Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₁, X₃, X₆) :|: 0 < X₀
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₂, X₃, X₆) :|: X₀ ≤ 0
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₄) :|: X₅ ≤ 0
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂
t₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < 0
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < 0
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄+2, X₅-1, X₆)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆
t₁₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1)
Preprocessing
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l2
Found invariant X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l7
Found invariant X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l8
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l1
Found invariant X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l4
Found invariant X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l9
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₁, X₃, X₆) :|: 0 < X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₂, X₃, X₆) :|: X₀ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₄) :|: X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₂
t₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < 0
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < 0
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ < 0
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄+2, X₅-1, X₆) :|: X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁
t₁₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1) :|: X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁
MPRF for transition t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
2⋅X₃+2 {O(n)}
MPRF for transition t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄+2, X₅-1, X₆) :|: X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
2⋅X₃ {O(n)}
MPRF for transition t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
2⋅X₁+2⋅X₂+4⋅X₃+1 {O(n)}
MPRF for transition t₁₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1) :|: X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
2⋅X₁+2⋅X₂+4⋅X₃ {O(n)}
All Bounds
Timebounds
Overall timebound:12⋅X₃+4⋅X₁+4⋅X₂+15 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 2⋅X₃+2 {O(n)}
t₁₁: 1 {O(1)}
t₁₂: 2⋅X₃ {O(n)}
t₁₃: 2⋅X₁+2⋅X₂+4⋅X₃+1 {O(n)}
t₁₄: 1 {O(1)}
t₁₅: 2⋅X₁+2⋅X₂+4⋅X₃ {O(n)}
t₁₆: 1 {O(1)}
Costbounds
Overall costbound: 12⋅X₃+4⋅X₁+4⋅X₂+15 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: 1 {O(1)}
t₇: 1 {O(1)}
t₈: 1 {O(1)}
t₉: 1 {O(1)}
t₁₀: 2⋅X₃+2 {O(n)}
t₁₁: 1 {O(1)}
t₁₂: 2⋅X₃ {O(n)}
t₁₃: 2⋅X₁+2⋅X₂+4⋅X₃+1 {O(n)}
t₁₄: 1 {O(1)}
t₁₅: 2⋅X₁+2⋅X₂+4⋅X₃ {O(n)}
t₁₆: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: X₅ {O(n)}
t₃, X₆: X₆ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: X₁ {O(n)}
t₈, X₅: X₃ {O(n)}
t₈, X₆: X₆ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₂ {O(n)}
t₉, X₅: X₃ {O(n)}
t₉, X₆: X₆ {O(n)}
t₁₀, X₁: 2⋅X₁ {O(n)}
t₁₀, X₂: 2⋅X₂ {O(n)}
t₁₀, X₃: 2⋅X₃ {O(n)}
t₁₀, X₄: 4⋅X₃+X₁+X₂ {O(n)}
t₁₀, X₅: 2⋅X₃ {O(n)}
t₁₀, X₆: 2⋅X₆ {O(n)}
t₁₁, X₁: 4⋅X₁ {O(n)}
t₁₁, X₂: 4⋅X₂ {O(n)}
t₁₁, X₃: 4⋅X₃ {O(n)}
t₁₁, X₄: 2⋅X₁+2⋅X₂+4⋅X₃ {O(n)}
t₁₁, X₅: 0 {O(1)}
t₁₁, X₆: 2⋅X₁+2⋅X₂+4⋅X₃ {O(n)}
t₁₂, X₁: 2⋅X₁ {O(n)}
t₁₂, X₂: 2⋅X₂ {O(n)}
t₁₂, X₃: 2⋅X₃ {O(n)}
t₁₂, X₄: 4⋅X₃+X₁+X₂ {O(n)}
t₁₂, X₅: 2⋅X₃ {O(n)}
t₁₂, X₆: 2⋅X₆ {O(n)}
t₁₃, X₁: 4⋅X₁ {O(n)}
t₁₃, X₂: 4⋅X₂ {O(n)}
t₁₃, X₃: 4⋅X₃ {O(n)}
t₁₃, X₄: 2⋅X₁+2⋅X₂+4⋅X₃ {O(n)}
t₁₃, X₅: 0 {O(1)}
t₁₃, X₆: 2⋅X₁+2⋅X₂+4⋅X₃ {O(n)}
t₁₄, X₁: 8⋅X₁ {O(n)}
t₁₄, X₂: 8⋅X₂ {O(n)}
t₁₄, X₃: 8⋅X₃ {O(n)}
t₁₄, X₄: 4⋅X₁+4⋅X₂+8⋅X₃ {O(n)}
t₁₄, X₅: 0 {O(1)}
t₁₄, X₆: 0 {O(1)}
t₁₅, X₁: 4⋅X₁ {O(n)}
t₁₅, X₂: 4⋅X₂ {O(n)}
t₁₅, X₃: 4⋅X₃ {O(n)}
t₁₅, X₄: 2⋅X₁+2⋅X₂+4⋅X₃ {O(n)}
t₁₅, X₅: 0 {O(1)}
t₁₅, X₆: 2⋅X₁+2⋅X₂+4⋅X₃ {O(n)}
t₁₆, X₁: 11⋅X₁ {O(n)}
t₁₆, X₂: 11⋅X₂ {O(n)}
t₁₆, X₃: 11⋅X₃ {O(n)}
t₁₆, X₄: 3⋅X₄+4⋅X₁+4⋅X₂+8⋅X₃ {O(n)}
t₁₆, X₅: 3⋅X₅ {O(n)}
t₁₆, X₆: 3⋅X₆ {O(n)}