Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(1, X₁, X₂, X₃) :|: X₁ ≤ X₃
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₃ < X₁
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₀, 1, X₂, X₃)
t₅: l3(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₂ < X₀
t₄: l3(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₂
t₈: l4(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₇: l5(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃)
t₆: l6(X₀, X₁, X₂, X₃) → l3(X₀+1, X₁, X₂, X₃)
Preprocessing
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₁ for location l7
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₁ for location l1
Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₁ for location l4
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(1, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ 1 ≤ X₁
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₃ < X₁ ∧ 1 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₀, 1, X₂, X₃)
t₅: l3(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₂ < X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄: l3(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₈: l4(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₁ ∧ 1 ≤ X₁
t₇: l5(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆: l6(X₀, X₁, X₂, X₃) → l3(X₀+1, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
MPRF for transition t₂: l1(X₀, X₁, X₂, X₃) → l3(1, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₃+2 {O(n)}
MPRF for transition t₅: l3(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₂ < X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+2 {O(n)}
MPRF for transition t₇: l5(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+2 {O(n)}
TWN: t₄: l3→l6
cycle: [t₄: l3→l6; t₆: l6→l3]
loop: (X₀ ≤ X₂,(X₀,X₂) -> (X₀+1,X₂)
order: [X₀; X₂]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₂: X₂
Termination: true
Formula:
1 < 0
∨ X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀
Stabilization-Threshold for: X₀ ≤ X₂
alphas_abs: X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+2 {O(n)}
TWN - Lifting for t₄: l3→l6 of 2⋅X₀+2⋅X₂+4 {O(n)}
relevant size-bounds w.r.t. t₂:
X₀: 1 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₂: X₃+2 {O(n)}
Results in: 2⋅X₂⋅X₃+4⋅X₂+6⋅X₃+12 {O(n^2)}
TWN: t₆: l6→l3
TWN - Lifting for t₆: l6→l3 of 2⋅X₀+2⋅X₂+4 {O(n)}
relevant size-bounds w.r.t. t₂:
X₀: 1 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₂: X₃+2 {O(n)}
Results in: 2⋅X₂⋅X₃+4⋅X₂+6⋅X₃+12 {O(n^2)}
Chain transitions t₇: l5→l1 and t₃: l1→l4 to t₅₃: l5→l4
Chain transitions t₁: l2→l1 and t₃: l1→l4 to t₅₄: l2→l4
Chain transitions t₁: l2→l1 and t₂: l1→l3 to t₅₅: l2→l3
Chain transitions t₇: l5→l1 and t₂: l1→l3 to t₅₆: l5→l3
Chain transitions t₆: l6→l3 and t₄: l3→l6 to t₅₇: l6→l6
Chain transitions t₅₆: l5→l3 and t₄: l3→l6 to t₅₈: l5→l6
Chain transitions t₅₆: l5→l3 and t₅: l3→l5 to t₅₉: l5→l5
Chain transitions t₆: l6→l3 and t₅: l3→l5 to t₆₀: l6→l5
Chain transitions t₅₅: l2→l3 and t₅: l3→l5 to t₆₁: l2→l5
Chain transitions t₅₅: l2→l3 and t₄: l3→l6 to t₆₂: l2→l6
Analysing control-flow refined program
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₁ for location l7
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₁ for location l1
Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₁ for location l4
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
MPRF for transition t₅₈: l5(X₀, X₁, X₂, X₃) -{3}> l6(1, 1+X₁, X₂, X₃) :|: 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃+4 {O(n)}
MPRF for transition t₅₉: l5(X₀, X₁, X₂, X₃) -{3}> l5(1, 1+X₁, X₂, X₃) :|: 1+X₁ ≤ X₃ ∧ X₂ < 1 ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ 0 ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₃+2 {O(n)}
MPRF for transition t₆₀: l6(X₀, X₁, X₂, X₃) -{2}> l5(1+X₀, X₁, X₂, X₃) :|: X₂ < X₀+1 ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₃+3 {O(n)}
TWN: t₅₇: l6→l6
cycle: [t₅₇: l6→l6]
loop: (1+X₀ ≤ X₂,(X₀,X₂) -> (1+X₀,X₂)
order: [X₀; X₂]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₂: X₂
Termination: true
Formula:
1 < 0
∨ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
Stabilization-Threshold for: 1+X₀ ≤ X₂
alphas_abs: 1+X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}
loop: (1+X₀ ≤ X₂,(X₀,X₂) -> (1+X₀,X₂)
order: [X₀; X₂]
closed-form:
X₀: X₀ + [[n != 0]] * n^1
X₂: X₂
Termination: true
Formula:
1 < 0
∨ 1+X₀ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₀ ≤ X₂ ∧ X₂ ≤ 1+X₀
Stabilization-Threshold for: 1+X₀ ≤ X₂
alphas_abs: 1+X₀+X₂
M: 0
N: 1
Bound: 2⋅X₀+2⋅X₂+4 {O(n)}
TWN - Lifting for t₅₇: l6→l6 of 2⋅X₀+2⋅X₂+6 {O(n)}
relevant size-bounds w.r.t. t₅₈:
X₀: 1 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₅₈: 2⋅X₃+4 {O(n)}
Results in: 4⋅X₂⋅X₃+16⋅X₃+8⋅X₂+32 {O(n^2)}
TWN - Lifting for t₅₇: l6→l6 of 2⋅X₀+2⋅X₂+6 {O(n)}
relevant size-bounds w.r.t. t₆₂:
X₀: 1 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₆₂: 1 {O(1)}
Results in: 2⋅X₂+8 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l6___3
Found invariant 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l6___1
Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₁ for location l7
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l3___2
Found invariant 1 ≤ X₁ for location l1
Found invariant 1+X₃ ≤ X₁ ∧ 1 ≤ X₁ for location l4
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location l3
knowledge_propagation leads to new time bound X₃+2 {O(n)} for transition t₁₄₉: l3(X₀, X₁, X₂, X₃) → n_l6___3(X₀, X₁, X₂, X₃) :|: X₀ ≤ 1 ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₃+2 {O(n)} for transition t₁₅₁: n_l6___3(X₀, X₁, X₂, X₃) → n_l3___2(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
MPRF for transition t₁₄₈: n_l3___2(X₀, X₁, X₂, X₃) → n_l6___1(X₀, X₁, X₂, X₃) :|: 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂⋅X₃+2⋅X₂+3⋅X₃+6 {O(n^2)}
MPRF for transition t₁₅₀: n_l6___1(X₀, X₁, X₂, X₃) → n_l3___2(X₀+1, X₁, X₂, X₃) :|: 2 ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₃⋅X₃+X₂⋅X₃+17⋅X₃+6⋅X₂+10 {O(n^2)}
MPRF for transition t₁₅₅: n_l3___2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₂ < X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₃+2 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:4⋅X₂⋅X₃+15⋅X₃+8⋅X₂+34 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₃+2 {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₂⋅X₃+4⋅X₂+6⋅X₃+12 {O(n^2)}
t₅: X₃+2 {O(n)}
t₆: 2⋅X₂⋅X₃+4⋅X₂+6⋅X₃+12 {O(n^2)}
t₇: X₃+2 {O(n)}
t₈: 1 {O(1)}
Costbounds
Overall costbound: 4⋅X₂⋅X₃+15⋅X₃+8⋅X₂+34 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₃+2 {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₂⋅X₃+4⋅X₂+6⋅X₃+12 {O(n^2)}
t₅: X₃+2 {O(n)}
t₆: 2⋅X₂⋅X₃+4⋅X₂+6⋅X₃+12 {O(n^2)}
t₇: X₃+2 {O(n)}
t₈: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: 1 {O(1)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: 1 {O(1)}
t₂, X₁: X₃+3 {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₃, X₀: 2⋅X₂⋅X₃+4⋅X₂+6⋅X₃+X₀+14 {O(n^2)}
t₃, X₁: X₃+4 {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₄, X₀: 2⋅X₂⋅X₃+4⋅X₂+6⋅X₃+13 {O(n^2)}
t₄, X₁: X₃+3 {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₅, X₀: 2⋅X₂⋅X₃+4⋅X₂+6⋅X₃+14 {O(n^2)}
t₅, X₁: X₃+3 {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₆, X₀: 2⋅X₂⋅X₃+4⋅X₂+6⋅X₃+13 {O(n^2)}
t₆, X₁: X₃+3 {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₇, X₀: 2⋅X₂⋅X₃+4⋅X₂+6⋅X₃+14 {O(n^2)}
t₇, X₁: X₃+3 {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₈, X₀: 2⋅X₂⋅X₃+4⋅X₂+6⋅X₃+X₀+14 {O(n^2)}
t₈, X₁: X₃+4 {O(n)}
t₈, X₂: 2⋅X₂ {O(n)}
t₈, X₃: 2⋅X₃ {O(n)}