Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₃ ≤ 0
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₀, X₁, X₂, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₃
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₈, X₉, X₁₀, X₁₂, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₈ ∧ 0 < X₁₂
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₈ ≤ 0
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₁₂ ≤ 0
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₄
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₄ ≤ 0
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₃, 2⋅X₃, 3⋅X₃, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄-1, 3⋅X₅+2⋅X₆, -5⋅X₅-3⋅X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₇ ≤ 0
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₇
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁₂)
Preprocessing
Eliminate variables {X₁₁} that do not contribute to the problem
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l1
Found invariant 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂₇: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₀, X₁, X₂, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₈, X₉, X₁₀, X₁₁, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₈ ∧ 0 < X₁₁
t₃₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ ≤ 0
t₃₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ 0
t₃₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₃, 2⋅X₃, 3⋅X₃, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄-1, 3⋅X₅+2⋅X₆, -5⋅X₅-3⋅X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₄₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
Solv. Size Bound: t₃₄: l4→l6 for X₅
cycle: [t₃₄: l4→l6; t₃₇: l6→l4]
loop: (0 < X₄,(X₅,X₆) -> (3⋅X₅+2⋅X₆,-5⋅X₅-3⋅X₆)
overappr. closed-form: 2⋅X₆+6⋅X₅ {O(n)}
runtime bound: X₄+1 {O(n)}
Solv. Size Bound - Lifting for t₃₄: l4→l6 and X₅: 18⋅X₁₁+2⋅X₁₀+6⋅X₉ {O(n)}
Solv. Size Bound: t₃₄: l4→l6 for X₆
cycle: [t₃₄: l4→l6; t₃₇: l6→l4]
loop: (0 < X₄,(X₅,X₆) -> (3⋅X₅+2⋅X₆,-5⋅X₅-3⋅X₆)
overappr. closed-form: 6⋅X₅+6⋅X₆ {O(n)}
runtime bound: X₄+1 {O(n)}
Solv. Size Bound - Lifting for t₃₄: l4→l6 and X₆: 30⋅X₁₁+6⋅X₁₀+6⋅X₉ {O(n)}
Solv. Size Bound: t₃₇: l6→l4 for X₅
cycle: [t₃₄: l4→l6; t₃₇: l6→l4]
loop: (1 < X₄,(X₅,X₆) -> (3⋅X₅+2⋅X₆,-5⋅X₅-3⋅X₆)
overappr. closed-form: 2⋅X₆+6⋅X₅ {O(n)}
runtime bound: X₄+1 {O(n)}
Solv. Size Bound - Lifting for t₃₇: l6→l4 and X₅: 18⋅X₁₁+2⋅X₁₀+6⋅X₉ {O(n)}
Solv. Size Bound: t₃₇: l6→l4 for X₆
cycle: [t₃₄: l4→l6; t₃₇: l6→l4]
loop: (1 < X₄,(X₅,X₆) -> (3⋅X₅+2⋅X₆,-5⋅X₅-3⋅X₆)
overappr. closed-form: 6⋅X₅+6⋅X₆ {O(n)}
runtime bound: X₄+1 {O(n)}
Solv. Size Bound - Lifting for t₃₇: l6→l4 and X₆: 30⋅X₁₁+6⋅X₁₀+6⋅X₉ {O(n)}
MPRF for transition t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₀, X₁, X₂, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF for transition t₃₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁₁+1 {O(n)}
MPRF for transition t₃₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₃, 2⋅X₃, 3⋅X₃, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF for transition t₃₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁₁ {O(n)}
TWN: t₃₄: l4→l6
cycle: [t₃₄: l4→l6; t₃₇: l6→l4]
loop: (0 < X₄,(X₄) -> (X₄-1)
order: [X₄]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 0 < X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}
TWN - Lifting for t₃₄: l4→l6 of 2⋅X₄+4 {O(n)}
relevant size-bounds w.r.t. t₂₉:
X₄: X₁₁+X₈ {O(n)}
Runtime-bound of t₂₉: X₁₁ {O(n)}
Results in: 2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁ {O(n^2)}
TWN: t₃₇: l6→l4
TWN - Lifting for t₃₇: l6→l4 of 2⋅X₄+4 {O(n)}
relevant size-bounds w.r.t. t₂₉:
X₄: X₁₁+X₈ {O(n)}
Runtime-bound of t₂₉: X₁₁ {O(n)}
Results in: 2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁ {O(n^2)}
MPRF for transition t₃₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
12⋅X₁₁⋅X₁₁⋅X₉+12⋅X₁₁⋅X₈⋅X₉+36⋅X₁₁⋅X₁₁⋅X₁₁+36⋅X₁₁⋅X₁₁⋅X₈+4⋅X₁₀⋅X₁₁⋅X₁₁+4⋅X₁₀⋅X₁₁⋅X₈+24⋅X₁₁⋅X₉+76⋅X₁₁⋅X₁₁+8⋅X₁₀⋅X₁₁+X₉ {O(n^3)}
MPRF for transition t₄₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
12⋅X₁₁⋅X₁₁⋅X₉+12⋅X₁₁⋅X₈⋅X₉+36⋅X₁₁⋅X₁₁⋅X₁₁+36⋅X₁₁⋅X₁₁⋅X₈+4⋅X₁₀⋅X₁₁⋅X₁₁+4⋅X₁₀⋅X₁₁⋅X₈+24⋅X₁₁⋅X₉+76⋅X₁₁⋅X₁₁+8⋅X₁₀⋅X₁₁+X₉ {O(n^3)}
Chain transitions t₃₆: l5→l1 and t₂₉: l1→l4 to t₁₁₇: l5→l4
Chain transitions t₃₁: l3→l1 and t₂₉: l1→l4 to t₁₁₈: l3→l4
Chain transitions t₃₁: l3→l1 and t₂₈: l1→l2 to t₁₁₉: l3→l2
Chain transitions t₃₆: l5→l1 and t₂₈: l1→l2 to t₁₂₀: l5→l2
Chain transitions t₃₇: l6→l4 and t₃₅: l4→l7 to t₁₂₁: l6→l7
Chain transitions t₁₁₇: l5→l4 and t₃₅: l4→l7 to t₁₂₂: l5→l7
Chain transitions t₁₁₇: l5→l4 and t₃₄: l4→l6 to t₁₂₃: l5→l6
Chain transitions t₃₇: l6→l4 and t₃₄: l4→l6 to t₁₂₄: l6→l6
Chain transitions t₁₁₈: l3→l4 and t₃₄: l4→l6 to t₁₂₅: l3→l6
Chain transitions t₁₁₈: l3→l4 and t₃₅: l4→l7 to t₁₂₆: l3→l7
Chain transitions t₃₈: l7→l5 and t₁₂₂: l5→l7 to t₁₂₇: l7→l7
Chain transitions t₃₈: l7→l5 and t₁₂₃: l5→l6 to t₁₂₈: l7→l6
Chain transitions t₃₈: l7→l5 and t₁₁₇: l5→l4 to t₁₂₉: l7→l4
Chain transitions t₃₈: l7→l5 and t₁₂₀: l5→l2 to t₁₃₀: l7→l2
Chain transitions t₃₈: l7→l5 and t₃₆: l5→l1 to t₁₃₁: l7→l1
Chain transitions t₃₉: l7→l8 and t₄₀: l8→l7 to t₁₃₂: l7→l7
Analysing control-flow refined program
Cut unsatisfiable transition t₁₁₉: l3→l2
Cut unsatisfiable transition t₁₂₆: l3→l7
Cut unsatisfiable transition t₁₂₇: l7→l7
Eliminate variables {X₁,X₂} that do not contribute to the problem
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₂+X₉ ∧ 1+X₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ 1+X₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₂+X₉ ∧ 1+X₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Solv. Size Bound: t₁₆₆: l6→l6 for X₃
cycle: [t₁₆₆: l6→l6]
loop: (1 < X₂,(X₃,X₄) -> (3⋅X₃+2⋅X₄,-5⋅X₃-3⋅X₄)
overappr. closed-form: 2⋅X₄+6⋅X₃ {O(n)}
runtime bound: X₂+1 {O(n)}
Solv. Size Bound - Lifting for t₁₆₆: l6→l6 and X₃: 2⋅X₈+36⋅X₉+6⋅X₇ {O(n)}
Solv. Size Bound: t₁₆₆: l6→l6 for X₄
cycle: [t₁₆₆: l6→l6]
loop: (1 < X₂,(X₃,X₄) -> (3⋅X₃+2⋅X₄,-5⋅X₃-3⋅X₄)
overappr. closed-form: 6⋅X₃+6⋅X₄ {O(n)}
runtime bound: X₂+1 {O(n)}
Solv. Size Bound - Lifting for t₁₆₆: l6→l6 and X₄: 6⋅X₇+6⋅X₈+60⋅X₉ {O(n)}
MPRF for transition t₁₆₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) -{2}> l7(X₀, X₁, X₂-1, 3⋅X₃+2⋅X₄, -5⋅X₃-3⋅X₄, 3⋅X₃+2⋅X₄, X₆, X₇, X₈, X₉) :|: X₂ ≤ 1 ∧ 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉ {O(n)}
MPRF for transition t₁₇₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) -{4}> l6(X₁, X₁-1, X₁, 2⋅X₁, 3⋅X₁, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₂+X₉ ∧ 1+X₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉ {O(n)}
TWN: t₁₆₆: l6→l6
cycle: [t₁₆₆: l6→l6]
loop: (1 < X₂,(X₂) -> (X₂-1)
order: [X₂]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 1 < X₂
alphas_abs: 1+X₂
M: 0
N: 1
Bound: 2⋅X₂+4 {O(n)}
loop: (1 < X₂,(X₂) -> (X₂-1)
order: [X₂]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 1 < X₂
alphas_abs: 1+X₂
M: 0
N: 1
Bound: 2⋅X₂+4 {O(n)}
TWN - Lifting for t₁₆₆: l6→l6 of 2⋅X₂+6 {O(n)}
relevant size-bounds w.r.t. t₁₇₂:
X₂: 2⋅X₉ {O(n)}
Runtime-bound of t₁₇₂: X₉ {O(n)}
Results in: 4⋅X₉⋅X₉+6⋅X₉ {O(n^2)}
TWN - Lifting for t₁₆₆: l6→l6 of 2⋅X₂+6 {O(n)}
relevant size-bounds w.r.t. t₁₆₄:
X₂: X₆ {O(n)}
Runtime-bound of t₁₆₄: 1 {O(1)}
Results in: 2⋅X₆+6 {O(n)}
MPRF for transition t₁₇₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) -{2}> l7(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉) :|: 0 < X₅ ∧ 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₂+X₉ ∧ 1+X₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
27⋅X₈⋅X₉+288⋅X₉⋅X₉+39⋅X₇⋅X₉+X₅ {O(n^2)}
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₃₅: l4→l7
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l6___3
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ for location n_l6___1
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l8___1
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l8___3
Found invariant 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l4___2
Found invariant 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l7___2
Found invariant 1 ≤ X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l1
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l4
Solv. Size Bound: t₂₅₇: n_l4___2→n_l6___1 for X₅
cycle: [t₂₅₇: n_l4___2→n_l6___1; t₂₅₉: n_l6___1→n_l4___2]
loop: (X₃ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ X₃ ≤ X₁₁ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁,(X₅,X₆) -> (3⋅X₅+2⋅X₆,-5⋅X₅-3⋅X₆)
overappr. closed-form: 2⋅X₆+6⋅X₅ {O(n)}
runtime bound: X₄+1 {O(n)}
Solv. Size Bound - Lifting for t₂₅₇: n_l4___2→n_l6___1 and X₅: 28⋅X₁₀+28⋅X₉+280⋅X₁₁ {O(n)}
Solv. Size Bound: t₂₅₇: n_l4___2→n_l6___1 for X₆
cycle: [t₂₅₇: n_l4___2→n_l6___1; t₂₅₉: n_l6___1→n_l4___2]
loop: (X₃ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ X₃ ≤ X₁₁ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁,(X₅,X₆) -> (3⋅X₅+2⋅X₆,-5⋅X₅-3⋅X₆)
overappr. closed-form: 6⋅X₅+6⋅X₆ {O(n)}
runtime bound: X₄+1 {O(n)}
Solv. Size Bound - Lifting for t₂₅₇: n_l4___2→n_l6___1 and X₆: 48⋅X₁₀+48⋅X₉+480⋅X₁₁ {O(n)}
Solv. Size Bound: t₂₅₉: n_l6___1→n_l4___2 for X₅
cycle: [t₂₅₇: n_l4___2→n_l6___1; t₂₅₉: n_l6___1→n_l4___2]
loop: (X₃ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁₁ ∧ 1 < X₄ ∧ X₃ ≤ X₁₁,(X₅,X₆) -> (3⋅X₅+2⋅X₆,-5⋅X₅-3⋅X₆)
overappr. closed-form: 2⋅X₆+6⋅X₅ {O(n)}
runtime bound: X₄+1 {O(n)}
Solv. Size Bound - Lifting for t₂₅₉: n_l6___1→n_l4___2 and X₅: 28⋅X₁₀+28⋅X₉+280⋅X₁₁ {O(n)}
Solv. Size Bound: t₂₅₉: n_l6___1→n_l4___2 for X₆
cycle: [t₂₅₇: n_l4___2→n_l6___1; t₂₅₉: n_l6___1→n_l4___2]
loop: (X₃ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₁ ∧ X₄ ≤ X₀ ∧ X₃ ≤ X₁₁ ∧ 1 < X₄ ∧ X₃ ≤ X₁₁,(X₅,X₆) -> (3⋅X₅+2⋅X₆,-5⋅X₅-3⋅X₆)
overappr. closed-form: 6⋅X₅+6⋅X₆ {O(n)}
runtime bound: X₄+1 {O(n)}
Solv. Size Bound - Lifting for t₂₅₉: n_l6___1→n_l4___2 and X₆: 48⋅X₁₀+48⋅X₉+480⋅X₁₁ {O(n)}
knowledge_propagation leads to new time bound X₁₁ {O(n)} for transition t₂₅₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁₁ {O(n)} for transition t₂₆₀: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l4___2(X₀, X₁, X₂, X₃, X₄-1, 3⋅X₅+2⋅X₆, -5⋅X₅-3⋅X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
MPRF for transition t₂₅₇: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ X₃ ≤ X₁₁ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁+X₈ {O(n^2)}
MPRF for transition t₂₅₉: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l4___2(X₀, X₁, X₂, X₃, X₄-1, 3⋅X₅+2⋅X₆, -5⋅X₅-3⋅X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁ {O(n^2)}
MPRF for transition t₂₆₄: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁₁+1 {O(n)}
MPRF for transition t₂₇₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___3(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₁₁ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₁₁ ∧ 0 < X₇ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF for transition t₂₇₈: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l7___2(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 0 < X₇ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF for transition t₂₈₂: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF for transition t₂₇₅: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___1(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 0 ≤ X₇ ∧ 1+X₇ ≤ X₅ ∧ X₃ ≤ X₁₁ ∧ 0 < X₇ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
31⋅X₁₀⋅X₁₁+31⋅X₁₁⋅X₉+310⋅X₁₁⋅X₁₁+X₁₁ {O(n^2)}
MPRF for transition t₂₇₇: n_l8___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l7___2(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 1+X₇ ≤ X₅ ∧ 0 < X₇ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
31⋅X₁₀⋅X₁₁+31⋅X₁₁⋅X₉+310⋅X₁₁⋅X₁₁ {O(n^2)}
CFR did not improve the program. Rolling back
CFR: Improvement to new bound with the following program:
new bound:
2⋅X₁₁⋅X₈+62⋅X₁₀⋅X₁₁+62⋅X₁₁⋅X₉+623⋅X₁₁⋅X₁₁+13⋅X₁₁+X₈+1 {O(n^2)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l7, l9, n_l4___2, n_l6___1, n_l6___3, n_l7___2, n_l8___1, n_l8___3
Transitions:
t₂₇: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₀, X₁, X₂, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₈, X₉, X₁₀, X₁₁, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₈ ∧ 0 < X₁₁
t₃₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ ≤ 0
t₃₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ 0
t₂₅₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₃, 2⋅X₃, 3⋅X₃, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₂₇₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___3(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₁₁ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₁₁ ∧ 0 < X₇ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₂₆₄: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₂₅₇: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ X₃ ≤ X₁₁ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₂₅₉: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l4___2(X₀, X₁, X₂, X₃, X₄-1, 3⋅X₅+2⋅X₆, -5⋅X₅-3⋅X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 2 ≤ X₀
t₂₆₀: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l4___2(X₀, X₁, X₂, X₃, X₄-1, 3⋅X₅+2⋅X₆, -5⋅X₅-3⋅X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₂₈₂: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₂₇₅: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___1(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 0 ≤ X₇ ∧ 1+X₇ ≤ X₅ ∧ X₃ ≤ X₁₁ ∧ 0 < X₇ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₂₇₇: n_l8___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l7___2(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 1+X₇ ≤ X₅ ∧ 0 < X₇ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₂₇₈: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l7___2(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 0 < X₇ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
All Bounds
Timebounds
Overall timebound:2⋅X₁₁⋅X₈+62⋅X₁₀⋅X₁₁+62⋅X₁₁⋅X₉+623⋅X₁₁⋅X₁₁+13⋅X₁₁+X₈+7 {O(n^2)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: X₁₁ {O(n)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₆: X₁₁ {O(n)}
t₃₈: 2⋅X₁₁ {O(n)}
t₂₅₇: 2⋅X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁+X₈ {O(n^2)}
t₂₅₈: X₁₁ {O(n)}
t₂₅₉: X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁ {O(n^2)}
t₂₆₀: X₁₁ {O(n)}
t₂₆₄: X₁₁+1 {O(n)}
t₂₇₅: 31⋅X₁₀⋅X₁₁+31⋅X₁₁⋅X₉+310⋅X₁₁⋅X₁₁+X₁₁ {O(n^2)}
t₂₇₆: X₁₁ {O(n)}
t₂₇₇: 31⋅X₁₀⋅X₁₁+31⋅X₁₁⋅X₉+310⋅X₁₁⋅X₁₁ {O(n^2)}
t₂₇₈: X₁₁ {O(n)}
t₂₈₂: X₁₁ {O(n)}
Costbounds
Overall costbound: 2⋅X₁₁⋅X₈+62⋅X₁₀⋅X₁₁+62⋅X₁₁⋅X₉+623⋅X₁₁⋅X₁₁+13⋅X₁₁+X₈+7 {O(n^2)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: X₁₁ {O(n)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₆: X₁₁ {O(n)}
t₃₈: 2⋅X₁₁ {O(n)}
t₂₅₇: 2⋅X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁+X₈ {O(n^2)}
t₂₅₈: X₁₁ {O(n)}
t₂₅₉: X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁ {O(n^2)}
t₂₆₀: X₁₁ {O(n)}
t₂₆₄: X₁₁+1 {O(n)}
t₂₇₅: 31⋅X₁₀⋅X₁₁+31⋅X₁₁⋅X₉+310⋅X₁₁⋅X₁₁+X₁₁ {O(n^2)}
t₂₇₆: X₁₁ {O(n)}
t₂₇₇: 31⋅X₁₀⋅X₁₁+31⋅X₁₁⋅X₉+310⋅X₁₁⋅X₁₁ {O(n^2)}
t₂₇₈: X₁₁ {O(n)}
t₂₈₂: X₁₁ {O(n)}
Sizebounds
t₂₇, X₀: X₀ {O(n)}
t₂₇, X₁: X₁ {O(n)}
t₂₇, X₂: X₂ {O(n)}
t₂₇, X₃: X₃ {O(n)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₅: X₅ {O(n)}
t₂₇, X₆: X₆ {O(n)}
t₂₇, X₇: X₇ {O(n)}
t₂₇, X₈: X₈ {O(n)}
t₂₇, X₉: X₉ {O(n)}
t₂₇, X₁₀: X₁₀ {O(n)}
t₂₇, X₁₁: X₁₁ {O(n)}
t₂₈, X₀: X₁₁ {O(n)}
t₂₈, X₁: 4⋅X₁₁ {O(n)}
t₂₈, X₂: 6⋅X₁₁ {O(n)}
t₂₈, X₃: 0 {O(1)}
t₂₈, X₄: 0 {O(1)}
t₂₈, X₅: 12⋅X₉+36⋅X₁₁+4⋅X₁₀ {O(n)}
t₂₈, X₆: 12⋅X₁₀+12⋅X₉+60⋅X₁₁ {O(n)}
t₂₈, X₇: 12⋅X₉+36⋅X₁₁+4⋅X₁₀ {O(n)}
t₂₈, X₈: X₈ {O(n)}
t₂₈, X₉: X₉ {O(n)}
t₂₈, X₁₀: X₁₀ {O(n)}
t₂₈, X₁₁: X₁₁ {O(n)}
t₂₉, X₀: X₁₁+X₈ {O(n)}
t₂₉, X₁: 4⋅X₁₁+X₉ {O(n)}
t₂₉, X₂: 6⋅X₁₁+X₁₀ {O(n)}
t₂₉, X₃: X₁₁ {O(n)}
t₂₉, X₄: X₁₁+X₈ {O(n)}
t₂₉, X₅: 4⋅X₁₁+X₉ {O(n)}
t₂₉, X₆: 6⋅X₁₁+X₁₀ {O(n)}
t₂₉, X₇: 12⋅X₉+36⋅X₁₁+4⋅X₁₀+X₇ {O(n)}
t₂₉, X₈: X₈ {O(n)}
t₂₉, X₉: X₉ {O(n)}
t₂₉, X₁₀: X₁₀ {O(n)}
t₂₉, X₁₁: X₁₁ {O(n)}
t₃₀, X₀: 2⋅X₀+X₁₁ {O(n)}
t₃₀, X₁: 2⋅X₁+4⋅X₁₁ {O(n)}
t₃₀, X₂: 2⋅X₂+6⋅X₁₁ {O(n)}
t₃₀, X₃: 2⋅X₃ {O(n)}
t₃₀, X₄: 2⋅X₄ {O(n)}
t₃₀, X₅: 12⋅X₉+2⋅X₅+36⋅X₁₁+4⋅X₁₀ {O(n)}
t₃₀, X₆: 12⋅X₁₀+12⋅X₉+2⋅X₆+60⋅X₁₁ {O(n)}
t₃₀, X₇: 12⋅X₉+2⋅X₇+36⋅X₁₁+4⋅X₁₀ {O(n)}
t₃₀, X₈: 3⋅X₈ {O(n)}
t₃₀, X₉: 3⋅X₉ {O(n)}
t₃₀, X₁₀: 3⋅X₁₀ {O(n)}
t₃₀, X₁₁: 3⋅X₁₁ {O(n)}
t₃₁, X₀: X₈ {O(n)}
t₃₁, X₁: X₉ {O(n)}
t₃₁, X₂: X₁₀ {O(n)}
t₃₁, X₃: X₁₁ {O(n)}
t₃₁, X₄: X₄ {O(n)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: X₇ {O(n)}
t₃₁, X₈: X₈ {O(n)}
t₃₁, X₉: X₉ {O(n)}
t₃₁, X₁₀: X₁₀ {O(n)}
t₃₁, X₁₁: X₁₁ {O(n)}
t₃₂, X₀: X₀ {O(n)}
t₃₂, X₁: X₁ {O(n)}
t₃₂, X₂: X₂ {O(n)}
t₃₂, X₃: X₃ {O(n)}
t₃₂, X₄: X₄ {O(n)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: X₆ {O(n)}
t₃₂, X₇: X₇ {O(n)}
t₃₂, X₈: X₈ {O(n)}
t₃₂, X₉: X₉ {O(n)}
t₃₂, X₁₀: X₁₀ {O(n)}
t₃₂, X₁₁: X₁₁ {O(n)}
t₃₃, X₀: X₀ {O(n)}
t₃₃, X₁: X₁ {O(n)}
t₃₃, X₂: X₂ {O(n)}
t₃₃, X₃: X₃ {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₅: X₅ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₃, X₇: X₇ {O(n)}
t₃₃, X₈: X₈ {O(n)}
t₃₃, X₉: X₉ {O(n)}
t₃₃, X₁₀: X₁₀ {O(n)}
t₃₃, X₁₁: X₁₁ {O(n)}
t₃₆, X₀: X₁₁ {O(n)}
t₃₆, X₁: 4⋅X₁₁ {O(n)}
t₃₆, X₂: 6⋅X₁₁ {O(n)}
t₃₆, X₃: X₁₁ {O(n)}
t₃₆, X₄: 0 {O(1)}
t₃₆, X₅: 12⋅X₉+36⋅X₁₁+4⋅X₁₀ {O(n)}
t₃₆, X₆: 12⋅X₁₀+12⋅X₉+60⋅X₁₁ {O(n)}
t₃₆, X₇: 12⋅X₉+36⋅X₁₁+4⋅X₁₀ {O(n)}
t₃₆, X₈: X₈ {O(n)}
t₃₆, X₉: X₉ {O(n)}
t₃₆, X₁₀: X₁₀ {O(n)}
t₃₆, X₁₁: X₁₁ {O(n)}
t₃₈, X₀: 2⋅X₁₁+2⋅X₈ {O(n)}
t₃₈, X₁: 2⋅X₉+8⋅X₁₁ {O(n)}
t₃₈, X₂: 2⋅X₁₀+6⋅X₁₁ {O(n)}
t₃₈, X₃: X₁₁ {O(n)}
t₃₈, X₄: 0 {O(1)}
t₃₈, X₅: 12⋅X₉+36⋅X₁₁+4⋅X₁₀ {O(n)}
t₃₈, X₆: 12⋅X₁₀+12⋅X₉+60⋅X₁₁ {O(n)}
t₃₈, X₇: 12⋅X₉+36⋅X₁₁+4⋅X₁₀ {O(n)}
t₃₈, X₈: X₈ {O(n)}
t₃₈, X₉: X₉ {O(n)}
t₃₈, X₁₀: X₁₀ {O(n)}
t₃₈, X₁₁: X₁₁ {O(n)}
t₂₅₇, X₀: X₁₁+X₈ {O(n)}
t₂₅₇, X₁: 4⋅X₁₁+X₉ {O(n)}
t₂₅₇, X₂: 6⋅X₁₁+X₁₀ {O(n)}
t₂₅₇, X₃: X₁₁ {O(n)}
t₂₅₇, X₄: X₁₁+X₈ {O(n)}
t₂₅₇, X₅: 28⋅X₁₀+28⋅X₉+280⋅X₁₁ {O(n)}
t₂₅₇, X₆: 48⋅X₁₀+48⋅X₉+480⋅X₁₁ {O(n)}
t₂₅₇, X₇: 12⋅X₉+36⋅X₁₁+4⋅X₁₀+X₇ {O(n)}
t₂₅₇, X₈: X₈ {O(n)}
t₂₅₇, X₉: X₉ {O(n)}
t₂₅₇, X₁₀: X₁₀ {O(n)}
t₂₅₇, X₁₁: X₁₁ {O(n)}
t₂₅₈, X₀: X₁₁+X₈ {O(n)}
t₂₅₈, X₁: 4⋅X₁₁+X₉ {O(n)}
t₂₅₈, X₂: 6⋅X₁₁+X₁₀ {O(n)}
t₂₅₈, X₃: X₁₁ {O(n)}
t₂₅₈, X₄: X₁₁+X₈ {O(n)}
t₂₅₈, X₅: 4⋅X₁₁+X₉ {O(n)}
t₂₅₈, X₆: 6⋅X₁₁+X₁₀ {O(n)}
t₂₅₈, X₇: 12⋅X₉+36⋅X₁₁+4⋅X₁₀+X₇ {O(n)}
t₂₅₈, X₈: X₈ {O(n)}
t₂₅₈, X₉: X₉ {O(n)}
t₂₅₈, X₁₀: X₁₀ {O(n)}
t₂₅₈, X₁₁: X₁₁ {O(n)}
t₂₅₉, X₀: X₁₁+X₈ {O(n)}
t₂₅₉, X₁: 4⋅X₁₁+X₉ {O(n)}
t₂₅₉, X₂: 6⋅X₁₁+X₁₀ {O(n)}
t₂₅₉, X₃: X₁₁ {O(n)}
t₂₅₉, X₄: X₁₁+X₈ {O(n)}
t₂₅₉, X₅: 28⋅X₁₀+28⋅X₉+280⋅X₁₁ {O(n)}
t₂₅₉, X₆: 48⋅X₁₀+48⋅X₉+480⋅X₁₁ {O(n)}
t₂₅₉, X₇: 12⋅X₉+36⋅X₁₁+4⋅X₁₀+X₇ {O(n)}
t₂₅₉, X₈: X₈ {O(n)}
t₂₅₉, X₉: X₉ {O(n)}
t₂₅₉, X₁₀: X₁₀ {O(n)}
t₂₅₉, X₁₁: X₁₁ {O(n)}
t₂₆₀, X₀: X₁₁+X₈ {O(n)}
t₂₆₀, X₁: 4⋅X₁₁+X₉ {O(n)}
t₂₆₀, X₂: 6⋅X₁₁+X₁₀ {O(n)}
t₂₆₀, X₃: X₁₁ {O(n)}
t₂₆₀, X₄: X₁₁+X₈ {O(n)}
t₂₆₀, X₅: 3⋅X₁₀+3⋅X₉+30⋅X₁₁ {O(n)}
t₂₆₀, X₆: 5⋅X₁₀+5⋅X₉+50⋅X₁₁ {O(n)}
t₂₆₀, X₇: 12⋅X₉+36⋅X₁₁+4⋅X₁₀+X₇ {O(n)}
t₂₆₀, X₈: X₈ {O(n)}
t₂₆₀, X₉: X₉ {O(n)}
t₂₆₀, X₁₀: X₁₀ {O(n)}
t₂₆₀, X₁₁: X₁₁ {O(n)}
t₂₆₄, X₀: 2⋅X₁₁+2⋅X₈ {O(n)}
t₂₆₄, X₁: 2⋅X₉+8⋅X₁₁ {O(n)}
t₂₆₄, X₂: 12⋅X₁₁+2⋅X₁₀ {O(n)}
t₂₆₄, X₃: X₁₁ {O(n)}
t₂₆₄, X₄: 0 {O(1)}
t₂₆₄, X₅: 31⋅X₁₀+31⋅X₉+310⋅X₁₁ {O(n)}
t₂₆₄, X₆: 53⋅X₁₀+53⋅X₉+530⋅X₁₁ {O(n)}
t₂₆₄, X₇: 31⋅X₁₀+31⋅X₉+310⋅X₁₁ {O(n)}
t₂₆₄, X₈: X₈ {O(n)}
t₂₆₄, X₉: X₉ {O(n)}
t₂₆₄, X₁₀: X₁₀ {O(n)}
t₂₆₄, X₁₁: X₁₁ {O(n)}
t₂₇₅, X₀: 2⋅X₁₁+2⋅X₈ {O(n)}
t₂₇₅, X₁: 2⋅X₉+8⋅X₁₁ {O(n)}
t₂₇₅, X₂: 12⋅X₁₁+2⋅X₁₀ {O(n)}
t₂₇₅, X₃: X₁₁ {O(n)}
t₂₇₅, X₄: 0 {O(1)}
t₂₇₅, X₅: 31⋅X₁₀+31⋅X₉+310⋅X₁₁ {O(n)}
t₂₇₅, X₆: 53⋅X₁₀+53⋅X₉+530⋅X₁₁ {O(n)}
t₂₇₅, X₇: 31⋅X₁₀+31⋅X₉+310⋅X₁₁ {O(n)}
t₂₇₅, X₈: X₈ {O(n)}
t₂₇₅, X₉: X₉ {O(n)}
t₂₇₅, X₁₀: X₁₀ {O(n)}
t₂₇₅, X₁₁: X₁₁ {O(n)}
t₂₇₆, X₀: 2⋅X₁₁+2⋅X₈ {O(n)}
t₂₇₆, X₁: 2⋅X₉+8⋅X₁₁ {O(n)}
t₂₇₆, X₂: 12⋅X₁₁+2⋅X₁₀ {O(n)}
t₂₇₆, X₃: X₁₁ {O(n)}
t₂₇₆, X₄: 0 {O(1)}
t₂₇₆, X₅: 31⋅X₁₀+31⋅X₉+310⋅X₁₁ {O(n)}
t₂₇₆, X₆: 53⋅X₁₀+53⋅X₉+530⋅X₁₁ {O(n)}
t₂₇₆, X₇: 31⋅X₁₀+31⋅X₉+310⋅X₁₁ {O(n)}
t₂₇₆, X₈: X₈ {O(n)}
t₂₇₆, X₉: X₉ {O(n)}
t₂₇₆, X₁₀: X₁₀ {O(n)}
t₂₇₆, X₁₁: X₁₁ {O(n)}
t₂₇₇, X₀: 2⋅X₁₁+2⋅X₈ {O(n)}
t₂₇₇, X₁: 2⋅X₉+8⋅X₁₁ {O(n)}
t₂₇₇, X₂: 12⋅X₁₁+2⋅X₁₀ {O(n)}
t₂₇₇, X₃: X₁₁ {O(n)}
t₂₇₇, X₄: 0 {O(1)}
t₂₇₇, X₅: 31⋅X₁₀+31⋅X₉+310⋅X₁₁ {O(n)}
t₂₇₇, X₆: 53⋅X₁₀+53⋅X₉+530⋅X₁₁ {O(n)}
t₂₇₇, X₇: 31⋅X₁₀+31⋅X₉+310⋅X₁₁ {O(n)}
t₂₇₇, X₈: X₈ {O(n)}
t₂₇₇, X₉: X₉ {O(n)}
t₂₇₇, X₁₀: X₁₀ {O(n)}
t₂₇₇, X₁₁: X₁₁ {O(n)}
t₂₇₈, X₀: 2⋅X₁₁+2⋅X₈ {O(n)}
t₂₇₈, X₁: 2⋅X₉+8⋅X₁₁ {O(n)}
t₂₇₈, X₂: 12⋅X₁₁+2⋅X₁₀ {O(n)}
t₂₇₈, X₃: X₁₁ {O(n)}
t₂₇₈, X₄: 0 {O(1)}
t₂₇₈, X₅: 31⋅X₁₀+31⋅X₉+310⋅X₁₁ {O(n)}
t₂₇₈, X₆: 53⋅X₁₀+53⋅X₉+530⋅X₁₁ {O(n)}
t₂₇₈, X₇: 31⋅X₁₀+31⋅X₉+310⋅X₁₁ {O(n)}
t₂₇₈, X₈: X₈ {O(n)}
t₂₇₈, X₉: X₉ {O(n)}
t₂₇₈, X₁₀: X₁₀ {O(n)}
t₂₇₈, X₁₁: X₁₁ {O(n)}
t₂₈₂, X₀: 4⋅X₁₁+4⋅X₈ {O(n)}
t₂₈₂, X₁: 16⋅X₁₁+4⋅X₉ {O(n)}
t₂₈₂, X₂: 24⋅X₁₁+4⋅X₁₀ {O(n)}
t₂₈₂, X₃: X₁₁ {O(n)}
t₂₈₂, X₄: 0 {O(1)}
t₂₈₂, X₅: 62⋅X₁₀+62⋅X₉+620⋅X₁₁ {O(n)}
t₂₈₂, X₆: 106⋅X₁₀+106⋅X₉+1060⋅X₁₁ {O(n)}
t₂₈₂, X₇: 0 {O(1)}
t₂₈₂, X₈: X₈ {O(n)}
t₂₈₂, X₉: X₉ {O(n)}
t₂₈₂, X₁₀: X₁₀ {O(n)}
t₂₈₂, X₁₁: X₁₁ {O(n)}