Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ < X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₉, X₈, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 < X₀
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 1
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀-1, X₁, X₂+X₀-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)

Preprocessing

Eliminate variables {X₃,X₄,X₅,X₆} that do not contribute to the problem

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 for location l6

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₁ for location l7

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀ for location l5

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ for location l1

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₁ for location l4

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₁₇: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₁₈: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ < X₁ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₅, X₄, X₃, X₃, X₄, X₅)
t₂₁: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 < X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂
t₂₂: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 1 ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₁
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀-1, X₁, X₂+X₀-1, X₃, X₄, X₅) :|: 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀
t₂₅: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1

MPRF for transition t₂₁: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 < X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF for transition t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀-1, X₁, X₂+X₀-1, X₃, X₄, X₅) :|: 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₅+1 {O(n)}

MPRF for transition t₁₈: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ of depth 1:

new bound:

X₅⋅X₅⋅X₅+4⋅X₅⋅X₅+X₃⋅X₅+X₄⋅X₅+2⋅X₃+2⋅X₄+3⋅X₅+1 {O(n^3)}

MPRF for transition t₂₂: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 1 ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ of depth 1:

new bound:

X₅⋅X₅⋅X₅+4⋅X₅⋅X₅+X₃⋅X₅+X₄⋅X₅+2⋅X₃+2⋅X₄+3⋅X₅+1 {O(n^3)}

MPRF for transition t₂₅: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 of depth 1:

new bound:

X₅⋅X₅⋅X₅+4⋅X₅⋅X₅+X₃⋅X₅+X₄⋅X₅+2⋅X₃+2⋅X₄+3⋅X₅+1 {O(n^3)}

Chain transitions t₂₅: l6→l1 and t₁₉: l1→l4 to t₆₂: l6→l4

Chain transitions t₂₄: l5→l1 and t₁₉: l1→l4 to t₆₃: l5→l4

Chain transitions t₂₄: l5→l1 and t₁₈: l1→l3 to t₆₄: l5→l3

Chain transitions t₂₅: l6→l1 and t₁₈: l1→l3 to t₆₅: l6→l3

Chain transitions t₂₀: l2→l1 and t₁₈: l1→l3 to t₆₆: l2→l3

Chain transitions t₂₀: l2→l1 and t₁₉: l1→l4 to t₆₇: l2→l4

Chain transitions t₆₅: l6→l3 and t₂₂: l3→l6 to t₆₈: l6→l6

Chain transitions t₆₄: l5→l3 and t₂₂: l3→l6 to t₆₉: l5→l6

Chain transitions t₆₄: l5→l3 and t₂₁: l3→l5 to t₇₀: l5→l5

Chain transitions t₆₅: l6→l3 and t₂₁: l3→l5 to t₇₁: l6→l5

Chain transitions t₆₆: l2→l3 and t₂₁: l3→l5 to t₇₂: l2→l5

Chain transitions t₆₆: l2→l3 and t₂₂: l3→l6 to t₇₃: l2→l6

Analysing control-flow refined program

Cut unsatisfiable transition t₆₃: l5→l4

Cut unsatisfiable transition t₇₁: l6→l5

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 for location l6

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₁ for location l7

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀ for location l5

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ for location l1

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₁ for location l4

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ for location l3

MPRF for transition t₇₀: l5(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l5(X₀-1, X₁, X₂+X₀-1, X₃, X₄, X₅) :|: X₁+1 ≤ X₂+X₀ ∧ 2 < X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₂+X₀ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₂+X₀ ∧ X₄ ≤ X₁ ∧ 1+X₃ ≤ X₂+X₀ ∧ X₁+1 ≤ X₂+X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₅ {O(n)}

MPRF for transition t₆₈: l6(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l6(X₀, 1+X₁, X₂, X₃, X₄, X₅) :|: 1+X₁ ≤ X₂ ∧ X₀ ≤ 1 ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ X₃ ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 of depth 1:

new bound:

2⋅X₅⋅X₅+2⋅X₅+3⋅X₃+3⋅X₄+4 {O(n^2)}

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₁₇₇: n_l1___1→l4

Cut unsatisfiable transition t₁₈₀: n_l3___5→l5

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1 for location n_l1___6

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l6___2

Found invariant X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 for location n_l6___4

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l3___3

Found invariant X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 for location n_l3___5

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₁ for location l7

Found invariant X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₂ for location n_l3___8

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀ for location l5

Found invariant X₅ ≤ 1 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 2 ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 for location n_l6___7

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂ for location l1

Found invariant X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₁ for location l4

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ for location n_l1___1

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₆₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂

knowledge_propagation leads to new time bound X₅+1 {O(n)} for transition t₁₆₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ X₀+X₃ ≤ X₂ ∧ X₀+X₁ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂

knowledge_propagation leads to new time bound X₅+1 {O(n)} for transition t₁₇₉: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 < X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₈₁: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 < X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₂

MPRF for transition t₁₆₄: n_l1___6(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 1 ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1 of depth 1:

new bound:

2⋅X₅⋅X₅+2⋅X₃+2⋅X₄+4⋅X₅+3 {O(n^2)}

MPRF for transition t₁₆₇: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 1 ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 of depth 1:

new bound:

2⋅X₅⋅X₅+2⋅X₃+2⋅X₄+4⋅X₅+4 {O(n^2)}

MPRF for transition t₁₇₀: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___6(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1+X₄ ≤ X₁ ∧ X₀ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₀ ≤ 1 ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 of depth 1:

new bound:

2⋅X₅⋅X₅+2⋅X₃+2⋅X₄+4⋅X₅+4 {O(n^2)}

CFR did not improve the program. Rolling back

CFR: Improvement to new bound with the following program:

new bound:

6⋅X₅⋅X₅+15⋅X₅+6⋅X₃+6⋅X₄+16 {O(n^2)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l4, l5, l7, n_l1___1, n_l1___6, n_l3___3, n_l3___5, n_l3___8, n_l6___2, n_l6___4, n_l6___7
Transitions:
t₁₇: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ < X₁ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂
t₁₆₅: l1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₀ ≤ X₅ ∧ X₀+X₃ ≤ X₂ ∧ X₀+X₁ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂
t₁₆₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₅, X₄, X₃, X₃, X₄, X₅)
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₂ ≤ X₁
t₂₄: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀-1, X₁, X₂+X₀-1, X₃, X₄, X₅) :|: 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀
t₁₆₂: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 1 ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₇₈: n_l1___6(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₂ < X₁ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1
t₁₆₄: n_l1___6(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 1 ∧ 1+X₄ ≤ X₁ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1 ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ 1+X₂ ∧ X₀ ≤ 1
t₁₇₉: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 < X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀
t₁₆₆: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₅ ∧ X₀+X₁ ≤ X₂ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1 ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀
t₁₆₇: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 1 ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1
t₁₈₁: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 < X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₂
t₁₆₈: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₃ ∧ X₂ ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₅ ≤ X₀ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₂
t₁₆₉: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___1(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1+X₃ ≤ X₂ ∧ 2 ≤ X₅ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₀ ≤ 1 ∧ 2 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ 1 ∧ 1 ≤ X₀
t₁₇₀: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___6(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1+X₄ ≤ X₁ ∧ X₀ ≤ 1 ∧ X₃ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₀ ≤ 1 ∧ X₀ ≤ X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1
t₁₇₁: n_l6___7(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___6(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₄ ∧ X₅ ≤ X₀ ∧ X₂ ≤ X₃ ∧ X₀ ≤ 1 ∧ X₁ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₅ ∧ X₀ ≤ 1 ∧ X₅ ≤ 1 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 2 ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₂ ∧ X₀ ≤ 1

All Bounds

Timebounds

Overall timebound:6⋅X₅⋅X₅+15⋅X₅+6⋅X₃+6⋅X₄+26 {O(n^2)}
t₁₇: 1 {O(1)}
t₁₉: 1 {O(1)}
t₂₀: 1 {O(1)}
t₂₃: 1 {O(1)}
t₂₄: X₅+1 {O(n)}
t₁₆₂: 1 {O(1)}
t₁₆₃: 1 {O(1)}
t₁₆₄: 2⋅X₅⋅X₅+2⋅X₃+2⋅X₄+4⋅X₅+3 {O(n^2)}
t₁₆₅: X₅+1 {O(n)}
t₁₆₆: 1 {O(1)}
t₁₆₇: 2⋅X₅⋅X₅+2⋅X₃+2⋅X₄+4⋅X₅+4 {O(n^2)}
t₁₆₈: 1 {O(1)}
t₁₆₉: 1 {O(1)}
t₁₇₀: 2⋅X₅⋅X₅+2⋅X₃+2⋅X₄+4⋅X₅+4 {O(n^2)}
t₁₇₁: 1 {O(1)}
t₁₇₈: 1 {O(1)}
t₁₇₉: X₅+1 {O(n)}
t₁₈₁: 1 {O(1)}

Costbounds

Overall costbound: 6⋅X₅⋅X₅+15⋅X₅+6⋅X₃+6⋅X₄+26 {O(n^2)}
t₁₇: 1 {O(1)}
t₁₉: 1 {O(1)}
t₂₀: 1 {O(1)}
t₂₃: 1 {O(1)}
t₂₄: X₅+1 {O(n)}
t₁₆₂: 1 {O(1)}
t₁₆₃: 1 {O(1)}
t₁₆₄: 2⋅X₅⋅X₅+2⋅X₃+2⋅X₄+4⋅X₅+3 {O(n^2)}
t₁₆₅: X₅+1 {O(n)}
t₁₆₆: 1 {O(1)}
t₁₆₇: 2⋅X₅⋅X₅+2⋅X₃+2⋅X₄+4⋅X₅+4 {O(n^2)}
t₁₆₈: 1 {O(1)}
t₁₆₉: 1 {O(1)}
t₁₇₀: 2⋅X₅⋅X₅+2⋅X₃+2⋅X₄+4⋅X₅+4 {O(n^2)}
t₁₇₁: 1 {O(1)}
t₁₇₈: 1 {O(1)}
t₁₇₉: X₅+1 {O(n)}
t₁₈₁: 1 {O(1)}

Sizebounds

t₁₇, X₀: X₀ {O(n)}
t₁₇, X₁: X₁ {O(n)}
t₁₇, X₂: X₂ {O(n)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₅ {O(n)}
t₁₉, X₀: X₅ {O(n)}
t₁₉, X₁: X₄ {O(n)}
t₁₉, X₂: X₃ {O(n)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: X₅ {O(n)}
t₂₀, X₀: X₅ {O(n)}
t₂₀, X₁: X₄ {O(n)}
t₂₀, X₂: X₃ {O(n)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: X₅ {O(n)}
t₂₃, X₀: 2⋅X₅ {O(n)}
t₂₃, X₁: 2⋅X₅⋅X₅+2⋅X₃+4⋅X₅+6⋅X₄+7 {O(n^2)}
t₂₃, X₂: X₅⋅X₅+2⋅X₃+2⋅X₅ {O(n^2)}
t₂₃, X₃: 4⋅X₃ {O(n)}
t₂₃, X₄: 4⋅X₄ {O(n)}
t₂₃, X₅: 4⋅X₅ {O(n)}
t₂₄, X₀: X₅ {O(n)}
t₂₄, X₁: X₄ {O(n)}
t₂₄, X₂: X₅⋅X₅+2⋅X₅+X₃ {O(n^2)}
t₂₄, X₃: X₃ {O(n)}
t₂₄, X₄: X₄ {O(n)}
t₂₄, X₅: X₅ {O(n)}
t₁₆₂, X₀: 1 {O(1)}
t₁₆₂, X₁: X₄+1 {O(n)}
t₁₆₂, X₂: 2⋅X₅⋅X₅+4⋅X₅+X₃ {O(n^2)}
t₁₆₂, X₃: X₃ {O(n)}
t₁₆₂, X₄: X₄ {O(n)}
t₁₆₂, X₅: X₅ {O(n)}
t₁₆₃, X₀: X₅ {O(n)}
t₁₆₃, X₁: X₄ {O(n)}
t₁₆₃, X₂: X₃ {O(n)}
t₁₆₃, X₃: X₃ {O(n)}
t₁₆₃, X₄: X₄ {O(n)}
t₁₆₃, X₅: X₅ {O(n)}
t₁₆₄, X₀: X₅+1 {O(n)}
t₁₆₄, X₁: 2⋅X₅⋅X₅+2⋅X₃+4⋅X₄+4⋅X₅+6 {O(n^2)}
t₁₆₄, X₂: 2⋅X₅⋅X₅+2⋅X₃+4⋅X₅ {O(n^2)}
t₁₆₄, X₃: 2⋅X₃ {O(n)}
t₁₆₄, X₄: 2⋅X₄ {O(n)}
t₁₆₄, X₅: 2⋅X₅ {O(n)}
t₁₆₅, X₀: X₅ {O(n)}
t₁₆₅, X₁: X₄ {O(n)}
t₁₆₅, X₂: 2⋅X₅⋅X₅+4⋅X₅+X₃ {O(n^2)}
t₁₆₅, X₃: X₃ {O(n)}
t₁₆₅, X₄: X₄ {O(n)}
t₁₆₅, X₅: X₅ {O(n)}
t₁₆₆, X₀: 1 {O(1)}
t₁₆₆, X₁: X₄ {O(n)}
t₁₆₆, X₂: 2⋅X₅⋅X₅+4⋅X₅+X₃ {O(n^2)}
t₁₆₆, X₃: X₃ {O(n)}
t₁₆₆, X₄: X₄ {O(n)}
t₁₆₆, X₅: X₅ {O(n)}
t₁₆₇, X₀: X₅+1 {O(n)}
t₁₆₇, X₁: 2⋅X₅⋅X₅+2⋅X₃+4⋅X₄+4⋅X₅+6 {O(n^2)}
t₁₆₇, X₂: 2⋅X₅⋅X₅+2⋅X₃+4⋅X₅ {O(n^2)}
t₁₆₇, X₃: 2⋅X₃ {O(n)}
t₁₆₇, X₄: 2⋅X₄ {O(n)}
t₁₆₇, X₅: 2⋅X₅ {O(n)}
t₁₆₈, X₀: X₅ {O(n)}
t₁₆₈, X₁: X₄ {O(n)}
t₁₆₈, X₂: X₃ {O(n)}
t₁₆₈, X₃: X₃ {O(n)}
t₁₆₈, X₄: X₄ {O(n)}
t₁₆₈, X₅: X₅ {O(n)}
t₁₆₉, X₀: 1 {O(1)}
t₁₆₉, X₁: X₄+1 {O(n)}
t₁₆₉, X₂: 2⋅X₅⋅X₅+4⋅X₅+X₃ {O(n^2)}
t₁₆₉, X₃: X₃ {O(n)}
t₁₆₉, X₄: X₄ {O(n)}
t₁₆₉, X₅: X₅ {O(n)}
t₁₇₀, X₀: X₅+1 {O(n)}
t₁₇₀, X₁: 2⋅X₅⋅X₅+2⋅X₃+4⋅X₄+4⋅X₅+6 {O(n^2)}
t₁₇₀, X₂: 2⋅X₅⋅X₅+2⋅X₃+4⋅X₅ {O(n^2)}
t₁₇₀, X₃: 2⋅X₃ {O(n)}
t₁₇₀, X₄: 2⋅X₄ {O(n)}
t₁₇₀, X₅: 2⋅X₅ {O(n)}
t₁₇₁, X₀: X₅ {O(n)}
t₁₇₁, X₁: X₄+1 {O(n)}
t₁₇₁, X₂: X₃ {O(n)}
t₁₇₁, X₃: X₃ {O(n)}
t₁₇₁, X₄: X₄ {O(n)}
t₁₇₁, X₅: X₅ {O(n)}
t₁₇₈, X₀: 2⋅X₅+1 {O(n)}
t₁₇₈, X₁: 2⋅X₅⋅X₅+2⋅X₃+4⋅X₅+5⋅X₄+7 {O(n^2)}
t₁₇₈, X₂: 2⋅X₅⋅X₅+3⋅X₃+4⋅X₅ {O(n^2)}
t₁₇₈, X₃: 3⋅X₃ {O(n)}
t₁₇₈, X₄: 3⋅X₄ {O(n)}
t₁₇₈, X₅: 3⋅X₅ {O(n)}
t₁₇₉, X₀: X₅ {O(n)}
t₁₇₉, X₁: X₄ {O(n)}
t₁₇₉, X₂: 2⋅X₅⋅X₅+4⋅X₅+X₃ {O(n^2)}
t₁₇₉, X₃: X₃ {O(n)}
t₁₇₉, X₄: X₄ {O(n)}
t₁₇₉, X₅: X₅ {O(n)}
t₁₈₁, X₀: X₅ {O(n)}
t₁₈₁, X₁: X₄ {O(n)}
t₁₈₁, X₂: X₃ {O(n)}
t₁₈₁, X₃: X₃ {O(n)}
t₁₈₁, X₄: X₄ {O(n)}
t₁₈₁, X₅: X₅ {O(n)}