Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁-1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.3, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₁₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₁₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₁ ≤ 1
t₁₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₂ < 1
t₁₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: 1 < X₂
t₂₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₃ < X₄ ∧ X₅ < 0
t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₃ < X₄ ∧ 0 < X₅
t₂₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₄ ≤ X₃
t₂₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₂₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l13(X₀, X₁, X₂, X₃+(X₅)³, X₄+(X₅)², X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₂₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: 0 < X₆
t₃₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₆ ≤ 0
t₃₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₃₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l5(X₇, X₁₈, X₈, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₀ < 1
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: 3 < X₀
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₂ < 0
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: 0 < X₂
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: 1 ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l5(X₁₀, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, nondef.2, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l5(X₀, X₁₂, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)

Preprocessing

Eliminate variables {X₁₆,X₁₇} that do not contribute to the problem

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l11

Found invariant X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l6

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l15

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l17

Found invariant X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l7

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5

Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l13

Found invariant X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l8

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l16

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l18

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l9

Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₆₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁-1, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁
t₆₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.3, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁
t₆₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ X₅ < 0 ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ 0 < X₅ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₄ ≤ X₃ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₃+(X₅)³, X₄+(X₅)², X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₆ ≤ 0 ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₈: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₇, X₁₆, X₈, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₀ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₁₀, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, nondef.2, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₉₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁₂, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁

MPRF for transition t₆₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁-1, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₁₆+1 {O(n)}

MPRF for transition t₆₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.3, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₁₆+1 {O(n)}

MPRF for transition t₆₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

X₁₆+1 {O(n)}

MPRF for transition t₉₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁₂, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₁₆ {O(n)}

knowledge_propagation leads to new time bound X₁₆+1 {O(n)} for transition t₈₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₀ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆

MPRF for transition t₈₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

X₁₆+1 {O(n)}

MPRF for transition t₈₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

X₁₆+1 {O(n)}

MPRF for transition t₈₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

X₁₆+1 {O(n)}

Chain transitions t₆₆: l12→l10 and t₆₄: l10→l11 to t₂₈₈: l12→l11

Chain transitions t₂₈₈: l12→l11 and t₆₅: l11→l9 to t₂₈₉: l12→l9

Chain transitions t₈₅: l5→l12 and t₂₈₉: l12→l9 to t₂₉₀: l5→l9

Chain transitions t₈₄: l5→l12 and t₂₈₉: l12→l9 to t₂₉₁: l5→l9

Chain transitions t₈₄: l5→l12 and t₆₉: l12→l13 to t₂₉₂: l5→l13

Chain transitions t₈₅: l5→l12 and t₆₉: l12→l13 to t₂₉₃: l5→l13

Chain transitions t₈₃: l5→l12 and t₆₉: l12→l13 to t₂₉₄: l5→l13

Chain transitions t₈₃: l5→l12 and t₂₈₉: l12→l9 to t₂₉₅: l5→l9

Chain transitions t₈₃: l5→l12 and t₆₈: l12→l13 to t₂₉₆: l5→l13

Chain transitions t₈₄: l5→l12 and t₆₈: l12→l13 to t₂₉₇: l5→l13

Chain transitions t₈₅: l5→l12 and t₆₈: l12→l13 to t₂₉₈: l5→l13

Chain transitions t₈₂: l5→l12 and t₆₈: l12→l13 to t₂₉₉: l5→l13

Chain transitions t₈₂: l5→l12 and t₆₉: l12→l13 to t₃₀₀: l5→l13

Chain transitions t₈₂: l5→l12 and t₂₈₉: l12→l9 to t₃₀₁: l5→l9

Chain transitions t₈₂: l5→l12 and t₆₇: l12→l13 to t₃₀₂: l5→l13

Chain transitions t₈₃: l5→l12 and t₆₇: l12→l13 to t₃₀₃: l5→l13

Chain transitions t₈₄: l5→l12 and t₆₇: l12→l13 to t₃₀₄: l5→l13

Chain transitions t₈₅: l5→l12 and t₆₇: l12→l13 to t₃₀₅: l5→l13

Chain transitions t₈₂: l5→l12 and t₂₈₈: l12→l11 to t₃₀₆: l5→l11

Chain transitions t₈₃: l5→l12 and t₂₈₈: l12→l11 to t₃₀₇: l5→l11

Chain transitions t₈₄: l5→l12 and t₂₈₈: l12→l11 to t₃₀₈: l5→l11

Chain transitions t₈₅: l5→l12 and t₂₈₈: l12→l11 to t₃₀₉: l5→l11

Chain transitions t₈₂: l5→l12 and t₆₆: l12→l10 to t₃₁₀: l5→l10

Chain transitions t₈₃: l5→l12 and t₆₆: l12→l10 to t₃₁₁: l5→l10

Chain transitions t₈₄: l5→l12 and t₆₆: l12→l10 to t₃₁₂: l5→l10

Chain transitions t₈₅: l5→l12 and t₆₆: l12→l10 to t₃₁₃: l5→l10

Chain transitions t₉₀: l9→l5 and t₃₀₁: l5→l9 to t₃₁₄: l9→l9

Chain transitions t₈₇: l6→l5 and t₃₀₁: l5→l9 to t₃₁₅: l6→l9

Chain transitions t₈₇: l6→l5 and t₂₉₅: l5→l9 to t₃₁₆: l6→l9

Chain transitions t₉₀: l9→l5 and t₂₉₅: l5→l9 to t₃₁₇: l9→l9

Chain transitions t₈₁: l4→l5 and t₂₉₅: l5→l9 to t₃₁₈: l4→l9

Chain transitions t₈₁: l4→l5 and t₃₀₁: l5→l9 to t₃₁₉: l4→l9

Chain transitions t₈₁: l4→l5 and t₂₉₁: l5→l9 to t₃₂₀: l4→l9

Chain transitions t₈₇: l6→l5 and t₂₉₁: l5→l9 to t₃₂₁: l6→l9

Chain transitions t₉₀: l9→l5 and t₂₉₁: l5→l9 to t₃₂₂: l9→l9

Chain transitions t₈₁: l4→l5 and t₂₉₀: l5→l9 to t₃₂₃: l4→l9

Chain transitions t₈₇: l6→l5 and t₂₉₀: l5→l9 to t₃₂₄: l6→l9

Chain transitions t₉₀: l9→l5 and t₂₉₀: l5→l9 to t₃₂₅: l9→l9

Chain transitions t₈₁: l4→l5 and t₈₆: l5→l7 to t₃₂₆: l4→l7

Chain transitions t₈₇: l6→l5 and t₈₆: l5→l7 to t₃₂₇: l6→l7

Chain transitions t₉₀: l9→l5 and t₈₆: l5→l7 to t₃₂₈: l9→l7

Chain transitions t₈₁: l4→l5 and t₃₀₅: l5→l13 to t₃₂₉: l4→l13

Chain transitions t₈₇: l6→l5 and t₃₀₅: l5→l13 to t₃₃₀: l6→l13

Chain transitions t₉₀: l9→l5 and t₃₀₅: l5→l13 to t₃₃₁: l9→l13

Chain transitions t₈₁: l4→l5 and t₃₀₄: l5→l13 to t₃₃₂: l4→l13

Chain transitions t₈₇: l6→l5 and t₃₀₄: l5→l13 to t₃₃₃: l6→l13

Chain transitions t₉₀: l9→l5 and t₃₀₄: l5→l13 to t₃₃₄: l9→l13

Chain transitions t₈₁: l4→l5 and t₃₀₃: l5→l13 to t₃₃₅: l4→l13

Chain transitions t₈₇: l6→l5 and t₃₀₃: l5→l13 to t₃₃₆: l6→l13

Chain transitions t₉₀: l9→l5 and t₃₀₃: l5→l13 to t₃₃₇: l9→l13

Chain transitions t₈₁: l4→l5 and t₃₀₂: l5→l13 to t₃₃₈: l4→l13

Chain transitions t₈₇: l6→l5 and t₃₀₂: l5→l13 to t₃₃₉: l6→l13

Chain transitions t₉₀: l9→l5 and t₃₀₂: l5→l13 to t₃₄₀: l9→l13

Chain transitions t₈₁: l4→l5 and t₃₀₀: l5→l13 to t₃₄₁: l4→l13

Chain transitions t₈₇: l6→l5 and t₃₀₀: l5→l13 to t₃₄₂: l6→l13

Chain transitions t₉₀: l9→l5 and t₃₀₀: l5→l13 to t₃₄₃: l9→l13

Chain transitions t₈₁: l4→l5 and t₂₉₉: l5→l13 to t₃₄₄: l4→l13

Chain transitions t₈₇: l6→l5 and t₂₉₉: l5→l13 to t₃₄₅: l6→l13

Chain transitions t₉₀: l9→l5 and t₂₉₉: l5→l13 to t₃₄₆: l9→l13

Chain transitions t₈₁: l4→l5 and t₂₉₈: l5→l13 to t₃₄₇: l4→l13

Chain transitions t₈₇: l6→l5 and t₂₉₈: l5→l13 to t₃₄₈: l6→l13

Chain transitions t₉₀: l9→l5 and t₂₉₈: l5→l13 to t₃₄₉: l9→l13

Chain transitions t₈₁: l4→l5 and t₂₉₇: l5→l13 to t₃₅₀: l4→l13

Chain transitions t₈₇: l6→l5 and t₂₉₇: l5→l13 to t₃₅₁: l6→l13

Chain transitions t₉₀: l9→l5 and t₂₉₇: l5→l13 to t₃₅₂: l9→l13

Chain transitions t₈₁: l4→l5 and t₂₉₆: l5→l13 to t₃₅₃: l4→l13

Chain transitions t₈₇: l6→l5 and t₂₉₆: l5→l13 to t₃₅₄: l6→l13

Chain transitions t₉₀: l9→l5 and t₂₉₆: l5→l13 to t₃₅₅: l9→l13

Chain transitions t₈₁: l4→l5 and t₂₉₄: l5→l13 to t₃₅₆: l4→l13

Chain transitions t₈₇: l6→l5 and t₂₉₄: l5→l13 to t₃₅₇: l6→l13

Chain transitions t₉₀: l9→l5 and t₂₉₄: l5→l13 to t₃₅₈: l9→l13

Chain transitions t₈₁: l4→l5 and t₂₉₃: l5→l13 to t₃₅₉: l4→l13

Chain transitions t₈₇: l6→l5 and t₂₉₃: l5→l13 to t₃₆₀: l6→l13

Chain transitions t₉₀: l9→l5 and t₂₉₃: l5→l13 to t₃₆₁: l9→l13

Chain transitions t₈₁: l4→l5 and t₂₉₂: l5→l13 to t₃₆₂: l4→l13

Chain transitions t₈₇: l6→l5 and t₂₉₂: l5→l13 to t₃₆₃: l6→l13

Chain transitions t₉₀: l9→l5 and t₂₉₂: l5→l13 to t₃₆₄: l9→l13

Chain transitions t₈₁: l4→l5 and t₈₅: l5→l12 to t₃₆₅: l4→l12

Chain transitions t₈₇: l6→l5 and t₈₅: l5→l12 to t₃₆₆: l6→l12

Chain transitions t₉₀: l9→l5 and t₈₅: l5→l12 to t₃₆₇: l9→l12

Chain transitions t₈₁: l4→l5 and t₈₄: l5→l12 to t₃₆₈: l4→l12

Chain transitions t₈₇: l6→l5 and t₈₄: l5→l12 to t₃₆₉: l6→l12

Chain transitions t₉₀: l9→l5 and t₈₄: l5→l12 to t₃₇₀: l9→l12

Chain transitions t₈₁: l4→l5 and t₈₃: l5→l12 to t₃₇₁: l4→l12

Chain transitions t₈₇: l6→l5 and t₈₃: l5→l12 to t₃₇₂: l6→l12

Chain transitions t₉₀: l9→l5 and t₈₃: l5→l12 to t₃₇₃: l9→l12

Chain transitions t₈₁: l4→l5 and t₈₂: l5→l12 to t₃₇₄: l4→l12

Chain transitions t₈₇: l6→l5 and t₈₂: l5→l12 to t₃₇₅: l6→l12

Chain transitions t₉₀: l9→l5 and t₈₂: l5→l12 to t₃₇₆: l9→l12

Chain transitions t₈₁: l4→l5 and t₃₀₉: l5→l11 to t₃₇₇: l4→l11

Chain transitions t₈₇: l6→l5 and t₃₀₉: l5→l11 to t₃₇₈: l6→l11

Chain transitions t₉₀: l9→l5 and t₃₀₉: l5→l11 to t₃₇₉: l9→l11

Chain transitions t₈₁: l4→l5 and t₃₀₈: l5→l11 to t₃₈₀: l4→l11

Chain transitions t₈₇: l6→l5 and t₃₀₈: l5→l11 to t₃₈₁: l6→l11

Chain transitions t₉₀: l9→l5 and t₃₀₈: l5→l11 to t₃₈₂: l9→l11

Chain transitions t₈₁: l4→l5 and t₃₀₇: l5→l11 to t₃₈₃: l4→l11

Chain transitions t₈₇: l6→l5 and t₃₀₇: l5→l11 to t₃₈₄: l6→l11

Chain transitions t₉₀: l9→l5 and t₃₀₇: l5→l11 to t₃₈₅: l9→l11

Chain transitions t₈₁: l4→l5 and t₃₀₆: l5→l11 to t₃₈₆: l4→l11

Chain transitions t₈₇: l6→l5 and t₃₀₆: l5→l11 to t₃₈₇: l6→l11

Chain transitions t₉₀: l9→l5 and t₃₀₆: l5→l11 to t₃₈₈: l9→l11

Chain transitions t₈₁: l4→l5 and t₃₁₃: l5→l10 to t₃₈₉: l4→l10

Chain transitions t₈₇: l6→l5 and t₃₁₃: l5→l10 to t₃₉₀: l6→l10

Chain transitions t₉₀: l9→l5 and t₃₁₃: l5→l10 to t₃₉₁: l9→l10

Chain transitions t₈₁: l4→l5 and t₃₁₂: l5→l10 to t₃₉₂: l4→l10

Chain transitions t₈₇: l6→l5 and t₃₁₂: l5→l10 to t₃₉₃: l6→l10

Chain transitions t₉₀: l9→l5 and t₃₁₂: l5→l10 to t₃₉₄: l9→l10

Chain transitions t₈₁: l4→l5 and t₃₁₁: l5→l10 to t₃₉₅: l4→l10

Chain transitions t₈₇: l6→l5 and t₃₁₁: l5→l10 to t₃₉₆: l6→l10

Chain transitions t₉₀: l9→l5 and t₃₁₁: l5→l10 to t₃₉₇: l9→l10

Chain transitions t₈₁: l4→l5 and t₃₁₀: l5→l10 to t₃₉₈: l4→l10

Chain transitions t₈₇: l6→l5 and t₃₁₀: l5→l10 to t₃₉₉: l6→l10

Chain transitions t₉₀: l9→l5 and t₃₁₀: l5→l10 to t₄₀₀: l9→l10

Chain transitions t₈₉: l8→l6 and t₃₂₄: l6→l9 to t₄₀₁: l8→l9

Chain transitions t₈₉: l8→l6 and t₃₂₁: l6→l9 to t₄₀₂: l8→l9

Chain transitions t₈₉: l8→l6 and t₃₁₆: l6→l9 to t₄₀₃: l8→l9

Chain transitions t₈₉: l8→l6 and t₃₁₅: l6→l9 to t₄₀₄: l8→l9

Chain transitions t₈₉: l8→l6 and t₃₂₇: l6→l7 to t₄₀₅: l8→l7

Chain transitions t₈₉: l8→l6 and t₈₇: l6→l5 to t₄₀₆: l8→l5

Chain transitions t₈₉: l8→l6 and t₃₆₃: l6→l13 to t₄₀₇: l8→l13

Chain transitions t₈₉: l8→l6 and t₃₆₀: l6→l13 to t₄₀₈: l8→l13

Chain transitions t₈₉: l8→l6 and t₃₅₇: l6→l13 to t₄₀₉: l8→l13

Chain transitions t₈₉: l8→l6 and t₃₅₄: l6→l13 to t₄₁₀: l8→l13

Chain transitions t₈₉: l8→l6 and t₃₅₁: l6→l13 to t₄₁₁: l8→l13

Chain transitions t₈₉: l8→l6 and t₃₄₈: l6→l13 to t₄₁₂: l8→l13

Chain transitions t₈₉: l8→l6 and t₃₄₅: l6→l13 to t₄₁₃: l8→l13

Chain transitions t₈₉: l8→l6 and t₃₄₂: l6→l13 to t₄₁₄: l8→l13

Chain transitions t₈₉: l8→l6 and t₃₃₉: l6→l13 to t₄₁₅: l8→l13

Chain transitions t₈₉: l8→l6 and t₃₃₆: l6→l13 to t₄₁₆: l8→l13

Chain transitions t₈₉: l8→l6 and t₃₃₃: l6→l13 to t₄₁₇: l8→l13

Chain transitions t₈₉: l8→l6 and t₃₃₀: l6→l13 to t₄₁₈: l8→l13

Chain transitions t₈₉: l8→l6 and t₃₇₅: l6→l12 to t₄₁₉: l8→l12

Chain transitions t₈₉: l8→l6 and t₃₇₂: l6→l12 to t₄₂₀: l8→l12

Chain transitions t₈₉: l8→l6 and t₃₆₉: l6→l12 to t₄₂₁: l8→l12

Chain transitions t₈₉: l8→l6 and t₃₆₆: l6→l12 to t₄₂₂: l8→l12

Chain transitions t₈₉: l8→l6 and t₃₈₇: l6→l11 to t₄₂₃: l8→l11

Chain transitions t₈₉: l8→l6 and t₃₈₄: l6→l11 to t₄₂₄: l8→l11

Chain transitions t₈₉: l8→l6 and t₃₈₁: l6→l11 to t₄₂₅: l8→l11

Chain transitions t₈₉: l8→l6 and t₃₇₈: l6→l11 to t₄₂₆: l8→l11

Chain transitions t₈₉: l8→l6 and t₃₉₉: l6→l10 to t₄₂₇: l8→l10

Chain transitions t₈₉: l8→l6 and t₃₉₆: l6→l10 to t₄₂₈: l8→l10

Chain transitions t₈₉: l8→l6 and t₃₉₃: l6→l10 to t₄₂₉: l8→l10

Chain transitions t₈₉: l8→l6 and t₃₉₀: l6→l10 to t₄₃₀: l8→l10

Chain transitions t₃₂₈: l9→l7 and t₈₈: l7→l8 to t₄₃₁: l9→l8

Chain transitions t₄₀₅: l8→l7 and t₈₈: l7→l8 to t₄₃₂: l8→l8

Chain transitions t₃₂₆: l4→l7 and t₈₈: l7→l8 to t₄₃₃: l4→l8

Analysing control-flow refined program

Cut unsatisfiable transition t₃₂₀: l4→l9

Cut unsatisfiable transition t₃₂₂: l9→l9

Cut unsatisfiable transition t₃₄₇: l4→l13

Cut unsatisfiable transition t₃₄₉: l9→l13

Cut unsatisfiable transition t₃₆₂: l4→l13

Cut unsatisfiable transition t₃₆₄: l9→l13

Cut unsatisfiable transition t₃₈₀: l4→l11

Cut unsatisfiable transition t₃₈₂: l9→l11

Cut unsatisfiable transition t₃₉₂: l4→l10

Cut unsatisfiable transition t₃₉₄: l9→l10

Cut unsatisfiable transition t₄₀₂: l8→l9

Cut unsatisfiable transition t₄₀₄: l8→l9

Cut unsatisfiable transition t₄₀₇: l8→l13

Cut unsatisfiable transition t₄₁₂: l8→l13

Cut unsatisfiable transition t₄₁₃: l8→l13

Cut unsatisfiable transition t₄₁₄: l8→l13

Cut unsatisfiable transition t₄₁₅: l8→l13

Cut unsatisfiable transition t₄₁₉: l8→l12

Cut unsatisfiable transition t₄₂₃: l8→l11

Cut unsatisfiable transition t₄₂₅: l8→l11

Cut unsatisfiable transition t₄₂₇: l8→l10

Cut unsatisfiable transition t₄₂₉: l8→l10

Eliminate variables {X₁₁} that do not contribute to the problem

Found invariant 0 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ X₂ ≤ 1+X₈ ∧ 2 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₅ ∧ X₂ ≤ X₁₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₅+X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ X₁ ≤ X₁₅ ∧ 1+X₁₁ ≤ X₁ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ X₁ ≤ 1+X₁₁ ∧ 2 ≤ X₁ for location l11

Found invariant 0 ≤ X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₅ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l6

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₄ ≤ X₅ ∧ X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₅ for location l15

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₅ for location l12

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₄ ≤ X₅ ∧ X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₅ for location l17

Found invariant 0 ≤ X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₅ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l7

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₅ for location l5

Found invariant X₇ ≤ X₀ ∧ X₁₄ ≤ X₅ ∧ X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₅ for location l13

Found invariant 0 ≤ X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₅ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l8

Found invariant 0 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ X₂ ≤ 1+X₈ ∧ 2 ≤ X₁₅+X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₅ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₅+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ X₁ ≤ X₁₅ ∧ 2 ≤ X₁ for location l10

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₄ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₅ for location l16

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₄ ≤ X₅ ∧ X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₅ for location l18

Found invariant 0 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ X₂ ≤ 1+X₈ ∧ 2 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₅ ∧ X₂ ≤ X₁₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₅+X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ X₁ ≤ X₁₅ ∧ 1+X₁₁ ≤ X₁ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ X₁ ≤ 1+X₁₁ ∧ 2 ≤ X₁ for location l9

Found invariant X₇ ≤ X₀ ∧ X₁₄ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₅ for location l14

Analysing control-flow refined program

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l11

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l15

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l17

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5

Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l13

Found invariant X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l16

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l18

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l9

Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l14

knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₈₀₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₈₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ ≤ X₈ ∧ X₈ ≤ X₂ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₈₁₅: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₈₁₆: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₈₁₈: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___1(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₈₂₀: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___8(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₇+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₇ ∧ X₀+1 ≤ X₁₀ ∧ X₁₆ ≤ X₁ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₈₁₂: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀+1 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₈₁₄: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₇+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₇ ∧ X₀+1 ≤ X₁₀ ∧ X₁₆ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

MPRF for transition t₈₁₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₀ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₀ ≤ X₁₀ ∧ X₁₀ ≤ X₀ ∧ 2 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 1+X₇ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:

new bound:

10⋅X₁₆+2 {O(n)}

MPRF for transition t₈₁₃: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀+1 ≤ X₁₀ ∧ X₀+1 ≤ X₁₀ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:

new bound:

10⋅X₁₆+2 {O(n)}

MPRF for transition t₈₁₇: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ X₁₀ ≤ X₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:

new bound:

18⋅X₁₆+10 {O(n)}

MPRF for transition t₈₁₉: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___4(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀+1 ≤ X₁₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:

new bound:

16⋅X₁₆+8 {O(n)}

MPRF for transition t₈₂₉: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:

new bound:

3⋅X₁₆+1 {O(n)}

MPRF for transition t₈₃₀: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:

new bound:

16⋅X₁₆+12 {O(n)}

MPRF for transition t₈₃₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:

new bound:

25⋅X₁₆+5 {O(n)}

CFR: Improvement to new bound with the following program:

new bound:

Infinite

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars: Arg16_P, Arg7_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l9, n_l5___7, n_l6___1, n_l6___4, n_l6___8, n_l7___10, n_l7___3, n_l7___6, n_l8___2, n_l8___5, n_l8___9
Transitions:
t₆₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁-1, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁
t₆₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.3, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁
t₆₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ X₅ < 0 ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ 0 < X₅ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₄ ≤ X₃ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₃+(X₅)³, X₄+(X₅)², X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₆ ≤ 0 ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₈: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₇, X₁₆, X₈, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₀ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ ≤ X₈ ∧ X₈ ≤ X₂ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₀₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₉₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁₂, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁
t₈₂₉: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₃₀: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₃₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₁₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₀ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₀ ≤ X₁₀ ∧ X₁₀ ≤ X₀ ∧ 2 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 1+X₇ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₁₂: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀+1 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₃: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀+1 ≤ X₁₀ ∧ X₀+1 ≤ X₁₀ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₈₁₄: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₇+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₇ ∧ X₀+1 ≤ X₁₀ ∧ X₁₆ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₅: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₆: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₇: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ X₁₀ ≤ X₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₈₁₈: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___1(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₉: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___4(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀+1 ≤ X₁₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₈₂₀: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___8(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₇+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₇ ∧ X₀+1 ≤ X₁₀ ∧ X₁₆ ≤ X₁ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

CFR: Improvement to new bound with the following program:

new bound:

110⋅X₁₆+51 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars: Arg16_P, Arg7_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l9, n_l5___7, n_l6___1, n_l6___4, n_l6___8, n_l7___10, n_l7___3, n_l7___6, n_l8___2, n_l8___5, n_l8___9
Transitions:
t₆₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁-1, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁
t₆₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.3, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁
t₆₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ X₅ < 0 ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ 0 < X₅ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₄ ≤ X₃ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₃+(X₅)³, X₄+(X₅)², X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₆ ≤ 0 ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₈: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₇, X₁₆, X₈, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₀ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ ≤ X₈ ∧ X₈ ≤ X₂ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₀₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₉₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁₂, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁
t₈₂₉: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₃₀: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₃₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₁₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₀ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₀ ≤ X₁₀ ∧ X₁₀ ≤ X₀ ∧ 2 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 1+X₇ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₁₂: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀+1 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₃: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀+1 ≤ X₁₀ ∧ X₀+1 ≤ X₁₀ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₈₁₄: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₇+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₇ ∧ X₀+1 ≤ X₁₀ ∧ X₁₆ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₅: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₆: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₇: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ X₁₀ ≤ X₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₈₁₈: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___1(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₉: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___4(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀+1 ≤ X₁₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₈₂₀: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___8(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₇+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₇ ∧ X₀+1 ≤ X₁₀ ∧ X₁₆ ≤ X₁ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀

TWN. Size Bound: t₇₄: l14→l13 for X₃

cycle: [t₇₄: l14→l13; t₇₀: l13→l14; t₇₁: l13→l14]
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0 ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅,(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆) -> (X₀,X₁,X₂,X₃+(X₅)³,X₄+(X₅)²,1+X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆)
order: [X₀; X₁; X₂; X₅; X₃; X₄; X₆; X₇; X₈; X₉; X₁₀; X₁₁; X₁₂; X₁₃; X₁₄; X₁₅; X₁₆]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
X₆: X₆
X₇: X₇
X₈: X₈
X₉: X₉
X₁₀: X₁₀
X₁₁: X₁₁
X₁₂: X₁₂
X₁₃: X₁₃
X₁₄: X₁₄
X₁₅: X₁₅
X₁₆: X₁₆
Stabilization-Threshold for: 0 < 1+X₅
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₃+(X₅)³ < X₄+(X₅)²
alphas_abs: 3+12⋅X₃+12⋅X₄+12⋅X₅+18⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+24⋅X₅+11 {O(n^3)}
Stabilization-Threshold for: 1+X₅ < 0
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0 ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅,(X₃,X₅) -> (X₃+(X₅)³,1+X₅)
closed-form: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
runtime bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+28⋅X₅+21 {O(n^3)}

TWN Size Bound - Lifting for t₇₄: l14→l13 and X₃: 10790822077415424⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9511162962444288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4261468654540800⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+936157873766400⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+936157873766400⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1328837880453120⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+625676255428608⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+625676255428608⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+213807139080192⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+213807139080192⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+31193746735104⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+31193746735104⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+317641879369728⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+62387493470208⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+14113002553344⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+14113002553344⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+28226005106688⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+52139703877632⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+52139703877632⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+60571025040384⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1432714936320⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1432714936320⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+3298229176320⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3298229176320⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+477571645440⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+477571645440⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+6596458352640⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9482797530720⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9585841282560⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9585841282560⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+110314192896⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+110314192896⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+1169790087168⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1227901743072⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1358179660800⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1358179660800⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+330942578688⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+330942578688⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+584895043584⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+584895043584⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+11471486976⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₄+11471486976⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₄+131022743888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13502896128⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅+13502896128⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅+139111695360⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+153333426528⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+153333426528⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+17207230464⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₄+2867871744⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₃+2867871744⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₄+40508688384⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅+40508688384⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅+69555847680⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+69555847680⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+11354618880⋅X₁₃⋅X₁₄⋅X₁₅+11429876664⋅X₁₅⋅X₁₅⋅X₁₅+13092285312⋅X₁₃⋅X₁₅⋅X₁₅+13092285312⋅X₁₄⋅X₁₅⋅X₁₅+1607454720⋅X₁₃⋅X₁₃⋅X₁₃+1607454720⋅X₁₄⋅X₁₄⋅X₁₄+4822364160⋅X₁₃⋅X₁₃⋅X₁₄+4822364160⋅X₁₃⋅X₁₄⋅X₁₄+5677309440⋅X₁₃⋅X₁₃⋅X₁₅+5677309440⋅X₁₄⋅X₁₄⋅X₁₅+343411200⋅X₁₃⋅X₁₃+343411200⋅X₁₄⋅X₁₄+686822400⋅X₁₃⋅X₁₄+780496640⋅X₁₅⋅X₁₅+808727040⋅X₁₃⋅X₁₅+808727040⋅X₁₄⋅X₁₅+33185376⋅X₁₄+33185412⋅X₁₃+39082176⋅X₁₅+1225098 {O(n^12)}

TWN. Size Bound: t₇₄: l14→l13 for X₄

cycle: [t₇₄: l14→l13; t₇₀: l13→l14; t₇₁: l13→l14]
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0 ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅,(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆) -> (X₀,X₁,X₂,X₃+(X₅)³,X₄+(X₅)²,1+X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆)
order: [X₀; X₁; X₂; X₅; X₃; X₄; X₆; X₇; X₈; X₉; X₁₀; X₁₁; X₁₂; X₁₃; X₁₄; X₁₅; X₁₆]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
X₆: X₆
X₇: X₇
X₈: X₈
X₉: X₉
X₁₀: X₁₀
X₁₁: X₁₁
X₁₂: X₁₂
X₁₃: X₁₃
X₁₄: X₁₄
X₁₅: X₁₅
X₁₆: X₁₆
Stabilization-Threshold for: 0 < 1+X₅
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₃+(X₅)³ < X₄+(X₅)²
alphas_abs: 3+12⋅X₃+12⋅X₄+12⋅X₅+18⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+24⋅X₅+11 {O(n^3)}
Stabilization-Threshold for: 1+X₅ < 0
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0 ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅,(X₄,X₅) -> (X₄+(X₅)²,1+X₅)
closed-form: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
runtime bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+28⋅X₅+21 {O(n^3)}

TWN Size Bound - Lifting for t₇₄: l14→l13 and X₄: 1448324665344⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+974804585472⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+336218328576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+82911744000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+15437124288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+1906935552⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1906935552⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2219053104⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+537725952⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+537725952⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+133954560⋅X₁₃⋅X₁₄⋅X₁₅+18911232⋅X₁₃⋅X₁₃⋅X₁₃+18911232⋅X₁₄⋅X₁₄⋅X₁₄+230382144⋅X₁₃⋅X₁₅⋅X₁₅+230382144⋅X₁₄⋅X₁₅⋅X₁₅+254612160⋅X₁₅⋅X₁₅⋅X₁₅+56733696⋅X₁₃⋅X₁₃⋅X₁₄+56733696⋅X₁₃⋅X₁₄⋅X₁₄+66977280⋅X₁₃⋅X₁₃⋅X₁₅+66977280⋅X₁₄⋅X₁₄⋅X₁₅+16220160⋅X₁₃⋅X₁₄+19150560⋅X₁₃⋅X₁₅+19150560⋅X₁₄⋅X₁₅+22126940⋅X₁₅⋅X₁₅+8110080⋅X₁₃⋅X₁₃+8110080⋅X₁₄⋅X₁₄+1180224⋅X₁₃+1180260⋅X₁₄+1393560⋅X₁₅+58338 {O(n^9)}

MPRF for transition t₇₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ X₅ < 0 ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

18⋅X₁₅ {O(n)}

TWN: t₇₁: l13→l14

cycle: [t₇₀: l13→l14; t₇₁: l13→l14; t₇₄: l14→l13]
loop: (X₃ < X₄ ∧ X₅ < 0 ∨ X₃ < X₄ ∧ 0 < X₅,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,X₅+1)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1

Termination: true
Formula:

1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅

Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ < X₄
alphas_abs: 10+12⋅X₃+12⋅X₄+30⋅X₅+30⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+60⋅X₅+25 {O(n^3)}
Stabilization-Threshold for: X₅ < 0
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (X₃ < X₄ ∧ X₅ < 0 ∨ X₃ < X₄ ∧ 0 < X₅,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,X₅+1)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1

Termination: true
Formula:

1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅

Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ < X₄
alphas_abs: 10+12⋅X₃+12⋅X₄+30⋅X₅+30⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+60⋅X₅+25 {O(n^3)}
Stabilization-Threshold for: X₅ < 0
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (X₃ < X₄ ∧ X₅ < 0 ∨ X₃ < X₄ ∧ 0 < X₅,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,X₅+1)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1

Termination: true
Formula:

1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅

Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ < X₄
alphas_abs: 10+12⋅X₃+12⋅X₄+30⋅X₅+30⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+60⋅X₅+25 {O(n^3)}
Stabilization-Threshold for: X₅ < 0
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (X₃ < X₄ ∧ X₅ < 0 ∨ X₃ < X₄ ∧ 0 < X₅,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,X₅+1)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1

Termination: true
Formula:

1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅

Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ < X₄
alphas_abs: 10+12⋅X₃+12⋅X₄+30⋅X₅+30⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+60⋅X₅+25 {O(n^3)}
Stabilization-Threshold for: X₅ < 0
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (X₃ < X₄ ∧ X₅ < 0 ∨ X₃ < X₄ ∧ 0 < X₅,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,X₅+1)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1

Termination: true
Formula:

1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅

Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ < X₄
alphas_abs: 10+12⋅X₃+12⋅X₄+30⋅X₅+30⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+60⋅X₅+25 {O(n^3)}
Stabilization-Threshold for: X₅ < 0
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (X₃ < X₄ ∧ X₅ < 0 ∨ X₃ < X₄ ∧ 0 < X₅,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,X₅+1)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1

Termination: true
Formula:

1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅

Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ < X₄
alphas_abs: 10+12⋅X₃+12⋅X₄+30⋅X₅+30⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+60⋅X₅+25 {O(n^3)}
Stabilization-Threshold for: X₅ < 0
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}

TWN - Lifting for t₇₁: l13→l14 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}

relevant size-bounds w.r.t. t₆₉:
X₃: 7⋅X₁₃ {O(n)}
X₄: 7⋅X₁₄ {O(n)}
X₅: 7⋅X₁₅ {O(n)}
Runtime-bound of t₆₉: 1 {O(1)}
Results in: 8232⋅X₁₅⋅X₁₅⋅X₁₅+2940⋅X₁₅⋅X₁₅+168⋅X₁₃+168⋅X₁₄+448⋅X₁₅+31 {O(n^3)}

TWN - Lifting for t₇₁: l13→l14 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}

relevant size-bounds w.r.t. t₆₈:
X₃: 5⋅X₁₃ {O(n)}
X₄: 5⋅X₁₄ {O(n)}
X₅: 5⋅X₁₅ {O(n)}
Runtime-bound of t₆₈: 1 {O(1)}
Results in: 3000⋅X₁₅⋅X₁₅⋅X₁₅+1500⋅X₁₅⋅X₁₅+120⋅X₁₃+120⋅X₁₄+320⋅X₁₅+31 {O(n^3)}

TWN - Lifting for t₇₁: l13→l14 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}

relevant size-bounds w.r.t. t₆₇:
X₃: 6⋅X₁₃ {O(n)}
X₄: 6⋅X₁₄ {O(n)}
X₅: 6⋅X₁₅ {O(n)}
Runtime-bound of t₆₇: 1 {O(1)}
Results in: 5184⋅X₁₅⋅X₁₅⋅X₁₅+2160⋅X₁₅⋅X₁₅+144⋅X₁₃+144⋅X₁₄+384⋅X₁₅+31 {O(n^3)}

TWN - Lifting for t₇₁: l13→l14 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}

relevant size-bounds w.r.t. t₆₉:
X₃: 7⋅X₁₃ {O(n)}
X₄: 7⋅X₁₄ {O(n)}
X₅: 7⋅X₁₅ {O(n)}
Runtime-bound of t₆₉: 1 {O(1)}
Results in: 8232⋅X₁₅⋅X₁₅⋅X₁₅+2940⋅X₁₅⋅X₁₅+168⋅X₁₃+168⋅X₁₄+448⋅X₁₅+31 {O(n^3)}

TWN - Lifting for t₇₁: l13→l14 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}

relevant size-bounds w.r.t. t₆₈:
X₃: 5⋅X₁₃ {O(n)}
X₄: 5⋅X₁₄ {O(n)}
X₅: 5⋅X₁₅ {O(n)}
Runtime-bound of t₆₈: 1 {O(1)}
Results in: 3000⋅X₁₅⋅X₁₅⋅X₁₅+1500⋅X₁₅⋅X₁₅+120⋅X₁₃+120⋅X₁₄+320⋅X₁₅+31 {O(n^3)}

TWN - Lifting for t₇₁: l13→l14 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}

relevant size-bounds w.r.t. t₆₇:
X₃: 6⋅X₁₃ {O(n)}
X₄: 6⋅X₁₄ {O(n)}
X₅: 6⋅X₁₅ {O(n)}
Runtime-bound of t₆₇: 1 {O(1)}
Results in: 5184⋅X₁₅⋅X₁₅⋅X₁₅+2160⋅X₁₅⋅X₁₅+144⋅X₁₃+144⋅X₁₄+384⋅X₁₅+31 {O(n^3)}

TWN: t₇₄: l14→l13

TWN - Lifting for t₇₄: l14→l13 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}

relevant size-bounds w.r.t. t₆₉:
X₃: 7⋅X₁₃ {O(n)}
X₄: 7⋅X₁₄ {O(n)}
X₅: 7⋅X₁₅ {O(n)}
Runtime-bound of t₆₉: 1 {O(1)}
Results in: 8232⋅X₁₅⋅X₁₅⋅X₁₅+2940⋅X₁₅⋅X₁₅+168⋅X₁₃+168⋅X₁₄+448⋅X₁₅+31 {O(n^3)}

TWN - Lifting for t₇₄: l14→l13 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}

relevant size-bounds w.r.t. t₆₈:
X₃: 5⋅X₁₃ {O(n)}
X₄: 5⋅X₁₄ {O(n)}
X₅: 5⋅X₁₅ {O(n)}
Runtime-bound of t₆₈: 1 {O(1)}
Results in: 3000⋅X₁₅⋅X₁₅⋅X₁₅+1500⋅X₁₅⋅X₁₅+120⋅X₁₃+120⋅X₁₄+320⋅X₁₅+31 {O(n^3)}

TWN - Lifting for t₇₄: l14→l13 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}

relevant size-bounds w.r.t. t₆₇:
X₃: 6⋅X₁₃ {O(n)}
X₄: 6⋅X₁₄ {O(n)}
X₅: 6⋅X₁₅ {O(n)}
Runtime-bound of t₆₇: 1 {O(1)}
Results in: 5184⋅X₁₅⋅X₁₅⋅X₁₅+2160⋅X₁₅⋅X₁₅+144⋅X₁₃+144⋅X₁₄+384⋅X₁₅+31 {O(n^3)}

TWN - Lifting for t₇₄: l14→l13 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}

relevant size-bounds w.r.t. t₆₉:
X₃: 7⋅X₁₃ {O(n)}
X₄: 7⋅X₁₄ {O(n)}
X₅: 7⋅X₁₅ {O(n)}
Runtime-bound of t₆₉: 1 {O(1)}
Results in: 8232⋅X₁₅⋅X₁₅⋅X₁₅+2940⋅X₁₅⋅X₁₅+168⋅X₁₃+168⋅X₁₄+448⋅X₁₅+31 {O(n^3)}

TWN - Lifting for t₇₄: l14→l13 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}

relevant size-bounds w.r.t. t₆₈:
X₃: 5⋅X₁₃ {O(n)}
X₄: 5⋅X₁₄ {O(n)}
X₅: 5⋅X₁₅ {O(n)}
Runtime-bound of t₆₈: 1 {O(1)}
Results in: 3000⋅X₁₅⋅X₁₅⋅X₁₅+1500⋅X₁₅⋅X₁₅+120⋅X₁₃+120⋅X₁₄+320⋅X₁₅+31 {O(n^3)}

TWN - Lifting for t₇₄: l14→l13 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}

relevant size-bounds w.r.t. t₆₇:
X₃: 6⋅X₁₃ {O(n)}
X₄: 6⋅X₁₄ {O(n)}
X₅: 6⋅X₁₅ {O(n)}
Runtime-bound of t₆₇: 1 {O(1)}
Results in: 5184⋅X₁₅⋅X₁₅⋅X₁₅+2160⋅X₁₅⋅X₁₅+144⋅X₁₃+144⋅X₁₄+384⋅X₁₅+31 {O(n^3)}

Chain transitions t₇₄: l14→l13 and t₇₃: l13→l15 to t₁₁₂₇: l14→l15

Chain transitions t₆₉: l12→l13 and t₇₃: l13→l15 to t₁₁₂₈: l12→l15

Chain transitions t₆₉: l12→l13 and t₇₂: l13→l15 to t₁₁₂₉: l12→l15

Chain transitions t₇₄: l14→l13 and t₇₂: l13→l15 to t₁₁₃₀: l14→l15

Chain transitions t₆₈: l12→l13 and t₇₂: l13→l15 to t₁₁₃₁: l12→l15

Chain transitions t₆₈: l12→l13 and t₇₃: l13→l15 to t₁₁₃₂: l12→l15

Chain transitions t₆₈: l12→l13 and t₇₁: l13→l14 to t₁₁₃₃: l12→l14

Chain transitions t₆₉: l12→l13 and t₇₁: l13→l14 to t₁₁₃₄: l12→l14

Chain transitions t₇₄: l14→l13 and t₇₁: l13→l14 to t₁₁₃₅: l14→l14

Chain transitions t₆₇: l12→l13 and t₇₁: l13→l14 to t₁₁₃₆: l12→l14

Chain transitions t₆₇: l12→l13 and t₇₂: l13→l15 to t₁₁₃₇: l12→l15

Chain transitions t₆₇: l12→l13 and t₇₃: l13→l15 to t₁₁₃₈: l12→l15

Chain transitions t₆₇: l12→l13 and t₇₀: l13→l14 to t₁₁₃₉: l12→l14

Chain transitions t₆₈: l12→l13 and t₇₀: l13→l14 to t₁₁₄₀: l12→l14

Chain transitions t₆₉: l12→l13 and t₇₀: l13→l14 to t₁₁₄₁: l12→l14

Chain transitions t₇₄: l14→l13 and t₇₀: l13→l14 to t₁₁₄₂: l14→l14

Analysing control-flow refined program

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l11

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4

Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l15

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l17

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5

Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l13

Found invariant X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l16

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l18

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l9

Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₃ ≤ X₁₄ for location l14

TWN. Size Bound: t₁₁₃₅: l14→l14 for X₃

cycle: [t₁₁₃₅: l14→l14; t₁₁₄₂: l14→l14]
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆) -> (X₀,X₁,X₂,X₃+(X₅)³,X₄+(X₅)²,1+X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆)
order: [X₀; X₁; X₂; X₅; X₃; X₄; X₆; X₇; X₈; X₉; X₁₀; X₁₁; X₁₂; X₁₃; X₁₄; X₁₅; X₁₆]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
X₆: X₆
X₇: X₇
X₈: X₈
X₉: X₉
X₁₀: X₁₀
X₁₁: X₁₁
X₁₂: X₁₂
X₁₃: X₁₃
X₁₄: X₁₄
X₁₅: X₁₅
X₁₆: X₁₆
Stabilization-Threshold for: 1+X₅ < 0
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₃+(X₅)³ < X₄+(X₅)²
alphas_abs: 3+12⋅X₃+12⋅X₄+12⋅X₅+18⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+24⋅X₅+11 {O(n^3)}
Stabilization-Threshold for: 0 < 1+X₅
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₃,X₅) -> (X₃+(X₅)³,1+X₅)
closed-form: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
runtime bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+28⋅X₅+21 {O(n^3)}

TWN Size Bound - Lifting for t₁₁₃₅: l14→l14 and X₃: 39711053784487182336⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+17266369537398767616⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3811619094929381376⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+837335087215607808⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+837335087215607808⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+275419377693130752⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+275419377693130752⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+584947405170017280⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13503915469504512⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+46279043640281088⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+46279043640281088⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+6751957734752256⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+6751957734752256⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+68754310359201792⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1501642013442048⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1501642013442048⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3003284026884096⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+5547732994105344⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+5547732994105344⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+6444836642953728⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+172651491477504⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+172651491477504⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+24999310983168⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+24999310983168⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+345302982955008⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+496393382489184⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+501787385298432⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+501787385298432⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+74997932949504⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+74997932949504⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+15107508827136⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+15107508827136⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2849353334784⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+2849353334784⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+30215017654272⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+31716008924688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+35081014003200⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+35081014003200⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+8548060004352⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+8548060004352⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+147197067264⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₄+147197067264⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₄+1681226129232⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+173263214592⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅+173263214592⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅+1785019991040⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+1967506980192⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1967506980192⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+220795600896⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₄+36799266816⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₃+36799266816⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₄+519789643776⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅+519789643776⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅+892509995520⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+892509995520⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+10382653440⋅X₁₃⋅X₁₃⋅X₁₃+10382653440⋅X₁₄⋅X₁₄⋅X₁₄+31147960320⋅X₁₃⋅X₁₃⋅X₁₄+31147960320⋅X₁₃⋅X₁₄⋅X₁₄+36670106880⋅X₁₃⋅X₁₃⋅X₁₅+36670106880⋅X₁₄⋅X₁₄⋅X₁₅+73340213760⋅X₁₃⋅X₁₄⋅X₁₅+73826308628⋅X₁₅⋅X₁₅⋅X₁₅+84563913024⋅X₁₃⋅X₁₅⋅X₁₅+84563913024⋅X₁₄⋅X₁₅⋅X₁₅+1142622720⋅X₁₃⋅X₁₃+1142622720⋅X₁₄⋅X₁₄+2285245440⋅X₁₃⋅X₁₄+2596925184⋅X₁₅⋅X₁₅+2690855424⋅X₁₃⋅X₁₅+2690855424⋅X₁₄⋅X₁₅+58996224⋅X₁₄+58996288⋅X₁₃+69479424⋅X₁₅+1225098 {O(n^12)}

TWN. Size Bound: t₁₁₃₅: l14→l14 for X₄

cycle: [t₁₁₃₅: l14→l14; t₁₁₄₂: l14→l14]
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆) -> (X₀,X₁,X₂,X₃+(X₅)³,X₄+(X₅)²,1+X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆)
order: [X₀; X₁; X₂; X₅; X₃; X₄; X₆; X₇; X₈; X₉; X₁₀; X₁₁; X₁₂; X₁₃; X₁₄; X₁₅; X₁₆]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
X₆: X₆
X₇: X₇
X₈: X₈
X₉: X₉
X₁₀: X₁₀
X₁₁: X₁₁
X₁₂: X₁₂
X₁₃: X₁₃
X₁₄: X₁₄
X₁₅: X₁₅
X₁₆: X₁₆
Stabilization-Threshold for: 1+X₅ < 0
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₃+(X₅)³ < X₄+(X₅)²
alphas_abs: 3+12⋅X₃+12⋅X₄+12⋅X₅+18⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+24⋅X₅+11 {O(n^3)}
Stabilization-Threshold for: 0 < 1+X₅
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₄,X₅) -> (X₄+(X₅)²,1+X₅)
closed-form: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
runtime bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+28⋅X₅+21 {O(n^3)}

TWN Size Bound - Lifting for t₁₁₃₅: l14→l14 and X₄: 637544855771136⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+210998679211008⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10428069537792⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10428069537792⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+35774071886592⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2343685404672⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2343685404672⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4340158156800⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+118723055616⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+273722600448⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+273722600448⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+398732206752⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+59361527808⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+59361527808⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+13799725056⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+24468956928⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+24468956928⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+28473911856⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+6899862528⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+6899862528⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+122148864⋅X₁₃⋅X₁₃⋅X₁₃+122148864⋅X₁₄⋅X₁₄⋅X₁₄+1488053088⋅X₁₃⋅X₁₅⋅X₁₅+1488053088⋅X₁₄⋅X₁₅⋅X₁₅+1644556320⋅X₁₅⋅X₁₅⋅X₁₅+366446592⋅X₁₃⋅X₁₃⋅X₁₄+366446592⋅X₁₃⋅X₁₄⋅X₁₄+432610560⋅X₁₃⋅X₁₃⋅X₁₅+432610560⋅X₁₄⋅X₁₄⋅X₁₅+865221120⋅X₁₃⋅X₁₄⋅X₁₅+26984448⋅X₁₃⋅X₁₃+26984448⋅X₁₄⋅X₁₄+53968896⋅X₁₃⋅X₁₄+63719136⋅X₁₃⋅X₁₅+63719136⋅X₁₄⋅X₁₅+73622364⋅X₁₅⋅X₁₅+2098176⋅X₁₃+2098240⋅X₁₄+2477440⋅X₁₅+58338 {O(n^9)}

TWN. Size Bound: t₁₁₄₂: l14→l14 for X₃

cycle: [t₁₁₃₅: l14→l14; t₁₁₄₂: l14→l14]
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆) -> (X₀,X₁,X₂,X₃+(X₅)³,X₄+(X₅)²,1+X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆)
order: [X₀; X₁; X₂; X₅; X₃; X₄; X₆; X₇; X₈; X₉; X₁₀; X₁₁; X₁₂; X₁₃; X₁₄; X₁₅; X₁₆]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
X₆: X₆
X₇: X₇
X₈: X₈
X₉: X₉
X₁₀: X₁₀
X₁₁: X₁₁
X₁₂: X₁₂
X₁₃: X₁₃
X₁₄: X₁₄
X₁₅: X₁₅
X₁₆: X₁₆
Stabilization-Threshold for: 1+X₅ < 0
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₃+(X₅)³ < X₄+(X₅)²
alphas_abs: 3+12⋅X₃+12⋅X₄+12⋅X₅+18⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+24⋅X₅+11 {O(n^3)}
Stabilization-Threshold for: 0 < 1+X₅
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₃,X₅) -> (X₃+(X₅)³,1+X₅)
closed-form: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
runtime bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+28⋅X₅+21 {O(n^3)}

TWN Size Bound - Lifting for t₁₁₄₂: l14→l14 and X₃: 39711053784487182336⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+17266369537398767616⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3811619094929381376⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+837335087215607808⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+837335087215607808⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+275419377693130752⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+275419377693130752⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+584947405170017280⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13503915469504512⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+46279043640281088⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+46279043640281088⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+6751957734752256⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+6751957734752256⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+68754310359201792⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1501642013442048⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1501642013442048⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3003284026884096⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+5547732994105344⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+5547732994105344⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+6444836642953728⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+172651491477504⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+172651491477504⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+24999310983168⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+24999310983168⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+345302982955008⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+496393382489184⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+501787385298432⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+501787385298432⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+74997932949504⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+74997932949504⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+15107508827136⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+15107508827136⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2849353334784⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+2849353334784⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+30215017654272⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+31716008924688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+35081014003200⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+35081014003200⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+8548060004352⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+8548060004352⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+147197067264⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₄+147197067264⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₄+1681226129232⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+173263214592⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅+173263214592⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅+1785019991040⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+1967506980192⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1967506980192⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+220795600896⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₄+36799266816⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₃+36799266816⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₄+519789643776⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅+519789643776⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅+892509995520⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+892509995520⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+10382653440⋅X₁₃⋅X₁₃⋅X₁₃+10382653440⋅X₁₄⋅X₁₄⋅X₁₄+31147960320⋅X₁₃⋅X₁₃⋅X₁₄+31147960320⋅X₁₃⋅X₁₄⋅X₁₄+36670106880⋅X₁₃⋅X₁₃⋅X₁₅+36670106880⋅X₁₄⋅X₁₄⋅X₁₅+73340213760⋅X₁₃⋅X₁₄⋅X₁₅+73826308628⋅X₁₅⋅X₁₅⋅X₁₅+84563913024⋅X₁₃⋅X₁₅⋅X₁₅+84563913024⋅X₁₄⋅X₁₅⋅X₁₅+1142622720⋅X₁₃⋅X₁₃+1142622720⋅X₁₄⋅X₁₄+2285245440⋅X₁₃⋅X₁₄+2596925184⋅X₁₅⋅X₁₅+2690855424⋅X₁₃⋅X₁₅+2690855424⋅X₁₄⋅X₁₅+58996224⋅X₁₄+58996288⋅X₁₃+69479424⋅X₁₅+1225098 {O(n^12)}

TWN. Size Bound: t₁₁₄₂: l14→l14 for X₄

cycle: [t₁₁₃₅: l14→l14; t₁₁₄₂: l14→l14]
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆) -> (X₀,X₁,X₂,X₃+(X₅)³,X₄+(X₅)²,1+X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆)
order: [X₀; X₁; X₂; X₅; X₃; X₄; X₆; X₇; X₈; X₉; X₁₀; X₁₁; X₁₂; X₁₃; X₁₄; X₁₅; X₁₆]
closed-form:
X₀: X₀
X₁: X₁
X₂: X₂
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
X₆: X₆
X₇: X₇
X₈: X₈
X₉: X₉
X₁₀: X₁₀
X₁₁: X₁₁
X₁₂: X₁₂
X₁₃: X₁₃
X₁₄: X₁₄
X₁₅: X₁₅
X₁₆: X₁₆
Stabilization-Threshold for: 1+X₅ < 0
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₃+(X₅)³ < X₄+(X₅)²
alphas_abs: 3+12⋅X₃+12⋅X₄+12⋅X₅+18⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+24⋅X₅+11 {O(n^3)}
Stabilization-Threshold for: 0 < 1+X₅
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₄,X₅) -> (X₄+(X₅)²,1+X₅)
closed-form: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
runtime bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+28⋅X₅+21 {O(n^3)}

TWN Size Bound - Lifting for t₁₁₄₂: l14→l14 and X₄: 637544855771136⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+210998679211008⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10428069537792⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10428069537792⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+35774071886592⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2343685404672⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2343685404672⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4340158156800⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+118723055616⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+273722600448⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+273722600448⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+398732206752⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+59361527808⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+59361527808⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+13799725056⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+24468956928⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+24468956928⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+28473911856⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+6899862528⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+6899862528⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+122148864⋅X₁₃⋅X₁₃⋅X₁₃+122148864⋅X₁₄⋅X₁₄⋅X₁₄+1488053088⋅X₁₃⋅X₁₅⋅X₁₅+1488053088⋅X₁₄⋅X₁₅⋅X₁₅+1644556320⋅X₁₅⋅X₁₅⋅X₁₅+366446592⋅X₁₃⋅X₁₃⋅X₁₄+366446592⋅X₁₃⋅X₁₄⋅X₁₄+432610560⋅X₁₃⋅X₁₃⋅X₁₅+432610560⋅X₁₄⋅X₁₄⋅X₁₅+865221120⋅X₁₃⋅X₁₄⋅X₁₅+26984448⋅X₁₃⋅X₁₃+26984448⋅X₁₄⋅X₁₄+53968896⋅X₁₃⋅X₁₄+63719136⋅X₁₃⋅X₁₅+63719136⋅X₁₄⋅X₁₅+73622364⋅X₁₅⋅X₁₅+2098176⋅X₁₃+2098240⋅X₁₄+2477440⋅X₁₅+58338 {O(n^9)}

Analysing control-flow refined program

Cut unsatisfiable transition t₁₆₉₃: n_l13___6→n_l14___4

Cut unsatisfiable transition t₁₇₁₁: n_l13___3→l15

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l11

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1

Found invariant X₇ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₁₅+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₅ ∧ 1+X₁₃ ≤ X₁₄ for location n_l13___3

Found invariant X₇ ≤ X₀ ∧ 1+X₅ ≤ 0 ∧ X₅ ≤ X₁₅ ∧ 2+X₁₅+X₅ ≤ 0 ∧ X₁₅ ≤ X₅ ∧ X₄ ≤ X₁₄ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ 1+X₃ ≤ X₁₄ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₅ ≤ 0 ∧ 1+X₁₃ ≤ X₁₄ for location n_l14___2

Found invariant X₇ ≤ X₀ ∧ X₅ ≤ 0 ∧ 1+X₁₅+X₅ ≤ 0 ∧ 1+X₁₅ ≤ X₅ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₅ ≤ 0 ∧ 1+X₁₃ ≤ X₁₄ for location n_l13___6

Found invariant X₇ ≤ X₀ ∧ X₅ ≤ X₁₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₅+X₅ ∧ X₁₅ ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₁₄ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ 1+X₃ ≤ X₁₄ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₅ ∧ X₁ ≤ X₁₅ ∧ 1+X₁₃ ≤ X₁₄ ∧ X₁ ≤ 1 for location n_l14___7

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2

Found invariant X₇ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₁₅+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₅ ∧ 1+X₁₃ ≤ X₁₄ for location n_l14___4

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l15

Found invariant X₇ ≤ X₀ ∧ 1+X₅ ≤ 0 ∧ X₅ ≤ X₁₅ ∧ 2+X₁₅+X₅ ≤ 0 ∧ X₁+X₅ ≤ 0 ∧ X₁₅ ≤ X₅ ∧ X₄ ≤ X₁₄ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ 1+X₃ ≤ X₁₄ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₅ ≤ 0 ∧ X₁+X₁₅ ≤ 0 ∧ 1+X₁₃ ≤ X₁₄ ∧ X₁ ≤ 1 for location n_l14___8

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3

Found invariant X₇ ≤ X₀ ∧ 1+X₅ ≤ 0 ∧ 3+X₁₅+X₅ ≤ 0 ∧ 1+X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ 2+X₁₅ ≤ 0 ∧ 1+X₁₃ ≤ X₁₄ for location n_l14___5

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l17

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5

Found invariant X₇ ≤ X₀ ∧ X₅ ≤ X₁₅ ∧ X₁₅ ≤ X₅ ∧ X₄ ≤ X₁₄ ∧ X₁₄ ≤ X₄ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l13

Found invariant X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l16

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l9

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l18

Found invariant X₇ ≤ X₀ ∧ X₅ ≤ X₁₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₅+X₅ ∧ X₁₅ ≤ X₅ ∧ X₄ ≤ X₁₄ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ 1+X₃ ≤ X₁₄ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₅ ∧ 1+X₁₃ ≤ X₁₄ for location n_l14___1

MPRF for transition t₇₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

2896649330688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1949609170944⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+672436657152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+165823488000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+30874248576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+1075451904⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+3813871104⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+3813871104⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4438106208⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+113467392⋅X₁₃⋅X₁₃⋅X₁₄+113467392⋅X₁₃⋅X₁₄⋅X₁₄+133954560⋅X₁₃⋅X₁₃⋅X₁₅+133954560⋅X₁₄⋅X₁₄⋅X₁₅+267909120⋅X₁₃⋅X₁₄⋅X₁₅+37822464⋅X₁₃⋅X₁₃⋅X₁₃+37822464⋅X₁₄⋅X₁₄⋅X₁₄+460764288⋅X₁₃⋅X₁₅⋅X₁₅+460764288⋅X₁₄⋅X₁₅⋅X₁₅+509224320⋅X₁₅⋅X₁₅⋅X₁₅+16220160⋅X₁₃⋅X₁₃+16220160⋅X₁₄⋅X₁₄+32440320⋅X₁₃⋅X₁₄+38301120⋅X₁₃⋅X₁₅+38301120⋅X₁₄⋅X₁₅+44253880⋅X₁₅⋅X₁₅+2360448⋅X₁₃+2360556⋅X₁₄+2787120⋅X₁₅+116676 {O(n^9)}

MPRF for transition t₇₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

2896649330688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1949609170944⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+672436657152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+165823488000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+30874248576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+1075451904⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+3813871104⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+3813871104⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4438106208⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+113467392⋅X₁₃⋅X₁₃⋅X₁₄+113467392⋅X₁₃⋅X₁₄⋅X₁₄+133954560⋅X₁₃⋅X₁₃⋅X₁₅+133954560⋅X₁₄⋅X₁₄⋅X₁₅+267909120⋅X₁₃⋅X₁₄⋅X₁₅+37822464⋅X₁₃⋅X₁₃⋅X₁₃+37822464⋅X₁₄⋅X₁₄⋅X₁₄+460764288⋅X₁₃⋅X₁₅⋅X₁₅+460764288⋅X₁₄⋅X₁₅⋅X₁₅+509224320⋅X₁₅⋅X₁₅⋅X₁₅+16220160⋅X₁₃⋅X₁₃+16220160⋅X₁₄⋅X₁₄+32440320⋅X₁₃⋅X₁₄+38301120⋅X₁₃⋅X₁₅+38301120⋅X₁₄⋅X₁₅+44253880⋅X₁₅⋅X₁₅+2360448⋅X₁₃+2360556⋅X₁₄+2787120⋅X₁₅+116676 {O(n^9)}

Chain transitions t₇₇: l16→l15 and t₇₆: l15→l17 to t₁₉₃₃: l16→l17

Chain transitions t₇₃: l13→l15 and t₇₆: l15→l17 to t₁₉₃₄: l13→l17

Chain transitions t₇₃: l13→l15 and t₇₅: l15→l16 to t₁₉₃₅: l13→l16

Chain transitions t₇₇: l16→l15 and t₇₅: l15→l16 to t₁₉₃₆: l16→l16

Chain transitions t₇₂: l13→l15 and t₇₅: l15→l16 to t₁₉₃₇: l13→l16

Chain transitions t₇₂: l13→l15 and t₇₆: l15→l17 to t₁₉₃₈: l13→l17

Analysing control-flow refined program

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l11

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l15

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l17

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5

Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l13

Found invariant X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l16

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l18

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l9

Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l14

MPRF for transition t₁₉₃₆: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) -{2}> l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄+1 ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄+1 ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

2896649330688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1949609170944⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+672436657152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+165823488000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+30874248576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+1075451904⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+3813871104⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+3813871104⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4438106208⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+113467392⋅X₁₃⋅X₁₃⋅X₁₄+113467392⋅X₁₃⋅X₁₄⋅X₁₄+133954560⋅X₁₃⋅X₁₃⋅X₁₅+133954560⋅X₁₄⋅X₁₄⋅X₁₅+267909120⋅X₁₃⋅X₁₄⋅X₁₅+37822464⋅X₁₃⋅X₁₃⋅X₁₃+37822464⋅X₁₄⋅X₁₄⋅X₁₄+460764288⋅X₁₃⋅X₁₅⋅X₁₅+460764288⋅X₁₄⋅X₁₅⋅X₁₅+509224320⋅X₁₅⋅X₁₅⋅X₁₅+16220160⋅X₁₃⋅X₁₃+16220160⋅X₁₄⋅X₁₄+32440320⋅X₁₃⋅X₁₄+38301120⋅X₁₃⋅X₁₅+38301120⋅X₁₄⋅X₁₅+44253880⋅X₁₅⋅X₁₅+2360448⋅X₁₃+2360556⋅X₁₄+2787120⋅X₁₅+116676 {O(n^9)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l11

Found invariant X₇ ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 2 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location n_l16___2

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₄ ≤ X₆ ∧ X₁₄ ≤ X₆ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l15

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5

Found invariant X₇ ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location n_l15___3

Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3

Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l17

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9

Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₁₄ ≤ X₆ ∧ X₁₅ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₁₄ ≤ X₄ ∧ 1 ≤ X₃ ∧ X₁₄ ≤ X₃ ∧ X₁ ≤ X₁₆ for location n_l16___4

Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l13

Found invariant X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7

Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l18

Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l9

Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₁₅ ≤ X₆ ∧ X₁₄ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₁₅+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1+X₁₅ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₁₅ ≤ 0 for location n_l16___1

Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l14

MPRF for transition t₂₁₆₅: n_l15___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l16___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₄ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ 0 < X₆ ∧ X₁ ≤ X₁₆ ∧ X₆ ≤ X₄ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

5793298661376⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3899218341888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1344873314304⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+331646976000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+18385698816⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+61748497152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+2150903808⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+4301807616⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+7627742208⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+7627742208⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+8876212416⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1018448640⋅X₁₅⋅X₁₅⋅X₁₅+226934784⋅X₁₃⋅X₁₃⋅X₁₄+226934784⋅X₁₃⋅X₁₄⋅X₁₄+267909120⋅X₁₃⋅X₁₃⋅X₁₅+267909120⋅X₁₄⋅X₁₄⋅X₁₅+535818240⋅X₁₃⋅X₁₄⋅X₁₅+75644928⋅X₁₃⋅X₁₃⋅X₁₃+75644928⋅X₁₄⋅X₁₄⋅X₁₄+921528576⋅X₁₃⋅X₁₅⋅X₁₅+921528576⋅X₁₄⋅X₁₅⋅X₁₅+32440320⋅X₁₃⋅X₁₃+32440320⋅X₁₄⋅X₁₄+64880640⋅X₁₃⋅X₁₄+76602240⋅X₁₃⋅X₁₅+76602240⋅X₁₄⋅X₁₅+88507760⋅X₁₅⋅X₁₅+4720896⋅X₁₃+4721112⋅X₁₄+5574240⋅X₁₅+233354 {O(n^9)}

MPRF for transition t₂₁₆₉: n_l16___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l15___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₄ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 0 < X₆ ∧ X₁₄ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 2 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ of depth 1:

new bound:

5793298661376⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3899218341888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1344873314304⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+331646976000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+18385698816⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+61748497152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+2150903808⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+4301807616⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+7627742208⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+7627742208⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+8876212416⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1018448640⋅X₁₅⋅X₁₅⋅X₁₅+226934784⋅X₁₃⋅X₁₃⋅X₁₄+226934784⋅X₁₃⋅X₁₄⋅X₁₄+267909120⋅X₁₃⋅X₁₃⋅X₁₅+267909120⋅X₁₄⋅X₁₄⋅X₁₅+535818240⋅X₁₃⋅X₁₄⋅X₁₅+75644928⋅X₁₃⋅X₁₃⋅X₁₃+75644928⋅X₁₄⋅X₁₄⋅X₁₄+921528576⋅X₁₃⋅X₁₅⋅X₁₅+921528576⋅X₁₄⋅X₁₅⋅X₁₅+32440320⋅X₁₃⋅X₁₃+32440320⋅X₁₄⋅X₁₄+64880640⋅X₁₃⋅X₁₄+76602240⋅X₁₃⋅X₁₅+76602240⋅X₁₄⋅X₁₅+88507760⋅X₁₅⋅X₁₅+4720896⋅X₁₃+4721112⋅X₁₄+5574240⋅X₁₅+233352 {O(n^9)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:5793298661376⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3899218341888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1344873314304⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+331646976000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+18385698816⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+61748497152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+2150903808⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+4301807616⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+7627742208⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+7627742208⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+8876212416⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1018514304⋅X₁₅⋅X₁₅⋅X₁₅+226934784⋅X₁₃⋅X₁₃⋅X₁₄+226934784⋅X₁₃⋅X₁₄⋅X₁₄+267909120⋅X₁₃⋅X₁₃⋅X₁₅+267909120⋅X₁₄⋅X₁₄⋅X₁₅+535818240⋅X₁₃⋅X₁₄⋅X₁₅+75644928⋅X₁₃⋅X₁₃⋅X₁₃+75644928⋅X₁₄⋅X₁₄⋅X₁₄+921528576⋅X₁₃⋅X₁₅⋅X₁₅+921528576⋅X₁₄⋅X₁₅⋅X₁₅+32440320⋅X₁₃⋅X₁₃+32440320⋅X₁₄⋅X₁₄+64880640⋅X₁₃⋅X₁₄+76602240⋅X₁₃⋅X₁₅+76602240⋅X₁₄⋅X₁₅+88534160⋅X₁₅⋅X₁₅+110⋅X₁₆+4722624⋅X₁₃+4722840⋅X₁₄+5578866⋅X₁₅+233787 {O(n^9)}
t₆₂: 1 {O(1)}
t₆₃: 1 {O(1)}
t₆₄: X₁₆+1 {O(n)}
t₆₅: X₁₆+1 {O(n)}
t₆₆: X₁₆+1 {O(n)}
t₆₇: 1 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: 1 {O(1)}
t₇₀: 18⋅X₁₅ {O(n)}
t₇₁: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2304⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₂: 1 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2304⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₅: 2896649330688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1949609170944⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+672436657152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+165823488000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+30874248576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+1075451904⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+3813871104⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+3813871104⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4438106208⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+113467392⋅X₁₃⋅X₁₃⋅X₁₄+113467392⋅X₁₃⋅X₁₄⋅X₁₄+133954560⋅X₁₃⋅X₁₃⋅X₁₅+133954560⋅X₁₄⋅X₁₄⋅X₁₅+267909120⋅X₁₃⋅X₁₄⋅X₁₅+37822464⋅X₁₃⋅X₁₃⋅X₁₃+37822464⋅X₁₄⋅X₁₄⋅X₁₄+460764288⋅X₁₃⋅X₁₅⋅X₁₅+460764288⋅X₁₄⋅X₁₅⋅X₁₅+509224320⋅X₁₅⋅X₁₅⋅X₁₅+16220160⋅X₁₃⋅X₁₃+16220160⋅X₁₄⋅X₁₄+32440320⋅X₁₃⋅X₁₄+38301120⋅X₁₃⋅X₁₅+38301120⋅X₁₄⋅X₁₅+44253880⋅X₁₅⋅X₁₅+2360448⋅X₁₃+2360556⋅X₁₄+2787120⋅X₁₅+116676 {O(n^9)}
t₇₆: 1 {O(1)}
t₇₇: 2896649330688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1949609170944⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+672436657152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+165823488000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+30874248576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+1075451904⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+3813871104⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+3813871104⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4438106208⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+113467392⋅X₁₃⋅X₁₃⋅X₁₄+113467392⋅X₁₃⋅X₁₄⋅X₁₄+133954560⋅X₁₃⋅X₁₃⋅X₁₅+133954560⋅X₁₄⋅X₁₄⋅X₁₅+267909120⋅X₁₃⋅X₁₄⋅X₁₅+37822464⋅X₁₃⋅X₁₃⋅X₁₃+37822464⋅X₁₄⋅X₁₄⋅X₁₄+460764288⋅X₁₃⋅X₁₅⋅X₁₅+460764288⋅X₁₄⋅X₁₅⋅X₁₅+509224320⋅X₁₅⋅X₁₅⋅X₁₅+16220160⋅X₁₃⋅X₁₃+16220160⋅X₁₄⋅X₁₄+32440320⋅X₁₃⋅X₁₄+38301120⋅X₁₃⋅X₁₅+38301120⋅X₁₄⋅X₁₅+44253880⋅X₁₅⋅X₁₅+2360448⋅X₁₃+2360556⋅X₁₄+2787120⋅X₁₅+116676 {O(n^9)}
t₇₈: 1 {O(1)}
t₇₉: 1 {O(1)}
t₈₀: 1 {O(1)}
t₈₁: 1 {O(1)}
t₈₂: X₁₆+1 {O(n)}
t₈₃: X₁₆+1 {O(n)}
t₈₄: X₁₆+1 {O(n)}
t₈₅: X₁₆+1 {O(n)}
t₉₀: X₁₆ {O(n)}
t₈₀₉: X₁₆ {O(n)}
t₈₁₀: 1 {O(1)}
t₈₁₁: 10⋅X₁₆+2 {O(n)}
t₈₁₂: X₁₆ {O(n)}
t₈₁₃: 10⋅X₁₆+2 {O(n)}
t₈₁₄: 1 {O(1)}
t₈₁₅: 1 {O(1)}
t₈₁₆: X₁₆ {O(n)}
t₈₁₇: 18⋅X₁₆+10 {O(n)}
t₈₁₈: X₁₆ {O(n)}
t₈₁₉: 16⋅X₁₆+8 {O(n)}
t₈₂₀: 1 {O(1)}
t₈₂₉: 3⋅X₁₆+1 {O(n)}
t₈₃₀: 16⋅X₁₆+12 {O(n)}
t₈₃₁: 25⋅X₁₆+5 {O(n)}

Costbounds

Overall costbound: 5793298661376⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3899218341888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1344873314304⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+331646976000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+18385698816⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+61748497152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+2150903808⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+4301807616⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+7627742208⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+7627742208⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+8876212416⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1018514304⋅X₁₅⋅X₁₅⋅X₁₅+226934784⋅X₁₃⋅X₁₃⋅X₁₄+226934784⋅X₁₃⋅X₁₄⋅X₁₄+267909120⋅X₁₃⋅X₁₃⋅X₁₅+267909120⋅X₁₄⋅X₁₄⋅X₁₅+535818240⋅X₁₃⋅X₁₄⋅X₁₅+75644928⋅X₁₃⋅X₁₃⋅X₁₃+75644928⋅X₁₄⋅X₁₄⋅X₁₄+921528576⋅X₁₃⋅X₁₅⋅X₁₅+921528576⋅X₁₄⋅X₁₅⋅X₁₅+32440320⋅X₁₃⋅X₁₃+32440320⋅X₁₄⋅X₁₄+64880640⋅X₁₃⋅X₁₄+76602240⋅X₁₃⋅X₁₅+76602240⋅X₁₄⋅X₁₅+88534160⋅X₁₅⋅X₁₅+110⋅X₁₆+4722624⋅X₁₃+4722840⋅X₁₄+5578866⋅X₁₅+233787 {O(n^9)}
t₆₂: 1 {O(1)}
t₆₃: 1 {O(1)}
t₆₄: X₁₆+1 {O(n)}
t₆₅: X₁₆+1 {O(n)}
t₆₆: X₁₆+1 {O(n)}
t₆₇: 1 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: 1 {O(1)}
t₇₀: 18⋅X₁₅ {O(n)}
t₇₁: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2304⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₂: 1 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2304⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₅: 2896649330688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1949609170944⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+672436657152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+165823488000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+30874248576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+1075451904⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+3813871104⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+3813871104⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4438106208⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+113467392⋅X₁₃⋅X₁₃⋅X₁₄+113467392⋅X₁₃⋅X₁₄⋅X₁₄+133954560⋅X₁₃⋅X₁₃⋅X₁₅+133954560⋅X₁₄⋅X₁₄⋅X₁₅+267909120⋅X₁₃⋅X₁₄⋅X₁₅+37822464⋅X₁₃⋅X₁₃⋅X₁₃+37822464⋅X₁₄⋅X₁₄⋅X₁₄+460764288⋅X₁₃⋅X₁₅⋅X₁₅+460764288⋅X₁₄⋅X₁₅⋅X₁₅+509224320⋅X₁₅⋅X₁₅⋅X₁₅+16220160⋅X₁₃⋅X₁₃+16220160⋅X₁₄⋅X₁₄+32440320⋅X₁₃⋅X₁₄+38301120⋅X₁₃⋅X₁₅+38301120⋅X₁₄⋅X₁₅+44253880⋅X₁₅⋅X₁₅+2360448⋅X₁₃+2360556⋅X₁₄+2787120⋅X₁₅+116676 {O(n^9)}
t₇₆: 1 {O(1)}
t₇₇: 2896649330688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1949609170944⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+672436657152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+165823488000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+30874248576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+1075451904⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+3813871104⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+3813871104⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4438106208⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+113467392⋅X₁₃⋅X₁₃⋅X₁₄+113467392⋅X₁₃⋅X₁₄⋅X₁₄+133954560⋅X₁₃⋅X₁₃⋅X₁₅+133954560⋅X₁₄⋅X₁₄⋅X₁₅+267909120⋅X₁₃⋅X₁₄⋅X₁₅+37822464⋅X₁₃⋅X₁₃⋅X₁₃+37822464⋅X₁₄⋅X₁₄⋅X₁₄+460764288⋅X₁₃⋅X₁₅⋅X₁₅+460764288⋅X₁₄⋅X₁₅⋅X₁₅+509224320⋅X₁₅⋅X₁₅⋅X₁₅+16220160⋅X₁₃⋅X₁₃+16220160⋅X₁₄⋅X₁₄+32440320⋅X₁₃⋅X₁₄+38301120⋅X₁₃⋅X₁₅+38301120⋅X₁₄⋅X₁₅+44253880⋅X₁₅⋅X₁₅+2360448⋅X₁₃+2360556⋅X₁₄+2787120⋅X₁₅+116676 {O(n^9)}
t₇₈: 1 {O(1)}
t₇₉: 1 {O(1)}
t₈₀: 1 {O(1)}
t₈₁: 1 {O(1)}
t₈₂: X₁₆+1 {O(n)}
t₈₃: X₁₆+1 {O(n)}
t₈₄: X₁₆+1 {O(n)}
t₈₅: X₁₆+1 {O(n)}
t₉₀: X₁₆ {O(n)}
t₈₀₉: X₁₆ {O(n)}
t₈₁₀: 1 {O(1)}
t₈₁₁: 10⋅X₁₆+2 {O(n)}
t₈₁₂: X₁₆ {O(n)}
t₈₁₃: 10⋅X₁₆+2 {O(n)}
t₈₁₄: 1 {O(1)}
t₈₁₅: 1 {O(1)}
t₈₁₆: X₁₆ {O(n)}
t₈₁₇: 18⋅X₁₆+10 {O(n)}
t₈₁₈: X₁₆ {O(n)}
t₈₁₉: 16⋅X₁₆+8 {O(n)}
t₈₂₀: 1 {O(1)}
t₈₂₉: 3⋅X₁₆+1 {O(n)}
t₈₃₀: 16⋅X₁₆+12 {O(n)}
t₈₃₁: 25⋅X₁₆+5 {O(n)}

Sizebounds

t₆₂, X₀: X₀ {O(n)}
t₆₂, X₁: X₁ {O(n)}
t₆₂, X₂: X₂ {O(n)}
t₆₂, X₃: X₃ {O(n)}
t₆₂, X₄: X₄ {O(n)}
t₆₂, X₅: X₅ {O(n)}
t₆₂, X₆: X₆ {O(n)}
t₆₂, X₇: X₇ {O(n)}
t₆₂, X₈: X₈ {O(n)}
t₆₂, X₉: X₉ {O(n)}
t₆₂, X₁₀: X₁₀ {O(n)}
t₆₂, X₁₁: X₁₁ {O(n)}
t₆₂, X₁₂: X₁₂ {O(n)}
t₆₂, X₁₃: X₁₃ {O(n)}
t₆₂, X₁₄: X₁₄ {O(n)}
t₆₂, X₁₅: X₁₅ {O(n)}
t₆₂, X₁₆: X₁₆ {O(n)}
t₆₃, X₀: X₀ {O(n)}
t₆₃, X₁: X₁ {O(n)}
t₆₃, X₂: X₂ {O(n)}
t₆₃, X₃: X₃ {O(n)}
t₆₃, X₄: X₄ {O(n)}
t₆₃, X₅: X₅ {O(n)}
t₆₃, X₆: X₆ {O(n)}
t₆₃, X₉: X₉ {O(n)}
t₆₃, X₁₀: X₁₀ {O(n)}
t₆₃, X₁₁: X₁₁ {O(n)}
t₆₃, X₁₂: X₁₂ {O(n)}
t₆₃, X₁₃: X₁₃ {O(n)}
t₆₃, X₁₄: X₁₄ {O(n)}
t₆₃, X₁₅: X₁₅ {O(n)}
t₆₃, X₁₆: X₁₆ {O(n)}
t₆₄, X₁: X₁₆ {O(n)}
t₆₄, X₂: 1 {O(1)}
t₆₄, X₃: X₃ {O(n)}
t₆₄, X₄: X₄ {O(n)}
t₆₄, X₅: X₅ {O(n)}
t₆₄, X₆: X₆ {O(n)}
t₆₄, X₁₀: X₁₀+8 {O(n)}
t₆₄, X₁₂: X₁₆ {O(n)}
t₆₄, X₁₃: X₁₃ {O(n)}
t₆₄, X₁₄: X₁₄ {O(n)}
t₆₄, X₁₅: X₁₅ {O(n)}
t₆₄, X₁₆: X₁₆ {O(n)}
t₆₅, X₁: X₁₆ {O(n)}
t₆₅, X₂: 1 {O(1)}
t₆₅, X₃: X₃ {O(n)}
t₆₅, X₄: X₄ {O(n)}
t₆₅, X₅: X₅ {O(n)}
t₆₅, X₆: X₆ {O(n)}
t₆₅, X₁₀: X₁₀+8 {O(n)}
t₆₅, X₁₂: X₁₆ {O(n)}
t₆₅, X₁₃: X₁₃ {O(n)}
t₆₅, X₁₄: X₁₄ {O(n)}
t₆₅, X₁₅: X₁₅ {O(n)}
t₆₅, X₁₆: X₁₆ {O(n)}
t₆₆, X₁: X₁₆ {O(n)}
t₆₆, X₂: 1 {O(1)}
t₆₆, X₃: X₃ {O(n)}
t₆₆, X₄: X₄ {O(n)}
t₆₆, X₅: X₅ {O(n)}
t₆₆, X₆: X₆ {O(n)}
t₆₆, X₁₀: X₁₀+8 {O(n)}
t₆₆, X₁₂: 7⋅X₁₂+7⋅X₁₆ {O(n)}
t₆₆, X₁₃: X₁₃ {O(n)}
t₆₆, X₁₄: X₁₄ {O(n)}
t₆₆, X₁₅: X₁₅ {O(n)}
t₆₆, X₁₆: X₁₆ {O(n)}
t₆₇, X₁: 6⋅X₁₆ {O(n)}
t₆₇, X₃: 6⋅X₁₃ {O(n)}
t₆₇, X₄: 6⋅X₁₄ {O(n)}
t₆₇, X₅: 6⋅X₁₅ {O(n)}
t₆₇, X₆: 6⋅X₆ {O(n)}
t₆₇, X₁₀: 5⋅X₁₀+44 {O(n)}
t₆₇, X₁₂: 7⋅X₁₂+7⋅X₁₆ {O(n)}
t₆₇, X₁₃: 6⋅X₁₃ {O(n)}
t₆₇, X₁₄: 6⋅X₁₄ {O(n)}
t₆₇, X₁₅: 6⋅X₁₅ {O(n)}
t₆₇, X₁₆: 6⋅X₁₆ {O(n)}
t₆₈, X₁: 5⋅X₁₆ {O(n)}
t₆₈, X₃: 5⋅X₁₃ {O(n)}
t₆₈, X₄: 5⋅X₁₄ {O(n)}
t₆₈, X₅: 5⋅X₁₅ {O(n)}
t₆₈, X₆: 5⋅X₆ {O(n)}
t₆₈, X₁₀: 4⋅X₁₀+32 {O(n)}
t₆₈, X₁₂: 7⋅X₁₂+7⋅X₁₆ {O(n)}
t₆₈, X₁₃: 5⋅X₁₃ {O(n)}
t₆₈, X₁₄: 5⋅X₁₄ {O(n)}
t₆₈, X₁₅: 5⋅X₁₅ {O(n)}
t₆₈, X₁₆: 5⋅X₁₆ {O(n)}
t₆₉, X₁: 7⋅X₁₆ {O(n)}
t₆₉, X₃: 7⋅X₁₃ {O(n)}
t₆₉, X₄: 7⋅X₁₄ {O(n)}
t₆₉, X₅: 7⋅X₁₅ {O(n)}
t₆₉, X₆: 7⋅X₆ {O(n)}
t₆₉, X₁₀: 3⋅X₁₀+32 {O(n)}
t₆₉, X₁₂: 7⋅X₁₂+7⋅X₁₆ {O(n)}
t₆₉, X₁₃: 7⋅X₁₃ {O(n)}
t₆₉, X₁₄: 7⋅X₁₄ {O(n)}
t₆₉, X₁₅: 7⋅X₁₅ {O(n)}
t₆₉, X₁₆: 7⋅X₁₆ {O(n)}
t₇₀, X₁: 18⋅X₁₆ {O(n)}
t₇₀, X₃: 10790822077415424⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9511162962444288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4261468654540800⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+936157873766400⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+936157873766400⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1328837880453120⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+625676255428608⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+625676255428608⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+213807139080192⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+213807139080192⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+31193746735104⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+31193746735104⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+317641879369728⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+62387493470208⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+14113002553344⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+14113002553344⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+28226005106688⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+52139703877632⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+52139703877632⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+60571025040384⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1432714936320⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1432714936320⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+3298229176320⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3298229176320⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+477571645440⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+477571645440⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+6596458352640⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9482797530720⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9585841282560⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9585841282560⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+110314192896⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+110314192896⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+1169790087168⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1227901743072⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1358179660800⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1358179660800⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+330942578688⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+330942578688⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+584895043584⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+584895043584⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+11471486976⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₄+11471486976⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₄+131022743888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13502896128⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅+13502896128⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅+139111695360⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+153333426528⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+153333426528⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+17207230464⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₄+2867871744⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₃+2867871744⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₄+40508688384⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅+40508688384⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅+69555847680⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+69555847680⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+11354618880⋅X₁₃⋅X₁₄⋅X₁₅+11429876664⋅X₁₅⋅X₁₅⋅X₁₅+13092285312⋅X₁₃⋅X₁₅⋅X₁₅+13092285312⋅X₁₄⋅X₁₅⋅X₁₅+1607454720⋅X₁₃⋅X₁₃⋅X₁₃+1607454720⋅X₁₄⋅X₁₄⋅X₁₄+4822364160⋅X₁₃⋅X₁₃⋅X₁₄+4822364160⋅X₁₃⋅X₁₄⋅X₁₄+5677309440⋅X₁₃⋅X₁₃⋅X₁₅+5677309440⋅X₁₄⋅X₁₄⋅X₁₅+343411200⋅X₁₃⋅X₁₃+343411200⋅X₁₄⋅X₁₄+686822400⋅X₁₃⋅X₁₄+780496640⋅X₁₅⋅X₁₅+808727040⋅X₁₃⋅X₁₅+808727040⋅X₁₄⋅X₁₅+33185376⋅X₁₄+33185430⋅X₁₃+39082176⋅X₁₅+1225098 {O(n^12)}
t₇₀, X₄: 1448324665344⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+974804585472⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+336218328576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+82911744000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+15437124288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+1906935552⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1906935552⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2219053104⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+537725952⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+537725952⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+133954560⋅X₁₃⋅X₁₄⋅X₁₅+18911232⋅X₁₃⋅X₁₃⋅X₁₃+18911232⋅X₁₄⋅X₁₄⋅X₁₄+230382144⋅X₁₃⋅X₁₅⋅X₁₅+230382144⋅X₁₄⋅X₁₅⋅X₁₅+254612160⋅X₁₅⋅X₁₅⋅X₁₅+56733696⋅X₁₃⋅X₁₃⋅X₁₄+56733696⋅X₁₃⋅X₁₄⋅X₁₄+66977280⋅X₁₃⋅X₁₃⋅X₁₅+66977280⋅X₁₄⋅X₁₄⋅X₁₅+16220160⋅X₁₃⋅X₁₄+19150560⋅X₁₃⋅X₁₅+19150560⋅X₁₄⋅X₁₅+22126940⋅X₁₅⋅X₁₅+8110080⋅X₁₃⋅X₁₃+8110080⋅X₁₄⋅X₁₄+1180224⋅X₁₃+1180278⋅X₁₄+1393560⋅X₁₅+58338 {O(n^9)}
t₇₀, X₅: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2322⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₀, X₆: 18⋅X₆ {O(n)}
t₇₀, X₁₀: 12⋅X₁₀+108 {O(n)}
t₇₀, X₁₂: 21⋅X₁₂+21⋅X₁₆ {O(n)}
t₇₀, X₁₃: 18⋅X₁₃ {O(n)}
t₇₀, X₁₄: 18⋅X₁₄ {O(n)}
t₇₀, X₁₅: 18⋅X₁₅ {O(n)}
t₇₀, X₁₆: 18⋅X₁₆ {O(n)}
t₇₁, X₁: 18⋅X₁₆ {O(n)}
t₇₁, X₃: 10790822077415424⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9511162962444288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4261468654540800⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+936157873766400⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+936157873766400⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1328837880453120⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+625676255428608⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+625676255428608⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+213807139080192⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+213807139080192⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+31193746735104⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+31193746735104⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+317641879369728⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+62387493470208⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+14113002553344⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+14113002553344⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+28226005106688⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+52139703877632⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+52139703877632⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+60571025040384⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1432714936320⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1432714936320⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+3298229176320⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3298229176320⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+477571645440⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+477571645440⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+6596458352640⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9482797530720⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9585841282560⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9585841282560⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+110314192896⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+110314192896⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+1169790087168⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1227901743072⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1358179660800⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1358179660800⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+330942578688⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+330942578688⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+584895043584⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+584895043584⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+11471486976⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₄+11471486976⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₄+131022743888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13502896128⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅+13502896128⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅+139111695360⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+153333426528⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+153333426528⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+17207230464⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₄+2867871744⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₃+2867871744⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₄+40508688384⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅+40508688384⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅+69555847680⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+69555847680⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+11354618880⋅X₁₃⋅X₁₄⋅X₁₅+11429876664⋅X₁₅⋅X₁₅⋅X₁₅+13092285312⋅X₁₃⋅X₁₅⋅X₁₅+13092285312⋅X₁₄⋅X₁₅⋅X₁₅+1607454720⋅X₁₃⋅X₁₃⋅X₁₃+1607454720⋅X₁₄⋅X₁₄⋅X₁₄+4822364160⋅X₁₃⋅X₁₃⋅X₁₄+4822364160⋅X₁₃⋅X₁₄⋅X₁₄+5677309440⋅X₁₃⋅X₁₃⋅X₁₅+5677309440⋅X₁₄⋅X₁₄⋅X₁₅+343411200⋅X₁₃⋅X₁₃+343411200⋅X₁₄⋅X₁₄+686822400⋅X₁₃⋅X₁₄+780496640⋅X₁₅⋅X₁₅+808727040⋅X₁₃⋅X₁₅+808727040⋅X₁₄⋅X₁₅+33185376⋅X₁₄+33185430⋅X₁₃+39082176⋅X₁₅+1225098 {O(n^12)}
t₇₁, X₄: 1448324665344⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+974804585472⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+336218328576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+82911744000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+15437124288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+1906935552⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1906935552⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2219053104⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+537725952⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+537725952⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+133954560⋅X₁₃⋅X₁₄⋅X₁₅+18911232⋅X₁₃⋅X₁₃⋅X₁₃+18911232⋅X₁₄⋅X₁₄⋅X₁₄+230382144⋅X₁₃⋅X₁₅⋅X₁₅+230382144⋅X₁₄⋅X₁₅⋅X₁₅+254612160⋅X₁₅⋅X₁₅⋅X₁₅+56733696⋅X₁₃⋅X₁₃⋅X₁₄+56733696⋅X₁₃⋅X₁₄⋅X₁₄+66977280⋅X₁₃⋅X₁₃⋅X₁₅+66977280⋅X₁₄⋅X₁₄⋅X₁₅+16220160⋅X₁₃⋅X₁₄+19150560⋅X₁₃⋅X₁₅+19150560⋅X₁₄⋅X₁₅+22126940⋅X₁₅⋅X₁₅+8110080⋅X₁₃⋅X₁₃+8110080⋅X₁₄⋅X₁₄+1180224⋅X₁₃+1180278⋅X₁₄+1393560⋅X₁₅+58338 {O(n^9)}
t₇₁, X₅: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2322⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₁, X₆: 18⋅X₆ {O(n)}
t₇₁, X₁₀: 12⋅X₁₀+108 {O(n)}
t₇₁, X₁₂: 21⋅X₁₂+21⋅X₁₆ {O(n)}
t₇₁, X₁₃: 18⋅X₁₃ {O(n)}
t₇₁, X₁₄: 18⋅X₁₄ {O(n)}
t₇₁, X₁₅: 18⋅X₁₅ {O(n)}
t₇₁, X₁₆: 18⋅X₁₆ {O(n)}
t₇₂, X₁: 36⋅X₁₆ {O(n)}
t₇₂, X₃: 10790822077415424⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9511162962444288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4261468654540800⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+936157873766400⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+936157873766400⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1328837880453120⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+625676255428608⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+625676255428608⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+213807139080192⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+213807139080192⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+31193746735104⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+31193746735104⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+317641879369728⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+62387493470208⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+14113002553344⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+14113002553344⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+28226005106688⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+52139703877632⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+52139703877632⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+60571025040384⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1432714936320⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1432714936320⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+3298229176320⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3298229176320⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+477571645440⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+477571645440⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+6596458352640⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9482797530720⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9585841282560⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9585841282560⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+110314192896⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+110314192896⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+1169790087168⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1227901743072⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1358179660800⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1358179660800⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+330942578688⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+330942578688⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+584895043584⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+584895043584⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+11471486976⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₄+11471486976⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₄+131022743888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13502896128⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅+13502896128⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅+139111695360⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+153333426528⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+153333426528⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+17207230464⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₄+2867871744⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₃+2867871744⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₄+40508688384⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅+40508688384⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅+69555847680⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+69555847680⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+11354618880⋅X₁₃⋅X₁₄⋅X₁₅+11429876664⋅X₁₅⋅X₁₅⋅X₁₅+13092285312⋅X₁₃⋅X₁₅⋅X₁₅+13092285312⋅X₁₄⋅X₁₅⋅X₁₅+1607454720⋅X₁₃⋅X₁₃⋅X₁₃+1607454720⋅X₁₄⋅X₁₄⋅X₁₄+4822364160⋅X₁₃⋅X₁₃⋅X₁₄+4822364160⋅X₁₃⋅X₁₄⋅X₁₄+5677309440⋅X₁₃⋅X₁₃⋅X₁₅+5677309440⋅X₁₄⋅X₁₄⋅X₁₅+343411200⋅X₁₃⋅X₁₃+343411200⋅X₁₄⋅X₁₄+686822400⋅X₁₃⋅X₁₄+780496640⋅X₁₅⋅X₁₅+808727040⋅X₁₃⋅X₁₅+808727040⋅X₁₄⋅X₁₅+33185376⋅X₁₄+33185430⋅X₁₃+39082176⋅X₁₅+1225098 {O(n^12)}
t₇₂, X₄: 1448324665344⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+974804585472⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+336218328576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+82911744000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+15437124288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+1906935552⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1906935552⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2219053104⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+537725952⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+537725952⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+133954560⋅X₁₃⋅X₁₄⋅X₁₅+18911232⋅X₁₃⋅X₁₃⋅X₁₃+18911232⋅X₁₄⋅X₁₄⋅X₁₄+230382144⋅X₁₃⋅X₁₅⋅X₁₅+230382144⋅X₁₄⋅X₁₅⋅X₁₅+254612160⋅X₁₅⋅X₁₅⋅X₁₅+56733696⋅X₁₃⋅X₁₃⋅X₁₄+56733696⋅X₁₃⋅X₁₄⋅X₁₄+66977280⋅X₁₃⋅X₁₃⋅X₁₅+66977280⋅X₁₄⋅X₁₄⋅X₁₅+16220160⋅X₁₃⋅X₁₄+19150560⋅X₁₃⋅X₁₅+19150560⋅X₁₄⋅X₁₅+22126940⋅X₁₅⋅X₁₅+8110080⋅X₁₃⋅X₁₃+8110080⋅X₁₄⋅X₁₄+1180224⋅X₁₃+1180278⋅X₁₄+1393560⋅X₁₅+58338 {O(n^9)}
t₇₂, X₅: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2340⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₂, X₆: 1448324665344⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+974804585472⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+336218328576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+82911744000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+15437124288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+1906935552⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1906935552⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2219053104⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+537725952⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+537725952⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+133954560⋅X₁₃⋅X₁₄⋅X₁₅+18911232⋅X₁₃⋅X₁₃⋅X₁₃+18911232⋅X₁₄⋅X₁₄⋅X₁₄+230382144⋅X₁₃⋅X₁₅⋅X₁₅+230382144⋅X₁₄⋅X₁₅⋅X₁₅+254612160⋅X₁₅⋅X₁₅⋅X₁₅+56733696⋅X₁₃⋅X₁₃⋅X₁₄+56733696⋅X₁₃⋅X₁₄⋅X₁₄+66977280⋅X₁₃⋅X₁₃⋅X₁₅+66977280⋅X₁₄⋅X₁₄⋅X₁₅+16220160⋅X₁₃⋅X₁₄+19150560⋅X₁₃⋅X₁₅+19150560⋅X₁₄⋅X₁₅+22126940⋅X₁₅⋅X₁₅+8110080⋅X₁₃⋅X₁₃+8110080⋅X₁₄⋅X₁₄+1180224⋅X₁₃+1180278⋅X₁₄+1393560⋅X₁₅+58338 {O(n^9)}
t₇₂, X₁₀: 24⋅X₁₀+216 {O(n)}
t₇₂, X₁₂: 42⋅X₁₂+42⋅X₁₆ {O(n)}
t₇₂, X₁₃: 36⋅X₁₃ {O(n)}
t₇₂, X₁₄: 36⋅X₁₄ {O(n)}
t₇₂, X₁₅: 36⋅X₁₅ {O(n)}
t₇₂, X₁₆: 36⋅X₁₆ {O(n)}
t₇₃, X₁: 36⋅X₁₆ {O(n)}
t₇₃, X₃: 10790822077415424⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9511162962444288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4261468654540800⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+936157873766400⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+936157873766400⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1328837880453120⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+625676255428608⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+625676255428608⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+213807139080192⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+213807139080192⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+31193746735104⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+31193746735104⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+317641879369728⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+62387493470208⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+14113002553344⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+14113002553344⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+28226005106688⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+52139703877632⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+52139703877632⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+60571025040384⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1432714936320⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1432714936320⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+3298229176320⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3298229176320⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+477571645440⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+477571645440⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+6596458352640⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9482797530720⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9585841282560⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9585841282560⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+110314192896⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+110314192896⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+1169790087168⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1227901743072⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1358179660800⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1358179660800⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+330942578688⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+330942578688⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+584895043584⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+584895043584⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+11471486976⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₄+11471486976⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₄+131022743888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13502896128⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅+13502896128⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅+139111695360⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+153333426528⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+153333426528⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+17207230464⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₄+2867871744⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₃+2867871744⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₄+40508688384⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅+40508688384⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅+69555847680⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+69555847680⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+11354618880⋅X₁₃⋅X₁₄⋅X₁₅+11429876664⋅X₁₅⋅X₁₅⋅X₁₅+13092285312⋅X₁₃⋅X₁₅⋅X₁₅+13092285312⋅X₁₄⋅X₁₅⋅X₁₅+1607454720⋅X₁₃⋅X₁₃⋅X₁₃+1607454720⋅X₁₄⋅X₁₄⋅X₁₄+4822364160⋅X₁₃⋅X₁₃⋅X₁₄+4822364160⋅X₁₃⋅X₁₄⋅X₁₄+5677309440⋅X₁₃⋅X₁₃⋅X₁₅+5677309440⋅X₁₄⋅X₁₄⋅X₁₅+343411200⋅X₁₃⋅X₁₃+343411200⋅X₁₄⋅X₁₄+686822400⋅X₁₃⋅X₁₄+780496640⋅X₁₅⋅X₁₅+808727040⋅X₁₃⋅X₁₅+808727040⋅X₁₄⋅X₁₅+33185376⋅X₁₄+33185430⋅X₁₃+39082176⋅X₁₅+1225098 {O(n^12)}
t₇₃, X₄: 1448324665344⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+974804585472⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+336218328576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+82911744000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+15437124288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+1906935552⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1906935552⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2219053104⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+537725952⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+537725952⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+133954560⋅X₁₃⋅X₁₄⋅X₁₅+18911232⋅X₁₃⋅X₁₃⋅X₁₃+18911232⋅X₁₄⋅X₁₄⋅X₁₄+230382144⋅X₁₃⋅X₁₅⋅X₁₅+230382144⋅X₁₄⋅X₁₅⋅X₁₅+254612160⋅X₁₅⋅X₁₅⋅X₁₅+56733696⋅X₁₃⋅X₁₃⋅X₁₄+56733696⋅X₁₃⋅X₁₄⋅X₁₄+66977280⋅X₁₃⋅X₁₃⋅X₁₅+66977280⋅X₁₄⋅X₁₄⋅X₁₅+16220160⋅X₁₃⋅X₁₄+19150560⋅X₁₃⋅X₁₅+19150560⋅X₁₄⋅X₁₅+22126940⋅X₁₅⋅X₁₅+8110080⋅X₁₃⋅X₁₃+8110080⋅X₁₄⋅X₁₄+1180224⋅X₁₃+1180278⋅X₁₄+1393560⋅X₁₅+58338 {O(n^9)}
t₇₃, X₅: 0 {O(1)}
t₇₃, X₆: 1448324665344⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+974804585472⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+336218328576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+82911744000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+15437124288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+1906935552⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1906935552⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2219053104⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+537725952⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+537725952⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+133954560⋅X₁₃⋅X₁₄⋅X₁₅+18911232⋅X₁₃⋅X₁₃⋅X₁₃+18911232⋅X₁₄⋅X₁₄⋅X₁₄+230382144⋅X₁₃⋅X₁₅⋅X₁₅+230382144⋅X₁₄⋅X₁₅⋅X₁₅+254612160⋅X₁₅⋅X₁₅⋅X₁₅+56733696⋅X₁₃⋅X₁₃⋅X₁₄+56733696⋅X₁₃⋅X₁₄⋅X₁₄+66977280⋅X₁₃⋅X₁₃⋅X₁₅+66977280⋅X₁₄⋅X₁₄⋅X₁₅+16220160⋅X₁₃⋅X₁₄+19150560⋅X₁₃⋅X₁₅+19150560⋅X₁₄⋅X₁₅+22126940⋅X₁₅⋅X₁₅+8110080⋅X₁₃⋅X₁₃+8110080⋅X₁₄⋅X₁₄+1180224⋅X₁₃+1180278⋅X₁₄+1393560⋅X₁₅+58338 {O(n^9)}
t₇₃, X₁₀: 24⋅X₁₀+216 {O(n)}
t₇₃, X₁₂: 42⋅X₁₂+42⋅X₁₆ {O(n)}
t₇₃, X₁₃: 36⋅X₁₃ {O(n)}
t₇₃, X₁₄: 36⋅X₁₄ {O(n)}
t₇₃, X₁₅: 36⋅X₁₅ {O(n)}
t₇₃, X₁₆: 36⋅X₁₆ {O(n)}
t₇₄, X₁: 18⋅X₁₆ {O(n)}
t₇₄, X₃: 10790822077415424⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9511162962444288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4261468654540800⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+936157873766400⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+936157873766400⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1328837880453120⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+625676255428608⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+625676255428608⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+213807139080192⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+213807139080192⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+31193746735104⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+31193746735104⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+317641879369728⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+62387493470208⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+14113002553344⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+14113002553344⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+28226005106688⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+52139703877632⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+52139703877632⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+60571025040384⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1432714936320⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1432714936320⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+3298229176320⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3298229176320⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+477571645440⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+477571645440⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+6596458352640⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9482797530720⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9585841282560⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9585841282560⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+110314192896⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+110314192896⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+1169790087168⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1227901743072⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1358179660800⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1358179660800⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+330942578688⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+330942578688⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+584895043584⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+584895043584⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+11471486976⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₄+11471486976⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₄+131022743888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13502896128⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅+13502896128⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅+139111695360⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+153333426528⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+153333426528⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+17207230464⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₄+2867871744⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₃+2867871744⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₄+40508688384⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅+40508688384⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅+69555847680⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+69555847680⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+11354618880⋅X₁₃⋅X₁₄⋅X₁₅+11429876664⋅X₁₅⋅X₁₅⋅X₁₅+13092285312⋅X₁₃⋅X₁₅⋅X₁₅+13092285312⋅X₁₄⋅X₁₅⋅X₁₅+1607454720⋅X₁₃⋅X₁₃⋅X₁₃+1607454720⋅X₁₄⋅X₁₄⋅X₁₄+4822364160⋅X₁₃⋅X₁₃⋅X₁₄+4822364160⋅X₁₃⋅X₁₄⋅X₁₄+5677309440⋅X₁₃⋅X₁₃⋅X₁₅+5677309440⋅X₁₄⋅X₁₄⋅X₁₅+343411200⋅X₁₃⋅X₁₃+343411200⋅X₁₄⋅X₁₄+686822400⋅X₁₃⋅X₁₄+780496640⋅X₁₅⋅X₁₅+808727040⋅X₁₃⋅X₁₅+808727040⋅X₁₄⋅X₁₅+33185376⋅X₁₄+33185412⋅X₁₃+39082176⋅X₁₅+1225098 {O(n^12)}
t₇₄, X₄: 1448324665344⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+974804585472⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+336218328576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+98006962176⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+44772341760⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+82911744000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+10597312512⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+15437124288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+2298212352⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+1906935552⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1906935552⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2219053104⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+537725952⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+537725952⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+133954560⋅X₁₃⋅X₁₄⋅X₁₅+18911232⋅X₁₃⋅X₁₃⋅X₁₃+18911232⋅X₁₄⋅X₁₄⋅X₁₄+230382144⋅X₁₃⋅X₁₅⋅X₁₅+230382144⋅X₁₄⋅X₁₅⋅X₁₅+254612160⋅X₁₅⋅X₁₅⋅X₁₅+56733696⋅X₁₃⋅X₁₃⋅X₁₄+56733696⋅X₁₃⋅X₁₄⋅X₁₄+66977280⋅X₁₃⋅X₁₃⋅X₁₅+66977280⋅X₁₄⋅X₁₄⋅X₁₅+16220160⋅X₁₃⋅X₁₄+19150560⋅X₁₃⋅X₁₅+19150560⋅X₁₄⋅X₁₅+22126940⋅X₁₅⋅X₁₅+8110080⋅X₁₃⋅X₁₃+8110080⋅X₁₄⋅X₁₄+1180224⋅X₁₃+1180260⋅X₁₄+1393560⋅X₁₅+58338 {O(n^9)}
t₇₄, X₅: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2322⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₄, X₆: 18⋅X₆ {O(n)}
t₇₄, X₁₀: 12⋅X₁₀+108 {O(n)}
t₇₄, X₁₂: 21⋅X₁₂+21⋅X₁₆ {O(n)}
t₇₄, X₁₃: 18⋅X₁₃ {O(n)}
t₇₄, X₁₄: 18⋅X₁₄ {O(n)}
t₇₄, X₁₅: 18⋅X₁₅ {O(n)}
t₇₄, X₁₆: 18⋅X₁₆ {O(n)}
t₇₅, X₁: 72⋅X₁₆ {O(n)}
t₇₅, X₃: 21581644154830848⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+19022325924888576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1872315747532800⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1872315747532800⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+8522937309081600⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1251352510857216⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1251352510857216⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2657675760906240⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+124774986940416⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+427614278160384⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+427614278160384⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+62387493470208⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+62387493470208⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+635283758739456⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+104279407755264⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+104279407755264⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+121142050080768⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+28226005106688⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+28226005106688⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56452010213376⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13192916705280⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+18965595061440⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+19171682565120⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+19171682565120⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2865429872640⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2865429872640⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+6596458352640⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+6596458352640⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+955143290880⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+955143290880⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1169790087168⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1169790087168⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+220628385792⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+220628385792⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2339580174336⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2455803486144⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2716359321600⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2716359321600⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+661885157376⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+661885157376⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+139111695360⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+139111695360⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+22942973952⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₄+22942973952⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₄+262045487776⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+27005792256⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅+27005792256⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅+278223390720⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+306666853056⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+306666853056⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+34414460928⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₄+5735743488⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₃+5735743488⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₄+81017376768⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅+81017376768⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅+11354618880⋅X₁₃⋅X₁₃⋅X₁₅+11354618880⋅X₁₄⋅X₁₄⋅X₁₅+22709237760⋅X₁₃⋅X₁₄⋅X₁₅+22859753328⋅X₁₅⋅X₁₅⋅X₁₅+26184570624⋅X₁₃⋅X₁₅⋅X₁₅+26184570624⋅X₁₄⋅X₁₅⋅X₁₅+3214909440⋅X₁₃⋅X₁₃⋅X₁₃+3214909440⋅X₁₄⋅X₁₄⋅X₁₄+9644728320⋅X₁₃⋅X₁₃⋅X₁₄+9644728320⋅X₁₃⋅X₁₄⋅X₁₄+1373644800⋅X₁₃⋅X₁₄+1560993280⋅X₁₅⋅X₁₅+1617454080⋅X₁₃⋅X₁₅+1617454080⋅X₁₄⋅X₁₅+686822400⋅X₁₃⋅X₁₃+686822400⋅X₁₄⋅X₁₄+66370752⋅X₁₄+66370860⋅X₁₃+78164352⋅X₁₅+2450196 {O(n^12)}
t₇₅, X₄: 2896649330688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1949609170944⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+672436657152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+165823488000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+30874248576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+1075451904⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+3813871104⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+3813871104⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4438106208⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+113467392⋅X₁₃⋅X₁₃⋅X₁₄+113467392⋅X₁₃⋅X₁₄⋅X₁₄+133954560⋅X₁₃⋅X₁₃⋅X₁₅+133954560⋅X₁₄⋅X₁₄⋅X₁₅+267909120⋅X₁₃⋅X₁₄⋅X₁₅+37822464⋅X₁₃⋅X₁₃⋅X₁₃+37822464⋅X₁₄⋅X₁₄⋅X₁₄+460764288⋅X₁₃⋅X₁₅⋅X₁₅+460764288⋅X₁₄⋅X₁₅⋅X₁₅+509224320⋅X₁₅⋅X₁₅⋅X₁₅+16220160⋅X₁₃⋅X₁₃+16220160⋅X₁₄⋅X₁₄+32440320⋅X₁₃⋅X₁₄+38301120⋅X₁₃⋅X₁₅+38301120⋅X₁₄⋅X₁₅+44253880⋅X₁₅⋅X₁₅+2360448⋅X₁₃+2360556⋅X₁₄+2787120⋅X₁₅+116676 {O(n^9)}
t₇₅, X₅: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2340⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₅, X₆: 2896649330688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1949609170944⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+672436657152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+165823488000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+30874248576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+1075451904⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+3813871104⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+3813871104⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4438106208⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+113467392⋅X₁₃⋅X₁₃⋅X₁₄+113467392⋅X₁₃⋅X₁₄⋅X₁₄+133954560⋅X₁₃⋅X₁₃⋅X₁₅+133954560⋅X₁₄⋅X₁₄⋅X₁₅+267909120⋅X₁₃⋅X₁₄⋅X₁₅+37822464⋅X₁₃⋅X₁₃⋅X₁₃+37822464⋅X₁₄⋅X₁₄⋅X₁₄+460764288⋅X₁₃⋅X₁₅⋅X₁₅+460764288⋅X₁₄⋅X₁₅⋅X₁₅+509224320⋅X₁₅⋅X₁₅⋅X₁₅+16220160⋅X₁₃⋅X₁₃+16220160⋅X₁₄⋅X₁₄+32440320⋅X₁₃⋅X₁₄+38301120⋅X₁₃⋅X₁₅+38301120⋅X₁₄⋅X₁₅+44253880⋅X₁₅⋅X₁₅+2360448⋅X₁₃+2360556⋅X₁₄+2787120⋅X₁₅+116676 {O(n^9)}
t₇₅, X₁₀: 48⋅X₁₀+432 {O(n)}
t₇₅, X₁₂: 84⋅X₁₂+84⋅X₁₆ {O(n)}
t₇₅, X₁₃: 72⋅X₁₃ {O(n)}
t₇₅, X₁₄: 72⋅X₁₄ {O(n)}
t₇₅, X₁₅: 72⋅X₁₅ {O(n)}
t₇₅, X₁₆: 72⋅X₁₆ {O(n)}
t₇₆, X₁: 144⋅X₁₆ {O(n)}
t₇₆, X₃: 43163288309661696⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+38044651849777152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+17045874618163200⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3744631495065600⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3744631495065600⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2502705021714432⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2502705021714432⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+5315351521812480⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+124774986940416⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+124774986940416⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1270567517478912⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+249549973880832⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+855228556320768⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+855228556320768⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+112904020426752⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+208558815510528⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+208558815510528⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+242284100161536⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56452010213376⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56452010213376⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13192916705280⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13192916705280⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1910286581760⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1910286581760⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+26385833410560⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+37931190122880⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+38343365130240⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+38343365130240⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+5730859745280⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+5730859745280⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1323770314752⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+1323770314752⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2339580174336⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+2339580174336⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+441256771584⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+441256771584⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+4679160348672⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4911606972288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+5432718643200⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+5432718643200⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+11471486976⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₃+11471486976⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₄+162034753536⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅+162034753536⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅+278223390720⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+278223390720⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+45885947904⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₄+45885947904⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₄+524090975552⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+54011584512⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅+54011584512⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅+556446781440⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+613333706112⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+613333706112⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+68828921856⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₄+19289456640⋅X₁₃⋅X₁₃⋅X₁₄+19289456640⋅X₁₃⋅X₁₄⋅X₁₄+22709237760⋅X₁₃⋅X₁₃⋅X₁₅+22709237760⋅X₁₄⋅X₁₄⋅X₁₅+45418475520⋅X₁₃⋅X₁₄⋅X₁₅+45719506656⋅X₁₅⋅X₁₅⋅X₁₅+52369141248⋅X₁₃⋅X₁₅⋅X₁₅+52369141248⋅X₁₄⋅X₁₅⋅X₁₅+6429818880⋅X₁₃⋅X₁₃⋅X₁₃+6429818880⋅X₁₄⋅X₁₄⋅X₁₄+1373644800⋅X₁₃⋅X₁₃+1373644800⋅X₁₄⋅X₁₄+2747289600⋅X₁₃⋅X₁₄+3121986560⋅X₁₅⋅X₁₅+3234908160⋅X₁₃⋅X₁₅+3234908160⋅X₁₄⋅X₁₅+132741504⋅X₁₄+132741720⋅X₁₃+156328704⋅X₁₅+4900392 {O(n^12)}
t₇₆, X₄: 5793298661376⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3899218341888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1344873314304⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+331646976000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+18385698816⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+61748497152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+2150903808⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+4301807616⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+7627742208⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+7627742208⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+8876212416⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1018448640⋅X₁₅⋅X₁₅⋅X₁₅+226934784⋅X₁₃⋅X₁₃⋅X₁₄+226934784⋅X₁₃⋅X₁₄⋅X₁₄+267909120⋅X₁₃⋅X₁₃⋅X₁₅+267909120⋅X₁₄⋅X₁₄⋅X₁₅+535818240⋅X₁₃⋅X₁₄⋅X₁₅+75644928⋅X₁₃⋅X₁₃⋅X₁₃+75644928⋅X₁₄⋅X₁₄⋅X₁₄+921528576⋅X₁₃⋅X₁₅⋅X₁₅+921528576⋅X₁₄⋅X₁₅⋅X₁₅+32440320⋅X₁₃⋅X₁₃+32440320⋅X₁₄⋅X₁₄+64880640⋅X₁₃⋅X₁₄+76602240⋅X₁₃⋅X₁₅+76602240⋅X₁₄⋅X₁₅+88507760⋅X₁₅⋅X₁₅+4720896⋅X₁₃+4721112⋅X₁₄+5574240⋅X₁₅+233352 {O(n^9)}
t₇₆, X₅: 65664⋅X₁₅⋅X₁₅⋅X₁₅+26400⋅X₁₅⋅X₁₅+1728⋅X₁₃+1728⋅X₁₄+4680⋅X₁₅+372 {O(n^3)}
t₇₆, X₆: 5793298661376⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3899218341888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1344873314304⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+331646976000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+18385698816⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+61748497152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+2150903808⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+4301807616⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+7627742208⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+7627742208⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+8876212416⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1018448640⋅X₁₅⋅X₁₅⋅X₁₅+226934784⋅X₁₃⋅X₁₃⋅X₁₄+226934784⋅X₁₃⋅X₁₄⋅X₁₄+267909120⋅X₁₃⋅X₁₃⋅X₁₅+267909120⋅X₁₄⋅X₁₄⋅X₁₅+535818240⋅X₁₃⋅X₁₄⋅X₁₅+75644928⋅X₁₃⋅X₁₃⋅X₁₃+75644928⋅X₁₄⋅X₁₄⋅X₁₄+921528576⋅X₁₃⋅X₁₅⋅X₁₅+921528576⋅X₁₄⋅X₁₅⋅X₁₅+32440320⋅X₁₃⋅X₁₃+32440320⋅X₁₄⋅X₁₄+64880640⋅X₁₃⋅X₁₄+76602240⋅X₁₃⋅X₁₅+76602240⋅X₁₄⋅X₁₅+88507760⋅X₁₅⋅X₁₅+4720896⋅X₁₃+4721112⋅X₁₄+5574240⋅X₁₅+233352 {O(n^9)}
t₇₆, X₁₀: 96⋅X₁₀+864 {O(n)}
t₇₆, X₁₂: 168⋅X₁₂+168⋅X₁₆ {O(n)}
t₇₆, X₁₃: 144⋅X₁₃ {O(n)}
t₇₆, X₁₄: 144⋅X₁₄ {O(n)}
t₇₆, X₁₅: 144⋅X₁₅ {O(n)}
t₇₆, X₁₆: 144⋅X₁₆ {O(n)}
t₇₇, X₁: 72⋅X₁₆ {O(n)}
t₇₇, X₃: 21581644154830848⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+19022325924888576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1872315747532800⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1872315747532800⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+8522937309081600⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1251352510857216⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1251352510857216⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2657675760906240⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+124774986940416⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+427614278160384⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+427614278160384⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+62387493470208⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+62387493470208⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+635283758739456⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+104279407755264⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+104279407755264⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+121142050080768⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+28226005106688⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+28226005106688⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56452010213376⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13192916705280⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+18965595061440⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+19171682565120⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+19171682565120⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2865429872640⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2865429872640⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+6596458352640⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+6596458352640⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+955143290880⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+955143290880⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1169790087168⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1169790087168⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+220628385792⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+220628385792⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2339580174336⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2455803486144⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2716359321600⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2716359321600⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+661885157376⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+661885157376⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+139111695360⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+139111695360⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+22942973952⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₄+22942973952⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₄+262045487776⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+27005792256⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅+27005792256⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅+278223390720⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+306666853056⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+306666853056⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+34414460928⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₄+5735743488⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₃+5735743488⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₄+81017376768⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅+81017376768⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅+11354618880⋅X₁₃⋅X₁₃⋅X₁₅+11354618880⋅X₁₄⋅X₁₄⋅X₁₅+22709237760⋅X₁₃⋅X₁₄⋅X₁₅+22859753328⋅X₁₅⋅X₁₅⋅X₁₅+26184570624⋅X₁₃⋅X₁₅⋅X₁₅+26184570624⋅X₁₄⋅X₁₅⋅X₁₅+3214909440⋅X₁₃⋅X₁₃⋅X₁₃+3214909440⋅X₁₄⋅X₁₄⋅X₁₄+9644728320⋅X₁₃⋅X₁₃⋅X₁₄+9644728320⋅X₁₃⋅X₁₄⋅X₁₄+1373644800⋅X₁₃⋅X₁₄+1560993280⋅X₁₅⋅X₁₅+1617454080⋅X₁₃⋅X₁₅+1617454080⋅X₁₄⋅X₁₅+686822400⋅X₁₃⋅X₁₃+686822400⋅X₁₄⋅X₁₄+66370752⋅X₁₄+66370860⋅X₁₃+78164352⋅X₁₅+2450196 {O(n^12)}
t₇₇, X₄: 2896649330688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1949609170944⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+672436657152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+165823488000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+30874248576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+1075451904⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+3813871104⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+3813871104⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4438106208⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+113467392⋅X₁₃⋅X₁₃⋅X₁₄+113467392⋅X₁₃⋅X₁₄⋅X₁₄+133954560⋅X₁₃⋅X₁₃⋅X₁₅+133954560⋅X₁₄⋅X₁₄⋅X₁₅+267909120⋅X₁₃⋅X₁₄⋅X₁₅+37822464⋅X₁₃⋅X₁₃⋅X₁₃+37822464⋅X₁₄⋅X₁₄⋅X₁₄+460764288⋅X₁₃⋅X₁₅⋅X₁₅+460764288⋅X₁₄⋅X₁₅⋅X₁₅+509224320⋅X₁₅⋅X₁₅⋅X₁₅+16220160⋅X₁₃⋅X₁₃+16220160⋅X₁₄⋅X₁₄+32440320⋅X₁₃⋅X₁₄+38301120⋅X₁₃⋅X₁₅+38301120⋅X₁₄⋅X₁₅+44253880⋅X₁₅⋅X₁₅+2360448⋅X₁₃+2360556⋅X₁₄+2787120⋅X₁₅+116676 {O(n^9)}
t₇₇, X₅: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2340⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₇, X₆: 2896649330688⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1949609170944⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+196013924352⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+672436657152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+165823488000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+89544683520⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+21194625024⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+30874248576⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+4596424704⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1075451904⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+1075451904⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+3813871104⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+3813871104⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4438106208⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+113467392⋅X₁₃⋅X₁₃⋅X₁₄+113467392⋅X₁₃⋅X₁₄⋅X₁₄+133954560⋅X₁₃⋅X₁₃⋅X₁₅+133954560⋅X₁₄⋅X₁₄⋅X₁₅+267909120⋅X₁₃⋅X₁₄⋅X₁₅+37822464⋅X₁₃⋅X₁₃⋅X₁₃+37822464⋅X₁₄⋅X₁₄⋅X₁₄+460764288⋅X₁₃⋅X₁₅⋅X₁₅+460764288⋅X₁₄⋅X₁₅⋅X₁₅+509224320⋅X₁₅⋅X₁₅⋅X₁₅+16220160⋅X₁₃⋅X₁₃+16220160⋅X₁₄⋅X₁₄+32440320⋅X₁₃⋅X₁₄+38301120⋅X₁₃⋅X₁₅+38301120⋅X₁₄⋅X₁₅+44253880⋅X₁₅⋅X₁₅+2360448⋅X₁₃+2360556⋅X₁₄+2787120⋅X₁₅+116676 {O(n^9)}
t₇₇, X₁₀: 48⋅X₁₀+432 {O(n)}
t₇₇, X₁₂: 84⋅X₁₂+84⋅X₁₆ {O(n)}
t₇₇, X₁₃: 72⋅X₁₃ {O(n)}
t₇₇, X₁₄: 72⋅X₁₄ {O(n)}
t₇₇, X₁₅: 72⋅X₁₅ {O(n)}
t₇₇, X₁₆: 72⋅X₁₆ {O(n)}
t₇₈, X₁: 144⋅X₁₆ {O(n)}
t₇₈, X₃: 43163288309661696⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+38044651849777152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+17045874618163200⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3744631495065600⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3744631495065600⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2502705021714432⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+2502705021714432⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+5315351521812480⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+124774986940416⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+124774986940416⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1270567517478912⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+249549973880832⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+855228556320768⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+855228556320768⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+112904020426752⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+208558815510528⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+208558815510528⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+242284100161536⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56452010213376⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56452010213376⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13192916705280⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+13192916705280⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1910286581760⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+1910286581760⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+26385833410560⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+37931190122880⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+38343365130240⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+38343365130240⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+5730859745280⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+5730859745280⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+1323770314752⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+1323770314752⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+2339580174336⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+2339580174336⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+441256771584⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+441256771584⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+4679160348672⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+4911606972288⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+5432718643200⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+5432718643200⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+11471486976⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₃+11471486976⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₄+162034753536⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₅+162034753536⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₅+278223390720⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+278223390720⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+45885947904⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₄+45885947904⋅X₁₃⋅X₁₄⋅X₁₄⋅X₁₄+524090975552⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+54011584512⋅X₁₃⋅X₁₃⋅X₁₃⋅X₁₅+54011584512⋅X₁₄⋅X₁₄⋅X₁₄⋅X₁₅+556446781440⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+613333706112⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+613333706112⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+68828921856⋅X₁₃⋅X₁₃⋅X₁₄⋅X₁₄+19289456640⋅X₁₃⋅X₁₃⋅X₁₄+19289456640⋅X₁₃⋅X₁₄⋅X₁₄+22709237760⋅X₁₃⋅X₁₃⋅X₁₅+22709237760⋅X₁₄⋅X₁₄⋅X₁₅+45418475520⋅X₁₃⋅X₁₄⋅X₁₅+45719506656⋅X₁₅⋅X₁₅⋅X₁₅+52369141248⋅X₁₃⋅X₁₅⋅X₁₅+52369141248⋅X₁₄⋅X₁₅⋅X₁₅+6429818880⋅X₁₃⋅X₁₃⋅X₁₃+6429818880⋅X₁₄⋅X₁₄⋅X₁₄+1373644800⋅X₁₃⋅X₁₃+1373644800⋅X₁₄⋅X₁₄+2747289600⋅X₁₃⋅X₁₄+3121986560⋅X₁₅⋅X₁₅+3234908160⋅X₁₃⋅X₁₅+3234908160⋅X₁₄⋅X₁₅+132741504⋅X₁₄+132741720⋅X₁₃+156328704⋅X₁₅+4900392 {O(n^12)}
t₇₈, X₄: 5793298661376⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3899218341888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1344873314304⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+331646976000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+18385698816⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+61748497152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+2150903808⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+4301807616⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+7627742208⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+7627742208⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+8876212416⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1018448640⋅X₁₅⋅X₁₅⋅X₁₅+226934784⋅X₁₃⋅X₁₃⋅X₁₄+226934784⋅X₁₃⋅X₁₄⋅X₁₄+267909120⋅X₁₃⋅X₁₃⋅X₁₅+267909120⋅X₁₄⋅X₁₄⋅X₁₅+535818240⋅X₁₃⋅X₁₄⋅X₁₅+75644928⋅X₁₃⋅X₁₃⋅X₁₃+75644928⋅X₁₄⋅X₁₄⋅X₁₄+921528576⋅X₁₃⋅X₁₅⋅X₁₅+921528576⋅X₁₄⋅X₁₅⋅X₁₅+32440320⋅X₁₃⋅X₁₃+32440320⋅X₁₄⋅X₁₄+64880640⋅X₁₃⋅X₁₄+76602240⋅X₁₃⋅X₁₅+76602240⋅X₁₄⋅X₁₅+88507760⋅X₁₅⋅X₁₅+4720896⋅X₁₃+4721112⋅X₁₄+5574240⋅X₁₅+233352 {O(n^9)}
t₇₈, X₅: 65664⋅X₁₅⋅X₁₅⋅X₁₅+26400⋅X₁₅⋅X₁₅+1728⋅X₁₃+1728⋅X₁₄+4680⋅X₁₅+372 {O(n^3)}
t₇₈, X₆: 5793298661376⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+3899218341888⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1344873314304⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+392027848704⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+179089367040⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+331646976000⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+18385698816⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+42389250048⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+61748497152⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+9192849408⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+2150903808⋅X₁₃⋅X₁₃⋅X₁₅⋅X₁₅+2150903808⋅X₁₄⋅X₁₄⋅X₁₅⋅X₁₅+4301807616⋅X₁₃⋅X₁₄⋅X₁₅⋅X₁₅+7627742208⋅X₁₃⋅X₁₅⋅X₁₅⋅X₁₅+7627742208⋅X₁₄⋅X₁₅⋅X₁₅⋅X₁₅+8876212416⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+1018448640⋅X₁₅⋅X₁₅⋅X₁₅+226934784⋅X₁₃⋅X₁₃⋅X₁₄+226934784⋅X₁₃⋅X₁₄⋅X₁₄+267909120⋅X₁₃⋅X₁₃⋅X₁₅+267909120⋅X₁₄⋅X₁₄⋅X₁₅+535818240⋅X₁₃⋅X₁₄⋅X₁₅+75644928⋅X₁₃⋅X₁₃⋅X₁₃+75644928⋅X₁₄⋅X₁₄⋅X₁₄+921528576⋅X₁₃⋅X₁₅⋅X₁₅+921528576⋅X₁₄⋅X₁₅⋅X₁₅+32440320⋅X₁₃⋅X₁₃+32440320⋅X₁₄⋅X₁₄+64880640⋅X₁₃⋅X₁₄+76602240⋅X₁₃⋅X₁₅+76602240⋅X₁₄⋅X₁₅+88507760⋅X₁₅⋅X₁₅+4720896⋅X₁₃+4721112⋅X₁₄+5574240⋅X₁₅+233352 {O(n^9)}
t₇₈, X₁₀: 96⋅X₁₀+864 {O(n)}
t₇₈, X₁₂: 168⋅X₁₂+168⋅X₁₆ {O(n)}
t₇₈, X₁₃: 144⋅X₁₃ {O(n)}
t₇₈, X₁₄: 144⋅X₁₄ {O(n)}
t₇₈, X₁₅: 144⋅X₁₅ {O(n)}
t₇₈, X₁₆: 144⋅X₁₆ {O(n)}
t₇₉, X₀: X₀ {O(n)}
t₇₉, X₁: X₁ {O(n)}
t₇₉, X₂: X₂ {O(n)}
t₇₉, X₃: X₃ {O(n)}
t₇₉, X₄: X₄ {O(n)}
t₇₉, X₅: X₅ {O(n)}
t₇₉, X₆: X₆ {O(n)}
t₇₉, X₇: X₇ {O(n)}
t₇₉, X₈: X₈ {O(n)}
t₇₉, X₉: X₉ {O(n)}
t₇₉, X₁₀: X₁₀ {O(n)}
t₇₉, X₁₁: X₁₁ {O(n)}
t₇₉, X₁₂: X₁₂ {O(n)}
t₇₉, X₁₃: X₁₃ {O(n)}
t₇₉, X₁₄: X₁₄ {O(n)}
t₇₉, X₁₅: X₁₅ {O(n)}
t₇₉, X₁₆: X₁₆ {O(n)}
t₈₀, X₀: X₀ {O(n)}
t₈₀, X₁: X₁ {O(n)}
t₈₀, X₂: X₂ {O(n)}
t₈₀, X₃: X₃ {O(n)}
t₈₀, X₄: X₄ {O(n)}
t₈₀, X₅: X₅ {O(n)}
t₈₀, X₆: X₆ {O(n)}
t₈₀, X₈: X₈ {O(n)}
t₈₀, X₉: X₉ {O(n)}
t₈₀, X₁₀: X₁₀ {O(n)}
t₈₀, X₁₁: X₁₁ {O(n)}
t₈₀, X₁₂: X₁₂ {O(n)}
t₈₀, X₁₃: X₁₃ {O(n)}
t₈₀, X₁₄: X₁₄ {O(n)}
t₈₀, X₁₅: X₁₅ {O(n)}
t₈₀, X₁₆: X₁₆ {O(n)}
t₈₁, X₁: X₁₆ {O(n)}
t₈₁, X₃: X₃ {O(n)}
t₈₁, X₄: X₄ {O(n)}
t₈₁, X₅: X₅ {O(n)}
t₈₁, X₆: X₆ {O(n)}
t₈₁, X₉: X₉ {O(n)}
t₈₁, X₁₀: X₁₀ {O(n)}
t₈₁, X₁₁: X₁₁ {O(n)}
t₈₁, X₁₂: X₁₂ {O(n)}
t₈₁, X₁₃: X₁₃ {O(n)}
t₈₁, X₁₄: X₁₄ {O(n)}
t₈₁, X₁₅: X₁₅ {O(n)}
t₈₁, X₁₆: X₁₆ {O(n)}
t₈₂, X₁: X₁₆ {O(n)}
t₈₂, X₃: X₃ {O(n)}
t₈₂, X₄: X₄ {O(n)}
t₈₂, X₅: X₅ {O(n)}
t₈₂, X₆: X₆ {O(n)}
t₈₂, X₁₀: X₁₀+8 {O(n)}
t₈₂, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₂, X₁₃: X₁₃ {O(n)}
t₈₂, X₁₄: X₁₄ {O(n)}
t₈₂, X₁₅: X₁₅ {O(n)}
t₈₂, X₁₆: X₁₆ {O(n)}
t₈₃, X₁: X₁₆ {O(n)}
t₈₃, X₃: X₃ {O(n)}
t₈₃, X₄: X₄ {O(n)}
t₈₃, X₅: X₅ {O(n)}
t₈₃, X₆: X₆ {O(n)}
t₈₃, X₁₀: X₁₀+8 {O(n)}
t₈₃, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₃, X₁₃: X₁₃ {O(n)}
t₈₃, X₁₄: X₁₄ {O(n)}
t₈₃, X₁₅: X₁₅ {O(n)}
t₈₃, X₁₆: X₁₆ {O(n)}
t₈₄, X₁: 2⋅X₁₆ {O(n)}
t₈₄, X₃: 2⋅X₃ {O(n)}
t₈₄, X₄: 2⋅X₄ {O(n)}
t₈₄, X₅: 2⋅X₅ {O(n)}
t₈₄, X₆: 2⋅X₆ {O(n)}
t₈₄, X₁₀: 2⋅X₁₀+8 {O(n)}
t₈₄, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₄, X₁₃: 2⋅X₁₃ {O(n)}
t₈₄, X₁₄: 2⋅X₁₄ {O(n)}
t₈₄, X₁₅: 2⋅X₁₅ {O(n)}
t₈₄, X₁₆: 2⋅X₁₆ {O(n)}
t₈₅, X₁: X₁₆ {O(n)}
t₈₅, X₃: X₃ {O(n)}
t₈₅, X₄: X₄ {O(n)}
t₈₅, X₅: X₅ {O(n)}
t₈₅, X₆: X₆ {O(n)}
t₈₅, X₁₀: X₁₀+8 {O(n)}
t₈₅, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₅, X₁₃: X₁₃ {O(n)}
t₈₅, X₁₄: X₁₄ {O(n)}
t₈₅, X₁₅: X₁₅ {O(n)}
t₈₅, X₁₆: X₁₆ {O(n)}
t₉₀, X₁: X₁₆ {O(n)}
t₉₀, X₃: X₃ {O(n)}
t₉₀, X₄: X₄ {O(n)}
t₉₀, X₅: X₅ {O(n)}
t₉₀, X₆: X₆ {O(n)}
t₉₀, X₁₀: X₁₀+8 {O(n)}
t₉₀, X₁₂: X₁₆ {O(n)}
t₉₀, X₁₃: X₁₃ {O(n)}
t₉₀, X₁₄: X₁₄ {O(n)}
t₉₀, X₁₅: X₁₅ {O(n)}
t₉₀, X₁₆: X₁₆ {O(n)}
t₈₀₉, X₀: 3 {O(1)}
t₈₀₉, X₁: 2⋅X₁₆ {O(n)}
t₈₀₉, X₂: 0 {O(1)}
t₈₀₉, X₃: 2⋅X₃ {O(n)}
t₈₀₉, X₄: 2⋅X₄ {O(n)}
t₈₀₉, X₅: 2⋅X₅ {O(n)}
t₈₀₉, X₆: 2⋅X₆ {O(n)}
t₈₀₉, X₉: 0 {O(1)}
t₈₀₉, X₁₀: X₁₀+8 {O(n)}
t₈₀₉, X₁₂: X₁₆ {O(n)}
t₈₀₉, X₁₃: 2⋅X₁₃ {O(n)}
t₈₀₉, X₁₄: 2⋅X₁₄ {O(n)}
t₈₀₉, X₁₅: 2⋅X₁₅ {O(n)}
t₈₀₉, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₀, X₀: 3 {O(1)}
t₈₁₀, X₁: X₁₆ {O(n)}
t₈₁₀, X₂: 0 {O(1)}
t₈₁₀, X₃: X₃ {O(n)}
t₈₁₀, X₄: X₄ {O(n)}
t₈₁₀, X₅: X₅ {O(n)}
t₈₁₀, X₆: X₆ {O(n)}
t₈₁₀, X₇: 3 {O(1)}
t₈₁₀, X₈: 0 {O(1)}
t₈₁₀, X₉: X₉ {O(n)}
t₈₁₀, X₁₀: X₁₀ {O(n)}
t₈₁₀, X₁₁: X₁₁ {O(n)}
t₈₁₀, X₁₂: X₁₂ {O(n)}
t₈₁₀, X₁₃: X₁₃ {O(n)}
t₈₁₀, X₁₄: X₁₄ {O(n)}
t₈₁₀, X₁₅: X₁₅ {O(n)}
t₈₁₀, X₁₆: X₁₆ {O(n)}
t₈₁₁, X₀: 3 {O(1)}
t₈₁₁, X₁: 2⋅X₁₆ {O(n)}
t₈₁₁, X₂: 0 {O(1)}
t₈₁₁, X₃: 2⋅X₃ {O(n)}
t₈₁₁, X₄: 2⋅X₄ {O(n)}
t₈₁₁, X₅: 2⋅X₅ {O(n)}
t₈₁₁, X₆: 2⋅X₆ {O(n)}
t₈₁₁, X₉: X₉ {O(n)}
t₈₁₁, X₁₀: 3 {O(1)}
t₈₁₁, X₁₁: 0 {O(1)}
t₈₁₁, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₁₁, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₁, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₁, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₁, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₂, X₀: 4 {O(1)}
t₈₁₂, X₁: 2⋅X₁₆ {O(n)}
t₈₁₂, X₃: 2⋅X₃ {O(n)}
t₈₁₂, X₄: 2⋅X₄ {O(n)}
t₈₁₂, X₅: 2⋅X₅ {O(n)}
t₈₁₂, X₆: 2⋅X₆ {O(n)}
t₈₁₂, X₉: 0 {O(1)}
t₈₁₂, X₁₀: 4 {O(1)}
t₈₁₂, X₁₂: X₁₆ {O(n)}
t₈₁₂, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₂, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₂, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₂, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₃, X₀: 4 {O(1)}
t₈₁₃, X₁: 2⋅X₁₆ {O(n)}
t₈₁₃, X₃: 2⋅X₃ {O(n)}
t₈₁₃, X₄: 2⋅X₄ {O(n)}
t₈₁₃, X₅: 2⋅X₅ {O(n)}
t₈₁₃, X₆: 2⋅X₆ {O(n)}
t₈₁₃, X₉: X₉ {O(n)}
t₈₁₃, X₁₀: 4 {O(1)}
t₈₁₃, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₁₃, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₃, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₃, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₃, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₄, X₀: 4 {O(1)}
t₈₁₄, X₁: X₁₆ {O(n)}
t₈₁₄, X₃: X₃ {O(n)}
t₈₁₄, X₄: X₄ {O(n)}
t₈₁₄, X₅: X₅ {O(n)}
t₈₁₄, X₆: X₆ {O(n)}
t₈₁₄, X₇: 3 {O(1)}
t₈₁₄, X₈: 0 {O(1)}
t₈₁₄, X₉: X₉ {O(n)}
t₈₁₄, X₁₀: 4 {O(1)}
t₈₁₄, X₁₂: X₁₂ {O(n)}
t₈₁₄, X₁₃: X₁₃ {O(n)}
t₈₁₄, X₁₄: X₁₄ {O(n)}
t₈₁₄, X₁₅: X₁₅ {O(n)}
t₈₁₄, X₁₆: X₁₆ {O(n)}
t₈₁₅, X₀: 3 {O(1)}
t₈₁₅, X₁: X₁₆ {O(n)}
t₈₁₅, X₂: 0 {O(1)}
t₈₁₅, X₃: X₃ {O(n)}
t₈₁₅, X₄: X₄ {O(n)}
t₈₁₅, X₅: X₅ {O(n)}
t₈₁₅, X₆: X₆ {O(n)}
t₈₁₅, X₇: 3 {O(1)}
t₈₁₅, X₈: 0 {O(1)}
t₈₁₅, X₉: X₉ {O(n)}
t₈₁₅, X₁₀: 4 {O(1)}
t₈₁₅, X₁₁: X₁₁ {O(n)}
t₈₁₅, X₁₂: X₁₂ {O(n)}
t₈₁₅, X₁₃: X₁₃ {O(n)}
t₈₁₅, X₁₄: X₁₄ {O(n)}
t₈₁₅, X₁₅: X₁₅ {O(n)}
t₈₁₅, X₁₆: X₁₆ {O(n)}
t₈₁₆, X₀: 3 {O(1)}
t₈₁₆, X₁: 2⋅X₁₆ {O(n)}
t₈₁₆, X₂: 0 {O(1)}
t₈₁₆, X₃: 2⋅X₃ {O(n)}
t₈₁₆, X₄: 2⋅X₄ {O(n)}
t₈₁₆, X₅: 2⋅X₅ {O(n)}
t₈₁₆, X₆: 2⋅X₆ {O(n)}
t₈₁₆, X₉: 0 {O(1)}
t₈₁₆, X₁₀: 4 {O(1)}
t₈₁₆, X₁₂: X₁₆ {O(n)}
t₈₁₆, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₆, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₆, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₆, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₇, X₀: 3 {O(1)}
t₈₁₇, X₁: 2⋅X₁₆ {O(n)}
t₈₁₇, X₂: 0 {O(1)}
t₈₁₇, X₃: 2⋅X₃ {O(n)}
t₈₁₇, X₄: 2⋅X₄ {O(n)}
t₈₁₇, X₅: 2⋅X₅ {O(n)}
t₈₁₇, X₆: 2⋅X₆ {O(n)}
t₈₁₇, X₉: X₉ {O(n)}
t₈₁₇, X₁₀: 4 {O(1)}
t₈₁₇, X₁₁: 0 {O(1)}
t₈₁₇, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₁₇, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₇, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₇, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₇, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₈, X₀: 3 {O(1)}
t₈₁₈, X₁: 2⋅X₁₆ {O(n)}
t₈₁₈, X₂: 0 {O(1)}
t₈₁₈, X₃: 2⋅X₃ {O(n)}
t₈₁₈, X₄: 2⋅X₄ {O(n)}
t₈₁₈, X₅: 2⋅X₅ {O(n)}
t₈₁₈, X₆: 2⋅X₆ {O(n)}
t₈₁₈, X₉: 0 {O(1)}
t₈₁₈, X₁₀: 4 {O(1)}
t₈₁₈, X₁₂: X₁₆ {O(n)}
t₈₁₈, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₈, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₈, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₈, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₉, X₀: 3 {O(1)}
t₈₁₉, X₁: 2⋅X₁₆ {O(n)}
t₈₁₉, X₂: 0 {O(1)}
t₈₁₉, X₃: 2⋅X₃ {O(n)}
t₈₁₉, X₄: 2⋅X₄ {O(n)}
t₈₁₉, X₅: 2⋅X₅ {O(n)}
t₈₁₉, X₆: 2⋅X₆ {O(n)}
t₈₁₉, X₉: X₉ {O(n)}
t₈₁₉, X₁₀: 4 {O(1)}
t₈₁₉, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₁₉, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₉, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₉, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₉, X₁₆: 2⋅X₁₆ {O(n)}
t₈₂₀, X₀: 3 {O(1)}
t₈₂₀, X₁: X₁₆ {O(n)}
t₈₂₀, X₂: 0 {O(1)}
t₈₂₀, X₃: X₃ {O(n)}
t₈₂₀, X₄: X₄ {O(n)}
t₈₂₀, X₅: X₅ {O(n)}
t₈₂₀, X₆: X₆ {O(n)}
t₈₂₀, X₇: 3 {O(1)}
t₈₂₀, X₈: 0 {O(1)}
t₈₂₀, X₉: X₉ {O(n)}
t₈₂₀, X₁₀: 4 {O(1)}
t₈₂₀, X₁₂: X₁₂ {O(n)}
t₈₂₀, X₁₃: X₁₃ {O(n)}
t₈₂₀, X₁₄: X₁₄ {O(n)}
t₈₂₀, X₁₅: X₁₅ {O(n)}
t₈₂₀, X₁₆: X₁₆ {O(n)}
t₈₂₉, X₀: 4 {O(1)}
t₈₂₉, X₁: 2⋅X₁₆ {O(n)}
t₈₂₉, X₃: 2⋅X₃ {O(n)}
t₈₂₉, X₄: 2⋅X₄ {O(n)}
t₈₂₉, X₅: 2⋅X₅ {O(n)}
t₈₂₉, X₆: 2⋅X₆ {O(n)}
t₈₂₉, X₉: 2⋅X₉ {O(n)}
t₈₂₉, X₁₀: 4 {O(1)}
t₈₂₉, X₁₂: 2⋅X₁₂+2⋅X₁₆ {O(n)}
t₈₂₉, X₁₃: 2⋅X₁₃ {O(n)}
t₈₂₉, X₁₄: 2⋅X₁₄ {O(n)}
t₈₂₉, X₁₅: 2⋅X₁₅ {O(n)}
t₈₂₉, X₁₆: 2⋅X₁₆ {O(n)}
t₈₃₀, X₀: 4 {O(1)}
t₈₃₀, X₁: 5⋅X₁₆ {O(n)}
t₈₃₀, X₃: 5⋅X₃ {O(n)}
t₈₃₀, X₄: 5⋅X₄ {O(n)}
t₈₃₀, X₅: 5⋅X₅ {O(n)}
t₈₃₀, X₆: 5⋅X₆ {O(n)}
t₈₃₀, X₉: 2⋅X₉ {O(n)}
t₈₃₀, X₁₀: 4 {O(1)}
t₈₃₀, X₁₂: 2⋅X₁₂+2⋅X₁₆ {O(n)}
t₈₃₀, X₁₃: 5⋅X₁₃ {O(n)}
t₈₃₀, X₁₄: 5⋅X₁₄ {O(n)}
t₈₃₀, X₁₅: 5⋅X₁₅ {O(n)}
t₈₃₀, X₁₆: 5⋅X₁₆ {O(n)}
t₈₃₁, X₀: 4 {O(1)}
t₈₃₁, X₁: 2⋅X₁₆ {O(n)}
t₈₃₁, X₃: 2⋅X₃ {O(n)}
t₈₃₁, X₄: 2⋅X₄ {O(n)}
t₈₃₁, X₅: 2⋅X₅ {O(n)}
t₈₃₁, X₆: 2⋅X₆ {O(n)}
t₈₃₁, X₉: 2⋅X₉ {O(n)}
t₈₃₁, X₁₀: 4 {O(1)}
t₈₃₁, X₁₂: 2⋅X₁₂+2⋅X₁₆ {O(n)}
t₈₃₁, X₁₃: 2⋅X₁₃ {O(n)}
t₈₃₁, X₁₄: 2⋅X₁₄ {O(n)}
t₈₃₁, X₁₅: 2⋅X₁₅ {O(n)}
t₈₃₁, X₁₆: 2⋅X₁₆ {O(n)}