Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇
Temp_Vars: A2, B2, C2, D2, E2, F2, G2, H2, I2, J2, K2, L2, M2, N2, O2, P2, Q2, R2, W1, X1, Y1, Z1
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₆₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l6(2, Y1, Z1, X₃, X₄, Y1, X₆, X₇, Z1, Z1, A2, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, W1, B2, X₄₇) :|: 2 ≤ Y1
t₆₅: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l8(B2, Z1, A2, X₃, X₄, Y1, C2, D2, E2, X1, J2, 0, K2, L2, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, Q2, X₃₇, P2, M2, N2, O2, R2, X₄₃, X₄₄, W1, X₄₆, X₄₇) :|: F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
t₃₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃-1, 1+X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₁₃, A2, 1+X₂₄, X₂₃-1, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
t₃₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃-1, 1+X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₁₃, A2, 1+X₂₄, X₂₃-1, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
t₃₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃-1, 1+X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₁₃, A2, 1+X₂₄, X₂₃-1, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
t₃₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃-1, 1+X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₁₃, A2, 1+X₂₄, X₂₃-1, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2
t₃₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃-1, 1+X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₁₃, A2, 1+X₂₄, X₂₃-1, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
t₃₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃-1, 1+X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₁₃, A2, 1+X₂₄, X₂₃-1, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
t₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃-1, 1+X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₁₃, A2, 1+X₂₄, X₂₃-1, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃-1, 1+X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₁₃, A2, 1+X₂₄, X₂₃-1, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2
t₇₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, Y1, Z1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₄₃+1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₁₁, X₄₃, 0, X₁₁, 0, X₁₁, X₁₁, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₃ ∧ 0 ≤ X₂₄ ∧ 1 ≤ X₁₁ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
t₇₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, Y1, Z1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₄₃+1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₁₁, X₄₃, 0, X₁₁, 0, X₁₁, X₁₁, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₃ ∧ 0 ≤ X₂₄ ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
t₇₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, Y1, Z1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₄₃+1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₁₁, X₄₃, 0, X₁₁, 0, X₁₁, X₁₁, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₃ ∧ 0 ≤ X₂₄ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
t₇₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, Y1, Z1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₄₃+1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₁₁, X₄₃, 0, X₁₁, 0, X₁₁, X₁₁, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₃ ∧ 0 ≤ X₂₄ ∧ X₁₁+1 ≤ 0 ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
t₅₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃-1, X₄₃-1, X₄₅, X₄₆, X₄₇) :|: X₃₆+1 ≤ A2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₅₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃-1, X₄₃-1, X₄₅, X₄₆, X₄₇) :|: X₃₆+1 ≤ A2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₅₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃-1, X₄₃-1, X₄₅, X₄₆, X₄₇) :|: X₃₆+1 ≤ A2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₅₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃-1, X₄₃-1, X₄₅, X₄₆, X₄₇) :|: X₃₆+1 ≤ A2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₅₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃-1, X₄₃-1, X₄₅, X₄₆, X₄₇) :|: A2+1 ≤ X₃₆ ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₅₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃-1, X₄₃-1, X₄₅, X₄₆, X₄₇) :|: A2+1 ≤ X₃₆ ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₅₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃-1, X₄₃-1, X₄₅, X₄₆, X₄₇) :|: A2+1 ≤ X₃₆ ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₅₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃-1, X₄₃-1, X₄₅, X₄₆, X₄₇) :|: A2+1 ≤ X₃₆ ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₅₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l8(X₀, X₁, X₂, X₃, X₄, W1, X₆, Y1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, D2, X₃₇, C2, Z1, A2, B2, E2, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 2 ≤ W1 ∧ 0 ≤ X₄₃ ∧ X₃₈ ≤ X₃₆ ∧ X₃₆ ≤ X₃₈
t₆₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₂₃+1, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₁, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, 1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₃, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, A2) :|: 2 ≤ B2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₀ ∧ X₁₁+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
t₆₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₂₃+1, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₁, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, 1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₃, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, A2) :|: 2 ≤ B2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₀ ∧ X₁₁+1 ≤ 0 ∧ 1 ≤ Y1 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
t₆₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₂₃+1, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₁, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, 1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₃, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, A2) :|: 2 ≤ B2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₀ ∧ 1 ≤ X₁₁ ∧ Y1+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
t₆₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₂₃+1, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₁, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, 1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₃, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, A2) :|: 2 ≤ B2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ Y1 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, Z1, A2, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, Z1, A2, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
t₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, Z1, A2, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, Z1, A2, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, Z1, A2, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, Z1, A2, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, Z1, A2, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, Z1, A2, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ 1 ≤ Y1 ∧ 1 ≤ A2
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₁, X₁₁, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₄, 0, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₁₁+1 ≤ 0 ∧ X₂₃ ≤ X₄ ∧ X₄ ≤ X₂₃ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₂₄ ≤ 0 ∧ 0 ≤ X₂₄
t₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₁, X₁₁, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₄, 0, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₁ ∧ X₂₃ ≤ X₄ ∧ X₄ ≤ X₂₃ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₂₄ ≤ 0 ∧ 0 ≤ X₂₄
t₁₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₁₃, A2, 1+X₄, X₃-1, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₁₃, A2, 1+X₄, X₃-1, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
t₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₁₃, A2, 1+X₄, X₃-1, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₁₃, A2, 1+X₄, X₃-1, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₁₃, A2, 1+X₄, X₃-1, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₁₃, A2, 1+X₄, X₃-1, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₁₃, A2, 1+X₄, X₃-1, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
t₂₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₁₃, A2, 1+X₄, X₃-1, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2
t₂₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, Z1, A2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, Z1, A2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
t₂₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, Z1, A2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, Z1, A2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2
t₂₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, Z1, A2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
t₃₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, Z1, A2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
t₃₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, Z1, A2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
t₃₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l1(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, Z1, A2, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ 1 ≤ Y1 ∧ 1 ≤ A2
t₆₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, Y1, Z1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₄₃+1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₁₁, X₄₃, 0, X₁₁, 0, X₁₁, X₁₁, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₉ ∧ 1 ≤ X₁₁ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
t₆₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, Y1, Z1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₄₃+1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₁₁, X₄₃, 0, X₁₁, 0, X₁₁, X₁₁, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₉ ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
t₆₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, Y1, Z1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₄₃+1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₁₁, X₄₃, 0, X₁₁, 0, X₁₁, X₁₁, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₉ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
t₆₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, Y1, Z1, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₄₃+1, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₁₁, X₄₃, 0, X₁₁, 0, X₁₁, X₁₁, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₉ ∧ X₁₁+1 ≤ 0 ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
t₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₃, Y1, Z1, X₃, 0, W1, A2, B2, C2, D2, E2, X₂, X₂, X₂, X1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₃, Y1, Z1, X₃, 0, W1, A2, B2, C2, D2, E2, X₂, X₂, X₂, X1, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l6(1+X₀, X₁, X₁₀, X₃, X₄, X₅, X₆, X₇, X₈, X₁₀, W1, X₁₁, X₁₂, X₁₃, X₁₄, Y1, X₀, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: X₀+1 ≤ X₁ ∧ 0 ≤ X₀
t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃, 1, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, 1+X₃, A2, X₃, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ W1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃, 1, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, 1+X₃, A2, X₃, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ W1 ≤ B2 ∧ 1 ≤ Y1 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃, 1, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, 1+X₃, A2, X₃, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ W1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l4(X₀, X₁, X₂, X₃, 1, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, Y1, X₁₃, X₁₄, X₁₅, X₁₆, Z1, 1+X₃, A2, X₃, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ W1 ≤ B2 ∧ 1 ≤ Y1 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
t₄₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: X₃₆+1 ≤ Z1 ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Z1+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₄₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: X₃₆+1 ≤ Z1 ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Z1+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₄₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: X₃₆+1 ≤ Z1 ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Y1+1 ≤ Z1 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₄₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: X₃₆+1 ≤ Z1 ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Y1+1 ≤ Z1 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₄₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: Z1+1 ≤ X₃₆ ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Z1+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₄₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: Z1+1 ≤ X₃₆ ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Z1+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₄₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: Z1+1 ≤ X₃₆ ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Y1+1 ≤ Z1 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₄₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l2(X₀, X₁, X₂, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, Y1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, 0, Y1, 0, Y1, X₃₆, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: Z1+1 ≤ X₃₆ ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Y1+1 ≤ Z1 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
t₄₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l8(X₀, X₁, X₂, X₃, X₄, W1, X₆, Y1, X₈, X₉, X₁₀, Z1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, E2, X₃₇, D2, A2, B2, C2, X1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₃₇ ∧ Z1+1 ≤ 0 ∧ 2 ≤ W1 ∧ X₃₈ ≤ X₃₆ ∧ X₃₆ ≤ X₃₈
t₅₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) → l8(X₀, X₁, X₂, X₃, X₄, W1, X₆, Y1, X₈, X₉, X₁₀, Z1, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, E2, X₃₇, D2, A2, B2, C2, X1, X₄₃, X₄₄, X₄₅, X₄₆, X₄₇) :|: 0 ≤ X₃₇ ∧ 1 ≤ Z1 ∧ 2 ≤ W1 ∧ X₃₈ ≤ X₃₆ ∧ X₃₆ ≤ X₃₈
Show Graph
G
l0
l0
l6
l6
l0->l6
t₆₀
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = Y1
η (X₈) = Z1
η (X₉) = Z1
η (X₁₀) = A2
η (X₄₅) = W1
η (X₄₆) = B2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₆₅
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = Y1
η (X₆) = C2
η (X₇) = D2
η (X₈) = E2
η (X₉) = X1
η (X₁₀) = J2
η (X₁₁) = 0
η (X₁₂) = K2
η (X₁₃) = L2
η (X₃₆) = Q2
η (X₃₈) = P2
η (X₃₉) = M2
η (X₄₀) = N2
η (X₄₁) = O2
η (X₄₂) = R2
η (X₄₅) = W1
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₃₃
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₃) = X₂₃-1
η (X₂₄) = 1+X₂₄
η (X₃₂) = X₁₃
η (X₃₃) = A2
η (X₃₄) = 1+X₂₄
η (X₃₅) = X₂₃-1
τ = 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
l1->l1
t₃₄
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₃) = X₂₃-1
η (X₂₄) = 1+X₂₄
η (X₃₂) = X₁₃
η (X₃₃) = A2
η (X₃₄) = 1+X₂₄
η (X₃₅) = X₂₃-1
τ = 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
l1->l1
t₃₅
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₃) = X₂₃-1
η (X₂₄) = 1+X₂₄
η (X₃₂) = X₁₃
η (X₃₃) = A2
η (X₃₄) = 1+X₂₄
η (X₃₅) = X₂₃-1
τ = 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
l1->l1
t₃₆
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₃) = X₂₃-1
η (X₂₄) = 1+X₂₄
η (X₃₂) = X₁₃
η (X₃₃) = A2
η (X₃₄) = 1+X₂₄
η (X₃₅) = X₂₃-1
τ = 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2
l1->l1
t₃₇
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₃) = X₂₃-1
η (X₂₄) = 1+X₂₄
η (X₃₂) = X₁₃
η (X₃₃) = A2
η (X₃₄) = 1+X₂₄
η (X₃₅) = X₂₃-1
τ = 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
l1->l1
t₃₈
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₃) = X₂₃-1
η (X₂₄) = 1+X₂₄
η (X₃₂) = X₁₃
η (X₃₃) = A2
η (X₃₄) = 1+X₂₄
η (X₃₅) = X₂₃-1
τ = 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
l1->l1
t₃₉
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₃) = X₂₃-1
η (X₂₄) = 1+X₂₄
η (X₃₂) = X₁₃
η (X₃₃) = A2
η (X₃₄) = 1+X₂₄
η (X₃₅) = X₂₃-1
τ = 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
l1->l1
t₄₀
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₃) = X₂₃-1
η (X₂₄) = 1+X₂₄
η (X₃₂) = X₁₃
η (X₃₃) = A2
η (X₃₄) = 1+X₂₄
η (X₃₅) = X₂₃-1
τ = 0 ≤ X₂₄ ∧ 0 ≤ X₂₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2
l2
l2
l1->l2
t₇₀
η (X₅) = W1
η (X₁₂) = Y1
η (X₁₃) = Z1
η (X₂₄) = X₄₃+1
η (X₃₆) = X₁₁
η (X₃₇) = X₄₃
η (X₃₈) = 0
η (X₃₉) = X₁₁
η (X₄₀) = 0
η (X₄₁) = X₁₁
η (X₄₂) = X₁₁
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₃ ∧ 0 ≤ X₂₄ ∧ 1 ≤ X₁₁ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
l1->l2
t₇₁
η (X₅) = W1
η (X₁₂) = Y1
η (X₁₃) = Z1
η (X₂₄) = X₄₃+1
η (X₃₆) = X₁₁
η (X₃₇) = X₄₃
η (X₃₈) = 0
η (X₃₉) = X₁₁
η (X₄₀) = 0
η (X₄₁) = X₁₁
η (X₄₂) = X₁₁
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₃ ∧ 0 ≤ X₂₄ ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
l1->l2
t₇₂
η (X₅) = W1
η (X₁₂) = Y1
η (X₁₃) = Z1
η (X₂₄) = X₄₃+1
η (X₃₆) = X₁₁
η (X₃₇) = X₄₃
η (X₃₈) = 0
η (X₃₉) = X₁₁
η (X₄₀) = 0
η (X₄₁) = X₁₁
η (X₄₂) = X₁₁
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₃ ∧ 0 ≤ X₂₄ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
l1->l2
t₇₃
η (X₅) = W1
η (X₁₂) = Y1
η (X₁₃) = Z1
η (X₂₄) = X₄₃+1
η (X₃₆) = X₁₁
η (X₃₇) = X₄₃
η (X₃₈) = 0
η (X₃₉) = X₁₁
η (X₄₀) = 0
η (X₄₁) = X₁₁
η (X₄₂) = X₁₁
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₃ ∧ 0 ≤ X₂₄ ∧ X₁₁+1 ≤ 0 ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃
l2->l2
t₅₁
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₇) = Z1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
η (X₄₃) = X₄₃-1
η (X₄₄) = X₄₃-1
τ = X₃₆+1 ≤ A2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l2->l2
t₅₂
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₇) = Z1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
η (X₄₃) = X₄₃-1
η (X₄₄) = X₄₃-1
τ = X₃₆+1 ≤ A2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l2->l2
t₅₃
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₇) = Z1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
η (X₄₃) = X₄₃-1
η (X₄₄) = X₄₃-1
τ = X₃₆+1 ≤ A2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l2->l2
t₅₄
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₇) = Z1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
η (X₄₃) = X₄₃-1
η (X₄₄) = X₄₃-1
τ = X₃₆+1 ≤ A2 ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l2->l2
t₅₅
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₇) = Z1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
η (X₄₃) = X₄₃-1
η (X₄₄) = X₄₃-1
τ = A2+1 ≤ X₃₆ ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l2->l2
t₅₆
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₇) = Z1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
η (X₄₃) = X₄₃-1
η (X₄₄) = X₄₃-1
τ = A2+1 ≤ X₃₆ ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l2->l2
t₅₇
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₇) = Z1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
η (X₄₃) = X₄₃-1
η (X₄₄) = X₄₃-1
τ = A2+1 ≤ X₃₆ ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l2->l2
t₅₈
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₇) = Z1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
η (X₄₃) = X₄₃-1
η (X₄₄) = X₄₃-1
τ = A2+1 ≤ X₃₆ ∧ 0 ≤ X₄₃ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l2->l8
t₅₉
η (X₅) = W1
η (X₇) = Y1
η (X₃₆) = D2
η (X₃₈) = C2
η (X₃₉) = Z1
η (X₄₀) = A2
η (X₄₁) = B2
η (X₄₂) = E2
τ = 2 ≤ W1 ∧ 0 ≤ X₄₃ ∧ X₃₈ ≤ X₃₆ ∧ X₃₆ ≤ X₃₈
l3
l3
l3->l1
t₆₁
η (X₄) = X₂₃+1
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₃) = X₁₁
η (X₁₇) = Z1
η (X₂₄) = 1
η (X₂₉) = X₂₃
η (X₄₇) = A2
τ = 2 ≤ B2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₀ ∧ X₁₁+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
l3->l1
t₆₂
η (X₄) = X₂₃+1
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₃) = X₁₁
η (X₁₇) = Z1
η (X₂₄) = 1
η (X₂₉) = X₂₃
η (X₄₇) = A2
τ = 2 ≤ B2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₀ ∧ X₁₁+1 ≤ 0 ∧ 1 ≤ Y1 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
l3->l1
t₆₃
η (X₄) = X₂₃+1
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₃) = X₁₁
η (X₁₇) = Z1
η (X₂₄) = 1
η (X₂₉) = X₂₃
η (X₄₇) = A2
τ = 2 ≤ B2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₀ ∧ 1 ≤ X₁₁ ∧ Y1+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
l3->l1
t₆₄
η (X₄) = X₂₃+1
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₃) = X₁₁
η (X₁₇) = Z1
η (X₂₄) = 1
η (X₂₉) = X₂₃
η (X₄₇) = A2
τ = 2 ≤ B2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ Y1 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₄ ≤ 1 ∧ 1 ≤ X₄ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
l4
l4
l3->l4
t₇
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₂₁) = Z1
η (X₂₂) = A2
τ = 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
l3->l4
t₈
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₂₁) = Z1
η (X₂₂) = A2
τ = 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
l3->l4
t₉
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₂₁) = Z1
η (X₂₂) = A2
τ = 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
l3->l4
t₁₀
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₂₁) = Z1
η (X₂₂) = A2
τ = 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2
l3->l4
t₁₁
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₂₁) = Z1
η (X₂₂) = A2
τ = 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
l3->l4
t₁₂
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₂₁) = Z1
η (X₂₂) = A2
τ = 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
l3->l4
t₁₃
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₂₁) = Z1
η (X₂₂) = A2
τ = 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
l3->l4
t₁₄
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₂₁) = Z1
η (X₂₂) = A2
τ = 0 ≤ X₂₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ 1 ≤ Y1 ∧ 1 ≤ A2
l4->l1
t₁₅
η (X₅) = W1
η (X₁₂) = X₁₁
η (X₁₃) = X₁₁
η (X₂₃) = X₄
η (X₂₄) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₁₁+1 ≤ 0 ∧ X₂₃ ≤ X₄ ∧ X₄ ≤ X₂₃ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₂₄ ≤ 0 ∧ 0 ≤ X₂₄
l4->l1
t₁₆
η (X₅) = W1
η (X₁₂) = X₁₁
η (X₁₃) = X₁₁
η (X₂₃) = X₄
η (X₂₄) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₁ ∧ X₂₃ ≤ X₄ ∧ X₄ ≤ X₂₃ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₂₄ ≤ 0 ∧ 0 ≤ X₂₄
l4->l4
t₁₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₅) = X₁₃
η (X₂₆) = A2
η (X₂₇) = 1+X₄
η (X₂₈) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
l4->l4
t₁₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₅) = X₁₃
η (X₂₆) = A2
η (X₂₇) = 1+X₄
η (X₂₈) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
l4->l4
t₁₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₅) = X₁₃
η (X₂₆) = A2
η (X₂₇) = 1+X₄
η (X₂₈) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
l4->l4
t₂₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₅) = X₁₃
η (X₂₆) = A2
η (X₂₇) = 1+X₄
η (X₂₈) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2
l4->l4
t₂₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₅) = X₁₃
η (X₂₆) = A2
η (X₂₇) = 1+X₄
η (X₂₈) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
l4->l4
t₂₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₅) = X₁₃
η (X₂₆) = A2
η (X₂₇) = 1+X₄
η (X₂₈) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
l4->l4
t₂₃
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₅) = X₁₃
η (X₂₆) = A2
η (X₂₇) = 1+X₄
η (X₂₈) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
l4->l4
t₂₄
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₂₅) = X₁₃
η (X₂₆) = A2
η (X₂₇) = 1+X₄
η (X₂₈) = X₃-1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2
l5
l5
l5->l1
t₂₅
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₃₀) = Z1
η (X₃₁) = A2
τ = 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
l5->l1
t₂₆
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₃₀) = Z1
η (X₃₁) = A2
τ = 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
l5->l1
t₂₇
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₃₀) = Z1
η (X₃₁) = A2
τ = 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
l5->l1
t₂₈
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₃₀) = Z1
η (X₃₁) = A2
τ = 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2
l5->l1
t₂₉
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₃₀) = Z1
η (X₃₁) = A2
τ = 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0
l5->l1
t₃₀
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₃₀) = Z1
η (X₃₁) = A2
τ = 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2
l5->l1
t₃₁
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₃₀) = Z1
η (X₃₁) = A2
τ = 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0
l5->l1
t₃₂
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₃₀) = Z1
η (X₃₁) = A2
τ = 0 ≤ X₂₉ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ 1 ≤ Y1 ∧ 1 ≤ A2
l5->l2
t₆₆
η (X₅) = W1
η (X₁₂) = Y1
η (X₁₃) = Z1
η (X₂₄) = X₄₃+1
η (X₃₆) = X₁₁
η (X₃₇) = X₄₃
η (X₃₈) = 0
η (X₃₉) = X₁₁
η (X₄₀) = 0
η (X₄₁) = X₁₁
η (X₄₂) = X₁₁
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₉ ∧ 1 ≤ X₁₁ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
l5->l2
t₆₇
η (X₅) = W1
η (X₁₂) = Y1
η (X₁₃) = Z1
η (X₂₄) = X₄₃+1
η (X₃₆) = X₁₁
η (X₃₇) = X₄₃
η (X₃₈) = 0
η (X₃₉) = X₁₁
η (X₄₀) = 0
η (X₄₁) = X₁₁
η (X₄₂) = X₁₁
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₉ ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
l5->l2
t₆₈
η (X₅) = W1
η (X₁₂) = Y1
η (X₁₃) = Z1
η (X₂₄) = X₄₃+1
η (X₃₆) = X₁₁
η (X₃₇) = X₄₃
η (X₃₈) = 0
η (X₃₉) = X₁₁
η (X₄₀) = 0
η (X₄₁) = X₁₁
η (X₄₂) = X₁₁
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₉ ∧ X₁₁+1 ≤ 0 ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
l5->l2
t₆₉
η (X₅) = W1
η (X₁₂) = Y1
η (X₁₃) = Z1
η (X₂₄) = X₄₃+1
η (X₃₆) = X₁₁
η (X₃₇) = X₄₃
η (X₃₈) = 0
η (X₃₉) = X₁₁
η (X₄₀) = 0
η (X₄₁) = X₁₁
η (X₄₂) = X₁₁
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₂₉ ∧ X₁₁+1 ≤ 0 ∧ 1 ≤ X₁₁ ∧ X₁₃ ≤ 0 ∧ 0 ≤ X₁₃ ∧ X₂₄ ≤ 1 ∧ 1 ≤ X₂₄
l6->l4
t₀
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = W1
η (X₆) = A2
η (X₇) = B2
η (X₈) = C2
η (X₉) = D2
η (X₁₀) = E2
η (X₁₁) = X₂
η (X₁₂) = X₂
η (X₁₃) = X₂
η (X₁₄) = X1
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
l6->l4
t₁
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = W1
η (X₆) = A2
η (X₇) = B2
η (X₈) = C2
η (X₉) = D2
η (X₁₀) = E2
η (X₁₁) = X₂
η (X₁₂) = X₂
η (X₁₃) = X₂
η (X₁₄) = X1
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄
l6->l6
t₂
η (X₀) = 1+X₀
η (X₂) = X₁₀
η (X₉) = X₁₀
η (X₁₀) = W1
η (X₁₅) = Y1
η (X₁₆) = X₀
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀
l7
l7
l7->l4
t₃
η (X₄) = 1
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₁₈) = 1+X₃
η (X₁₉) = A2
η (X₂₀) = X₃
τ = 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ W1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l7->l4
t₄
η (X₄) = 1
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₁₈) = 1+X₃
η (X₁₉) = A2
η (X₂₀) = X₃
τ = 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₁₃+1 ≤ 0 ∧ W1 ≤ B2 ∧ 1 ≤ Y1 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l7->l4
t₅
η (X₄) = 1
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₁₈) = 1+X₃
η (X₁₉) = A2
η (X₂₀) = X₃
τ = 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ W1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l7->l4
t₆
η (X₄) = 1
η (X₅) = W1
η (X₁₁) = Y1
η (X₁₂) = Y1
η (X₁₇) = Z1
η (X₁₈) = 1+X₃
η (X₁₉) = A2
η (X₂₀) = X₃
τ = 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₁₃ ∧ W1 ≤ B2 ∧ 1 ≤ Y1 ∧ X₄ ≤ 1 ∧ 1 ≤ X₄
l9
l9
l9->l2
t₄₁
η (X₅) = W1
η (X₁₁) = Y1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
τ = X₃₆+1 ≤ Z1 ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Z1+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l9->l2
t₄₂
η (X₅) = W1
η (X₁₁) = Y1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
τ = X₃₆+1 ≤ Z1 ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Z1+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l9->l2
t₄₃
η (X₅) = W1
η (X₁₁) = Y1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
τ = X₃₆+1 ≤ Z1 ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Y1+1 ≤ Z1 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l9->l2
t₄₄
η (X₅) = W1
η (X₁₁) = Y1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
τ = X₃₆+1 ≤ Z1 ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Y1+1 ≤ Z1 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l9->l2
t₄₅
η (X₅) = W1
η (X₁₁) = Y1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
τ = Z1+1 ≤ X₃₆ ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Z1+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l9->l2
t₄₆
η (X₅) = W1
η (X₁₁) = Y1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
τ = Z1+1 ≤ X₃₆ ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Z1+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l9->l2
t₄₇
η (X₅) = W1
η (X₁₁) = Y1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
τ = Z1+1 ≤ X₃₆ ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Y1+1 ≤ Z1 ∧ Y1+1 ≤ 0 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l9->l2
t₄₈
η (X₅) = W1
η (X₁₁) = Y1
η (X₃₈) = 0
η (X₃₉) = Y1
η (X₄₀) = 0
η (X₄₁) = Y1
η (X₄₂) = X₃₆
τ = Z1+1 ≤ X₃₆ ∧ 0 ≤ X₃₇ ∧ 2 ≤ W1 ∧ Y1+1 ≤ Z1 ∧ 1 ≤ Y1 ∧ X₃₈ ≤ 0 ∧ 0 ≤ X₃₈
l9->l8
t₄₉
η (X₅) = W1
η (X₇) = Y1
η (X₁₁) = Z1
η (X₃₆) = E2
η (X₃₈) = D2
η (X₃₉) = A2
η (X₄₀) = B2
η (X₄₁) = C2
η (X₄₂) = X1
τ = 0 ≤ X₃₇ ∧ Z1+1 ≤ 0 ∧ 2 ≤ W1 ∧ X₃₈ ≤ X₃₆ ∧ X₃₆ ≤ X₃₈
l9->l8
t₅₀
η (X₅) = W1
η (X₇) = Y1
η (X₁₁) = Z1
η (X₃₆) = E2
η (X₃₈) = D2
η (X₃₉) = A2
η (X₄₀) = B2
η (X₄₁) = C2
η (X₄₂) = X1
τ = 0 ≤ X₃₇ ∧ 1 ≤ Z1 ∧ 2 ≤ W1 ∧ X₃₈ ≤ X₃₆ ∧ X₃₆ ≤ X₃₈
Preprocessing
Cut unreachable locations [l3; l5; l7; l9] from the program graph
Cut unsatisfiable transition t₇₀: l1→l2
Cut unsatisfiable transition t₇₃: l1→l2
Eliminate variables {K2,M2,N2,O2,R2,X₅,X₆,X₇,X₈,X₉,X₁₂,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₅,X₂₆,X₂₇,X₂₈,X₂₉,X₃₀,X₃₁,X₃₂,X₃₃,X₃₄,X₃₅,X₃₇,X₃₉,X₄₀,X₄₁,X₄₂,X₄₄,X₄₅,X₄₆,X₄₇} that do not contribute to the problem
Found invariant 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ for location l2
Found invariant 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ for location l6
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l1
Found invariant 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂
Temp_Vars: A2, B2, C2, D2, E2, F2, G2, H2, I2, J2, L2, P2, Q2, W1, X1, Y1, Z1
Locations: l0, l1, l2, l4, l6, l8
Transitions:
t₁₄₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l6(2, Y1, Z1, X₃, X₄, A2, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 2 ≤ Y1
t₁₄₃: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l8(B2, Z1, A2, X₃, X₄, J2, 0, L2, X₈, X₉, Q2, P2, X₁₂) :|: F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
t₁₄₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₄₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₄₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₄₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₄₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₄₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₅₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₅₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₅₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, Z1, X₈, X₁₂+1, X₆, 0, X₁₂) :|: 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₅₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, Z1, X₈, X₁₂+1, X₆, 0, X₁₂) :|: 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₅₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
t₁₅₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
t₁₅₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
t₁₅₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
t₁₅₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
t₁₅₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
t₁₆₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
t₁₆₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
t₁₆₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, D2, C2, X₁₂) :|: 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
t₁₆₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆, X₄, 0, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₆₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆, X₄, 0, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₆₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₆₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₆₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₆₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₆₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₇₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₇₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₇₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃-1, 1+X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
t₁₇₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₃, Y1, Z1, X₃, 0, E2, X₂, X₂, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
t₁₇₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₃, Y1, Z1, X₃, 0, E2, X₂, X₂, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
t₁₇₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l6(1+X₀, X₁, X₅, X₃, X₄, W1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
Analysing control-flow refined program
Found invariant 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ for location l2
Found invariant 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 3 ≤ X₀ for location n_l6___1
Found invariant 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 2 ∧ 2 ≤ X₀ for location l6
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l1
Found invariant 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀ for location l4
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
TWN: t₁₆₅: l4→l4
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
cycle: [t₁₆₅: l4→l4; t₁₆₆: l4→l4; t₁₆₇: l4→l4; t₁₆₈: l4→l4; t₁₆₉: l4→l4; t₁₇₀: l4→l4; t₁₇₁: l4→l4; t₁₇₂: l4→l4]
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
loop: (0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃ ∨ 0 ≤ X₄ ∧ 0 ≤ X₃,(X₃,X₄) -> (X₃-1,1+X₄)
order: [X₃; X₄]
closed-form:
X₃: X₃ + [[n != 0]] * -1 * n^1
X₄: X₄ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 < 0 ∧ 0 < 1
∨ 1 < 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 1 < 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 0 < X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 1
∨ 0 < X₃ ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 < X₃ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < 1
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 < X₄ ∧ 0 ≤ 1 ∧ 1 ≤ 0
∨ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0
Stabilization-Threshold for: 0 ≤ X₃
alphas_abs: X₃
M: 0
N: 1
Bound: 2⋅X₃+2 {O(n)}
Stabilization-Threshold for: 0 ≤ X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₅: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₆₆: l4→l4
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₆: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₆₇: l4→l4
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₇: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₆₈: l4→l4
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₈: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₆₉: l4→l4
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₆₉: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₇₀: l4→l4
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₀: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₇₁: l4→l4
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₁: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN: t₁₇₂: l4→l4
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₄:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
TWN - Lifting for t₁₇₂: l4→l4 of 2⋅X₃+2⋅X₄+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₃: 2⋅X₃ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₁₇₃: 1 {O(1)}
Results in: 4⋅X₃+6 {O(n)}
MPRF for transition t₁₄₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
4096⋅X₃+6146 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₄₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
4096⋅X₃+6146 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₄₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
4096⋅X₃+6146 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₄₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
4096⋅X₃+6146 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₄₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
4096⋅X₃+6146 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₄₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
4096⋅X₃+6146 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₅₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
4096⋅X₃+6146 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₅₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈-1, 1+X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀ of depth 1:
new bound:
4096⋅X₃+6146 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₅₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₅₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₅₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₅₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₅₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₅₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₆₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₆₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, Y1, X₇, X₈, X₉, X₁₀, 0, X₁₂-1) :|: A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
256⋅X₁₂+2 {O(n)}
Show Graph
G
l0
l0
l6
l6
l0->l6
t₁₄₂
η (X₀) = 2
η (X₁) = Y1
η (X₂) = Z1
η (X₅) = A2
τ = 2 ≤ Y1
l8
l8
l0->l8
t₁₄₃
η (X₀) = B2
η (X₁) = Z1
η (X₂) = A2
η (X₅) = J2
η (X₆) = 0
η (X₇) = L2
η (X₁₀) = Q2
η (X₁₁) = P2
τ = F2 ≤ 0 ∧ G2 ≤ 0 ∧ H2 ≤ 0 ∧ Y1 ≤ 0 ∧ I2 ≤ 0
l1
l1
l1->l1
t₁₄₄
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₅
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₆
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₇
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₈
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₄₉
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₀
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l1
t₁₅₁
η (X₆) = Y1
η (X₈) = X₈-1
η (X₉) = 1+X₉
τ = 0 ≤ X₉ ∧ 0 ≤ X₈ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2
l2
l1->l2
t₁₅₂
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l1->l2
t₁₅₃
η (X₇) = Z1
η (X₉) = X₁₂+1
η (X₁₀) = X₆
η (X₁₁) = 0
τ = 2 ≤ A2 ∧ 2 ≤ W1 ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ X₆+1 ≤ 0 ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 1+X₄+X₈ ∧ 0 ≤ 1+X₃+X₈ ∧ 1 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₀
l2->l2
t₁₅₄
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₅
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₆
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₇
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = X₁₀+1 ≤ A2 ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₈
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₅₉
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ A2+1 ≤ Y1 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₀
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ Y1+1 ≤ 0 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l2
t₁₆₁
η (X₆) = Y1
η (X₁₁) = 0
η (X₁₂) = X₁₂-1
τ = A2+1 ≤ X₁₀ ∧ 0 ≤ X₁₂ ∧ 2 ≤ W1 ∧ Y1+1 ≤ A2 ∧ 1 ≤ Y1 ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l2->l8
t₁₆₂
η (X₁₀) = D2
η (X₁₁) = C2
τ = 2 ≤ W1 ∧ 0 ≤ X₁₂ ∧ X₁₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₁₂ ≤ X₉ ∧ X₈ ≤ X₄ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 0 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₀ ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
l4
l4
l4->l1
t₁₆₃
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ X₆+1 ≤ 0 ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l1
t₁₆₄
η (X₇) = X₆
η (X₈) = X₄
η (X₉) = 0
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ X₆ ∧ X₈ ≤ X₄ ∧ X₄ ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₅
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₆
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₇
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₈
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ B2+1 ≤ 0 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₆₉
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₀
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ Y1+1 ≤ 0 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₁
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ A2+1 ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l4->l4
t₁₇₂
η (X₃) = X₃-1
η (X₄) = 1+X₄
η (X₆) = Y1
τ = 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ W1 ∧ 1 ≤ B2 ∧ 1 ≤ Y1 ∧ 1 ≤ A2 ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₀
l6->l4
t₁₇₃
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ X₂+1 ≤ 0 ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l4
t₁₇₄
η (X₀) = X₃
η (X₁) = Y1
η (X₂) = Z1
η (X₄) = 0
η (X₅) = E2
η (X₆) = X₂
η (X₇) = X₂
τ = X₁ ≤ X₀ ∧ 0 ≤ X₀ ∧ 2 ≤ W1 ∧ 1 ≤ X₂ ∧ W1 ≤ X1 ∧ W1 ≤ X₃ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
l6->l6
t₁₇₅
η (X₀) = 1+X₀
η (X₂) = X₅
η (X₅) = W1
τ = X₀+1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₁₄₂: 1 {O(1)}
t₁₄₃: 1 {O(1)}
t₁₄₄: 4096⋅X₃+6146 {O(n)}
t₁₄₅: 4096⋅X₃+6146 {O(n)}
t₁₄₆: 4096⋅X₃+6146 {O(n)}
t₁₄₇: 4096⋅X₃+6146 {O(n)}
t₁₄₈: 4096⋅X₃+6146 {O(n)}
t₁₄₉: 4096⋅X₃+6146 {O(n)}
t₁₅₀: 4096⋅X₃+6146 {O(n)}
t₁₅₁: 4096⋅X₃+6146 {O(n)}
t₁₅₂: 1 {O(1)}
t₁₅₃: 1 {O(1)}
t₁₅₄: 256⋅X₁₂+2 {O(n)}
t₁₅₅: 256⋅X₁₂+2 {O(n)}
t₁₅₆: 256⋅X₁₂+2 {O(n)}
t₁₅₇: 256⋅X₁₂+2 {O(n)}
t₁₅₈: 256⋅X₁₂+2 {O(n)}
t₁₅₉: 256⋅X₁₂+2 {O(n)}
t₁₆₀: 256⋅X₁₂+2 {O(n)}
t₁₆₁: 256⋅X₁₂+2 {O(n)}
t₁₆₂: 1 {O(1)}
t₁₆₃: 1 {O(1)}
t₁₆₄: 1 {O(1)}
t₁₆₅: 64⋅X₃+96 {O(n)}
t₁₆₆: 64⋅X₃+96 {O(n)}
t₁₆₇: 64⋅X₃+96 {O(n)}
t₁₆₈: 64⋅X₃+96 {O(n)}
t₁₆₉: 64⋅X₃+96 {O(n)}
t₁₇₀: 64⋅X₃+96 {O(n)}
t₁₇₁: 64⋅X₃+96 {O(n)}
t₁₇₂: 64⋅X₃+96 {O(n)}
t₁₇₃: 1 {O(1)}
t₁₇₄: 1 {O(1)}
t₁₇₅: inf {Infinity}
Costbounds
Overall costbound: inf {Infinity}
t₁₄₂: 1 {O(1)}
t₁₄₃: 1 {O(1)}
t₁₄₄: 4096⋅X₃+6146 {O(n)}
t₁₄₅: 4096⋅X₃+6146 {O(n)}
t₁₄₆: 4096⋅X₃+6146 {O(n)}
t₁₄₇: 4096⋅X₃+6146 {O(n)}
t₁₄₈: 4096⋅X₃+6146 {O(n)}
t₁₄₉: 4096⋅X₃+6146 {O(n)}
t₁₅₀: 4096⋅X₃+6146 {O(n)}
t₁₅₁: 4096⋅X₃+6146 {O(n)}
t₁₅₂: 1 {O(1)}
t₁₅₃: 1 {O(1)}
t₁₅₄: 256⋅X₁₂+2 {O(n)}
t₁₅₅: 256⋅X₁₂+2 {O(n)}
t₁₅₆: 256⋅X₁₂+2 {O(n)}
t₁₅₇: 256⋅X₁₂+2 {O(n)}
t₁₅₈: 256⋅X₁₂+2 {O(n)}
t₁₅₉: 256⋅X₁₂+2 {O(n)}
t₁₆₀: 256⋅X₁₂+2 {O(n)}
t₁₆₁: 256⋅X₁₂+2 {O(n)}
t₁₆₂: 1 {O(1)}
t₁₆₃: 1 {O(1)}
t₁₆₄: 1 {O(1)}
t₁₆₅: 64⋅X₃+96 {O(n)}
t₁₆₆: 64⋅X₃+96 {O(n)}
t₁₆₇: 64⋅X₃+96 {O(n)}
t₁₆₈: 64⋅X₃+96 {O(n)}
t₁₆₉: 64⋅X₃+96 {O(n)}
t₁₇₀: 64⋅X₃+96 {O(n)}
t₁₇₁: 64⋅X₃+96 {O(n)}
t₁₇₂: 64⋅X₃+96 {O(n)}
t₁₇₃: 1 {O(1)}
t₁₇₄: 1 {O(1)}
t₁₇₅: inf {Infinity}
Sizebounds
t₁₄₂, X₀: 2 {O(1)}
t₁₄₂, X₃: X₃ {O(n)}
t₁₄₂, X₄: X₄ {O(n)}
t₁₄₂, X₆: X₆ {O(n)}
t₁₄₂, X₇: X₇ {O(n)}
t₁₄₂, X₈: X₈ {O(n)}
t₁₄₂, X₉: X₉ {O(n)}
t₁₄₂, X₁₀: X₁₀ {O(n)}
t₁₄₂, X₁₁: X₁₁ {O(n)}
t₁₄₂, X₁₂: X₁₂ {O(n)}
t₁₄₃, X₃: X₃ {O(n)}
t₁₄₃, X₄: X₄ {O(n)}
t₁₄₃, X₆: 0 {O(1)}
t₁₄₃, X₈: X₈ {O(n)}
t₁₄₃, X₉: X₉ {O(n)}
t₁₄₃, X₁₂: X₁₂ {O(n)}
t₁₄₄, X₀: 32⋅X₃ {O(n)}
t₁₄₄, X₃: 32⋅X₃+8 {O(n)}
t₁₄₄, X₄: 4096⋅X₃+6144 {O(n)}
t₁₄₄, X₈: 4096⋅X₃+6145 {O(n)}
t₁₄₄, X₉: 32768⋅X₃+49168 {O(n)}
t₁₄₄, X₁₀: 32⋅X₁₀ {O(n)}
t₁₄₄, X₁₁: 32⋅X₁₁ {O(n)}
t₁₄₄, X₁₂: 32⋅X₁₂ {O(n)}
t₁₄₅, X₀: 32⋅X₃ {O(n)}
t₁₄₅, X₃: 32⋅X₃+8 {O(n)}
t₁₄₅, X₄: 4096⋅X₃+6144 {O(n)}
t₁₄₅, X₈: 4096⋅X₃+6145 {O(n)}
t₁₄₅, X₉: 32768⋅X₃+49168 {O(n)}
t₁₄₅, X₁₀: 32⋅X₁₀ {O(n)}
t₁₄₅, X₁₁: 32⋅X₁₁ {O(n)}
t₁₄₅, X₁₂: 32⋅X₁₂ {O(n)}
t₁₄₆, X₀: 32⋅X₃ {O(n)}
t₁₄₆, X₃: 32⋅X₃+8 {O(n)}
t₁₄₆, X₄: 4096⋅X₃+6144 {O(n)}
t₁₄₆, X₈: 4096⋅X₃+6145 {O(n)}
t₁₄₆, X₉: 32768⋅X₃+49168 {O(n)}
t₁₄₆, X₁₀: 32⋅X₁₀ {O(n)}
t₁₄₆, X₁₁: 32⋅X₁₁ {O(n)}
t₁₄₆, X₁₂: 32⋅X₁₂ {O(n)}
t₁₄₇, X₀: 32⋅X₃ {O(n)}
t₁₄₇, X₃: 32⋅X₃+8 {O(n)}
t₁₄₇, X₄: 4096⋅X₃+6144 {O(n)}
t₁₄₇, X₈: 4096⋅X₃+6145 {O(n)}
t₁₄₇, X₉: 32768⋅X₃+49168 {O(n)}
t₁₄₇, X₁₀: 32⋅X₁₀ {O(n)}
t₁₄₇, X₁₁: 32⋅X₁₁ {O(n)}
t₁₄₇, X₁₂: 32⋅X₁₂ {O(n)}
t₁₄₈, X₀: 32⋅X₃ {O(n)}
t₁₄₈, X₃: 32⋅X₃+8 {O(n)}
t₁₄₈, X₄: 4096⋅X₃+6144 {O(n)}
t₁₄₈, X₈: 4096⋅X₃+6145 {O(n)}
t₁₄₈, X₉: 32768⋅X₃+49168 {O(n)}
t₁₄₈, X₁₀: 32⋅X₁₀ {O(n)}
t₁₄₈, X₁₁: 32⋅X₁₁ {O(n)}
t₁₄₈, X₁₂: 32⋅X₁₂ {O(n)}
t₁₄₉, X₀: 32⋅X₃ {O(n)}
t₁₄₉, X₃: 32⋅X₃+8 {O(n)}
t₁₄₉, X₄: 4096⋅X₃+6144 {O(n)}
t₁₄₉, X₈: 4096⋅X₃+6145 {O(n)}
t₁₄₉, X₉: 32768⋅X₃+49168 {O(n)}
t₁₄₉, X₁₀: 32⋅X₁₀ {O(n)}
t₁₄₉, X₁₁: 32⋅X₁₁ {O(n)}
t₁₄₉, X₁₂: 32⋅X₁₂ {O(n)}
t₁₅₀, X₀: 32⋅X₃ {O(n)}
t₁₅₀, X₃: 32⋅X₃+8 {O(n)}
t₁₅₀, X₄: 4096⋅X₃+6144 {O(n)}
t₁₅₀, X₈: 4096⋅X₃+6145 {O(n)}
t₁₅₀, X₉: 32768⋅X₃+49168 {O(n)}
t₁₅₀, X₁₀: 32⋅X₁₀ {O(n)}
t₁₅₀, X₁₁: 32⋅X₁₁ {O(n)}
t₁₅₀, X₁₂: 32⋅X₁₂ {O(n)}
t₁₅₁, X₀: 32⋅X₃ {O(n)}
t₁₅₁, X₃: 32⋅X₃+8 {O(n)}
t₁₅₁, X₄: 4096⋅X₃+6144 {O(n)}
t₁₅₁, X₈: 4096⋅X₃+6145 {O(n)}
t₁₅₁, X₉: 32768⋅X₃+49168 {O(n)}
t₁₅₁, X₁₀: 32⋅X₁₀ {O(n)}
t₁₅₁, X₁₁: 32⋅X₁₁ {O(n)}
t₁₅₁, X₁₂: 32⋅X₁₂ {O(n)}
t₁₅₂, X₀: 128⋅X₃ {O(n)}
t₁₅₂, X₃: 128⋅X₃+32 {O(n)}
t₁₅₂, X₄: 16384⋅X₃+24576 {O(n)}
t₁₅₂, X₈: 16384⋅X₃+24580 {O(n)}
t₁₅₂, X₉: 128⋅X₁₂+4 {O(n)}
t₁₅₂, X₁₁: 0 {O(1)}
t₁₅₂, X₁₂: 128⋅X₁₂ {O(n)}
t₁₅₃, X₀: 128⋅X₃ {O(n)}
t₁₅₃, X₃: 128⋅X₃+32 {O(n)}
t₁₅₃, X₄: 16384⋅X₃+24576 {O(n)}
t₁₅₃, X₈: 16384⋅X₃+24580 {O(n)}
t₁₅₃, X₉: 128⋅X₁₂+4 {O(n)}
t₁₅₃, X₁₁: 0 {O(1)}
t₁₅₃, X₁₂: 128⋅X₁₂ {O(n)}
t₁₅₄, X₀: 256⋅X₃ {O(n)}
t₁₅₄, X₃: 256⋅X₃+64 {O(n)}
t₁₅₄, X₄: 32768⋅X₃+49152 {O(n)}
t₁₅₄, X₈: 32768⋅X₃+49160 {O(n)}
t₁₅₄, X₉: 256⋅X₁₂+8 {O(n)}
t₁₅₄, X₁₁: 0 {O(1)}
t₁₅₄, X₁₂: 256⋅X₁₂+1 {O(n)}
t₁₅₅, X₀: 256⋅X₃ {O(n)}
t₁₅₅, X₃: 256⋅X₃+64 {O(n)}
t₁₅₅, X₄: 32768⋅X₃+49152 {O(n)}
t₁₅₅, X₈: 32768⋅X₃+49160 {O(n)}
t₁₅₅, X₉: 256⋅X₁₂+8 {O(n)}
t₁₅₅, X₁₁: 0 {O(1)}
t₁₅₅, X₁₂: 256⋅X₁₂+1 {O(n)}
t₁₅₆, X₀: 256⋅X₃ {O(n)}
t₁₅₆, X₃: 256⋅X₃+64 {O(n)}
t₁₅₆, X₄: 32768⋅X₃+49152 {O(n)}
t₁₅₆, X₈: 32768⋅X₃+49160 {O(n)}
t₁₅₆, X₉: 256⋅X₁₂+8 {O(n)}
t₁₅₆, X₁₁: 0 {O(1)}
t₁₅₆, X₁₂: 256⋅X₁₂+1 {O(n)}
t₁₅₇, X₀: 256⋅X₃ {O(n)}
t₁₅₇, X₃: 256⋅X₃+64 {O(n)}
t₁₅₇, X₄: 32768⋅X₃+49152 {O(n)}
t₁₅₇, X₈: 32768⋅X₃+49160 {O(n)}
t₁₅₇, X₉: 256⋅X₁₂+8 {O(n)}
t₁₅₇, X₁₁: 0 {O(1)}
t₁₅₇, X₁₂: 256⋅X₁₂+1 {O(n)}
t₁₅₈, X₀: 256⋅X₃ {O(n)}
t₁₅₈, X₃: 256⋅X₃+64 {O(n)}
t₁₅₈, X₄: 32768⋅X₃+49152 {O(n)}
t₁₅₈, X₈: 32768⋅X₃+49160 {O(n)}
t₁₅₈, X₉: 256⋅X₁₂+8 {O(n)}
t₁₅₈, X₁₁: 0 {O(1)}
t₁₅₈, X₁₂: 256⋅X₁₂+1 {O(n)}
t₁₅₉, X₀: 256⋅X₃ {O(n)}
t₁₅₉, X₃: 256⋅X₃+64 {O(n)}
t₁₅₉, X₄: 32768⋅X₃+49152 {O(n)}
t₁₅₉, X₈: 32768⋅X₃+49160 {O(n)}
t₁₅₉, X₉: 256⋅X₁₂+8 {O(n)}
t₁₅₉, X₁₁: 0 {O(1)}
t₁₅₉, X₁₂: 256⋅X₁₂+1 {O(n)}
t₁₆₀, X₀: 256⋅X₃ {O(n)}
t₁₆₀, X₃: 256⋅X₃+64 {O(n)}
t₁₆₀, X₄: 32768⋅X₃+49152 {O(n)}
t₁₆₀, X₈: 32768⋅X₃+49160 {O(n)}
t₁₆₀, X₉: 256⋅X₁₂+8 {O(n)}
t₁₆₀, X₁₁: 0 {O(1)}
t₁₆₀, X₁₂: 256⋅X₁₂+1 {O(n)}
t₁₆₁, X₀: 256⋅X₃ {O(n)}
t₁₆₁, X₃: 256⋅X₃+64 {O(n)}
t₁₆₁, X₄: 32768⋅X₃+49152 {O(n)}
t₁₆₁, X₈: 32768⋅X₃+49160 {O(n)}
t₁₆₁, X₉: 256⋅X₁₂+8 {O(n)}
t₁₆₁, X₁₁: 0 {O(1)}
t₁₆₁, X₁₂: 256⋅X₁₂+1 {O(n)}
t₁₆₂, X₀: 1536⋅X₃ {O(n)}
t₁₆₂, X₃: 1536⋅X₃+384 {O(n)}
t₁₆₂, X₄: 196608⋅X₃+294912 {O(n)}
t₁₆₂, X₈: 196608⋅X₃+294960 {O(n)}
t₁₆₂, X₉: 1536⋅X₁₂+48 {O(n)}
t₁₆₂, X₁₂: 1536⋅X₁₂+6 {O(n)}
t₁₆₃, X₀: 16⋅X₃ {O(n)}
t₁₆₃, X₃: 16⋅X₃+4 {O(n)}
t₁₆₃, X₄: 2048⋅X₃+3072 {O(n)}
t₁₆₃, X₈: 2048⋅X₃+3072 {O(n)}
t₁₆₃, X₉: 0 {O(1)}
t₁₆₃, X₁₀: 16⋅X₁₀ {O(n)}
t₁₆₃, X₁₁: 16⋅X₁₁ {O(n)}
t₁₆₃, X₁₂: 16⋅X₁₂ {O(n)}
t₁₆₄, X₀: 16⋅X₃ {O(n)}
t₁₆₄, X₃: 16⋅X₃+4 {O(n)}
t₁₆₄, X₄: 2048⋅X₃+3072 {O(n)}
t₁₆₄, X₈: 2048⋅X₃+3072 {O(n)}
t₁₆₄, X₉: 0 {O(1)}
t₁₆₄, X₁₀: 16⋅X₁₀ {O(n)}
t₁₆₄, X₁₁: 16⋅X₁₁ {O(n)}
t₁₆₄, X₁₂: 16⋅X₁₂ {O(n)}
t₁₆₅, X₀: 4⋅X₃ {O(n)}
t₁₆₅, X₃: 4⋅X₃+1 {O(n)}
t₁₆₅, X₄: 512⋅X₃+768 {O(n)}
t₁₆₅, X₈: 4⋅X₈ {O(n)}
t₁₆₅, X₉: 4⋅X₉ {O(n)}
t₁₆₅, X₁₀: 4⋅X₁₀ {O(n)}
t₁₆₅, X₁₁: 4⋅X₁₁ {O(n)}
t₁₆₅, X₁₂: 4⋅X₁₂ {O(n)}
t₁₆₆, X₀: 4⋅X₃ {O(n)}
t₁₆₆, X₃: 4⋅X₃+1 {O(n)}
t₁₆₆, X₄: 512⋅X₃+768 {O(n)}
t₁₆₆, X₈: 4⋅X₈ {O(n)}
t₁₆₆, X₉: 4⋅X₉ {O(n)}
t₁₆₆, X₁₀: 4⋅X₁₀ {O(n)}
t₁₆₆, X₁₁: 4⋅X₁₁ {O(n)}
t₁₆₆, X₁₂: 4⋅X₁₂ {O(n)}
t₁₆₇, X₀: 4⋅X₃ {O(n)}
t₁₆₇, X₃: 4⋅X₃+1 {O(n)}
t₁₆₇, X₄: 512⋅X₃+768 {O(n)}
t₁₆₇, X₈: 4⋅X₈ {O(n)}
t₁₆₇, X₉: 4⋅X₉ {O(n)}
t₁₆₇, X₁₀: 4⋅X₁₀ {O(n)}
t₁₆₇, X₁₁: 4⋅X₁₁ {O(n)}
t₁₆₇, X₁₂: 4⋅X₁₂ {O(n)}
t₁₆₈, X₀: 4⋅X₃ {O(n)}
t₁₆₈, X₃: 4⋅X₃+1 {O(n)}
t₁₆₈, X₄: 512⋅X₃+768 {O(n)}
t₁₆₈, X₈: 4⋅X₈ {O(n)}
t₁₆₈, X₉: 4⋅X₉ {O(n)}
t₁₆₈, X₁₀: 4⋅X₁₀ {O(n)}
t₁₆₈, X₁₁: 4⋅X₁₁ {O(n)}
t₁₆₈, X₁₂: 4⋅X₁₂ {O(n)}
t₁₆₉, X₀: 4⋅X₃ {O(n)}
t₁₆₉, X₃: 4⋅X₃+1 {O(n)}
t₁₆₉, X₄: 512⋅X₃+768 {O(n)}
t₁₆₉, X₈: 4⋅X₈ {O(n)}
t₁₆₉, X₉: 4⋅X₉ {O(n)}
t₁₆₉, X₁₀: 4⋅X₁₀ {O(n)}
t₁₆₉, X₁₁: 4⋅X₁₁ {O(n)}
t₁₆₉, X₁₂: 4⋅X₁₂ {O(n)}
t₁₇₀, X₀: 4⋅X₃ {O(n)}
t₁₇₀, X₃: 4⋅X₃+1 {O(n)}
t₁₇₀, X₄: 512⋅X₃+768 {O(n)}
t₁₇₀, X₈: 4⋅X₈ {O(n)}
t₁₇₀, X₉: 4⋅X₉ {O(n)}
t₁₇₀, X₁₀: 4⋅X₁₀ {O(n)}
t₁₇₀, X₁₁: 4⋅X₁₁ {O(n)}
t₁₇₀, X₁₂: 4⋅X₁₂ {O(n)}
t₁₇₁, X₀: 4⋅X₃ {O(n)}
t₁₇₁, X₃: 4⋅X₃+1 {O(n)}
t₁₇₁, X₄: 512⋅X₃+768 {O(n)}
t₁₇₁, X₈: 4⋅X₈ {O(n)}
t₁₇₁, X₉: 4⋅X₉ {O(n)}
t₁₇₁, X₁₀: 4⋅X₁₀ {O(n)}
t₁₇₁, X₁₁: 4⋅X₁₁ {O(n)}
t₁₇₁, X₁₂: 4⋅X₁₂ {O(n)}
t₁₇₂, X₀: 4⋅X₃ {O(n)}
t₁₇₂, X₃: 4⋅X₃+1 {O(n)}
t₁₇₂, X₄: 512⋅X₃+768 {O(n)}
t₁₇₂, X₈: 4⋅X₈ {O(n)}
t₁₇₂, X₉: 4⋅X₉ {O(n)}
t₁₇₂, X₁₀: 4⋅X₁₀ {O(n)}
t₁₇₂, X₁₁: 4⋅X₁₁ {O(n)}
t₁₇₂, X₁₂: 4⋅X₁₂ {O(n)}
t₁₇₃, X₀: 2⋅X₃ {O(n)}
t₁₇₃, X₃: 2⋅X₃ {O(n)}
t₁₇₃, X₄: 0 {O(1)}
t₁₇₃, X₈: 2⋅X₈ {O(n)}
t₁₇₃, X₉: 2⋅X₉ {O(n)}
t₁₇₃, X₁₀: 2⋅X₁₀ {O(n)}
t₁₇₃, X₁₁: 2⋅X₁₁ {O(n)}
t₁₇₃, X₁₂: 2⋅X₁₂ {O(n)}
t₁₇₄, X₀: 2⋅X₃ {O(n)}
t₁₇₄, X₃: 2⋅X₃ {O(n)}
t₁₇₄, X₄: 0 {O(1)}
t₁₇₄, X₈: 2⋅X₈ {O(n)}
t₁₇₄, X₉: 2⋅X₉ {O(n)}
t₁₇₄, X₁₀: 2⋅X₁₀ {O(n)}
t₁₇₄, X₁₁: 2⋅X₁₁ {O(n)}
t₁₇₄, X₁₂: 2⋅X₁₂ {O(n)}
t₁₇₅, X₃: X₃ {O(n)}
t₁₇₅, X₄: X₄ {O(n)}
t₁₇₅, X₆: X₆ {O(n)}
t₁₇₅, X₇: X₇ {O(n)}
t₁₇₅, X₈: X₈ {O(n)}
t₁₇₅, X₉: X₉ {O(n)}
t₁₇₅, X₁₀: X₁₀ {O(n)}
t₁₇₅, X₁₁: X₁₁ {O(n)}
t₁₇₅, X₁₂: X₁₂ {O(n)}