Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₄ ≤ 0
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l4(X₀, X₁, X₂, X₃, X₄, X₀, X₁, X₂, X₃, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₄
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l1(X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₁₁ ∧ 0 < X₁₅
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₁₁ ≤ 0
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₁₅ ≤ 0
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₅
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₈, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₅ ≤ 0
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l1(X₄, 2⋅X₄, 3⋅X₄, X₄, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅-1, 3⋅X₆+2⋅X₇, -5⋅X₆-3⋅X₇, (X₅)²+X₈+1-2⋅X₅, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉+X₁₀ ≤ 0
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₉+X₁₀
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)

Preprocessing

Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₉ ≤ X₆ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l7

Found invariant X₉ ≤ X₆ ∧ X₁₀+X₉ ≤ 0 ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₆+X₈ ∧ X₁₀ ≤ X₈ ∧ 1 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₄ ≤ X₁₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₅+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l1

Found invariant X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l4

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₄ ≤ 0 ∧ X₄ ≤ X₁₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₅+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l4(X₀, X₁, X₂, X₃, X₄, X₀, X₁, X₂, X₃, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₄ ∧ X₄ ≤ X₁₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₅+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l1(X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₁₁ ∧ 0 < X₁₅
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₁₁ ≤ 0
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₁₅ ≤ 0
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₅ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₈, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₅ ≤ 0 ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l1(X₄, 2⋅X₄, 3⋅X₄, X₄, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉ ≤ X₆ ∧ X₁₀+X₉ ≤ 0 ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅-1, 3⋅X₆+2⋅X₇, -5⋅X₆-3⋅X₇, (X₅)²+X₈+1-2⋅X₅, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉+X₁₀ ≤ 0 ∧ X₉ ≤ X₆ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₉+X₁₀ ∧ X₉ ≤ X₆ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉ ≤ X₆ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₆+X₈ ∧ X₁₀ ≤ X₈ ∧ 1 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀

TWN. Size Bound: t₈: l6→l4 for X₈

cycle: [t₆: l4→l6; t₈: l6→l4]
loop: (1 < X₅,(X₅,X₈) -> (X₅-1,1+(X₅)²+X₈-2⋅X₅)
closed-form: X₈ + [[n != 0]] * (1+(X₅)²-2⋅X₅) * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * 1/2-X₅ * n^2 + [[n != 0, n != 1]] * X₅-5/6 * n^1
runtime bound: X₅+1 {O(n)}

TWN Size Bound - Lifting for t₈: l6→l4 and X₈: 3⋅X₁₁⋅X₁₁⋅X₁₁+3⋅X₁₅⋅X₁₅⋅X₁₅+9⋅X₁₁⋅X₁₁⋅X₁₅+9⋅X₁₁⋅X₁₅⋅X₁₅+10⋅X₁₁⋅X₁₁+10⋅X₁₅⋅X₁₅+20⋅X₁₁⋅X₁₅+11⋅X₁₁+12⋅X₁₅+X₁₄+4 {O(n^3)}

Solv. Size Bound: t₆: l4→l6 for X₆

cycle: [t₆: l4→l6; t₈: l6→l4]
loop: (0 < X₅,(X₆,X₇) -> (3⋅X₆+2⋅X₇,-5⋅X₆-3⋅X₇)
overappr. closed-form: 2⋅X₇+6⋅X₆ {O(n)}
runtime bound: X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₆: l4→l6 and X₆: 18⋅X₁₅+2⋅X₁₃+6⋅X₁₂ {O(n)}

Solv. Size Bound: t₆: l4→l6 for X₇

cycle: [t₆: l4→l6; t₈: l6→l4]
loop: (0 < X₅,(X₆,X₇) -> (3⋅X₆+2⋅X₇,-5⋅X₆-3⋅X₇)
overappr. closed-form: 6⋅X₆+6⋅X₇ {O(n)}
runtime bound: X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₆: l4→l6 and X₇: 30⋅X₁₅+6⋅X₁₂+6⋅X₁₃ {O(n)}

Solv. Size Bound: t₈: l6→l4 for X₆

cycle: [t₆: l4→l6; t₈: l6→l4]
loop: (1 < X₅,(X₆,X₇) -> (3⋅X₆+2⋅X₇,-5⋅X₆-3⋅X₇)
overappr. closed-form: 2⋅X₇+6⋅X₆ {O(n)}
runtime bound: X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₈: l6→l4 and X₆: 18⋅X₁₅+2⋅X₁₃+6⋅X₁₂ {O(n)}

Solv. Size Bound: t₈: l6→l4 for X₇

cycle: [t₆: l4→l6; t₈: l6→l4]
loop: (1 < X₅,(X₆,X₇) -> (3⋅X₆+2⋅X₇,-5⋅X₆-3⋅X₇)
overappr. closed-form: 6⋅X₆+6⋅X₇ {O(n)}
runtime bound: X₅+1 {O(n)}

Solv. Size Bound - Lifting for t₈: l6→l4 and X₇: 30⋅X₁₅+6⋅X₁₂+6⋅X₁₃ {O(n)}

MPRF for transition t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l4(X₀, X₁, X₂, X₃, X₄, X₀, X₁, X₂, X₃, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₄ ∧ X₄ ≤ X₁₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₅+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅+1 {O(n)}

MPRF for transition t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₈, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₅ ≤ 0 ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅ {O(n)}

MPRF for transition t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉+X₁₀ ≤ 0 ∧ X₉ ≤ X₆ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅ {O(n)}

MPRF for transition t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l1(X₄, 2⋅X₄, 3⋅X₄, X₄, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉ ≤ X₆ ∧ X₁₀+X₉ ≤ 0 ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅ {O(n)}

TWN: t₆: l4→l6

cycle: [t₆: l4→l6; t₈: l6→l4]
loop: (0 < X₅,(X₅) -> (X₅-1)
order: [X₅]
closed-form:
X₅: X₅ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 0 < X₅ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}

TWN - Lifting for t₆: l4→l6 of 2⋅X₅+4 {O(n)}

relevant size-bounds w.r.t. t₄:
X₅: X₁₁+X₁₅ {O(n)}
Runtime-bound of t₄: X₁₅+1 {O(n)}
Results in: 2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4 {O(n^2)}

TWN: t₈: l6→l4

TWN - Lifting for t₈: l6→l4 of 2⋅X₅+4 {O(n)}

relevant size-bounds w.r.t. t₄:
X₅: X₁₁+X₁₅ {O(n)}
Runtime-bound of t₄: X₁₅+1 {O(n)}
Results in: 2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4 {O(n^2)}

MPRF for transition t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₉+X₁₀ ∧ X₉ ≤ X₆ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+144⋅X₁₅+25⋅X₁₂+5⋅X₁₄+52⋅X₁₁+8⋅X₁₃+16 {O(n^5)}

MPRF for transition t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉ ≤ X₆ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₆+X₈ ∧ X₁₀ ≤ X₈ ∧ 1 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+144⋅X₁₅+25⋅X₁₂+5⋅X₁₄+52⋅X₁₁+8⋅X₁₃+16 {O(n^5)}

Chain transitions t₁₂: l5→l1 and t₄: l1→l4 to t₁₂₇: l5→l4

Chain transitions t₁: l3→l1 and t₄: l1→l4 to t₁₂₈: l3→l4

Chain transitions t₁: l3→l1 and t₅: l1→l2 to t₁₂₉: l3→l2

Chain transitions t₁₂: l5→l1 and t₅: l1→l2 to t₁₃₀: l5→l2

Chain transitions t₈: l6→l4 and t₇: l4→l7 to t₁₃₁: l6→l7

Chain transitions t₁₂₇: l5→l4 and t₇: l4→l7 to t₁₃₂: l5→l7

Chain transitions t₁₂₇: l5→l4 and t₆: l4→l6 to t₁₃₃: l5→l6

Chain transitions t₈: l6→l4 and t₆: l4→l6 to t₁₃₄: l6→l6

Chain transitions t₁₂₈: l3→l4 and t₆: l4→l6 to t₁₃₅: l3→l6

Chain transitions t₁₂₈: l3→l4 and t₇: l4→l7 to t₁₃₆: l3→l7

Chain transitions t₁₀: l7→l5 and t₁₃₂: l5→l7 to t₁₃₇: l7→l7

Chain transitions t₁₀: l7→l5 and t₁₃₃: l5→l6 to t₁₃₈: l7→l6

Chain transitions t₁₀: l7→l5 and t₁₂₇: l5→l4 to t₁₃₉: l7→l4

Chain transitions t₁₀: l7→l5 and t₁₃₀: l5→l2 to t₁₄₀: l7→l2

Chain transitions t₁₀: l7→l5 and t₁₂: l5→l1 to t₁₄₁: l7→l1

Chain transitions t₉: l7→l8 and t₁₁: l8→l7 to t₁₄₂: l7→l7

Analysing control-flow refined program

Cut unsatisfiable transition t₁₂₉: l3→l2

Cut unsatisfiable transition t₁₃₆: l3→l7

Cut unsatisfiable transition t₁₃₇: l7→l7

Eliminate variables {X₁,X₂,X₃} that do not contribute to the problem

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆+X₇ ≤ 0 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1 ≤ X₆+X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 1 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4

TWN. Size Bound: t₁₇₆: l6→l6 for X₅

cycle: [t₁₇₆: l6→l6]
loop: (1 < X₂,(X₂,X₅) -> (X₂-1,1+(X₂)²+X₅-2⋅X₂)
closed-form: X₅ + [[n != 0]] * (1+(X₂)²-2⋅X₂) * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * 1/2-X₂ * n^2 + [[n != 0, n != 1]] * X₂-5/6 * n^1
runtime bound: X₂+1 {O(n)}

TWN Size Bound - Lifting for t₁₇₆: l6→l6 and X₅: 24⋅X₁₂⋅X₁₂⋅X₁₂+3⋅X₈⋅X₈⋅X₈+10⋅X₈⋅X₈+40⋅X₁₂⋅X₁₂+11⋅X₈+24⋅X₁₂+X₁₁+8 {O(n^3)}

TWN. Size Bound: t₁₇₇: l6→l7 for X₅

cycle: [t₁₇₇: l6→l7; t₁₈₂: l7→l6]
loop: (X₂ ≤ 1 ∧ 3⋅X₃+2⋅X₄+1+(X₂)²+X₅ ≤ 2⋅X₂ ∧ 1 < X₁ ∧ 0 < X₁,(X₁,X₅) -> (X₁-1,X₁)
closed-form: [[n == 0]] * X₅ + [[n != 0]] * X₁ + [[n != 0, n != 1]] * -1 * n^1 + [[n != 0, n != 1]]
runtime bound: X₁+1 {O(n)}

TWN Size Bound - Lifting for t₁₇₇: l6→l7 and X₅: 24⋅X₁₂⋅X₁₂⋅X₁₂+3⋅X₈⋅X₈⋅X₈+11⋅X₈⋅X₈+4⋅X₁₂⋅X₈+44⋅X₁₂⋅X₁₂+13⋅X₈+2⋅X₁₁+32⋅X₁₂+13 {O(n^3)}

TWN. Size Bound: t₁₇₇: l6→l7 for X₇

cycle: [t₁₇₇: l6→l7; t₁₈₂: l7→l6]
loop: (X₂ ≤ 1 ∧ 3⋅X₃+2⋅X₄+1+(X₂)²+X₅ ≤ 2⋅X₂ ∧ 1 < X₁ ∧ 0 < X₁,(X₁,X₂,X₅,X₇) -> (X₁-1,X₁,X₁,1+(X₂)²+X₅-2⋅X₂)
closed-form: [[n == 0]] * X₇ + [[n != 0]] + [[n != 0, n == 1]] * ((X₂)²+X₅-2⋅X₂) + [[n != 0, n != 1]] * ((X₁)²-X₁) + [[n != 0, n != 1, n != 2]] * n^2 + [[n != 0, n != 1, n != 2]] * -3-2⋅X₁ * n^1 + [[n != 0, n != 1, n != 2]] * 2+4⋅X₁
runtime bound: X₁+1 {O(n)}

TWN Size Bound - Lifting for t₁₇₇: l6→l7 and X₇: inf {Infinity}

Solv. Size Bound: t₁₇₆: l6→l6 for X₃

cycle: [t₁₇₆: l6→l6]
loop: (1 < X₂,(X₃,X₄) -> (3⋅X₃+2⋅X₄,-5⋅X₃-3⋅X₄)
overappr. closed-form: 2⋅X₄+6⋅X₃ {O(n)}
runtime bound: X₂+1 {O(n)}

Solv. Size Bound - Lifting for t₁₇₆: l6→l6 and X₃: 2⋅X₁₀+36⋅X₁₂+6⋅X₉ {O(n)}

Solv. Size Bound: t₁₇₆: l6→l6 for X₄

cycle: [t₁₇₆: l6→l6]
loop: (1 < X₂,(X₃,X₄) -> (3⋅X₃+2⋅X₄,-5⋅X₃-3⋅X₄)
overappr. closed-form: 6⋅X₃+6⋅X₄ {O(n)}
runtime bound: X₂+1 {O(n)}

Solv. Size Bound - Lifting for t₁₇₆: l6→l6 and X₄: 6⋅X₁₀+6⋅X₉+60⋅X₁₂ {O(n)}

MPRF for transition t₁₇₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) -{2}> l7(X₀, X₁, X₂-1, 3⋅X₃+2⋅X₄, -5⋅X₃-3⋅X₄, Temp_Int₃₈₁₈+Temp_Int₃₈₁₉+X₅-2⋅X₂, 3⋅X₃+2⋅X₄, Temp_Int₃₈₂₀+Temp_Int₃₈₂₁+X₅-2⋅X₂, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₂ ≤ 1 ∧ 0 < Temp_Int₃₈₁₉ ∧ X₂ ≤ Temp_Int₃₈₁₉ ∧ 0 < Temp_Int₃₈₂₁ ∧ X₂ ≤ Temp_Int₃₈₂₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₂ {O(n)}

MPRF for transition t₁₈₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) -{4}> l6(X₁, X₁-1, X₁, 2⋅X₁, 3⋅X₁, X₁, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₆+X₇ ≤ 0 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₂ {O(n)}

TWN: t₁₇₆: l6→l6

cycle: [t₁₇₆: l6→l6]
loop: (1 < X₂,(X₂) -> (X₂-1)
order: [X₂]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 1 < X₂
alphas_abs: 1+X₂
M: 0
N: 1
Bound: 2⋅X₂+4 {O(n)}
loop: (1 < X₂,(X₂) -> (X₂-1)
order: [X₂]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 1 < X₂
alphas_abs: 1+X₂
M: 0
N: 1
Bound: 2⋅X₂+4 {O(n)}

TWN - Lifting for t₁₇₆: l6→l6 of 2⋅X₂+6 {O(n)}

relevant size-bounds w.r.t. t₁₈₂:
X₂: 2⋅X₁₂ {O(n)}
Runtime-bound of t₁₈₂: X₁₂ {O(n)}
Results in: 4⋅X₁₂⋅X₁₂+6⋅X₁₂ {O(n^2)}

TWN - Lifting for t₁₇₆: l6→l6 of 2⋅X₂+6 {O(n)}

relevant size-bounds w.r.t. t₁₇₄:
X₂: X₈ {O(n)}
Runtime-bound of t₁₇₄: 1 {O(1)}
Results in: 2⋅X₈+6 {O(n)}

MPRF for transition t₁₈₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) -{2}> l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₆+X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

24⋅X₁₂⋅X₁₂⋅X₁₂⋅X₁₂+3⋅X₁₂⋅X₈⋅X₈⋅X₈+12⋅X₁₂⋅X₈⋅X₈+4⋅X₁₂⋅X₁₂⋅X₈+44⋅X₁₂⋅X₁₂⋅X₁₂+15⋅X₁₂⋅X₈+2⋅X₁₁⋅X₁₂+27⋅X₁₀⋅X₁₂+316⋅X₁₂⋅X₁₂+39⋅X₁₂⋅X₉+10⋅X₁₂+X₆+X₇ {O(n^4)}

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₇: l4→l7

Found invariant X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l6___3

Found invariant 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ for location n_l6___1

Found invariant 1+X₉ ≤ X₆ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 3 ≤ X₆+X₈ ∧ 1+X₁₀ ≤ X₈ ∧ 2 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l8___1

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₈+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₁₀ ∧ 1 ≤ X₆+X₈ ∧ X₁₀ ≤ X₈ ∧ 1 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l8___3

Found invariant 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l4___2

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₈ ≤ X₁₀ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l7

Found invariant 1+X₉ ≤ X₆ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ 1+X₁₀+X₉ ∧ 1 ≤ X₆+X₈ ∧ 1+X₁₀ ≤ X₈ ∧ 0 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l7___2

Found invariant X₉ ≤ X₆ ∧ X₁₀+X₉ ≤ 0 ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₄ ≤ X₁₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₅+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l1

Found invariant X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l4

knowledge_propagation leads to new time bound X₁₅+1 {O(n)} for transition t₃₃₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₅ ∧ 0 < X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₁₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₁₅+1 {O(n)} for transition t₃₃₇: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → n_l4___2(X₀, X₁, X₂, X₃, X₄, Arg5_P, 3⋅X₆+2⋅X₇, -5⋅X₆-3⋅X₇, NoDet0, X₉, X₁₀, Arg11_P, X₁₂, X₁₃, X₁₄, Arg15_P) :|: X₄ ≤ X₁₅ ∧ X₄ ≤ Arg15_P ∧ 1 ≤ Arg11_P ∧ 1+Arg5_P ≤ X₀ ∧ 0 ≤ Arg5_P ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₅ ≤ Arg5_P+1 ∧ 1+Arg5_P ≤ X₅ ∧ X₁₅ ≤ Arg15_P ∧ Arg15_P ≤ X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀

MPRF for transition t₃₃₄: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₄ ≤ X₁₅ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁₅ ∧ 0 < X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₁⋅X₁₅+X₁₅⋅X₁₅+3⋅X₁₅+X₁₁+1 {O(n^2)}

MPRF for transition t₃₃₆: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → n_l4___2(X₀, X₁, X₂, X₃, X₄, Arg5_P, 3⋅X₆+2⋅X₇, -5⋅X₆-3⋅X₇, NoDet0, X₉, X₁₀, Arg11_P, X₁₂, X₁₃, X₁₄, Arg15_P) :|: X₄ ≤ X₁₅ ∧ 1+X₅ ≤ X₀ ∧ 0 < X₅ ∧ X₄ ≤ Arg15_P ∧ 1 ≤ Arg11_P ∧ 1+Arg5_P ≤ X₀ ∧ 0 ≤ Arg5_P ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₅ ≤ Arg5_P+1 ∧ 1+Arg5_P ≤ X₅ ∧ X₁₅ ≤ Arg15_P ∧ Arg15_P ≤ X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₁₁⋅X₁₅+X₁₅⋅X₁₅+2⋅X₁₅+X₁₁ {O(n^2)}

MPRF for transition t₃₄₁: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₈, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₅ ≤ 0 ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅+1 {O(n)}

MPRF for transition t₃₅₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → n_l8___3(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₄ ≤ X₁₅ ∧ X₁₀ ≤ X₈ ∧ X₈ ≤ X₁₀ ∧ X₁₀ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₄ ≤ X₁₅ ∧ X₈ ≤ X₁₀ ∧ X₁₀ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₄ ≤ X₁₅ ∧ X₁₀ ≤ X₈ ∧ 0 < X₉+X₁₀ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₈ ≤ X₁₀ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₁+X₁₅ {O(n)}

MPRF for transition t₃₅₅: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → n_l7___2(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉-1, X₁₀-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₄ ≤ X₁₅ ∧ 0 < X₆+X₁₀ ∧ X₆ ≤ X₉ ∧ X₈ ≤ X₁₀ ∧ X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₈ ∧ 1 ≤ X₉+X₁₀ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₉ ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₈+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₁₀ ∧ 1 ≤ X₆+X₈ ∧ X₁₀ ≤ X₈ ∧ 1 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁₅+1 {O(n)}

MPRF for transition t₃₅₉: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉+X₁₀ ≤ 0 ∧ X₉ ≤ X₆ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1+X₉ ≤ X₆ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ 1+X₁₀+X₉ ∧ 1 ≤ X₆+X₈ ∧ 1+X₁₀ ≤ X₈ ∧ 0 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅ {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:12⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+12⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+48⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+48⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+72⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+112⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+12⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+240⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+264⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+76⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₂⋅X₁₅+24⋅X₁₂⋅X₁₅⋅X₁₅+264⋅X₁₅⋅X₁₅⋅X₁₅+316⋅X₁₁⋅X₁₁⋅X₁₅+4⋅X₁₁⋅X₁₄⋅X₁₅+4⋅X₁₄⋅X₁₅⋅X₁₅+516⋅X₁₁⋅X₁₅⋅X₁₅+64⋅X₁₁⋅X₁₁⋅X₁₁+8⋅X₁₁⋅X₁₃⋅X₁₅+8⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₄⋅X₁₅+124⋅X₁₁⋅X₁₁+24⋅X₁₁⋅X₁₂+24⋅X₁₃⋅X₁₅+4⋅X₁₁⋅X₁₄+432⋅X₁₁⋅X₁₅+466⋅X₁₅⋅X₁₅+72⋅X₁₂⋅X₁₅+8⋅X₁₁⋅X₁₃+10⋅X₁₄+108⋅X₁₁+16⋅X₁₃+304⋅X₁₅+50⋅X₁₂+47 {O(n^5)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: X₁₅+1 {O(n)}
t₅: 1 {O(1)}
t₆: 2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4 {O(n^2)}
t₇: X₁₅ {O(n)}
t₈: 2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4 {O(n^2)}
t₉: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+144⋅X₁₅+25⋅X₁₂+5⋅X₁₄+52⋅X₁₁+8⋅X₁₃+16 {O(n^5)}
t₁₀: X₁₅ {O(n)}
t₁₁: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+144⋅X₁₅+25⋅X₁₂+5⋅X₁₄+52⋅X₁₁+8⋅X₁₃+16 {O(n^5)}
t₁₂: X₁₅ {O(n)}
t₁₃: 1 {O(1)}

Costbounds

Overall costbound: 12⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+12⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+48⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+48⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+72⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+112⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+12⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+240⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+264⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+76⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₂⋅X₁₅+24⋅X₁₂⋅X₁₅⋅X₁₅+264⋅X₁₅⋅X₁₅⋅X₁₅+316⋅X₁₁⋅X₁₁⋅X₁₅+4⋅X₁₁⋅X₁₄⋅X₁₅+4⋅X₁₄⋅X₁₅⋅X₁₅+516⋅X₁₁⋅X₁₅⋅X₁₅+64⋅X₁₁⋅X₁₁⋅X₁₁+8⋅X₁₁⋅X₁₃⋅X₁₅+8⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₄⋅X₁₅+124⋅X₁₁⋅X₁₁+24⋅X₁₁⋅X₁₂+24⋅X₁₃⋅X₁₅+4⋅X₁₁⋅X₁₄+432⋅X₁₁⋅X₁₅+466⋅X₁₅⋅X₁₅+72⋅X₁₂⋅X₁₅+8⋅X₁₁⋅X₁₃+10⋅X₁₄+108⋅X₁₁+16⋅X₁₃+304⋅X₁₅+50⋅X₁₂+47 {O(n^5)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: X₁₅+1 {O(n)}
t₅: 1 {O(1)}
t₆: 2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4 {O(n^2)}
t₇: X₁₅ {O(n)}
t₈: 2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4 {O(n^2)}
t₉: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+144⋅X₁₅+25⋅X₁₂+5⋅X₁₄+52⋅X₁₁+8⋅X₁₃+16 {O(n^5)}
t₁₀: X₁₅ {O(n)}
t₁₁: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+144⋅X₁₅+25⋅X₁₂+5⋅X₁₄+52⋅X₁₁+8⋅X₁₃+16 {O(n^5)}
t₁₂: X₁₅ {O(n)}
t₁₃: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₀, X₁₂: X₁₂ {O(n)}
t₀, X₁₃: X₁₃ {O(n)}
t₀, X₁₄: X₁₄ {O(n)}
t₀, X₁₅: X₁₅ {O(n)}
t₁, X₀: X₁₁ {O(n)}
t₁, X₁: X₁₂ {O(n)}
t₁, X₂: X₁₃ {O(n)}
t₁, X₃: X₁₄ {O(n)}
t₁, X₄: X₁₅ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₁, X₁₂: X₁₂ {O(n)}
t₁, X₁₃: X₁₃ {O(n)}
t₁, X₁₄: X₁₄ {O(n)}
t₁, X₁₅: X₁₅ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₂, X₁₂: X₁₂ {O(n)}
t₂, X₁₃: X₁₃ {O(n)}
t₂, X₁₄: X₁₄ {O(n)}
t₂, X₁₅: X₁₅ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₉ {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₃, X₁₂: X₁₂ {O(n)}
t₃, X₁₃: X₁₃ {O(n)}
t₃, X₁₄: X₁₄ {O(n)}
t₃, X₁₅: X₁₅ {O(n)}
t₄, X₀: X₁₁+X₁₅ {O(n)}
t₄, X₁: 2⋅X₁₅+X₁₂ {O(n)}
t₄, X₂: 3⋅X₁₅+X₁₃ {O(n)}
t₄, X₃: X₁₄+X₁₅ {O(n)}
t₄, X₄: X₁₅ {O(n)}
t₄, X₅: X₁₁+X₁₅ {O(n)}
t₄, X₆: 2⋅X₁₅+X₁₂ {O(n)}
t₄, X₇: 3⋅X₁₅+X₁₃ {O(n)}
t₄, X₈: X₁₄+X₁₅ {O(n)}
t₄, X₉: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+12⋅X₁₃+180⋅X₁₅+37⋅X₁₂+5⋅X₁₄+52⋅X₁₁+X₉+16 {O(n^5)}
t₄, X₁₀: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+138⋅X₁₅⋅X₁₅⋅X₁₅+176⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+276⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+251⋅X₁₅⋅X₁₅+254⋅X₁₁⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+82⋅X₁₁⋅X₁₁+168⋅X₁₅+25⋅X₁₂+7⋅X₁₄+74⋅X₁₁+8⋅X₁₃+X₁₀+24 {O(n^5)}
t₄, X₁₁: X₁₁ {O(n)}
t₄, X₁₂: X₁₂ {O(n)}
t₄, X₁₃: X₁₃ {O(n)}
t₄, X₁₄: X₁₄ {O(n)}
t₄, X₁₅: X₁₅ {O(n)}
t₅, X₀: X₁₅ {O(n)}
t₅, X₁: 2⋅X₁₅ {O(n)}
t₅, X₂: 3⋅X₁₅ {O(n)}
t₅, X₃: X₁₅ {O(n)}
t₅, X₄: 0 {O(1)}
t₅, X₅: 0 {O(1)}
t₅, X₆: 12⋅X₁₂+36⋅X₁₅+4⋅X₁₃ {O(n)}
t₅, X₇: 12⋅X₁₂+12⋅X₁₃+60⋅X₁₅ {O(n)}
t₅, X₈: 18⋅X₁₁⋅X₁₁⋅X₁₅+18⋅X₁₁⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁+6⋅X₁₅⋅X₁₅⋅X₁₅+20⋅X₁₁⋅X₁₁+20⋅X₁₅⋅X₁₅+40⋅X₁₁⋅X₁₅+2⋅X₁₄+22⋅X₁₁+24⋅X₁₅+8 {O(n^3)}
t₅, X₉: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+12⋅X₁₃+180⋅X₁₅+37⋅X₁₂+5⋅X₁₄+52⋅X₁₁+16 {O(n^5)}
t₅, X₁₀: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+138⋅X₁₅⋅X₁₅⋅X₁₅+176⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+276⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+251⋅X₁₅⋅X₁₅+254⋅X₁₁⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+82⋅X₁₁⋅X₁₁+168⋅X₁₅+25⋅X₁₂+7⋅X₁₄+74⋅X₁₁+8⋅X₁₃+24 {O(n^5)}
t₅, X₁₁: X₁₁ {O(n)}
t₅, X₁₂: X₁₂ {O(n)}
t₅, X₁₃: X₁₃ {O(n)}
t₅, X₁₄: X₁₄ {O(n)}
t₅, X₁₅: X₁₅ {O(n)}
t₆, X₀: X₁₁+X₁₅ {O(n)}
t₆, X₁: 2⋅X₁₅+X₁₂ {O(n)}
t₆, X₂: 3⋅X₁₅+X₁₃ {O(n)}
t₆, X₃: X₁₄+X₁₅ {O(n)}
t₆, X₄: X₁₅ {O(n)}
t₆, X₅: X₁₁+X₁₅ {O(n)}
t₆, X₆: 18⋅X₁₅+2⋅X₁₃+6⋅X₁₂ {O(n)}
t₆, X₇: 30⋅X₁₅+6⋅X₁₂+6⋅X₁₃ {O(n)}
t₆, X₈: 3⋅X₁₁⋅X₁₁⋅X₁₁+3⋅X₁₅⋅X₁₅⋅X₁₅+9⋅X₁₁⋅X₁₁⋅X₁₅+9⋅X₁₁⋅X₁₅⋅X₁₅+10⋅X₁₁⋅X₁₁+10⋅X₁₅⋅X₁₅+20⋅X₁₁⋅X₁₅+11⋅X₁₁+13⋅X₁₅+2⋅X₁₄+4 {O(n^3)}
t₆, X₉: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+12⋅X₁₃+180⋅X₁₅+37⋅X₁₂+5⋅X₁₄+52⋅X₁₁+X₉+16 {O(n^5)}
t₆, X₁₀: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+138⋅X₁₅⋅X₁₅⋅X₁₅+176⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+276⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+251⋅X₁₅⋅X₁₅+254⋅X₁₁⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+82⋅X₁₁⋅X₁₁+168⋅X₁₅+25⋅X₁₂+7⋅X₁₄+74⋅X₁₁+8⋅X₁₃+X₁₀+24 {O(n^5)}
t₆, X₁₁: X₁₁ {O(n)}
t₆, X₁₂: X₁₂ {O(n)}
t₆, X₁₃: X₁₃ {O(n)}
t₆, X₁₄: X₁₄ {O(n)}
t₆, X₁₅: X₁₅ {O(n)}
t₇, X₀: X₁₁+X₁₅ {O(n)}
t₇, X₁: 2⋅X₁₅+X₁₂ {O(n)}
t₇, X₂: 3⋅X₁₅+X₁₃ {O(n)}
t₇, X₃: X₁₄+X₁₅ {O(n)}
t₇, X₄: X₁₅ {O(n)}
t₇, X₅: 0 {O(1)}
t₇, X₆: 18⋅X₁₅+2⋅X₁₃+6⋅X₁₂ {O(n)}
t₇, X₇: 30⋅X₁₅+6⋅X₁₂+6⋅X₁₃ {O(n)}
t₇, X₈: 3⋅X₁₁⋅X₁₁⋅X₁₁+3⋅X₁₅⋅X₁₅⋅X₁₅+9⋅X₁₁⋅X₁₁⋅X₁₅+9⋅X₁₁⋅X₁₅⋅X₁₅+10⋅X₁₁⋅X₁₁+10⋅X₁₅⋅X₁₅+20⋅X₁₁⋅X₁₅+11⋅X₁₁+12⋅X₁₅+X₁₄+4 {O(n^3)}
t₇, X₉: 18⋅X₁₅+2⋅X₁₃+6⋅X₁₂ {O(n)}
t₇, X₁₀: 3⋅X₁₁⋅X₁₁⋅X₁₁+3⋅X₁₅⋅X₁₅⋅X₁₅+9⋅X₁₁⋅X₁₁⋅X₁₅+9⋅X₁₁⋅X₁₅⋅X₁₅+10⋅X₁₁⋅X₁₁+10⋅X₁₅⋅X₁₅+20⋅X₁₁⋅X₁₅+11⋅X₁₁+12⋅X₁₅+X₁₄+4 {O(n^3)}
t₇, X₁₁: X₁₁ {O(n)}
t₇, X₁₂: X₁₂ {O(n)}
t₇, X₁₃: X₁₃ {O(n)}
t₇, X₁₄: X₁₄ {O(n)}
t₇, X₁₅: X₁₅ {O(n)}
t₈, X₀: X₁₁+X₁₅ {O(n)}
t₈, X₁: 2⋅X₁₅+X₁₂ {O(n)}
t₈, X₂: 3⋅X₁₅+X₁₃ {O(n)}
t₈, X₃: X₁₄+X₁₅ {O(n)}
t₈, X₄: X₁₅ {O(n)}
t₈, X₅: X₁₁+X₁₅ {O(n)}
t₈, X₆: 18⋅X₁₅+2⋅X₁₃+6⋅X₁₂ {O(n)}
t₈, X₇: 30⋅X₁₅+6⋅X₁₂+6⋅X₁₃ {O(n)}
t₈, X₈: 3⋅X₁₁⋅X₁₁⋅X₁₁+3⋅X₁₅⋅X₁₅⋅X₁₅+9⋅X₁₁⋅X₁₁⋅X₁₅+9⋅X₁₁⋅X₁₅⋅X₁₅+10⋅X₁₁⋅X₁₁+10⋅X₁₅⋅X₁₅+20⋅X₁₁⋅X₁₅+11⋅X₁₁+12⋅X₁₅+X₁₄+4 {O(n^3)}
t₈, X₉: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+12⋅X₁₃+180⋅X₁₅+37⋅X₁₂+5⋅X₁₄+52⋅X₁₁+X₉+16 {O(n^5)}
t₈, X₁₀: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+138⋅X₁₅⋅X₁₅⋅X₁₅+176⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+276⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+251⋅X₁₅⋅X₁₅+254⋅X₁₁⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+82⋅X₁₁⋅X₁₁+168⋅X₁₅+25⋅X₁₂+7⋅X₁₄+74⋅X₁₁+8⋅X₁₃+X₁₀+24 {O(n^5)}
t₈, X₁₁: X₁₁ {O(n)}
t₈, X₁₂: X₁₂ {O(n)}
t₈, X₁₃: X₁₃ {O(n)}
t₈, X₁₄: X₁₄ {O(n)}
t₈, X₁₅: X₁₅ {O(n)}
t₉, X₀: X₁₁+X₁₅ {O(n)}
t₉, X₁: 2⋅X₁₅+X₁₂ {O(n)}
t₉, X₂: 3⋅X₁₅+X₁₃ {O(n)}
t₉, X₃: X₁₄+X₁₅ {O(n)}
t₉, X₄: X₁₅ {O(n)}
t₉, X₅: 0 {O(1)}
t₉, X₆: 18⋅X₁₅+2⋅X₁₃+6⋅X₁₂ {O(n)}
t₉, X₇: 30⋅X₁₅+6⋅X₁₂+6⋅X₁₃ {O(n)}
t₉, X₈: 3⋅X₁₁⋅X₁₁⋅X₁₁+3⋅X₁₅⋅X₁₅⋅X₁₅+9⋅X₁₁⋅X₁₁⋅X₁₅+9⋅X₁₁⋅X₁₅⋅X₁₅+10⋅X₁₁⋅X₁₁+10⋅X₁₅⋅X₁₅+20⋅X₁₁⋅X₁₅+11⋅X₁₁+12⋅X₁₅+X₁₄+4 {O(n^3)}
t₉, X₉: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+10⋅X₁₃+162⋅X₁₅+31⋅X₁₂+5⋅X₁₄+52⋅X₁₁+16 {O(n^5)}
t₉, X₁₀: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+135⋅X₁₅⋅X₁₅⋅X₁₅+167⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+267⋅X₁₁⋅X₁₅⋅X₁₅+35⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+234⋅X₁₁⋅X₁₅+241⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+72⋅X₁₁⋅X₁₁+156⋅X₁₅+25⋅X₁₂+6⋅X₁₄+63⋅X₁₁+8⋅X₁₃+20 {O(n^5)}
t₉, X₁₁: X₁₁ {O(n)}
t₉, X₁₂: X₁₂ {O(n)}
t₉, X₁₃: X₁₃ {O(n)}
t₉, X₁₄: X₁₄ {O(n)}
t₉, X₁₅: X₁₅ {O(n)}
t₁₀, X₀: 2⋅X₁₁+2⋅X₁₅ {O(n)}
t₁₀, X₁: 2⋅X₁₂+4⋅X₁₅ {O(n)}
t₁₀, X₂: 2⋅X₁₃+6⋅X₁₅ {O(n)}
t₁₀, X₃: 2⋅X₁₄+2⋅X₁₅ {O(n)}
t₁₀, X₄: X₁₅ {O(n)}
t₁₀, X₅: 0 {O(1)}
t₁₀, X₆: 12⋅X₁₂+36⋅X₁₅+4⋅X₁₃ {O(n)}
t₁₀, X₇: 12⋅X₁₂+12⋅X₁₃+60⋅X₁₅ {O(n)}
t₁₀, X₈: 18⋅X₁₁⋅X₁₁⋅X₁₅+18⋅X₁₁⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁+6⋅X₁₅⋅X₁₅⋅X₁₅+20⋅X₁₁⋅X₁₁+20⋅X₁₅⋅X₁₅+40⋅X₁₁⋅X₁₅+2⋅X₁₄+22⋅X₁₁+24⋅X₁₅+8 {O(n^3)}
t₁₀, X₉: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+12⋅X₁₃+180⋅X₁₅+37⋅X₁₂+5⋅X₁₄+52⋅X₁₁+16 {O(n^5)}
t₁₀, X₁₀: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+138⋅X₁₅⋅X₁₅⋅X₁₅+176⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+276⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+251⋅X₁₅⋅X₁₅+254⋅X₁₁⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+82⋅X₁₁⋅X₁₁+168⋅X₁₅+25⋅X₁₂+7⋅X₁₄+74⋅X₁₁+8⋅X₁₃+24 {O(n^5)}
t₁₀, X₁₁: X₁₁ {O(n)}
t₁₀, X₁₂: X₁₂ {O(n)}
t₁₀, X₁₃: X₁₃ {O(n)}
t₁₀, X₁₄: X₁₄ {O(n)}
t₁₀, X₁₅: X₁₅ {O(n)}
t₁₁, X₀: X₁₁+X₁₅ {O(n)}
t₁₁, X₁: 2⋅X₁₅+X₁₂ {O(n)}
t₁₁, X₂: 3⋅X₁₅+X₁₃ {O(n)}
t₁₁, X₃: X₁₄+X₁₅ {O(n)}
t₁₁, X₄: X₁₅ {O(n)}
t₁₁, X₅: 0 {O(1)}
t₁₁, X₆: 18⋅X₁₅+2⋅X₁₃+6⋅X₁₂ {O(n)}
t₁₁, X₇: 30⋅X₁₅+6⋅X₁₂+6⋅X₁₃ {O(n)}
t₁₁, X₈: 3⋅X₁₁⋅X₁₁⋅X₁₁+3⋅X₁₅⋅X₁₅⋅X₁₅+9⋅X₁₁⋅X₁₁⋅X₁₅+9⋅X₁₁⋅X₁₅⋅X₁₅+10⋅X₁₁⋅X₁₁+10⋅X₁₅⋅X₁₅+20⋅X₁₁⋅X₁₅+11⋅X₁₁+12⋅X₁₅+X₁₄+4 {O(n^3)}
t₁₁, X₉: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+10⋅X₁₃+162⋅X₁₅+31⋅X₁₂+5⋅X₁₄+52⋅X₁₁+16 {O(n^5)}
t₁₁, X₁₀: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+135⋅X₁₅⋅X₁₅⋅X₁₅+167⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+267⋅X₁₁⋅X₁₅⋅X₁₅+35⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+234⋅X₁₁⋅X₁₅+241⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+72⋅X₁₁⋅X₁₁+156⋅X₁₅+25⋅X₁₂+6⋅X₁₄+63⋅X₁₁+8⋅X₁₃+20 {O(n^5)}
t₁₁, X₁₁: X₁₁ {O(n)}
t₁₁, X₁₂: X₁₂ {O(n)}
t₁₁, X₁₃: X₁₃ {O(n)}
t₁₁, X₁₄: X₁₄ {O(n)}
t₁₁, X₁₅: X₁₅ {O(n)}
t₁₂, X₀: X₁₅ {O(n)}
t₁₂, X₁: 2⋅X₁₅ {O(n)}
t₁₂, X₂: 3⋅X₁₅ {O(n)}
t₁₂, X₃: X₁₅ {O(n)}
t₁₂, X₄: X₁₅ {O(n)}
t₁₂, X₅: 0 {O(1)}
t₁₂, X₆: 12⋅X₁₂+36⋅X₁₅+4⋅X₁₃ {O(n)}
t₁₂, X₇: 12⋅X₁₂+12⋅X₁₃+60⋅X₁₅ {O(n)}
t₁₂, X₈: 18⋅X₁₁⋅X₁₁⋅X₁₅+18⋅X₁₁⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁+6⋅X₁₅⋅X₁₅⋅X₁₅+20⋅X₁₁⋅X₁₁+20⋅X₁₅⋅X₁₅+40⋅X₁₁⋅X₁₅+2⋅X₁₄+22⋅X₁₁+24⋅X₁₅+8 {O(n^3)}
t₁₂, X₉: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+12⋅X₁₃+180⋅X₁₅+37⋅X₁₂+5⋅X₁₄+52⋅X₁₁+16 {O(n^5)}
t₁₂, X₁₀: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+138⋅X₁₅⋅X₁₅⋅X₁₅+176⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+276⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+251⋅X₁₅⋅X₁₅+254⋅X₁₁⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+82⋅X₁₁⋅X₁₁+168⋅X₁₅+25⋅X₁₂+7⋅X₁₄+74⋅X₁₁+8⋅X₁₃+24 {O(n^5)}
t₁₂, X₁₁: X₁₁ {O(n)}
t₁₂, X₁₂: X₁₂ {O(n)}
t₁₂, X₁₃: X₁₃ {O(n)}
t₁₂, X₁₄: X₁₄ {O(n)}
t₁₂, X₁₅: X₁₅ {O(n)}
t₁₃, X₀: 2⋅X₀+X₁₅ {O(n)}
t₁₃, X₁: 2⋅X₁+2⋅X₁₅ {O(n)}
t₁₃, X₂: 2⋅X₂+3⋅X₁₅ {O(n)}
t₁₃, X₃: 2⋅X₃+X₁₅ {O(n)}
t₁₃, X₄: 2⋅X₄ {O(n)}
t₁₃, X₅: 2⋅X₅ {O(n)}
t₁₃, X₆: 12⋅X₁₂+2⋅X₆+36⋅X₁₅+4⋅X₁₃ {O(n)}
t₁₃, X₇: 12⋅X₁₂+12⋅X₁₃+2⋅X₇+60⋅X₁₅ {O(n)}
t₁₃, X₈: 18⋅X₁₁⋅X₁₁⋅X₁₅+18⋅X₁₁⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁+6⋅X₁₅⋅X₁₅⋅X₁₅+20⋅X₁₁⋅X₁₁+20⋅X₁₅⋅X₁₅+40⋅X₁₁⋅X₁₅+2⋅X₁₄+2⋅X₈+22⋅X₁₁+24⋅X₁₅+8 {O(n^3)}
t₁₃, X₉: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+132⋅X₁₅⋅X₁₅⋅X₁₅+158⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+258⋅X₁₁⋅X₁₅⋅X₁₅+32⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+214⋅X₁₁⋅X₁₅+231⋅X₁₅⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+62⋅X₁₁⋅X₁₁+12⋅X₁₃+180⋅X₁₅+2⋅X₉+37⋅X₁₂+5⋅X₁₄+52⋅X₁₁+16 {O(n^5)}
t₁₃, X₁₀: 24⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+24⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+36⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+120⋅X₁₁⋅X₁₅⋅X₁₅⋅X₁₅+132⋅X₁₁⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₅⋅X₁₅⋅X₁₅⋅X₁₅+56⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₅+6⋅X₁₁⋅X₁₁⋅X₁₁⋅X₁₁+12⋅X₁₁⋅X₁₂⋅X₁₅+12⋅X₁₂⋅X₁₅⋅X₁₅+138⋅X₁₅⋅X₁₅⋅X₁₅+176⋅X₁₁⋅X₁₁⋅X₁₅+2⋅X₁₁⋅X₁₄⋅X₁₅+2⋅X₁₄⋅X₁₅⋅X₁₅+276⋅X₁₁⋅X₁₅⋅X₁₅+38⋅X₁₁⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₁₃⋅X₁₅+4⋅X₁₃⋅X₁₅⋅X₁₅+12⋅X₁₁⋅X₁₂+12⋅X₁₃⋅X₁₅+2⋅X₁₁⋅X₁₄+251⋅X₁₅⋅X₁₅+254⋅X₁₁⋅X₁₅+36⋅X₁₂⋅X₁₅+4⋅X₁₁⋅X₁₃+6⋅X₁₄⋅X₁₅+82⋅X₁₁⋅X₁₁+168⋅X₁₅+2⋅X₁₀+25⋅X₁₂+7⋅X₁₄+74⋅X₁₁+8⋅X₁₃+24 {O(n^5)}
t₁₃, X₁₁: 3⋅X₁₁ {O(n)}
t₁₃, X₁₂: 3⋅X₁₂ {O(n)}
t₁₃, X₁₃: 3⋅X₁₃ {O(n)}
t₁₃, X₁₄: 3⋅X₁₄ {O(n)}
t₁₃, X₁₅: 3⋅X₁₅ {O(n)}