Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁)
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ 0
t₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ ≤ 0
t₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₉, X₁₀, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₉ ∧ 0 < X₁₀
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₁+1, X₃, X₄, X₀-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ 0
t₁₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃
t₂₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁)
t₂₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ < X₁₁
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₅, X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₅, X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ 0
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 0 ∧ 0 < X₂
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₆ ∧ 0 < X₂
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, nondef.0, X₇, X₈, X₉, X₁₀, X₁₁)
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀
t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0
t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂-1, X₈, X₉, X₁₀, X₁₁)
Preprocessing
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l2
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l15
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l8
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l16
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l4
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l3
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ 0
t₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ ≤ 0
t₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₉, X₁₀, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₉ ∧ 0 < X₁₀
t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₁+1, X₃, X₄, X₀-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₁₉: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ 0 ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ < X₁₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₅, X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₅, X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 0 ∧ 0 < X₂ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₆ ∧ 0 < X₂ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, nondef.0, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0 ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀
t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂-1, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
MPRF for transition t₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₀+X₉ {O(n)}
MPRF for transition t₆: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₁+1, X₃, X₄, X₀-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉ {O(n)}
MPRF for transition t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 0 ∧ 0 < X₂ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁₀+X₉ {O(n)}
MPRF for transition t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₆ ∧ 0 < X₂ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁₀+X₉ {O(n)}
MPRF for transition t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₅, X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉ {O(n)}
MPRF for transition t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₅, X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₉+1 {O(n)}
MPRF for transition t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₂-1, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁₀+X₉ {O(n)}
MPRF for transition t₁₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁₀+2⋅X₉+1 {O(n)}
MPRF for transition t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁₀+X₉ {O(n)}
knowledge_propagation leads to new time bound 2⋅X₉+X₁₀ {O(n)} for transition t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₉+X₁₀ {O(n)} for transition t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, nondef.0, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
MPRF for transition t₁₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁₀+2⋅X₉ {O(n)}
MPRF for transition t₂₀: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁₀+2⋅X₉ {O(n)}
MPRF for transition t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁₀+2⋅X₉ {O(n)}
TWN: t₂₁: l4→l2
cycle: [t₂₁: l4→l2; t₂₃: l2→l3; t₂₅: l3→l1; t₂₆: l1→l4]
loop: (X₈ < X₁₁,(X₈,X₁₁) -> (X₈+1,X₁₁)
order: [X₈; X₁₁]
closed-form:
X₈: X₈ + [[n != 0]] * n^1
X₁₁: X₁₁
Termination: true
Formula:
1 < 0
∨ X₈ < X₁₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₈ < X₁₁
alphas_abs: X₈+X₁₁
M: 0
N: 1
Bound: 2⋅X₁₁+2⋅X₈+2 {O(n)}
TWN - Lifting for t₂₁: l4→l2 of 2⋅X₁₁+2⋅X₈+4 {O(n)}
relevant size-bounds w.r.t. t₂₀:
X₈: 0 {O(1)}
X₁₁: 2⋅X₁₁ {O(n)}
Runtime-bound of t₂₀: 2⋅X₁₀+2⋅X₉ {O(n)}
Results in: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
TWN: t₂₃: l2→l3
TWN - Lifting for t₂₃: l2→l3 of 2⋅X₁₁+2⋅X₈+4 {O(n)}
relevant size-bounds w.r.t. t₂₀:
X₈: 0 {O(1)}
X₁₁: 2⋅X₁₁ {O(n)}
Runtime-bound of t₂₀: 2⋅X₁₀+2⋅X₉ {O(n)}
Results in: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
TWN: t₂₅: l3→l1
TWN - Lifting for t₂₅: l3→l1 of 2⋅X₁₁+2⋅X₈+4 {O(n)}
relevant size-bounds w.r.t. t₂₀:
X₈: 0 {O(1)}
X₁₁: 2⋅X₁₁ {O(n)}
Runtime-bound of t₂₀: 2⋅X₁₀+2⋅X₉ {O(n)}
Results in: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
TWN: t₂₆: l1→l4
TWN - Lifting for t₂₆: l1→l4 of 2⋅X₁₁+2⋅X₈+4 {O(n)}
relevant size-bounds w.r.t. t₂₀:
X₈: 0 {O(1)}
X₁₁: 2⋅X₁₁ {O(n)}
Runtime-bound of t₂₀: 2⋅X₁₀+2⋅X₉ {O(n)}
Results in: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
Chain transitions t₂₅: l3→l1 and t₂₆: l1→l4 to t₁₆₇: l3→l4
Chain transitions t₅: l8→l15 and t₁₈: l15→l16 to t₁₆₈: l8→l16
Chain transitions t₂₂: l4→l15 and t₁₈: l15→l16 to t₁₆₉: l4→l16
Chain transitions t₂₂: l4→l15 and t₁₉: l15→l12 to t₁₇₀: l4→l12
Chain transitions t₅: l8→l15 and t₁₉: l15→l12 to t₁₇₁: l8→l12
Chain transitions t₁₆₈: l8→l16 and t₂₀: l16→l4 to t₁₇₂: l8→l4
Chain transitions t₁₆₉: l4→l16 and t₂₀: l16→l4 to t₁₇₃: l4→l4
Chain transitions t₂₁: l4→l2 and t₂₃: l2→l3 to t₁₇₄: l4→l3
Chain transitions t₁₇₄: l4→l3 and t₁₆₇: l3→l4 to t₁₇₅: l4→l4
Chain transitions t₁₇₄: l4→l3 and t₂₅: l3→l1 to t₁₇₆: l4→l1
Analysing control-flow refined program
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l2
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l15
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l8
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l16
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l4
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l3
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l14
MPRF for transition t₁₇₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) -{3}> l4(X₀, X₁, X₂, X₄, X₄-1, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈ ∧ 0 < X₄ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
X₁₀+X₉+1 {O(n)}
TWN: t₁₇₅: l4→l4
cycle: [t₁₇₅: l4→l4]
loop: (X₈ < X₁₁,(X₈,X₁₁) -> (X₈+1,X₁₁)
order: [X₈; X₁₁]
closed-form:
X₈: X₈ + [[n != 0]] * n^1
X₁₁: X₁₁
Termination: true
Formula:
1 < 0
∨ X₈ < X₁₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₈ < X₁₁
alphas_abs: X₈+X₁₁
M: 0
N: 1
Bound: 2⋅X₁₁+2⋅X₈+2 {O(n)}
loop: (X₈ < X₁₁,(X₈,X₁₁) -> (X₈+1,X₁₁)
order: [X₈; X₁₁]
closed-form:
X₈: X₈ + [[n != 0]] * n^1
X₁₁: X₁₁
Termination: true
Formula:
1 < 0
∨ X₈ < X₁₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₈ < X₁₁
alphas_abs: X₈+X₁₁
M: 0
N: 1
Bound: 2⋅X₁₁+2⋅X₈+2 {O(n)}
TWN - Lifting for t₁₇₅: l4→l4 of 2⋅X₁₁+2⋅X₈+4 {O(n)}
relevant size-bounds w.r.t. t₁₇₂:
X₈: 0 {O(1)}
X₁₁: X₁₁ {O(n)}
Runtime-bound of t₁₇₂: 1 {O(1)}
Results in: 2⋅X₁₁+4 {O(n)}
TWN - Lifting for t₁₇₅: l4→l4 of 2⋅X₁₁+2⋅X₈+4 {O(n)}
relevant size-bounds w.r.t. t₁₇₃:
X₈: 0 {O(1)}
X₁₁: X₁₁ {O(n)}
Runtime-bound of t₁₇₃: X₁₀+X₉+1 {O(n)}
Results in: 2⋅X₁₀⋅X₁₁+2⋅X₁₁⋅X₉+2⋅X₁₁+4⋅X₁₀+4⋅X₉+4 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l2___7
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l15
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l4___4
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___6
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l2___3
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 0 ≤ X₀ for location l8
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___5
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___2
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ 1 ≤ X₂+X₇ ∧ X₂ ≤ 1+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 0 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l16
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l4
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₂ ≤ 1+X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l1___1
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l14
knowledge_propagation leads to new time bound 2⋅X₁₀+2⋅X₉ {O(n)} for transition t₃₁₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l2___7(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₄+1 ∧ X₈ ≤ 0 ∧ X₈ < X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 0 ≤ X₈ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₃ ≤ 1+X₄ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₈ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₁₀+2⋅X₉ {O(n)} for transition t₃₁₁: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l3___6(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₁ ∧ X₃ ≤ X₄+1 ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₁₀+2⋅X₉ {O(n)} for transition t₃₁₃: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l1___5(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₄+1 ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₁₀+2⋅X₉ {O(n)} for transition t₃₀₉: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l4___4(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₄+1 ∧ X₈ ≤ 0 ∧ 1+X₈ ≤ X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1+X₈ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ X₈ ≤ X₄ ∧ 1+X₈ ≤ X₃ ∧ 1+X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₈ ≤ X₁ ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
MPRF for transition t₃₀₈: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l4___4(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁) :|: 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ X₃ ≤ X₄+1 ∧ 1+X₈ ≤ X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
4⋅X₁₀⋅X₁₁+4⋅X₁₁⋅X₉ {O(n^2)}
MPRF for transition t₃₁₀: n_l2___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l3___2(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ < X₁₁ ∧ 1 ≤ X₈ ∧ X₃ ≤ X₄+1 ∧ 1+X₈ ≤ X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
4⋅X₁₀⋅X₁₁+4⋅X₁₁⋅X₉ {O(n^2)}
MPRF for transition t₃₁₂: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l1___1(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ X₃ ≤ X₄+1 ∧ 1+X₈ ≤ X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₃ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 1+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 3 ≤ X₁+X₁₁ ∧ 2 ≤ X₀+X₁₁ ∧ 2+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
4⋅X₁₀⋅X₁₁+4⋅X₁₁⋅X₉ {O(n^2)}
MPRF for transition t₃₁₄: n_l4___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l2___3(0, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ X₄+1 ∧ 1 ≤ X₈ ∧ X₈ ≤ X₁₁ ∧ X₈ < X₁₁ ∧ X₃ ≤ X₄+1 ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 0 ≤ X₈ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ 1+X₄ ≤ X₃ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₈ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+2⋅X₁₁ {O(n^2)}
MPRF for transition t₃₂₁: n_l4___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ X₈ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ 0 ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₁₁+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 1 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₁₁+X₄ ∧ 1 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁+X₁₁ ∧ 1 ≤ X₀+X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 1 ≤ X₀+X₁₀ ∧ 1+X₀ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₁₀+2⋅X₉ {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:32⋅X₁₀⋅X₁₁+32⋅X₁₁⋅X₉+47⋅X₁₀+53⋅X₉+9 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: X₁₀+X₉ {O(n)}
t₅: 1 {O(1)}
t₆: X₉ {O(n)}
t₇: 2⋅X₉+X₁₀ {O(n)}
t₉: 2⋅X₉+X₁₀ {O(n)}
t₁₀: X₁₀+X₉ {O(n)}
t₁₁: X₁₀+X₉ {O(n)}
t₁₂: X₉ {O(n)}
t₁₃: 2⋅X₉+1 {O(n)}
t₁₄: X₁₀+X₉ {O(n)}
t₁₆: 2⋅X₁₀+2⋅X₉+1 {O(n)}
t₁₇: X₁₀+X₉ {O(n)}
t₁₈: 2⋅X₁₀+2⋅X₉ {O(n)}
t₁₉: 1 {O(1)}
t₂₀: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₁: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₂: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₃: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₅: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₆: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₇: 1 {O(1)}
Costbounds
Overall costbound: 32⋅X₁₀⋅X₁₁+32⋅X₁₁⋅X₉+47⋅X₁₀+53⋅X₉+9 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: X₁₀+X₉ {O(n)}
t₅: 1 {O(1)}
t₆: X₉ {O(n)}
t₇: 2⋅X₉+X₁₀ {O(n)}
t₉: 2⋅X₉+X₁₀ {O(n)}
t₁₀: X₁₀+X₉ {O(n)}
t₁₁: X₁₀+X₉ {O(n)}
t₁₂: X₉ {O(n)}
t₁₃: 2⋅X₉+1 {O(n)}
t₁₄: X₁₀+X₉ {O(n)}
t₁₆: 2⋅X₁₀+2⋅X₉+1 {O(n)}
t₁₇: X₁₀+X₉ {O(n)}
t₁₈: 2⋅X₁₀+2⋅X₉ {O(n)}
t₁₉: 1 {O(1)}
t₂₀: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₁: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₂: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₃: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₅: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₆: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₇: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₃, X₀: X₉ {O(n)}
t₃, X₁: X₁₀ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₇ {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₉ {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₄, X₀: X₉ {O(n)}
t₄, X₁: X₁₀+X₉ {O(n)}
t₄, X₂: 2⋅X₁₀+2⋅X₉+X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: 2⋅X₉+X₅ {O(n)}
t₄, X₇: 2⋅X₁₀+2⋅X₉+X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: X₁₀ {O(n)}
t₄, X₁₁: X₁₁ {O(n)}
t₅, X₀: 0 {O(1)}
t₅, X₁: 2⋅X₁₀+2⋅X₉ {O(n)}
t₅, X₂: 2⋅X₁₀+2⋅X₉ {O(n)}
t₅, X₃: 2⋅X₁₀+2⋅X₉ {O(n)}
t₅, X₄: 2⋅X₄ {O(n)}
t₅, X₅: 2⋅X₉ {O(n)}
t₅, X₇: 2⋅X₇+4⋅X₁₀+4⋅X₉ {O(n)}
t₅, X₈: 2⋅X₈ {O(n)}
t₅, X₉: 2⋅X₉ {O(n)}
t₅, X₁₀: 2⋅X₁₀ {O(n)}
t₅, X₁₁: 2⋅X₁₁ {O(n)}
t₆, X₀: X₉ {O(n)}
t₆, X₁: X₁₀+X₉ {O(n)}
t₆, X₂: X₁₀+X₉ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₉ {O(n)}
t₆, X₇: 2⋅X₁₀+2⋅X₉+X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₆, X₁₁: X₁₁ {O(n)}
t₇, X₀: X₉ {O(n)}
t₇, X₁: X₁₀+X₉ {O(n)}
t₇, X₂: X₁₀+X₉ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₉ {O(n)}
t₇, X₇: 2⋅X₁₀+2⋅X₉+X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₇, X₁₁: X₁₁ {O(n)}
t₉, X₀: X₉ {O(n)}
t₉, X₁: X₁₀+X₉ {O(n)}
t₉, X₂: X₁₀+X₉ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₉ {O(n)}
t₉, X₇: 2⋅X₁₀+2⋅X₉+X₇ {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₉, X₁₁: X₁₁ {O(n)}
t₁₀, X₀: X₉ {O(n)}
t₁₀, X₁: X₁₀+X₉ {O(n)}
t₁₀, X₂: X₁₀+X₉ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₉ {O(n)}
t₁₀, X₇: 2⋅X₁₀+2⋅X₉+X₇ {O(n)}
t₁₀, X₈: X₈ {O(n)}
t₁₀, X₉: X₉ {O(n)}
t₁₀, X₁₀: X₁₀ {O(n)}
t₁₀, X₁₁: X₁₁ {O(n)}
t₁₁, X₀: X₉ {O(n)}
t₁₁, X₁: X₁₀+X₉ {O(n)}
t₁₁, X₂: X₁₀+X₉ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: X₉ {O(n)}
t₁₁, X₇: 2⋅X₁₀+2⋅X₉+X₇ {O(n)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₁, X₁₀: X₁₀ {O(n)}
t₁₁, X₁₁: X₁₁ {O(n)}
t₁₂, X₀: X₉ {O(n)}
t₁₂, X₁: X₁₀+X₉ {O(n)}
t₁₂, X₂: X₁₀+X₉ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₉ {O(n)}
t₁₂, X₆: 0 {O(1)}
t₁₂, X₇: 2⋅X₁₀+2⋅X₉+X₇ {O(n)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₉ {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₂, X₁₁: X₁₁ {O(n)}
t₁₃, X₀: X₉ {O(n)}
t₁₃, X₁: X₁₀+X₉ {O(n)}
t₁₃, X₂: X₁₀+X₉ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: X₉ {O(n)}
t₁₃, X₇: 2⋅X₁₀+2⋅X₉+X₇ {O(n)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₉ {O(n)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₁₃, X₁₁: X₁₁ {O(n)}
t₁₄, X₀: X₉ {O(n)}
t₁₄, X₁: X₁₀+X₉ {O(n)}
t₁₄, X₂: X₁₀+X₉ {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: X₉ {O(n)}
t₁₄, X₇: 2⋅X₁₀+2⋅X₉ {O(n)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₄, X₁₁: X₁₁ {O(n)}
t₁₆, X₀: X₉ {O(n)}
t₁₆, X₁: X₁₀+X₉ {O(n)}
t₁₆, X₂: X₁₀+X₉ {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: X₉ {O(n)}
t₁₆, X₇: 2⋅X₁₀+2⋅X₉ {O(n)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₉ {O(n)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₁₆, X₁₁: X₁₁ {O(n)}
t₁₇, X₀: X₉ {O(n)}
t₁₇, X₁: X₁₀+X₉ {O(n)}
t₁₇, X₂: X₁₀+X₉ {O(n)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₉ {O(n)}
t₁₇, X₇: 2⋅X₁₀+2⋅X₉ {O(n)}
t₁₇, X₈: X₈ {O(n)}
t₁₇, X₉: X₉ {O(n)}
t₁₇, X₁₀: X₁₀ {O(n)}
t₁₇, X₁₁: X₁₁ {O(n)}
t₁₈, X₀: 0 {O(1)}
t₁₈, X₁: 2⋅X₁₀+2⋅X₉ {O(n)}
t₁₈, X₂: 2⋅X₁₀+2⋅X₉ {O(n)}
t₁₈, X₃: 2⋅X₁₀+2⋅X₉ {O(n)}
t₁₈, X₄: 2⋅X₄+4⋅X₁₀+4⋅X₉ {O(n)}
t₁₈, X₅: 2⋅X₉ {O(n)}
t₁₈, X₇: 2⋅X₇+4⋅X₁₀+4⋅X₉ {O(n)}
t₁₈, X₈: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+2⋅X₈+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₁₈, X₉: 2⋅X₉ {O(n)}
t₁₈, X₁₀: 2⋅X₁₀ {O(n)}
t₁₈, X₁₁: 2⋅X₁₁ {O(n)}
t₁₉, X₀: 0 {O(1)}
t₁₉, X₁: 4⋅X₁₀+4⋅X₉ {O(n)}
t₁₉, X₂: 4⋅X₁₀+4⋅X₉ {O(n)}
t₁₉, X₃: 4⋅X₁₀+4⋅X₉ {O(n)}
t₁₉, X₄: 2⋅X₄+4⋅X₁₀+4⋅X₉ {O(n)}
t₁₉, X₅: 4⋅X₉ {O(n)}
t₁₉, X₇: 4⋅X₇+8⋅X₁₀+8⋅X₉ {O(n)}
t₁₉, X₈: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+2⋅X₈+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₁₉, X₉: 4⋅X₉ {O(n)}
t₁₉, X₁₀: 4⋅X₁₀ {O(n)}
t₁₉, X₁₁: 4⋅X₁₁ {O(n)}
t₂₀, X₀: 0 {O(1)}
t₂₀, X₁: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₀, X₂: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₀, X₃: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₀, X₄: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₀, X₅: 2⋅X₉ {O(n)}
t₂₀, X₇: 2⋅X₇+4⋅X₁₀+4⋅X₉ {O(n)}
t₂₀, X₈: 0 {O(1)}
t₂₀, X₉: 2⋅X₉ {O(n)}
t₂₀, X₁₀: 2⋅X₁₀ {O(n)}
t₂₀, X₁₁: 2⋅X₁₁ {O(n)}
t₂₁, X₀: 0 {O(1)}
t₂₁, X₁: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₁, X₂: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₁, X₃: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₁, X₄: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₁, X₅: 2⋅X₉ {O(n)}
t₂₁, X₇: 2⋅X₇+4⋅X₁₀+4⋅X₉ {O(n)}
t₂₁, X₈: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₁, X₉: 2⋅X₉ {O(n)}
t₂₁, X₁₀: 2⋅X₁₀ {O(n)}
t₂₁, X₁₁: 2⋅X₁₁ {O(n)}
t₂₂, X₀: 0 {O(1)}
t₂₂, X₁: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₂, X₂: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₂, X₃: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₂, X₄: 4⋅X₁₀+4⋅X₉ {O(n)}
t₂₂, X₅: 2⋅X₉ {O(n)}
t₂₂, X₇: 2⋅X₇+4⋅X₁₀+4⋅X₉ {O(n)}
t₂₂, X₈: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₂, X₉: 2⋅X₉ {O(n)}
t₂₂, X₁₀: 2⋅X₁₀ {O(n)}
t₂₂, X₁₁: 2⋅X₁₁ {O(n)}
t₂₃, X₀: 0 {O(1)}
t₂₃, X₁: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₃, X₂: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₃, X₃: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₃, X₄: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₃, X₅: 2⋅X₉ {O(n)}
t₂₃, X₇: 2⋅X₇+4⋅X₁₀+4⋅X₉ {O(n)}
t₂₃, X₈: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₃, X₉: 2⋅X₉ {O(n)}
t₂₃, X₁₀: 2⋅X₁₀ {O(n)}
t₂₃, X₁₁: 2⋅X₁₁ {O(n)}
t₂₅, X₀: 0 {O(1)}
t₂₅, X₁: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₅, X₂: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₅, X₃: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₅, X₄: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₅, X₅: 2⋅X₉ {O(n)}
t₂₅, X₇: 2⋅X₇+4⋅X₁₀+4⋅X₉ {O(n)}
t₂₅, X₈: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₅, X₉: 2⋅X₉ {O(n)}
t₂₅, X₁₀: 2⋅X₁₀ {O(n)}
t₂₅, X₁₁: 2⋅X₁₁ {O(n)}
t₂₆, X₀: 0 {O(1)}
t₂₆, X₁: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₆, X₂: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₆, X₃: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₆, X₄: 2⋅X₁₀+2⋅X₉ {O(n)}
t₂₆, X₅: 2⋅X₉ {O(n)}
t₂₆, X₇: 2⋅X₇+4⋅X₁₀+4⋅X₉ {O(n)}
t₂₆, X₈: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₆, X₉: 2⋅X₉ {O(n)}
t₂₆, X₁₀: 2⋅X₁₀ {O(n)}
t₂₆, X₁₁: 2⋅X₁₁ {O(n)}
t₂₇, X₀: 2⋅X₀ {O(n)}
t₂₇, X₁: 2⋅X₁+4⋅X₁₀+4⋅X₉ {O(n)}
t₂₇, X₂: 2⋅X₂+4⋅X₁₀+4⋅X₉ {O(n)}
t₂₇, X₃: 2⋅X₃+4⋅X₁₀+4⋅X₉ {O(n)}
t₂₇, X₄: 4⋅X₁₀+4⋅X₄+4⋅X₉ {O(n)}
t₂₇, X₅: 2⋅X₅+4⋅X₉ {O(n)}
t₂₇, X₇: 6⋅X₇+8⋅X₁₀+8⋅X₉ {O(n)}
t₂₇, X₈: 8⋅X₁₀⋅X₁₁+8⋅X₁₁⋅X₉+4⋅X₈+8⋅X₁₀+8⋅X₉ {O(n^2)}
t₂₇, X₉: 6⋅X₉ {O(n)}
t₂₇, X₁₀: 6⋅X₁₀ {O(n)}
t₂₇, X₁₁: 6⋅X₁₁ {O(n)}