Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁-1, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.3, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₁₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₁₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₁ ≤ 1
t₁₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₂ < 1
t₁₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: 1 < X₂
t₂₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₃ < X₄ ∧ X₅ < 0
t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₃ < X₄ ∧ 0 < X₅
t₂₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₄ ≤ X₃
t₂₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₂₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l13(X₀, X₁, X₂, X₃+(X₅)³, X₄+(X₅)², X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₂₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: 0 < X₆
t₃₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₆ ≤ 0
t₃₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₃₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l5(X₇, X₁₈, X₈, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₀ < 1
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: 3 < X₀
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: X₂ < 0
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: 0 < X₂
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) :|: 1 ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l5(X₁₀, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, nondef.2, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈) → l5(X₀, X₁₂, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈)
Preprocessing
Eliminate variables {X₁₆,X₁₇} that do not contribute to the problem
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l11
Found invariant X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l6
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l15
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l17
Found invariant X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l7
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5
Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l13
Found invariant X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l8
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l16
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l18
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l9
Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₆₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁-1, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁
t₆₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.3, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁
t₆₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ X₅ < 0 ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ 0 < X₅ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₄ ≤ X₃ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₃+(X₅)³, X₄+(X₅)², X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₆ ≤ 0 ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₈: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₇, X₁₆, X₈, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₀ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₁₀, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, nondef.2, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₉₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁₂, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁
MPRF for transition t₆₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁-1, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁₆+1 {O(n)}
MPRF for transition t₆₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.3, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁₆+1 {O(n)}
MPRF for transition t₆₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:
new bound:
X₁₆+1 {O(n)}
MPRF for transition t₉₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁₂, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁₆ {O(n)}
knowledge_propagation leads to new time bound X₁₆+1 {O(n)} for transition t₈₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₀ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
MPRF for transition t₈₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:
new bound:
X₁₆+1 {O(n)}
MPRF for transition t₈₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:
new bound:
X₁₆+1 {O(n)}
MPRF for transition t₈₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ of depth 1:
new bound:
X₁₆+1 {O(n)}
Chain transitions t₆₆: l12→l10 and t₆₄: l10→l11 to t₂₈₈: l12→l11
Chain transitions t₂₈₈: l12→l11 and t₆₅: l11→l9 to t₂₈₉: l12→l9
Chain transitions t₈₅: l5→l12 and t₂₈₉: l12→l9 to t₂₉₀: l5→l9
Chain transitions t₈₄: l5→l12 and t₂₈₉: l12→l9 to t₂₉₁: l5→l9
Chain transitions t₈₄: l5→l12 and t₆₉: l12→l13 to t₂₉₂: l5→l13
Chain transitions t₈₅: l5→l12 and t₆₉: l12→l13 to t₂₉₃: l5→l13
Chain transitions t₈₃: l5→l12 and t₆₉: l12→l13 to t₂₉₄: l5→l13
Chain transitions t₈₃: l5→l12 and t₂₈₉: l12→l9 to t₂₉₅: l5→l9
Chain transitions t₈₃: l5→l12 and t₆₈: l12→l13 to t₂₉₆: l5→l13
Chain transitions t₈₄: l5→l12 and t₆₈: l12→l13 to t₂₉₇: l5→l13
Chain transitions t₈₅: l5→l12 and t₆₈: l12→l13 to t₂₉₈: l5→l13
Chain transitions t₈₂: l5→l12 and t₆₈: l12→l13 to t₂₉₉: l5→l13
Chain transitions t₈₂: l5→l12 and t₆₉: l12→l13 to t₃₀₀: l5→l13
Chain transitions t₈₂: l5→l12 and t₂₈₉: l12→l9 to t₃₀₁: l5→l9
Chain transitions t₈₂: l5→l12 and t₆₇: l12→l13 to t₃₀₂: l5→l13
Chain transitions t₈₃: l5→l12 and t₆₇: l12→l13 to t₃₀₃: l5→l13
Chain transitions t₈₄: l5→l12 and t₆₇: l12→l13 to t₃₀₄: l5→l13
Chain transitions t₈₅: l5→l12 and t₆₇: l12→l13 to t₃₀₅: l5→l13
Chain transitions t₈₂: l5→l12 and t₂₈₈: l12→l11 to t₃₀₆: l5→l11
Chain transitions t₈₃: l5→l12 and t₂₈₈: l12→l11 to t₃₀₇: l5→l11
Chain transitions t₈₄: l5→l12 and t₂₈₈: l12→l11 to t₃₀₈: l5→l11
Chain transitions t₈₅: l5→l12 and t₂₈₈: l12→l11 to t₃₀₉: l5→l11
Chain transitions t₈₂: l5→l12 and t₆₆: l12→l10 to t₃₁₀: l5→l10
Chain transitions t₈₃: l5→l12 and t₆₆: l12→l10 to t₃₁₁: l5→l10
Chain transitions t₈₄: l5→l12 and t₆₆: l12→l10 to t₃₁₂: l5→l10
Chain transitions t₈₅: l5→l12 and t₆₆: l12→l10 to t₃₁₃: l5→l10
Chain transitions t₉₀: l9→l5 and t₃₀₁: l5→l9 to t₃₁₄: l9→l9
Chain transitions t₈₇: l6→l5 and t₃₀₁: l5→l9 to t₃₁₅: l6→l9
Chain transitions t₈₇: l6→l5 and t₂₉₅: l5→l9 to t₃₁₆: l6→l9
Chain transitions t₉₀: l9→l5 and t₂₉₅: l5→l9 to t₃₁₇: l9→l9
Chain transitions t₈₁: l4→l5 and t₂₉₅: l5→l9 to t₃₁₈: l4→l9
Chain transitions t₈₁: l4→l5 and t₃₀₁: l5→l9 to t₃₁₉: l4→l9
Chain transitions t₈₁: l4→l5 and t₂₉₁: l5→l9 to t₃₂₀: l4→l9
Chain transitions t₈₇: l6→l5 and t₂₉₁: l5→l9 to t₃₂₁: l6→l9
Chain transitions t₉₀: l9→l5 and t₂₉₁: l5→l9 to t₃₂₂: l9→l9
Chain transitions t₈₁: l4→l5 and t₂₉₀: l5→l9 to t₃₂₃: l4→l9
Chain transitions t₈₇: l6→l5 and t₂₉₀: l5→l9 to t₃₂₄: l6→l9
Chain transitions t₉₀: l9→l5 and t₂₉₀: l5→l9 to t₃₂₅: l9→l9
Chain transitions t₈₁: l4→l5 and t₈₆: l5→l7 to t₃₂₆: l4→l7
Chain transitions t₈₇: l6→l5 and t₈₆: l5→l7 to t₃₂₇: l6→l7
Chain transitions t₉₀: l9→l5 and t₈₆: l5→l7 to t₃₂₈: l9→l7
Chain transitions t₈₁: l4→l5 and t₃₀₅: l5→l13 to t₃₂₉: l4→l13
Chain transitions t₈₇: l6→l5 and t₃₀₅: l5→l13 to t₃₃₀: l6→l13
Chain transitions t₉₀: l9→l5 and t₃₀₅: l5→l13 to t₃₃₁: l9→l13
Chain transitions t₈₁: l4→l5 and t₃₀₄: l5→l13 to t₃₃₂: l4→l13
Chain transitions t₈₇: l6→l5 and t₃₀₄: l5→l13 to t₃₃₃: l6→l13
Chain transitions t₉₀: l9→l5 and t₃₀₄: l5→l13 to t₃₃₄: l9→l13
Chain transitions t₈₁: l4→l5 and t₃₀₃: l5→l13 to t₃₃₅: l4→l13
Chain transitions t₈₇: l6→l5 and t₃₀₃: l5→l13 to t₃₃₆: l6→l13
Chain transitions t₉₀: l9→l5 and t₃₀₃: l5→l13 to t₃₃₇: l9→l13
Chain transitions t₈₁: l4→l5 and t₃₀₂: l5→l13 to t₃₃₈: l4→l13
Chain transitions t₈₇: l6→l5 and t₃₀₂: l5→l13 to t₃₃₉: l6→l13
Chain transitions t₉₀: l9→l5 and t₃₀₂: l5→l13 to t₃₄₀: l9→l13
Chain transitions t₈₁: l4→l5 and t₃₀₀: l5→l13 to t₃₄₁: l4→l13
Chain transitions t₈₇: l6→l5 and t₃₀₀: l5→l13 to t₃₄₂: l6→l13
Chain transitions t₉₀: l9→l5 and t₃₀₀: l5→l13 to t₃₄₃: l9→l13
Chain transitions t₈₁: l4→l5 and t₂₉₉: l5→l13 to t₃₄₄: l4→l13
Chain transitions t₈₇: l6→l5 and t₂₉₉: l5→l13 to t₃₄₅: l6→l13
Chain transitions t₉₀: l9→l5 and t₂₉₉: l5→l13 to t₃₄₆: l9→l13
Chain transitions t₈₁: l4→l5 and t₂₉₈: l5→l13 to t₃₄₇: l4→l13
Chain transitions t₈₇: l6→l5 and t₂₉₈: l5→l13 to t₃₄₈: l6→l13
Chain transitions t₉₀: l9→l5 and t₂₉₈: l5→l13 to t₃₄₉: l9→l13
Chain transitions t₈₁: l4→l5 and t₂₉₇: l5→l13 to t₃₅₀: l4→l13
Chain transitions t₈₇: l6→l5 and t₂₉₇: l5→l13 to t₃₅₁: l6→l13
Chain transitions t₉₀: l9→l5 and t₂₉₇: l5→l13 to t₃₅₂: l9→l13
Chain transitions t₈₁: l4→l5 and t₂₉₆: l5→l13 to t₃₅₃: l4→l13
Chain transitions t₈₇: l6→l5 and t₂₉₆: l5→l13 to t₃₅₄: l6→l13
Chain transitions t₉₀: l9→l5 and t₂₉₆: l5→l13 to t₃₅₅: l9→l13
Chain transitions t₈₁: l4→l5 and t₂₉₄: l5→l13 to t₃₅₆: l4→l13
Chain transitions t₈₇: l6→l5 and t₂₉₄: l5→l13 to t₃₅₇: l6→l13
Chain transitions t₉₀: l9→l5 and t₂₉₄: l5→l13 to t₃₅₈: l9→l13
Chain transitions t₈₁: l4→l5 and t₂₉₃: l5→l13 to t₃₅₉: l4→l13
Chain transitions t₈₇: l6→l5 and t₂₉₃: l5→l13 to t₃₆₀: l6→l13
Chain transitions t₉₀: l9→l5 and t₂₉₃: l5→l13 to t₃₆₁: l9→l13
Chain transitions t₈₁: l4→l5 and t₂₉₂: l5→l13 to t₃₆₂: l4→l13
Chain transitions t₈₇: l6→l5 and t₂₉₂: l5→l13 to t₃₆₃: l6→l13
Chain transitions t₉₀: l9→l5 and t₂₉₂: l5→l13 to t₃₆₄: l9→l13
Chain transitions t₈₁: l4→l5 and t₈₅: l5→l12 to t₃₆₅: l4→l12
Chain transitions t₈₇: l6→l5 and t₈₅: l5→l12 to t₃₆₆: l6→l12
Chain transitions t₉₀: l9→l5 and t₈₅: l5→l12 to t₃₆₇: l9→l12
Chain transitions t₈₁: l4→l5 and t₈₄: l5→l12 to t₃₆₈: l4→l12
Chain transitions t₈₇: l6→l5 and t₈₄: l5→l12 to t₃₆₉: l6→l12
Chain transitions t₉₀: l9→l5 and t₈₄: l5→l12 to t₃₇₀: l9→l12
Chain transitions t₈₁: l4→l5 and t₈₃: l5→l12 to t₃₇₁: l4→l12
Chain transitions t₈₇: l6→l5 and t₈₃: l5→l12 to t₃₇₂: l6→l12
Chain transitions t₉₀: l9→l5 and t₈₃: l5→l12 to t₃₇₃: l9→l12
Chain transitions t₈₁: l4→l5 and t₈₂: l5→l12 to t₃₇₄: l4→l12
Chain transitions t₈₇: l6→l5 and t₈₂: l5→l12 to t₃₇₅: l6→l12
Chain transitions t₉₀: l9→l5 and t₈₂: l5→l12 to t₃₇₆: l9→l12
Chain transitions t₈₁: l4→l5 and t₃₀₉: l5→l11 to t₃₇₇: l4→l11
Chain transitions t₈₇: l6→l5 and t₃₀₉: l5→l11 to t₃₇₈: l6→l11
Chain transitions t₉₀: l9→l5 and t₃₀₉: l5→l11 to t₃₇₉: l9→l11
Chain transitions t₈₁: l4→l5 and t₃₀₈: l5→l11 to t₃₈₀: l4→l11
Chain transitions t₈₇: l6→l5 and t₃₀₈: l5→l11 to t₃₈₁: l6→l11
Chain transitions t₉₀: l9→l5 and t₃₀₈: l5→l11 to t₃₈₂: l9→l11
Chain transitions t₈₁: l4→l5 and t₃₀₇: l5→l11 to t₃₈₃: l4→l11
Chain transitions t₈₇: l6→l5 and t₃₀₇: l5→l11 to t₃₈₄: l6→l11
Chain transitions t₉₀: l9→l5 and t₃₀₇: l5→l11 to t₃₈₅: l9→l11
Chain transitions t₈₁: l4→l5 and t₃₀₆: l5→l11 to t₃₈₆: l4→l11
Chain transitions t₈₇: l6→l5 and t₃₀₆: l5→l11 to t₃₈₇: l6→l11
Chain transitions t₉₀: l9→l5 and t₃₀₆: l5→l11 to t₃₈₈: l9→l11
Chain transitions t₈₁: l4→l5 and t₃₁₃: l5→l10 to t₃₈₉: l4→l10
Chain transitions t₈₇: l6→l5 and t₃₁₃: l5→l10 to t₃₉₀: l6→l10
Chain transitions t₉₀: l9→l5 and t₃₁₃: l5→l10 to t₃₉₁: l9→l10
Chain transitions t₈₁: l4→l5 and t₃₁₂: l5→l10 to t₃₉₂: l4→l10
Chain transitions t₈₇: l6→l5 and t₃₁₂: l5→l10 to t₃₉₃: l6→l10
Chain transitions t₉₀: l9→l5 and t₃₁₂: l5→l10 to t₃₉₄: l9→l10
Chain transitions t₈₁: l4→l5 and t₃₁₁: l5→l10 to t₃₉₅: l4→l10
Chain transitions t₈₇: l6→l5 and t₃₁₁: l5→l10 to t₃₉₆: l6→l10
Chain transitions t₉₀: l9→l5 and t₃₁₁: l5→l10 to t₃₉₇: l9→l10
Chain transitions t₈₁: l4→l5 and t₃₁₀: l5→l10 to t₃₉₈: l4→l10
Chain transitions t₈₇: l6→l5 and t₃₁₀: l5→l10 to t₃₉₉: l6→l10
Chain transitions t₉₀: l9→l5 and t₃₁₀: l5→l10 to t₄₀₀: l9→l10
Chain transitions t₈₉: l8→l6 and t₃₂₄: l6→l9 to t₄₀₁: l8→l9
Chain transitions t₈₉: l8→l6 and t₃₂₁: l6→l9 to t₄₀₂: l8→l9
Chain transitions t₈₉: l8→l6 and t₃₁₆: l6→l9 to t₄₀₃: l8→l9
Chain transitions t₈₉: l8→l6 and t₃₁₅: l6→l9 to t₄₀₄: l8→l9
Chain transitions t₈₉: l8→l6 and t₃₂₇: l6→l7 to t₄₀₅: l8→l7
Chain transitions t₈₉: l8→l6 and t₈₇: l6→l5 to t₄₀₆: l8→l5
Chain transitions t₈₉: l8→l6 and t₃₆₃: l6→l13 to t₄₀₇: l8→l13
Chain transitions t₈₉: l8→l6 and t₃₆₀: l6→l13 to t₄₀₈: l8→l13
Chain transitions t₈₉: l8→l6 and t₃₅₇: l6→l13 to t₄₀₉: l8→l13
Chain transitions t₈₉: l8→l6 and t₃₅₄: l6→l13 to t₄₁₀: l8→l13
Chain transitions t₈₉: l8→l6 and t₃₅₁: l6→l13 to t₄₁₁: l8→l13
Chain transitions t₈₉: l8→l6 and t₃₄₈: l6→l13 to t₄₁₂: l8→l13
Chain transitions t₈₉: l8→l6 and t₃₄₅: l6→l13 to t₄₁₃: l8→l13
Chain transitions t₈₉: l8→l6 and t₃₄₂: l6→l13 to t₄₁₄: l8→l13
Chain transitions t₈₉: l8→l6 and t₃₃₉: l6→l13 to t₄₁₅: l8→l13
Chain transitions t₈₉: l8→l6 and t₃₃₆: l6→l13 to t₄₁₆: l8→l13
Chain transitions t₈₉: l8→l6 and t₃₃₃: l6→l13 to t₄₁₇: l8→l13
Chain transitions t₈₉: l8→l6 and t₃₃₀: l6→l13 to t₄₁₈: l8→l13
Chain transitions t₈₉: l8→l6 and t₃₇₅: l6→l12 to t₄₁₉: l8→l12
Chain transitions t₈₉: l8→l6 and t₃₇₂: l6→l12 to t₄₂₀: l8→l12
Chain transitions t₈₉: l8→l6 and t₃₆₉: l6→l12 to t₄₂₁: l8→l12
Chain transitions t₈₉: l8→l6 and t₃₆₆: l6→l12 to t₄₂₂: l8→l12
Chain transitions t₈₉: l8→l6 and t₃₈₇: l6→l11 to t₄₂₃: l8→l11
Chain transitions t₈₉: l8→l6 and t₃₈₄: l6→l11 to t₄₂₄: l8→l11
Chain transitions t₈₉: l8→l6 and t₃₈₁: l6→l11 to t₄₂₅: l8→l11
Chain transitions t₈₉: l8→l6 and t₃₇₈: l6→l11 to t₄₂₆: l8→l11
Chain transitions t₈₉: l8→l6 and t₃₉₉: l6→l10 to t₄₂₇: l8→l10
Chain transitions t₈₉: l8→l6 and t₃₉₆: l6→l10 to t₄₂₈: l8→l10
Chain transitions t₈₉: l8→l6 and t₃₉₃: l6→l10 to t₄₂₉: l8→l10
Chain transitions t₈₉: l8→l6 and t₃₉₀: l6→l10 to t₄₃₀: l8→l10
Chain transitions t₃₂₈: l9→l7 and t₈₈: l7→l8 to t₄₃₁: l9→l8
Chain transitions t₄₀₅: l8→l7 and t₈₈: l7→l8 to t₄₃₂: l8→l8
Chain transitions t₃₂₆: l4→l7 and t₈₈: l7→l8 to t₄₃₃: l4→l8
Analysing control-flow refined program
Cut unsatisfiable transition t₃₂₀: l4→l9
Cut unsatisfiable transition t₃₂₂: l9→l9
Cut unsatisfiable transition t₃₄₇: l4→l13
Cut unsatisfiable transition t₃₄₉: l9→l13
Cut unsatisfiable transition t₃₆₂: l4→l13
Cut unsatisfiable transition t₃₆₄: l9→l13
Cut unsatisfiable transition t₃₈₀: l4→l11
Cut unsatisfiable transition t₃₈₂: l9→l11
Cut unsatisfiable transition t₃₉₂: l4→l10
Cut unsatisfiable transition t₃₉₄: l9→l10
Cut unsatisfiable transition t₄₀₂: l8→l9
Cut unsatisfiable transition t₄₀₄: l8→l9
Cut unsatisfiable transition t₄₀₇: l8→l13
Cut unsatisfiable transition t₄₁₂: l8→l13
Cut unsatisfiable transition t₄₁₃: l8→l13
Cut unsatisfiable transition t₄₁₄: l8→l13
Cut unsatisfiable transition t₄₁₅: l8→l13
Cut unsatisfiable transition t₄₁₉: l8→l12
Cut unsatisfiable transition t₄₂₃: l8→l11
Cut unsatisfiable transition t₄₂₅: l8→l11
Cut unsatisfiable transition t₄₂₇: l8→l10
Cut unsatisfiable transition t₄₂₉: l8→l10
Eliminate variables {X₁₁} that do not contribute to the problem
Found invariant 0 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ X₂ ≤ 1+X₈ ∧ 2 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₅ ∧ X₂ ≤ X₁₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₅+X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ X₁ ≤ X₁₅ ∧ 1+X₁₁ ≤ X₁ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ X₁ ≤ 1+X₁₁ ∧ 2 ≤ X₁ for location l11
Found invariant 0 ≤ X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₅ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l6
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₄ ≤ X₅ ∧ X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₅ for location l15
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₅ for location l12
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₄ ≤ X₅ ∧ X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₅ for location l17
Found invariant 0 ≤ X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₅ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l7
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₅ for location l5
Found invariant X₇ ≤ X₀ ∧ X₁₄ ≤ X₅ ∧ X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₅ for location l13
Found invariant 0 ≤ X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₅ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l8
Found invariant 0 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ X₂ ≤ 1+X₈ ∧ 2 ≤ X₁₅+X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₅ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₅+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ X₁ ≤ X₁₅ ∧ 2 ≤ X₁ for location l10
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₄ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₅ for location l16
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₄ ≤ X₅ ∧ X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₅ for location l18
Found invariant 0 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ X₂ ≤ 1+X₈ ∧ 2 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₅ ∧ X₂ ≤ X₁₁ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₅+X₂ ∧ 2 ≤ X₁₁+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₅ ∧ 3 ≤ X₁₁+X₁₅ ∧ 1+X₁₁ ≤ X₁₅ ∧ 4 ≤ X₁+X₁₅ ∧ X₁ ≤ X₁₅ ∧ 1+X₁₁ ≤ X₁ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ X₁ ≤ 1+X₁₁ ∧ 2 ≤ X₁ for location l9
Found invariant X₇ ≤ X₀ ∧ X₁₄ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₅ for location l14
Analysing control-flow refined program
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l11
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l15
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l17
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5
Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l13
Found invariant X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l16
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l18
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l9
Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l14
knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₈₀₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₈₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ ≤ X₈ ∧ X₈ ≤ X₂ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₈₁₅: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₈₁₆: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₈₁₈: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___1(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₈₂₀: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___8(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₇+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₇ ∧ X₀+1 ≤ X₁₀ ∧ X₁₆ ≤ X₁ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁₆ {O(n)} for transition t₈₁₂: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀+1 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₈₁₄: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₇+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₇ ∧ X₀+1 ≤ X₁₀ ∧ X₁₆ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
MPRF for transition t₈₁₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₀ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₀ ≤ X₁₀ ∧ X₁₀ ≤ X₀ ∧ 2 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 1+X₇ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:
new bound:
14⋅X₁₆+6 {O(n)}
MPRF for transition t₈₁₃: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀+1 ≤ X₁₀ ∧ X₀+1 ≤ X₁₀ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:
new bound:
10⋅X₁₆+2 {O(n)}
MPRF for transition t₈₁₇: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ X₁₀ ≤ X₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:
new bound:
10⋅X₁₆+2 {O(n)}
MPRF for transition t₈₁₉: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___4(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀+1 ≤ X₁₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:
new bound:
34⋅X₁₆+12 {O(n)}
MPRF for transition t₈₂₉: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:
new bound:
10⋅X₁₆+2 {O(n)}
MPRF for transition t₈₃₀: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:
new bound:
11⋅X₁₆+7 {O(n)}
MPRF for transition t₈₃₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:
new bound:
10⋅X₁₆+8 {O(n)}
CFR: Improvement to new bound with the following program:
new bound:
Infinite
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars: Arg16_P, Arg7_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l9, n_l5___7, n_l6___1, n_l6___4, n_l6___8, n_l7___10, n_l7___3, n_l7___6, n_l8___2, n_l8___5, n_l8___9
Transitions:
t₆₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁-1, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁
t₆₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.3, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁
t₆₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ X₅ < 0 ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ 0 < X₅ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₄ ≤ X₃ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₃+(X₅)³, X₄+(X₅)², X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₆ ≤ 0 ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₈: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₇, X₁₆, X₈, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₀ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ ≤ X₈ ∧ X₈ ≤ X₂ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₀₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₉₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁₂, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁
t₈₂₉: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₃₀: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₃₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₁₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₀ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₀ ≤ X₁₀ ∧ X₁₀ ≤ X₀ ∧ 2 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 1+X₇ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₁₂: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀+1 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₃: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀+1 ≤ X₁₀ ∧ X₀+1 ≤ X₁₀ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₈₁₄: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₇+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₇ ∧ X₀+1 ≤ X₁₀ ∧ X₁₆ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₅: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₆: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₇: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ X₁₀ ≤ X₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₈₁₈: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___1(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₉: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___4(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀+1 ≤ X₁₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₈₂₀: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___8(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₇+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₇ ∧ X₀+1 ≤ X₁₀ ∧ X₁₆ ≤ X₁ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
CFR: Improvement to new bound with the following program:
new bound:
111⋅X₁₆+50 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars: Arg16_P, Arg7_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l9, n_l5___7, n_l6___1, n_l6___4, n_l6___8, n_l7___10, n_l7___3, n_l7___6, n_l8___2, n_l8___5, n_l8___9
Transitions:
t₆₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁-1, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁
t₆₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.3, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁
t₆₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₆₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₃, X₁₄, X₁₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₇₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ X₅ < 0 ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ 0 < X₅ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₄ ≤ X₃ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₄, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₃+(X₅)³, X₄+(X₅)², X₅+1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₆ ≤ 0 ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₇: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₈: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆
t₇₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₇, X₁₆, X₈, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₀ < 1 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ ≤ X₈ ∧ X₈ ≤ X₂ ∧ X₁₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₈₀₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆
t₉₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁₂, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁
t₈₂₉: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₃₀: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0 ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₃₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₁₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₀ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₀ ≤ X₁₀ ∧ X₁₀ ≤ X₀ ∧ 2 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 1+X₇ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₈₁₂: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀+1 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₃: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀+1 ≤ X₁₀ ∧ X₀+1 ≤ X₁₀ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₈₁₄: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___7(X₀+1, X₁, X₁₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₇+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₇ ∧ X₀+1 ≤ X₁₀ ∧ X₁₆ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₅: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₆ ≤ X₁ ∧ X₀ ≤ X₇ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₆: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₇: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₀+1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀ ≤ X₁₀ ∧ X₁₀ ≤ X₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₈₁₈: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___1(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: 1+X₁ ≤ X₁₆ ∧ 1 ≤ X₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁ ∧ X₀+1 ≤ X₁₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₈₁₉: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___4(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: 2 ≤ X₀ ∧ 1+X₇ ≤ X₀ ∧ X₀+1 ≤ X₁₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₈₂₀: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___8(X₀, X₁, 0, X₃, X₄, X₅, X₆, Arg7_P, X₈, X₉, X₀+1, NoDet0, X₁₂, X₁₃, X₁₄, X₁₅, Arg16_P) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₇+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₇ ∧ X₀+1 ≤ X₁₀ ∧ X₁₆ ≤ X₁ ∧ Arg7_P ≤ X₀ ∧ X₁ ≤ Arg16_P ∧ X₁₆ ≤ Arg16_P ∧ Arg16_P ≤ X₁₆ ∧ X₀+1 ≤ X₁₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₁₀ ≤ 4 ∧ 2 ≤ X₁₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁₀ ≤ 1+X₀ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
MPRF for transition t₇₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < X₄ ∧ X₅ < 0 ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ of depth 1:
new bound:
18⋅X₁₅ {O(n)}
TWN: t₇₁: l13→l14
cycle: [t₇₀: l13→l14; t₇₁: l13→l14; t₇₄: l14→l13]
loop: (X₃ < X₄ ∧ X₅ < 0 ∨ X₃ < X₄ ∧ 0 < X₅,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,X₅+1)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
Termination: true
Formula:
1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ < X₄
alphas_abs: 10+12⋅X₃+12⋅X₄+30⋅X₅+30⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+60⋅X₅+25 {O(n^3)}
Stabilization-Threshold for: X₅ < 0
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (X₃ < X₄ ∧ X₅ < 0 ∨ X₃ < X₄ ∧ 0 < X₅,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,X₅+1)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
Termination: true
Formula:
1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ < X₄
alphas_abs: 10+12⋅X₃+12⋅X₄+30⋅X₅+30⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+60⋅X₅+25 {O(n^3)}
Stabilization-Threshold for: X₅ < 0
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (X₃ < X₄ ∧ X₅ < 0 ∨ X₃ < X₄ ∧ 0 < X₅,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,X₅+1)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
Termination: true
Formula:
1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ < X₄
alphas_abs: 10+12⋅X₃+12⋅X₄+30⋅X₅+30⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+60⋅X₅+25 {O(n^3)}
Stabilization-Threshold for: X₅ < 0
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (X₃ < X₄ ∧ X₅ < 0 ∨ X₃ < X₄ ∧ 0 < X₅,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,X₅+1)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
Termination: true
Formula:
1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ < X₄
alphas_abs: 10+12⋅X₃+12⋅X₄+30⋅X₅+30⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+60⋅X₅+25 {O(n^3)}
Stabilization-Threshold for: X₅ < 0
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (X₃ < X₄ ∧ X₅ < 0 ∨ X₃ < X₄ ∧ 0 < X₅,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,X₅+1)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
Termination: true
Formula:
1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ < X₄
alphas_abs: 10+12⋅X₃+12⋅X₄+30⋅X₅+30⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+60⋅X₅+25 {O(n^3)}
Stabilization-Threshold for: X₅ < 0
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
loop: (X₃ < X₄ ∧ X₅ < 0 ∨ X₃ < X₄ ∧ 0 < X₅,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,X₅+1)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
Termination: true
Formula:
1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₅ < 10 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 9+18⋅(X₅)² < 30⋅X₅ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+18⋅X₅ < 30⋅(X₅)²+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)²
∨ 0 < X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃ < 12⋅X₄ ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 12⋅X₅ ≤ 10 ∧ 10 ≤ 12⋅X₅ ∧ 9+18⋅(X₅)² ≤ 30⋅X₅ ∧ 30⋅X₅ ≤ 9+18⋅(X₅)² ∧ 12⋅(X₅)³+18⋅X₅ ≤ 30⋅(X₅)²+2 ∧ 30⋅(X₅)²+2 ≤ 12⋅(X₅)³+18⋅X₅
Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
Stabilization-Threshold for: X₃ < X₄
alphas_abs: 10+12⋅X₃+12⋅X₄+30⋅X₅+30⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+60⋅X₅+25 {O(n^3)}
Stabilization-Threshold for: X₅ < 0
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}
TWN - Lifting for t₇₁: l13→l14 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}
relevant size-bounds w.r.t. t₆₉:
X₃: 7⋅X₁₃ {O(n)}
X₄: 7⋅X₁₄ {O(n)}
X₅: 7⋅X₁₅ {O(n)}
Runtime-bound of t₆₉: 1 {O(1)}
Results in: 8232⋅X₁₅⋅X₁₅⋅X₁₅+2940⋅X₁₅⋅X₁₅+168⋅X₁₃+168⋅X₁₄+448⋅X₁₅+31 {O(n^3)}
TWN - Lifting for t₇₁: l13→l14 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}
relevant size-bounds w.r.t. t₆₈:
X₃: 5⋅X₁₃ {O(n)}
X₄: 5⋅X₁₄ {O(n)}
X₅: 5⋅X₁₅ {O(n)}
Runtime-bound of t₆₈: 1 {O(1)}
Results in: 3000⋅X₁₅⋅X₁₅⋅X₁₅+1500⋅X₁₅⋅X₁₅+120⋅X₁₃+120⋅X₁₄+320⋅X₁₅+31 {O(n^3)}
TWN - Lifting for t₇₁: l13→l14 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}
relevant size-bounds w.r.t. t₆₇:
X₃: 6⋅X₁₃ {O(n)}
X₄: 6⋅X₁₄ {O(n)}
X₅: 6⋅X₁₅ {O(n)}
Runtime-bound of t₆₇: 1 {O(1)}
Results in: 5184⋅X₁₅⋅X₁₅⋅X₁₅+2160⋅X₁₅⋅X₁₅+144⋅X₁₃+144⋅X₁₄+384⋅X₁₅+31 {O(n^3)}
TWN - Lifting for t₇₁: l13→l14 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}
relevant size-bounds w.r.t. t₆₉:
X₃: 7⋅X₁₃ {O(n)}
X₄: 7⋅X₁₄ {O(n)}
X₅: 7⋅X₁₅ {O(n)}
Runtime-bound of t₆₉: 1 {O(1)}
Results in: 8232⋅X₁₅⋅X₁₅⋅X₁₅+2940⋅X₁₅⋅X₁₅+168⋅X₁₃+168⋅X₁₄+448⋅X₁₅+31 {O(n^3)}
TWN - Lifting for t₇₁: l13→l14 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}
relevant size-bounds w.r.t. t₆₈:
X₃: 5⋅X₁₃ {O(n)}
X₄: 5⋅X₁₄ {O(n)}
X₅: 5⋅X₁₅ {O(n)}
Runtime-bound of t₆₈: 1 {O(1)}
Results in: 3000⋅X₁₅⋅X₁₅⋅X₁₅+1500⋅X₁₅⋅X₁₅+120⋅X₁₃+120⋅X₁₄+320⋅X₁₅+31 {O(n^3)}
TWN - Lifting for t₇₁: l13→l14 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}
relevant size-bounds w.r.t. t₆₇:
X₃: 6⋅X₁₃ {O(n)}
X₄: 6⋅X₁₄ {O(n)}
X₅: 6⋅X₁₅ {O(n)}
Runtime-bound of t₆₇: 1 {O(1)}
Results in: 5184⋅X₁₅⋅X₁₅⋅X₁₅+2160⋅X₁₅⋅X₁₅+144⋅X₁₃+144⋅X₁₄+384⋅X₁₅+31 {O(n^3)}
TWN: t₇₄: l14→l13
TWN - Lifting for t₇₄: l14→l13 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}
relevant size-bounds w.r.t. t₆₉:
X₃: 7⋅X₁₃ {O(n)}
X₄: 7⋅X₁₄ {O(n)}
X₅: 7⋅X₁₅ {O(n)}
Runtime-bound of t₆₉: 1 {O(1)}
Results in: 8232⋅X₁₅⋅X₁₅⋅X₁₅+2940⋅X₁₅⋅X₁₅+168⋅X₁₃+168⋅X₁₄+448⋅X₁₅+31 {O(n^3)}
TWN - Lifting for t₇₄: l14→l13 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}
relevant size-bounds w.r.t. t₆₈:
X₃: 5⋅X₁₃ {O(n)}
X₄: 5⋅X₁₄ {O(n)}
X₅: 5⋅X₁₅ {O(n)}
Runtime-bound of t₆₈: 1 {O(1)}
Results in: 3000⋅X₁₅⋅X₁₅⋅X₁₅+1500⋅X₁₅⋅X₁₅+120⋅X₁₃+120⋅X₁₄+320⋅X₁₅+31 {O(n^3)}
TWN - Lifting for t₇₄: l14→l13 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}
relevant size-bounds w.r.t. t₆₇:
X₃: 6⋅X₁₃ {O(n)}
X₄: 6⋅X₁₄ {O(n)}
X₅: 6⋅X₁₅ {O(n)}
Runtime-bound of t₆₇: 1 {O(1)}
Results in: 5184⋅X₁₅⋅X₁₅⋅X₁₅+2160⋅X₁₅⋅X₁₅+144⋅X₁₃+144⋅X₁₄+384⋅X₁₅+31 {O(n^3)}
TWN - Lifting for t₇₄: l14→l13 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}
relevant size-bounds w.r.t. t₆₉:
X₃: 7⋅X₁₃ {O(n)}
X₄: 7⋅X₁₄ {O(n)}
X₅: 7⋅X₁₅ {O(n)}
Runtime-bound of t₆₉: 1 {O(1)}
Results in: 8232⋅X₁₅⋅X₁₅⋅X₁₅+2940⋅X₁₅⋅X₁₅+168⋅X₁₃+168⋅X₁₄+448⋅X₁₅+31 {O(n^3)}
TWN - Lifting for t₇₄: l14→l13 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}
relevant size-bounds w.r.t. t₆₈:
X₃: 5⋅X₁₃ {O(n)}
X₄: 5⋅X₁₄ {O(n)}
X₅: 5⋅X₁₅ {O(n)}
Runtime-bound of t₆₈: 1 {O(1)}
Results in: 3000⋅X₁₅⋅X₁₅⋅X₁₅+1500⋅X₁₅⋅X₁₅+120⋅X₁₃+120⋅X₁₄+320⋅X₁₅+31 {O(n^3)}
TWN - Lifting for t₇₄: l14→l13 of 24⋅X₅⋅X₅⋅X₅+60⋅X₅⋅X₅+24⋅X₃+24⋅X₄+64⋅X₅+31 {O(n^3)}
relevant size-bounds w.r.t. t₆₇:
X₃: 6⋅X₁₃ {O(n)}
X₄: 6⋅X₁₄ {O(n)}
X₅: 6⋅X₁₅ {O(n)}
Runtime-bound of t₆₇: 1 {O(1)}
Results in: 5184⋅X₁₅⋅X₁₅⋅X₁₅+2160⋅X₁₅⋅X₁₅+144⋅X₁₃+144⋅X₁₄+384⋅X₁₅+31 {O(n^3)}
Chain transitions t₇₄: l14→l13 and t₇₃: l13→l15 to t₁₀₈₅: l14→l15
Chain transitions t₆₉: l12→l13 and t₇₃: l13→l15 to t₁₀₈₆: l12→l15
Chain transitions t₆₉: l12→l13 and t₇₂: l13→l15 to t₁₀₈₇: l12→l15
Chain transitions t₇₄: l14→l13 and t₇₂: l13→l15 to t₁₀₈₈: l14→l15
Chain transitions t₆₈: l12→l13 and t₇₂: l13→l15 to t₁₀₈₉: l12→l15
Chain transitions t₆₈: l12→l13 and t₇₃: l13→l15 to t₁₀₉₀: l12→l15
Chain transitions t₆₈: l12→l13 and t₇₁: l13→l14 to t₁₀₉₁: l12→l14
Chain transitions t₆₉: l12→l13 and t₇₁: l13→l14 to t₁₀₉₂: l12→l14
Chain transitions t₇₄: l14→l13 and t₇₁: l13→l14 to t₁₀₉₃: l14→l14
Chain transitions t₆₇: l12→l13 and t₇₁: l13→l14 to t₁₀₉₄: l12→l14
Chain transitions t₆₇: l12→l13 and t₇₂: l13→l15 to t₁₀₉₅: l12→l15
Chain transitions t₆₇: l12→l13 and t₇₃: l13→l15 to t₁₀₉₆: l12→l15
Chain transitions t₆₇: l12→l13 and t₇₀: l13→l14 to t₁₀₉₇: l12→l14
Chain transitions t₆₈: l12→l13 and t₇₀: l13→l14 to t₁₀₉₈: l12→l14
Chain transitions t₆₉: l12→l13 and t₇₀: l13→l14 to t₁₀₉₉: l12→l14
Chain transitions t₇₄: l14→l13 and t₇₀: l13→l14 to t₁₁₀₀: l14→l14
Analysing control-flow refined program
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l11
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l15
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l17
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5
Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l13
Found invariant X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l16
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l18
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l9
Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₃ ≤ X₁₄ for location l14
MPRF for transition t₁₁₀₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) -{2}> l14(X₀, X₁, X₂, X₃+Temp_Int₂₁₃₃₉, X₄+Temp_Int₂₁₃₄₀, 1+X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0 ∧ X₅ < Temp_Int₂₁₃₄₀ ∧ 4 ≤ Temp_Int₂₁₃₄₀ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅+1 ∧ X₁₄ ≤ X₄+(X₅)² ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅+1 ∧ X₁₄ ≤ X₄+(X₅)² ∧ X₁ ≤ X₁₆ ∧ X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₃ ≤ X₁₄ of depth 1:
new bound:
64⋅X₁₅ {O(n)}
TWN: t₁₀₉₃: l14→l14
cycle: [t₁₀₉₃: l14→l14; t₁₁₀₀: l14→l14]
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,1+X₅)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
Termination: true
Formula:
0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
Stabilization-Threshold for: 1+X₅ < 0
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₃+(X₅)³ < X₄+(X₅)²
alphas_abs: 3+12⋅X₃+12⋅X₄+12⋅X₅+18⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+24⋅X₅+11 {O(n^3)}
Stabilization-Threshold for: 0 < 1+X₅
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,1+X₅)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
Termination: true
Formula:
0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
Stabilization-Threshold for: 1+X₅ < 0
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₃+(X₅)³ < X₄+(X₅)²
alphas_abs: 3+12⋅X₃+12⋅X₄+12⋅X₅+18⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+24⋅X₅+11 {O(n^3)}
Stabilization-Threshold for: 0 < 1+X₅
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,1+X₅)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
Termination: true
Formula:
0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
Stabilization-Threshold for: 1+X₅ < 0
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₃+(X₅)³ < X₄+(X₅)²
alphas_abs: 3+12⋅X₃+12⋅X₄+12⋅X₅+18⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+24⋅X₅+11 {O(n^3)}
Stabilization-Threshold for: 0 < 1+X₅
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,1+X₅)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
Termination: true
Formula:
0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
Stabilization-Threshold for: 1+X₅ < 0
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₃+(X₅)³ < X₄+(X₅)²
alphas_abs: 3+12⋅X₃+12⋅X₄+12⋅X₅+18⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+24⋅X₅+11 {O(n^3)}
Stabilization-Threshold for: 0 < 1+X₅
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,1+X₅)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
Termination: true
Formula:
0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
Stabilization-Threshold for: 1+X₅ < 0
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₃+(X₅)³ < X₄+(X₅)²
alphas_abs: 3+12⋅X₃+12⋅X₄+12⋅X₅+18⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+24⋅X₅+11 {O(n^3)}
Stabilization-Threshold for: 0 < 1+X₅
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
loop: (X₃+(X₅)³ < X₄+(X₅)² ∧ 0 < 1+X₅ ∨ X₃+(X₅)³ < X₄+(X₅)² ∧ 1+X₅ < 0,(X₃,X₄,X₅) -> (X₃+(X₅)³,X₄+(X₅)²,1+X₅)
order: [X₅; X₃; X₄]
closed-form:
X₅: X₅ + [[n != 0]] * n^1
X₃: X₃ + [[n != 0]] * (X₅)³ * n^1 + [[n != 0, n != 1]] * 1/4 * n^4 + [[n != 0, n != 1]] * X₅-1/2 * n^3 + [[n != 0, n != 1]] * (1/4+3/2⋅(X₅)²-3/2⋅X₅) * n^2 + [[n != 0, n != 1]] * (1/2⋅X₅-3/2⋅(X₅)²) * n^1
X₄: X₄ + [[n != 0]] * (X₅)² * n^1 + [[n != 0, n != 1]] * 1/3 * n^3 + [[n != 0, n != 1]] * X₅-1/2 * n^2 + [[n != 0, n != 1]] * 1/6-X₅ * n^1
Termination: true
Formula:
0 < 1 ∧ 3 < 0
∨ 0 < 1 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 0 < 1 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 0 < 1 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 3 < 0
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 0 < 1+X₅ ∧ 0 ≤ 1 ∧ 1 ≤ 0 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 1 < 0 ∧ 3 < 0
∨ 1 < 0 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1 < 0 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 1 < 0 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 1 < 0 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 3 < 0
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2+12⋅X₅ < 0 ∧ 3 ≤ 0 ∧ 0 ≤ 3
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 6⋅X₅+18⋅(X₅)² < 3 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅(X₅)³+6⋅(X₅)² < 6⋅X₅+2 ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)²
∨ 1+X₅ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 12⋅X₃+12⋅(X₅)³ < 12⋅X₄+12⋅(X₅)² ∧ 3 ≤ 0 ∧ 0 ≤ 3 ∧ 2+12⋅X₅ ≤ 0 ∧ 0 ≤ 2+12⋅X₅ ∧ 6⋅X₅+18⋅(X₅)² ≤ 3 ∧ 3 ≤ 6⋅X₅+18⋅(X₅)² ∧ 12⋅(X₅)³+6⋅(X₅)² ≤ 6⋅X₅+2 ∧ 6⋅X₅+2 ≤ 12⋅(X₅)³+6⋅(X₅)²
Stabilization-Threshold for: 1+X₅ < 0
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
Stabilization-Threshold for: X₃+(X₅)³ < X₄+(X₅)²
alphas_abs: 3+12⋅X₃+12⋅X₄+12⋅X₅+18⋅(X₅)²+12⋅(X₅)³
M: 0
N: 4
Bound: 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+24⋅X₅+11 {O(n^3)}
Stabilization-Threshold for: 0 < 1+X₅
alphas_abs: 1+X₅
M: 0
N: 1
Bound: 2⋅X₅+4 {O(n)}
TWN - Lifting for t₁₀₉₃: l14→l14 of 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+28⋅X₅+21 {O(n^3)}
relevant size-bounds w.r.t. t₁₀₉₄:
X₃: 14⋅X₁₃ {O(n)}
X₄: 14⋅X₁₄ {O(n)}
X₅: 14⋅X₁₅ {O(n)}
Runtime-bound of t₁₀₉₄: 1 {O(1)}
Results in: 65856⋅X₁₅⋅X₁₅⋅X₁₅+7056⋅X₁₅⋅X₁₅+336⋅X₁₃+336⋅X₁₄+392⋅X₁₅+21 {O(n^3)}
TWN - Lifting for t₁₀₉₃: l14→l14 of 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+28⋅X₅+21 {O(n^3)}
relevant size-bounds w.r.t. t₁₀₉₂:
X₃: 7⋅X₁₃ {O(n)}
X₄: 7⋅X₁₄ {O(n)}
X₅: 7⋅X₁₅ {O(n)}
Runtime-bound of t₁₀₉₂: 1 {O(1)}
Results in: 8232⋅X₁₅⋅X₁₅⋅X₁₅+1764⋅X₁₅⋅X₁₅+168⋅X₁₃+168⋅X₁₄+196⋅X₁₅+21 {O(n^3)}
TWN - Lifting for t₁₀₉₃: l14→l14 of 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+28⋅X₅+21 {O(n^3)}
relevant size-bounds w.r.t. t₁₀₉₁:
X₃: 11⋅X₁₃ {O(n)}
X₄: 11⋅X₁₄ {O(n)}
X₅: 11⋅X₁₅ {O(n)}
Runtime-bound of t₁₀₉₁: 1 {O(1)}
Results in: 31944⋅X₁₅⋅X₁₅⋅X₁₅+4356⋅X₁₅⋅X₁₅+264⋅X₁₃+264⋅X₁₄+308⋅X₁₅+21 {O(n^3)}
TWN - Lifting for t₁₀₉₃: l14→l14 of 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+28⋅X₅+21 {O(n^3)}
relevant size-bounds w.r.t. t₁₀₉₉:
X₃: 7⋅X₁₃ {O(n)}
X₄: 7⋅X₁₄ {O(n)}
X₅: 7⋅X₁₅ {O(n)}
Runtime-bound of t₁₀₉₉: 1 {O(1)}
Results in: 8232⋅X₁₅⋅X₁₅⋅X₁₅+1764⋅X₁₅⋅X₁₅+168⋅X₁₃+168⋅X₁₄+196⋅X₁₅+21 {O(n^3)}
TWN - Lifting for t₁₀₉₃: l14→l14 of 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+28⋅X₅+21 {O(n^3)}
relevant size-bounds w.r.t. t₁₀₉₈:
X₃: 11⋅X₁₃ {O(n)}
X₄: 11⋅X₁₄ {O(n)}
X₅: 11⋅X₁₅ {O(n)}
Runtime-bound of t₁₀₉₈: 1 {O(1)}
Results in: 31944⋅X₁₅⋅X₁₅⋅X₁₅+4356⋅X₁₅⋅X₁₅+264⋅X₁₃+264⋅X₁₄+308⋅X₁₅+21 {O(n^3)}
TWN - Lifting for t₁₀₉₃: l14→l14 of 24⋅X₅⋅X₅⋅X₅+36⋅X₅⋅X₅+24⋅X₃+24⋅X₄+28⋅X₅+21 {O(n^3)}
relevant size-bounds w.r.t. t₁₀₉₇:
X₃: 14⋅X₁₃ {O(n)}
X₄: 14⋅X₁₄ {O(n)}
X₅: 14⋅X₁₅ {O(n)}
Runtime-bound of t₁₀₉₇: 1 {O(1)}
Results in: 65856⋅X₁₅⋅X₁₅⋅X₁₅+7056⋅X₁₅⋅X₁₅+336⋅X₁₃+336⋅X₁₄+392⋅X₁₅+21 {O(n^3)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₁₆₄₈: n_l13___6→n_l14___4
Cut unsatisfiable transition t₁₆₆₆: n_l13___3→l15
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l11
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₇ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₁₅+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₅ ∧ 1+X₁₃ ≤ X₁₄ for location n_l13___3
Found invariant X₇ ≤ X₀ ∧ 1+X₅ ≤ 0 ∧ X₅ ≤ X₁₅ ∧ 2+X₁₅+X₅ ≤ 0 ∧ X₁₅ ≤ X₅ ∧ X₄ ≤ X₁₄ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ 1+X₃ ≤ X₁₄ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₅ ≤ 0 ∧ 1+X₁₃ ≤ X₁₄ for location n_l14___2
Found invariant X₇ ≤ X₀ ∧ X₅ ≤ 0 ∧ 1+X₁₅+X₅ ≤ 0 ∧ 1+X₁₅ ≤ X₅ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₅ ≤ 0 ∧ 1+X₁₃ ≤ X₁₄ for location n_l13___6
Found invariant X₇ ≤ X₀ ∧ X₅ ≤ X₁₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₅+X₅ ∧ X₁₅ ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₁₄ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ 1+X₃ ≤ X₁₄ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₅ ∧ X₁ ≤ X₁₅ ∧ 1+X₁₃ ≤ X₁₄ ∧ X₁ ≤ 1 for location n_l14___7
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₇ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₁₅+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₅ ∧ 1+X₁₃ ≤ X₁₄ for location n_l14___4
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l15
Found invariant X₇ ≤ X₀ ∧ 1+X₅ ≤ 0 ∧ X₅ ≤ X₁₅ ∧ 2+X₁₅+X₅ ≤ 0 ∧ X₁+X₅ ≤ 0 ∧ X₁₅ ≤ X₅ ∧ X₄ ≤ X₁₄ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ 1+X₃ ≤ X₁₄ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₅ ≤ 0 ∧ X₁+X₁₅ ≤ 0 ∧ 1+X₁₃ ≤ X₁₄ ∧ X₁ ≤ 1 for location n_l14___8
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₇ ≤ X₀ ∧ 1+X₅ ≤ 0 ∧ 3+X₁₅+X₅ ≤ 0 ∧ 1+X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ 2+X₁₅ ≤ 0 ∧ 1+X₁₃ ≤ X₁₄ for location n_l14___5
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l17
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5
Found invariant X₇ ≤ X₀ ∧ X₅ ≤ X₁₅ ∧ X₁₅ ≤ X₅ ∧ X₄ ≤ X₁₄ ∧ X₁₄ ≤ X₄ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₆ for location l13
Found invariant X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l16
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l9
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l18
Found invariant X₇ ≤ X₀ ∧ X₅ ≤ X₁₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₅+X₅ ∧ X₁₅ ≤ X₅ ∧ X₄ ≤ X₁₄ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ 1+X₁₃ ≤ X₄ ∧ 1+X₃ ≤ X₁₄ ∧ X₃ ≤ X₁₃ ∧ X₁₃ ≤ X₃ ∧ X₁ ≤ X₁₆ ∧ 1 ≤ X₁₅ ∧ 1+X₁₃ ≤ X₁₄ for location n_l14___1
Chain transitions t₇₇: l16→l15 and t₇₆: l15→l17 to t₁₈₇₀: l16→l17
Chain transitions t₇₃: l13→l15 and t₇₆: l15→l17 to t₁₈₇₁: l13→l17
Chain transitions t₇₃: l13→l15 and t₇₅: l15→l16 to t₁₈₇₂: l13→l16
Chain transitions t₇₇: l16→l15 and t₇₅: l15→l16 to t₁₈₇₃: l16→l16
Chain transitions t₇₂: l13→l15 and t₇₅: l15→l16 to t₁₈₇₄: l13→l16
Chain transitions t₇₂: l13→l15 and t₇₆: l15→l17 to t₁₈₇₅: l13→l17
Analysing control-flow refined program
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l11
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l15
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l17
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5
Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l13
Found invariant X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l16
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l18
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l9
Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l14
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l11
Found invariant X₇ ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 2 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location n_l16___2
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₁₀+X₉ ≤ 4 ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 4+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁₀+X₁₆ ∧ X₁₀ ≤ 2+X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁₀+X₁₂ ∧ X₁₀ ≤ 3+X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 3+X₁ ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₄ ≤ X₆ ∧ X₁₄ ≤ X₆ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l15
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 2+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 6 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 3+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 3+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 4 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 4+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₇ ≤ X₀ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location n_l15___3
Found invariant X₉ ≤ 0 ∧ X₇+X₉ ≤ 3 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₂ ∧ 1+X₉ ≤ X₁ ∧ 1+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ X₇ ≤ 3+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 1 ≤ X₁₂+X₉ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ 1+X₁₆ ∧ X₇ ≤ 2+X₁₂ ∧ X₇ ≤ 2+X₁ ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₆+X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 3 ≤ X₁+X₁₆ ∧ 1+X₁ ≤ X₁₆ ∧ 3 ≤ X₀+X₁₆ ∧ X₀ ≤ 1+X₁₆ ∧ X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ X₀ ≤ 2+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₂ ∧ X₂+X₇ ≤ 2 ∧ X₇ ≤ 2+X₁₁ ∧ X₁₁+X₇ ≤ 2 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 5 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 5 ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁₁ ∧ X₁₁+X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 3 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 0 ≤ X₁₁+X₂ ∧ X₁₁ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₁ ≤ 0 ∧ 2+X₁₁ ≤ X₁₀ ∧ X₁₀+X₁₁ ≤ 3 ∧ 2+X₁₁ ≤ X₀ ∧ X₀+X₁₁ ≤ 3 ∧ 0 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ X₁₀ ≤ 3+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ X₀ ≤ 3+X₁₁ ∧ X₁₀ ≤ 3 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 6 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l12
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l17
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₇ ≤ X₀ ∧ X₁ ≤ X₁₆ for location l5
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₁₄ ≤ X₆ ∧ X₁₅ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₁₄ ≤ X₄ ∧ 1 ≤ X₃ ∧ X₁₄ ≤ X₃ ∧ X₁ ≤ X₁₆ for location n_l16___4
Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l13
Found invariant X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 7 ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ X₀ ∧ X₀+X₁₀ ≤ 8 ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₀+X₁₀ ∧ X₀ ≤ X₁₀ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ X₇+X₈ ≤ 3 ∧ X₈ ≤ X₂ ∧ X₂+X₈ ≤ 0 ∧ 2+X₈ ≤ X₁₀ ∧ X₁₀+X₈ ≤ 4 ∧ 1+X₈ ≤ X₀ ∧ X₀+X₈ ≤ 3 ∧ 0 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ X₇ ≤ 3+X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 1 ≤ X₀+X₈ ∧ X₀ ≤ 3+X₈ ∧ X₇ ≤ 3 ∧ X₇ ≤ 3+X₂ ∧ X₂+X₇ ≤ 3 ∧ 1+X₇ ≤ X₁₀ ∧ X₁₀+X₇ ≤ 7 ∧ X₇ ≤ X₀ ∧ X₀+X₇ ≤ 6 ∧ 1 ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁₀+X₇ ∧ X₁₀ ≤ 1+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ X₁₀+X₂ ≤ 4 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ X₁₀ ≤ 4+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₆ ≤ X₁ ∧ X₁ ≤ X₁₆ ∧ X₁₀ ≤ 4 ∧ X₁₀ ≤ 1+X₀ ∧ X₀+X₁₀ ≤ 7 ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 2 ≤ X₁ for location l10
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₁₅ ≤ X₅ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l18
Found invariant X₇ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₆ ∧ X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₆+X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₆ ∧ 3 ≤ X₁₂+X₁₆ ∧ 1+X₁₂ ≤ X₁₆ ∧ 4 ≤ X₁+X₁₆ ∧ X₁ ≤ X₁₆ ∧ 1+X₁₂ ≤ X₁ ∧ 1 ≤ X₁₂ ∧ 3 ≤ X₁+X₁₂ ∧ X₁ ≤ 1+X₁₂ ∧ 2 ≤ X₁ for location l9
Found invariant X₇ ≤ X₀ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1+X₁₅ ≤ X₆ ∧ X₁₄ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₁₅+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₁₅ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1+X₁₅ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ ∧ X₁₅ ≤ 0 for location n_l16___1
Found invariant X₇ ≤ X₀ ∧ X₁₅ ≤ X₅ ∧ 1+X₃ ≤ X₄ ∧ X₁₄ ≤ X₄ ∧ X₁ ≤ X₁₆ for location l14
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₆₂: 1 {O(1)}
t₆₃: 1 {O(1)}
t₆₄: X₁₆+1 {O(n)}
t₆₅: X₁₆+1 {O(n)}
t₆₆: X₁₆+1 {O(n)}
t₆₇: 1 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: 1 {O(1)}
t₇₀: 18⋅X₁₅ {O(n)}
t₇₁: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2304⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₂: 1 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2304⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₅: inf {Infinity}
t₇₆: 1 {O(1)}
t₇₇: inf {Infinity}
t₇₈: 1 {O(1)}
t₇₉: 1 {O(1)}
t₈₀: 1 {O(1)}
t₈₁: 1 {O(1)}
t₈₂: X₁₆+1 {O(n)}
t₈₃: X₁₆+1 {O(n)}
t₈₄: X₁₆+1 {O(n)}
t₈₅: X₁₆+1 {O(n)}
t₉₀: X₁₆ {O(n)}
t₈₀₉: X₁₆ {O(n)}
t₈₁₀: 1 {O(1)}
t₈₁₁: 14⋅X₁₆+6 {O(n)}
t₈₁₂: X₁₆ {O(n)}
t₈₁₃: 10⋅X₁₆+2 {O(n)}
t₈₁₄: 1 {O(1)}
t₈₁₅: 1 {O(1)}
t₈₁₆: X₁₆ {O(n)}
t₈₁₇: 10⋅X₁₆+2 {O(n)}
t₈₁₈: X₁₆ {O(n)}
t₈₁₉: 34⋅X₁₆+12 {O(n)}
t₈₂₀: 1 {O(1)}
t₈₂₉: 10⋅X₁₆+2 {O(n)}
t₈₃₀: 11⋅X₁₆+7 {O(n)}
t₈₃₁: 10⋅X₁₆+8 {O(n)}
Costbounds
Overall costbound: inf {Infinity}
t₆₂: 1 {O(1)}
t₆₃: 1 {O(1)}
t₆₄: X₁₆+1 {O(n)}
t₆₅: X₁₆+1 {O(n)}
t₆₆: X₁₆+1 {O(n)}
t₆₇: 1 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: 1 {O(1)}
t₇₀: 18⋅X₁₅ {O(n)}
t₇₁: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2304⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₂: 1 {O(1)}
t₇₃: 1 {O(1)}
t₇₄: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2304⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₅: inf {Infinity}
t₇₆: 1 {O(1)}
t₇₇: inf {Infinity}
t₇₈: 1 {O(1)}
t₇₉: 1 {O(1)}
t₈₀: 1 {O(1)}
t₈₁: 1 {O(1)}
t₈₂: X₁₆+1 {O(n)}
t₈₃: X₁₆+1 {O(n)}
t₈₄: X₁₆+1 {O(n)}
t₈₅: X₁₆+1 {O(n)}
t₉₀: X₁₆ {O(n)}
t₈₀₉: X₁₆ {O(n)}
t₈₁₀: 1 {O(1)}
t₈₁₁: 14⋅X₁₆+6 {O(n)}
t₈₁₂: X₁₆ {O(n)}
t₈₁₃: 10⋅X₁₆+2 {O(n)}
t₈₁₄: 1 {O(1)}
t₈₁₅: 1 {O(1)}
t₈₁₆: X₁₆ {O(n)}
t₈₁₇: 10⋅X₁₆+2 {O(n)}
t₈₁₈: X₁₆ {O(n)}
t₈₁₉: 34⋅X₁₆+12 {O(n)}
t₈₂₀: 1 {O(1)}
t₈₂₉: 10⋅X₁₆+2 {O(n)}
t₈₃₀: 11⋅X₁₆+7 {O(n)}
t₈₃₁: 10⋅X₁₆+8 {O(n)}
Sizebounds
t₆₂, X₀: X₀ {O(n)}
t₆₂, X₁: X₁ {O(n)}
t₆₂, X₂: X₂ {O(n)}
t₆₂, X₃: X₃ {O(n)}
t₆₂, X₄: X₄ {O(n)}
t₆₂, X₅: X₅ {O(n)}
t₆₂, X₆: X₆ {O(n)}
t₆₂, X₇: X₇ {O(n)}
t₆₂, X₈: X₈ {O(n)}
t₆₂, X₉: X₉ {O(n)}
t₆₂, X₁₀: X₁₀ {O(n)}
t₆₂, X₁₁: X₁₁ {O(n)}
t₆₂, X₁₂: X₁₂ {O(n)}
t₆₂, X₁₃: X₁₃ {O(n)}
t₆₂, X₁₄: X₁₄ {O(n)}
t₆₂, X₁₅: X₁₅ {O(n)}
t₆₂, X₁₆: X₁₆ {O(n)}
t₆₃, X₀: X₀ {O(n)}
t₆₃, X₁: X₁ {O(n)}
t₆₃, X₂: X₂ {O(n)}
t₆₃, X₃: X₃ {O(n)}
t₆₃, X₄: X₄ {O(n)}
t₆₃, X₅: X₅ {O(n)}
t₆₃, X₆: X₆ {O(n)}
t₆₃, X₉: X₉ {O(n)}
t₆₃, X₁₀: X₁₀ {O(n)}
t₆₃, X₁₁: X₁₁ {O(n)}
t₆₃, X₁₂: X₁₂ {O(n)}
t₆₃, X₁₃: X₁₃ {O(n)}
t₆₃, X₁₄: X₁₄ {O(n)}
t₆₃, X₁₅: X₁₅ {O(n)}
t₆₃, X₁₆: X₁₆ {O(n)}
t₆₄, X₁: X₁₆ {O(n)}
t₆₄, X₂: 1 {O(1)}
t₆₄, X₃: X₃ {O(n)}
t₆₄, X₄: X₄ {O(n)}
t₆₄, X₅: X₅ {O(n)}
t₆₄, X₆: X₆ {O(n)}
t₆₄, X₁₀: X₁₀+8 {O(n)}
t₆₄, X₁₂: X₁₆ {O(n)}
t₆₄, X₁₃: X₁₃ {O(n)}
t₆₄, X₁₄: X₁₄ {O(n)}
t₆₄, X₁₅: X₁₅ {O(n)}
t₆₄, X₁₆: X₁₆ {O(n)}
t₆₅, X₁: X₁₆ {O(n)}
t₆₅, X₂: 1 {O(1)}
t₆₅, X₃: X₃ {O(n)}
t₆₅, X₄: X₄ {O(n)}
t₆₅, X₅: X₅ {O(n)}
t₆₅, X₆: X₆ {O(n)}
t₆₅, X₁₀: X₁₀+8 {O(n)}
t₆₅, X₁₂: X₁₆ {O(n)}
t₆₅, X₁₃: X₁₃ {O(n)}
t₆₅, X₁₄: X₁₄ {O(n)}
t₆₅, X₁₅: X₁₅ {O(n)}
t₆₅, X₁₆: X₁₆ {O(n)}
t₆₆, X₁: X₁₆ {O(n)}
t₆₆, X₂: 1 {O(1)}
t₆₆, X₃: X₃ {O(n)}
t₆₆, X₄: X₄ {O(n)}
t₆₆, X₅: X₅ {O(n)}
t₆₆, X₆: X₆ {O(n)}
t₆₆, X₁₀: X₁₀+8 {O(n)}
t₆₆, X₁₂: 7⋅X₁₂+7⋅X₁₆ {O(n)}
t₆₆, X₁₃: X₁₃ {O(n)}
t₆₆, X₁₄: X₁₄ {O(n)}
t₆₆, X₁₅: X₁₅ {O(n)}
t₆₆, X₁₆: X₁₆ {O(n)}
t₆₇, X₁: 6⋅X₁₆ {O(n)}
t₆₇, X₃: 6⋅X₁₃ {O(n)}
t₆₇, X₄: 6⋅X₁₄ {O(n)}
t₆₇, X₅: 6⋅X₁₅ {O(n)}
t₆₇, X₆: 6⋅X₆ {O(n)}
t₆₇, X₁₀: 5⋅X₁₀+44 {O(n)}
t₆₇, X₁₂: 7⋅X₁₂+7⋅X₁₆ {O(n)}
t₆₇, X₁₃: 6⋅X₁₃ {O(n)}
t₆₇, X₁₄: 6⋅X₁₄ {O(n)}
t₆₇, X₁₅: 6⋅X₁₅ {O(n)}
t₆₇, X₁₆: 6⋅X₁₆ {O(n)}
t₆₈, X₁: 5⋅X₁₆ {O(n)}
t₆₈, X₃: 5⋅X₁₃ {O(n)}
t₆₈, X₄: 5⋅X₁₄ {O(n)}
t₆₈, X₅: 5⋅X₁₅ {O(n)}
t₆₈, X₆: 5⋅X₆ {O(n)}
t₆₈, X₁₀: 4⋅X₁₀+32 {O(n)}
t₆₈, X₁₂: 7⋅X₁₂+7⋅X₁₆ {O(n)}
t₆₈, X₁₃: 5⋅X₁₃ {O(n)}
t₆₈, X₁₄: 5⋅X₁₄ {O(n)}
t₆₈, X₁₅: 5⋅X₁₅ {O(n)}
t₆₈, X₁₆: 5⋅X₁₆ {O(n)}
t₆₉, X₁: 7⋅X₁₆ {O(n)}
t₆₉, X₃: 7⋅X₁₃ {O(n)}
t₆₉, X₄: 7⋅X₁₄ {O(n)}
t₆₉, X₅: 7⋅X₁₅ {O(n)}
t₆₉, X₆: 7⋅X₆ {O(n)}
t₆₉, X₁₀: 3⋅X₁₀+32 {O(n)}
t₆₉, X₁₂: 7⋅X₁₂+7⋅X₁₆ {O(n)}
t₆₉, X₁₃: 7⋅X₁₃ {O(n)}
t₆₉, X₁₄: 7⋅X₁₄ {O(n)}
t₆₉, X₁₅: 7⋅X₁₅ {O(n)}
t₆₉, X₁₆: 7⋅X₁₆ {O(n)}
t₇₀, X₁: 18⋅X₁₆ {O(n)}
t₇₀, X₅: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2322⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₀, X₆: 18⋅X₆ {O(n)}
t₇₀, X₁₀: 12⋅X₁₀+108 {O(n)}
t₇₀, X₁₂: 21⋅X₁₂+21⋅X₁₆ {O(n)}
t₇₀, X₁₃: 18⋅X₁₃ {O(n)}
t₇₀, X₁₄: 18⋅X₁₄ {O(n)}
t₇₀, X₁₅: 18⋅X₁₅ {O(n)}
t₇₀, X₁₆: 18⋅X₁₆ {O(n)}
t₇₁, X₁: 18⋅X₁₆ {O(n)}
t₇₁, X₅: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2322⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₁, X₆: 18⋅X₆ {O(n)}
t₇₁, X₁₀: 12⋅X₁₀+108 {O(n)}
t₇₁, X₁₂: 21⋅X₁₂+21⋅X₁₆ {O(n)}
t₇₁, X₁₃: 18⋅X₁₃ {O(n)}
t₇₁, X₁₄: 18⋅X₁₄ {O(n)}
t₇₁, X₁₅: 18⋅X₁₅ {O(n)}
t₇₁, X₁₆: 18⋅X₁₆ {O(n)}
t₇₂, X₁: 36⋅X₁₆ {O(n)}
t₇₂, X₅: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2340⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₂, X₁₀: 24⋅X₁₀+216 {O(n)}
t₇₂, X₁₂: 42⋅X₁₂+42⋅X₁₆ {O(n)}
t₇₂, X₁₃: 36⋅X₁₃ {O(n)}
t₇₂, X₁₄: 36⋅X₁₄ {O(n)}
t₇₂, X₁₅: 36⋅X₁₅ {O(n)}
t₇₂, X₁₆: 36⋅X₁₆ {O(n)}
t₇₃, X₁: 36⋅X₁₆ {O(n)}
t₇₃, X₅: 0 {O(1)}
t₇₃, X₁₀: 24⋅X₁₀+216 {O(n)}
t₇₃, X₁₂: 42⋅X₁₂+42⋅X₁₆ {O(n)}
t₇₃, X₁₃: 36⋅X₁₃ {O(n)}
t₇₃, X₁₄: 36⋅X₁₄ {O(n)}
t₇₃, X₁₅: 36⋅X₁₅ {O(n)}
t₇₃, X₁₆: 36⋅X₁₆ {O(n)}
t₇₄, X₁: 18⋅X₁₆ {O(n)}
t₇₄, X₅: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2322⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₄, X₆: 18⋅X₆ {O(n)}
t₇₄, X₁₀: 12⋅X₁₀+108 {O(n)}
t₇₄, X₁₂: 21⋅X₁₂+21⋅X₁₆ {O(n)}
t₇₄, X₁₃: 18⋅X₁₃ {O(n)}
t₇₄, X₁₄: 18⋅X₁₄ {O(n)}
t₇₄, X₁₅: 18⋅X₁₅ {O(n)}
t₇₄, X₁₆: 18⋅X₁₆ {O(n)}
t₇₅, X₁: 72⋅X₁₆ {O(n)}
t₇₅, X₅: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2340⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₅, X₁₀: 48⋅X₁₀+432 {O(n)}
t₇₅, X₁₂: 84⋅X₁₂+84⋅X₁₆ {O(n)}
t₇₅, X₁₃: 72⋅X₁₃ {O(n)}
t₇₅, X₁₄: 72⋅X₁₄ {O(n)}
t₇₅, X₁₅: 72⋅X₁₅ {O(n)}
t₇₅, X₁₆: 72⋅X₁₆ {O(n)}
t₇₆, X₁: 144⋅X₁₆ {O(n)}
t₇₆, X₅: 65664⋅X₁₅⋅X₁₅⋅X₁₅+26400⋅X₁₅⋅X₁₅+1728⋅X₁₃+1728⋅X₁₄+4680⋅X₁₅+372 {O(n^3)}
t₇₆, X₁₀: 96⋅X₁₀+864 {O(n)}
t₇₆, X₁₂: 168⋅X₁₂+168⋅X₁₆ {O(n)}
t₇₆, X₁₃: 144⋅X₁₃ {O(n)}
t₇₆, X₁₄: 144⋅X₁₄ {O(n)}
t₇₆, X₁₅: 144⋅X₁₅ {O(n)}
t₇₆, X₁₆: 144⋅X₁₆ {O(n)}
t₇₇, X₁: 72⋅X₁₆ {O(n)}
t₇₇, X₅: 32832⋅X₁₅⋅X₁₅⋅X₁₅+13200⋅X₁₅⋅X₁₅+2340⋅X₁₅+864⋅X₁₃+864⋅X₁₄+186 {O(n^3)}
t₇₇, X₁₀: 48⋅X₁₀+432 {O(n)}
t₇₇, X₁₂: 84⋅X₁₂+84⋅X₁₆ {O(n)}
t₇₇, X₁₃: 72⋅X₁₃ {O(n)}
t₇₇, X₁₄: 72⋅X₁₄ {O(n)}
t₇₇, X₁₅: 72⋅X₁₅ {O(n)}
t₇₇, X₁₆: 72⋅X₁₆ {O(n)}
t₇₈, X₁: 144⋅X₁₆ {O(n)}
t₇₈, X₅: 65664⋅X₁₅⋅X₁₅⋅X₁₅+26400⋅X₁₅⋅X₁₅+1728⋅X₁₃+1728⋅X₁₄+4680⋅X₁₅+372 {O(n^3)}
t₇₈, X₁₀: 96⋅X₁₀+864 {O(n)}
t₇₈, X₁₂: 168⋅X₁₂+168⋅X₁₆ {O(n)}
t₇₈, X₁₃: 144⋅X₁₃ {O(n)}
t₇₈, X₁₄: 144⋅X₁₄ {O(n)}
t₇₈, X₁₅: 144⋅X₁₅ {O(n)}
t₇₈, X₁₆: 144⋅X₁₆ {O(n)}
t₇₉, X₀: X₀ {O(n)}
t₇₉, X₁: X₁ {O(n)}
t₇₉, X₂: X₂ {O(n)}
t₇₉, X₃: X₃ {O(n)}
t₇₉, X₄: X₄ {O(n)}
t₇₉, X₅: X₅ {O(n)}
t₇₉, X₆: X₆ {O(n)}
t₇₉, X₇: X₇ {O(n)}
t₇₉, X₈: X₈ {O(n)}
t₇₉, X₉: X₉ {O(n)}
t₇₉, X₁₀: X₁₀ {O(n)}
t₇₉, X₁₁: X₁₁ {O(n)}
t₇₉, X₁₂: X₁₂ {O(n)}
t₇₉, X₁₃: X₁₃ {O(n)}
t₇₉, X₁₄: X₁₄ {O(n)}
t₇₉, X₁₅: X₁₅ {O(n)}
t₇₉, X₁₆: X₁₆ {O(n)}
t₈₀, X₀: X₀ {O(n)}
t₈₀, X₁: X₁ {O(n)}
t₈₀, X₂: X₂ {O(n)}
t₈₀, X₃: X₃ {O(n)}
t₈₀, X₄: X₄ {O(n)}
t₈₀, X₅: X₅ {O(n)}
t₈₀, X₆: X₆ {O(n)}
t₈₀, X₈: X₈ {O(n)}
t₈₀, X₉: X₉ {O(n)}
t₈₀, X₁₀: X₁₀ {O(n)}
t₈₀, X₁₁: X₁₁ {O(n)}
t₈₀, X₁₂: X₁₂ {O(n)}
t₈₀, X₁₃: X₁₃ {O(n)}
t₈₀, X₁₄: X₁₄ {O(n)}
t₈₀, X₁₅: X₁₅ {O(n)}
t₈₀, X₁₆: X₁₆ {O(n)}
t₈₁, X₁: X₁₆ {O(n)}
t₈₁, X₃: X₃ {O(n)}
t₈₁, X₄: X₄ {O(n)}
t₈₁, X₅: X₅ {O(n)}
t₈₁, X₆: X₆ {O(n)}
t₈₁, X₉: X₉ {O(n)}
t₈₁, X₁₀: X₁₀ {O(n)}
t₈₁, X₁₁: X₁₁ {O(n)}
t₈₁, X₁₂: X₁₂ {O(n)}
t₈₁, X₁₃: X₁₃ {O(n)}
t₈₁, X₁₄: X₁₄ {O(n)}
t₈₁, X₁₅: X₁₅ {O(n)}
t₈₁, X₁₆: X₁₆ {O(n)}
t₈₂, X₁: X₁₆ {O(n)}
t₈₂, X₃: X₃ {O(n)}
t₈₂, X₄: X₄ {O(n)}
t₈₂, X₅: X₅ {O(n)}
t₈₂, X₆: X₆ {O(n)}
t₈₂, X₁₀: X₁₀+8 {O(n)}
t₈₂, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₂, X₁₃: X₁₃ {O(n)}
t₈₂, X₁₄: X₁₄ {O(n)}
t₈₂, X₁₅: X₁₅ {O(n)}
t₈₂, X₁₆: X₁₆ {O(n)}
t₈₃, X₁: X₁₆ {O(n)}
t₈₃, X₃: X₃ {O(n)}
t₈₃, X₄: X₄ {O(n)}
t₈₃, X₅: X₅ {O(n)}
t₈₃, X₆: X₆ {O(n)}
t₈₃, X₁₀: X₁₀+8 {O(n)}
t₈₃, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₃, X₁₃: X₁₃ {O(n)}
t₈₃, X₁₄: X₁₄ {O(n)}
t₈₃, X₁₅: X₁₅ {O(n)}
t₈₃, X₁₆: X₁₆ {O(n)}
t₈₄, X₁: 2⋅X₁₆ {O(n)}
t₈₄, X₃: 2⋅X₃ {O(n)}
t₈₄, X₄: 2⋅X₄ {O(n)}
t₈₄, X₅: 2⋅X₅ {O(n)}
t₈₄, X₆: 2⋅X₆ {O(n)}
t₈₄, X₁₀: 2⋅X₁₀+8 {O(n)}
t₈₄, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₄, X₁₃: 2⋅X₁₃ {O(n)}
t₈₄, X₁₄: 2⋅X₁₄ {O(n)}
t₈₄, X₁₅: 2⋅X₁₅ {O(n)}
t₈₄, X₁₆: 2⋅X₁₆ {O(n)}
t₈₅, X₁: X₁₆ {O(n)}
t₈₅, X₃: X₃ {O(n)}
t₈₅, X₄: X₄ {O(n)}
t₈₅, X₅: X₅ {O(n)}
t₈₅, X₆: X₆ {O(n)}
t₈₅, X₁₀: X₁₀+8 {O(n)}
t₈₅, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₅, X₁₃: X₁₃ {O(n)}
t₈₅, X₁₄: X₁₄ {O(n)}
t₈₅, X₁₅: X₁₅ {O(n)}
t₈₅, X₁₆: X₁₆ {O(n)}
t₉₀, X₁: X₁₆ {O(n)}
t₉₀, X₃: X₃ {O(n)}
t₉₀, X₄: X₄ {O(n)}
t₉₀, X₅: X₅ {O(n)}
t₉₀, X₆: X₆ {O(n)}
t₉₀, X₁₀: X₁₀+8 {O(n)}
t₉₀, X₁₂: X₁₆ {O(n)}
t₉₀, X₁₃: X₁₃ {O(n)}
t₉₀, X₁₄: X₁₄ {O(n)}
t₉₀, X₁₅: X₁₅ {O(n)}
t₉₀, X₁₆: X₁₆ {O(n)}
t₈₀₉, X₀: 3 {O(1)}
t₈₀₉, X₁: 2⋅X₁₆ {O(n)}
t₈₀₉, X₂: 0 {O(1)}
t₈₀₉, X₃: 2⋅X₃ {O(n)}
t₈₀₉, X₄: 2⋅X₄ {O(n)}
t₈₀₉, X₅: 2⋅X₅ {O(n)}
t₈₀₉, X₆: 2⋅X₆ {O(n)}
t₈₀₉, X₉: 0 {O(1)}
t₈₀₉, X₁₀: X₁₀+8 {O(n)}
t₈₀₉, X₁₂: X₁₆ {O(n)}
t₈₀₉, X₁₃: 2⋅X₁₃ {O(n)}
t₈₀₉, X₁₄: 2⋅X₁₄ {O(n)}
t₈₀₉, X₁₅: 2⋅X₁₅ {O(n)}
t₈₀₉, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₀, X₀: 3 {O(1)}
t₈₁₀, X₁: X₁₆ {O(n)}
t₈₁₀, X₂: 0 {O(1)}
t₈₁₀, X₃: X₃ {O(n)}
t₈₁₀, X₄: X₄ {O(n)}
t₈₁₀, X₅: X₅ {O(n)}
t₈₁₀, X₆: X₆ {O(n)}
t₈₁₀, X₇: 3 {O(1)}
t₈₁₀, X₈: 0 {O(1)}
t₈₁₀, X₉: X₉ {O(n)}
t₈₁₀, X₁₀: X₁₀ {O(n)}
t₈₁₀, X₁₁: X₁₁ {O(n)}
t₈₁₀, X₁₂: X₁₂ {O(n)}
t₈₁₀, X₁₃: X₁₃ {O(n)}
t₈₁₀, X₁₄: X₁₄ {O(n)}
t₈₁₀, X₁₅: X₁₅ {O(n)}
t₈₁₀, X₁₆: X₁₆ {O(n)}
t₈₁₁, X₀: 3 {O(1)}
t₈₁₁, X₁: 2⋅X₁₆ {O(n)}
t₈₁₁, X₂: 0 {O(1)}
t₈₁₁, X₃: 2⋅X₃ {O(n)}
t₈₁₁, X₄: 2⋅X₄ {O(n)}
t₈₁₁, X₅: 2⋅X₅ {O(n)}
t₈₁₁, X₆: 2⋅X₆ {O(n)}
t₈₁₁, X₉: X₉ {O(n)}
t₈₁₁, X₁₀: 3 {O(1)}
t₈₁₁, X₁₁: 0 {O(1)}
t₈₁₁, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₁₁, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₁, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₁, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₁, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₂, X₀: 4 {O(1)}
t₈₁₂, X₁: 2⋅X₁₆ {O(n)}
t₈₁₂, X₃: 2⋅X₃ {O(n)}
t₈₁₂, X₄: 2⋅X₄ {O(n)}
t₈₁₂, X₅: 2⋅X₅ {O(n)}
t₈₁₂, X₆: 2⋅X₆ {O(n)}
t₈₁₂, X₉: 0 {O(1)}
t₈₁₂, X₁₀: 4 {O(1)}
t₈₁₂, X₁₂: X₁₆ {O(n)}
t₈₁₂, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₂, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₂, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₂, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₃, X₀: 4 {O(1)}
t₈₁₃, X₁: 2⋅X₁₆ {O(n)}
t₈₁₃, X₃: 2⋅X₃ {O(n)}
t₈₁₃, X₄: 2⋅X₄ {O(n)}
t₈₁₃, X₅: 2⋅X₅ {O(n)}
t₈₁₃, X₆: 2⋅X₆ {O(n)}
t₈₁₃, X₉: X₉ {O(n)}
t₈₁₃, X₁₀: 4 {O(1)}
t₈₁₃, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₁₃, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₃, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₃, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₃, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₄, X₀: 4 {O(1)}
t₈₁₄, X₁: X₁₆ {O(n)}
t₈₁₄, X₃: X₃ {O(n)}
t₈₁₄, X₄: X₄ {O(n)}
t₈₁₄, X₅: X₅ {O(n)}
t₈₁₄, X₆: X₆ {O(n)}
t₈₁₄, X₇: 3 {O(1)}
t₈₁₄, X₈: 0 {O(1)}
t₈₁₄, X₉: X₉ {O(n)}
t₈₁₄, X₁₀: 4 {O(1)}
t₈₁₄, X₁₂: X₁₂ {O(n)}
t₈₁₄, X₁₃: X₁₃ {O(n)}
t₈₁₄, X₁₄: X₁₄ {O(n)}
t₈₁₄, X₁₅: X₁₅ {O(n)}
t₈₁₄, X₁₆: X₁₆ {O(n)}
t₈₁₅, X₀: 3 {O(1)}
t₈₁₅, X₁: X₁₆ {O(n)}
t₈₁₅, X₂: 0 {O(1)}
t₈₁₅, X₃: X₃ {O(n)}
t₈₁₅, X₄: X₄ {O(n)}
t₈₁₅, X₅: X₅ {O(n)}
t₈₁₅, X₆: X₆ {O(n)}
t₈₁₅, X₇: 3 {O(1)}
t₈₁₅, X₈: 0 {O(1)}
t₈₁₅, X₉: X₉ {O(n)}
t₈₁₅, X₁₀: 4 {O(1)}
t₈₁₅, X₁₁: X₁₁ {O(n)}
t₈₁₅, X₁₂: X₁₂ {O(n)}
t₈₁₅, X₁₃: X₁₃ {O(n)}
t₈₁₅, X₁₄: X₁₄ {O(n)}
t₈₁₅, X₁₅: X₁₅ {O(n)}
t₈₁₅, X₁₆: X₁₆ {O(n)}
t₈₁₆, X₀: 3 {O(1)}
t₈₁₆, X₁: 2⋅X₁₆ {O(n)}
t₈₁₆, X₂: 0 {O(1)}
t₈₁₆, X₃: 2⋅X₃ {O(n)}
t₈₁₆, X₄: 2⋅X₄ {O(n)}
t₈₁₆, X₅: 2⋅X₅ {O(n)}
t₈₁₆, X₆: 2⋅X₆ {O(n)}
t₈₁₆, X₉: 0 {O(1)}
t₈₁₆, X₁₀: 4 {O(1)}
t₈₁₆, X₁₂: X₁₆ {O(n)}
t₈₁₆, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₆, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₆, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₆, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₇, X₀: 3 {O(1)}
t₈₁₇, X₁: 2⋅X₁₆ {O(n)}
t₈₁₇, X₂: 0 {O(1)}
t₈₁₇, X₃: 2⋅X₃ {O(n)}
t₈₁₇, X₄: 2⋅X₄ {O(n)}
t₈₁₇, X₅: 2⋅X₅ {O(n)}
t₈₁₇, X₆: 2⋅X₆ {O(n)}
t₈₁₇, X₉: X₉ {O(n)}
t₈₁₇, X₁₀: 4 {O(1)}
t₈₁₇, X₁₁: 0 {O(1)}
t₈₁₇, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₁₇, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₇, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₇, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₇, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₈, X₀: 3 {O(1)}
t₈₁₈, X₁: 2⋅X₁₆ {O(n)}
t₈₁₈, X₂: 0 {O(1)}
t₈₁₈, X₃: 2⋅X₃ {O(n)}
t₈₁₈, X₄: 2⋅X₄ {O(n)}
t₈₁₈, X₅: 2⋅X₅ {O(n)}
t₈₁₈, X₆: 2⋅X₆ {O(n)}
t₈₁₈, X₉: 0 {O(1)}
t₈₁₈, X₁₀: 4 {O(1)}
t₈₁₈, X₁₂: X₁₆ {O(n)}
t₈₁₈, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₈, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₈, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₈, X₁₆: 2⋅X₁₆ {O(n)}
t₈₁₉, X₀: 3 {O(1)}
t₈₁₉, X₁: 2⋅X₁₆ {O(n)}
t₈₁₉, X₂: 0 {O(1)}
t₈₁₉, X₃: 2⋅X₃ {O(n)}
t₈₁₉, X₄: 2⋅X₄ {O(n)}
t₈₁₉, X₅: 2⋅X₅ {O(n)}
t₈₁₉, X₆: 2⋅X₆ {O(n)}
t₈₁₉, X₉: X₉ {O(n)}
t₈₁₉, X₁₀: 4 {O(1)}
t₈₁₉, X₁₂: X₁₂+X₁₆ {O(n)}
t₈₁₉, X₁₃: 2⋅X₁₃ {O(n)}
t₈₁₉, X₁₄: 2⋅X₁₄ {O(n)}
t₈₁₉, X₁₅: 2⋅X₁₅ {O(n)}
t₈₁₉, X₁₆: 2⋅X₁₆ {O(n)}
t₈₂₀, X₀: 3 {O(1)}
t₈₂₀, X₁: X₁₆ {O(n)}
t₈₂₀, X₂: 0 {O(1)}
t₈₂₀, X₃: X₃ {O(n)}
t₈₂₀, X₄: X₄ {O(n)}
t₈₂₀, X₅: X₅ {O(n)}
t₈₂₀, X₆: X₆ {O(n)}
t₈₂₀, X₇: 3 {O(1)}
t₈₂₀, X₈: 0 {O(1)}
t₈₂₀, X₉: X₉ {O(n)}
t₈₂₀, X₁₀: 4 {O(1)}
t₈₂₀, X₁₂: X₁₂ {O(n)}
t₈₂₀, X₁₃: X₁₃ {O(n)}
t₈₂₀, X₁₄: X₁₄ {O(n)}
t₈₂₀, X₁₅: X₁₅ {O(n)}
t₈₂₀, X₁₆: X₁₆ {O(n)}
t₈₂₉, X₀: 4 {O(1)}
t₈₂₉, X₁: 2⋅X₁₆ {O(n)}
t₈₂₉, X₃: 2⋅X₃ {O(n)}
t₈₂₉, X₄: 2⋅X₄ {O(n)}
t₈₂₉, X₅: 2⋅X₅ {O(n)}
t₈₂₉, X₆: 2⋅X₆ {O(n)}
t₈₂₉, X₉: 2⋅X₉ {O(n)}
t₈₂₉, X₁₀: 4 {O(1)}
t₈₂₉, X₁₂: 2⋅X₁₂+2⋅X₁₆ {O(n)}
t₈₂₉, X₁₃: 2⋅X₁₃ {O(n)}
t₈₂₉, X₁₄: 2⋅X₁₄ {O(n)}
t₈₂₉, X₁₅: 2⋅X₁₅ {O(n)}
t₈₂₉, X₁₆: 2⋅X₁₆ {O(n)}
t₈₃₀, X₀: 4 {O(1)}
t₈₃₀, X₁: 5⋅X₁₆ {O(n)}
t₈₃₀, X₃: 5⋅X₃ {O(n)}
t₈₃₀, X₄: 5⋅X₄ {O(n)}
t₈₃₀, X₅: 5⋅X₅ {O(n)}
t₈₃₀, X₆: 5⋅X₆ {O(n)}
t₈₃₀, X₉: 2⋅X₉ {O(n)}
t₈₃₀, X₁₀: 4 {O(1)}
t₈₃₀, X₁₂: 2⋅X₁₂+2⋅X₁₆ {O(n)}
t₈₃₀, X₁₃: 5⋅X₁₃ {O(n)}
t₈₃₀, X₁₄: 5⋅X₁₄ {O(n)}
t₈₃₀, X₁₅: 5⋅X₁₅ {O(n)}
t₈₃₀, X₁₆: 5⋅X₁₆ {O(n)}
t₈₃₁, X₀: 4 {O(1)}
t₈₃₁, X₁: 2⋅X₁₆ {O(n)}
t₈₃₁, X₃: 2⋅X₃ {O(n)}
t₈₃₁, X₄: 2⋅X₄ {O(n)}
t₈₃₁, X₅: 2⋅X₅ {O(n)}
t₈₃₁, X₆: 2⋅X₆ {O(n)}
t₈₃₁, X₉: 2⋅X₉ {O(n)}
t₈₃₁, X₁₀: 4 {O(1)}
t₈₃₁, X₁₂: 2⋅X₁₂+2⋅X₁₆ {O(n)}
t₈₃₁, X₁₃: 2⋅X₁₃ {O(n)}
t₈₃₁, X₁₄: 2⋅X₁₄ {O(n)}
t₈₃₁, X₁₅: 2⋅X₁₅ {O(n)}
t₈₃₁, X₁₆: 2⋅X₁₆ {O(n)}