Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef.0
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀+2⋅X₆, X₃, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₄ ∧ 0 < X₄
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(2⋅X₆, X₃, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₄ ∧ X₄ ≤ 0
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(2⋅X₀+2⋅X₆, X₃, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ 0 ∧ 0 < X₄
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(2⋅X₆+X₀, X₃, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ 0 ∧ X₄ ≤ 0
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆, X₇, X₈, X₉)
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉)
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₁
t₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ ≤ 0
t₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₅, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₂
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0
t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)

Preprocessing

Cut unsatisfiable transition t₈: l1→l4

Cut unsatisfiable transition t₉: l1→l4

Eliminate variables {X₇,X₈} that do not contribute to the problem

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1 ≤ X₁ for location l2

Found invariant X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 for location l6

Found invariant X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l7

Found invariant X₁ ≤ X₇ ∧ X₂ ≤ 0 ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 for location l8

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₁ for location l1

Found invariant X₁ ≤ X₇ for location l4

Found invariant X₁ ≤ X₇ ∧ X₂ ≤ 0 ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 for location l9

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂₈: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀+2⋅X₆, X₃, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₄ ∧ 0 < X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₁
t₃₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(2⋅X₆+X₀, X₃, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 0 ∧ X₄ ≤ 0 ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₁
t₃₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1 ≤ X₁
t₃₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₁
t₃₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₁ ≤ X₇
t₃₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₀, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₁ ≤ X₇
t₃₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₅, X₇, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂ ∧ X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0
t₃₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0
t₃₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀
t₃₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₇ ∧ X₂ ≤ 0 ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0

MPRF for transition t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀+2⋅X₆, X₃, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₄ ∧ 0 < X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₃₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(2⋅X₆+X₀, X₃, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 0 ∧ X₄ ≤ 0 ∧ 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₃₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁-1, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₃₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₃₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₁ ≤ X₇ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₃₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂ ∧ X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 of depth 1:

new bound:

2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}

MPRF for transition t₃₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}

Chain transitions t₃₈: l7→l6 and t₃₇: l6→l8 to t₆₈: l7→l8

Chain transitions t₃₄: l4→l6 and t₃₇: l6→l8 to t₆₉: l4→l8

Chain transitions t₃₄: l4→l6 and t₃₆: l6→l7 to t₇₀: l4→l7

Chain transitions t₃₈: l7→l6 and t₃₆: l6→l7 to t₇₁: l7→l7

Analysing control-flow refined program

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1 ≤ X₁ for location l2

Found invariant X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 for location l6

Found invariant X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l7

Found invariant X₁ ≤ X₇ ∧ X₂ ≤ 0 ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 for location l8

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₁ for location l1

Found invariant X₁ ≤ X₇ for location l4

Found invariant X₁ ≤ X₇ ∧ X₂ ≤ 0 ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 for location l9

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₁ for location l3

MPRF for transition t₇₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{2}> l7(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₂ ∧ X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₂ ≤ X₀+1 ∧ X₁ ≤ 0 ∧ X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1 ≤ X₁ for location l2

Found invariant X₁ ≤ X₇ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l6___2

Found invariant X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 for location l6

Found invariant X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l7___3

Found invariant X₁ ≤ X₇ ∧ X₂ ≤ 0 ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 for location l8

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₁ for location l1

Found invariant X₁ ≤ X₇ for location l4

Found invariant X₁ ≤ X₇ ∧ X₂ ≤ 0 ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₁ ≤ 0 for location l9

Found invariant X₁ ≤ X₇ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₀ for location n_l7___1

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₁ for location l3

MPRF for transition t₁₃₁: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 0 < X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₇ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅+1 {O(EXP)}

MPRF for transition t₁₃₃: n_l7___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___2(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇) :|: 1+X₂ ≤ X₀ ∧ 0 < X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₇ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₇ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:2^(X₇)⋅2^(X₇)⋅4⋅X₅+2^(X₇)⋅2^(X₇)⋅4⋅X₆+2^(X₇)⋅2^(X₇)⋅8⋅X₆⋅X₇+2⋅X₅+5⋅X₇+5 {O(EXP)}
t₂₈: 1 {O(1)}
t₂₉: X₇ {O(n)}
t₃₀: X₇ {O(n)}
t₃₁: X₇ {O(n)}
t₃₂: X₇ {O(n)}
t₃₃: X₇ {O(n)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}
t₃₇: 1 {O(1)}
t₃₈: 2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}
t₃₉: 1 {O(1)}

Costbounds

Overall costbound: 2^(X₇)⋅2^(X₇)⋅4⋅X₅+2^(X₇)⋅2^(X₇)⋅4⋅X₆+2^(X₇)⋅2^(X₇)⋅8⋅X₆⋅X₇+2⋅X₅+5⋅X₇+5 {O(EXP)}
t₂₈: 1 {O(1)}
t₂₉: X₇ {O(n)}
t₃₀: X₇ {O(n)}
t₃₁: X₇ {O(n)}
t₃₂: X₇ {O(n)}
t₃₃: X₇ {O(n)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}
t₃₇: 1 {O(1)}
t₃₈: 2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}
t₃₉: 1 {O(1)}

Sizebounds

t₂₈, X₀: X₀ {O(n)}
t₂₈, X₁: X₁ {O(n)}
t₂₈, X₂: X₂ {O(n)}
t₂₈, X₃: X₃ {O(n)}
t₂₈, X₄: X₄ {O(n)}
t₂₈, X₅: X₅ {O(n)}
t₂₈, X₆: X₆ {O(n)}
t₂₈, X₇: X₇ {O(n)}
t₂₉, X₀: 2⋅2^(X₇)⋅2^(X₇)⋅X₆⋅X₇+2^(X₇)⋅2^(X₇)⋅X₅+2^(X₇)⋅2^(X₇)⋅X₆ {O(EXP)}
t₂₉, X₁: X₇ {O(n)}
t₂₉, X₂: X₂ {O(n)}
t₂₉, X₃: X₇ {O(n)}
t₂₉, X₅: X₅ {O(n)}
t₂₉, X₆: X₆ {O(n)}
t₂₉, X₇: X₇ {O(n)}
t₃₀, X₀: 2⋅2^(X₇)⋅2^(X₇)⋅X₆⋅X₇+2^(X₇)⋅2^(X₇)⋅X₅+2^(X₇)⋅2^(X₇)⋅X₆ {O(EXP)}
t₃₀, X₁: X₇ {O(n)}
t₃₀, X₂: X₂ {O(n)}
t₃₀, X₃: X₇ {O(n)}
t₃₀, X₅: X₅ {O(n)}
t₃₀, X₆: X₆ {O(n)}
t₃₀, X₇: X₇ {O(n)}
t₃₁, X₀: 2⋅2^(X₇)⋅2^(X₇)⋅X₆⋅X₇+2^(X₇)⋅2^(X₇)⋅X₅+2^(X₇)⋅2^(X₇)⋅X₆ {O(EXP)}
t₃₁, X₁: X₇ {O(n)}
t₃₁, X₂: X₂ {O(n)}
t₃₁, X₃: X₇ {O(n)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: X₇ {O(n)}
t₃₂, X₀: 2⋅2^(X₇)⋅2^(X₇)⋅X₆⋅X₇+2^(X₇)⋅2^(X₇)⋅X₅+2^(X₇)⋅2^(X₇)⋅X₆ {O(EXP)}
t₃₂, X₁: X₇ {O(n)}
t₃₂, X₂: X₂ {O(n)}
t₃₂, X₃: X₇ {O(n)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: X₆ {O(n)}
t₃₂, X₇: X₇ {O(n)}
t₃₃, X₀: 2⋅2^(X₇)⋅2^(X₇)⋅X₆⋅X₇+2^(X₇)⋅2^(X₇)⋅X₅+2^(X₇)⋅2^(X₇)⋅X₆ {O(EXP)}
t₃₃, X₁: X₇ {O(n)}
t₃₃, X₂: X₂ {O(n)}
t₃₃, X₃: 2⋅X₇+X₃ {O(n)}
t₃₃, X₅: X₅ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₃, X₇: X₇ {O(n)}
t₃₄, X₀: 2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}
t₃₄, X₁: 3⋅X₇ {O(n)}
t₃₄, X₂: 2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}
t₃₄, X₃: 2⋅X₇+X₃ {O(n)}
t₃₄, X₅: 3⋅X₅ {O(n)}
t₃₄, X₆: 3⋅X₆ {O(n)}
t₃₄, X₇: 3⋅X₇ {O(n)}
t₃₅, X₀: X₅ {O(n)}
t₃₅, X₁: X₇ {O(n)}
t₃₅, X₂: X₂ {O(n)}
t₃₅, X₃: X₃ {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₅, X₅: X₅ {O(n)}
t₃₅, X₆: X₆ {O(n)}
t₃₅, X₇: X₇ {O(n)}
t₃₆, X₀: 2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}
t₃₆, X₁: 3⋅X₇ {O(n)}
t₃₆, X₂: 2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}
t₃₆, X₃: 2⋅X₇+X₃ {O(n)}
t₃₆, X₅: 3⋅X₅ {O(n)}
t₃₆, X₆: 3⋅X₆ {O(n)}
t₃₆, X₇: 3⋅X₇ {O(n)}
t₃₇, X₀: 2^(X₇)⋅2^(X₇)⋅4⋅X₅+2^(X₇)⋅2^(X₇)⋅4⋅X₆+2^(X₇)⋅2^(X₇)⋅8⋅X₆⋅X₇+2⋅X₅ {O(EXP)}
t₃₇, X₁: 6⋅X₇ {O(n)}
t₃₇, X₂: 2^(X₇)⋅2^(X₇)⋅4⋅X₅+2^(X₇)⋅2^(X₇)⋅4⋅X₆+2^(X₇)⋅2^(X₇)⋅8⋅X₆⋅X₇+2⋅X₅ {O(EXP)}
t₃₇, X₃: 2⋅X₃+4⋅X₇ {O(n)}
t₃₇, X₅: 6⋅X₅ {O(n)}
t₃₇, X₆: 6⋅X₆ {O(n)}
t₃₇, X₇: 6⋅X₇ {O(n)}
t₃₈, X₀: 2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}
t₃₈, X₁: 3⋅X₇ {O(n)}
t₃₈, X₂: 2⋅2^(X₇)⋅2^(X₇)⋅X₅+2⋅2^(X₇)⋅2^(X₇)⋅X₆+2^(X₇)⋅2^(X₇)⋅4⋅X₆⋅X₇+X₅ {O(EXP)}
t₃₈, X₃: 2⋅X₇+X₃ {O(n)}
t₃₈, X₅: 3⋅X₅ {O(n)}
t₃₈, X₆: 3⋅X₆ {O(n)}
t₃₈, X₇: 3⋅X₇ {O(n)}
t₃₉, X₀: 2^(X₇)⋅2^(X₇)⋅4⋅X₅+2^(X₇)⋅2^(X₇)⋅4⋅X₆+2^(X₇)⋅2^(X₇)⋅8⋅X₆⋅X₇+2⋅X₅ {O(EXP)}
t₃₉, X₁: 6⋅X₇ {O(n)}
t₃₉, X₂: 2^(X₇)⋅2^(X₇)⋅4⋅X₅+2^(X₇)⋅2^(X₇)⋅4⋅X₆+2^(X₇)⋅2^(X₇)⋅8⋅X₆⋅X₇+2⋅X₅ {O(EXP)}
t₃₉, X₃: 2⋅X₃+4⋅X₇ {O(n)}
t₃₉, X₅: 6⋅X₅ {O(n)}
t₃₉, X₆: 6⋅X₆ {O(n)}
t₃₉, X₇: 6⋅X₇ {O(n)}