Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₃ ≤ 0
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₀, X₁, X₂, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₃
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₈, X₉, X₁₀, X₁₂, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₈ ∧ 0 < X₁₂
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₈ ≤ 0
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₁₂ ≤ 0
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₄
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₄ ≤ 0
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₃, 2⋅X₃, 3⋅X₃, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄-1, 3⋅X₅+2⋅X₆, -5⋅X₅-3⋅X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₇ ≤ 0
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₇
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁₂)

Preprocessing

Eliminate variables {X₁₁} that do not contribute to the problem

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l8

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l4

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂₇: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₀, X₁, X₂, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₈, X₉, X₁₀, X₁₁, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₈ ∧ 0 < X₁₁
t₃₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ ≤ 0
t₃₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ 0
t₃₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₃, 2⋅X₃, 3⋅X₃, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄-1, 3⋅X₅+2⋅X₆, -5⋅X₅-3⋅X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₃₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₄₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀

MPRF for transition t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₀, X₁, X₂, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₁ {O(n)}

MPRF for transition t₃₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₁ {O(n)}

MPRF for transition t₃₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₃, 2⋅X₃, 3⋅X₃, X₃-1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₁ {O(n)}

MPRF for transition t₃₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁₁ {O(n)}

TWN: t₃₄: l4→l6

cycle: [t₃₄: l4→l6; t₃₇: l6→l4]
loop: (0 < X₄,(X₄) -> (X₄-1)
order: [X₄]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}

TWN - Lifting for t₃₄: l4→l6 of 2⋅X₄+4 {O(n)}

relevant size-bounds w.r.t. t₂₉:
X₄: X₁₁+X₈ {O(n)}
Runtime-bound of t₂₉: X₁₁ {O(n)}
Results in: 2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁ {O(n^2)}

TWN: t₃₇: l6→l4

TWN - Lifting for t₃₇: l6→l4 of 2⋅X₄+4 {O(n)}

relevant size-bounds w.r.t. t₂₉:
X₄: X₁₁+X₈ {O(n)}
Runtime-bound of t₂₉: X₁₁ {O(n)}
Results in: 2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁ {O(n^2)}

MPRF for transition t₃₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁⋅X₁₁⋅X₁₁+10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₁⋅X₁₁⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₁⋅X₈⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅20⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₀⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₁⋅X₉+4⋅X₁₁⋅X₁₁+X₉ {O(EXP)}

MPRF for transition t₄₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁⋅X₁₁⋅X₁₁+10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₁⋅X₁₁⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₁⋅X₈⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅20⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₀⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₁⋅X₉+4⋅X₁₁⋅X₁₁+X₉ {O(EXP)}

Chain transitions t₃₆: l5→l1 and t₂₉: l1→l4 to t₈₉: l5→l4

Chain transitions t₃₁: l3→l1 and t₂₉: l1→l4 to t₉₀: l3→l4

Chain transitions t₃₁: l3→l1 and t₂₈: l1→l2 to t₉₁: l3→l2

Chain transitions t₃₆: l5→l1 and t₂₈: l1→l2 to t₉₂: l5→l2

Chain transitions t₃₇: l6→l4 and t₃₅: l4→l7 to t₉₃: l6→l7

Chain transitions t₈₉: l5→l4 and t₃₅: l4→l7 to t₉₄: l5→l7

Chain transitions t₈₉: l5→l4 and t₃₄: l4→l6 to t₉₅: l5→l6

Chain transitions t₃₇: l6→l4 and t₃₄: l4→l6 to t₉₆: l6→l6

Chain transitions t₉₀: l3→l4 and t₃₄: l4→l6 to t₉₇: l3→l6

Chain transitions t₉₀: l3→l4 and t₃₅: l4→l7 to t₉₈: l3→l7

Chain transitions t₃₈: l7→l5 and t₉₄: l5→l7 to t₉₉: l7→l7

Chain transitions t₃₈: l7→l5 and t₉₅: l5→l6 to t₁₀₀: l7→l6

Chain transitions t₃₈: l7→l5 and t₈₉: l5→l4 to t₁₀₁: l7→l4

Chain transitions t₃₈: l7→l5 and t₉₂: l5→l2 to t₁₀₂: l7→l2

Chain transitions t₃₈: l7→l5 and t₃₆: l5→l1 to t₁₀₃: l7→l1

Chain transitions t₃₉: l7→l8 and t₄₀: l8→l7 to t₁₀₄: l7→l7

Analysing control-flow refined program

Cut unsatisfiable transition t₉₁: l3→l2

Cut unsatisfiable transition t₉₈: l3→l7

Cut unsatisfiable transition t₉₉: l7→l7

Eliminate variables {X₁,X₂} that do not contribute to the problem

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₂+X₉ ∧ 1+X₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ 1+X₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₅+X₉ ∧ 1 ≤ X₂+X₉ ∧ 1+X₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4

MPRF for transition t₁₃₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) -{2}> l7(X₀, X₁, X₂-1, 3⋅X₃+2⋅X₄, -5⋅X₃-3⋅X₄, 3⋅X₃+2⋅X₄, X₆, X₇, X₈, X₉) :|: X₂ ≤ 1 ∧ 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₉ {O(n)}

MPRF for transition t₁₄₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) -{4}> l6(X₁, X₁-1, X₁, 2⋅X₁, 3⋅X₁, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₂+X₉ ∧ 1+X₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₉ {O(n)}

TWN: t₁₃₈: l6→l6

cycle: [t₁₃₈: l6→l6]
loop: (1 < X₂,(X₂) -> (X₂-1)
order: [X₂]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 1 < X₂
alphas_abs: 1+X₂
M: 0
N: 1
Bound: 2⋅X₂+4 {O(n)}
loop: (1 < X₂,(X₂) -> (X₂-1)
order: [X₂]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 1 < X₂
alphas_abs: 1+X₂
M: 0
N: 1
Bound: 2⋅X₂+4 {O(n)}

TWN - Lifting for t₁₃₈: l6→l6 of 2⋅X₂+6 {O(n)}

relevant size-bounds w.r.t. t₁₄₄:
X₂: 2⋅X₉ {O(n)}
Runtime-bound of t₁₄₄: X₉ {O(n)}
Results in: 4⋅X₉⋅X₉+6⋅X₉ {O(n^2)}

TWN - Lifting for t₁₃₈: l6→l6 of 2⋅X₂+6 {O(n)}

relevant size-bounds w.r.t. t₁₃₆:
X₂: X₆ {O(n)}
Runtime-bound of t₁₃₆: 1 {O(1)}
Results in: 2⋅X₆+6 {O(n)}

MPRF for transition t₁₄₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) -{2}> l7(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉) :|: 0 < X₅ ∧ 1 ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₂+X₉ ∧ 1+X₂ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

10^(4⋅X₉⋅X₉+2⋅X₆+6⋅X₉+6)⋅6⋅X₇⋅X₉+10^(4⋅X₉⋅X₉+2⋅X₆+6⋅X₉+6)⋅6⋅X₈⋅X₉+10^(4⋅X₉⋅X₉+2⋅X₆+6⋅X₉+6)⋅60⋅X₉⋅X₉+3⋅X₇⋅X₉+3⋅X₈⋅X₉+X₅ {O(EXP)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₃₅: l4→l7

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l6___3

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ for location n_l6___1

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l8___1

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l8___3

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l4___2

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l7___2

Found invariant 1 ≤ X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄+X₇ ≤ 0 ∧ 1+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₀ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₁₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l4

knowledge_propagation leads to new time bound X₁₁ {O(n)} for transition t₂₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₁₁ {O(n)} for transition t₂₁₈: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l4___2(X₀, X₁, X₂, X₃, X₄-1, 3⋅X₅+2⋅X₆, -5⋅X₅-3⋅X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₂ ∧ X₂ ≤ X₆ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀

MPRF for transition t₂₁₅: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ X₃ ≤ X₁₁ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁+X₈ {O(n^2)}

MPRF for transition t₂₁₇: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l4___2(X₀, X₁, X₂, X₃, X₄-1, 3⋅X₅+2⋅X₆, -5⋅X₅-3⋅X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 < X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₈ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁+X₈ {O(n^2)}

MPRF for transition t₂₂₂: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₁+1 {O(n)}

MPRF for transition t₂₃₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___3(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₁₁ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₁₁ ∧ 0 < X₇ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₁ {O(n)}

MPRF for transition t₂₃₆: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l7___2(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 0 < X₇ ∧ X₅ ≤ X₇ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₁ {O(n)}

MPRF for transition t₂₄₀: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₁ {O(n)}

MPRF for transition t₂₃₃: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___1(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 0 ≤ X₇ ∧ 1+X₇ ≤ X₅ ∧ X₃ ≤ X₁₁ ∧ 0 < X₇ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₈ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

10^(2⋅X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁+X₈)⋅8⋅X₁₀⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁+X₈)⋅8⋅X₁₁⋅X₉+10^(2⋅X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁+X₈)⋅80⋅X₁₁⋅X₁₁+3⋅X₁₀⋅X₁₁+3⋅X₁₁⋅X₉+30⋅X₁₁⋅X₁₁+X₁₁ {O(EXP)}

MPRF for transition t₂₃₅: n_l8___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l7___2(X₀, X₁, X₂, X₃, 0, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₁₁ ∧ 1+X₇ ≤ X₅ ∧ 0 < X₇ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₅+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1+X₄ ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1+X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

10^(2⋅X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁+X₈)⋅8⋅X₁₀⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁+X₈)⋅8⋅X₁₁⋅X₉+10^(2⋅X₁₁⋅X₁₁+X₁₁⋅X₈+X₁₁+X₈)⋅80⋅X₁₁⋅X₁₁+3⋅X₁₀⋅X₁₁+3⋅X₁₁⋅X₉+30⋅X₁₁⋅X₁₁ {O(EXP)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅20⋅X₁₁⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅20⋅X₁₁⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₀⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₀⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₁⋅X₁₁⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₁⋅X₈⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅40⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅8⋅X₁₀⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅8⋅X₁₁⋅X₉+12⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₈+13⋅X₁₁+2⋅X₉+6 {O(EXP)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: X₁₁ {O(n)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: 2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁ {O(n^2)}
t₃₅: X₁₁ {O(n)}
t₃₆: X₁₁ {O(n)}
t₃₇: 2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁ {O(n^2)}
t₃₈: 2⋅X₁₁ {O(n)}
t₃₉: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁⋅X₁₁⋅X₁₁+10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₁⋅X₁₁⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₁⋅X₈⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅20⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₀⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₁⋅X₉+4⋅X₁₁⋅X₁₁+X₉ {O(EXP)}
t₄₀: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁⋅X₁₁⋅X₁₁+10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₁⋅X₁₁⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₁⋅X₈⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅20⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₀⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₁⋅X₉+4⋅X₁₁⋅X₁₁+X₉ {O(EXP)}

Costbounds

Overall costbound: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅20⋅X₁₁⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅20⋅X₁₁⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₀⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₀⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₁⋅X₁₁⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₁⋅X₈⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅40⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅8⋅X₁₀⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅8⋅X₁₁⋅X₉+12⋅X₁₁⋅X₁₁+4⋅X₁₁⋅X₈+13⋅X₁₁+2⋅X₉+6 {O(EXP)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: X₁₁ {O(n)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: 2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁ {O(n^2)}
t₃₅: X₁₁ {O(n)}
t₃₆: X₁₁ {O(n)}
t₃₇: 2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁ {O(n^2)}
t₃₈: 2⋅X₁₁ {O(n)}
t₃₉: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁⋅X₁₁⋅X₁₁+10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₁⋅X₁₁⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₁⋅X₈⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅20⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₀⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₁⋅X₉+4⋅X₁₁⋅X₁₁+X₉ {O(EXP)}
t₄₀: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁⋅X₁₁⋅X₁₁+10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀⋅X₁₁⋅X₈+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₁⋅X₁₁⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₁⋅X₈⋅X₉+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅20⋅X₁₁⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₀⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅4⋅X₁₁⋅X₉+4⋅X₁₁⋅X₁₁+X₉ {O(EXP)}

Sizebounds

t₂₇, X₀: X₀ {O(n)}
t₂₇, X₁: X₁ {O(n)}
t₂₇, X₂: X₂ {O(n)}
t₂₇, X₃: X₃ {O(n)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₅: X₅ {O(n)}
t₂₇, X₆: X₆ {O(n)}
t₂₇, X₇: X₇ {O(n)}
t₂₇, X₈: X₈ {O(n)}
t₂₇, X₉: X₉ {O(n)}
t₂₇, X₁₀: X₁₀ {O(n)}
t₂₇, X₁₁: X₁₁ {O(n)}
t₂₈, X₀: X₁₁ {O(n)}
t₂₈, X₁: 2⋅X₁₁ {O(n)}
t₂₈, X₂: 3⋅X₁₁ {O(n)}
t₂₈, X₃: 0 {O(1)}
t₂₈, X₄: 0 {O(1)}
t₂₈, X₅: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉ {O(EXP)}
t₂₈, X₆: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉ {O(EXP)}
t₂₈, X₇: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉ {O(EXP)}
t₂₈, X₈: X₈ {O(n)}
t₂₈, X₉: X₉ {O(n)}
t₂₈, X₁₀: X₁₀ {O(n)}
t₂₈, X₁₁: X₁₁ {O(n)}
t₂₉, X₀: X₁₁+X₈ {O(n)}
t₂₉, X₁: 2⋅X₁₁+X₉ {O(n)}
t₂₉, X₂: 3⋅X₁₁+X₁₀ {O(n)}
t₂₉, X₃: X₁₁ {O(n)}
t₂₉, X₄: X₁₁+X₈ {O(n)}
t₂₉, X₅: 2⋅X₁₁+X₉ {O(n)}
t₂₉, X₆: 3⋅X₁₁+X₁₀ {O(n)}
t₂₉, X₇: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉+X₇ {O(EXP)}
t₂₉, X₈: X₈ {O(n)}
t₂₉, X₉: X₉ {O(n)}
t₂₉, X₁₀: X₁₀ {O(n)}
t₂₉, X₁₁: X₁₁ {O(n)}
t₃₀, X₀: 2⋅X₀+X₁₁ {O(n)}
t₃₀, X₁: 2⋅X₁+2⋅X₁₁ {O(n)}
t₃₀, X₂: 2⋅X₂+3⋅X₁₁ {O(n)}
t₃₀, X₃: 2⋅X₃ {O(n)}
t₃₀, X₄: 2⋅X₄ {O(n)}
t₃₀, X₅: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉+2⋅X₅ {O(EXP)}
t₃₀, X₆: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉+2⋅X₆ {O(EXP)}
t₃₀, X₇: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉+2⋅X₇ {O(EXP)}
t₃₀, X₈: 3⋅X₈ {O(n)}
t₃₀, X₉: 3⋅X₉ {O(n)}
t₃₀, X₁₀: 3⋅X₁₀ {O(n)}
t₃₀, X₁₁: 3⋅X₁₁ {O(n)}
t₃₁, X₀: X₈ {O(n)}
t₃₁, X₁: X₉ {O(n)}
t₃₁, X₂: X₁₀ {O(n)}
t₃₁, X₃: X₁₁ {O(n)}
t₃₁, X₄: X₄ {O(n)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: X₇ {O(n)}
t₃₁, X₈: X₈ {O(n)}
t₃₁, X₉: X₉ {O(n)}
t₃₁, X₁₀: X₁₀ {O(n)}
t₃₁, X₁₁: X₁₁ {O(n)}
t₃₂, X₀: X₀ {O(n)}
t₃₂, X₁: X₁ {O(n)}
t₃₂, X₂: X₂ {O(n)}
t₃₂, X₃: X₃ {O(n)}
t₃₂, X₄: X₄ {O(n)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: X₆ {O(n)}
t₃₂, X₇: X₇ {O(n)}
t₃₂, X₈: X₈ {O(n)}
t₃₂, X₉: X₉ {O(n)}
t₃₂, X₁₀: X₁₀ {O(n)}
t₃₂, X₁₁: X₁₁ {O(n)}
t₃₃, X₀: X₀ {O(n)}
t₃₃, X₁: X₁ {O(n)}
t₃₃, X₂: X₂ {O(n)}
t₃₃, X₃: X₃ {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₅: X₅ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₃, X₇: X₇ {O(n)}
t₃₃, X₈: X₈ {O(n)}
t₃₃, X₉: X₉ {O(n)}
t₃₃, X₁₀: X₁₀ {O(n)}
t₃₃, X₁₁: X₁₁ {O(n)}
t₃₄, X₀: X₁₁+X₈ {O(n)}
t₃₄, X₁: 2⋅X₁₁+X₉ {O(n)}
t₃₄, X₂: 3⋅X₁₁+X₁₀ {O(n)}
t₃₄, X₃: X₁₁ {O(n)}
t₃₄, X₄: X₁₁+X₈ {O(n)}
t₃₄, X₅: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₃₄, X₆: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₃₄, X₇: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉+X₇ {O(EXP)}
t₃₄, X₈: X₈ {O(n)}
t₃₄, X₉: X₉ {O(n)}
t₃₄, X₁₀: X₁₀ {O(n)}
t₃₄, X₁₁: X₁₁ {O(n)}
t₃₅, X₀: X₁₁+X₈ {O(n)}
t₃₅, X₁: 2⋅X₁₁+X₉ {O(n)}
t₃₅, X₂: 3⋅X₁₁+X₁₀ {O(n)}
t₃₅, X₃: X₁₁ {O(n)}
t₃₅, X₄: 0 {O(1)}
t₃₅, X₅: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₃₅, X₆: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₃₅, X₇: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₃₅, X₈: X₈ {O(n)}
t₃₅, X₉: X₉ {O(n)}
t₃₅, X₁₀: X₁₀ {O(n)}
t₃₅, X₁₁: X₁₁ {O(n)}
t₃₆, X₀: X₁₁ {O(n)}
t₃₆, X₁: 2⋅X₁₁ {O(n)}
t₃₆, X₂: 3⋅X₁₁ {O(n)}
t₃₆, X₃: X₁₁ {O(n)}
t₃₆, X₄: 0 {O(1)}
t₃₆, X₅: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉ {O(EXP)}
t₃₆, X₆: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉ {O(EXP)}
t₃₆, X₇: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉ {O(EXP)}
t₃₆, X₈: X₈ {O(n)}
t₃₆, X₉: X₉ {O(n)}
t₃₆, X₁₀: X₁₀ {O(n)}
t₃₆, X₁₁: X₁₁ {O(n)}
t₃₇, X₀: X₁₁+X₈ {O(n)}
t₃₇, X₁: 2⋅X₁₁+X₉ {O(n)}
t₃₇, X₂: 3⋅X₁₁+X₁₀ {O(n)}
t₃₇, X₃: X₁₁ {O(n)}
t₃₇, X₄: X₁₁+X₈ {O(n)}
t₃₇, X₅: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₃₇, X₆: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₃₇, X₇: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉+X₇ {O(EXP)}
t₃₇, X₈: X₈ {O(n)}
t₃₇, X₉: X₉ {O(n)}
t₃₇, X₁₀: X₁₀ {O(n)}
t₃₇, X₁₁: X₁₁ {O(n)}
t₃₈, X₀: 2⋅X₁₁+2⋅X₈ {O(n)}
t₃₈, X₁: 2⋅X₉+4⋅X₁₁ {O(n)}
t₃₈, X₂: 2⋅X₁₀+6⋅X₁₁ {O(n)}
t₃₈, X₃: X₁₁ {O(n)}
t₃₈, X₄: 0 {O(1)}
t₃₈, X₅: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉ {O(EXP)}
t₃₈, X₆: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉ {O(EXP)}
t₃₈, X₇: 10⋅10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅2⋅X₉ {O(EXP)}
t₃₈, X₈: X₈ {O(n)}
t₃₈, X₉: X₉ {O(n)}
t₃₈, X₁₀: X₁₀ {O(n)}
t₃₈, X₁₁: X₁₁ {O(n)}
t₃₉, X₀: X₁₁+X₈ {O(n)}
t₃₉, X₁: 2⋅X₁₁+X₉ {O(n)}
t₃₉, X₂: 3⋅X₁₁+X₁₀ {O(n)}
t₃₉, X₃: X₁₁ {O(n)}
t₃₉, X₄: 0 {O(1)}
t₃₉, X₅: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₃₉, X₆: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₃₉, X₇: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₃₉, X₈: X₈ {O(n)}
t₃₉, X₉: X₉ {O(n)}
t₃₉, X₁₀: X₁₀ {O(n)}
t₃₉, X₁₁: X₁₁ {O(n)}
t₄₀, X₀: X₁₁+X₈ {O(n)}
t₄₀, X₁: 2⋅X₁₁+X₉ {O(n)}
t₄₀, X₂: 3⋅X₁₁+X₁₀ {O(n)}
t₄₀, X₃: X₁₁ {O(n)}
t₄₀, X₄: 0 {O(1)}
t₄₀, X₅: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₄₀, X₆: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₄₀, X₇: 10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅5⋅X₁₁+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₁₀+10^(2⋅X₁₁⋅X₁₁+2⋅X₁₁⋅X₈+4⋅X₁₁)⋅X₉ {O(EXP)}
t₄₀, X₈: X₈ {O(n)}
t₄₀, X₉: X₉ {O(n)}
t₄₀, X₁₀: X₁₀ {O(n)}
t₄₀, X₁₁: X₁₁ {O(n)}