Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₀ ∧ X₅ < 0
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₀ ∧ 0 < X₅
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₀ ≤ 0
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₃, X₄, X₂, X₃, X₄, X₅)
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀-(X₁)², X₁+(X₅)², X₂, X₃, X₄, X₅)
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₂
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ 0
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅)
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅)
Preprocessing
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l6
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l7
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l5
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l1
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ for location l4
Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₀ ∧ X₅ < 0 ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₀ ∧ 0 < X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₃, X₄, X₂, X₃, X₄, X₅)
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀-(X₁)², X₁+(X₅)², X₂, X₃, X₄, X₅) :|: X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅) :|: X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁
TWN. Size Bound: t₆: l3→l1 for X₀
cycle: [t₆: l3→l1; t₂: l1→l3; t₃: l1→l3]
loop: ((X₁)² < X₀ ∧ X₅ < 0 ∨ (X₁)² < X₀ ∧ 0 < X₅,(X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₂,X₃,X₄,X₅)
order: [X₅; X₁; X₀; X₂; X₃; X₄]
closed-form:
X₅: X₅
X₁: X₁ + [[n != 0]] * (X₅)² * n^1
X₀: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1
X₂: X₂
X₃: X₃
X₄: X₄
Stabilization-Threshold for: (X₁)² < X₀
alphas_abs: 6⋅X₀+6⋅X₁*(X₅)²+6⋅(X₁)²+3⋅(X₅)⁴
M: 0
N: 3
Bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+4 {O(n^4)}
loop: ((X₁)² < X₀ ∧ X₅ < 0 ∨ (X₁)² < X₀ ∧ 0 < X₅,(X₀,X₁,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₅)
closed-form: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1
runtime bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
TWN Size Bound - Lifting for t₆: l3→l1 and X₀: 216⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1296⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3888⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1296⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+6912⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+900⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3636⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1728⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7344⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3600⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+7488⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1254⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3888⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+7344⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+144⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+1728⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+2610⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7488⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+2718⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+3600⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+144⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+216⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+2508⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₄⋅X₄+204⋅X₃⋅X₄⋅X₅⋅X₅+584⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₃⋅X₄⋅X₄+72⋅X₄⋅X₅⋅X₅+8⋅X₄⋅X₄+X₃ {O(n^16)}
TWN. Size Bound: t₆: l3→l1 for X₁
cycle: [t₆: l3→l1; t₂: l1→l3; t₃: l1→l3]
loop: ((X₁)² < X₀ ∧ X₅ < 0 ∨ (X₁)² < X₀ ∧ 0 < X₅,(X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₂,X₃,X₄,X₅)
order: [X₅; X₁; X₀; X₂; X₃; X₄]
closed-form:
X₅: X₅
X₁: X₁ + [[n != 0]] * (X₅)² * n^1
X₀: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1
X₂: X₂
X₃: X₃
X₄: X₄
Stabilization-Threshold for: (X₁)² < X₀
alphas_abs: 6⋅X₀+6⋅X₁*(X₅)²+6⋅(X₁)²+3⋅(X₅)⁴
M: 0
N: 3
Bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+4 {O(n^4)}
loop: ((X₁)² < X₀ ∧ X₅ < 0 ∨ (X₁)² < X₀ ∧ 0 < X₅,(X₁,X₅) -> (X₁+(X₅)²,X₅)
closed-form: X₁ + [[n != 0]] * (X₅)² * n^1
runtime bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
TWN Size Bound - Lifting for t₆: l3→l1 and X₁: 6⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₅⋅X₅+12⋅X₃⋅X₅⋅X₅+8⋅X₅⋅X₅+X₄ {O(n^6)}
TWN: t₂: l1→l3
cycle: [t₂: l1→l3; t₃: l1→l3; t₆: l3→l1]
loop: (0 < X₀ ∧ X₅ < 0 ∨ 0 < X₀ ∧ 0 < X₅,(X₀,X₁,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₅)
order: [X₅; X₁; X₀]
closed-form:
X₅: X₅
X₁: X₁ + [[n != 0]] * (X₅)² * n^1
X₀: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1
Termination: true
Formula:
X₅ < 0 ∧ 2⋅(X₅)⁴ < 0
∨ X₅ < 0 ∧ 6⋅X₁*(X₅)² < 3⋅(X₅)⁴ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴
∨ X₅ < 0 ∧ 6⋅(X₁)²+(X₅)⁴ < 6⋅X₁*(X₅)² ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 6⋅X₁*(X₅)² ≤ 3⋅(X₅)⁴ ∧ 3⋅(X₅)⁴ ≤ 6⋅X₁*(X₅)²
∨ X₅ < 0 ∧ 0 < 6⋅X₀ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 6⋅X₁*(X₅)² ≤ 3⋅(X₅)⁴ ∧ 3⋅(X₅)⁴ ≤ 6⋅X₁*(X₅)² ∧ 6⋅(X₁)²+(X₅)⁴ ≤ 6⋅X₁*(X₅)² ∧ 6⋅X₁*(X₅)² ≤ 6⋅(X₁)²+(X₅)⁴
∨ 0 < X₅ ∧ 2⋅(X₅)⁴ < 0
∨ 0 < X₅ ∧ 6⋅X₁*(X₅)² < 3⋅(X₅)⁴ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴
∨ 0 < X₅ ∧ 6⋅(X₁)²+(X₅)⁴ < 6⋅X₁*(X₅)² ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 6⋅X₁*(X₅)² ≤ 3⋅(X₅)⁴ ∧ 3⋅(X₅)⁴ ≤ 6⋅X₁*(X₅)²
∨ 0 < X₅ ∧ 0 < 6⋅X₀ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 6⋅X₁*(X₅)² ≤ 3⋅(X₅)⁴ ∧ 3⋅(X₅)⁴ ≤ 6⋅X₁*(X₅)² ∧ 6⋅(X₁)²+(X₅)⁴ ≤ 6⋅X₁*(X₅)² ∧ 6⋅X₁*(X₅)² ≤ 6⋅(X₁)²+(X₅)⁴
Stabilization-Threshold for: 0 < X₀
alphas_abs: 6⋅X₀+6⋅X₁*(X₅)²+6⋅(X₁)²+3⋅(X₅)⁴
M: 0
N: 3
Bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+4 {O(n^4)}
TWN - Lifting for t₂: l1→l3 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
relevant size-bounds w.r.t. t₁:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
TWN: t₃: l1→l3
TWN - Lifting for t₃: l1→l3 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
relevant size-bounds w.r.t. t₁:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
TWN: t₆: l3→l1
TWN - Lifting for t₆: l3→l1 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
relevant size-bounds w.r.t. t₁:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
Chain transitions t₆: l3→l1 and t₅: l1→l4 to t₁₀₈: l3→l4
Chain transitions t₁: l2→l1 and t₅: l1→l4 to t₁₀₉: l2→l4
Chain transitions t₁: l2→l1 and t₄: l1→l4 to t₁₁₀: l2→l4
Chain transitions t₆: l3→l1 and t₄: l1→l4 to t₁₁₁: l3→l4
Chain transitions t₁: l2→l1 and t₃: l1→l3 to t₁₁₂: l2→l3
Chain transitions t₆: l3→l1 and t₃: l1→l3 to t₁₁₃: l3→l3
Chain transitions t₁: l2→l1 and t₂: l1→l3 to t₁₁₄: l2→l3
Chain transitions t₆: l3→l1 and t₂: l1→l3 to t₁₁₅: l3→l3
Analysing control-flow refined program
Cut unsatisfiable transition t₁₀₈: l3→l4
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l6
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l7
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l5
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l1
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l4
Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₃ for location l3
TWN. Size Bound: t₁₁₃: l3→l3 for X₀
cycle: [t₁₁₃: l3→l3; t₁₁₅: l3→l3]
loop: ((X₁)² < X₀ ∧ 0 < X₅ ∨ (X₁)² < X₀ ∧ X₅ < 0,(X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₂,X₃,X₄,X₅)
order: [X₅; X₁; X₀; X₂; X₃; X₄]
closed-form:
X₅: X₅
X₁: X₁ + [[n != 0]] * (X₅)² * n^1
X₀: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1
X₂: X₂
X₃: X₃
X₄: X₄
Stabilization-Threshold for: (X₁)² < X₀
alphas_abs: 6⋅X₀+6⋅X₁*(X₅)²+6⋅(X₁)²+3⋅(X₅)⁴
M: 0
N: 3
Bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+4 {O(n^4)}
loop: ((X₁)² < X₀ ∧ 0 < X₅ ∨ (X₁)² < X₀ ∧ X₅ < 0,(X₀,X₁,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₅)
closed-form: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1
runtime bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
TWN Size Bound - Lifting for t₁₁₃: l3→l3 and X₀: 432⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+13824⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+15552⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1800⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7272⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+14688⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3456⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14976⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7200⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14688⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+2508⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14976⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+3456⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+5220⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5436⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+576⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+7200⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+432⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+5016⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+1168⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₄⋅X₄+408⋅X₃⋅X₄⋅X₅⋅X₅+144⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₄⋅X₄+16⋅X₄⋅X₄+2⋅X₃ {O(n^16)}
TWN. Size Bound: t₁₁₃: l3→l3 for X₁
cycle: [t₁₁₃: l3→l3; t₁₁₅: l3→l3]
loop: ((X₁)² < X₀ ∧ 0 < X₅ ∨ (X₁)² < X₀ ∧ X₅ < 0,(X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₂,X₃,X₄,X₅)
order: [X₅; X₁; X₀; X₂; X₃; X₄]
closed-form:
X₅: X₅
X₁: X₁ + [[n != 0]] * (X₅)² * n^1
X₀: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1
X₂: X₂
X₃: X₃
X₄: X₄
Stabilization-Threshold for: (X₁)² < X₀
alphas_abs: 6⋅X₀+6⋅X₁*(X₅)²+6⋅(X₁)²+3⋅(X₅)⁴
M: 0
N: 3
Bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+4 {O(n^4)}
loop: ((X₁)² < X₀ ∧ 0 < X₅ ∨ (X₁)² < X₀ ∧ X₅ < 0,(X₁,X₅) -> (X₁+(X₅)²,X₅)
closed-form: X₁ + [[n != 0]] * (X₅)² * n^1
runtime bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
TWN Size Bound - Lifting for t₁₁₃: l3→l3 and X₁: 12⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₅⋅X₅+16⋅X₅⋅X₅+2⋅X₄ {O(n^6)}
TWN. Size Bound: t₁₁₅: l3→l3 for X₀
cycle: [t₁₁₃: l3→l3; t₁₁₅: l3→l3]
loop: ((X₁)² < X₀ ∧ 0 < X₅ ∨ (X₁)² < X₀ ∧ X₅ < 0,(X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₂,X₃,X₄,X₅)
order: [X₅; X₁; X₀; X₂; X₃; X₄]
closed-form:
X₅: X₅
X₁: X₁ + [[n != 0]] * (X₅)² * n^1
X₀: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1
X₂: X₂
X₃: X₃
X₄: X₄
Stabilization-Threshold for: (X₁)² < X₀
alphas_abs: 6⋅X₀+6⋅X₁*(X₅)²+6⋅(X₁)²+3⋅(X₅)⁴
M: 0
N: 3
Bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+4 {O(n^4)}
loop: ((X₁)² < X₀ ∧ 0 < X₅ ∨ (X₁)² < X₀ ∧ X₅ < 0,(X₀,X₁,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₅)
closed-form: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1
runtime bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
TWN Size Bound - Lifting for t₁₁₅: l3→l3 and X₀: 432⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+13824⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+15552⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1800⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7272⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+14688⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3456⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14976⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7200⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14688⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+2508⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14976⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+3456⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+5220⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5436⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+576⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+7200⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+432⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+5016⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+1168⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₄⋅X₄+408⋅X₃⋅X₄⋅X₅⋅X₅+144⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₄⋅X₄+16⋅X₄⋅X₄+2⋅X₃ {O(n^16)}
TWN. Size Bound: t₁₁₅: l3→l3 for X₁
cycle: [t₁₁₃: l3→l3; t₁₁₅: l3→l3]
loop: ((X₁)² < X₀ ∧ 0 < X₅ ∨ (X₁)² < X₀ ∧ X₅ < 0,(X₀,X₁,X₂,X₃,X₄,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₂,X₃,X₄,X₅)
order: [X₅; X₁; X₀; X₂; X₃; X₄]
closed-form:
X₅: X₅
X₁: X₁ + [[n != 0]] * (X₅)² * n^1
X₀: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1
X₂: X₂
X₃: X₃
X₄: X₄
Stabilization-Threshold for: (X₁)² < X₀
alphas_abs: 6⋅X₀+6⋅X₁*(X₅)²+6⋅(X₁)²+3⋅(X₅)⁴
M: 0
N: 3
Bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+4 {O(n^4)}
loop: ((X₁)² < X₀ ∧ 0 < X₅ ∨ (X₁)² < X₀ ∧ X₅ < 0,(X₁,X₅) -> (X₁+(X₅)²,X₅)
closed-form: X₁ + [[n != 0]] * (X₅)² * n^1
runtime bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
TWN Size Bound - Lifting for t₁₁₅: l3→l3 and X₁: 12⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₅⋅X₅+16⋅X₅⋅X₅+2⋅X₄ {O(n^6)}
TWN: t₁₁₃: l3→l3
cycle: [t₁₁₃: l3→l3; t₁₁₅: l3→l3]
loop: ((X₁)² < X₀ ∧ 0 < X₅ ∨ (X₁)² < X₀ ∧ X₅ < 0,(X₀,X₁,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₅)
order: [X₅; X₁; X₀]
closed-form:
X₅: X₅
X₁: X₁ + [[n != 0]] * (X₅)² * n^1
X₀: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1
Termination: true
Formula:
0 < X₅ ∧ 2⋅(X₅)⁴ < 0
∨ 0 < X₅ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴
∨ 0 < X₅ ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)²
∨ 0 < X₅ ∧ 6⋅(X₁)² < 6⋅X₀ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)²
∨ X₅ < 0 ∧ 2⋅(X₅)⁴ < 0
∨ X₅ < 0 ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴
∨ X₅ < 0 ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)²
∨ X₅ < 0 ∧ 6⋅(X₁)² < 6⋅X₀ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)²
Stabilization-Threshold for: (X₁)² < X₀
alphas_abs: 6⋅X₀+6⋅X₁*(X₅)²+6⋅(X₁)²+3⋅(X₅)⁴
M: 0
N: 3
Bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+4 {O(n^4)}
loop: ((X₁)² < X₀ ∧ 0 < X₅ ∨ (X₁)² < X₀ ∧ X₅ < 0,(X₀,X₁,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₅)
order: [X₅; X₁; X₀]
closed-form:
X₅: X₅
X₁: X₁ + [[n != 0]] * (X₅)² * n^1
X₀: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1
Termination: true
Formula:
0 < X₅ ∧ 2⋅(X₅)⁴ < 0
∨ 0 < X₅ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴
∨ 0 < X₅ ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)²
∨ 0 < X₅ ∧ 6⋅(X₁)² < 6⋅X₀ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)²
∨ X₅ < 0 ∧ 2⋅(X₅)⁴ < 0
∨ X₅ < 0 ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴
∨ X₅ < 0 ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)²
∨ X₅ < 0 ∧ 6⋅(X₁)² < 6⋅X₀ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)²
Stabilization-Threshold for: (X₁)² < X₀
alphas_abs: 6⋅X₀+6⋅X₁*(X₅)²+6⋅(X₁)²+3⋅(X₅)⁴
M: 0
N: 3
Bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+4 {O(n^4)}
TWN - Lifting for t₁₁₃: l3→l3 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
relevant size-bounds w.r.t. t₁₁₂:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₁₁₂: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
TWN - Lifting for t₁₁₃: l3→l3 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
relevant size-bounds w.r.t. t₁₁₄:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₁₁₄: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
TWN: t₁₁₅: l3→l3
TWN - Lifting for t₁₁₅: l3→l3 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
relevant size-bounds w.r.t. t₁₁₂:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₁₁₂: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
TWN - Lifting for t₁₁₅: l3→l3 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}
relevant size-bounds w.r.t. t₁₁₄:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₁₁₄: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₃₇₂: n_l1___2→l4
Cut unsatisfiable transition t₃₇₃: n_l1___4→l4
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l6
Found invariant 1+X₅ ≤ 0 ∧ 2+X₅ ≤ X₃ ∧ 1 ≤ X₃ for location n_l1___4
Found invariant 1+X₅ ≤ 0 ∧ 2+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___3
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant 1+X₅ ≤ 0 ∧ 2+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___6
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃ for location n_l1___2
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l7
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l5
Found invariant X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l1
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ for location l4
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___1
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
TWN: t₇: l4→l5
cycle: [t₇: l4→l5; t₉: l5→l4]
loop: (0 < X₂,(X₂) -> (X₂-1)
order: [X₂]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 0 < X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
loop: (0 < X₂,(X₂) -> (X₂-1)
order: [X₂]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
1 < 0
∨ 0 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 0 < X₂
alphas_abs: X₂
M: 0
N: 1
Bound: 2⋅X₂+2 {O(n)}
TWN - Lifting for t₇: l4→l5 of 2⋅X₂+4 {O(n)}
relevant size-bounds w.r.t. t₅:
X₂: 6⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₅⋅X₅+12⋅X₃⋅X₅⋅X₅+8⋅X₅⋅X₅+2⋅X₄ {O(n^6)}
Runtime-bound of t₅: 1 {O(1)}
Results in: 12⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₅⋅X₅+16⋅X₅⋅X₅+4⋅X₄+4 {O(n^6)}
TWN - Lifting for t₇: l4→l5 of 2⋅X₂+4 {O(n)}
relevant size-bounds w.r.t. t₄:
X₂: 6⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₅⋅X₅+12⋅X₃⋅X₅⋅X₅+8⋅X₅⋅X₅+2⋅X₄ {O(n^6)}
Runtime-bound of t₄: 1 {O(1)}
Results in: 12⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₅⋅X₅+16⋅X₅⋅X₅+4⋅X₄+4 {O(n^6)}
TWN: t₉: l5→l4
TWN - Lifting for t₉: l5→l4 of 2⋅X₂+4 {O(n)}
relevant size-bounds w.r.t. t₅:
X₂: 6⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₅⋅X₅+12⋅X₃⋅X₅⋅X₅+8⋅X₅⋅X₅+2⋅X₄ {O(n^6)}
Runtime-bound of t₅: 1 {O(1)}
Results in: 12⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₅⋅X₅+16⋅X₅⋅X₅+4⋅X₄+4 {O(n^6)}
TWN - Lifting for t₉: l5→l4 of 2⋅X₂+4 {O(n)}
relevant size-bounds w.r.t. t₄:
X₂: 6⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₅⋅X₅+12⋅X₃⋅X₅⋅X₅+8⋅X₅⋅X₅+2⋅X₄ {O(n^6)}
Runtime-bound of t₄: 1 {O(1)}
Results in: 12⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₅⋅X₅+16⋅X₅⋅X₅+4⋅X₄+4 {O(n^6)}
Chain transitions t₉: l5→l4 and t₈: l4→l6 to t₄₉₀: l5→l6
Chain transitions t₅: l1→l4 and t₈: l4→l6 to t₄₉₁: l1→l6
Chain transitions t₅: l1→l4 and t₇: l4→l5 to t₄₉₂: l1→l5
Chain transitions t₉: l5→l4 and t₇: l4→l5 to t₄₉₃: l5→l5
Chain transitions t₄: l1→l4 and t₇: l4→l5 to t₄₉₄: l1→l5
Chain transitions t₄: l1→l4 and t₈: l4→l6 to t₄₉₅: l1→l6
Analysing control-flow refined program
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l6
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l7
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l5
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l1
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ for location l4
Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l3
MPRF for transition t₄₉₃: l5(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l5(X₀, X₁, X₂-1, X₃, X₄, X₅) :|: 1 < X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁+1 ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
12⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₅⋅X₅+16⋅X₅⋅X₅+4⋅X₄ {O(n^6)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l5___1
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l6
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location n_l4___3
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l5___2
Found invariant X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l5___4
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l7
Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l1
Found invariant X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l4
Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l3
MPRF for transition t₅₇₉: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 < X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
24⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₄⋅X₅⋅X₅+48⋅X₃⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₄+2 {O(n^6)}
MPRF for transition t₅₈₃: n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___3(X₀, X₁, X₂-1, X₃, X₄, X₅) :|: 1+X₂ ≤ X₁ ∧ 0 < X₂ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
24⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₄⋅X₅⋅X₅+48⋅X₃⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₄ {O(n^6)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:48⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+96⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+18⋅X₅⋅X₅⋅X₅⋅X₅+96⋅X₄⋅X₄⋅X₅⋅X₅+36⋅X₄⋅X₅⋅X₅+96⋅X₃⋅X₅⋅X₅+36⋅X₄⋅X₄+64⋅X₅⋅X₅+16⋅X₄+36⋅X₃+46 {O(n^6)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
t₃: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
t₇: 24⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₄⋅X₅⋅X₅+48⋅X₃⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₄+8 {O(n^6)}
t₈: 1 {O(1)}
t₉: 24⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₄⋅X₅⋅X₅+48⋅X₃⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₄+8 {O(n^6)}
t₁₀: 1 {O(1)}
Costbounds
Overall costbound: 48⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+96⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+18⋅X₅⋅X₅⋅X₅⋅X₅+96⋅X₄⋅X₄⋅X₅⋅X₅+36⋅X₄⋅X₅⋅X₅+96⋅X₃⋅X₅⋅X₅+36⋅X₄⋅X₄+64⋅X₅⋅X₅+16⋅X₄+36⋅X₃+46 {O(n^6)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
t₃: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
t₇: 24⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₄⋅X₅⋅X₅+48⋅X₃⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₄+8 {O(n^6)}
t₈: 1 {O(1)}
t₉: 24⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₄⋅X₅⋅X₅+48⋅X₃⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₄+8 {O(n^6)}
t₁₀: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₁, X₀: X₃ {O(n)}
t₁, X₁: X₄ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₂, X₀: 216⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1296⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3888⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1296⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+6912⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+900⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3636⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1728⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7344⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3600⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+7488⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1254⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3888⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+7344⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+144⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+1728⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+2610⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7488⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+2718⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+3600⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+144⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+216⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+2508⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₄⋅X₄+204⋅X₃⋅X₄⋅X₅⋅X₅+584⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₃⋅X₄⋅X₄+72⋅X₄⋅X₅⋅X₅+8⋅X₄⋅X₄+2⋅X₃ {O(n^16)}
t₂, X₁: 6⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₅⋅X₅+12⋅X₃⋅X₅⋅X₅+8⋅X₅⋅X₅+2⋅X₄ {O(n^6)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₃, X₀: 216⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1296⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3888⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1296⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+6912⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+900⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3636⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1728⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7344⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3600⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+7488⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1254⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3888⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+7344⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+144⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+1728⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+2610⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7488⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+2718⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+3600⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+144⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+216⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+2508⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₄⋅X₄+204⋅X₃⋅X₄⋅X₅⋅X₅+584⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₃⋅X₄⋅X₄+72⋅X₄⋅X₅⋅X₅+8⋅X₄⋅X₄+2⋅X₃ {O(n^16)}
t₃, X₁: 6⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₅⋅X₅+12⋅X₃⋅X₅⋅X₅+8⋅X₅⋅X₅+2⋅X₄ {O(n^6)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₄, X₀: 216⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1296⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3888⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1296⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+6912⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+900⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3636⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1728⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7344⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3600⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+7488⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1254⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3888⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+7344⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+144⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+1728⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+2610⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7488⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+2718⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+3600⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+144⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+216⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+2508⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₄⋅X₄+204⋅X₃⋅X₄⋅X₅⋅X₅+584⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₃⋅X₄⋅X₄+72⋅X₄⋅X₅⋅X₅+8⋅X₄⋅X₄+2⋅X₃ {O(n^16)}
t₄, X₁: 6⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₅⋅X₅+12⋅X₃⋅X₅⋅X₅+8⋅X₅⋅X₅+2⋅X₄ {O(n^6)}
t₄, X₂: 6⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₅⋅X₅+12⋅X₃⋅X₅⋅X₅+8⋅X₅⋅X₅+2⋅X₄ {O(n^6)}
t₄, X₃: 2⋅X₃ {O(n)}
t₄, X₄: 2⋅X₄ {O(n)}
t₄, X₅: 2⋅X₅ {O(n)}
t₅, X₀: 216⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1296⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3888⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1296⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+6912⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+900⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3636⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1728⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7344⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3600⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+7488⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1254⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3888⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+7344⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+144⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+1728⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+2610⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7488⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+2718⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+3600⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+144⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+216⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+2508⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₄⋅X₄+204⋅X₃⋅X₄⋅X₅⋅X₅+584⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₃⋅X₄⋅X₄+72⋅X₄⋅X₅⋅X₅+8⋅X₄⋅X₄+2⋅X₃ {O(n^16)}
t₅, X₁: 6⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₅⋅X₅+12⋅X₃⋅X₅⋅X₅+8⋅X₅⋅X₅+2⋅X₄ {O(n^6)}
t₅, X₂: 6⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₅⋅X₅+12⋅X₃⋅X₅⋅X₅+8⋅X₅⋅X₅+2⋅X₄ {O(n^6)}
t₅, X₃: 2⋅X₃ {O(n)}
t₅, X₄: 2⋅X₄ {O(n)}
t₅, X₅: 0 {O(1)}
t₆, X₀: 216⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1296⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3888⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1296⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+6912⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+900⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3636⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1728⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7344⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3600⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+7488⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1254⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3888⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+7344⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+144⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+1728⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+2610⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7488⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+2718⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+3600⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+144⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+216⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+2508⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₄⋅X₄+204⋅X₃⋅X₄⋅X₅⋅X₅+584⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₃⋅X₄⋅X₄+72⋅X₄⋅X₅⋅X₅+8⋅X₄⋅X₄+X₃ {O(n^16)}
t₆, X₁: 6⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₄⋅X₅⋅X₅+12⋅X₃⋅X₅⋅X₅+8⋅X₅⋅X₅+X₄ {O(n^6)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₇, X₀: 432⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+13824⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+15552⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1800⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7272⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+14688⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3456⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14976⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7200⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14688⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+2508⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14976⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+3456⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+5220⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5436⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+576⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+7200⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+432⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+5016⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+1168⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₄⋅X₄+408⋅X₃⋅X₄⋅X₅⋅X₅+144⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₄⋅X₄+16⋅X₄⋅X₄+4⋅X₃ {O(n^16)}
t₇, X₁: 12⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₅⋅X₅+16⋅X₅⋅X₅+4⋅X₄ {O(n^6)}
t₇, X₂: 12⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₅⋅X₅+16⋅X₅⋅X₅+4⋅X₄ {O(n^6)}
t₇, X₃: 4⋅X₃ {O(n)}
t₇, X₄: 4⋅X₄ {O(n)}
t₇, X₅: 2⋅X₅ {O(n)}
t₈, X₀: 864⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+15552⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+27648⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+31104⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3600⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+14544⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+41472⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+29376⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+41472⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+6912⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14400⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+29952⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+15552⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+29376⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5016⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10440⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+29952⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+576⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+6912⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+10872⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+1152⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+14400⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+10032⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+576⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+864⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+2336⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₄⋅X₄⋅X₄+816⋅X₃⋅X₄⋅X₅⋅X₅+288⋅X₄⋅X₅⋅X₅+48⋅X₃⋅X₄⋅X₄+32⋅X₄⋅X₄+8⋅X₃ {O(n^16)}
t₈, X₁: 24⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₄⋅X₅⋅X₅+48⋅X₃⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₄ {O(n^6)}
t₈, X₂: 24⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₄⋅X₅⋅X₅+48⋅X₃⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₄ {O(n^6)}
t₈, X₃: 8⋅X₃ {O(n)}
t₈, X₄: 8⋅X₄ {O(n)}
t₈, X₅: 4⋅X₅ {O(n)}
t₉, X₀: 432⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+13824⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+2592⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+15552⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+1800⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7272⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+14688⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3456⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14976⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7200⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14688⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+2508⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+7776⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14976⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+3456⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+5220⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5436⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+576⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+7200⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+288⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+432⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+5016⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+1168⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₄⋅X₄+408⋅X₃⋅X₄⋅X₅⋅X₅+144⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₄⋅X₄+16⋅X₄⋅X₄+4⋅X₃ {O(n^16)}
t₉, X₁: 12⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₅⋅X₅+16⋅X₅⋅X₅+4⋅X₄ {O(n^6)}
t₉, X₂: 12⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+24⋅X₄⋅X₄⋅X₅⋅X₅+24⋅X₃⋅X₅⋅X₅+16⋅X₅⋅X₅+4⋅X₄ {O(n^6)}
t₉, X₃: 4⋅X₃ {O(n)}
t₉, X₄: 4⋅X₄ {O(n)}
t₉, X₅: 2⋅X₅ {O(n)}
t₁₀, X₀: 864⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+15552⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+27648⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5184⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+31104⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3600⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+14544⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+41472⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10368⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+29376⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+41472⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+6912⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+14400⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+29952⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+15552⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+20736⋅X₃⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+29376⋅X₃⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+5016⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+10440⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+29952⋅X₃⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+576⋅X₄⋅X₄⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+6912⋅X₃⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+10872⋅X₄⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+1152⋅X₃⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+14400⋅X₃⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+10032⋅X₃⋅X₅⋅X₅⋅X₅⋅X₅+576⋅X₃⋅X₃⋅X₄⋅X₅⋅X₅+864⋅X₄⋅X₄⋅X₄⋅X₅⋅X₅+2336⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₄⋅X₄⋅X₄+816⋅X₃⋅X₄⋅X₅⋅X₅+288⋅X₄⋅X₅⋅X₅+48⋅X₃⋅X₄⋅X₄+32⋅X₄⋅X₄+8⋅X₃ {O(n^16)}
t₁₀, X₁: 24⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₄⋅X₅⋅X₅+48⋅X₃⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₄ {O(n^6)}
t₁₀, X₂: 24⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₅⋅X₅⋅X₅⋅X₅+48⋅X₄⋅X₄⋅X₅⋅X₅+48⋅X₃⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₄ {O(n^6)}
t₁₀, X₃: 8⋅X₃ {O(n)}
t₁₀, X₄: 8⋅X₄ {O(n)}
t₁₀, X₅: 4⋅X₅ {O(n)}