Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₂
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₇, X₂, X₀, X₂, X₅, X₆, X₇, X₈) :|: X₂ ≤ 0
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₆, X₁, X₈, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₆
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆ ≤ 0
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀+X₂, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈)
t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < (X₁)²
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₇, X₈) :|: (X₁)² ≤ X₃
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁+1, X₂, X₃+(X₄)², X₄+1, X₅, X₆, X₇, X₈)
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ ≤ 0
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₅
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈)
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l6
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l7
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l5
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l8
Found invariant X₂ ≤ X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₀ for location l1
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l4
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₂ ∧ X₂ ≤ X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₀
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₇, X₂, X₀, X₂, X₅, X₆, X₇, X₈) :|: X₂ ≤ 0 ∧ X₂ ≤ X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₀
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₆, X₁, X₈, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₆
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆ ≤ 0
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀+X₂, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < (X₁)² ∧ X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₇, X₈) :|: (X₁)² ≤ X₃ ∧ X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁+1, X₂, X₃+(X₄)², X₄+1, X₅, X₆, X₇, X₈) :|: X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅ ≤ 0 ∧ X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₅ ∧ X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈) :|: X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀
new bound:
X₈ {O(n)}
new bound:
X₈ {O(n)}
cycle: [t₆: l5→l6; t₈: l6→l5]
Termination: true
Formula:
Chain transitions t₈: l6→l5 and t₇: l5→l7 to t₈₀: l6→l7
Chain transitions t₄: l1→l5 and t₇: l5→l7 to t₈₁: l1→l7
Chain transitions t₄: l1→l5 and t₆: l5→l6 to t₈₂: l1→l6
Chain transitions t₈: l6→l5 and t₆: l5→l6 to t₈₃: l6→l6
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l6
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l7
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l5
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l8
Found invariant X₂ ≤ X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₀ for location l1
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l4
cycle: [t₈₃: l6→l6]
Termination: true
Formula:
Found invariant X₄ ≤ X₈ ∧ X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location n_l6___3
Found invariant X₂ ≤ X₈ ∧ 1+X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₂ ≤ X₈ ∧ 1+X₇ ≤ X₁ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₂ ≤ X₄ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___2
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l7
Found invariant X₄ ≤ X₈ ∧ X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l5
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l8
Found invariant X₂ ≤ X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₀ for location l1
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l4
Chain transitions t₁₁: l8→l7 and t₉: l7→l8 to t₂₆₁: l8→l8
Chain transitions t₇: l5→l7 and t₉: l7→l8 to t₂₆₂: l5→l8
Chain transitions t₇: l5→l7 and t₁₀: l7→l2 to t₂₆₃: l5→l2
Chain transitions t₁₁: l8→l7 and t₁₀: l7→l2 to t₂₆₄: l8→l2
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l6
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l7
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l5
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l8
Found invariant X₂ ≤ X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₀ for location l1
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l4
Cut unsatisfiable transition t₁₀: l7→l2
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2+X₂ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location n_l8___1
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l6
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location n_l8___3
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l7
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location n_l7___2
Found invariant X₂ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l5
Found invariant X₂ ≤ X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₀ for location l1
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l4
Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₈ {O(n)}
t₄: 1 {O(1)}
t₅: X₈ {O(n)}
t₆: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+36⋅X₈+48⋅X₇+24 {O(n^2)}
t₇: 1 {O(1)}
t₈: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+36⋅X₈+48⋅X₇+24 {O(n^2)}
t₉: inf {Infinity}
t₁₀: 1 {O(1)}
t₁₁: inf {Infinity}
t₁₂: 1 {O(1)}
Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₈ {O(n)}
t₄: 1 {O(1)}
t₅: X₈ {O(n)}
t₆: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+36⋅X₈+48⋅X₇+24 {O(n^2)}
t₇: 1 {O(1)}
t₈: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+36⋅X₈+48⋅X₇+24 {O(n^2)}
t₉: inf {Infinity}
t₁₀: 1 {O(1)}
t₁₁: inf {Infinity}
t₁₂: 1 {O(1)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₁, X₀: X₆ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₈ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₃, X₀: X₈⋅X₈+X₆+X₈ {O(n^2)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₈ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₄, X₀: X₈⋅X₈+2⋅X₆+X₈ {O(n^2)}
t₄, X₁: 2⋅X₇ {O(n)}
t₄, X₂: 2⋅X₈ {O(n)}
t₄, X₃: X₈⋅X₈+2⋅X₆+X₈ {O(n^2)}
t₄, X₄: 2⋅X₈ {O(n)}
t₄, X₅: 2⋅X₅ {O(n)}
t₄, X₆: 2⋅X₆ {O(n)}
t₄, X₇: 2⋅X₇ {O(n)}
t₄, X₈: 2⋅X₈ {O(n)}
t₅, X₀: X₈⋅X₈+X₆+X₈ {O(n^2)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₈ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: X₈ {O(n)}
t₆, X₀: X₈⋅X₈+2⋅X₆+X₈ {O(n^2)}
t₆, X₁: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+36⋅X₈+50⋅X₇+24 {O(n^2)}
t₆, X₂: 2⋅X₈ {O(n)}
t₆, X₄: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+38⋅X₈+48⋅X₇+24 {O(n^2)}
t₆, X₅: 2⋅X₅ {O(n)}
t₆, X₆: 2⋅X₆ {O(n)}
t₆, X₇: 2⋅X₇ {O(n)}
t₆, X₈: 2⋅X₈ {O(n)}
t₇, X₀: 2⋅X₈⋅X₈+2⋅X₈+4⋅X₆ {O(n^2)}
t₇, X₁: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+36⋅X₈+52⋅X₇+24 {O(n^2)}
t₇, X₂: 4⋅X₈ {O(n)}
t₇, X₄: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+40⋅X₈+48⋅X₇+24 {O(n^2)}
t₇, X₆: 4⋅X₆ {O(n)}
t₇, X₇: 4⋅X₇ {O(n)}
t₇, X₈: 4⋅X₈ {O(n)}
t₈, X₀: X₈⋅X₈+2⋅X₆+X₈ {O(n^2)}
t₈, X₁: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+36⋅X₈+50⋅X₇+24 {O(n^2)}
t₈, X₂: 2⋅X₈ {O(n)}
t₈, X₄: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+38⋅X₈+48⋅X₇+24 {O(n^2)}
t₈, X₅: 2⋅X₅ {O(n)}
t₈, X₆: 2⋅X₆ {O(n)}
t₈, X₇: 2⋅X₇ {O(n)}
t₈, X₈: 2⋅X₈ {O(n)}
t₉, X₀: 2⋅X₈⋅X₈+2⋅X₈+4⋅X₆ {O(n^2)}
t₉, X₁: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+36⋅X₈+52⋅X₇+24 {O(n^2)}
t₉, X₂: 4⋅X₈ {O(n)}
t₉, X₄: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+40⋅X₈+48⋅X₇+24 {O(n^2)}
t₉, X₆: 4⋅X₆ {O(n)}
t₉, X₇: 4⋅X₇ {O(n)}
t₉, X₈: 4⋅X₈ {O(n)}
t₁₀, X₀: 2⋅X₈⋅X₈+2⋅X₈+4⋅X₆ {O(n^2)}
t₁₀, X₁: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+36⋅X₈+52⋅X₇+24 {O(n^2)}
t₁₀, X₂: 4⋅X₈ {O(n)}
t₁₀, X₄: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+40⋅X₈+48⋅X₇+24 {O(n^2)}
t₁₀, X₅: 0 {O(1)}
t₁₀, X₆: 4⋅X₆ {O(n)}
t₁₀, X₇: 4⋅X₇ {O(n)}
t₁₀, X₈: 4⋅X₈ {O(n)}
t₁₁, X₀: 2⋅X₈⋅X₈+2⋅X₈+4⋅X₆ {O(n^2)}
t₁₁, X₁: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+36⋅X₈+52⋅X₇+24 {O(n^2)}
t₁₁, X₂: 4⋅X₈ {O(n)}
t₁₁, X₄: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+40⋅X₈+48⋅X₇+24 {O(n^2)}
t₁₁, X₆: 4⋅X₆ {O(n)}
t₁₁, X₇: 4⋅X₇ {O(n)}
t₁₁, X₈: 4⋅X₈ {O(n)}
t₁₂, X₀: 2⋅X₈⋅X₈+2⋅X₈+4⋅X₆+X₀ {O(n^2)}
t₁₂, X₁: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+36⋅X₈+52⋅X₇+X₁+24 {O(n^2)}
t₁₂, X₂: 4⋅X₈+X₂ {O(n)}
t₁₂, X₄: 48⋅X₇⋅X₇+60⋅X₈⋅X₈+24⋅X₆+40⋅X₈+48⋅X₇+X₄+24 {O(n^2)}
t₁₂, X₅: X₅ {O(n)}
t₁₂, X₆: 5⋅X₆ {O(n)}
t₁₂, X₇: 5⋅X₇ {O(n)}
t₁₂, X₈: 5⋅X₈ {O(n)}