1, K1, L1, M1, N1, O1, Q1, R1, S1
Locations: l0, l1, l2, l3, l7, l8
Transitions:
t₂₃: l0(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₂₄: l1(X₀, X₁, X₂, X₃, X₄) → l1(1+H1, X₁, 1+L1, X₃, K1) :|: 0 ≤ X₀ ∧ 0 ≤ M1 ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ H1
t₂₅: l1(X₀, X₁, X₂, X₃, X₄) → l2(G1, X₁, K1, X₃, J1) :|: 0 ≤ X₀ ∧ 0 ≤ I1 ∧ X₄ ≤ X₂ ∧ 0 ≤ G1
t₂₆: l1(X₀, X₁, X₂, X₃, X₄) → l3(G1, N1, I1, Q1, L1) :|: 0 ≤ X₀ ∧ 0 ≤ R1 ∧ 0 ≤ S1 ∧ X₄ ≤ X₂ ∧ 1 ≤ O1
t₂₇: l1(X₀, X₁, X₂, X₃, X₄) → l3(G1, N1, I1, Q1, L1) :|: 0 ≤ X₀ ∧ 0 ≤ R1 ∧ 0 ≤ S1 ∧ X₄ ≤ X₂ ∧ O1+1 ≤ 0
t₂₈: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁, 1+X₂, X₃, X₄)
t₂₉: l3(X₀, X₁, X₂, X₃, X₄) → l1(1+H1, X₁, 1+X₂, X₃, X₄) :|: 0 ≤ H1 ∧ 0 ≤ X₀
t₃₀: l3(X₀, X₁, X₂, X₃, X₄) → l7(G1, X₃, X₂, X₃, X₄) :|: 1 ≤ H1 ∧ 1 ≤ X₀ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
t₃₁: l3(X₀, X₁, X₂, X₃, X₄) → l8(G1, X₁, X₂, X₃, X₄) :|: 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ G1
t₃₂: l3(X₀, X₁, X₂, X₃, X₄) → l8(G1, X₁, X₂, X₃, X₄) :|: 1 ≤ X₀ ∧ X₁+1 ≤ 0 ∧ 1 ≤ G1

Chain transitions t₂₇: l1→l3 and t₃₂: l3→l8 to t₁₂₆: l1→l8

Chain transitions t₂₆: l1→l3 and t₃₂: l3→l8 to t₁₂₇: l1→l8

Chain transitions t₂₆: l1→l3 and t₃₁: l3→l8 to t₁₂₈: l1→l8

Chain transitions t₂₇: l1→l3 and t₃₁: l3→l8 to t₁₂₉: l1→l8

Chain transitions t₂₃: l0→l3 and t₃₁: l3→l8 to t₁₃₀: l0→l8

Chain transitions t₂₃: l0→l3 and t₃₂: l3→l8 to t₁₃₁: l0→l8

Chain transitions t₂₃: l0→l3 and t₃₀: l3→l7 to t₁₃₂: l0→l7

Chain transitions t₂₆: l1→l3 and t₃₀: l3→l7 to t₁₃₃: l1→l7

Chain transitions t₂₇: l1→l3 and t₃₀: l3→l7 to t₁₃₄: l1→l7

Chain transitions t₂₃: l0→l3 and t₂₉: l3→l1 to t₁₃₅: l0→l1

Chain transitions t₂₆: l1→l3 and t₂₉: l3→l1 to t₁₃₆: l1→l1

Chain transitions t₂₇: l1→l3 and t₂₉: l3→l1 to t₁₃₇: l1→l1

Chain transitions t₂₃: l0→l3 and t₂₈: l3→l1 to t₁₃₈: l0→l1

Chain transitions t₂₆: l1→l3 and t₂₈: l3→l1 to t₁₃₉: l1→l1

Chain transitions t₂₇: l1→l3 and t₂₈: l3→l1 to t₁₄₀: l1→l1

Analysing control-flow refined program

Found invariant 0 ≤ X₀ for location l2

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ for location l7

Found invariant 1 ≤ X₀ for location l8

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant 0 ≤ X₀ for location l2

Found invariant X₂ ≤ 1+X₀ ∧ 1+X₀ ≤ X₂ for location n_l1___2

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ for location l7

Found invariant 1 ≤ X₀ for location l8

Found invariant 1 ≤ X₀ for location n_l1___1

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₂₃: 1 {O(1)}
t₂₄: inf {Infinity}
t₂₅: 1 {O(1)}
t₂₆: inf {Infinity}
t₂₇: inf {Infinity}
t₂₈: inf {Infinity}
t₂₉: inf {Infinity}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₂₃: 1 {O(1)}
t₂₄: inf {Infinity}
t₂₅: 1 {O(1)}
t₂₆: inf {Infinity}
t₂₇: inf {Infinity}
t₂₈: inf {Infinity}
t₂₉: inf {Infinity}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}

Sizebounds

t₂₃, X₀: X₀ {O(n)}
t₂₃, X₁: X₁ {O(n)}
t₂₃, X₂: X₂ {O(n)}
t₂₃, X₃: X₃ {O(n)}
t₂₃, X₄: X₄ {O(n)}