Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ < 0
t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₇
t₄₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₈ < 0
t₄₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₈
t₄₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, nondef.1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < 0
t₃₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₀
t₃₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(nondef.2, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 0, X₁₃, X₁₄) :|: X₁₄ < X₉+X₁₃
t₃: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉+X₁₃ ≤ X₁₄
t₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₉)
t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ < 0
t₂₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₁
t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ ≤ 1+X₁₀
t₄₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀+1 < X₄
t₄₇: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁+1, X₁₂, X₁₃, X₁₄)
t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, nondef.3, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₄₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₂: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ < X₅
t₂₃: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₁₁
t₅: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₆ ≤ X₁₂
t₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ < X₆
t₄₈: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, X₁₃, X₁₄)
t₄₉: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄+1)
t₅₀: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₇: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ < 0
t₈: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₂
t₃₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, -1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < 0
t₃₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, -1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁
t₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, X₁₃, X₁₄)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, -1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < 0
t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, -1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₃
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ ≤ 0 ∧ 0 ≤ X₃

Preprocessing

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ for location l11

Found invariant X₉ ≤ X₁₄ for location l25

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ for location l27

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l2

Found invariant X₉ ≤ X₁₄ ∧ X₆ ≤ X₁₂ ∧ 0 ≤ X₁₂ for location l24

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ for location l6

Found invariant X₉ ≤ X₁₄ for location l15

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l19

Found invariant X₉ ≤ X₁₄ for location l26

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ for location l12

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₅ ≤ X₁₁ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l23

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l17

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ for location l7

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 2 ≤ X₄+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 2+X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 3 ≤ X₄ ∧ 3 ≤ X₁₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 2+X₁₀ ≤ X₄ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀ for location l20

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l21

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ for location l5

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ for location l13

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ X₁₂ for location l22

Found invariant X₉ ≤ X₁₄ ∧ X₈ ≤ 1 ∧ X₈ ≤ X₆ ∧ X₈ ≤ 1+X₁₂ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ for location l8

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l1

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ for location l10

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀ for location l18

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ for location l4

Found invariant X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ for location l9

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l3

Found invariant X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ for location l14

Cut unsatisfiable transition t₇: l27→l7

Cut unsatisfiable transition t₂₅: l17→l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₇ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₈ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₈ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, nondef.1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₃₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₃₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₂₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(nondef.2, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁
t₃₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 0, X₁₃, X₁₄) :|: X₁₄ < X₉+X₁₃ ∧ X₉ ≤ X₁₄
t₃: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉+X₁₃ ≤ X₁₄ ∧ X₉ ≤ X₁₄
t₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₉)
t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₂₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ ≤ 1+X₁₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀
t₄₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀+1 < X₄ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀
t₄₇: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁+1, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, nondef.3, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 2 ≤ X₄+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 2+X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 3 ≤ X₄ ∧ 3 ≤ X₁₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 2+X₁₀ ≤ X₄ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀
t₂₂: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ < X₅ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₂₃: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₁₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₅: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₆ ≤ X₁₂ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ X₁₂
t₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ < X₆ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ X₁₂
t₄₈: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₅ ≤ X₁₁ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₄₉: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄+1) :|: X₉ ≤ X₁₄ ∧ X₆ ≤ X₁₂ ∧ 0 ≤ X₁₂
t₅₀: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄
t₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₈: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₃₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, -1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₃₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, -1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0 ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂
t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ X₈ ≤ 1 ∧ X₈ ≤ X₆ ∧ X₈ ≤ 1+X₁₂ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, -1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < 0 ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, -1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₃ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂

MPRF for transition t₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, 0, X₁₃, X₁₄) :|: X₁₄ < X₉+X₁₃ ∧ X₉ ≤ X₁₄ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF for transition t₄: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ < X₆ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

MPRF for transition t₅: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₆ ≤ X₁₂ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₁₃+4⋅X₉+2 {O(n)}

MPRF for transition t₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF for transition t₈: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

MPRF for transition t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, nondef.0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF for transition t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0 ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₁₃+4⋅X₉+2 {O(n)}

MPRF for transition t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₁₃+4⋅X₉+2 {O(n)}

MPRF for transition t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ X₁₂ ≤ 0 ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF for transition t₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

MPRF for transition t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, nondef.1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

MPRF for transition t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, -1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < 0 ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}

MPRF for transition t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, -1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₃ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}

MPRF for transition t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₉ ≤ X₁₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

MPRF for transition t₂₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 0, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ X₈ ≤ 1 ∧ X₈ ≤ X₆ ∧ X₈ ≤ 1+X₁₂ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}

MPRF for transition t₂₃: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₁₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}

MPRF for transition t₄₈: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ X₅ ≤ X₁₁ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}

MPRF for transition t₄₉: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄+1) :|: X₉ ≤ X₁₄ ∧ X₆ ≤ X₁₂ ∧ 0 ≤ X₁₂ of depth 1:

new bound:

2⋅X₉+X₁₃+1 {O(n)}

MPRF for transition t₂₂: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ < X₅ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}

MPRF for transition t₂₄: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}

MPRF for transition t₂₆: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}

MPRF for transition t₂₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}

MPRF for transition t₂₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(nondef.2, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}

MPRF for transition t₃₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}

MPRF for transition t₃₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2 {O(n^2)}

MPRF for transition t₃₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+2⋅X₆⋅X₉+X₁₃⋅X₆+X₅⋅X₆+X₅+X₆+1 {O(n^3)}

MPRF for transition t₃₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}

MPRF for transition t₃₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, nondef.3, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}

MPRF for transition t₃₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, -1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅ {O(n^3)}

MPRF for transition t₃₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, -1, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}

MPRF for transition t₃₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 0, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}

MPRF for transition t₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅ {O(n^3)}

MPRF for transition t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₇ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅ {O(n^3)}

MPRF for transition t₄₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₈ < 0 ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}

MPRF for transition t₄₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₈ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}

MPRF for transition t₄₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}

MPRF for transition t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₄ ≤ 1+X₁₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}

MPRF for transition t₄₇: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁+1, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁ of depth 1:

new bound:

2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}

knowledge_propagation leads to new time bound 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)} for transition t₃₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1+X₁₁ ≤ X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ X₁₁ ≤ X₁₂ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁

knowledge_propagation leads to new time bound 3⋅X₁₃⋅X₆+6⋅X₆⋅X₉+3⋅X₆+3 {O(n^2)} for transition t₄₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 1, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₇ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ 0 ≤ 2+X₇+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₁₂+X₇ ∧ 0 ≤ 1+X₁₁+X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 0 ≤ X₁₁

MPRF for transition t₄₄: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₀+1 < X₄ ∧ X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀ of depth 1:

new bound:

2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₄ {O(n^4)}

MPRF for transition t₄₆: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₁₄ ∧ 0 ≤ 1+X₈ ∧ X₇ ≤ 2+X₈ ∧ 0 ≤ X₆+X₈ ∧ 0 ≤ X₅+X₈ ∧ 2 ≤ X₄+X₈ ∧ 0 ≤ 1+X₁₂+X₈ ∧ 0 ≤ 1+X₁₁+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₇ ≤ 1 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ 2+X₇ ≤ X₄ ∧ X₇ ≤ 1+X₁₂ ∧ X₇ ≤ 1+X₁₁ ∧ X₇ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 1 ≤ X₁₂+X₆ ∧ 1+X₁₂ ≤ X₆ ∧ 1 ≤ X₁₁+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 1 ≤ X₁₂+X₅ ∧ 1 ≤ X₁₁+X₅ ∧ 1+X₁₁ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 3 ≤ X₄ ∧ 3 ≤ X₁₂+X₄ ∧ 3 ≤ X₁₁+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 2+X₁₀ ≤ X₄ ∧ 0 ≤ X₁₂ ∧ 0 ≤ X₁₁+X₁₂ ∧ 1 ≤ X₁₀+X₁₂ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁₀ of depth 1:

new bound:

2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₄ {O(n^4)}

Chain transitions t₃₈: l3→l1 and t₄₃: l1→l19 to t₄₁₆₃: l3→l19

Chain transitions t₃₇: l3→l1 and t₄₃: l1→l19 to t₄₁₆₄: l3→l19

Chain transitions t₃₇: l3→l1 and t₄₂: l1→l18 to t₄₁₆₅: l3→l18

Chain transitions t₃₈: l3→l1 and t₄₂: l1→l18 to t₄₁₆₆: l3→l18

Chain transitions t₃₆: l3→l1 and t₄₂: l1→l18 to t₄₁₆₇: l3→l18

Chain transitions t₃₆: l3→l1 and t₄₃: l1→l19 to t₄₁₆₈: l3→l19

Chain transitions t₃₆: l3→l1 and t₄₁: l1→l18 to t₄₁₆₉: l3→l18

Chain transitions t₃₇: l3→l1 and t₄₁: l1→l18 to t₄₁₇₀: l3→l18

Chain transitions t₃₈: l3→l1 and t₄₁: l1→l18 to t₄₁₇₁: l3→l18

Chain transitions t₃₁: l11→l1 and t₄₁: l1→l18 to t₄₁₇₂: l11→l18

Chain transitions t₃₁: l11→l1 and t₄₂: l1→l18 to t₄₁₇₃: l11→l18

Chain transitions t₃₁: l11→l1 and t₄₃: l1→l19 to t₄₁₇₄: l11→l19

Chain transitions t₃₁: l11→l1 and t₄₀: l1→l18 to t₄₁₇₅: l11→l18

Chain transitions t₃₆: l3→l1 and t₄₀: l1→l18 to t₄₁₇₆: l3→l18

Chain transitions t₃₇: l3→l1 and t₄₀: l1→l18 to t₄₁₇₇: l3→l18

Chain transitions t₃₈: l3→l1 and t₄₀: l1→l18 to t₄₁₇₈: l3→l18

Chain transitions t₃₀: l11→l1 and t₄₀: l1→l18 to t₄₁₇₉: l11→l18

Chain transitions t₃₀: l11→l1 and t₄₁: l1→l18 to t₄₁₈₀: l11→l18

Chain transitions t₃₀: l11→l1 and t₄₂: l1→l18 to t₄₁₈₁: l11→l18

Chain transitions t₃₀: l11→l1 and t₄₃: l1→l19 to t₄₁₈₂: l11→l19

Chain transitions t₃₀: l11→l1 and t₃₉: l1→l18 to t₄₁₈₃: l11→l18

Chain transitions t₃₁: l11→l1 and t₃₉: l1→l18 to t₄₁₈₄: l11→l18

Chain transitions t₃₆: l3→l1 and t₃₉: l1→l18 to t₄₁₈₅: l3→l18

Chain transitions t₃₇: l3→l1 and t₃₉: l1→l18 to t₄₁₈₆: l3→l18

Chain transitions t₃₈: l3→l1 and t₃₉: l1→l18 to t₄₁₈₇: l3→l18

Chain transitions t₁₅: l7→l10 and t₁₇: l10→l9 to t₄₁₈₈: l7→l9

Chain transitions t₂₉: l13→l11 and t₄₁₈₂: l11→l19 to t₄₁₈₉: l13→l19

Chain transitions t₂₉: l13→l11 and t₄₁₇₄: l11→l19 to t₄₁₉₀: l13→l19

Chain transitions t₂₉: l13→l11 and t₄₁₈₄: l11→l18 to t₄₁₉₁: l13→l18

Chain transitions t₂₉: l13→l11 and t₄₁₈₃: l11→l18 to t₄₁₉₂: l13→l18

Chain transitions t₂₉: l13→l11 and t₄₁₈₁: l11→l18 to t₄₁₉₃: l13→l18

Chain transitions t₂₉: l13→l11 and t₄₁₈₀: l11→l18 to t₄₁₉₄: l13→l18

Chain transitions t₂₉: l13→l11 and t₄₁₇₉: l11→l18 to t₄₁₉₅: l13→l18

Chain transitions t₂₉: l13→l11 and t₄₁₇₅: l11→l18 to t₄₁₉₆: l13→l18

Chain transitions t₂₉: l13→l11 and t₄₁₇₃: l11→l18 to t₄₁₉₇: l13→l18

Chain transitions t₂₉: l13→l11 and t₄₁₇₂: l11→l18 to t₄₁₉₈: l13→l18

Chain transitions t₂₉: l13→l11 and t₃₂: l11→l14 to t₄₁₉₉: l13→l14

Chain transitions t₂₉: l13→l11 and t₃₁: l11→l1 to t₄₂₀₀: l13→l1

Chain transitions t₂₉: l13→l11 and t₃₀: l11→l1 to t₄₂₀₁: l13→l1

Chain transitions t₂₄: l17→l12 and t₂₇: l12→l13 to t₄₂₀₂: l17→l13

Chain transitions t₄₂₀₂: l17→l13 and t₄₁₉₀: l13→l19 to t₄₂₀₃: l17→l19

Chain transitions t₄₂₀₂: l17→l13 and t₄₁₈₉: l13→l19 to t₄₂₀₄: l17→l19

Chain transitions t₄₂₀₂: l17→l13 and t₄₁₉₈: l13→l18 to t₄₂₀₅: l17→l18

Chain transitions t₄₂₀₂: l17→l13 and t₄₁₉₇: l13→l18 to t₄₂₀₆: l17→l18

Chain transitions t₄₂₀₂: l17→l13 and t₄₁₉₆: l13→l18 to t₄₂₀₇: l17→l18

Chain transitions t₄₂₀₂: l17→l13 and t₄₁₉₅: l13→l18 to t₄₂₀₈: l17→l18

Chain transitions t₄₂₀₂: l17→l13 and t₄₁₉₄: l13→l18 to t₄₂₀₉: l17→l18

Chain transitions t₄₂₀₂: l17→l13 and t₄₁₉₃: l13→l18 to t₄₂₁₀: l17→l18

Chain transitions t₄₂₀₂: l17→l13 and t₄₁₉₂: l13→l18 to t₄₂₁₁: l17→l18

Chain transitions t₄₂₀₂: l17→l13 and t₄₁₉₁: l13→l18 to t₄₂₁₂: l17→l18

Chain transitions t₄₂₀₂: l17→l13 and t₄₁₉₉: l13→l14 to t₄₂₁₃: l17→l14

Chain transitions t₄₂₀₂: l17→l13 and t₂₉: l13→l11 to t₄₂₁₄: l17→l11

Chain transitions t₄₂₀₂: l17→l13 and t₄₂₀₁: l13→l1 to t₄₂₁₅: l17→l1

Chain transitions t₄₂₀₂: l17→l13 and t₄₂₀₀: l13→l1 to t₄₂₁₆: l17→l1

Chain transitions t₄₂₁₃: l17→l14 and t₃₃: l14→l2 to t₄₂₁₇: l17→l2

Chain transitions t₂₆: l17→l14 and t₃₃: l14→l2 to t₄₂₁₈: l17→l2

Chain transitions t₄₉: l24→l15 and t₃: l15→l26 to t₄₂₁₉: l24→l26

Chain transitions t₁: l16→l15 and t₃: l15→l26 to t₄₂₂₀: l16→l26

Chain transitions t₁: l16→l15 and t₂: l15→l22 to t₄₂₂₁: l16→l22

Chain transitions t₄₉: l24→l15 and t₂: l15→l22 to t₄₂₂₂: l24→l22

Chain transitions t₂₂: l21→l17 and t₄₂₁₈: l17→l2 to t₄₂₂₃: l21→l2

Chain transitions t₂₂: l21→l17 and t₄₂₁₇: l17→l2 to t₄₂₂₄: l21→l2

Chain transitions t₂₂: l21→l17 and t₄₂₀₄: l17→l19 to t₄₂₂₅: l21→l19

Chain transitions t₂₂: l21→l17 and t₄₂₀₃: l17→l19 to t₄₂₂₆: l21→l19

Chain transitions t₂₂: l21→l17 and t₄₂₁₂: l17→l18 to t₄₂₂₇: l21→l18

Chain transitions t₂₂: l21→l17 and t₄₂₁₁: l17→l18 to t₄₂₂₈: l21→l18

Chain transitions t₂₂: l21→l17 and t₄₂₁₀: l17→l18 to t₄₂₂₉: l21→l18

Chain transitions t₂₂: l21→l17 and t₄₂₀₉: l17→l18 to t₄₂₃₀: l21→l18

Chain transitions t₂₂: l21→l17 and t₄₂₀₈: l17→l18 to t₄₂₃₁: l21→l18

Chain transitions t₂₂: l21→l17 and t₄₂₀₇: l17→l18 to t₄₂₃₂: l21→l18

Chain transitions t₂₂: l21→l17 and t₄₂₀₆: l17→l18 to t₄₂₃₃: l21→l18

Chain transitions t₂₂: l21→l17 and t₄₂₀₅: l17→l18 to t₄₂₃₄: l21→l18

Chain transitions t₂₂: l21→l17 and t₄₂₁₃: l17→l14 to t₄₂₃₅: l21→l14

Chain transitions t₂₂: l21→l17 and t₂₆: l17→l14 to t₄₂₃₆: l21→l14

Chain transitions t₂₂: l21→l17 and t₄₂₀₂: l17→l13 to t₄₂₃₇: l21→l13

Chain transitions t₂₂: l21→l17 and t₂₄: l17→l12 to t₄₂₃₈: l21→l12

Chain transitions t₂₂: l21→l17 and t₄₂₁₄: l17→l11 to t₄₂₃₉: l21→l11

Chain transitions t₂₂: l21→l17 and t₄₂₁₆: l17→l1 to t₄₂₄₀: l21→l1

Chain transitions t₂₂: l21→l17 and t₄₂₁₅: l17→l1 to t₄₂₄₁: l21→l1

Chain transitions t₄₁₈₇: l3→l18 and t₄₄: l18→l20 to t₄₂₄₂: l3→l20

Chain transitions t₄₁₈₆: l3→l18 and t₄₄: l18→l20 to t₄₂₄₃: l3→l20

Chain transitions t₄₁₈₆: l3→l18 and t₄₅: l18→l19 to t₄₂₄₄: l3→l19

Chain transitions t₄₁₈₇: l3→l18 and t₄₅: l18→l19 to t₄₂₄₅: l3→l19

Chain transitions t₄₁₈₅: l3→l18 and t₄₅: l18→l19 to t₄₂₄₆: l3→l19

Chain transitions t₄₁₈₅: l3→l18 and t₄₄: l18→l20 to t₄₂₄₇: l3→l20

Chain transitions t₄₁₇₈: l3→l18 and t₄₅: l18→l19 to t₄₂₄₈: l3→l19

Chain transitions t₄₁₇₈: l3→l18 and t₄₄: l18→l20 to t₄₂₄₉: l3→l20

Chain transitions t₄₁₇₇: l3→l18 and t₄₅: l18→l19 to t₄₂₅₀: l3→l19

Chain transitions t₄₁₇₇: l3→l18 and t₄₄: l18→l20 to t₄₂₅₁: l3→l20

Chain transitions t₄₁₇₆: l3→l18 and t₄₅: l18→l19 to t₄₂₅₂: l3→l19

Chain transitions t₄₁₇₆: l3→l18 and t₄₄: l18→l20 to t₄₂₅₃: l3→l20

Chain transitions t₄₁₇₁: l3→l18 and t₄₅: l18→l19 to t₄₂₅₄: l3→l19

Chain transitions t₄₁₇₁: l3→l18 and t₄₄: l18→l20 to t₄₂₅₅: l3→l20

Chain transitions t₄₁₇₀: l3→l18 and t₄₅: l18→l19 to t₄₂₅₆: l3→l19

Chain transitions t₄₁₇₀: l3→l18 and t₄₄: l18→l20 to t₄₂₅₇: l3→l20

Chain transitions t₄₁₆₉: l3→l18 and t₄₅: l18→l19 to t₄₂₅₈: l3→l19

Chain transitions t₄₁₆₉: l3→l18 and t₄₄: l18→l20 to t₄₂₅₉: l3→l20

Chain transitions t₄₁₆₇: l3→l18 and t₄₅: l18→l19 to t₄₂₆₀: l3→l19

Chain transitions t₄₁₆₇: l3→l18 and t₄₄: l18→l20 to t₄₂₆₁: l3→l20

Chain transitions t₄₁₆₆: l3→l18 and t₄₅: l18→l19 to t₄₂₆₂: l3→l19

Chain transitions t₄₁₆₆: l3→l18 and t₄₄: l18→l20 to t₄₂₆₃: l3→l20

Chain transitions t₄₁₆₅: l3→l18 and t₄₅: l18→l19 to t₄₂₆₄: l3→l19

Chain transitions t₄₁₆₅: l3→l18 and t₄₄: l18→l20 to t₄₂₆₅: l3→l20

Chain transitions t₄₂₃₄: l21→l18 and t₄₅: l18→l19 to t₄₂₆₆: l21→l19

Chain transitions t₄₂₃₄: l21→l18 and t₄₄: l18→l20 to t₄₂₆₇: l21→l20

Chain transitions t₄₂₃₃: l21→l18 and t₄₅: l18→l19 to t₄₂₆₈: l21→l19

Chain transitions t₄₂₃₃: l21→l18 and t₄₄: l18→l20 to t₄₂₆₉: l21→l20

Chain transitions t₄₂₃₂: l21→l18 and t₄₅: l18→l19 to t₄₂₇₀: l21→l19

Chain transitions t₄₂₃₂: l21→l18 and t₄₄: l18→l20 to t₄₂₇₁: l21→l20

Chain transitions t₄₂₃₁: l21→l18 and t₄₅: l18→l19 to t₄₂₇₂: l21→l19

Chain transitions t₄₂₃₁: l21→l18 and t₄₄: l18→l20 to t₄₂₇₃: l21→l20

Chain transitions t₄₂₃₀: l21→l18 and t₄₅: l18→l19 to t₄₂₇₄: l21→l19

Chain transitions t₄₂₃₀: l21→l18 and t₄₄: l18→l20 to t₄₂₇₅: l21→l20

Chain transitions t₄₂₂₉: l21→l18 and t₄₅: l18→l19 to t₄₂₇₆: l21→l19

Chain transitions t₄₂₂₉: l21→l18 and t₄₄: l18→l20 to t₄₂₇₇: l21→l20

Chain transitions t₄₂₂₈: l21→l18 and t₄₅: l18→l19 to t₄₂₇₈: l21→l19

Chain transitions t₄₂₂₈: l21→l18 and t₄₄: l18→l20 to t₄₂₇₉: l21→l20

Chain transitions t₄₂₂₇: l21→l18 and t₄₅: l18→l19 to t₄₂₈₀: l21→l19

Chain transitions t₄₂₂₇: l21→l18 and t₄₄: l18→l20 to t₄₂₈₁: l21→l20

Chain transitions t₄₆: l20→l18 and t₄₅: l18→l19 to t₄₂₈₂: l20→l19

Chain transitions t₄₆: l20→l18 and t₄₄: l18→l20 to t₄₂₈₃: l20→l20

Chain transitions t₄₂₆₄: l3→l19 and t₄₇: l19→l21 to t₄₂₈₄: l3→l21

Chain transitions t₄₂₆₂: l3→l19 and t₄₇: l19→l21 to t₄₂₈₅: l3→l21

Chain transitions t₄₂₆₀: l3→l19 and t₄₇: l19→l21 to t₄₂₈₆: l3→l21

Chain transitions t₄₂₅₈: l3→l19 and t₄₇: l19→l21 to t₄₂₈₇: l3→l21

Chain transitions t₄₂₅₆: l3→l19 and t₄₇: l19→l21 to t₄₂₈₈: l3→l21

Chain transitions t₄₂₅₄: l3→l19 and t₄₇: l19→l21 to t₄₂₈₉: l3→l21

Chain transitions t₄₂₅₂: l3→l19 and t₄₇: l19→l21 to t₄₂₉₀: l3→l21

Chain transitions t₄₂₅₀: l3→l19 and t₄₇: l19→l21 to t₄₂₉₁: l3→l21

Chain transitions t₄₂₄₈: l3→l19 and t₄₇: l19→l21 to t₄₂₉₂: l3→l21

Chain transitions t₄₂₄₆: l3→l19 and t₄₇: l19→l21 to t₄₂₉₃: l3→l21

Chain transitions t₄₂₄₅: l3→l19 and t₄₇: l19→l21 to t₄₂₉₄: l3→l21

Chain transitions t₄₂₄₄: l3→l19 and t₄₇: l19→l21 to t₄₂₉₅: l3→l21

Chain transitions t₄₁₆₈: l3→l19 and t₄₇: l19→l21 to t₄₂₉₆: l3→l21

Chain transitions t₄₁₆₄: l3→l19 and t₄₇: l19→l21 to t₄₂₉₇: l3→l21

Chain transitions t₄₁₆₃: l3→l19 and t₄₇: l19→l21 to t₄₂₉₈: l3→l21

Chain transitions t₄₂₈₀: l21→l19 and t₄₇: l19→l21 to t₄₂₉₉: l21→l21

Chain transitions t₄₂₇₈: l21→l19 and t₄₇: l19→l21 to t₄₃₀₀: l21→l21

Chain transitions t₄₂₇₆: l21→l19 and t₄₇: l19→l21 to t₄₃₀₁: l21→l21

Chain transitions t₄₂₇₄: l21→l19 and t₄₇: l19→l21 to t₄₃₀₂: l21→l21

Chain transitions t₄₂₇₂: l21→l19 and t₄₇: l19→l21 to t₄₃₀₃: l21→l21

Chain transitions t₄₂₇₀: l21→l19 and t₄₇: l19→l21 to t₄₃₀₄: l21→l21

Chain transitions t₄₂₆₈: l21→l19 and t₄₇: l19→l21 to t₄₃₀₅: l21→l21

Chain transitions t₄₂₆₆: l21→l19 and t₄₇: l19→l21 to t₄₃₀₆: l21→l21

Chain transitions t₄₂₂₆: l21→l19 and t₄₇: l19→l21 to t₄₃₀₇: l21→l21

Chain transitions t₄₂₂₅: l21→l19 and t₄₇: l19→l21 to t₄₃₀₈: l21→l21

Chain transitions t₄₂₈₂: l20→l19 and t₄₇: l19→l21 to t₄₃₀₉: l20→l21

Chain transitions t₄₂₂₄: l21→l2 and t₃₅: l2→l3 to t₄₃₁₀: l21→l3

Chain transitions t₄₂₂₃: l21→l2 and t₃₅: l2→l3 to t₄₃₁₁: l21→l3

Chain transitions t₄₂₂₂: l24→l22 and t₄: l22→l27 to t₄₃₁₂: l24→l27

Chain transitions t₄₈: l23→l22 and t₄: l22→l27 to t₄₃₁₃: l23→l27

Chain transitions t₄₈: l23→l22 and t₅: l22→l24 to t₄₃₁₄: l23→l24

Chain transitions t₄₂₂₂: l24→l22 and t₅: l22→l24 to t₄₃₁₅: l24→l24

Chain transitions t₄₂₂₁: l16→l22 and t₅: l22→l24 to t₄₃₁₆: l16→l24

Chain transitions t₄₂₂₁: l16→l22 and t₄: l22→l27 to t₄₃₁₇: l16→l27

Chain transitions t₂₃: l21→l23 and t₄₃₁₃: l23→l27 to t₄₃₁₈: l21→l27

Chain transitions t₂₃: l21→l23 and t₄₃₁₄: l23→l24 to t₄₃₁₉: l21→l24

Chain transitions t₂₃: l21→l23 and t₄₈: l23→l22 to t₄₃₂₀: l21→l22

Chain transitions t₄₃₁₂: l24→l27 and t₈: l27→l7 to t₄₃₂₁: l24→l7

Chain transitions t₄₃₁₈: l21→l27 and t₈: l27→l7 to t₄₃₂₂: l21→l7

Chain transitions t₄₃₁₈: l21→l27 and t₆: l27→l5 to t₄₃₂₃: l21→l5

Chain transitions t₄₃₁₂: l24→l27 and t₆: l27→l5 to t₄₃₂₄: l24→l5

Chain transitions t₄₃₁₇: l16→l27 and t₆: l27→l5 to t₄₃₂₅: l16→l5

Chain transitions t₄₃₁₇: l16→l27 and t₈: l27→l7 to t₄₃₂₆: l16→l7

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₉₈: l3→l21 to t₄₃₂₇: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₉₈: l3→l21 to t₄₃₂₈: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₉₇: l3→l21 to t₄₃₂₉: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₉₇: l3→l21 to t₄₃₃₀: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₉₆: l3→l21 to t₄₃₃₁: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₉₆: l3→l21 to t₄₃₃₂: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₉₅: l3→l21 to t₄₃₃₃: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₉₅: l3→l21 to t₄₃₃₄: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₉₄: l3→l21 to t₄₃₃₅: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₉₄: l3→l21 to t₄₃₃₆: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₉₃: l3→l21 to t₄₃₃₇: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₉₃: l3→l21 to t₄₃₃₈: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₉₂: l3→l21 to t₄₃₃₉: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₉₂: l3→l21 to t₄₃₄₀: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₉₁: l3→l21 to t₄₃₄₁: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₉₁: l3→l21 to t₄₃₄₂: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₉₀: l3→l21 to t₄₃₄₃: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₉₀: l3→l21 to t₄₃₄₄: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₈₉: l3→l21 to t₄₃₄₅: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₈₉: l3→l21 to t₄₃₄₆: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₈₈: l3→l21 to t₄₃₄₇: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₈₈: l3→l21 to t₄₃₄₈: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₈₇: l3→l21 to t₄₃₄₉: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₈₇: l3→l21 to t₄₃₅₀: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₈₆: l3→l21 to t₄₃₅₁: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₈₆: l3→l21 to t₄₃₅₂: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₈₅: l3→l21 to t₄₃₅₃: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₈₅: l3→l21 to t₄₃₅₄: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₈₄: l3→l21 to t₄₃₅₅: l21→l21

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₈₄: l3→l21 to t₄₃₅₆: l21→l21

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₆₅: l3→l20 to t₄₃₅₇: l21→l20

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₆₅: l3→l20 to t₄₃₅₈: l21→l20

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₆₃: l3→l20 to t₄₃₅₉: l21→l20

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₆₃: l3→l20 to t₄₃₆₀: l21→l20

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₆₁: l3→l20 to t₄₃₆₁: l21→l20

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₆₁: l3→l20 to t₄₃₆₂: l21→l20

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₅₉: l3→l20 to t₄₃₆₃: l21→l20

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₅₉: l3→l20 to t₄₃₆₄: l21→l20

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₅₇: l3→l20 to t₄₃₆₅: l21→l20

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₅₇: l3→l20 to t₄₃₆₆: l21→l20

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₅₅: l3→l20 to t₄₃₆₇: l21→l20

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₅₅: l3→l20 to t₄₃₆₈: l21→l20

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₅₃: l3→l20 to t₄₃₆₉: l21→l20

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₅₃: l3→l20 to t₄₃₇₀: l21→l20

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₅₁: l3→l20 to t₄₃₇₁: l21→l20

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₅₁: l3→l20 to t₄₃₇₂: l21→l20

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₄₉: l3→l20 to t₄₃₇₃: l21→l20

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₄₉: l3→l20 to t₄₃₇₄: l21→l20

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₄₇: l3→l20 to t₄₃₇₅: l21→l20

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₄₇: l3→l20 to t₄₃₇₆: l21→l20

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₄₃: l3→l20 to t₄₃₇₇: l21→l20

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₄₃: l3→l20 to t₄₃₇₈: l21→l20

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₄₂: l3→l20 to t₄₃₇₉: l21→l20

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₄₂: l3→l20 to t₄₃₈₀: l21→l20

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₆₄: l3→l19 to t₄₃₈₁: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₆₄: l3→l19 to t₄₃₈₂: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₆₂: l3→l19 to t₄₃₈₃: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₆₂: l3→l19 to t₄₃₈₄: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₆₀: l3→l19 to t₄₃₈₅: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₆₀: l3→l19 to t₄₃₈₆: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₅₈: l3→l19 to t₄₃₈₇: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₅₈: l3→l19 to t₄₃₈₈: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₅₆: l3→l19 to t₄₃₈₉: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₅₆: l3→l19 to t₄₃₉₀: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₅₄: l3→l19 to t₄₃₉₁: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₅₄: l3→l19 to t₄₃₉₂: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₅₂: l3→l19 to t₄₃₉₃: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₅₂: l3→l19 to t₄₃₉₄: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₅₀: l3→l19 to t₄₃₉₅: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₅₀: l3→l19 to t₄₃₉₆: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₄₈: l3→l19 to t₄₃₉₇: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₄₈: l3→l19 to t₄₃₉₈: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₄₆: l3→l19 to t₄₃₉₉: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₄₆: l3→l19 to t₄₄₀₀: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₄₅: l3→l19 to t₄₄₀₁: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₄₅: l3→l19 to t₄₄₀₂: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₂₄₄: l3→l19 to t₄₄₀₃: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₂₄₄: l3→l19 to t₄₄₀₄: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₆₈: l3→l19 to t₄₄₀₅: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₆₈: l3→l19 to t₄₄₀₆: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₆₄: l3→l19 to t₄₄₀₇: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₆₄: l3→l19 to t₄₄₀₈: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₆₃: l3→l19 to t₄₄₀₉: l21→l19

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₆₃: l3→l19 to t₄₄₁₀: l21→l19

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₈₇: l3→l18 to t₄₄₁₁: l21→l18

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₈₇: l3→l18 to t₄₄₁₂: l21→l18

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₈₆: l3→l18 to t₄₄₁₃: l21→l18

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₈₆: l3→l18 to t₄₄₁₄: l21→l18

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₈₅: l3→l18 to t₄₄₁₅: l21→l18

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₈₅: l3→l18 to t₄₄₁₆: l21→l18

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₇₈: l3→l18 to t₄₄₁₇: l21→l18

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₇₈: l3→l18 to t₄₄₁₈: l21→l18

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₇₇: l3→l18 to t₄₄₁₉: l21→l18

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₇₇: l3→l18 to t₄₄₂₀: l21→l18

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₇₆: l3→l18 to t₄₄₂₁: l21→l18

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₇₆: l3→l18 to t₄₄₂₂: l21→l18

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₇₁: l3→l18 to t₄₄₂₃: l21→l18

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₇₁: l3→l18 to t₄₄₂₄: l21→l18

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₇₀: l3→l18 to t₄₄₂₅: l21→l18

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₇₀: l3→l18 to t₄₄₂₆: l21→l18

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₆₉: l3→l18 to t₄₄₂₇: l21→l18

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₆₉: l3→l18 to t₄₄₂₈: l21→l18

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₆₇: l3→l18 to t₄₄₂₉: l21→l18

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₆₇: l3→l18 to t₄₄₃₀: l21→l18

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₆₆: l3→l18 to t₄₄₃₁: l21→l18

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₆₆: l3→l18 to t₄₄₃₂: l21→l18

Chain transitions t₄₃₁₀: l21→l3 and t₄₁₆₅: l3→l18 to t₄₄₃₃: l21→l18

Chain transitions t₄₃₁₁: l21→l3 and t₄₁₆₅: l3→l18 to t₄₄₃₄: l21→l18

Chain transitions t₄₃₁₀: l21→l3 and t₃₈: l3→l1 to t₄₄₃₅: l21→l1

Chain transitions t₄₃₁₁: l21→l3 and t₃₈: l3→l1 to t₄₄₃₆: l21→l1

Chain transitions t₄₃₁₀: l21→l3 and t₃₇: l3→l1 to t₄₄₃₇: l21→l1

Chain transitions t₄₃₁₁: l21→l3 and t₃₇: l3→l1 to t₄₄₃₈: l21→l1

Chain transitions t₄₃₁₀: l21→l3 and t₃₆: l3→l1 to t₄₄₃₉: l21→l1

Chain transitions t₄₃₁₁: l21→l3 and t₃₆: l3→l1 to t₄₄₄₀: l21→l1

Chain transitions t₁₁: l6→l4 and t₁₃: l4→l8 to t₄₄₄₁: l6→l8

Chain transitions t₁₁: l6→l4 and t₁₂: l4→l8 to t₄₄₄₂: l6→l8

Chain transitions t₁₁: l6→l4 and t₁₄: l4→l7 to t₄₄₄₃: l6→l7

Chain transitions t₄₃₂₄: l24→l5 and t₉: l5→l6 to t₄₄₄₄: l24→l6

Chain transitions t₄₃₂₃: l21→l5 and t₉: l5→l6 to t₄₄₄₅: l21→l6

Chain transitions t₄₃₂₅: l16→l5 and t₉: l5→l6 to t₄₄₄₆: l16→l6

Chain transitions t₄₄₄₄: l24→l6 and t₄₄₄₂: l6→l8 to t₄₄₄₇: l24→l8

Chain transitions t₄₄₄₅: l21→l6 and t₄₄₄₂: l6→l8 to t₄₄₄₈: l21→l8

Chain transitions t₄₄₄₅: l21→l6 and t₄₄₄₁: l6→l8 to t₄₄₄₉: l21→l8

Chain transitions t₄₄₄₄: l24→l6 and t₄₄₄₁: l6→l8 to t₄₄₅₀: l24→l8

Chain transitions t₄₄₄₆: l16→l6 and t₄₄₄₁: l6→l8 to t₄₄₅₁: l16→l8

Chain transitions t₄₄₄₆: l16→l6 and t₄₄₄₂: l6→l8 to t₄₄₅₂: l16→l8

Chain transitions t₄₄₄₆: l16→l6 and t₄₄₄₃: l6→l7 to t₄₄₅₃: l16→l7

Chain transitions t₄₄₄₅: l21→l6 and t₄₄₄₃: l6→l7 to t₄₄₅₄: l21→l7

Chain transitions t₄₄₄₄: l24→l6 and t₄₄₄₃: l6→l7 to t₄₄₅₅: l24→l7

Chain transitions t₄₄₄₆: l16→l6 and t₁₁: l6→l4 to t₄₄₅₆: l16→l4

Chain transitions t₄₄₄₅: l21→l6 and t₁₁: l6→l4 to t₄₄₅₇: l21→l4

Chain transitions t₄₄₄₄: l24→l6 and t₁₁: l6→l4 to t₄₄₅₈: l24→l4

Chain transitions t₄₄₅₅: l24→l7 and t₄₁₈₈: l7→l9 to t₄₄₅₉: l24→l9

Chain transitions t₄₃₂₁: l24→l7 and t₄₁₈₈: l7→l9 to t₄₄₆₀: l24→l9

Chain transitions t₄₃₂₁: l24→l7 and t₁₅: l7→l10 to t₄₄₆₁: l24→l10

Chain transitions t₄₄₅₅: l24→l7 and t₁₅: l7→l10 to t₄₄₆₂: l24→l10

Chain transitions t₄₄₅₄: l21→l7 and t₁₅: l7→l10 to t₄₄₆₃: l21→l10

Chain transitions t₄₄₅₄: l21→l7 and t₄₁₈₈: l7→l9 to t₄₄₆₄: l21→l9

Chain transitions t₄₃₂₂: l21→l7 and t₁₅: l7→l10 to t₄₄₆₅: l21→l10

Chain transitions t₄₃₂₂: l21→l7 and t₄₁₈₈: l7→l9 to t₄₄₆₆: l21→l9

Chain transitions t₄₄₅₃: l16→l7 and t₁₅: l7→l10 to t₄₄₆₇: l16→l10

Chain transitions t₄₄₅₃: l16→l7 and t₄₁₈₈: l7→l9 to t₄₄₆₈: l16→l9

Chain transitions t₄₃₂₆: l16→l7 and t₁₅: l7→l10 to t₄₄₆₉: l16→l10

Chain transitions t₄₃₂₆: l16→l7 and t₄₁₈₈: l7→l9 to t₄₄₇₀: l16→l9

Chain transitions t₂₀: l9→l8 and t₂₁: l8→l21 to t₄₄₇₁: l9→l21

Chain transitions t₁₉: l9→l8 and t₂₁: l8→l21 to t₄₄₇₂: l9→l21

Chain transitions t₁₈: l9→l8 and t₂₁: l8→l21 to t₄₄₇₃: l9→l21

Chain transitions t₄₄₅₀: l24→l8 and t₂₁: l8→l21 to t₄₄₇₄: l24→l21

Chain transitions t₄₄₄₇: l24→l8 and t₂₁: l8→l21 to t₄₄₇₅: l24→l21

Chain transitions t₄₄₄₉: l21→l8 and t₂₁: l8→l21 to t₄₄₇₆: l21→l21

Chain transitions t₄₄₄₈: l21→l8 and t₂₁: l8→l21 to t₄₄₇₇: l21→l21

Chain transitions t₄₄₅₂: l16→l8 and t₂₁: l8→l21 to t₄₄₇₈: l16→l21

Chain transitions t₄₄₅₁: l16→l8 and t₂₁: l8→l21 to t₄₄₇₉: l16→l21

Chain transitions t₄₄₆₀: l24→l9 and t₂₀: l9→l8 to t₄₄₈₀: l24→l8

Chain transitions t₄₄₅₉: l24→l9 and t₂₀: l9→l8 to t₄₄₈₁: l24→l8

Chain transitions t₄₄₅₉: l24→l9 and t₁₉: l9→l8 to t₄₄₈₂: l24→l8

Chain transitions t₄₄₆₀: l24→l9 and t₁₉: l9→l8 to t₄₄₈₃: l24→l8

Chain transitions t₄₄₆₆: l21→l9 and t₁₉: l9→l8 to t₄₄₈₄: l21→l8

Chain transitions t₄₄₆₆: l21→l9 and t₂₀: l9→l8 to t₄₄₈₅: l21→l8

Chain transitions t₄₄₆₆: l21→l9 and t₁₈: l9→l8 to t₄₄₈₆: l21→l8

Chain transitions t₄₄₅₉: l24→l9 and t₁₈: l9→l8 to t₄₄₈₇: l24→l8

Chain transitions t₄₄₆₀: l24→l9 and t₁₈: l9→l8 to t₄₄₈₈: l24→l8

Chain transitions t₄₄₆₄: l21→l9 and t₁₈: l9→l8 to t₄₄₈₉: l21→l8

Chain transitions t₄₄₆₄: l21→l9 and t₁₉: l9→l8 to t₄₄₉₀: l21→l8

Chain transitions t₄₄₆₄: l21→l9 and t₂₀: l9→l8 to t₄₄₉₁: l21→l8

Chain transitions t₄₄₆₄: l21→l9 and t₄₄₇₃: l9→l21 to t₄₄₉₂: l21→l21

Chain transitions t₄₄₆₆: l21→l9 and t₄₄₇₃: l9→l21 to t₄₄₉₃: l21→l21

Chain transitions t₄₄₅₉: l24→l9 and t₄₄₇₃: l9→l21 to t₄₄₉₄: l24→l21

Chain transitions t₄₄₆₀: l24→l9 and t₄₄₇₃: l9→l21 to t₄₄₉₅: l24→l21

Chain transitions t₄₄₇₀: l16→l9 and t₄₄₇₃: l9→l21 to t₄₄₉₆: l16→l21

Chain transitions t₄₄₇₀: l16→l9 and t₁₈: l9→l8 to t₄₄₉₇: l16→l8

Chain transitions t₄₄₇₀: l16→l9 and t₁₉: l9→l8 to t₄₄₉₈: l16→l8

Chain transitions t₄₄₇₀: l16→l9 and t₂₀: l9→l8 to t₄₄₉₉: l16→l8

Chain transitions t₄₄₇₀: l16→l9 and t₄₄₇₂: l9→l21 to t₄₅₀₀: l16→l21

Chain transitions t₄₄₆₄: l21→l9 and t₄₄₇₂: l9→l21 to t₄₅₀₁: l21→l21

Chain transitions t₄₄₆₆: l21→l9 and t₄₄₇₂: l9→l21 to t₄₅₀₂: l21→l21

Chain transitions t₄₄₅₉: l24→l9 and t₄₄₇₂: l9→l21 to t₄₅₀₃: l24→l21

Chain transitions t₄₄₆₀: l24→l9 and t₄₄₇₂: l9→l21 to t₄₅₀₄: l24→l21

Chain transitions t₄₄₆₈: l16→l9 and t₄₄₇₂: l9→l21 to t₄₅₀₅: l16→l21

Chain transitions t₄₄₆₈: l16→l9 and t₄₄₇₃: l9→l21 to t₄₅₀₆: l16→l21

Chain transitions t₄₄₆₈: l16→l9 and t₁₈: l9→l8 to t₄₅₀₇: l16→l8

Chain transitions t₄₄₆₈: l16→l9 and t₁₉: l9→l8 to t₄₅₀₈: l16→l8

Chain transitions t₄₄₆₈: l16→l9 and t₂₀: l9→l8 to t₄₅₀₉: l16→l8

Chain transitions t₄₄₆₈: l16→l9 and t₄₄₇₁: l9→l21 to t₄₅₁₀: l16→l21

Chain transitions t₄₄₇₀: l16→l9 and t₄₄₇₁: l9→l21 to t₄₅₁₁: l16→l21

Chain transitions t₄₄₆₄: l21→l9 and t₄₄₇₁: l9→l21 to t₄₅₁₂: l21→l21

Chain transitions t₄₄₆₆: l21→l9 and t₄₄₇₁: l9→l21 to t₄₅₁₃: l21→l21

Chain transitions t₄₄₅₉: l24→l9 and t₄₄₇₁: l9→l21 to t₄₅₁₄: l24→l21

Chain transitions t₄₄₆₀: l24→l9 and t₄₄₇₁: l9→l21 to t₄₅₁₅: l24→l21

Analysing control-flow refined program

All Bounds

Timebounds

Overall timebound:2⋅X₁₃⋅X₄⋅X₅⋅X₆+4⋅X₄⋅X₅⋅X₆⋅X₉+15⋅X₁₃⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₆+30⋅X₅⋅X₆⋅X₉+15⋅X₅⋅X₆+2⋅X₄⋅X₅+23⋅X₁₃⋅X₆+46⋅X₆⋅X₉+15⋅X₅+2⋅X₄+21⋅X₁₃+23⋅X₆+42⋅X₉+35 {O(n^4)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 2⋅X₉+X₁₃+1 {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₅: 2⋅X₁₃+4⋅X₉+2 {O(n)}
t₆: 2⋅X₉+X₁₃+1 {O(n)}
t₈: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₉: 2⋅X₉+X₁₃+1 {O(n)}
t₁₁: 2⋅X₉+X₁₃+1 {O(n)}
t₁₂: 2⋅X₁₃+4⋅X₉+2 {O(n)}
t₁₃: 2⋅X₁₃+4⋅X₉+2 {O(n)}
t₁₄: 2⋅X₉+X₁₃+1 {O(n)}
t₁₅: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₁₇: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₁₈: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}
t₁₉: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}
t₂₀: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₂₁: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}
t₂₂: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₂₃: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₂₄: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}
t₂₆: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₂₇: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}
t₂₉: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}
t₃₀: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}
t₃₁: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2 {O(n^2)}
t₃₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}
t₃₃: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₅: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₆: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅ {O(n^3)}
t₃₇: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₈: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₉: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅ {O(n^3)}
t₄₀: 3⋅X₁₃⋅X₆+6⋅X₆⋅X₉+3⋅X₆+3 {O(n^2)}
t₄₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₂: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₃: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₄: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₄ {O(n^4)}
t₄₅: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₆: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₄ {O(n^4)}
t₄₇: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₈: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄₉: 2⋅X₉+X₁₃+1 {O(n)}
t₅₀: 1 {O(1)}

Costbounds

Overall costbound: 2⋅X₁₃⋅X₄⋅X₅⋅X₆+4⋅X₄⋅X₅⋅X₆⋅X₉+15⋅X₁₃⋅X₅⋅X₆+2⋅X₄⋅X₅⋅X₆+30⋅X₅⋅X₆⋅X₉+15⋅X₅⋅X₆+2⋅X₄⋅X₅+23⋅X₁₃⋅X₆+46⋅X₆⋅X₉+15⋅X₅+2⋅X₄+21⋅X₁₃+23⋅X₆+42⋅X₉+35 {O(n^4)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 2⋅X₉+X₁₃+1 {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₅: 2⋅X₁₃+4⋅X₉+2 {O(n)}
t₆: 2⋅X₉+X₁₃+1 {O(n)}
t₈: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₉: 2⋅X₉+X₁₃+1 {O(n)}
t₁₁: 2⋅X₉+X₁₃+1 {O(n)}
t₁₂: 2⋅X₁₃+4⋅X₉+2 {O(n)}
t₁₃: 2⋅X₁₃+4⋅X₉+2 {O(n)}
t₁₄: 2⋅X₉+X₁₃+1 {O(n)}
t₁₅: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₁₇: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₁₈: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}
t₁₉: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}
t₂₀: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₂₁: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2⋅X₉+X₁₃+1 {O(n^2)}
t₂₂: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₂₃: 2⋅X₆⋅X₉+X₁₃⋅X₆+2⋅X₉+X₁₃+X₆+1 {O(n^2)}
t₂₄: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}
t₂₆: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₂₇: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}
t₂₉: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}
t₃₀: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}
t₃₁: 2⋅X₁₃⋅X₆+4⋅X₆⋅X₉+2⋅X₆+2 {O(n^2)}
t₃₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆+1 {O(n^2)}
t₃₃: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₅: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₆: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅ {O(n^3)}
t₃₇: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₈: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₉: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅ {O(n^3)}
t₄₀: 3⋅X₁₃⋅X₆+6⋅X₆⋅X₉+3⋅X₆+3 {O(n^2)}
t₄₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₂: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₃: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₄: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₄ {O(n^4)}
t₄₅: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₆: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₄ {O(n^4)}
t₄₇: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₈: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄₉: 2⋅X₉+X₁₃+1 {O(n)}
t₅₀: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₀, X₁₂: X₁₂ {O(n)}
t₀, X₁₃: X₁₃ {O(n)}
t₀, X₁₄: X₁₄ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₁, X₁₂: X₁₂ {O(n)}
t₁, X₁₃: X₁₃ {O(n)}
t₁, X₁₄: X₉ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇+8 {O(n)}
t₂, X₈: X₈+3 {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₂, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₁₁+X₅ {O(n^3)}
t₂, X₁₂: 0 {O(1)}
t₂, X₁₃: X₁₃ {O(n)}
t₂, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃, X₄: 2⋅X₄ {O(n)}
t₃, X₅: 2⋅X₅ {O(n)}
t₃, X₆: 2⋅X₆ {O(n)}
t₃, X₇: 2⋅X₇+8 {O(n)}
t₃, X₈: 2⋅X₈+3 {O(n)}
t₃, X₉: 2⋅X₉ {O(n)}
t₃, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+2⋅X₁₀+X₄+8 {O(n^4)}
t₃, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+2⋅X₁₁+X₅ {O(n^3)}
t₃, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₁₂+X₆ {O(n^2)}
t₃, X₁₃: 2⋅X₁₃ {O(n)}
t₃, X₁₄: 4⋅X₉+X₁₃+1 {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₇+8 {O(n)}
t₄, X₈: X₈+6 {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₄, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₄, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄, X₁₃: X₁₃ {O(n)}
t₄, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₇+8 {O(n)}
t₅, X₈: X₈+3 {O(n)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₅, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₁₁+X₅ {O(n^3)}
t₅, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₅, X₁₃: X₁₃ {O(n)}
t₅, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₇+8 {O(n)}
t₆, X₈: X₈+6 {O(n)}
t₆, X₉: X₉ {O(n)}
t₆, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₆, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₆, X₁₂: 0 {O(1)}
t₆, X₁₃: X₁₃ {O(n)}
t₆, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₇+8 {O(n)}
t₈, X₈: X₈+6 {O(n)}
t₈, X₉: X₉ {O(n)}
t₈, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₈, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₈, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₈, X₁₃: X₁₃ {O(n)}
t₈, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₇+8 {O(n)}
t₉, X₈: X₈+6 {O(n)}
t₉, X₉: X₉ {O(n)}
t₉, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₉, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₉, X₁₂: 0 {O(1)}
t₉, X₁₃: X₁₃ {O(n)}
t₉, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₇+8 {O(n)}
t₁₁, X₈: X₈+6 {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₁, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₁₁, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₁₁, X₁₂: 0 {O(1)}
t₁₁, X₁₃: X₁₃ {O(n)}
t₁₁, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₅ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₇+8 {O(n)}
t₁₂, X₈: 1 {O(1)}
t₁₂, X₉: X₉ {O(n)}
t₁₂, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₁₂, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₁₂, X₁₂: 0 {O(1)}
t₁₂, X₁₃: X₁₃ {O(n)}
t₁₂, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁₃, X₇: X₇+8 {O(n)}
t₁₃, X₈: 1 {O(1)}
t₁₃, X₉: X₉ {O(n)}
t₁₃, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₁₃, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₁₃, X₁₂: 0 {O(1)}
t₁₃, X₁₃: X₁₃ {O(n)}
t₁₃, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₄, X₂: 0 {O(1)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: X₇+8 {O(n)}
t₁₄, X₈: X₈+6 {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₄, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₁₄, X₁₁: 2⋅X₁₃⋅X₅⋅X₆+4⋅X₅⋅X₆⋅X₉+2⋅X₅⋅X₆+2⋅X₅+X₁₁ {O(n^3)}
t₁₄, X₁₂: 0 {O(1)}
t₁₄, X₁₃: X₁₃ {O(n)}
t₁₄, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: X₅ {O(n)}
t₁₅, X₆: X₆ {O(n)}
t₁₅, X₇: X₇+8 {O(n)}
t₁₅, X₈: 2⋅X₈+12 {O(n)}
t₁₅, X₉: X₉ {O(n)}
t₁₅, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₁₅, X₁₁: 4⋅X₁₃⋅X₅⋅X₆+8⋅X₅⋅X₆⋅X₉+4⋅X₅⋅X₆+2⋅X₁₁+4⋅X₅ {O(n^3)}
t₁₅, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₁₅, X₁₃: X₁₃ {O(n)}
t₁₅, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₅ {O(n)}
t₁₇, X₆: X₆ {O(n)}
t₁₇, X₇: X₇+8 {O(n)}
t₁₇, X₈: 2⋅X₈+12 {O(n)}
t₁₇, X₉: X₉ {O(n)}
t₁₇, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₁₇, X₁₁: 4⋅X₁₃⋅X₅⋅X₆+8⋅X₅⋅X₆⋅X₉+4⋅X₅⋅X₆+2⋅X₁₁+4⋅X₅ {O(n^3)}
t₁₇, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₁₇, X₁₃: X₁₃ {O(n)}
t₁₇, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: X₅ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₇: X₇+8 {O(n)}
t₁₈, X₈: 1 {O(1)}
t₁₈, X₉: X₉ {O(n)}
t₁₈, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₁₈, X₁₁: 4⋅X₁₃⋅X₅⋅X₆+8⋅X₅⋅X₆⋅X₉+4⋅X₅⋅X₆+2⋅X₁₁+4⋅X₅ {O(n^3)}
t₁₈, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₁₈, X₁₃: X₁₃ {O(n)}
t₁₈, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: X₅ {O(n)}
t₁₉, X₆: X₆ {O(n)}
t₁₉, X₇: X₇+8 {O(n)}
t₁₉, X₈: 1 {O(1)}
t₁₉, X₉: X₉ {O(n)}
t₁₉, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₁₉, X₁₁: 4⋅X₁₃⋅X₅⋅X₆+8⋅X₅⋅X₆⋅X₉+4⋅X₅⋅X₆+2⋅X₁₁+4⋅X₅ {O(n^3)}
t₁₉, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₁₉, X₁₃: X₁₃ {O(n)}
t₁₉, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₀, X₃: 0 {O(1)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: X₅ {O(n)}
t₂₀, X₆: X₆ {O(n)}
t₂₀, X₇: X₇+8 {O(n)}
t₂₀, X₈: 0 {O(1)}
t₂₀, X₉: X₉ {O(n)}
t₂₀, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₂₀, X₁₁: 4⋅X₁₃⋅X₅⋅X₆+8⋅X₅⋅X₆⋅X₉+4⋅X₅⋅X₆+2⋅X₁₁+4⋅X₅ {O(n^3)}
t₂₀, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₂₀, X₁₃: X₁₃ {O(n)}
t₂₀, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: X₅ {O(n)}
t₂₁, X₆: X₆ {O(n)}
t₂₁, X₇: X₇+8 {O(n)}
t₂₁, X₈: 1 {O(1)}
t₂₁, X₉: X₉ {O(n)}
t₂₁, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₂₁, X₁₁: 0 {O(1)}
t₂₁, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₂₁, X₁₃: X₁₃ {O(n)}
t₂₁, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₇: X₇+16 {O(n)}
t₂₂, X₈: 2 {O(1)}
t₂₂, X₉: X₉ {O(n)}
t₂₂, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₂₂, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₂₂, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₂₂, X₁₃: X₁₃ {O(n)}
t₂₂, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₇: X₇+8 {O(n)}
t₂₃, X₈: 3 {O(1)}
t₂₃, X₉: X₉ {O(n)}
t₂₃, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₂₃, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₂₃, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₂₃, X₁₃: X₁₃ {O(n)}
t₂₃, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: X₅ {O(n)}
t₂₄, X₆: X₆ {O(n)}
t₂₄, X₇: X₇+16 {O(n)}
t₂₄, X₈: 2 {O(1)}
t₂₄, X₉: X₉ {O(n)}
t₂₄, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₂₄, X₁₁: 0 {O(1)}
t₂₄, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₂₄, X₁₃: X₁₃ {O(n)}
t₂₄, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₆, X₄: X₄ {O(n)}
t₂₆, X₅: X₅ {O(n)}
t₂₆, X₆: X₆ {O(n)}
t₂₆, X₇: X₇+16 {O(n)}
t₂₆, X₈: 2 {O(1)}
t₂₆, X₉: X₉ {O(n)}
t₂₆, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₂₆, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₂₆, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₂₆, X₁₃: X₁₃ {O(n)}
t₂₆, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₅: X₅ {O(n)}
t₂₇, X₆: X₆ {O(n)}
t₂₇, X₇: X₇+16 {O(n)}
t₂₇, X₈: 2 {O(1)}
t₂₇, X₉: X₉ {O(n)}
t₂₇, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₂₇, X₁₁: 0 {O(1)}
t₂₇, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₂₇, X₁₃: X₁₃ {O(n)}
t₂₇, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₅: X₅ {O(n)}
t₂₉, X₆: X₆ {O(n)}
t₂₉, X₇: X₇+16 {O(n)}
t₂₉, X₈: 2 {O(1)}
t₂₉, X₉: X₉ {O(n)}
t₂₉, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₂₉, X₁₁: 0 {O(1)}
t₂₉, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₂₉, X₁₃: X₁₃ {O(n)}
t₂₉, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₀, X₄: X₄ {O(n)}
t₃₀, X₅: X₅ {O(n)}
t₃₀, X₆: X₆ {O(n)}
t₃₀, X₇: 1 {O(1)}
t₃₀, X₈: 2 {O(1)}
t₃₀, X₉: X₉ {O(n)}
t₃₀, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₃₀, X₁₁: 0 {O(1)}
t₃₀, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₃₀, X₁₃: X₁₃ {O(n)}
t₃₀, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₁, X₄: X₄ {O(n)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: 1 {O(1)}
t₃₁, X₈: 2 {O(1)}
t₃₁, X₉: X₉ {O(n)}
t₃₁, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₃₁, X₁₁: 0 {O(1)}
t₃₁, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₃₁, X₁₃: X₁₃ {O(n)}
t₃₁, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₂, X₀: 0 {O(1)}
t₃₂, X₄: X₄ {O(n)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: X₆ {O(n)}
t₃₂, X₇: X₇+16 {O(n)}
t₃₂, X₈: 2 {O(1)}
t₃₂, X₉: X₉ {O(n)}
t₃₂, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₃₂, X₁₁: 0 {O(1)}
t₃₂, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₃₂, X₁₃: X₁₃ {O(n)}
t₃₂, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₅: X₅ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₃, X₇: 2⋅X₇+32 {O(n)}
t₃₃, X₈: 2 {O(1)}
t₃₃, X₉: X₉ {O(n)}
t₃₃, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₃₃, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₃, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₃₃, X₁₃: X₁₃ {O(n)}
t₃₃, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₅, X₅: X₅ {O(n)}
t₃₅, X₆: X₆ {O(n)}
t₃₅, X₇: 2⋅X₇+32 {O(n)}
t₃₅, X₈: 2 {O(1)}
t₃₅, X₉: X₉ {O(n)}
t₃₅, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₃₅, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₅, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₃₅, X₁₃: X₁₃ {O(n)}
t₃₅, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₅: X₅ {O(n)}
t₃₆, X₆: X₆ {O(n)}
t₃₆, X₇: 1 {O(1)}
t₃₆, X₈: 2 {O(1)}
t₃₆, X₉: X₉ {O(n)}
t₃₆, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₃₆, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₆, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₃₆, X₁₃: X₁₃ {O(n)}
t₃₆, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₇, X₄: X₄ {O(n)}
t₃₇, X₅: X₅ {O(n)}
t₃₇, X₆: X₆ {O(n)}
t₃₇, X₇: 1 {O(1)}
t₃₇, X₈: 2 {O(1)}
t₃₇, X₉: X₉ {O(n)}
t₃₇, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₃₇, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₇, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₃₇, X₁₃: X₁₃ {O(n)}
t₃₇, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₈, X₁: 0 {O(1)}
t₃₈, X₄: X₄ {O(n)}
t₃₈, X₅: X₅ {O(n)}
t₃₈, X₆: X₆ {O(n)}
t₃₈, X₇: 0 {O(1)}
t₃₈, X₈: 2 {O(1)}
t₃₈, X₉: X₉ {O(n)}
t₃₈, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₃₈, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₈, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₃₈, X₁₃: X₁₃ {O(n)}
t₃₈, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₃₉, X₄: X₄ {O(n)}
t₃₉, X₅: X₅ {O(n)}
t₃₉, X₆: X₆ {O(n)}
t₃₉, X₇: 1 {O(1)}
t₃₉, X₈: 2 {O(1)}
t₃₉, X₉: X₉ {O(n)}
t₃₉, X₁₀: 1 {O(1)}
t₃₉, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₃₉, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₃₉, X₁₃: X₁₃ {O(n)}
t₃₉, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₀, X₄: X₄ {O(n)}
t₄₀, X₅: X₅ {O(n)}
t₄₀, X₆: X₆ {O(n)}
t₄₀, X₇: 1 {O(1)}
t₄₀, X₈: 2 {O(1)}
t₄₀, X₉: X₉ {O(n)}
t₄₀, X₁₀: 1 {O(1)}
t₄₀, X₁₁: 0 {O(1)}
t₄₀, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄₀, X₁₃: X₁₃ {O(n)}
t₄₀, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₁, X₄: X₄ {O(n)}
t₄₁, X₅: X₅ {O(n)}
t₄₁, X₆: X₆ {O(n)}
t₄₁, X₇: 1 {O(1)}
t₄₁, X₈: 1 {O(1)}
t₄₁, X₉: X₉ {O(n)}
t₄₁, X₁₀: 1 {O(1)}
t₄₁, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₁, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄₁, X₁₃: X₁₃ {O(n)}
t₄₁, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₂, X₄: X₄ {O(n)}
t₄₂, X₅: X₅ {O(n)}
t₄₂, X₆: X₆ {O(n)}
t₄₂, X₇: 1 {O(1)}
t₄₂, X₈: 2 {O(1)}
t₄₂, X₉: X₉ {O(n)}
t₄₂, X₁₀: 1 {O(1)}
t₄₂, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₂, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄₂, X₁₃: X₁₃ {O(n)}
t₄₂, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₃, X₁: 0 {O(1)}
t₄₃, X₄: X₄ {O(n)}
t₄₃, X₅: X₅ {O(n)}
t₄₃, X₆: X₆ {O(n)}
t₄₃, X₇: 0 {O(1)}
t₄₃, X₈: 0 {O(1)}
t₄₃, X₉: X₉ {O(n)}
t₄₃, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₄₃, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₃, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄₃, X₁₃: X₁₃ {O(n)}
t₄₃, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₄, X₄: X₄ {O(n)}
t₄₄, X₅: X₅ {O(n)}
t₄₄, X₆: X₆ {O(n)}
t₄₄, X₇: 4 {O(1)}
t₄₄, X₈: 2 {O(1)}
t₄₄, X₉: X₉ {O(n)}
t₄₄, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₄+4 {O(n^4)}
t₄₄, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₄, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄₄, X₁₃: X₁₃ {O(n)}
t₄₄, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₅, X₄: X₄ {O(n)}
t₄₅, X₅: X₅ {O(n)}
t₄₅, X₆: X₆ {O(n)}
t₄₅, X₇: 8 {O(1)}
t₄₅, X₈: 2 {O(1)}
t₄₅, X₉: X₉ {O(n)}
t₄₅, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₄+8 {O(n^4)}
t₄₅, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₅, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄₅, X₁₃: X₁₃ {O(n)}
t₄₅, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₆, X₄: X₄ {O(n)}
t₄₆, X₅: X₅ {O(n)}
t₄₆, X₆: X₆ {O(n)}
t₄₆, X₇: 4 {O(1)}
t₄₆, X₈: 2 {O(1)}
t₄₆, X₉: X₉ {O(n)}
t₄₆, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₄+4 {O(n^4)}
t₄₆, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₆, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄₆, X₁₃: X₁₃ {O(n)}
t₄₆, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₇, X₄: X₄ {O(n)}
t₄₇, X₅: X₅ {O(n)}
t₄₇, X₆: X₆ {O(n)}
t₄₇, X₇: 8 {O(1)}
t₄₇, X₈: 2 {O(1)}
t₄₇, X₉: X₉ {O(n)}
t₄₇, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₄₇, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₇, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄₇, X₁₃: X₁₃ {O(n)}
t₄₇, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₈, X₄: X₄ {O(n)}
t₄₈, X₅: X₅ {O(n)}
t₄₈, X₆: X₆ {O(n)}
t₄₈, X₇: X₇+8 {O(n)}
t₄₈, X₈: 3 {O(1)}
t₄₈, X₉: X₉ {O(n)}
t₄₈, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₄₈, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₅ {O(n^3)}
t₄₈, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄₈, X₁₃: X₁₃ {O(n)}
t₄₈, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₄₉, X₄: X₄ {O(n)}
t₄₉, X₅: X₅ {O(n)}
t₄₉, X₆: X₆ {O(n)}
t₄₉, X₇: X₇+8 {O(n)}
t₄₉, X₈: X₈+3 {O(n)}
t₄₉, X₉: X₉ {O(n)}
t₄₉, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+X₁₀+X₄+8 {O(n^4)}
t₄₉, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+X₁₁+X₅ {O(n^3)}
t₄₉, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₆ {O(n^2)}
t₄₉, X₁₃: X₁₃ {O(n)}
t₄₉, X₁₄: 3⋅X₉+X₁₃+1 {O(n)}
t₅₀, X₄: 2⋅X₄ {O(n)}
t₅₀, X₅: 2⋅X₅ {O(n)}
t₅₀, X₆: 2⋅X₆ {O(n)}
t₅₀, X₇: 2⋅X₇+8 {O(n)}
t₅₀, X₈: 2⋅X₈+3 {O(n)}
t₅₀, X₉: 2⋅X₉ {O(n)}
t₅₀, X₁₀: 2⋅X₄⋅X₅⋅X₆⋅X₉+X₁₃⋅X₄⋅X₅⋅X₆+X₄⋅X₅⋅X₆+X₄⋅X₅+2⋅X₁₀+X₄+8 {O(n^4)}
t₅₀, X₁₁: 2⋅X₅⋅X₆⋅X₉+X₁₃⋅X₅⋅X₆+X₅⋅X₆+2⋅X₁₁+X₅ {O(n^3)}
t₅₀, X₁₂: 2⋅X₆⋅X₉+X₁₃⋅X₆+X₁₂+X₆ {O(n^2)}
t₅₀, X₁₃: 2⋅X₁₃ {O(n)}
t₅₀, X₁₄: 4⋅X₉+X₁₃+1 {O(n)}