Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₀ ≤ 0
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₀
t₂₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₇ ≤ 0
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₇
t₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, X₁₂, X₀, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 ≤ 5+X₁₁ ∧ X₁₁ ≤ 5
t₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₁₁+5 < 0
t₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 5 < X₁₁
t₁₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l2(X₀, X₁, 3⋅X₂-(X₁₁)³, -2⋅X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₂₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, 3⋅X₄-(X₁₁)³, -2⋅X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₃ < 0
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₃
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₃ ≤ 0 ∧ 0 ≤ X₃
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: (X₃)²+(X₁₁)⁵ < X₂
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₂ ≤ (X₃)²+(X₁₁)⁵
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l5(X₀, X₁, X₂, X₃, X₁₂, X₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₁₁
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₁₁ ≤ 0
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₅ < 0
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: 0 < X₅
t₁₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: (X₅)²+(X₁₁)⁵ < X₄
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) :|: X₄ ≤ (X₅)²+(X₁₁)⁵
t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₀-1, X₆, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l1(X₈, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂)
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁, X₁₂)
Preprocessing
Eliminate variables {X₁₀} that do not contribute to the problem
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0 for location l11
Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location l2
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l15
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l12
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l13
Found invariant X₀ ≤ X₈ for location l1
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l10
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l4
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l9
Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location l3
Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₅₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0 ∧ X₀ ≤ X₈
t₅₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀ ∧ X₀ ≤ X₈
t₅₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0
t₅₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0
t₅₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0
t₅₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₁₁, X₀, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₅₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+5 < 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₆₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 5 < X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₆₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, 3⋅X₂-(X₁₀)³, -2⋅X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₆₂: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, 3⋅X₄-(X₁₀)³, -2⋅X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₆₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < 0 ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₆₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₆₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₆₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: (X₃)²+(X₁₀)⁵ < X₂ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₆₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ (X₃)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₆₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₁₁, X₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₆₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ ≤ 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₇₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₇₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₇₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: (X₅)²+(X₁₀)⁵ < X₄ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₇₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ (X₅)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₇₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀-1, X₆, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₇₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₈, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₇₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0
MPRF for transition t₅₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀ ∧ X₀ ≤ X₈ of depth 1:
new bound:
X₈+1 {O(n)}
MPRF for transition t₅₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₁₁, X₀, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₈ {O(n)}
MPRF for transition t₅₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+5 < 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₈+1 {O(n)}
MPRF for transition t₆₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 5 < X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₈+1 {O(n)}
MPRF for transition t₆₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₈ {O(n)}
MPRF for transition t₆₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ (X₃)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₈ {O(n)}
MPRF for transition t₆₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₁₁, X₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₈+1 {O(n)}
MPRF for transition t₆₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ ≤ 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₈ {O(n)}
MPRF for transition t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
10⋅X₈+X₁₀+5 {O(n)}
MPRF for transition t₇₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ (X₅)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
11⋅X₈ {O(n)}
MPRF for transition t₇₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀-1, X₆, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₈ {O(n)}
TWN: t₆₁: l14→l2
cycle: [t₆₆: l3→l14; t₆₃: l2→l3; t₆₄: l2→l3; t₆₁: l14→l2]
loop: (X₃ < 0 ∧ 4⋅(X₃)²+(X₁₀)⁵+(X₁₀)³ < 3⋅X₂ ∨ 0 < X₃ ∧ 4⋅(X₃)²+(X₁₀)⁵+(X₁₀)³ < 3⋅X₂,(X₂,X₃,X₁₀) -> (3⋅X₂-(X₁₀)³,-2⋅X₃,X₁₀)
order: [X₁₀; X₂; X₃]
closed-form:
X₁₀: X₁₀
X₂: X₂ * 9^n + [[n != 0]] * -1/2⋅(X₁₀)³ * 9^n + [[n != 0]] * 1/2⋅(X₁₀)³
X₃: X₃ * 4^n
Termination: true
Formula:
32⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ X₃ < 0
∨ 32⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ X₃ < 0
∨ 32⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ X₃ < 0
∨ 9⋅(X₁₀)³ < 18⋅X₂ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ X₃ < 0
∨ 9⋅(X₁₀)³ < 18⋅X₂ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ X₃ < 0
∨ 9⋅(X₁₀)³ < 18⋅X₂ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ X₃ < 0
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ X₃ < 0
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ X₃ < 0
∨ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ X₃ < 0
∨ 32⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ X₃ < 0
∨ 32⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ X₃ < 0
∨ 32⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ X₃ < 0
∨ 9⋅(X₁₀)³ < 18⋅X₂ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ X₃ < 0
∨ 9⋅(X₁₀)³ < 18⋅X₂ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ X₃ < 0
∨ 9⋅(X₁₀)³ < 18⋅X₂ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ X₃ < 0
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ X₃ < 0
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ X₃ < 0
∨ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ X₃ < 0
∨ 32⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < X₃
∨ 32⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < X₃
∨ 32⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < X₃
∨ 9⋅(X₁₀)³ < 18⋅X₂ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < X₃
∨ 9⋅(X₁₀)³ < 18⋅X₂ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < X₃
∨ 9⋅(X₁₀)³ < 18⋅X₂ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < X₃
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < X₃
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < X₃
∨ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < X₃
∨ 32⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < X₃
∨ 32⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < X₃
∨ 32⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < X₃
∨ 9⋅(X₁₀)³ < 18⋅X₂ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < X₃
∨ 9⋅(X₁₀)³ < 18⋅X₂ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < X₃
∨ 9⋅(X₁₀)³ < 18⋅X₂ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < X₃
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < X₃
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < X₃
∨ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < X₃
Stabilization-Threshold for: 16⋅(X₃)²+(X₁₀)⁵+4⋅(X₁₀)³ < 9⋅X₂
alphas_abs: 18⋅X₂+9⋅(X₁₀)³+2⋅(X₁₀)⁵
M: 0
N: 1
Bound: 4⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+18⋅X₁₀⋅X₁₀⋅X₁₀+36⋅X₂+2 {O(n^5)}
Stabilization-Threshold for: 4⋅(X₃)²+(X₁₀)⁵+(X₁₀)³ < 3⋅X₂
alphas_abs: 6⋅X₂+3⋅(X₁₀)³+2⋅(X₁₀)⁵
M: 0
N: 1
Bound: 4⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+6⋅X₁₀⋅X₁₀⋅X₁₀+12⋅X₂+2 {O(n^5)}
TWN - Lifting for t₆₁: l14→l2 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+48⋅X₁₀⋅X₁₀⋅X₁₀+96⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₅₈:
X₂: X₁₁ {O(n)}
X₁₀: 5 {O(1)}
Runtime-bound of t₅₈: X₈ {O(n)}
Results in: 96⋅X₁₁⋅X₈+56021⋅X₈ {O(n^2)}
TWN: t₆₂: l15→l5
cycle: [t₇₃: l6→l15; t₇₀: l5→l6; t₇₁: l5→l6; t₆₂: l15→l5]
loop: (X₅ < 0 ∧ 4⋅(X₅)²+(X₁₀)⁵+(X₁₀)³ < 3⋅X₄ ∨ 0 < X₅ ∧ 4⋅(X₅)²+(X₁₀)⁵+(X₁₀)³ < 3⋅X₄,(X₄,X₅,X₁₀) -> (3⋅X₄-(X₁₀)³,-2⋅X₅,X₁₀)
order: [X₁₀; X₄; X₅]
closed-form:
X₁₀: X₁₀
X₄: X₄ * 9^n + [[n != 0]] * -1/2⋅(X₁₀)³ * 9^n + [[n != 0]] * 1/2⋅(X₁₀)³
X₅: X₅ * 4^n
Termination: true
Formula:
32⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ X₅ < 0
∨ 32⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ X₅ < 0
∨ 32⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ X₅ < 0
∨ 9⋅(X₁₀)³ < 18⋅X₄ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ X₅ < 0
∨ 9⋅(X₁₀)³ < 18⋅X₄ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ X₅ < 0
∨ 9⋅(X₁₀)³ < 18⋅X₄ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ X₅ < 0
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ X₅ < 0
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ X₅ < 0
∨ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ X₅ < 0
∨ 32⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ X₅ < 0
∨ 32⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ X₅ < 0
∨ 32⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ X₅ < 0
∨ 9⋅(X₁₀)³ < 18⋅X₄ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ X₅ < 0
∨ 9⋅(X₁₀)³ < 18⋅X₄ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ X₅ < 0
∨ 9⋅(X₁₀)³ < 18⋅X₄ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ X₅ < 0
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ X₅ < 0
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ X₅ < 0
∨ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ X₅ < 0
∨ 32⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 0 < X₅
∨ 32⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < X₅
∨ 32⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < X₅
∨ 9⋅(X₁₀)³ < 18⋅X₄ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 0 < X₅
∨ 9⋅(X₁₀)³ < 18⋅X₄ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < X₅
∨ 9⋅(X₁₀)³ < 18⋅X₄ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < X₅
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 0 < X₅
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < X₅
∨ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < X₅
∨ 32⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 0 < X₅
∨ 32⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < X₅
∨ 32⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < X₅
∨ 9⋅(X₁₀)³ < 18⋅X₄ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 0 < X₅
∨ 9⋅(X₁₀)³ < 18⋅X₄ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < X₅
∨ 9⋅(X₁₀)³ < 18⋅X₄ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < X₅
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 0 < X₅
∨ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < X₅
∨ 32⋅(X₅)² ≤ 0 ∧ 0 ≤ 32⋅(X₅)² ∧ 9⋅(X₁₀)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < X₅
Stabilization-Threshold for: 16⋅(X₅)²+(X₁₀)⁵+4⋅(X₁₀)³ < 9⋅X₄
alphas_abs: 18⋅X₄+9⋅(X₁₀)³+2⋅(X₁₀)⁵
M: 0
N: 1
Bound: 4⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+18⋅X₁₀⋅X₁₀⋅X₁₀+36⋅X₄+2 {O(n^5)}
Stabilization-Threshold for: 4⋅(X₅)²+(X₁₀)⁵+(X₁₀)³ < 3⋅X₄
alphas_abs: 6⋅X₄+3⋅(X₁₀)³+2⋅(X₁₀)⁵
M: 0
N: 1
Bound: 4⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+6⋅X₁₀⋅X₁₀⋅X₁₀+12⋅X₄+2 {O(n^5)}
TWN - Lifting for t₆₂: l15→l5 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+48⋅X₁₀⋅X₁₀⋅X₁₀+96⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₆₈:
X₄: X₁₁ {O(n)}
X₁₀: X₁₀+10 {O(n)}
Runtime-bound of t₆₈: X₈+1 {O(n)}
Results in: 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₈+16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+800⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₈+16048⋅X₁₀⋅X₁₀⋅X₁₀⋅X₈+800⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16048⋅X₁₀⋅X₁₀⋅X₁₀+161440⋅X₁₀⋅X₁₀⋅X₈+161440⋅X₁₀⋅X₁₀+814400⋅X₁₀⋅X₈+96⋅X₁₁⋅X₈+1648021⋅X₈+814400⋅X₁₀+96⋅X₁₁+1648021 {O(n^6)}
TWN: t₆₃: l2→l3
TWN - Lifting for t₆₃: l2→l3 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+48⋅X₁₀⋅X₁₀⋅X₁₀+96⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₅₈:
X₂: X₁₁ {O(n)}
X₁₀: 5 {O(1)}
Runtime-bound of t₅₈: X₈ {O(n)}
Results in: 96⋅X₁₁⋅X₈+56021⋅X₈ {O(n^2)}
TWN: t₆₄: l2→l3
TWN - Lifting for t₆₄: l2→l3 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+48⋅X₁₀⋅X₁₀⋅X₁₀+96⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₅₈:
X₂: X₁₁ {O(n)}
X₁₀: 5 {O(1)}
Runtime-bound of t₅₈: X₈ {O(n)}
Results in: 96⋅X₁₁⋅X₈+56021⋅X₈ {O(n^2)}
TWN: t₆₆: l3→l14
TWN - Lifting for t₆₆: l3→l14 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+48⋅X₁₀⋅X₁₀⋅X₁₀+96⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₅₈:
X₂: X₁₁ {O(n)}
X₁₀: 5 {O(1)}
Runtime-bound of t₅₈: X₈ {O(n)}
Results in: 96⋅X₁₁⋅X₈+56021⋅X₈ {O(n^2)}
TWN: t₇₀: l5→l6
TWN - Lifting for t₇₀: l5→l6 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+48⋅X₁₀⋅X₁₀⋅X₁₀+96⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₆₈:
X₄: X₁₁ {O(n)}
X₁₀: X₁₀+10 {O(n)}
Runtime-bound of t₆₈: X₈+1 {O(n)}
Results in: 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₈+16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+800⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₈+16048⋅X₁₀⋅X₁₀⋅X₁₀⋅X₈+800⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16048⋅X₁₀⋅X₁₀⋅X₁₀+161440⋅X₁₀⋅X₁₀⋅X₈+161440⋅X₁₀⋅X₁₀+814400⋅X₁₀⋅X₈+96⋅X₁₁⋅X₈+1648021⋅X₈+814400⋅X₁₀+96⋅X₁₁+1648021 {O(n^6)}
TWN: t₇₁: l5→l6
TWN - Lifting for t₇₁: l5→l6 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+48⋅X₁₀⋅X₁₀⋅X₁₀+96⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₆₈:
X₄: X₁₁ {O(n)}
X₁₀: X₁₀+10 {O(n)}
Runtime-bound of t₆₈: X₈+1 {O(n)}
Results in: 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₈+16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+800⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₈+16048⋅X₁₀⋅X₁₀⋅X₁₀⋅X₈+800⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16048⋅X₁₀⋅X₁₀⋅X₁₀+161440⋅X₁₀⋅X₁₀⋅X₈+161440⋅X₁₀⋅X₁₀+814400⋅X₁₀⋅X₈+96⋅X₁₁⋅X₈+1648021⋅X₈+814400⋅X₁₀+96⋅X₁₁+1648021 {O(n^6)}
TWN: t₇₃: l6→l15
TWN - Lifting for t₇₃: l6→l15 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+48⋅X₁₀⋅X₁₀⋅X₁₀+96⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₆₈:
X₄: X₁₁ {O(n)}
X₁₀: X₁₀+10 {O(n)}
Runtime-bound of t₆₈: X₈+1 {O(n)}
Results in: 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₈+16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+800⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₈+16048⋅X₁₀⋅X₁₀⋅X₁₀⋅X₈+800⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16048⋅X₁₀⋅X₁₀⋅X₁₀+161440⋅X₁₀⋅X₁₀⋅X₈+161440⋅X₁₀⋅X₁₀+814400⋅X₁₀⋅X₈+96⋅X₁₁⋅X₈+1648021⋅X₈+814400⋅X₁₀+96⋅X₁₁+1648021 {O(n^6)}
Chain transitions t₇₆: l8→l1 and t₅₄: l1→l13 to t₁₈₅: l8→l13
Chain transitions t₇₅: l7→l1 and t₅₄: l1→l13 to t₁₈₆: l7→l13
Chain transitions t₇₅: l7→l1 and t₅₃: l1→l11 to t₁₈₇: l7→l11
Chain transitions t₇₆: l8→l1 and t₅₃: l1→l11 to t₁₈₈: l8→l11
Chain transitions t₁₈₅: l8→l13 and t₆₀: l13→l4 to t₁₈₉: l8→l4
Chain transitions t₁₈₆: l7→l13 and t₆₀: l13→l4 to t₁₉₀: l7→l4
Chain transitions t₁₈₆: l7→l13 and t₅₉: l13→l4 to t₁₉₁: l7→l4
Chain transitions t₁₈₅: l8→l13 and t₅₉: l13→l4 to t₁₉₂: l8→l4
Chain transitions t₁₈₆: l7→l13 and t₅₈: l13→l2 to t₁₉₃: l7→l2
Chain transitions t₁₈₅: l8→l13 and t₅₈: l13→l2 to t₁₉₄: l8→l2
Chain transitions t₆₆: l3→l14 and t₆₁: l14→l2 to t₁₉₅: l3→l2
Chain transitions t₇₃: l6→l15 and t₆₂: l15→l5 to t₁₉₆: l6→l5
Chain transitions t₁₉₄: l8→l2 and t₆₅: l2→l7 to t₁₉₇: l8→l7
Chain transitions t₁₉₃: l7→l2 and t₆₅: l2→l7 to t₁₉₈: l7→l7
Chain transitions t₁₉₃: l7→l2 and t₆₄: l2→l3 to t₁₉₉: l7→l3
Chain transitions t₁₉₄: l8→l2 and t₆₄: l2→l3 to t₂₀₀: l8→l3
Chain transitions t₁₉₅: l3→l2 and t₆₄: l2→l3 to t₂₀₁: l3→l3
Chain transitions t₁₉₅: l3→l2 and t₆₅: l2→l7 to t₂₀₂: l3→l7
Chain transitions t₁₉₅: l3→l2 and t₆₃: l2→l3 to t₂₀₃: l3→l3
Chain transitions t₁₉₃: l7→l2 and t₆₃: l2→l3 to t₂₀₄: l7→l3
Chain transitions t₁₉₄: l8→l2 and t₆₃: l2→l3 to t₂₀₅: l8→l3
Chain transitions t₁₉₂: l8→l4 and t₆₉: l4→l7 to t₂₀₆: l8→l7
Chain transitions t₁₈₉: l8→l4 and t₆₉: l4→l7 to t₂₀₇: l8→l7
Chain transitions t₁₈₉: l8→l4 and t₆₈: l4→l5 to t₂₀₈: l8→l5
Chain transitions t₁₉₂: l8→l4 and t₆₈: l4→l5 to t₂₀₉: l8→l5
Chain transitions t₁₉₁: l7→l4 and t₆₈: l4→l5 to t₂₁₀: l7→l5
Chain transitions t₁₉₁: l7→l4 and t₆₉: l4→l7 to t₂₁₁: l7→l7
Chain transitions t₁₉₀: l7→l4 and t₆₈: l4→l5 to t₂₁₂: l7→l5
Chain transitions t₁₉₀: l7→l4 and t₆₉: l4→l7 to t₂₁₃: l7→l7
Chain transitions t₂₀₉: l8→l5 and t₇₂: l5→l7 to t₂₁₄: l8→l7
Chain transitions t₂₀₈: l8→l5 and t₇₂: l5→l7 to t₂₁₅: l8→l7
Chain transitions t₂₀₈: l8→l5 and t₇₁: l5→l6 to t₂₁₆: l8→l6
Chain transitions t₂₀₉: l8→l5 and t₇₁: l5→l6 to t₂₁₇: l8→l6
Chain transitions t₂₁₂: l7→l5 and t₇₁: l5→l6 to t₂₁₈: l7→l6
Chain transitions t₂₁₂: l7→l5 and t₇₂: l5→l7 to t₂₁₉: l7→l7
Chain transitions t₂₁₂: l7→l5 and t₇₀: l5→l6 to t₂₂₀: l7→l6
Chain transitions t₂₀₈: l8→l5 and t₇₀: l5→l6 to t₂₂₁: l8→l6
Chain transitions t₂₀₉: l8→l5 and t₇₀: l5→l6 to t₂₂₂: l8→l6
Chain transitions t₂₁₀: l7→l5 and t₇₀: l5→l6 to t₂₂₃: l7→l6
Chain transitions t₂₁₀: l7→l5 and t₇₁: l5→l6 to t₂₂₄: l7→l6
Chain transitions t₂₁₀: l7→l5 and t₇₂: l5→l7 to t₂₂₅: l7→l7
Chain transitions t₁₉₆: l6→l5 and t₇₀: l5→l6 to t₂₂₆: l6→l6
Chain transitions t₁₉₆: l6→l5 and t₇₁: l5→l6 to t₂₂₇: l6→l6
Chain transitions t₁₉₆: l6→l5 and t₇₂: l5→l7 to t₂₂₈: l6→l7
Analysing control-flow refined program
Cut unsatisfiable transition t₁₉₇: l8→l7
Cut unsatisfiable transition t₁₉₈: l7→l7
Cut unsatisfiable transition t₂₀₂: l3→l7
Cut unsatisfiable transition t₂₀₄: l7→l3
Cut unsatisfiable transition t₂₀₅: l8→l3
Cut unsatisfiable transition t₂₀₇: l8→l7
Cut unsatisfiable transition t₂₀₉: l8→l5
Cut unsatisfiable transition t₂₁₀: l7→l5
Cut unsatisfiable transition t₂₁₃: l7→l7
Cut unsatisfiable transition t₂₁₄: l8→l7
Cut unsatisfiable transition t₂₁₅: l8→l7
Cut unsatisfiable transition t₂₁₇: l8→l6
Cut unsatisfiable transition t₂₁₉: l7→l7
Cut unsatisfiable transition t₂₂₀: l7→l6
Cut unsatisfiable transition t₂₂₁: l8→l6
Cut unsatisfiable transition t₂₂₂: l8→l6
Cut unsatisfiable transition t₂₂₃: l7→l6
Cut unsatisfiable transition t₂₂₄: l7→l6
Cut unsatisfiable transition t₂₂₅: l7→l7
Cut unsatisfiable transition t₂₂₈: l6→l7
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0 for location l11
Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location l2
Found invariant 1 ≤ X₈ ∧ 7 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 6 ≤ X₁₀ ∧ 7 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₈ ∧ 7 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 6 ≤ X₁₀ ∧ 7 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l15
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l12
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₈ ∧ 7 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 6 ≤ X₁₀ ∧ 7 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l13
Found invariant X₀ ≤ X₈ for location l1
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l10
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l4
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l9
Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location l3
Found invariant 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location l14
knowledge_propagation leads to new time bound 2⋅X₈ {O(n)} for transition t₁₉₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) -{4}> l3(X₀-1, X₆, X₁₁, X₀-1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 < X₀ ∧ 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ 1 < X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1+X₈ ∧ 1 ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ 2 ≤ X₀ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 3 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 3+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 3+X₀+X₁₀ ∧ 2 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 11⋅X₈ {O(n)} for transition t₂₁₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) -{5}> l6(X₀-1, X₆, X₂, X₃, X₁₁, X₀-1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 < X₀ ∧ 5 < X₁₀ ∧ 0 < X₁₀ ∧ 1 < X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1+X₈ ∧ 1 ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ 2 ≤ X₀ ∧ 1 ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ 2 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 3 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 2 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
MPRF for transition t₂₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) -{4}> l7(X₀-1, X₆, X₂, X₃, X₄, X₅, X₀-1, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 < X₀ ∧ X₁₀+5 < 0 ∧ X₁₀ ≤ 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1+X₈ ∧ 1 ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ 2 ≤ X₀ ∧ 1 ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ X₀ ≤ 1+X₈ ∧ 2 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₈ {O(n)}
TWN: t₂₀₁: l3→l3
cycle: [t₂₀₁: l3→l3; t₂₀₃: l3→l3]
loop: ((X₃)²+(X₁₀)⁵ < X₂ ∧ 2⋅X₃ < 0 ∨ (X₃)²+(X₁₀)⁵ < X₂ ∧ 0 < 2⋅X₃,(X₂,X₃,X₁₀) -> (3⋅X₂-(X₁₀)³,-2⋅X₃,X₁₀)
order: [X₁₀; X₂; X₃]
closed-form:
X₁₀: X₁₀
X₂: X₂ * 9^n + [[n != 0]] * -1/2⋅(X₁₀)³ * 9^n + [[n != 0]] * 1/2⋅(X₁₀)³
X₃: X₃ * 4^n
Termination: true
Formula:
0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 0 < 4⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 0 < 4⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 4⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 4⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 0 < 4⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 0 < 4⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 4⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 4⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
Stabilization-Threshold for: 4⋅(X₃)²+(X₁₀)⁵+(X₁₀)³ < 3⋅X₂
alphas_abs: 6⋅X₂+3⋅(X₁₀)³+2⋅(X₁₀)⁵
M: 0
N: 1
Bound: 4⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+6⋅X₁₀⋅X₁₀⋅X₁₀+12⋅X₂+2 {O(n^5)}
Stabilization-Threshold for: (X₃)²+(X₁₀)⁵ < X₂
alphas_abs: 2⋅X₂+(X₁₀)³+2⋅(X₁₀)⁵
M: 0
N: 1
Bound: 4⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+2⋅X₁₀⋅X₁₀⋅X₁₀+4⋅X₂+2 {O(n^5)}
loop: ((X₃)²+(X₁₀)⁵ < X₂ ∧ 2⋅X₃ < 0 ∨ (X₃)²+(X₁₀)⁵ < X₂ ∧ 0 < 2⋅X₃,(X₂,X₃,X₁₀) -> (3⋅X₂-(X₁₀)³,-2⋅X₃,X₁₀)
order: [X₁₀; X₂; X₃]
closed-form:
X₁₀: X₁₀
X₂: X₂ * 9^n + [[n != 0]] * -1/2⋅(X₁₀)³ * 9^n + [[n != 0]] * 1/2⋅(X₁₀)³
X₃: X₃ * 4^n
Termination: true
Formula:
0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 0 < 4⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 0 < 4⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 4⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 4⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 0 < 4⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 0 < 4⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 4⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₂ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
∨ 4⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ (X₁₀)³ < 2⋅X₂ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₁₀)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₁₀)³
Stabilization-Threshold for: 4⋅(X₃)²+(X₁₀)⁵+(X₁₀)³ < 3⋅X₂
alphas_abs: 6⋅X₂+3⋅(X₁₀)³+2⋅(X₁₀)⁵
M: 0
N: 1
Bound: 4⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+6⋅X₁₀⋅X₁₀⋅X₁₀+12⋅X₂+2 {O(n^5)}
Stabilization-Threshold for: (X₃)²+(X₁₀)⁵ < X₂
alphas_abs: 2⋅X₂+(X₁₀)³+2⋅(X₁₀)⁵
M: 0
N: 1
Bound: 4⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+2⋅X₁₀⋅X₁₀⋅X₁₀+4⋅X₂+2 {O(n^5)}
TWN - Lifting for t₂₀₁: l3→l3 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16⋅X₁₀⋅X₁₀⋅X₁₀+32⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₂₀₀:
X₂: X₁₁ {O(n)}
X₁₀: X₁₀ {O(n)}
Runtime-bound of t₂₀₀: 1 {O(1)}
Results in: 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16⋅X₁₀⋅X₁₀⋅X₁₀+32⋅X₁₁+21 {O(n^5)}
TWN - Lifting for t₂₀₁: l3→l3 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16⋅X₁₀⋅X₁₀⋅X₁₀+32⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₁₉₉:
X₂: 0 {O(1)}
X₁₀: 5 {O(1)}
Runtime-bound of t₁₉₉: 2⋅X₈ {O(n)}
Results in: 104042⋅X₈ {O(n)}
TWN: t₂₀₃: l3→l3
TWN - Lifting for t₂₀₃: l3→l3 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16⋅X₁₀⋅X₁₀⋅X₁₀+32⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₂₀₀:
X₂: X₁₁ {O(n)}
X₁₀: X₁₀ {O(n)}
Runtime-bound of t₂₀₀: 1 {O(1)}
Results in: 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16⋅X₁₀⋅X₁₀⋅X₁₀+32⋅X₁₁+21 {O(n^5)}
TWN - Lifting for t₂₀₃: l3→l3 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16⋅X₁₀⋅X₁₀⋅X₁₀+32⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₁₉₉:
X₂: 0 {O(1)}
X₁₀: 5 {O(1)}
Runtime-bound of t₁₉₉: 2⋅X₈ {O(n)}
Results in: 104042⋅X₈ {O(n)}
TWN: t₂₂₆: l6→l6
cycle: [t₂₂₆: l6→l6; t₂₂₇: l6→l6]
loop: ((X₅)²+(X₁₀)⁵ < X₄ ∧ 0 < 2⋅X₅ ∨ (X₅)²+(X₁₀)⁵ < X₄ ∧ 2⋅X₅ < 0,(X₄,X₅,X₁₀) -> (3⋅X₄-(X₁₀)³,-2⋅X₅,X₁₀)
order: [X₁₀; X₄; X₅]
closed-form:
X₁₀: X₁₀
X₄: X₄ * 9^n + [[n != 0]] * -1/2⋅(X₁₀)³ * 9^n + [[n != 0]] * 1/2⋅(X₁₀)³
X₅: X₅ * 4^n
Termination: true
Formula:
4⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 4⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0
∨ 4⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 4⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 4⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0
∨ 4⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 0 < 4⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0
∨ 0 < 4⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 0 < 4⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 0 < 4⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0
∨ 0 < 4⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 4⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0
∨ 4⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 4⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 4⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0
∨ 4⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 0 < 4⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0
∨ 0 < 4⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 0 < 4⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 0 < 4⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0
∨ 0 < 4⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
Stabilization-Threshold for: 4⋅(X₅)²+(X₁₀)⁵+(X₁₀)³ < 3⋅X₄
alphas_abs: 6⋅X₄+3⋅(X₁₀)³+2⋅(X₁₀)⁵
M: 0
N: 1
Bound: 4⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+6⋅X₁₀⋅X₁₀⋅X₁₀+12⋅X₄+2 {O(n^5)}
Stabilization-Threshold for: (X₅)²+(X₁₀)⁵ < X₄
alphas_abs: 2⋅X₄+(X₁₀)³+2⋅(X₁₀)⁵
M: 0
N: 1
Bound: 4⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+2⋅X₁₀⋅X₁₀⋅X₁₀+4⋅X₄+2 {O(n^5)}
loop: ((X₅)²+(X₁₀)⁵ < X₄ ∧ 0 < 2⋅X₅ ∨ (X₅)²+(X₁₀)⁵ < X₄ ∧ 2⋅X₅ < 0,(X₄,X₅,X₁₀) -> (3⋅X₄-(X₁₀)³,-2⋅X₅,X₁₀)
order: [X₁₀; X₄; X₅]
closed-form:
X₁₀: X₁₀
X₄: X₄ * 9^n + [[n != 0]] * -1/2⋅(X₁₀)³ * 9^n + [[n != 0]] * 1/2⋅(X₁₀)³
X₅: X₅ * 4^n
Termination: true
Formula:
4⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 4⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0
∨ 4⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 4⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 4⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0
∨ 4⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 0 < 4⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0
∨ 0 < 4⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 0 < 4⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 0 < 4⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₅)² < 0
∨ 0 < 4⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 0 < 2⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 4⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0
∨ 4⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 4⋅X₅ < 0 ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 4⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0
∨ 4⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 4⋅X₅ < 0 ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² < 0 ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 0 < 4⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0
∨ 0 < 4⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 0 < 4⋅X₅ ∧ 3⋅(X₁₀)³ < 6⋅X₄ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
∨ 0 < 4⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₅)² < 0
∨ 0 < 4⋅X₅ ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ (X₁₀)³ < 2⋅X₄ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)²
∨ 0 < 4⋅X₅ ∧ 8⋅(X₅)² ≤ 0 ∧ 0 ≤ 8⋅(X₅)² ∧ 3⋅(X₁₀)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₁₀)³ ∧ 2⋅X₅ < 0 ∧ 2⋅(X₁₀)⁵ < (X₁₀)³ ∧ 2⋅(X₅)² ≤ 0 ∧ 0 ≤ 2⋅(X₅)² ∧ (X₁₀)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₁₀)³
Stabilization-Threshold for: 4⋅(X₅)²+(X₁₀)⁵+(X₁₀)³ < 3⋅X₄
alphas_abs: 6⋅X₄+3⋅(X₁₀)³+2⋅(X₁₀)⁵
M: 0
N: 1
Bound: 4⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+6⋅X₁₀⋅X₁₀⋅X₁₀+12⋅X₄+2 {O(n^5)}
Stabilization-Threshold for: (X₅)²+(X₁₀)⁵ < X₄
alphas_abs: 2⋅X₄+(X₁₀)³+2⋅(X₁₀)⁵
M: 0
N: 1
Bound: 4⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+2⋅X₁₀⋅X₁₀⋅X₁₀+4⋅X₄+2 {O(n^5)}
TWN - Lifting for t₂₂₆: l6→l6 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16⋅X₁₀⋅X₁₀⋅X₁₀+32⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₂₁₆:
X₄: X₁₁ {O(n)}
X₁₀: X₁₀ {O(n)}
Runtime-bound of t₂₁₆: 1 {O(1)}
Results in: 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16⋅X₁₀⋅X₁₀⋅X₁₀+32⋅X₁₁+21 {O(n^5)}
TWN - Lifting for t₂₂₆: l6→l6 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16⋅X₁₀⋅X₁₀⋅X₁₀+32⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₂₁₈:
X₄: 0 {O(1)}
X₁₀: 0 {O(1)}
Runtime-bound of t₂₁₈: 11⋅X₈ {O(n)}
Results in: 231⋅X₈ {O(n)}
TWN: t₂₂₇: l6→l6
TWN - Lifting for t₂₂₇: l6→l6 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16⋅X₁₀⋅X₁₀⋅X₁₀+32⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₂₁₆:
X₄: X₁₁ {O(n)}
X₁₀: X₁₀ {O(n)}
Runtime-bound of t₂₁₆: 1 {O(1)}
Results in: 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16⋅X₁₀⋅X₁₀⋅X₁₀+32⋅X₁₁+21 {O(n^5)}
TWN - Lifting for t₂₂₇: l6→l6 of 16⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀⋅X₁₀+16⋅X₁₀⋅X₁₀⋅X₁₀+32⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₂₁₈:
X₄: 0 {O(1)}
X₁₀: 0 {O(1)}
Runtime-bound of t₂₁₈: 11⋅X₈ {O(n)}
Results in: 231⋅X₈ {O(n)}
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₆₅: l2→l7
Cut unsatisfiable transition t₇₂: l5→l7
Cut unsatisfiable transition t₇₈₀: n_l2___3→l7
Cut unsatisfiable transition t₇₈₁: n_l2___6→l7
Cut unsatisfiable transition t₈₁₄: n_l5___1→l7
Cut unsatisfiable transition t₈₁₅: n_l5___4→l7
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0 for location l11
Found invariant 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l6___3
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l6___6
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location l2
Found invariant 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l2___6
Found invariant 1 ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₅ ∧ 5 ≤ X₁₀+X₅ ∧ 5 ≤ X₀+X₅ ∧ 3+X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l5___1
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l14___7
Found invariant 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l14___4
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l15___5
Found invariant 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l12
Found invariant 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l15___2
Found invariant 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l2___3
Found invariant 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l5___4
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l3___8
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₁ ∧ X₁₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l13
Found invariant 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l3___2
Found invariant X₀ ≤ X₈ for location l1
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l10
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l4
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l9
Found invariant 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l14___1
knowledge_propagation leads to new time bound X₈ {O(n)} for transition t₇₆₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₃ ∧ 0 < X₃ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 5 ∧ X₀ ≤ X₈ ∧ 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ X₀ ≤ X₈ ∧ 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₈ {O(n)} for transition t₇₆₈: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, Arg8_P, X₉, Arg10_P, X₁₁) :|: X₃ ≤ X₈ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ Arg10_P ≤ 5 ∧ 0 ≤ 5+Arg10_P ∧ X₀ ≤ Arg8_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₈ {O(n)} for transition t₇₇₉: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ (X₃)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₈+1 {O(n)} for transition t₈₀₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₅ ∧ 0 < X₅ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₁ ∧ X₁₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₈ {O(n)} for transition t₇₆₂: n_l14___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l2___6(X₀, X₁, NoDet0, -2⋅X₃, X₄, X₅, X₆, X₇, Arg8_P, X₉, Arg10_P, X₁₁) :|: X₃ ≤ X₈ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ Arg10_P ≤ 5 ∧ 0 ≤ 5+Arg10_P ∧ X₀ ≤ Arg8_P ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
MPRF for transition t₇₇₇: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ (X₃)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₈ {O(n)}
MPRF for transition t₇₇₈: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ (X₃)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₈ {O(n)}
MPRF for transition t₈₁₂: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ (X₅)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₈ {O(n)}
MPRF for transition t₈₁₃: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ (X₅)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₈ {O(n)}
TWN: t₇₆₀: n_l14___1→n_l2___6
cycle: [t₇₆₆: n_l3___2→n_l14___1; t₇₆₃: n_l2___3→n_l3___2; t₇₆₁: n_l14___4→n_l2___3; t₇₆₇: n_l3___5→n_l14___4; t₇₆₄: n_l2___6→n_l3___5; t₇₆₀: n_l14___1→n_l2___6]
loop: (X₃ < 0 ∧ 1+X₃ ≤ 0 ∧ X₃ < 0 ∧ 1 ≤ X₃ ∧ 1+2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 1+2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 1 ≤ 2⋅X₃ ∧ 1+4⋅X₃ ≤ 0,(X₃) -> (4⋅X₃)
order: [X₃]
closed-form:
X₃: X₃ * 4^n
Termination: true
Formula:
4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 1 < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 1 < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 1 < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 1 < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₃ ∧ X₃ < 0
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₃ ∧ X₃ < 0
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 1 < 0 ∧ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 < 0 ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 0 ≤ 2⋅X₃ ∧ 2⋅X₃ ≤ 0 ∧ 2⋅X₃ < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 1 < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₃ ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₃ ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 < 0 ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₃ < 0 ∧ 1 < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
∨ 4⋅X₃ ≤ 0 ∧ 0 ≤ 4⋅X₃ ∧ 2⋅X₃ < 0 ∧ 2⋅X₃ ≤ 0 ∧ 0 ≤ 2⋅X₃ ∧ X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 1+4⋅X₃ ≤ 0
alphas_abs: 1
M: 0
N: 1
Bound: 4 {O(1)}
Stabilization-Threshold for: 1 ≤ 2⋅X₃
alphas_abs: 1
M: 0
N: 1
Bound: 4 {O(1)}
Stabilization-Threshold for: 1+2⋅X₃ ≤ 0
alphas_abs: 1
M: 0
N: 1
Bound: 4 {O(1)}
Stabilization-Threshold for: 1 ≤ X₃
alphas_abs: 1
M: 0
N: 1
Bound: 4 {O(1)}
Stabilization-Threshold for: 1+X₃ ≤ 0
alphas_abs: 1
M: 0
N: 1
Bound: 4 {O(1)}
TWN - Lifting for t₇₆₀: n_l14___1→n_l2___6 of 24 {O(1)}
relevant size-bounds w.r.t. t₇₆₂:
Runtime-bound of t₇₆₂: X₈ {O(n)}
Results in: 24⋅X₈ {O(n)}
TWN: t₇₆₁: n_l14___4→n_l2___3
TWN - Lifting for t₇₆₁: n_l14___4→n_l2___3 of 24 {O(1)}
relevant size-bounds w.r.t. t₇₆₂:
Runtime-bound of t₇₆₂: X₈ {O(n)}
Results in: 24⋅X₈ {O(n)}
TWN: t₇₆₃: n_l2___3→n_l3___2
TWN - Lifting for t₇₆₃: n_l2___3→n_l3___2 of 24 {O(1)}
relevant size-bounds w.r.t. t₇₆₂:
Runtime-bound of t₇₆₂: X₈ {O(n)}
Results in: 24⋅X₈ {O(n)}
TWN: t₇₆₄: n_l2___6→n_l3___5
TWN - Lifting for t₇₆₄: n_l2___6→n_l3___5 of 24 {O(1)}
relevant size-bounds w.r.t. t₇₆₂:
Runtime-bound of t₇₆₂: X₈ {O(n)}
Results in: 24⋅X₈ {O(n)}
TWN: t₇₆₆: n_l3___2→n_l14___1
TWN - Lifting for t₇₆₆: n_l3___2→n_l14___1 of 24 {O(1)}
relevant size-bounds w.r.t. t₇₆₂:
Runtime-bound of t₇₆₂: X₈ {O(n)}
Results in: 24⋅X₈ {O(n)}
TWN: t₇₆₇: n_l3___5→n_l14___4
TWN - Lifting for t₇₆₇: n_l3___5→n_l14___4 of 24 {O(1)}
relevant size-bounds w.r.t. t₇₆₂:
Runtime-bound of t₇₆₂: X₈ {O(n)}
Results in: 24⋅X₈ {O(n)}
TWN: t₇₉₇: n_l15___2→n_l5___1
cycle: [t₈₀₂: n_l6___3→n_l15___2; t₈₀₀: n_l5___4→n_l6___3; t₇₉₈: n_l15___5→n_l5___4; t₈₀₃: n_l6___6→n_l15___5; t₇₉₉: n_l5___1→n_l6___6; t₇₉₇: n_l15___2→n_l5___1]
loop: (0 < X₅ ∧ 0 < X₅ ∧ 0 < X₅ ∧ X₅ < 0 ∧ 0 < 2⋅X₅ ∧ 0 < 2⋅X₅ ∧ 0 < 2⋅X₅ ∧ 2⋅X₅ < 0,(X₅) -> (4⋅X₅)
order: [X₅]
closed-form:
X₅: X₅ * 4^n
Termination: true
Formula:
2⋅X₅ < 0 ∧ 0 < 2⋅X₅ ∧ X₅ < 0 ∧ 0 < X₅
TWN - Lifting for t₇₉₇: n_l15___2→n_l5___1 of 6 {O(1)}
relevant size-bounds w.r.t. t₈₀₁:
Runtime-bound of t₈₀₁: X₈+1 {O(n)}
Results in: 6⋅X₈+6 {O(n)}
TWN: t₇₉₈: n_l15___5→n_l5___4
TWN - Lifting for t₇₉₈: n_l15___5→n_l5___4 of 6 {O(1)}
relevant size-bounds w.r.t. t₈₀₁:
Runtime-bound of t₈₀₁: X₈+1 {O(n)}
Results in: 6⋅X₈+6 {O(n)}
TWN: t₇₉₉: n_l5___1→n_l6___6
TWN - Lifting for t₇₉₉: n_l5___1→n_l6___6 of 6 {O(1)}
relevant size-bounds w.r.t. t₈₀₁:
Runtime-bound of t₈₀₁: X₈+1 {O(n)}
Results in: 6⋅X₈+6 {O(n)}
TWN: t₈₀₀: n_l5___4→n_l6___3
TWN - Lifting for t₈₀₀: n_l5___4→n_l6___3 of 6 {O(1)}
relevant size-bounds w.r.t. t₈₀₁:
Runtime-bound of t₈₀₁: X₈+1 {O(n)}
Results in: 6⋅X₈+6 {O(n)}
TWN: t₈₀₂: n_l6___3→n_l15___2
TWN - Lifting for t₈₀₂: n_l6___3→n_l15___2 of 6 {O(1)}
relevant size-bounds w.r.t. t₈₀₁:
Runtime-bound of t₈₀₁: X₈+1 {O(n)}
Results in: 6⋅X₈+6 {O(n)}
TWN: t₈₀₃: n_l6___6→n_l15___5
TWN - Lifting for t₈₀₃: n_l6___6→n_l15___5 of 6 {O(1)}
relevant size-bounds w.r.t. t₈₀₁:
Runtime-bound of t₈₀₁: X₈+1 {O(n)}
Results in: 6⋅X₈+6 {O(n)}
CFR did not improve the program. Rolling back
CFR: Improvement to new bound with the following program:
new bound:
197⋅X₈+41 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: Arg10_P, Arg8_P, NoDet0
Locations: l0, l1, l10, l11, l12, l13, l2, l4, l5, l7, l8, l9, n_l14___1, n_l14___4, n_l14___7, n_l15___2, n_l15___5, n_l2___3, n_l2___6, n_l3___2, n_l3___5, n_l3___8, n_l5___1, n_l5___4, n_l6___3, n_l6___6
Transitions:
t₅₂: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₁, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₀ ≤ X₈
t₅₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₀ ∧ X₀ ≤ X₈ ∧ X₀ ≤ X₈
t₅₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0
t₅₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0
t₅₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0
t₅₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₁₁, X₀, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₅₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+5 < 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₆₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 5 < X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₇₆₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₈ ∧ 1 ≤ X₃ ∧ 0 < X₃ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 5 ∧ X₀ ≤ X₈ ∧ 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ X₀ ≤ X₈ ∧ 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₆₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₁₁, X₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₆₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₀, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀ ≤ 0 ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₈₀₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₅ ∧ 0 < X₅ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₁ ∧ X₁₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₇₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀-1, X₆, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀
t₇₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₈, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₇₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0
t₇₆₀: n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l2___6(X₀, X₁, NoDet0, -2⋅X₃, X₄, X₅, X₆, X₇, Arg8_P, X₉, Arg10_P, X₁₁) :|: 1 ≤ X₃ ∧ Arg10_P ≤ 5 ∧ 0 ≤ 5+Arg10_P ∧ X₀ ≤ Arg8_P ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₇₆₁: n_l14___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l2___3(X₀, X₁, NoDet0, -2⋅X₃, X₄, X₅, X₆, X₇, Arg8_P, X₉, Arg10_P, X₁₁) :|: 1+X₃ ≤ 0 ∧ Arg10_P ≤ 5 ∧ 0 ≤ 5+Arg10_P ∧ X₀ ≤ Arg8_P ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₇₆₂: n_l14___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l2___6(X₀, X₁, NoDet0, -2⋅X₃, X₄, X₅, X₆, X₇, Arg8_P, X₉, Arg10_P, X₁₁) :|: X₃ ≤ X₈ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ Arg10_P ≤ 5 ∧ 0 ≤ 5+Arg10_P ∧ X₀ ≤ Arg8_P ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₇₉₇: n_l15___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l5___1(X₀, X₁, X₂, X₃, NoDet0, -2⋅X₅, X₆, X₇, Arg8_P, X₉, Arg10_P, X₁₁) :|: X₅ < 0 ∧ 1 ≤ Arg10_P ∧ X₀ ≤ Arg8_P ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 1 ≤ X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₇₉₈: n_l15___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l5___4(X₀, X₁, X₂, X₃, NoDet0, -2⋅X₅, X₆, X₇, Arg8_P, X₉, Arg10_P, X₁₁) :|: 0 < X₅ ∧ 1 ≤ Arg10_P ∧ X₀ ≤ Arg8_P ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 1 ≤ X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₇₆₃: n_l2___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ 1 ≤ X₃ ∧ 0 < X₃ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₁₀ ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 5 ∧ X₀ ≤ X₈ ∧ 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ X₀ ≤ X₈ ∧ 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₇₆₄: n_l2___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < 0 ∧ 1+X₃ ≤ 0 ∧ X₃ < 0 ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₁₀ ∧ 1 ≤ X₀ ∧ X₁₀ ≤ 5 ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₁₀ ∧ X₁₀ ≤ 5 ∧ X₀ ≤ X₈ ∧ 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₇₇₇: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ (X₃)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₇₆₆: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, Arg8_P, X₉, Arg10_P, X₁₁) :|: 1 ≤ X₃ ∧ Arg10_P ≤ 5 ∧ 0 ≤ 5+Arg10_P ∧ X₀ ≤ Arg8_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₇₇₈: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ (X₃)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₇₆₇: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, Arg8_P, X₉, Arg10_P, X₁₁) :|: 1+X₃ ≤ 0 ∧ Arg10_P ≤ 5 ∧ 0 ≤ 5+Arg10_P ∧ X₀ ≤ Arg8_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₇₇₉: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₃, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₂ ≤ (X₃)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₇₆₈: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, Arg8_P, X₉, Arg10_P, X₁₁) :|: X₃ ≤ X₈ ∧ 1 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ Arg10_P ≤ 5 ∧ 0 ≤ 5+Arg10_P ∧ X₀ ≤ Arg8_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₀ ≤ 5 ∧ 0 ≤ 5+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀
t₇₉₉: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₅ ∧ 0 < X₅ ∧ 1 ≤ X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₅ ∧ 5 ≤ X₁₀+X₅ ∧ 5 ≤ X₀+X₅ ∧ 3+X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₈₀₀: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < 0 ∧ X₅ < 0 ∧ 1 ≤ X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₈₁₂: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ (X₅)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₈₀₂: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, Arg8_P, X₉, Arg10_P, X₁₁) :|: X₅ < 0 ∧ 1 ≤ Arg10_P ∧ X₀ ≤ Arg8_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ 1 ≤ X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₈₁₃: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ (X₅)²+(X₁₀)⁵ ∧ 1 ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
t₈₀₃: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, Arg8_P, X₉, Arg10_P, X₁₁) :|: 0 < X₅ ∧ 1 ≤ Arg10_P ∧ X₀ ≤ Arg8_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ 1 ≤ X₁₀ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀
MPRF for transition t₅₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
MPRF for transition t₇₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
Chain transitions t₇₇: l9→l11 and t₅₇: l11→l9 to t₁₀₀₆: l9→l9
Chain transitions t₅₃: l1→l11 and t₅₇: l11→l9 to t₁₀₀₇: l1→l9
Chain transitions t₅₃: l1→l11 and t₅₆: l11→l10 to t₁₀₀₈: l1→l10
Chain transitions t₇₇: l9→l11 and t₅₆: l11→l10 to t₁₀₀₉: l9→l10
Analysing control-flow refined program
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ 0 for location l11
Found invariant 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l6___3
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l6___6
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location l2
Found invariant 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l2___6
Found invariant 1 ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₅ ∧ 5 ≤ X₁₀+X₅ ∧ 5 ≤ X₀+X₅ ∧ 3+X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l5___1
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l14___7
Found invariant 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l14___4
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l15___5
Found invariant 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l12
Found invariant 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l15___2
Found invariant 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l2___3
Found invariant 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l5___4
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l3___8
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₁ ∧ X₁₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l13
Found invariant 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l3___2
Found invariant X₀ ≤ X₈ for location l1
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l10
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l4
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l9
Found invariant 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l14___1
MPRF for transition t₁₀₀₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) -{2}> l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: 1 < X₇ ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁+1 ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁+1 ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₁ ≤ X₇ ∧ X₀ ≤ 0 for location l11
Found invariant 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l6___3
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l6___6
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location l2
Found invariant 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l2___6
Found invariant 1 ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₅ ∧ 5 ≤ X₁₀+X₅ ∧ 5 ≤ X₀+X₅ ∧ 3+X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l5___1
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l14___7
Found invariant 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l14___4
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l15___5
Found invariant X₀ ≤ X₈ ∧ 1+X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l9___1
Found invariant X₀ ≤ X₈ ∧ 1+X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l11___2
Found invariant 1 ≤ X₈ ∧ 3+X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₃ ≤ 0 ∧ X₃ ≤ 3+X₁₀ ∧ X₁₀+X₃ ≤ 3 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l9___3
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l12
Found invariant 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l15___2
Found invariant 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l2___3
Found invariant 1 ≤ X₈ ∧ 3+X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2+X₅ ≤ 0 ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₀ ∧ 1+X₀+X₅ ≤ 0 ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l5___4
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 0 ≤ 4+X₁₀+X₃ ∧ X₁₀ ≤ 4+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁₁ ∧ X₁₁ ≤ X₂ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l3___8
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₁₁ ∧ X₁₁ ≤ X₄ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l13
Found invariant 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l3___2
Found invariant X₀ ≤ X₈ for location l1
Found invariant X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀+X₇ ≤ 0 ∧ X₀ ≤ 0 for location l10
Found invariant 1 ≤ X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1 ≤ X₀ for location l4
Found invariant 1 ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 0 ≤ 4+X₁₀+X₈ ∧ X₁₀ ≤ 4+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 4 ≤ X₃ ∧ 0 ≤ 1+X₁₀+X₃ ∧ X₁₀ ≤ 1+X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ X₁₀ ≤ 5 ∧ X₁₀ ≤ 4+X₀ ∧ 0 ≤ 5+X₁₀ ∧ 0 ≤ 4+X₀+X₁₀ ∧ 1 ≤ X₀ for location n_l14___1
MPRF for transition t₁₁₃₈: n_l11___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 ≤ X₇ ∧ 1+X₇ ≤ X₁ ∧ 0 < X₇ ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ X₇ ≤ X₁ ∧ X₀ ≤ X₈ ∧ X₀ ≤ 0 ∧ X₇ ≤ X₁ ∧ X₀ ≤ X₈ ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ 1+X₇ ≤ X₁ ∧ 0 ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉+1 {O(EXP)}
MPRF for transition t₁₁₄₀: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l11___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1, X₈, X₉, X₁₀, X₁₁) :|: 1+X₇ ≤ X₁ ∧ 0 < X₇ ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ 1 ≤ X₇ ∧ X₇ ≤ X₁ ∧ X₀ ≤ X₈ ∧ X₀ ≤ 0 ∧ X₀ ≤ X₈ ∧ 1+X₇ ≤ X₁ ∧ 1 ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:
new bound:
2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:2^(24⋅X₈)⋅2^(24⋅X₈)⋅8⋅X₈+2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅4⋅X₈+2⋅X₉+203⋅X₈+46 {O(EXP)}
t₅₂: 1 {O(1)}
t₅₃: 1 {O(1)}
t₅₄: X₈+1 {O(n)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₅₈: X₈ {O(n)}
t₅₉: X₈+1 {O(n)}
t₆₀: X₈+1 {O(n)}
t₆₈: X₈+1 {O(n)}
t₆₉: X₈ {O(n)}
t₇₅: X₈ {O(n)}
t₇₆: 1 {O(1)}
t₇₇: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₆₀: 24⋅X₈ {O(n)}
t₇₆₁: 24⋅X₈ {O(n)}
t₇₆₂: X₈ {O(n)}
t₇₆₃: 24⋅X₈ {O(n)}
t₇₆₄: 24⋅X₈ {O(n)}
t₇₆₅: X₈ {O(n)}
t₇₆₆: 24⋅X₈ {O(n)}
t₇₆₇: 24⋅X₈ {O(n)}
t₇₆₈: X₈ {O(n)}
t₇₇₇: X₈ {O(n)}
t₇₇₈: X₈ {O(n)}
t₇₇₉: X₈ {O(n)}
t₇₉₇: 6⋅X₈+6 {O(n)}
t₇₉₈: 6⋅X₈+6 {O(n)}
t₇₉₉: 6⋅X₈+6 {O(n)}
t₈₀₀: 6⋅X₈+6 {O(n)}
t₈₀₁: X₈+1 {O(n)}
t₈₀₂: 6⋅X₈+6 {O(n)}
t₈₀₃: 6⋅X₈+6 {O(n)}
t₈₁₂: 2⋅X₈ {O(n)}
t₈₁₃: X₈ {O(n)}
Costbounds
Overall costbound: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅8⋅X₈+2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅4⋅X₈+2⋅X₉+203⋅X₈+46 {O(EXP)}
t₅₂: 1 {O(1)}
t₅₃: 1 {O(1)}
t₅₄: X₈+1 {O(n)}
t₅₅: 1 {O(1)}
t₅₆: 1 {O(1)}
t₅₇: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₅₈: X₈ {O(n)}
t₅₉: X₈+1 {O(n)}
t₆₀: X₈+1 {O(n)}
t₆₈: X₈+1 {O(n)}
t₆₉: X₈ {O(n)}
t₇₅: X₈ {O(n)}
t₇₆: 1 {O(1)}
t₇₇: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₆₀: 24⋅X₈ {O(n)}
t₇₆₁: 24⋅X₈ {O(n)}
t₇₆₂: X₈ {O(n)}
t₇₆₃: 24⋅X₈ {O(n)}
t₇₆₄: 24⋅X₈ {O(n)}
t₇₆₅: X₈ {O(n)}
t₇₆₆: 24⋅X₈ {O(n)}
t₇₆₇: 24⋅X₈ {O(n)}
t₇₆₈: X₈ {O(n)}
t₇₇₇: X₈ {O(n)}
t₇₇₈: X₈ {O(n)}
t₇₇₉: X₈ {O(n)}
t₇₉₇: 6⋅X₈+6 {O(n)}
t₇₉₈: 6⋅X₈+6 {O(n)}
t₇₉₉: 6⋅X₈+6 {O(n)}
t₈₀₀: 6⋅X₈+6 {O(n)}
t₈₀₁: X₈+1 {O(n)}
t₈₀₂: 6⋅X₈+6 {O(n)}
t₈₀₃: 6⋅X₈+6 {O(n)}
t₈₁₂: 2⋅X₈ {O(n)}
t₈₁₃: X₈ {O(n)}
Sizebounds
t₅₂, X₀: X₀ {O(n)}
t₅₂, X₁: X₁ {O(n)}
t₅₂, X₂: X₂ {O(n)}
t₅₂, X₃: X₃ {O(n)}
t₅₂, X₄: X₄ {O(n)}
t₅₂, X₅: X₅ {O(n)}
t₅₂, X₆: X₆ {O(n)}
t₅₂, X₇: X₇ {O(n)}
t₅₂, X₈: X₈ {O(n)}
t₅₂, X₉: X₉ {O(n)}
t₅₂, X₁₀: X₁₀ {O(n)}
t₅₂, X₁₁: X₁₁ {O(n)}
t₅₃, X₀: 2⋅X₈ {O(n)}
t₅₃, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₅₃, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+2⋅X₃+X₈ {O(EXP)}
t₅₃, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2⋅X₅+X₈ {O(EXP)}
t₅₃, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₅₃, X₇: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₅₃, X₈: 2⋅X₈ {O(n)}
t₅₃, X₉: 2⋅X₉ {O(n)}
t₅₃, X₁₀: 2⋅X₁₀+15 {O(n)}
t₅₃, X₁₁: 2⋅X₁₁ {O(n)}
t₅₄, X₀: X₈ {O(n)}
t₅₄, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₅₄, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₅₄, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₅₄, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₅₄, X₇: X₇ {O(n)}
t₅₄, X₈: X₈ {O(n)}
t₅₄, X₉: X₉ {O(n)}
t₅₄, X₁₀: X₁₀+15 {O(n)}
t₅₄, X₁₁: X₁₁ {O(n)}
t₅₅, X₀: 4⋅X₈ {O(n)}
t₅₅, X₁: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅8⋅X₈+2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅4⋅X₈+2⋅X₉+6⋅X₈ {O(EXP)}
t₅₅, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅8⋅X₈+2⋅X₈+4⋅X₃ {O(EXP)}
t₅₅, X₅: 2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅4⋅X₈+2⋅X₈+4⋅X₅ {O(EXP)}
t₅₅, X₆: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅8⋅X₈+2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅4⋅X₈+2⋅X₆+6⋅X₈ {O(EXP)}
t₅₅, X₇: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅8⋅X₈+2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅4⋅X₈+2⋅X₉+6⋅X₈ {O(EXP)}
t₅₅, X₈: 4⋅X₈ {O(n)}
t₅₅, X₉: 4⋅X₉ {O(n)}
t₅₅, X₁₀: 4⋅X₁₀+30 {O(n)}
t₅₅, X₁₁: 4⋅X₁₁ {O(n)}
t₅₆, X₀: 4⋅X₈ {O(n)}
t₅₆, X₁: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅8⋅X₈+2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅4⋅X₈+2⋅X₉+6⋅X₈ {O(EXP)}
t₅₆, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅8⋅X₈+2⋅X₈+4⋅X₃ {O(EXP)}
t₅₆, X₅: 2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅4⋅X₈+2⋅X₈+4⋅X₅ {O(EXP)}
t₅₆, X₆: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅8⋅X₈+2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅4⋅X₈+2⋅X₆+6⋅X₈ {O(EXP)}
t₅₆, X₇: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅8⋅X₈+2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅4⋅X₈+2⋅X₉+6⋅X₈ {O(EXP)}
t₅₆, X₈: 4⋅X₈ {O(n)}
t₅₆, X₉: 4⋅X₉ {O(n)}
t₅₆, X₁₀: 4⋅X₁₀+30 {O(n)}
t₅₆, X₁₁: 4⋅X₁₁ {O(n)}
t₅₇, X₀: 2⋅X₈ {O(n)}
t₅₇, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₅₇, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+2⋅X₃+X₈ {O(EXP)}
t₅₇, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2⋅X₅+X₈ {O(EXP)}
t₅₇, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₅₇, X₇: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₅₇, X₈: 2⋅X₈ {O(n)}
t₅₇, X₉: 2⋅X₉ {O(n)}
t₅₇, X₁₀: 2⋅X₁₀+15 {O(n)}
t₅₇, X₁₁: 2⋅X₁₁ {O(n)}
t₅₈, X₀: X₈ {O(n)}
t₅₈, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₅₈, X₂: X₁₁ {O(n)}
t₅₈, X₃: X₈ {O(n)}
t₅₈, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₅₈, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₅₈, X₇: X₇ {O(n)}
t₅₈, X₈: X₈ {O(n)}
t₅₈, X₉: X₉ {O(n)}
t₅₈, X₁₀: 5 {O(1)}
t₅₈, X₁₁: X₁₁ {O(n)}
t₅₉, X₀: X₈ {O(n)}
t₅₉, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₅₉, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₅₉, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₅₉, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₅₉, X₇: X₇ {O(n)}
t₅₉, X₈: X₈ {O(n)}
t₅₉, X₉: X₉ {O(n)}
t₅₉, X₁₀: X₁₀+15 {O(n)}
t₅₉, X₁₁: X₁₁ {O(n)}
t₆₀, X₀: X₈ {O(n)}
t₆₀, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₆₀, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₆₀, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₆₀, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₆₀, X₇: X₇ {O(n)}
t₆₀, X₈: X₈ {O(n)}
t₆₀, X₉: X₉ {O(n)}
t₆₀, X₁₀: X₁₀+15 {O(n)}
t₆₀, X₁₁: X₁₁ {O(n)}
t₆₈, X₀: X₈ {O(n)}
t₆₈, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₆₈, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₆₈, X₄: X₁₁ {O(n)}
t₆₈, X₅: X₈ {O(n)}
t₆₈, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₆₈, X₇: X₇ {O(n)}
t₆₈, X₈: X₈ {O(n)}
t₆₈, X₉: X₉ {O(n)}
t₆₈, X₁₀: X₁₀+15 {O(n)}
t₆₈, X₁₁: X₁₁ {O(n)}
t₆₉, X₀: X₈ {O(n)}
t₆₉, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₆₉, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₆₉, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₆₉, X₆: X₈ {O(n)}
t₆₉, X₇: X₇ {O(n)}
t₆₉, X₈: X₈ {O(n)}
t₆₉, X₉: X₉ {O(n)}
t₆₉, X₁₀: X₁₀+15 {O(n)}
t₆₉, X₁₁: X₁₁ {O(n)}
t₇₅, X₀: X₈ {O(n)}
t₇₅, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈ {O(EXP)}
t₇₅, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₇₅, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₅, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈ {O(EXP)}
t₇₅, X₇: X₇ {O(n)}
t₇₅, X₈: X₈ {O(n)}
t₇₅, X₉: X₉ {O(n)}
t₇₅, X₁₀: X₁₀+15 {O(n)}
t₇₅, X₁₁: X₁₁ {O(n)}
t₇₆, X₀: X₈ {O(n)}
t₇₆, X₁: X₉ {O(n)}
t₇₆, X₂: X₂ {O(n)}
t₇₆, X₃: X₃ {O(n)}
t₇₆, X₄: X₄ {O(n)}
t₇₆, X₅: X₅ {O(n)}
t₇₆, X₆: X₆ {O(n)}
t₇₆, X₇: X₇ {O(n)}
t₇₆, X₈: X₈ {O(n)}
t₇₆, X₉: X₉ {O(n)}
t₇₆, X₁₀: X₁₀ {O(n)}
t₇₆, X₁₁: X₁₁ {O(n)}
t₇₇, X₀: 2⋅X₈ {O(n)}
t₇₇, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₇, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+2⋅X₃+X₈ {O(EXP)}
t₇₇, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2⋅X₅+X₈ {O(EXP)}
t₇₇, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₇, X₇: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₇, X₈: 2⋅X₈ {O(n)}
t₇₇, X₉: 2⋅X₉ {O(n)}
t₇₇, X₁₀: 2⋅X₁₀+15 {O(n)}
t₇₇, X₁₁: 2⋅X₁₁ {O(n)}
t₇₆₀, X₀: X₈ {O(n)}
t₇₆₀, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₆₀, X₃: 2⋅2^(24⋅X₈)⋅2^(24⋅X₈)⋅X₈ {O(EXP)}
t₇₆₀, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₆₀, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₆₀, X₇: X₇ {O(n)}
t₇₆₀, X₈: X₈ {O(n)}
t₇₆₀, X₉: X₉ {O(n)}
t₇₆₀, X₁₀: 5 {O(1)}
t₇₆₀, X₁₁: X₁₁ {O(n)}
t₇₆₁, X₀: X₈ {O(n)}
t₇₆₁, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₆₁, X₃: 2⋅2^(24⋅X₈)⋅2^(24⋅X₈)⋅X₈ {O(EXP)}
t₇₆₁, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₆₁, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₆₁, X₇: X₇ {O(n)}
t₇₆₁, X₈: X₈ {O(n)}
t₇₆₁, X₉: X₉ {O(n)}
t₇₆₁, X₁₀: 5 {O(1)}
t₇₆₁, X₁₁: X₁₁ {O(n)}
t₇₆₂, X₀: X₈ {O(n)}
t₇₆₂, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₆₂, X₃: 2⋅X₈ {O(n)}
t₇₆₂, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₆₂, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₆₂, X₇: X₇ {O(n)}
t₇₆₂, X₈: X₈ {O(n)}
t₇₆₂, X₉: X₉ {O(n)}
t₇₆₂, X₁₀: 5 {O(1)}
t₇₆₂, X₁₁: X₁₁ {O(n)}
t₇₆₃, X₀: X₈ {O(n)}
t₇₆₃, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₆₃, X₃: 2⋅2^(24⋅X₈)⋅2^(24⋅X₈)⋅X₈ {O(EXP)}
t₇₆₃, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₆₃, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₆₃, X₇: X₇ {O(n)}
t₇₆₃, X₈: X₈ {O(n)}
t₇₆₃, X₉: X₉ {O(n)}
t₇₆₃, X₁₀: 5 {O(1)}
t₇₆₃, X₁₁: X₁₁ {O(n)}
t₇₆₄, X₀: X₈ {O(n)}
t₇₆₄, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₆₄, X₃: 2⋅2^(24⋅X₈)⋅2^(24⋅X₈)⋅X₈ {O(EXP)}
t₇₆₄, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₆₄, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₆₄, X₇: X₇ {O(n)}
t₇₆₄, X₈: X₈ {O(n)}
t₇₆₄, X₉: X₉ {O(n)}
t₇₆₄, X₁₀: 5 {O(1)}
t₇₆₄, X₁₁: X₁₁ {O(n)}
t₇₆₅, X₀: X₈ {O(n)}
t₇₆₅, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₆₅, X₂: X₁₁ {O(n)}
t₇₆₅, X₃: X₈ {O(n)}
t₇₆₅, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₆₅, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₆₅, X₇: X₇ {O(n)}
t₇₆₅, X₈: X₈ {O(n)}
t₇₆₅, X₉: X₉ {O(n)}
t₇₆₅, X₁₀: 5 {O(1)}
t₇₆₅, X₁₁: X₁₁ {O(n)}
t₇₆₆, X₀: X₈ {O(n)}
t₇₆₆, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₆₆, X₃: 2⋅2^(24⋅X₈)⋅2^(24⋅X₈)⋅X₈ {O(EXP)}
t₇₆₆, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₆₆, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₆₆, X₇: X₇ {O(n)}
t₇₆₆, X₈: X₈ {O(n)}
t₇₆₆, X₉: X₉ {O(n)}
t₇₆₆, X₁₀: 5 {O(1)}
t₇₆₆, X₁₁: X₁₁ {O(n)}
t₇₆₇, X₀: X₈ {O(n)}
t₇₆₇, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₆₇, X₃: 2⋅2^(24⋅X₈)⋅2^(24⋅X₈)⋅X₈ {O(EXP)}
t₇₆₇, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₆₇, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₆₇, X₇: X₇ {O(n)}
t₇₆₇, X₈: X₈ {O(n)}
t₇₆₇, X₉: X₉ {O(n)}
t₇₆₇, X₁₀: 5 {O(1)}
t₇₆₇, X₁₁: X₁₁ {O(n)}
t₇₆₈, X₀: X₈ {O(n)}
t₇₆₈, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₆₈, X₂: X₁₁ {O(n)}
t₇₆₈, X₃: X₈ {O(n)}
t₇₆₈, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₆₈, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₆₈, X₇: X₇ {O(n)}
t₇₆₈, X₈: X₈ {O(n)}
t₇₆₈, X₉: X₉ {O(n)}
t₇₆₈, X₁₀: 5 {O(1)}
t₇₆₈, X₁₁: X₁₁ {O(n)}
t₇₇₇, X₀: X₈ {O(n)}
t₇₇₇, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₇₇, X₃: 2⋅2^(24⋅X₈)⋅2^(24⋅X₈)⋅X₈ {O(EXP)}
t₇₇₇, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₇₇, X₆: 2⋅2^(24⋅X₈)⋅2^(24⋅X₈)⋅X₈ {O(EXP)}
t₇₇₇, X₇: X₇ {O(n)}
t₇₇₇, X₈: X₈ {O(n)}
t₇₇₇, X₉: X₉ {O(n)}
t₇₇₇, X₁₀: 5 {O(1)}
t₇₇₇, X₁₁: X₁₁ {O(n)}
t₇₇₈, X₀: X₈ {O(n)}
t₇₇₈, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₇₈, X₃: 2⋅2^(24⋅X₈)⋅2^(24⋅X₈)⋅X₈ {O(EXP)}
t₇₇₈, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₇₈, X₆: 2⋅2^(24⋅X₈)⋅2^(24⋅X₈)⋅X₈ {O(EXP)}
t₇₇₈, X₇: X₇ {O(n)}
t₇₇₈, X₈: X₈ {O(n)}
t₇₇₈, X₉: X₉ {O(n)}
t₇₇₈, X₁₀: 5 {O(1)}
t₇₇₈, X₁₁: X₁₁ {O(n)}
t₇₇₉, X₀: X₈ {O(n)}
t₇₇₉, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₇₉, X₂: X₁₁ {O(n)}
t₇₇₉, X₃: X₈ {O(n)}
t₇₇₉, X₅: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₅+X₈ {O(EXP)}
t₇₇₉, X₆: X₈ {O(n)}
t₇₇₉, X₇: X₇ {O(n)}
t₇₇₉, X₈: X₈ {O(n)}
t₇₇₉, X₉: X₉ {O(n)}
t₇₇₉, X₁₀: 5 {O(1)}
t₇₇₉, X₁₁: X₁₁ {O(n)}
t₇₉₇, X₀: X₈ {O(n)}
t₇₉₇, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₉₇, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₇₉₇, X₅: 2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈ {O(EXP)}
t₇₉₇, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₉₇, X₇: X₇ {O(n)}
t₇₉₇, X₈: X₈ {O(n)}
t₇₉₇, X₉: X₉ {O(n)}
t₇₉₇, X₁₀: X₁₀+15 {O(n)}
t₇₉₇, X₁₁: X₁₁ {O(n)}
t₇₉₈, X₀: X₈ {O(n)}
t₇₉₈, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₉₈, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₇₉₈, X₅: 2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈ {O(EXP)}
t₇₉₈, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₉₈, X₇: X₇ {O(n)}
t₇₉₈, X₈: X₈ {O(n)}
t₇₉₈, X₉: X₉ {O(n)}
t₇₉₈, X₁₀: X₁₀+15 {O(n)}
t₇₉₈, X₁₁: X₁₁ {O(n)}
t₇₉₉, X₀: X₈ {O(n)}
t₇₉₉, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₇₉₉, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₇₉₉, X₅: 2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈ {O(EXP)}
t₇₉₉, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₇₉₉, X₇: X₇ {O(n)}
t₇₉₉, X₈: X₈ {O(n)}
t₇₉₉, X₉: X₉ {O(n)}
t₇₉₉, X₁₀: X₁₀+15 {O(n)}
t₇₉₉, X₁₁: X₁₁ {O(n)}
t₈₀₀, X₀: X₈ {O(n)}
t₈₀₀, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₈₀₀, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₈₀₀, X₅: 2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈ {O(EXP)}
t₈₀₀, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₈₀₀, X₇: X₇ {O(n)}
t₈₀₀, X₈: X₈ {O(n)}
t₈₀₀, X₉: X₉ {O(n)}
t₈₀₀, X₁₀: X₁₀+15 {O(n)}
t₈₀₀, X₁₁: X₁₁ {O(n)}
t₈₀₁, X₀: X₈ {O(n)}
t₈₀₁, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₈₀₁, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₈₀₁, X₄: X₁₁ {O(n)}
t₈₀₁, X₅: X₈ {O(n)}
t₈₀₁, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₈₀₁, X₇: X₇ {O(n)}
t₈₀₁, X₈: X₈ {O(n)}
t₈₀₁, X₉: X₉ {O(n)}
t₈₀₁, X₁₀: X₁₀+15 {O(n)}
t₈₀₁, X₁₁: X₁₁ {O(n)}
t₈₀₂, X₀: X₈ {O(n)}
t₈₀₂, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₈₀₂, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₈₀₂, X₅: 2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈ {O(EXP)}
t₈₀₂, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₈₀₂, X₇: X₇ {O(n)}
t₈₀₂, X₈: X₈ {O(n)}
t₈₀₂, X₉: X₉ {O(n)}
t₈₀₂, X₁₀: X₁₀+15 {O(n)}
t₈₀₂, X₁₁: X₁₁ {O(n)}
t₈₀₃, X₀: X₈ {O(n)}
t₈₀₃, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₈₀₃, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₈₀₃, X₅: 2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈ {O(EXP)}
t₈₀₃, X₆: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₆ {O(EXP)}
t₈₀₃, X₇: X₇ {O(n)}
t₈₀₃, X₈: X₈ {O(n)}
t₈₀₃, X₉: X₉ {O(n)}
t₈₀₃, X₁₀: X₁₀+15 {O(n)}
t₈₀₃, X₁₁: X₁₁ {O(n)}
t₈₁₂, X₀: X₈ {O(n)}
t₈₁₂, X₁: 2⋅2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+3⋅X₈+X₉ {O(EXP)}
t₈₁₂, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₈₁₂, X₅: 2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈ {O(EXP)}
t₈₁₂, X₆: 2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈ {O(EXP)}
t₈₁₂, X₇: X₇ {O(n)}
t₈₁₂, X₈: X₈ {O(n)}
t₈₁₂, X₉: X₉ {O(n)}
t₈₁₂, X₁₀: X₁₀+15 {O(n)}
t₈₁₂, X₁₁: X₁₁ {O(n)}
t₈₁₃, X₀: X₈ {O(n)}
t₈₁₃, X₁: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅8⋅X₈+2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅4⋅X₈+2⋅X₉+6⋅X₈ {O(EXP)}
t₈₁₃, X₃: 2^(24⋅X₈)⋅2^(24⋅X₈)⋅4⋅X₈+X₃+X₈ {O(EXP)}
t₈₁₃, X₅: 2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₈ {O(EXP)}
t₈₁₃, X₆: 2^(6⋅X₈+6)⋅2^(6⋅X₈+6)⋅X₈+X₈ {O(EXP)}
t₈₁₃, X₇: X₇ {O(n)}
t₈₁₃, X₈: X₈ {O(n)}
t₈₁₃, X₉: X₉ {O(n)}
t₈₁₃, X₁₀: X₁₀+15 {O(n)}
t₈₁₃, X₁₁: X₁₁ {O(n)}