Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₄ ≤ 0
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l4(X₀, X₁, X₂, X₃, X₄, X₀, X₁, X₂, X₃, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₄
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l1(X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₁₁ ∧ 0 < X₁₅
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₁₁ ≤ 0
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₁₅ ≤ 0
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₅
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₈, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₅ ≤ 0
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l1(X₄, 2⋅X₄, 3⋅X₄, X₄, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅-1, 3⋅X₆+2⋅X₇, -5⋅X₆-3⋅X₇, (X₅)²+X₈+1-2⋅X₅, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉+X₁₀ ≤ 0
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₉+X₁₀
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)

Preprocessing

Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₉ ≤ X₆ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l7

Found invariant X₉ ≤ X₆ ∧ X₁₀+X₉ ≤ 0 ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₆+X₈ ∧ X₁₀ ≤ X₈ ∧ 1 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₄ ≤ X₁₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₅+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l1

Found invariant X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l4

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₄ ≤ 0 ∧ X₄ ≤ X₁₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₅+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l4(X₀, X₁, X₂, X₃, X₄, X₀, X₁, X₂, X₃, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₄ ∧ X₄ ≤ X₁₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₅+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l1(X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₁₁ ∧ 0 < X₁₅
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₁₁ ≤ 0
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₁₅ ≤ 0
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₅ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₈, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₅ ≤ 0 ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l1(X₄, 2⋅X₄, 3⋅X₄, X₄, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉ ≤ X₆ ∧ X₁₀+X₉ ≤ 0 ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅-1, 3⋅X₆+2⋅X₇, -5⋅X₆-3⋅X₇, (X₅)²+X₈+1-2⋅X₅, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉+X₁₀ ≤ 0 ∧ X₉ ≤ X₆ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₉+X₁₀ ∧ X₉ ≤ X₆ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉ ≤ X₆ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₆+X₈ ∧ X₁₀ ≤ X₈ ∧ 1 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀

MPRF for transition t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l4(X₀, X₁, X₂, X₃, X₄, X₀, X₁, X₂, X₃, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₄ ∧ X₄ ≤ X₁₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₅+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅+1 {O(n)}

MPRF for transition t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₈, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₅ ≤ 0 ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅ {O(n)}

MPRF for transition t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉+X₁₀ ≤ 0 ∧ X₉ ≤ X₆ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅ {O(n)}

MPRF for transition t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l1(X₄, 2⋅X₄, 3⋅X₄, X₄, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉ ≤ X₆ ∧ X₁₀+X₉ ≤ 0 ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅ {O(n)}

TWN: t₆: l4→l6

cycle: [t₆: l4→l6; t₈: l6→l4]
loop: (0 < X₅,(X₅) -> (X₅-1)
order: [X₅]
closed-form:
X₅: X₅ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 0 < X₅ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < X₅
alphas_abs: X₅
M: 0
N: 1
Bound: 2⋅X₅+2 {O(n)}

TWN - Lifting for t₆: l4→l6 of 2⋅X₅+4 {O(n)}

relevant size-bounds w.r.t. t₄:
X₅: X₁₁+X₁₅ {O(n)}
Runtime-bound of t₄: X₁₅+1 {O(n)}
Results in: 2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4 {O(n^2)}

TWN: t₈: l6→l4

TWN - Lifting for t₈: l6→l4 of 2⋅X₅+4 {O(n)}

relevant size-bounds w.r.t. t₄:
X₅: X₁₁+X₁₅ {O(n)}
Runtime-bound of t₄: X₁₅+1 {O(n)}
Results in: 2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4 {O(n^2)}

Chain transitions t₁₂: l5→l1 and t₄: l1→l4 to t₉₁: l5→l4

Chain transitions t₁: l3→l1 and t₄: l1→l4 to t₉₂: l3→l4

Chain transitions t₁: l3→l1 and t₅: l1→l2 to t₉₃: l3→l2

Chain transitions t₁₂: l5→l1 and t₅: l1→l2 to t₉₄: l5→l2

Chain transitions t₈: l6→l4 and t₇: l4→l7 to t₉₅: l6→l7

Chain transitions t₉₁: l5→l4 and t₇: l4→l7 to t₉₆: l5→l7

Chain transitions t₉₁: l5→l4 and t₆: l4→l6 to t₉₇: l5→l6

Chain transitions t₈: l6→l4 and t₆: l4→l6 to t₉₈: l6→l6

Chain transitions t₉₂: l3→l4 and t₆: l4→l6 to t₉₉: l3→l6

Chain transitions t₉₂: l3→l4 and t₇: l4→l7 to t₁₀₀: l3→l7

Chain transitions t₁₀: l7→l5 and t₉₆: l5→l7 to t₁₀₁: l7→l7

Chain transitions t₁₀: l7→l5 and t₉₇: l5→l6 to t₁₀₂: l7→l6

Chain transitions t₁₀: l7→l5 and t₉₁: l5→l4 to t₁₀₃: l7→l4

Chain transitions t₁₀: l7→l5 and t₉₄: l5→l2 to t₁₀₄: l7→l2

Chain transitions t₁₀: l7→l5 and t₁₂: l5→l1 to t₁₀₅: l7→l1

Chain transitions t₉: l7→l8 and t₁₁: l8→l7 to t₁₀₆: l7→l7

Analysing control-flow refined program

Cut unsatisfiable transition t₉₃: l3→l2

Cut unsatisfiable transition t₁₀₀: l3→l7

Cut unsatisfiable transition t₁₀₁: l7→l7

Eliminate variables {X₁,X₂,X₃} that do not contribute to the problem

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₆+X₇ ≤ 0 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1 ≤ X₆+X₇ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 1 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ 1 ≤ X₁₂ ∧ 1 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4

MPRF for transition t₁₄₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) -{2}> l7(X₀, X₁, X₂-1, 3⋅X₃+2⋅X₄, -5⋅X₃-3⋅X₄, Temp_Int₂₆₆₅+Temp_Int₂₆₆₆+X₅-2⋅X₂, 3⋅X₃+2⋅X₄, Temp_Int₂₆₆₇+Temp_Int₂₆₆₈+X₅-2⋅X₂, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₂ ≤ 1 ∧ 0 < Temp_Int₂₆₆₆ ∧ X₂ ≤ Temp_Int₂₆₆₆ ∧ 0 < Temp_Int₂₆₆₈ ∧ X₂ ≤ Temp_Int₂₆₆₈ ∧ 1 ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₂+X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₂ {O(n)}

MPRF for transition t₁₄₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) -{4}> l6(X₁, X₁-1, X₁, 2⋅X₁, 3⋅X₁, X₁, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₆+X₇ ≤ 0 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₂+X₈ ∧ 1+X₂ ≤ X₈ ∧ 2 ≤ X₁₂+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₁₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₂+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁₂ ∧ 2 ≤ X₁+X₁₂ ∧ X₁ ≤ X₁₂ ∧ 2 ≤ X₀+X₁₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₂ {O(n)}

TWN: t₁₄₀: l6→l6

cycle: [t₁₄₀: l6→l6]
loop: (1 < X₂,(X₂) -> (X₂-1)
order: [X₂]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 1 < X₂
alphas_abs: 1+X₂
M: 0
N: 1
Bound: 2⋅X₂+4 {O(n)}
loop: (1 < X₂,(X₂) -> (X₂-1)
order: [X₂]
closed-form:
X₂: X₂ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 1 < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 1 < X₂
alphas_abs: 1+X₂
M: 0
N: 1
Bound: 2⋅X₂+4 {O(n)}

TWN - Lifting for t₁₄₀: l6→l6 of 2⋅X₂+6 {O(n)}

relevant size-bounds w.r.t. t₁₄₆:
X₂: 2⋅X₁₂ {O(n)}
Runtime-bound of t₁₄₆: X₁₂ {O(n)}
Results in: 4⋅X₁₂⋅X₁₂+6⋅X₁₂ {O(n^2)}

TWN - Lifting for t₁₄₀: l6→l6 of 2⋅X₂+6 {O(n)}

relevant size-bounds w.r.t. t₁₃₈:
X₂: X₈ {O(n)}
Runtime-bound of t₁₃₈: 1 {O(1)}
Results in: 2⋅X₈+6 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₇: l4→l7

Found invariant X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l6___3

Found invariant 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ for location n_l6___1

Found invariant 1+X₉ ≤ X₆ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 3 ≤ X₆+X₈ ∧ 1+X₁₀ ≤ X₈ ∧ 2 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l8___1

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₈+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₁₀ ∧ 1 ≤ X₆+X₈ ∧ X₁₀ ≤ X₈ ∧ 1 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l8___3

Found invariant 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l4___2

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₈ ≤ X₁₀ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l7

Found invariant 1+X₉ ≤ X₆ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ 1+X₁₀+X₉ ∧ 1 ≤ X₆+X₈ ∧ 1+X₁₀ ≤ X₈ ∧ 0 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location n_l7___2

Found invariant X₉ ≤ X₆ ∧ X₁₀+X₉ ≤ 0 ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₄ ≤ X₁₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁₅+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l1

Found invariant X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ for location l4

knowledge_propagation leads to new time bound X₁₅+1 {O(n)} for transition t₂₄₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: 0 < X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₅ ∧ 0 < X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₁₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₁₅+1 {O(n)} for transition t₂₄₄: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → n_l4___2(X₀, X₁, X₂, X₃, X₄, Arg5_P, 3⋅X₆+2⋅X₇, -5⋅X₆-3⋅X₇, NoDet0, X₉, X₁₀, Arg11_P, X₁₂, X₁₃, X₁₄, Arg15_P) :|: X₄ ≤ X₁₅ ∧ X₄ ≤ Arg15_P ∧ 1 ≤ Arg11_P ∧ 1+Arg5_P ≤ X₀ ∧ 0 ≤ Arg5_P ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₅ ≤ Arg5_P+1 ∧ 1+Arg5_P ≤ X₅ ∧ X₁₅ ≤ Arg15_P ∧ Arg15_P ≤ X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ X₁ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀

MPRF for transition t₂₄₁: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₄ ≤ X₁₅ ∧ 1+X₅ ≤ X₀ ∧ X₄ ≤ X₁₅ ∧ 0 < X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₁⋅X₁₅+X₁₅⋅X₁₅+3⋅X₁₅+X₁₁+1 {O(n^2)}

MPRF for transition t₂₄₃: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → n_l4___2(X₀, X₁, X₂, X₃, X₄, Arg5_P, 3⋅X₆+2⋅X₇, -5⋅X₆-3⋅X₇, NoDet0, X₉, X₁₀, Arg11_P, X₁₂, X₁₃, X₁₄, Arg15_P) :|: X₄ ≤ X₁₅ ∧ 1+X₅ ≤ X₀ ∧ 0 < X₅ ∧ X₄ ≤ Arg15_P ∧ 1 ≤ Arg11_P ∧ 1+Arg5_P ≤ X₀ ∧ 0 ≤ Arg5_P ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₅ ≤ Arg5_P+1 ∧ 1+Arg5_P ≤ X₅ ∧ X₁₅ ≤ Arg15_P ∧ Arg15_P ≤ X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁₅+X₅ ∧ 2 ≤ X₁₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 3 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₀+X₁₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₁₅⋅X₁₅+X₁₁⋅X₁₅+2⋅X₁₁+6⋅X₁₅ {O(n^2)}

MPRF for transition t₂₄₈: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₈, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₅ ≤ 0 ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅+1 {O(n)}

MPRF for transition t₂₆₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → n_l8___3(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₄ ≤ X₁₅ ∧ X₁₀ ≤ X₈ ∧ X₈ ≤ X₁₀ ∧ X₁₀ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₄ ≤ X₁₅ ∧ X₈ ≤ X₁₀ ∧ X₁₀ ≤ X₈ ∧ X₆ ≤ X₉ ∧ X₄ ≤ X₁₅ ∧ X₁₀ ≤ X₈ ∧ 0 < X₉+X₁₀ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₈ ≤ X₁₀ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅ {O(n)}

MPRF for transition t₂₆₂: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → n_l7___2(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉-1, X₁₀-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₄ ≤ X₁₅ ∧ 0 < X₆+X₁₀ ∧ X₆ ≤ X₉ ∧ X₈ ≤ X₁₀ ∧ X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₈ ∧ 1 ≤ X₉+X₁₀ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₉ ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₈+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₁₀ ∧ 1 ≤ X₆+X₈ ∧ X₁₀ ≤ X₈ ∧ 1 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₁₅+1 {O(n)}

MPRF for transition t₂₆₆: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅) :|: X₉+X₁₀ ≤ 0 ∧ X₉ ≤ X₆ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ ∧ 1+X₉ ≤ X₆ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ 1+X₁₀+X₉ ∧ 1 ≤ X₆+X₈ ∧ 1+X₁₀ ≤ X₈ ∧ 0 ≤ X₁₀+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₁₅ ∧ 1+X₅ ≤ X₁₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₁₅+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₁₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₅+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁₅ ∧ 2 ≤ X₁₁+X₁₅ ∧ 2 ≤ X₀+X₁₅ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₁₅ {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: X₁₅+1 {O(n)}
t₅: 1 {O(1)}
t₆: 2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4 {O(n^2)}
t₇: X₁₅ {O(n)}
t₈: 2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4 {O(n^2)}
t₉: inf {Infinity}
t₁₀: X₁₅ {O(n)}
t₁₁: inf {Infinity}
t₁₂: X₁₅ {O(n)}
t₁₃: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: X₁₅+1 {O(n)}
t₅: 1 {O(1)}
t₆: 2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4 {O(n^2)}
t₇: X₁₅ {O(n)}
t₈: 2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4 {O(n^2)}
t₉: inf {Infinity}
t₁₀: X₁₅ {O(n)}
t₁₁: inf {Infinity}
t₁₂: X₁₅ {O(n)}
t₁₃: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₀, X₁₂: X₁₂ {O(n)}
t₀, X₁₃: X₁₃ {O(n)}
t₀, X₁₄: X₁₄ {O(n)}
t₀, X₁₅: X₁₅ {O(n)}
t₁, X₀: X₁₁ {O(n)}
t₁, X₁: X₁₂ {O(n)}
t₁, X₂: X₁₃ {O(n)}
t₁, X₃: X₁₄ {O(n)}
t₁, X₄: X₁₅ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₁, X₁₂: X₁₂ {O(n)}
t₁, X₁₃: X₁₃ {O(n)}
t₁, X₁₄: X₁₄ {O(n)}
t₁, X₁₅: X₁₅ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₂, X₁₂: X₁₂ {O(n)}
t₂, X₁₃: X₁₃ {O(n)}
t₂, X₁₄: X₁₄ {O(n)}
t₂, X₁₅: X₁₅ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₉ {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₃, X₁₂: X₁₂ {O(n)}
t₃, X₁₃: X₁₃ {O(n)}
t₃, X₁₄: X₁₄ {O(n)}
t₃, X₁₅: X₁₅ {O(n)}
t₄, X₀: X₁₁+X₁₅ {O(n)}
t₄, X₁: 2⋅X₁₅+X₁₂ {O(n)}
t₄, X₂: 3⋅X₁₅+X₁₃ {O(n)}
t₄, X₃: X₁₄+X₁₅ {O(n)}
t₄, X₄: X₁₅ {O(n)}
t₄, X₅: X₁₁+X₁₅ {O(n)}
t₄, X₆: 2⋅X₁₅+X₁₂ {O(n)}
t₄, X₇: 3⋅X₁₅+X₁₃ {O(n)}
t₄, X₈: X₁₄+X₁₅ {O(n)}
t₄, X₁₁: X₁₁ {O(n)}
t₄, X₁₂: X₁₂ {O(n)}
t₄, X₁₃: X₁₃ {O(n)}
t₄, X₁₄: X₁₄ {O(n)}
t₄, X₁₅: X₁₅ {O(n)}
t₅, X₀: X₁₅ {O(n)}
t₅, X₁: 2⋅X₁₅ {O(n)}
t₅, X₂: 3⋅X₁₅ {O(n)}
t₅, X₃: X₁₅ {O(n)}
t₅, X₄: 0 {O(1)}
t₅, X₅: 0 {O(1)}
t₅, X₆: 10⋅10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₃ {O(EXP)}
t₅, X₇: 10⋅10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₃ {O(EXP)}
t₅, X₁₁: X₁₁ {O(n)}
t₅, X₁₂: X₁₂ {O(n)}
t₅, X₁₃: X₁₃ {O(n)}
t₅, X₁₄: X₁₄ {O(n)}
t₅, X₁₅: X₁₅ {O(n)}
t₆, X₀: X₁₁+X₁₅ {O(n)}
t₆, X₁: 2⋅X₁₅+X₁₂ {O(n)}
t₆, X₂: 3⋅X₁₅+X₁₃ {O(n)}
t₆, X₃: X₁₄+X₁₅ {O(n)}
t₆, X₄: X₁₅ {O(n)}
t₆, X₅: X₁₁+X₁₅ {O(n)}
t₆, X₆: 10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅5⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₃ {O(EXP)}
t₆, X₇: 10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅5⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₃ {O(EXP)}
t₆, X₁₁: X₁₁ {O(n)}
t₆, X₁₂: X₁₂ {O(n)}
t₆, X₁₃: X₁₃ {O(n)}
t₆, X₁₄: X₁₄ {O(n)}
t₆, X₁₅: X₁₅ {O(n)}
t₇, X₀: X₁₁+X₁₅ {O(n)}
t₇, X₁: 2⋅X₁₅+X₁₂ {O(n)}
t₇, X₂: 3⋅X₁₅+X₁₃ {O(n)}
t₇, X₃: X₁₄+X₁₅ {O(n)}
t₇, X₄: X₁₅ {O(n)}
t₇, X₅: 0 {O(1)}
t₇, X₆: 10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅5⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₃ {O(EXP)}
t₇, X₇: 10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅5⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₃ {O(EXP)}
t₇, X₉: 10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅5⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₃ {O(EXP)}
t₇, X₁₁: X₁₁ {O(n)}
t₇, X₁₂: X₁₂ {O(n)}
t₇, X₁₃: X₁₃ {O(n)}
t₇, X₁₄: X₁₄ {O(n)}
t₇, X₁₅: X₁₅ {O(n)}
t₈, X₀: X₁₁+X₁₅ {O(n)}
t₈, X₁: 2⋅X₁₅+X₁₂ {O(n)}
t₈, X₂: 3⋅X₁₅+X₁₃ {O(n)}
t₈, X₃: X₁₄+X₁₅ {O(n)}
t₈, X₄: X₁₅ {O(n)}
t₈, X₅: X₁₁+X₁₅ {O(n)}
t₈, X₆: 10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅5⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₃ {O(EXP)}
t₈, X₇: 10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅5⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₃ {O(EXP)}
t₈, X₁₁: X₁₁ {O(n)}
t₈, X₁₂: X₁₂ {O(n)}
t₈, X₁₃: X₁₃ {O(n)}
t₈, X₁₄: X₁₄ {O(n)}
t₈, X₁₅: X₁₅ {O(n)}
t₉, X₀: X₁₁+X₁₅ {O(n)}
t₉, X₁: 2⋅X₁₅+X₁₂ {O(n)}
t₉, X₂: 3⋅X₁₅+X₁₃ {O(n)}
t₉, X₃: X₁₄+X₁₅ {O(n)}
t₉, X₄: X₁₅ {O(n)}
t₉, X₅: 0 {O(1)}
t₉, X₆: 10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅5⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₃ {O(EXP)}
t₉, X₇: 10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅5⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₃ {O(EXP)}
t₉, X₁₁: X₁₁ {O(n)}
t₉, X₁₂: X₁₂ {O(n)}
t₉, X₁₃: X₁₃ {O(n)}
t₉, X₁₄: X₁₄ {O(n)}
t₉, X₁₅: X₁₅ {O(n)}
t₁₀, X₀: 2⋅X₁₁+2⋅X₁₅ {O(n)}
t₁₀, X₁: 2⋅X₁₂+4⋅X₁₅ {O(n)}
t₁₀, X₂: 2⋅X₁₃+6⋅X₁₅ {O(n)}
t₁₀, X₃: 2⋅X₁₄+2⋅X₁₅ {O(n)}
t₁₀, X₄: X₁₅ {O(n)}
t₁₀, X₅: 0 {O(1)}
t₁₀, X₆: 10⋅10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₃ {O(EXP)}
t₁₀, X₇: 10⋅10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₃ {O(EXP)}
t₁₀, X₁₁: X₁₁ {O(n)}
t₁₀, X₁₂: X₁₂ {O(n)}
t₁₀, X₁₃: X₁₃ {O(n)}
t₁₀, X₁₄: X₁₄ {O(n)}
t₁₀, X₁₅: X₁₅ {O(n)}
t₁₁, X₀: X₁₁+X₁₅ {O(n)}
t₁₁, X₁: 2⋅X₁₅+X₁₂ {O(n)}
t₁₁, X₂: 3⋅X₁₅+X₁₃ {O(n)}
t₁₁, X₃: X₁₄+X₁₅ {O(n)}
t₁₁, X₄: X₁₅ {O(n)}
t₁₁, X₅: 0 {O(1)}
t₁₁, X₆: 10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅5⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₃ {O(EXP)}
t₁₁, X₇: 10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅5⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₃ {O(EXP)}
t₁₁, X₁₁: X₁₁ {O(n)}
t₁₁, X₁₂: X₁₂ {O(n)}
t₁₁, X₁₃: X₁₃ {O(n)}
t₁₁, X₁₄: X₁₄ {O(n)}
t₁₁, X₁₅: X₁₅ {O(n)}
t₁₂, X₀: X₁₅ {O(n)}
t₁₂, X₁: 2⋅X₁₅ {O(n)}
t₁₂, X₂: 3⋅X₁₅ {O(n)}
t₁₂, X₃: X₁₅ {O(n)}
t₁₂, X₄: X₁₅ {O(n)}
t₁₂, X₅: 0 {O(1)}
t₁₂, X₆: 10⋅10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₃ {O(EXP)}
t₁₂, X₇: 10⋅10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₃ {O(EXP)}
t₁₂, X₁₁: X₁₁ {O(n)}
t₁₂, X₁₂: X₁₂ {O(n)}
t₁₂, X₁₃: X₁₃ {O(n)}
t₁₂, X₁₄: X₁₄ {O(n)}
t₁₂, X₁₅: X₁₅ {O(n)}
t₁₃, X₀: 2⋅X₀+X₁₅ {O(n)}
t₁₃, X₁: 2⋅X₁+2⋅X₁₅ {O(n)}
t₁₃, X₂: 2⋅X₂+3⋅X₁₅ {O(n)}
t₁₃, X₃: 2⋅X₃+X₁₅ {O(n)}
t₁₃, X₄: 2⋅X₄ {O(n)}
t₁₃, X₅: 2⋅X₅ {O(n)}
t₁₃, X₆: 10⋅10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₃+2⋅X₆ {O(EXP)}
t₁₃, X₇: 10⋅10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅X₁₅+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₂+10^(2⋅X₁₁⋅X₁₅+2⋅X₁₅⋅X₁₅+2⋅X₁₁+6⋅X₁₅+4)⋅2⋅X₁₃+2⋅X₇ {O(EXP)}
t₁₃, X₁₁: 3⋅X₁₁ {O(n)}
t₁₃, X₁₂: 3⋅X₁₂ {O(n)}
t₁₃, X₁₃: 3⋅X₁₃ {O(n)}
t₁₃, X₁₄: 3⋅X₁₄ {O(n)}
t₁₃, X₁₅: 3⋅X₁₅ {O(n)}