Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₀ ∧ X₅ < 0
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₀ ∧ 0 < X₅
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₀ ≤ 0
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₃, X₄, X₂, X₃, X₄, X₅)
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀-(X₁)², X₁+(X₅)², X₂, X₃, X₄, X₅)
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₂
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ 0
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅)
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅)

Preprocessing

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l6

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l7

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l5

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l1

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ for location l4

Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₀ ∧ X₅ < 0 ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₀ ∧ 0 < X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₃, X₄, X₂, X₃, X₄, X₅)
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀-(X₁)², X₁+(X₅)², X₂, X₃, X₄, X₅) :|: X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ 0 ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅) :|: X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁

TWN: t₂: l1→l3

cycle: [t₂: l1→l3; t₃: l1→l3; t₆: l3→l1]
loop: (0 < X₀ ∧ X₅ < 0 ∨ 0 < X₀ ∧ 0 < X₅,(X₀,X₁,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₅)
order: [X₅; X₁; X₀]
closed-form:
X₅: X₅
X₁: X₁ + [[n != 0]] * (X₅)² * n^1
X₀: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1

Termination: true
Formula:

X₅ < 0 ∧ 2⋅(X₅)⁴ < 0
∨ X₅ < 0 ∧ 6⋅X₁*(X₅)² < 3⋅(X₅)⁴ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴
∨ X₅ < 0 ∧ 6⋅(X₁)²+(X₅)⁴ < 6⋅X₁*(X₅)² ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 6⋅X₁*(X₅)² ≤ 3⋅(X₅)⁴ ∧ 3⋅(X₅)⁴ ≤ 6⋅X₁*(X₅)²
∨ X₅ < 0 ∧ 0 < 6⋅X₀ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 6⋅X₁*(X₅)² ≤ 3⋅(X₅)⁴ ∧ 3⋅(X₅)⁴ ≤ 6⋅X₁*(X₅)² ∧ 6⋅(X₁)²+(X₅)⁴ ≤ 6⋅X₁*(X₅)² ∧ 6⋅X₁*(X₅)² ≤ 6⋅(X₁)²+(X₅)⁴
∨ 0 < X₅ ∧ 2⋅(X₅)⁴ < 0
∨ 0 < X₅ ∧ 6⋅X₁*(X₅)² < 3⋅(X₅)⁴ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴
∨ 0 < X₅ ∧ 6⋅(X₁)²+(X₅)⁴ < 6⋅X₁*(X₅)² ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 6⋅X₁*(X₅)² ≤ 3⋅(X₅)⁴ ∧ 3⋅(X₅)⁴ ≤ 6⋅X₁*(X₅)²
∨ 0 < X₅ ∧ 0 < 6⋅X₀ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 6⋅X₁*(X₅)² ≤ 3⋅(X₅)⁴ ∧ 3⋅(X₅)⁴ ≤ 6⋅X₁*(X₅)² ∧ 6⋅(X₁)²+(X₅)⁴ ≤ 6⋅X₁*(X₅)² ∧ 6⋅X₁*(X₅)² ≤ 6⋅(X₁)²+(X₅)⁴

Stabilization-Threshold for: 0 < X₀
alphas_abs: 6⋅X₀+6⋅X₁*(X₅)²+6⋅(X₁)²+3⋅(X₅)⁴
M: 0
N: 3
Bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+4 {O(n^4)}

TWN - Lifting for t₂: l1→l3 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}

relevant size-bounds w.r.t. t₁:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}

TWN: t₃: l1→l3

TWN - Lifting for t₃: l1→l3 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}

relevant size-bounds w.r.t. t₁:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}

TWN: t₆: l3→l1

TWN - Lifting for t₆: l3→l1 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}

relevant size-bounds w.r.t. t₁:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₁: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}

Chain transitions t₆: l3→l1 and t₅: l1→l4 to t₈₂: l3→l4

Chain transitions t₁: l2→l1 and t₅: l1→l4 to t₈₃: l2→l4

Chain transitions t₁: l2→l1 and t₄: l1→l4 to t₈₄: l2→l4

Chain transitions t₆: l3→l1 and t₄: l1→l4 to t₈₅: l3→l4

Chain transitions t₁: l2→l1 and t₃: l1→l3 to t₈₆: l2→l3

Chain transitions t₆: l3→l1 and t₃: l1→l3 to t₈₇: l3→l3

Chain transitions t₁: l2→l1 and t₂: l1→l3 to t₈₈: l2→l3

Chain transitions t₆: l3→l1 and t₂: l1→l3 to t₈₉: l3→l3

Analysing control-flow refined program

Cut unsatisfiable transition t₈₂: l3→l4

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l6

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l7

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l5

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l1

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l4

Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₃ for location l3

TWN: t₈₇: l3→l3

cycle: [t₈₇: l3→l3; t₈₉: l3→l3]
loop: ((X₁)² < X₀ ∧ 0 < X₅ ∨ (X₁)² < X₀ ∧ X₅ < 0,(X₀,X₁,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₅)
order: [X₅; X₁; X₀]
closed-form:
X₅: X₅
X₁: X₁ + [[n != 0]] * (X₅)² * n^1
X₀: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1

Termination: true
Formula:

0 < X₅ ∧ 2⋅(X₅)⁴ < 0
∨ 0 < X₅ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴
∨ 0 < X₅ ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)²
∨ 0 < X₅ ∧ 6⋅(X₁)² < 6⋅X₀ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)²
∨ X₅ < 0 ∧ 2⋅(X₅)⁴ < 0
∨ X₅ < 0 ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴
∨ X₅ < 0 ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)²
∨ X₅ < 0 ∧ 6⋅(X₁)² < 6⋅X₀ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)²

Stabilization-Threshold for: (X₁)² < X₀
alphas_abs: 6⋅X₀+6⋅X₁*(X₅)²+6⋅(X₁)²+3⋅(X₅)⁴
M: 0
N: 3
Bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+4 {O(n^4)}
loop: ((X₁)² < X₀ ∧ 0 < X₅ ∨ (X₁)² < X₀ ∧ X₅ < 0,(X₀,X₁,X₅) -> (X₀-(X₁)²,X₁+(X₅)²,X₅)
order: [X₅; X₁; X₀]
closed-form:
X₅: X₅
X₁: X₁ + [[n != 0]] * (X₅)² * n^1
X₀: X₀ + [[n != 0]] * -(X₁)² * n^1 + [[n != 0, n != 1]] * -1/3⋅(X₅)⁴ * n^3 + [[n != 0, n != 1]] * (1/2⋅(X₅)⁴-X₁*(X₅)²) * n^2 + [[n != 0, n != 1]] * (X₁*(X₅)²-1/6⋅(X₅)⁴) * n^1

Termination: true
Formula:

0 < X₅ ∧ 2⋅(X₅)⁴ < 0
∨ 0 < X₅ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴
∨ 0 < X₅ ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)²
∨ 0 < X₅ ∧ 6⋅(X₁)² < 6⋅X₀ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)²
∨ X₅ < 0 ∧ 2⋅(X₅)⁴ < 0
∨ X₅ < 0 ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴
∨ X₅ < 0 ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² < 0 ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)²
∨ X₅ < 0 ∧ 6⋅(X₁)² < 6⋅X₀ ∧ 2⋅(X₅)⁴ ≤ 0 ∧ 0 ≤ 2⋅(X₅)⁴ ∧ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 3⋅(X₅)⁴+6⋅X₁*(X₅)² ∧ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)² ≤ 0 ∧ 0 ≤ 6⋅(X₁)²+(X₅)⁴+6⋅X₁*(X₅)²

Stabilization-Threshold for: (X₁)² < X₀
alphas_abs: 6⋅X₀+6⋅X₁*(X₅)²+6⋅(X₁)²+3⋅(X₅)⁴
M: 0
N: 3
Bound: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+4 {O(n^4)}

TWN - Lifting for t₈₇: l3→l3 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}

relevant size-bounds w.r.t. t₈₆:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₈₆: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}

TWN - Lifting for t₈₇: l3→l3 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}

relevant size-bounds w.r.t. t₈₈:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₈₈: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}

TWN: t₈₉: l3→l3

TWN - Lifting for t₈₉: l3→l3 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}

relevant size-bounds w.r.t. t₈₆:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₈₆: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}

TWN - Lifting for t₈₉: l3→l3 of 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₁⋅X₅⋅X₅+12⋅X₁⋅X₁+12⋅X₀+8 {O(n^4)}

relevant size-bounds w.r.t. t₈₈:
X₀: X₃ {O(n)}
X₁: X₄ {O(n)}
X₅: X₅ {O(n)}
Runtime-bound of t₈₈: 1 {O(1)}
Results in: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₂₇₈: n_l1___2→l4

Cut unsatisfiable transition t₂₇₉: n_l1___4→l4

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l6

Found invariant 1+X₅ ≤ 0 ∧ 2+X₅ ≤ X₃ ∧ 1 ≤ X₃ for location n_l1___4

Found invariant 1+X₅ ≤ 0 ∧ 2+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___3

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___5

Found invariant 1+X₅ ≤ 0 ∧ 2+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___6

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₃ for location n_l1___2

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l7

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l5

Found invariant X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l1

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ for location l4

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___1

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Chain transitions t₉: l5→l4 and t₈: l4→l6 to t₃₉₆: l5→l6

Chain transitions t₅: l1→l4 and t₈: l4→l6 to t₃₉₇: l1→l6

Chain transitions t₅: l1→l4 and t₇: l4→l5 to t₃₉₈: l1→l5

Chain transitions t₉: l5→l4 and t₇: l4→l5 to t₃₉₉: l5→l5

Chain transitions t₄: l1→l4 and t₇: l4→l5 to t₄₀₀: l1→l5

Chain transitions t₄: l1→l4 and t₈: l4→l6 to t₄₀₁: l1→l6

Analysing control-flow refined program

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l6

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l7

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l5

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l1

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ for location l4

Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l3

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l5___1

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l6

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location n_l4___3

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l5___2

Found invariant X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l5___4

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ for location l7

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₃ for location l1

Found invariant X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ for location l4

Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l3

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
t₃: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
t₇: inf {Infinity}
t₈: 1 {O(1)}
t₉: inf {Infinity}
t₁₀: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
t₃: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₆: 6⋅X₅⋅X₅⋅X₅⋅X₅+12⋅X₄⋅X₅⋅X₅+12⋅X₄⋅X₄+12⋅X₃+8 {O(n^4)}
t₇: inf {Infinity}
t₈: 1 {O(1)}
t₉: inf {Infinity}
t₁₀: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₁, X₀: X₃ {O(n)}
t₁, X₁: X₄ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₄, X₃: 2⋅X₃ {O(n)}
t₄, X₄: 2⋅X₄ {O(n)}
t₄, X₅: 2⋅X₅ {O(n)}
t₅, X₃: 2⋅X₃ {O(n)}
t₅, X₄: 2⋅X₄ {O(n)}
t₅, X₅: 0 {O(1)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₇, X₃: 4⋅X₃ {O(n)}
t₇, X₄: 4⋅X₄ {O(n)}
t₇, X₅: 2⋅X₅ {O(n)}
t₈, X₃: 8⋅X₃ {O(n)}
t₈, X₄: 8⋅X₄ {O(n)}
t₈, X₅: 4⋅X₅ {O(n)}
t₉, X₃: 4⋅X₃ {O(n)}
t₉, X₄: 4⋅X₄ {O(n)}
t₉, X₅: 2⋅X₅ {O(n)}
t₁₀, X₃: 8⋅X₃ {O(n)}
t₁₀, X₄: 8⋅X₄ {O(n)}
t₁₀, X₅: 4⋅X₅ {O(n)}