Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₁₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ 0
t₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₇
t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₁₅
t₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₅ ≤ 0
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₁₂, X₁₃, X₁₄, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₁, X₁₆)
t₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₀, X₁, X₅, X₁₅-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₀+X₁)
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₃, X₄, X₃+X₄, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₆, X₁₆)
t₂₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₅-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ 0
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₅
t₂₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₁₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₂, X₁₁, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₈) :|: 0 < X₉ ∧ 0 < X₉
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₁₁, X₁₁, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₈) :|: 0 < X₉ ∧ X₉ ≤ 0
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₂, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₈) :|: X₉ ≤ 0 ∧ 0 < X₉
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₁₁, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₈) :|: X₉ ≤ 0 ∧ X₉ ≤ 0
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₆-1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.0, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₆ ≤ 0
t₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₁₆
Preprocessing
Cut unsatisfiable transition t₁₁: l6→l9
Cut unsatisfiable transition t₁₂: l6→l9
Found invariant X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ for location l2
Found invariant 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l6
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₁₅+X₅ ≤ 0 ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ for location l15
Found invariant X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l12
Found invariant 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l7
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 1 ≤ X₁₀+X₇ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location l5
Found invariant 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ X₁₆ ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₁₆ ≤ 0 ∧ 1+X₁₆ ≤ X₁₅ ∧ 1+X₁₆ ≤ X₁₁ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l13
Found invariant 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l8
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location l1
Found invariant X₁₅ ≤ X₁₁ for location l10
Found invariant X₅ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ for location l4
Found invariant 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l9
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location l3
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₁₅+X₅ ≤ 0 ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₁₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀
t₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₇ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀
t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₁₅ ∧ X₁₅ ≤ X₁₁
t₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₂, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₁₂, X₁₃, X₁₄, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₁, X₁₆)
t₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₀, X₁, X₅, X₁₅-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₀+X₁) :|: X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₃, X₄, X₃+X₄, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₆, X₁₆) :|: 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ X₁₆ ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₁₆ ≤ 0 ∧ 1+X₁₆ ≤ X₁₅ ∧ 1+X₁₆ ≤ X₁₁ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁
t₂₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₁₅+X₅ ≤ 0 ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁
t₁₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₅-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀
t₁₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁
t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₅ ∧ X₅ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁
t₂₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₁₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 1 ≤ X₁₀+X₇ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₂, X₁₁, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₈) :|: 0 < X₉ ∧ 0 < X₉ ∧ 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₁₁, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₈) :|: X₉ ≤ 0 ∧ X₉ ≤ 0 ∧ 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₆-1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.0, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁
t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₆ ≤ 0 ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁
t₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₁₆ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁
MPRF for transition t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₁₅ ∧ X₁₅ ≤ X₁₁ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF for transition t₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₀, X₁, X₅, X₁₅-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₀+X₁) :|: X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF for transition t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁₆ ≤ 0 ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF for transition t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₃, X₄, X₃+X₄, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₆, X₁₆) :|: 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ X₁₆ ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₁₆ ≤ 0 ∧ 1+X₁₆ ≤ X₁₅ ∧ 1+X₁₆ ≤ X₁₁ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
X₁₁ {O(n)}
MPRF for transition t₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₁₆ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
MPRF for transition t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₆-1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
MPRF for transition t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.0, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₂, X₁₁, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₈) :|: 0 < X₉ ∧ 0 < X₉ ∧ 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
MPRF for transition t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₁₁, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₈) :|: X₉ ≤ 0 ∧ X₉ ≤ 0 ∧ 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
Chain transitions t₁₄: l13→l10 and t₃: l10→l4 to t₁₆₁: l13→l4
Chain transitions t₁: l11→l10 and t₃: l10→l4 to t₁₆₂: l11→l4
Chain transitions t₁: l11→l10 and t₂: l10→l12 to t₁₆₃: l11→l12
Chain transitions t₁₄: l13→l10 and t₂: l10→l12 to t₁₆₄: l13→l12
Chain transitions t₁₆₄: l13→l12 and t₄: l12→l9 to t₁₆₅: l13→l9
Chain transitions t₁₆₃: l11→l12 and t₄: l12→l9 to t₁₆₆: l11→l9
Chain transitions t₆: l9→l13 and t₁₆₅: l13→l9 to t₁₆₇: l9→l9
Chain transitions t₆: l9→l13 and t₁₆₁: l13→l4 to t₁₆₈: l9→l4
Chain transitions t₆: l9→l13 and t₁₆₄: l13→l12 to t₁₆₉: l9→l12
Chain transitions t₆: l9→l13 and t₁₄: l13→l10 to t₁₇₀: l9→l10
Chain transitions t₉: l8→l6 and t₁₃: l6→l9 to t₁₇₁: l8→l9
Chain transitions t₉: l8→l6 and t₁₀: l6→l9 to t₁₇₂: l8→l9
Chain transitions t₅: l9→l7 and t₇: l7→l8 to t₁₇₃: l9→l8
Chain transitions t₁₇₃: l9→l8 and t₁₇₂: l8→l9 to t₁₇₄: l9→l9
Chain transitions t₁₇₃: l9→l8 and t₁₇₁: l8→l9 to t₁₇₅: l9→l9
Chain transitions t₁₇₃: l9→l8 and t₉: l8→l6 to t₁₇₆: l9→l6
Analysing control-flow refined program
Eliminate variables {Temp_Int₂₄₇₂,X₀,X₁,X₈,X₉} that do not contribute to the problem
Found invariant X₁₁ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1+X₁₁ ≤ X₃ ∧ X₁₁ ≤ 0 for location l2
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₁₁ ≤ X₇ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₂+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ X₁₁ ≤ 1+X₄ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₁ for location l6
Found invariant X₁₁ ≤ X₇ ∧ X₃ ≤ 0 ∧ X₁₁+X₃ ≤ 0 ∧ X₁₁ ≤ 0 for location l15
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₁₁ ≤ X₇ ∧ 1 ≤ X₁₁ for location l12
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₁₁ ≤ X₇ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₂+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ X₁₁ ≤ 1+X₄ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₁ for location l7
Found invariant X₁₁ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1+X₁₁ ≤ X₃ ∧ X₁₁ ≤ 0 for location l5
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1+X₁₂ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₁₁ ≤ X₇ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ X₁₂ ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ X₁₁ ≤ 1+X₄ ∧ X₁₂ ≤ 0 ∧ 1+X₁₂ ≤ X₁₁ ∧ 1 ≤ X₁₁ for location l13
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₂+X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₁₁ ≤ X₇ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₂+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ X₁₁ ≤ 1+X₄ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₁ for location l8
Found invariant X₁₁ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁₁ ≤ X₆ ∧ 1 ≤ X₃ ∧ 1+X₁₁ ≤ X₃ ∧ X₁₁ ≤ 0 for location l1
Found invariant X₁₁ ≤ X₇ for location l10
Found invariant X₁₁ ≤ X₇ ∧ X₁₁ ≤ 0 for location l4
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₁₁ ≤ X₇ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ X₁₁ ≤ 1+X₄ ∧ 1 ≤ X₁₁ for location l9
Found invariant X₁₁ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁₁ ≤ X₆ ∧ 1 ≤ X₃ ∧ 1+X₁₁ ≤ X₃ ∧ X₁₁ ≤ 0 for location l3
Found invariant X₁₁ ≤ X₇ ∧ X₃ ≤ 0 ∧ X₁₁+X₃ ≤ 0 ∧ X₁₁ ≤ 0 for location l14
MPRF for transition t₂₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) -{4}> l9(X₁+X₂, X₁, X₂, X₃, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₄, X₁+X₂) :|: X₁₂ ≤ 0 ∧ 0 < X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₁₁ ≤ X₇ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ X₁₁ ≤ 1+X₄ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
X₇ {O(n)}
MPRF for transition t₂₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) -{4}> l9(X₀, X₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂-1) :|: 0 < X₁₂ ∧ 0 < Temp_Int₂₄₄₁ ∧ 0 < Temp_Int₂₄₄₁ ∧ 1 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₁₁ ≤ X₇ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ X₁₁ ≤ 1+X₄ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
32⋅4^(X₇)⋅X₇⋅X₇+4⋅4^(X₇)⋅X₁₀⋅X₇+4⋅4^(X₇)⋅X₇⋅X₈+4⋅4^(X₇)⋅X₇⋅X₉+8⋅X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₈+X₉ {O(EXP)}
MPRF for transition t₂₂₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) -{4}> l9(X₀, X₇, X₀, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂-1) :|: 0 < X₁₂ ∧ Temp_Int₂₄₅₆ ≤ 0 ∧ Temp_Int₂₄₅₆ ≤ 0 ∧ 1 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₁₁+X₇ ∧ X₁₁ ≤ X₇ ∧ 1+X₄ ≤ X₁₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₁+X₄ ∧ X₁₁ ≤ 1+X₄ ∧ 1 ≤ X₁₁ of depth 1:
new bound:
32⋅4^(X₇)⋅X₇⋅X₇+4⋅4^(X₇)⋅X₁₀⋅X₇+4⋅4^(X₇)⋅X₇⋅X₈+4⋅4^(X₇)⋅X₇⋅X₉+8⋅X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₈+X₉ {O(EXP)}
MPRF for transition t₂₀₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₆, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₅ ≤ 0 ∧ X₁₁ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁₁ ≤ X₆ ∧ 1 ≤ X₃ ∧ 1+X₁₁ ≤ X₃ ∧ X₁₁ ≤ 0 of depth 1:
new bound:
32⋅4^(X₇)⋅X₇+4⋅4^(X₇)⋅X₁₀+4⋅4^(X₇)⋅X₈+4⋅4^(X₇)⋅X₉+8⋅X₇+X₁₀+X₈+X₉ {O(EXP)}
MPRF for transition t₂₀₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₅ ∧ X₁₁ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁₁ ≤ X₆ ∧ 1 ≤ X₃ ∧ 1+X₁₁ ≤ X₃ ∧ X₁₁ ≤ 0 of depth 1:
new bound:
32⋅4^(X₇)⋅X₇+4⋅4^(X₇)⋅X₁₀+4⋅4^(X₇)⋅X₈+4⋅4^(X₇)⋅X₉+8⋅X₇+X₁₀+X₈+X₉ {O(EXP)}
MPRF for transition t₂₀₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₃-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₁₁ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1+X₁₁ ≤ X₃ ∧ X₁₁ ≤ 0 of depth 1:
new bound:
32⋅4^(X₇)⋅X₇+4⋅4^(X₇)⋅X₁₀+4⋅4^(X₇)⋅X₈+4⋅4^(X₇)⋅X₉+8⋅X₇+X₁₀+X₈+X₉+2 {O(EXP)}
MPRF for transition t₂₀₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₁₁ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁₁ ≤ X₆ ∧ 1 ≤ X₃ ∧ 1+X₁₁ ≤ X₃ ∧ X₁₁ ≤ 0 of depth 1:
new bound:
32⋅4^(X₇)⋅X₇+4⋅4^(X₇)⋅X₁₀+4⋅4^(X₇)⋅X₈+4⋅4^(X₇)⋅X₉+8⋅X₇+X₁₀+X₈+X₉ {O(EXP)}
MPRF for transition t₂₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₃ ∧ X₁₁ ≤ X₇ ∧ X₁₁ ≤ 0 of depth 1:
new bound:
32⋅4^(X₇)⋅X₇+4⋅4^(X₇)⋅X₁₀+4⋅4^(X₇)⋅X₈+4⋅4^(X₇)⋅X₉+8⋅X₇+X₁₀+X₈+X₉ {O(EXP)}
MPRF for transition t₂₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₆, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₁₁ ≤ X₇ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1+X₁₁ ≤ X₃ ∧ X₁₁ ≤ 0 of depth 1:
new bound:
32⋅4^(X₇)⋅X₇+4⋅4^(X₇)⋅X₁₀+4⋅4^(X₇)⋅X₈+4⋅4^(X₇)⋅X₉+8⋅X₇+X₁₀+X₈+X₉ {O(EXP)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₃+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁ for location n_l6___9
Found invariant X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ for location l2
Found invariant 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₆+X₃ ∧ 2 ≤ X₁₅+X₃ ∧ X₁₅ ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁ for location n_l6___1
Found invariant X₉ ≤ 0 ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₅ ∧ 1+X₉ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₆+X₃ ∧ 2 ≤ X₁₅+X₃ ∧ X₁₅ ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁ for location n_l8___2
Found invariant 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₆+X₄ ∧ 2 ≤ X₁₅+X₄ ∧ X₁₅ ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁ for location n_l6___4
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₁₅+X₅ ≤ 0 ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ for location l15
Found invariant X₉ ≤ 0 ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 1+X₉ ≤ X₃ ∧ X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₅ ∧ 1+X₉ ≤ X₁₁ ∧ X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₃+X₈ ∧ 0 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁₆+X₃ ∧ 2 ≤ X₁₅+X₃ ∧ X₁₅ ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₅+X₁₆ ∧ 1 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁ for location n_l9___7
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₆+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 2 ≤ X₁₅+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₆+X₄ ∧ 2 ≤ X₁₅+X₄ ∧ X₁₅ ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁ for location n_l8___5
Found invariant X₉ ≤ 0 ∧ 1+X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₆ ∧ 1+X₉ ≤ X₁₅ ∧ 1+X₉ ≤ X₁₁ ∧ X₈ ≤ X₁₆ ∧ 1 ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₅+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₆+X₃ ∧ 2 ≤ X₁₅+X₃ ∧ X₁₅ ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁ for location n_l7___3
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₆+X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₁₆+X₉ ∧ 2 ≤ X₁₅+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ X₈ ≤ X₁₆ ∧ 1 ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 2 ≤ X₁₅+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₆+X₄ ∧ 2 ≤ X₁₅+X₄ ∧ X₁₅ ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁ for location n_l7___6
Found invariant X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l12
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 1 ≤ X₁₀+X₇ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location l5
Found invariant 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ X₁₆ ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₁₆ ≤ 0 ∧ 1+X₁₆ ≤ X₁₅ ∧ 1+X₁₆ ≤ X₁₁ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l13
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location l1
Found invariant X₁₅ ≤ X₁₁ for location l10
Found invariant X₅ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ for location l4
Found invariant 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l9
Found invariant 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location n_l7___11
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₆+X₉ ∧ 2 ≤ X₄+X₉ ∧ 1 ≤ X₁₆+X₉ ∧ 2 ≤ X₁₅+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₄+X₈ ∧ 0 ≤ X₁₆+X₈ ∧ X₁₆ ≤ X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁₆+X₄ ∧ 2 ≤ X₁₅+X₄ ∧ X₁₅ ≤ X₄ ∧ 2 ≤ X₁₁+X₄ ∧ X₁₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₆ ∧ 1 ≤ X₁₅+X₁₆ ∧ 1 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁ for location n_l9___8
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location l3
Found invariant 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₃+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁ for location n_l8___10
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₁₅+X₅ ≤ 0 ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ for location l14
knowledge_propagation leads to new time bound X₁₁ {O(n)} for transition t₃₃₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l7___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₆+1, X₁₆) :|: X₆+1 ≤ X₁₅ ∧ X₁₅ ≤ 1+X₆ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₁₅ ∧ X₁₅ ≤ 1+X₆ ∧ X₀+X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₀+X₁ ∧ 1+X₆ ≤ X₁₁ ∧ 0 < X₁₆ ∧ 1+X₆ ≤ X₁₁ ∧ X₆+1 ≤ X₁₅ ∧ X₁₅ ≤ 1+X₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁
knowledge_propagation leads to new time bound X₁₁ {O(n)} for transition t₃₃₃: n_l7___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l8___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₆-1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₆+1, X₁₆) :|: 1+X₆ ≤ X₁₁ ∧ 0 < X₀+X₁ ∧ X₀+X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₀+X₁ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₆+1 ≤ X₁₅ ∧ X₁₅ ≤ 1+X₆ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₆ ≤ X₁₁ ∧ X₆+1 ≤ X₁₅ ∧ X₁₅ ≤ 1+X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁
knowledge_propagation leads to new time bound X₁₁ {O(n)} for transition t₃₃₆: n_l8___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, Arg6_P, X₇, Arg8_P, NoDet0, X₁₀, Arg11_P, X₁₂, X₁₃, X₁₄, Arg15_P, Arg16_P) :|: 1+X₆ ≤ X₁₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₈+1 ≤ X₁₆ ∧ X₁₆ ≤ 1+X₈ ∧ X₀+X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₀+X₁ ∧ X₀+X₄ ≤ X₁₆ ∧ X₁₆ ≤ X₀+X₄ ∧ X₆+1 ≤ X₁₅ ∧ X₁₅ ≤ 1+X₆ ∧ 1+Arg6_P ≤ Arg11_P ∧ 0 ≤ Arg8_P ∧ 0 ≤ Arg6_P ∧ X₁₆ ≤ Arg8_P+1 ∧ 1+Arg8_P ≤ X₁₆ ∧ X₁₅ ≤ Arg6_P+1 ∧ 1+Arg6_P ≤ X₁₅ ∧ Arg8_P+1 ≤ Arg16_P ∧ Arg16_P ≤ 1+Arg8_P ∧ Arg6_P+1 ≤ Arg15_P ∧ Arg15_P ≤ 1+Arg6_P ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆ ∧ 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₃+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁
knowledge_propagation leads to new time bound X₁₁ {O(n)} for transition t₃₃₁: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l9___7(X₀, X₁, X₂, X₁₁, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₆+1, X₈) :|: 1+X₆ ≤ X₁₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₈+1 ≤ X₁₆ ∧ X₁₆ ≤ 1+X₈ ∧ X₀+X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₀+X₁ ∧ X₀+X₄ ≤ X₁₆ ∧ X₁₆ ≤ X₀+X₄ ∧ X₆+1 ≤ X₁₅ ∧ X₁₅ ≤ 1+X₆ ∧ 1+X₆ ≤ X₁₁ ∧ X₉ ≤ 0 ∧ X₆+1 ≤ X₁₅ ∧ X₁₅ ≤ 1+X₆ ∧ X₈+1 ≤ X₁₆ ∧ X₁₆ ≤ 1+X₈ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₃+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁
knowledge_propagation leads to new time bound X₁₁ {O(n)} for transition t₃₃₂: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l9___8(X₀, X₁, X₂, X₂, X₁₁, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₆+1, X₈) :|: 1+X₆ ≤ X₁₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₈+1 ≤ X₁₆ ∧ X₁₆ ≤ 1+X₈ ∧ X₀+X₁ ≤ X₁₆ ∧ X₁₆ ≤ X₀+X₁ ∧ X₀+X₄ ≤ X₁₆ ∧ X₁₆ ≤ X₀+X₄ ∧ X₆+1 ≤ X₁₅ ∧ X₁₅ ≤ 1+X₆ ∧ 0 < X₉ ∧ 1+X₆ ≤ X₁₁ ∧ X₆+1 ≤ X₁₅ ∧ X₁₅ ≤ 1+X₆ ∧ X₈+1 ≤ X₁₆ ∧ X₁₆ ≤ 1+X₈ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₈ ∧ 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₃+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₁+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀+X₁
MPRF for transition t₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₅ ∧ X₅ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
MPRF for transition t₁₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₅-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
MPRF for transition t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
MPRF for transition t₂₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₇ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄+1 {O(EXP)}
MPRF for transition t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₁₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
MPRF for transition t₂₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₁₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 1 ≤ X₁₀+X₇ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
Chain transitions t₁₉: l3→l1 and t₂₀: l1→l5 to t₄₉₃: l3→l5
Chain transitions t₁₉: l3→l1 and t₂₁: l1→l4 to t₄₉₄: l3→l4
Chain transitions t₁₅: l4→l2 and t₁₇: l2→l3 to t₄₉₅: l4→l3
Chain transitions t₄₉₅: l4→l3 and t₄₉₃: l3→l5 to t₄₉₆: l4→l5
Chain transitions t₄₉₅: l4→l3 and t₄₉₄: l3→l4 to t₄₉₇: l4→l4
Chain transitions t₄₉₅: l4→l3 and t₁₉: l3→l1 to t₄₉₈: l4→l1
Chain transitions t₄₉₆: l4→l5 and t₂₂: l5→l4 to t₄₉₉: l4→l4
Analysing control-flow refined program
Eliminate variables {Temp_Int₆₇₈₉,X₇,X₁₀} that do not contribute to the problem
Found invariant X₁₃ ≤ X₉ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₃ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₃ ≤ X₂ ∧ X₁₃ ≤ 0 for location l2
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 2 ≤ X₁₄+X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1+X₇ ≤ X₁₄ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 1 ≤ X₁₄+X₇ ∧ X₁₄ ≤ 1+X₇ ∧ 1 ≤ X₁₃+X₇ ∧ 1+X₆ ≤ X₁₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₄+X₆ ∧ 1 ≤ X₁₃+X₆ ∧ X₁₃ ≤ 1+X₆ ∧ 1 ≤ X₁₄ ∧ 2 ≤ X₁₃+X₁₄ ∧ 1 ≤ X₁₃ for location l6
Found invariant X₁₃ ≤ X₉ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₁₃+X₅ ≤ 0 ∧ X₁₃ ≤ 0 for location l15
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1 ≤ X₁₃ for location l12
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 2 ≤ X₁₄+X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1+X₆ ≤ X₁₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₄+X₆ ∧ 1 ≤ X₁₃+X₆ ∧ X₁₃ ≤ 1+X₆ ∧ 1 ≤ X₁₄ ∧ 2 ≤ X₁₃+X₁₄ ∧ 1 ≤ X₁₃ for location l7
Found invariant X₁₃ ≤ X₉ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₃ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₃ ≤ X₂ ∧ X₁₃ ≤ 0 for location l5
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 1+X₁₄ ≤ X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1+X₆ ≤ X₁₃ ∧ 0 ≤ X₆ ∧ X₁₄ ≤ X₆ ∧ 1 ≤ X₁₃+X₆ ∧ X₁₃ ≤ 1+X₆ ∧ X₁₄ ≤ 0 ∧ 1+X₁₄ ≤ X₁₃ ∧ 1 ≤ X₁₃ for location l13
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 2 ≤ X₁₄+X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1+X₇ ≤ X₁₄ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 1 ≤ X₁₄+X₇ ∧ X₁₄ ≤ 1+X₇ ∧ 1 ≤ X₁₃+X₇ ∧ 1+X₆ ≤ X₁₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₄+X₆ ∧ 1 ≤ X₁₃+X₆ ∧ X₁₃ ≤ 1+X₆ ∧ 1 ≤ X₁₄ ∧ 2 ≤ X₁₃+X₁₄ ∧ 1 ≤ X₁₃ for location l8
Found invariant X₁₃ ≤ X₉ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₃ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₃ ≤ X₂ ∧ X₁₃ ≤ 0 for location l1
Found invariant X₁₃ ≤ X₉ for location l10
Found invariant X₁₃ ≤ X₉ ∧ X₅ ≤ X₂ ∧ X₁₃ ≤ 0 for location l4
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1+X₆ ≤ X₁₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₃+X₆ ∧ X₁₃ ≤ 1+X₆ ∧ 1 ≤ X₁₃ for location l9
Found invariant X₁₃ ≤ X₉ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁₃ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₃ ≤ X₂ ∧ X₁₃ ≤ 0 for location l3
Found invariant X₁₃ ≤ X₉ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₁₃+X₅ ≤ 0 ∧ X₁₃ ≤ 0 for location l14
MPRF for transition t₅₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₃ ∧ X₁₃ ≤ X₉ of depth 1:
new bound:
X₉ {O(n)}
MPRF for transition t₅₂₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₀, X₁, X₅, X₁₃-1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₀+X₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1 ≤ X₁₃ of depth 1:
new bound:
X₉ {O(n)}
MPRF for transition t₅₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₃, X₄, X₃+X₄, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₆, X₁₄) :|: 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 1+X₁₄ ≤ X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1+X₆ ≤ X₁₃ ∧ 0 ≤ X₆ ∧ X₁₄ ≤ X₆ ∧ 1 ≤ X₁₃+X₆ ∧ X₁₃ ≤ 1+X₆ ∧ X₁₄ ≤ 0 ∧ 1+X₁₄ ≤ X₁₃ ∧ 1 ≤ X₁₃ of depth 1:
new bound:
2⋅X₉ {O(n)}
MPRF for transition t₅₃₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1+X₆ ≤ X₁₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₃+X₆ ∧ X₁₃ ≤ 1+X₆ ∧ 1 ≤ X₁₃ of depth 1:
new bound:
X₉ {O(n)}
MPRF for transition t₅₃₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₂, X₉, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₇) :|: 0 < X₈ ∧ 0 < X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 2 ≤ X₁₄+X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1+X₇ ≤ X₁₄ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 1 ≤ X₁₄+X₇ ∧ X₁₄ ≤ 1+X₇ ∧ 1 ≤ X₁₃+X₇ ∧ 1+X₆ ≤ X₁₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₄+X₆ ∧ 1 ≤ X₁₃+X₆ ∧ X₁₃ ≤ 1+X₆ ∧ 1 ≤ X₁₄ ∧ 2 ≤ X₁₃+X₁₄ ∧ 1 ≤ X₁₃ of depth 1:
new bound:
2⋅2^(2⋅X₉)⋅X₁₀⋅X₉+2⋅2^(2⋅X₉)⋅X₁₁⋅X₉+2⋅2^(2⋅X₉)⋅X₁₂⋅X₉+2^(2⋅X₉)⋅4⋅X₉⋅X₉+X₁₀+X₁₁ {O(EXP)}
MPRF for transition t₅₃₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₉, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₇) :|: X₈ ≤ 0 ∧ X₈ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 2 ≤ X₁₄+X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1+X₇ ≤ X₁₄ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 1 ≤ X₁₄+X₇ ∧ X₁₄ ≤ 1+X₇ ∧ 1 ≤ X₁₃+X₇ ∧ 1+X₆ ≤ X₁₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₄+X₆ ∧ 1 ≤ X₁₃+X₆ ∧ X₁₃ ≤ 1+X₆ ∧ 1 ≤ X₁₄ ∧ 2 ≤ X₁₃+X₁₄ ∧ 1 ≤ X₁₃ of depth 1:
new bound:
2⋅2^(2⋅X₉)⋅X₁₀⋅X₉+2⋅2^(2⋅X₉)⋅X₁₁⋅X₉+2⋅2^(2⋅X₉)⋅X₁₂⋅X₉+2^(2⋅X₉)⋅4⋅X₉⋅X₉+X₁₀+X₁₁ {O(EXP)}
MPRF for transition t₅₃₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁₄-1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 2 ≤ X₁₄+X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1+X₆ ≤ X₁₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₄+X₆ ∧ 1 ≤ X₁₃+X₆ ∧ X₁₃ ≤ 1+X₆ ∧ 1 ≤ X₁₄ ∧ 2 ≤ X₁₃+X₁₄ ∧ 1 ≤ X₁₃ of depth 1:
new bound:
2⋅2^(2⋅X₉)⋅X₁₀⋅X₉+2⋅2^(2⋅X₉)⋅X₁₁⋅X₉+2⋅2^(2⋅X₉)⋅X₁₂⋅X₉+2^(2⋅X₉)⋅4⋅X₉⋅X₉+X₉⋅X₉+X₁₀+X₁₁+X₉ {O(EXP)}
MPRF for transition t₅₃₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, nondef.0, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 2 ≤ X₁₄+X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1+X₇ ≤ X₁₄ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 1 ≤ X₁₄+X₇ ∧ X₁₄ ≤ 1+X₇ ∧ 1 ≤ X₁₃+X₇ ∧ 1+X₆ ≤ X₁₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₄+X₆ ∧ 1 ≤ X₁₃+X₆ ∧ X₁₃ ≤ 1+X₆ ∧ 1 ≤ X₁₄ ∧ 2 ≤ X₁₃+X₁₄ ∧ 1 ≤ X₁₃ of depth 1:
new bound:
2⋅2^(2⋅X₉)⋅X₁₀⋅X₉+2⋅2^(2⋅X₉)⋅X₁₁⋅X₉+2⋅2^(2⋅X₉)⋅X₁₂⋅X₉+2^(2⋅X₉)⋅4⋅X₉⋅X₉+X₁₀+X₁₁ {O(EXP)}
MPRF for transition t₅₃₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₄ ∧ 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 2 ≤ X₁₃+X₉ ∧ X₁₃ ≤ X₉ ∧ 1+X₆ ≤ X₁₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₃+X₆ ∧ X₁₃ ≤ 1+X₆ ∧ 1 ≤ X₁₃ of depth 1:
new bound:
2⋅2^(2⋅X₉)⋅X₁₀⋅X₉+2⋅2^(2⋅X₉)⋅X₁₁⋅X₉+2⋅2^(2⋅X₉)⋅X₁₂⋅X₉+2^(2⋅X₉)⋅4⋅X₉⋅X₉+X₁₀+X₁₁ {O(EXP)}
MPRF for transition t₅₃₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) -{4}> l4(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₅ ∧ Temp_Int₆₇₇₂ ≤ 0 ∧ X₁₃ ≤ X₉ ∧ X₅ ≤ X₂ ∧ X₁₃ ≤ 0 of depth 1:
new bound:
2⋅2^(2⋅X₉)⋅X₉+2^(2⋅X₉)⋅X₁₀+2^(2⋅X₉)⋅X₁₁+2^(2⋅X₉)⋅X₁₂+X₁₂ {O(EXP)}
MPRF for transition t₅₃₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) -{5}> l4(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₅ ∧ 0 < Temp_Int₆₇₅₅ ∧ X₁₃ ≤ X₉ ∧ X₅ ≤ X₂ ∧ X₁₃ ≤ 0 of depth 1:
new bound:
2⋅2^(2⋅X₉)⋅X₉+2^(2⋅X₉)⋅X₁₀+2^(2⋅X₉)⋅X₁₁+2^(2⋅X₉)⋅X₁₂+X₁₂ {O(EXP)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant X₇ ≤ 0 ∧ 1+X₇ ≤ X₅ ∧ 2+X₇ ≤ X₂ ∧ X₁₅+X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ 1+X₁₅ ≤ X₁₀ ∧ 1 ≤ X₁₀ for location n_l2___7
Found invariant 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l6
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₁₅+X₅ ≤ 0 ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ for location l15
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₁₅ ≤ X₅ ∧ 0 ≤ X₁₀+X₅ ∧ X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location n_l4___3
Found invariant X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₁₅+X₇ ≤ 0 ∧ X₇ ≤ X₁₀ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₁₅ ≤ X₅ ∧ 0 ≤ X₁₀+X₅ ∧ X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location n_l4___9
Found invariant X₇ ≤ 0 ∧ 1+X₇ ≤ X₅ ∧ 2+X₇ ≤ X₂ ∧ X₁₅+X₇ ≤ 0 ∧ X₇ ≤ X₁₀ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location n_l3___6
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ X₂ ≤ 1+X₁₀ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location n_l1___10
Found invariant X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ for location n_l2___12
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 1 ≤ X₁₀+X₇ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ X₂ ≤ 1+X₁₀ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location n_l5___8
Found invariant X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l12
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ 1+X₁₅ ≤ X₁₀ ∧ 1 ≤ X₁₀ for location n_l2___2
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location n_l5___4
Found invariant 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l7
Found invariant X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ X₂ ≤ 1+X₁₀ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location n_l3___11
Found invariant 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ X₁₆ ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₁₆ ≤ 0 ∧ 1+X₁₆ ≤ X₁₅ ∧ 1+X₁₆ ≤ X₁₁ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l13
Found invariant 1+X₈ ≤ X₁₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₆+X₈ ∧ 1 ≤ X₁₆+X₈ ∧ X₁₆ ≤ 1+X₈ ∧ 1 ≤ X₁₅+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₆+X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₁₆ ∧ 2 ≤ X₁₅+X₁₆ ∧ 2 ≤ X₁₁+X₁₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l8
Found invariant 1+X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location n_l1___5
Found invariant X₁₅ ≤ X₁₁ for location l10
Found invariant X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ for location l4
Found invariant 1+X₆ ≤ X₁₅ ∧ 1+X₆ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₁₅+X₆ ∧ X₁₅ ≤ 1+X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 1 ≤ X₁₁ for location l9
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ for location n_l3___1
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₁₅+X₅ ≤ 0 ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ for location l14
MPRF for transition t₆₆₆: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉, X₅-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2+X₁₀ ≤ X₂ ∧ X₅ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₅ ∧ X₇ ≤ 0 ∧ X₅ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₅ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₅ ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+4⋅X₁₄+1 {O(EXP)}
MPRF for transition t₆₆₇: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₅-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 2+X₁₀ ≤ X₂ ∧ X₅ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₅ ∧ 0 < X₇ ∧ X₅ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₅ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₅ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+4⋅X₁₄ {O(EXP)}
MPRF for transition t₆₆₉: n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l3___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₅-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₇ ∧ 1+X₅ ≤ X₂ ∧ 0 < X₅ ∧ X₅ ≤ X₁₀ ∧ X₁₀ ≤ X₅ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ 1+X₁₅ ≤ X₁₀ ∧ 1 ≤ X₁₀ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2⋅X₁₄ {O(EXP)}
MPRF for transition t₆₇₀: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₅-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₇ ≤ 0 ∧ 1+X₁₀ ≤ X₂ ∧ 0 < X₁₀ ∧ X₅ ≤ X₁₀ ∧ X₁₀ ≤ X₅ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ 0 ∧ X₇ ≤ 0 ∧ 1+X₇ ≤ X₅ ∧ 2+X₇ ≤ X₂ ∧ X₁₅+X₇ ≤ 0 ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ 1+X₁₅ ≤ X₁₀ ∧ 1 ≤ X₁₀ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2⋅X₁₄ {O(EXP)}
MPRF for transition t₆₇₁: n_l3___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l1___5(X₀, X₁, X₂, X₃, X₄, Arg5_P, X₆, NoDet0, X₈, X₉, Arg10_P, Arg11_P, X₁₂, X₁₃, X₁₄, Arg15_P, X₁₆) :|: 1 ≤ X₇ ∧ 2+X₁₀ ≤ X₂ ∧ X₅ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₅ ∧ Arg15_P ≤ 0 ∧ Arg15_P ≤ Arg11_P ∧ Arg5_P ≤ X₂ ∧ 1 ≤ Arg5_P ∧ X₁₅ ≤ Arg15_P ∧ Arg15_P ≤ X₁₅ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀+1 ≤ Arg5_P ∧ Arg5_P ≤ 1+X₁₀ ∧ Arg5_P ≤ Arg10_P+1 ∧ 1+Arg10_P ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2⋅X₁₄ {O(EXP)}
MPRF for transition t₆₇₃: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l1___5(X₀, X₁, X₂, X₃, X₄, Arg5_P, X₆, NoDet0, X₈, X₉, Arg10_P, Arg11_P, X₁₂, X₁₃, X₁₄, Arg15_P, X₁₆) :|: X₇ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₅ ∧ Arg15_P ≤ 0 ∧ Arg15_P ≤ Arg11_P ∧ Arg5_P ≤ X₂ ∧ 1 ≤ Arg5_P ∧ X₁₅ ≤ Arg15_P ∧ Arg15_P ≤ X₁₅ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀+1 ≤ Arg5_P ∧ Arg5_P ≤ 1+X₁₀ ∧ Arg5_P ≤ Arg10_P+1 ∧ 1+Arg10_P ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ 1 ≤ X₅ ∧ X₇ ≤ 0 ∧ 1+X₇ ≤ X₅ ∧ 2+X₇ ≤ X₂ ∧ X₁₅+X₇ ≤ 0 ∧ X₇ ≤ X₁₀ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2⋅X₁₄ {O(EXP)}
MPRF for transition t₆₇₅: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l2___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅ ∧ 1+X₅ ≤ X₂ ∧ 1 ≤ X₇ ∧ 0 < X₅ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₅ ≤ X₂ ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ 0 ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₁₅ ≤ X₅ ∧ 0 ≤ X₁₀+X₅ ∧ X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2⋅X₁₄ {O(EXP)}
MPRF for transition t₆₇₆: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₅ ≤ X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅ ∧ 1+X₅ ≤ X₂ ∧ X₇ ≤ 0 ∧ 0 < X₅ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₅ ≤ X₂ ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ 0 ∧ X₇ ≤ 0 ∧ X₇ ≤ X₅ ∧ 1+X₇ ≤ X₂ ∧ X₁₅+X₇ ≤ 0 ∧ X₇ ≤ X₁₀ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ X₁₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₁₅ ≤ X₅ ∧ 0 ≤ X₁₀+X₅ ∧ X₁₀ ≤ X₅ ∧ 1 ≤ X₂ ∧ 1+X₁₅ ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+4⋅X₁₄+2 {O(EXP)}
MPRF for transition t₆₇₇: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅-1, X₆, X₇, X₈, X₉, X₅-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₇ ∧ 2+X₁₀ ≤ X₂ ∧ X₅ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₅ ∧ X₅ ≤ X₁₀+1 ∧ 1+X₁₀ ≤ X₅ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₁₅ ≤ X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₁₅ ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1+X₁₀ ≤ X₅ ∧ 2 ≤ X₂ ∧ 2+X₁₅ ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 2+X₁₀ ≤ X₂ ∧ X₁₅ ≤ 0 ∧ X₁₅ ≤ X₁₁ ∧ X₁₅ ≤ X₁₀ ∧ 0 ≤ X₁₀ of depth 1:
new bound:
2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+4⋅X₁₄+1 {O(EXP)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:16⋅2^(X₁₁)⋅X₁₁⋅X₁₁+2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+2^(X₁₁)⋅6⋅X₁₂+2^(X₁₁)⋅6⋅X₁₃+2^(X₁₁)⋅6⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+2^(X₁₁)⋅8⋅X₁₁⋅X₁₂+2^(X₁₁)⋅8⋅X₁₁⋅X₁₃+2^(X₁₁)⋅8⋅X₁₁⋅X₁₄+4⋅X₁₁+5⋅X₁₂+5⋅X₁₃+6⋅X₁₄+6 {O(EXP)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁₁ {O(n)}
t₃: 1 {O(1)}
t₄: X₁₁ {O(n)}
t₅: 2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
t₆: X₁₁ {O(n)}
t₇: 2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
t₉: 2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
t₁₀: 2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
t₁₃: 2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
t₁₄: X₁₁ {O(n)}
t₁₅: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₁₆: 1 {O(1)}
t₁₇: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₁₉: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄+1 {O(EXP)}
t₂₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₃: 1 {O(1)}
Costbounds
Overall costbound: 16⋅2^(X₁₁)⋅X₁₁⋅X₁₁+2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+2^(X₁₁)⋅6⋅X₁₂+2^(X₁₁)⋅6⋅X₁₃+2^(X₁₁)⋅6⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+2^(X₁₁)⋅8⋅X₁₁⋅X₁₂+2^(X₁₁)⋅8⋅X₁₁⋅X₁₃+2^(X₁₁)⋅8⋅X₁₁⋅X₁₄+4⋅X₁₁+5⋅X₁₂+5⋅X₁₃+6⋅X₁₄+6 {O(EXP)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁₁ {O(n)}
t₃: 1 {O(1)}
t₄: X₁₁ {O(n)}
t₅: 2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
t₆: X₁₁ {O(n)}
t₇: 2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
t₉: 2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
t₁₀: 2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
t₁₃: 2⋅2^(X₁₁)⋅X₁₁⋅X₁₂+2⋅2^(X₁₁)⋅X₁₁⋅X₁₃+2⋅2^(X₁₁)⋅X₁₁⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁⋅X₁₁+X₁₂+X₁₃ {O(EXP)}
t₁₄: X₁₁ {O(n)}
t₁₅: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₁₆: 1 {O(1)}
t₁₇: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₁₉: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄+1 {O(EXP)}
t₂₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₃: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₀, X₁₂: X₁₂ {O(n)}
t₀, X₁₃: X₁₃ {O(n)}
t₀, X₁₄: X₁₄ {O(n)}
t₀, X₁₅: X₁₅ {O(n)}
t₀, X₁₆: X₁₆ {O(n)}
t₁, X₀: X₁₂ {O(n)}
t₁, X₁: X₁₃ {O(n)}
t₁, X₂: X₁₄ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₁, X₁₂: X₁₂ {O(n)}
t₁, X₁₃: X₁₃ {O(n)}
t₁, X₁₄: X₁₄ {O(n)}
t₁, X₁₅: X₁₁ {O(n)}
t₁, X₁₆: X₁₆ {O(n)}
t₂, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₂, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₂, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₂, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₃ {O(EXP)}
t₂, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₄ {O(EXP)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₁₁+X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: 2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+X₈ {O(EXP)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₂, X₁₂: X₁₂ {O(n)}
t₂, X₁₃: X₁₃ {O(n)}
t₂, X₁₄: X₁₄ {O(n)}
t₂, X₁₅: X₁₁ {O(n)}
t₂, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+X₁₆ {O(EXP)}
t₃, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₂ {O(EXP)}
t₃, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₃ {O(EXP)}
t₃, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₃, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₃ {O(EXP)}
t₃, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₄ {O(EXP)}
t₃, X₅: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₃, X₆: X₁₁+X₆ {O(n)}
t₃, X₇: 2⋅X₇ {O(n)}
t₃, X₈: 2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+2⋅X₈ {O(EXP)}
t₃, X₁₀: 2⋅X₁₀ {O(n)}
t₃, X₁₁: 2⋅X₁₁ {O(n)}
t₃, X₁₂: 2⋅X₁₂ {O(n)}
t₃, X₁₃: 2⋅X₁₃ {O(n)}
t₃, X₁₄: 2⋅X₁₄ {O(n)}
t₃, X₁₅: 2⋅X₁₁ {O(n)}
t₃, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+X₁₆ {O(EXP)}
t₄, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₄, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₄, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₄, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₄, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₁₁ {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: 2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+X₈ {O(EXP)}
t₄, X₁₀: X₁₀ {O(n)}
t₄, X₁₁: X₁₁ {O(n)}
t₄, X₁₂: X₁₂ {O(n)}
t₄, X₁₃: X₁₃ {O(n)}
t₄, X₁₄: X₁₄ {O(n)}
t₄, X₁₅: X₁₁ {O(n)}
t₄, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₅, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₅, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₅, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₅, X₃: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+X₁₁ {O(EXP)}
t₅, X₄: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+X₁₁ {O(EXP)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₁₁ {O(n)}
t₅, X₇: X₇ {O(n)}
t₅, X₈: 16⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅8⋅X₁₂+2^(X₁₁)⋅8⋅X₁₃+2^(X₁₁)⋅8⋅X₁₄+X₈ {O(EXP)}
t₅, X₁₀: X₁₀ {O(n)}
t₅, X₁₁: X₁₁ {O(n)}
t₅, X₁₂: X₁₂ {O(n)}
t₅, X₁₃: X₁₃ {O(n)}
t₅, X₁₄: X₁₄ {O(n)}
t₅, X₁₅: X₁₁ {O(n)}
t₅, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₆, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₆, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₆, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₆, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₆, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₁₁ {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: 2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+X₈ {O(EXP)}
t₆, X₁₀: X₁₀ {O(n)}
t₆, X₁₁: X₁₁ {O(n)}
t₆, X₁₂: X₁₂ {O(n)}
t₆, X₁₃: X₁₃ {O(n)}
t₆, X₁₄: X₁₄ {O(n)}
t₆, X₁₅: 3⋅X₁₁ {O(n)}
t₆, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁ {O(EXP)}
t₇, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₇, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₇, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₇, X₃: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+X₁₁ {O(EXP)}
t₇, X₄: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+X₁₁ {O(EXP)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₁₁ {O(n)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₇, X₁₀: X₁₀ {O(n)}
t₇, X₁₁: X₁₁ {O(n)}
t₇, X₁₂: X₁₂ {O(n)}
t₇, X₁₃: X₁₃ {O(n)}
t₇, X₁₄: X₁₄ {O(n)}
t₇, X₁₅: X₁₁ {O(n)}
t₇, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₉, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₉, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₉, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₉, X₃: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+X₁₁ {O(EXP)}
t₉, X₄: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+X₁₁ {O(EXP)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₁₁ {O(n)}
t₉, X₇: X₇ {O(n)}
t₉, X₈: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₉, X₁₀: X₁₀ {O(n)}
t₉, X₁₁: X₁₁ {O(n)}
t₉, X₁₂: X₁₂ {O(n)}
t₉, X₁₃: X₁₃ {O(n)}
t₉, X₁₄: X₁₄ {O(n)}
t₉, X₁₅: X₁₁ {O(n)}
t₉, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₁₀, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₀, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₀, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₀, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₀, X₄: X₁₁ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: X₁₁ {O(n)}
t₁₀, X₇: X₇ {O(n)}
t₁₀, X₈: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₁₀, X₁₀: X₁₀ {O(n)}
t₁₀, X₁₁: X₁₁ {O(n)}
t₁₀, X₁₂: X₁₂ {O(n)}
t₁₀, X₁₃: X₁₃ {O(n)}
t₁₀, X₁₄: X₁₄ {O(n)}
t₁₀, X₁₅: X₁₁ {O(n)}
t₁₀, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₁₃, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₃, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₃, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₃, X₃: X₁₁ {O(n)}
t₁₃, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: X₁₁ {O(n)}
t₁₃, X₇: X₇ {O(n)}
t₁₃, X₈: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₁₃, X₁₁: X₁₁ {O(n)}
t₁₃, X₁₂: X₁₂ {O(n)}
t₁₃, X₁₃: X₁₃ {O(n)}
t₁₃, X₁₄: X₁₄ {O(n)}
t₁₃, X₁₅: X₁₁ {O(n)}
t₁₃, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁ {O(EXP)}
t₁₄, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₄, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₄, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₄, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₄, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄ {O(EXP)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: X₁₁ {O(n)}
t₁₄, X₇: X₇ {O(n)}
t₁₄, X₈: 2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+X₈ {O(EXP)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₄, X₁₁: X₁₁ {O(n)}
t₁₄, X₁₂: X₁₂ {O(n)}
t₁₄, X₁₃: X₁₃ {O(n)}
t₁₄, X₁₄: X₁₄ {O(n)}
t₁₄, X₁₅: X₁₁ {O(n)}
t₁₄, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁ {O(EXP)}
t₁₅, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₂ {O(EXP)}
t₁₅, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₃ {O(EXP)}
t₁₅, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₁₅, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₃ {O(EXP)}
t₁₅, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₄ {O(EXP)}
t₁₅, X₅: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₁₅, X₆: X₁₁+X₆ {O(n)}
t₁₅, X₈: 2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+2⋅X₈ {O(EXP)}
t₁₅, X₁₀: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2⋅X₁₀+2⋅X₁₄ {O(EXP)}
t₁₅, X₁₁: 2⋅X₁₁ {O(n)}
t₁₅, X₁₂: 2⋅X₁₂ {O(n)}
t₁₅, X₁₃: 2⋅X₁₃ {O(n)}
t₁₅, X₁₄: 2⋅X₁₄ {O(n)}
t₁₅, X₁₅: 2⋅X₁₁ {O(n)}
t₁₅, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+X₁₆ {O(EXP)}
t₁₆, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+3⋅X₁₂ {O(EXP)}
t₁₆, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+3⋅X₁₃ {O(EXP)}
t₁₆, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+3⋅X₁₄ {O(EXP)}
t₁₆, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+3⋅X₃ {O(EXP)}
t₁₆, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+3⋅X₄ {O(EXP)}
t₁₆, X₅: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+3⋅X₁₄ {O(EXP)}
t₁₆, X₆: 3⋅X₁₁+3⋅X₆ {O(n)}
t₁₆, X₈: 16⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+2^(X₁₁)⋅8⋅X₁₂+2^(X₁₁)⋅8⋅X₁₃+2^(X₁₁)⋅8⋅X₁₄+6⋅X₈ {O(EXP)}
t₁₆, X₁₀: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2⋅X₁₀+2⋅X₁₄ {O(EXP)}
t₁₆, X₁₁: 6⋅X₁₁ {O(n)}
t₁₆, X₁₂: 6⋅X₁₂ {O(n)}
t₁₆, X₁₃: 6⋅X₁₃ {O(n)}
t₁₆, X₁₄: 6⋅X₁₄ {O(n)}
t₁₆, X₁₅: 6⋅X₁₁ {O(n)}
t₁₆, X₁₆: 16⋅2^(X₁₁)⋅X₁₂+16⋅2^(X₁₁)⋅X₁₃+16⋅2^(X₁₁)⋅X₁₄+2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅32⋅X₁₁+2^(X₁₁)⋅4⋅X₁₁+3⋅X₁₆ {O(EXP)}
t₁₇, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₂ {O(EXP)}
t₁₇, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₃ {O(EXP)}
t₁₇, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₁₇, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₃ {O(EXP)}
t₁₇, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₄ {O(EXP)}
t₁₇, X₅: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₁₇, X₆: X₁₁+X₆ {O(n)}
t₁₇, X₈: 2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+2⋅X₈ {O(EXP)}
t₁₇, X₁₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₁₇, X₁₁: 2⋅X₁₁ {O(n)}
t₁₇, X₁₂: 2⋅X₁₂ {O(n)}
t₁₇, X₁₃: 2⋅X₁₃ {O(n)}
t₁₇, X₁₄: 2⋅X₁₄ {O(n)}
t₁₇, X₁₅: 2⋅X₁₁ {O(n)}
t₁₇, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+X₁₆ {O(EXP)}
t₁₉, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₂ {O(EXP)}
t₁₉, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₃ {O(EXP)}
t₁₉, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₁₉, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₃ {O(EXP)}
t₁₉, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₄ {O(EXP)}
t₁₉, X₅: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₁₉, X₆: X₁₁+X₆ {O(n)}
t₁₉, X₈: 2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+2⋅X₈ {O(EXP)}
t₁₉, X₁₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₁₉, X₁₁: 2⋅X₁₁ {O(n)}
t₁₉, X₁₂: 2⋅X₁₂ {O(n)}
t₁₉, X₁₃: 2⋅X₁₃ {O(n)}
t₁₉, X₁₄: 2⋅X₁₄ {O(n)}
t₁₉, X₁₅: 2⋅X₁₁ {O(n)}
t₁₉, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+X₁₆ {O(EXP)}
t₂₀, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₂ {O(EXP)}
t₂₀, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₃ {O(EXP)}
t₂₀, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₀, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₃ {O(EXP)}
t₂₀, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₄ {O(EXP)}
t₂₀, X₅: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₀, X₆: X₁₁+X₆ {O(n)}
t₂₀, X₈: 2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+2⋅X₈ {O(EXP)}
t₂₀, X₁₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₀, X₁₁: 2⋅X₁₁ {O(n)}
t₂₀, X₁₂: 2⋅X₁₂ {O(n)}
t₂₀, X₁₃: 2⋅X₁₃ {O(n)}
t₂₀, X₁₄: 2⋅X₁₄ {O(n)}
t₂₀, X₁₅: 2⋅X₁₁ {O(n)}
t₂₀, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+X₁₆ {O(EXP)}
t₂₁, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₂ {O(EXP)}
t₂₁, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₃ {O(EXP)}
t₂₁, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₁, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₃ {O(EXP)}
t₂₁, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₄ {O(EXP)}
t₂₁, X₅: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₁, X₆: X₁₁+X₆ {O(n)}
t₂₁, X₈: 2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+2⋅X₈ {O(EXP)}
t₂₁, X₁₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₁, X₁₁: 2⋅X₁₁ {O(n)}
t₂₁, X₁₂: 2⋅X₁₂ {O(n)}
t₂₁, X₁₃: 2⋅X₁₃ {O(n)}
t₂₁, X₁₄: 2⋅X₁₄ {O(n)}
t₂₁, X₁₅: 2⋅X₁₁ {O(n)}
t₂₁, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+X₁₆ {O(EXP)}
t₂₂, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₂ {O(EXP)}
t₂₂, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₃ {O(EXP)}
t₂₂, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₂, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₃ {O(EXP)}
t₂₂, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₄ {O(EXP)}
t₂₂, X₅: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₂, X₆: X₁₁+X₆ {O(n)}
t₂₂, X₈: 2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+2⋅X₈ {O(EXP)}
t₂₂, X₁₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅X₁₂+2^(X₁₁)⋅X₁₃+2^(X₁₁)⋅X₁₄+X₁₄ {O(EXP)}
t₂₂, X₁₁: 2⋅X₁₁ {O(n)}
t₂₂, X₁₂: 2⋅X₁₂ {O(n)}
t₂₂, X₁₃: 2⋅X₁₃ {O(n)}
t₂₂, X₁₄: 2⋅X₁₄ {O(n)}
t₂₂, X₁₅: 2⋅X₁₁ {O(n)}
t₂₂, X₁₆: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+X₁₆ {O(EXP)}
t₂₃, X₀: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+3⋅X₁₂ {O(EXP)}
t₂₃, X₁: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+3⋅X₁₃ {O(EXP)}
t₂₃, X₂: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+3⋅X₁₄ {O(EXP)}
t₂₃, X₃: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+3⋅X₃ {O(EXP)}
t₂₃, X₄: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+3⋅X₄ {O(EXP)}
t₂₃, X₅: 2⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅3⋅X₁₂+2^(X₁₁)⋅3⋅X₁₃+2^(X₁₁)⋅3⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+3⋅X₁₄ {O(EXP)}
t₂₃, X₆: 3⋅X₁₁+3⋅X₆ {O(n)}
t₂₃, X₈: 16⋅2^(X₁₁)⋅X₁₁+2^(X₁₁)⋅4⋅X₁₂+2^(X₁₁)⋅4⋅X₁₃+2^(X₁₁)⋅4⋅X₁₄+2^(X₁₁)⋅8⋅X₁₁+2^(X₁₁)⋅8⋅X₁₂+2^(X₁₁)⋅8⋅X₁₃+2^(X₁₁)⋅8⋅X₁₄+6⋅X₈ {O(EXP)}
t₂₃, X₁₀: 2⋅2^(X₁₁)⋅X₁₂+2⋅2^(X₁₁)⋅X₁₃+2⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅4⋅X₁₁+2⋅X₁₀+2⋅X₁₄ {O(EXP)}
t₂₃, X₁₁: 6⋅X₁₁ {O(n)}
t₂₃, X₁₂: 6⋅X₁₂ {O(n)}
t₂₃, X₁₃: 6⋅X₁₃ {O(n)}
t₂₃, X₁₄: 6⋅X₁₄ {O(n)}
t₂₃, X₁₅: 6⋅X₁₁ {O(n)}
t₂₃, X₁₆: 18⋅2^(X₁₁)⋅X₁₂+18⋅2^(X₁₁)⋅X₁₃+18⋅2^(X₁₁)⋅X₁₄+2^(X₁₁)⋅32⋅X₁₁+2^(X₁₁)⋅4⋅X₁₁+3⋅X₁₆ {O(EXP)}