Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₄ < 11
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 11 ≤ X₁₄
t₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ < X₉
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₅
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₁, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 ≤ X₁
t₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ < 1
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(2, X₁, X₂, X₁, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₁₁
t₁₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(1, X₁, X₂, X₁, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁₁ ≤ 0
t₁₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₂-1, X₂, X₃, X₄, X₆, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄+1)
t₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₅+3
t₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 3+X₅ ≤ X₉
t₁₁: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₁+24, X₃, X₄, X₅, X₅+3, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₁+8, X₃, X₄, X₅, X₅+1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁₃, X₂, X₃, X₄, X₁₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, 0)
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₇ < X₉
t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ ≤ X₇
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, X₃+24, X₅, X₆, X₇, X₇+3, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < X₀
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₇, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₃
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₉ < X₇+3
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 3+X₇ ≤ X₉
t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, X₃+8, X₅, X₆, X₇, X₇+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₂₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁, X₂, X₄-1, X₄, X₅, X₆, X₈, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)

Preprocessing

Eliminate variables {X₁₂} that do not contribute to the problem

Found invariant X₉ ≤ 2+X₅ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0 for location l11

Found invariant X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 for location l6

Found invariant X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0 for location l15

Found invariant X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ for location l12

Found invariant X₉ ≤ 2+X₅ ∧ 1+X₅ ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0 for location l17

Found invariant X₉ ≤ 2+X₇ ∧ 1+X₇ ≤ X₉ ∧ 1+X₅ ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 for location l7

Found invariant X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 for location l5

Found invariant X₁₀ ≤ X₅ ∧ 11 ≤ X₁₃ for location l13

Found invariant X₁₀ ≤ X₅ ∧ 0 ≤ X₁₃ for location l8

Found invariant X₁₀ ≤ X₅ ∧ 0 ≤ X₁₃ for location l1

Found invariant X₁₀ ≤ X₅ ∧ 0 ≤ X₁₃ for location l10

Found invariant 3+X₅ ≤ X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0 for location l16

Found invariant 3+X₇ ≤ X₉ ∧ 3+X₅ ≤ X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 for location l4

Found invariant X₈ ≤ 3+X₇ ∧ X₇ ≤ X₈ ∧ X₅ ≤ X₈ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₄ ≤ 24+X₃ ∧ X₃ ≤ X₄ ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 for location l9

Found invariant X₉ ≤ 2+X₇ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 for location l3

Found invariant X₆ ≤ 3+X₅ ∧ X₅ ≤ X₆ ∧ X₁₀ ≤ X₆ ∧ X₁₀ ≤ X₅ ∧ X₂ ≤ 24+X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁₃ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₅₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₅₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₃ < 11 ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₁₃
t₅₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 11 ≤ X₁₃ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₁₃
t₅₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₅ < X₉ ∧ X₉ ≤ 2+X₅ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0
t₅₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ X₅ ∧ X₉ ≤ 2+X₅ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0
t₅₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₁, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1 ≤ X₁ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ 0 ≤ X₁₃
t₅₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁ < 1 ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ 0 ≤ X₁₃
t₅₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(2, X₁, X₂, X₁, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₁₁ ∧ X₁₀ ≤ X₅ ∧ 11 ≤ X₁₃
t₅₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(1, X₁, X₂, X₁, X₄, X₅, X₆, X₅, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₁ ≤ 0 ∧ X₁₀ ≤ X₅ ∧ 11 ≤ X₁₃
t₅₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₂-1, X₂, X₃, X₄, X₆, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃+1) :|: X₆ ≤ 3+X₅ ∧ X₅ ≤ X₆ ∧ X₁₀ ≤ X₆ ∧ X₁₀ ≤ X₅ ∧ X₂ ≤ 24+X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁₃
t₆₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ < X₅+3 ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0
t₆₁: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 3+X₅ ≤ X₉ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0
t₆₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₁+24, X₃, X₄, X₅, X₅+3, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 3+X₅ ≤ X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0
t₆₃: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₁+8, X₃, X₄, X₅, X₅+1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ 2+X₅ ∧ 1+X₅ ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0
t₆₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁₂, X₂, X₃, X₄, X₁₀, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, 0)
t₆₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₇ < X₉ ∧ X₉ ≤ 2+X₇ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2
t₆₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ X₇ ∧ X₉ ≤ 2+X₇ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2
t₆₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₃+24, X₅, X₆, X₇, X₇+3, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 3+X₇ ≤ X₉ ∧ 3+X₅ ≤ X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2
t₆₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₃ < X₀ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2
t₆₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₇, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₀ ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2
t₇₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ < X₇+3 ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2
t₇₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 3+X₇ ≤ X₉ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2
t₇₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₃+8, X₅, X₆, X₇, X₇+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ 2+X₇ ∧ 1+X₇ ≤ X₉ ∧ 1+X₅ ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2
t₇₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₀ ≤ X₅ ∧ 0 ≤ X₁₃
t₇₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₀, X₁, X₂, X₄-1, X₄, X₅, X₆, X₈, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₈ ≤ 3+X₇ ∧ X₇ ≤ X₈ ∧ X₅ ≤ X₈ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₄ ≤ 24+X₃ ∧ X₃ ≤ X₄ ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2

MPRF for transition t₅₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₃ < 11 ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₁₃ of depth 1:

new bound:

11 {O(1)}

MPRF for transition t₅₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₅ < X₉ ∧ X₉ ≤ 2+X₅ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0 of depth 1:

new bound:

101 {O(1)}

MPRF for transition t₅₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₁, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1 ≤ X₁ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ of depth 1:

new bound:

X₁₂+230 {O(n)}

MPRF for transition t₅₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁ < 1 ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ of depth 1:

new bound:

101 {O(1)}

MPRF for transition t₆₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ < X₅+3 ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0 of depth 1:

new bound:

101 {O(1)}

MPRF for transition t₆₁: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 3+X₅ ≤ X₉ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0 of depth 1:

new bound:

10⋅X₁₀+10⋅X₉+11 {O(n)}

MPRF for transition t₆₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₁+24, X₃, X₄, X₅, X₅+3, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 3+X₅ ≤ X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0 of depth 1:

new bound:

X₁₂+11 {O(n)}

MPRF for transition t₆₃: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₁+8, X₃, X₄, X₅, X₅+1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ 2+X₅ ∧ 1+X₅ ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0 of depth 1:

new bound:

X₁₂+11 {O(n)}

knowledge_propagation leads to new time bound 11 {O(1)} for transition t₅₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₁, X₃, X₄, X₅, X₅, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1 ≤ X₁ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ 0 ≤ X₁₃

knowledge_propagation leads to new time bound 2⋅X₁₂+33 {O(n)} for transition t₅₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₂-1, X₂, X₃, X₄, X₆, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃+1) :|: X₆ ≤ 3+X₅ ∧ X₅ ≤ X₆ ∧ X₁₀ ≤ X₆ ∧ X₁₀ ≤ X₅ ∧ X₂ ≤ 24+X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁₃

knowledge_propagation leads to new time bound 101 {O(1)} for transition t₆₁: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 3+X₅ ≤ X₉ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0

knowledge_propagation leads to new time bound 101 {O(1)} for transition t₆₂: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₁+24, X₃, X₄, X₅, X₅+3, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 3+X₅ ≤ X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0

knowledge_propagation leads to new time bound 101 {O(1)} for transition t₆₃: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₁+8, X₃, X₄, X₅, X₅+1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ 2+X₅ ∧ 1+X₅ ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₅ ∧ X₁₃ ≤ 10 ∧ X₁+X₁₃ ≤ 10 ∧ 0 ≤ X₁₃ ∧ X₁ ≤ X₁₃ ∧ X₁ ≤ 0

knowledge_propagation leads to new time bound 213 {O(1)} for transition t₅₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₂-1, X₂, X₃, X₄, X₆, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃+1) :|: X₆ ≤ 3+X₅ ∧ X₅ ≤ X₆ ∧ X₁₀ ≤ X₆ ∧ X₁₀ ≤ X₅ ∧ X₂ ≤ 24+X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁₃

MPRF for transition t₆₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₇ < X₉ ∧ X₉ ≤ 2+X₇ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 of depth 1:

new bound:

2⋅X₁₀+2⋅X₉+1278 {O(n)}

MPRF for transition t₆₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₃+24, X₅, X₆, X₇, X₇+3, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 3+X₇ ≤ X₉ ∧ 3+X₅ ≤ X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 of depth 1:

new bound:

2⋅X₁₀+2⋅X₉+1294 {O(n)}

MPRF for transition t₇₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 3+X₇ ≤ X₉ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 of depth 1:

new bound:

2⋅X₁₀+2⋅X₉+1282 {O(n)}

MPRF for transition t₇₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₃+8, X₅, X₆, X₇, X₇+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ 2+X₇ ∧ 1+X₇ ≤ X₉ ∧ 1+X₅ ≤ X₉ ∧ 1+X₁₀ ≤ X₉ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 of depth 1:

new bound:

2⋅X₁₀+2⋅X₉+1278 {O(n)}

MPRF for transition t₆₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₃ < X₀ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 of depth 1:

new bound:

8⋅X₁₀+8⋅X₉+5124 {O(n)}

MPRF for transition t₆₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₇, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₀ ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 of depth 1:

new bound:

2⋅X₁₂+410⋅X₁₀+410⋅X₉+272422 {O(n)}

MPRF for transition t₇₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ < X₇+3 ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₃ ≤ 1 ∧ 10+X₃ ≤ X₁₃ ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 3 ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2 of depth 1:

new bound:

2⋅X₁₀+2⋅X₉+1280 {O(n)}

knowledge_propagation leads to new time bound 2⋅X₁₂+414⋅X₁₀+414⋅X₉+274994 {O(n)} for transition t₇₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₀, X₁, X₂, X₄-1, X₄, X₅, X₆, X₈, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₈ ≤ 3+X₇ ∧ X₇ ≤ X₈ ∧ X₅ ≤ X₈ ∧ X₁₀ ≤ X₈ ∧ X₅ ≤ X₇ ∧ X₁₀ ≤ X₇ ∧ X₁₀ ≤ X₅ ∧ X₄ ≤ 24+X₃ ∧ X₃ ≤ X₄ ∧ 11 ≤ X₁₃ ∧ 9+X₀ ≤ X₁₃ ∧ X₀ ≤ 2

All Bounds

Timebounds

Overall timebound:4⋅X₁₂+842⋅X₁₀+842⋅X₉+559801 {O(n)}
t₅₀: 1 {O(1)}
t₅₁: 11 {O(1)}
t₅₂: 1 {O(1)}
t₅₃: 101 {O(1)}
t₅₄: 1 {O(1)}
t₅₅: 11 {O(1)}
t₅₆: 101 {O(1)}
t₅₇: 1 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 213 {O(1)}
t₆₀: 101 {O(1)}
t₆₁: 101 {O(1)}
t₆₂: 101 {O(1)}
t₆₃: 101 {O(1)}
t₆₄: 1 {O(1)}
t₆₅: 2⋅X₁₀+2⋅X₉+1278 {O(n)}
t₆₆: 1 {O(1)}
t₆₇: 2⋅X₁₀+2⋅X₉+1294 {O(n)}
t₆₈: 8⋅X₁₀+8⋅X₉+5124 {O(n)}
t₆₉: 2⋅X₁₂+410⋅X₁₀+410⋅X₉+272422 {O(n)}
t₇₀: 2⋅X₁₀+2⋅X₉+1280 {O(n)}
t₇₁: 2⋅X₁₀+2⋅X₉+1282 {O(n)}
t₇₂: 2⋅X₁₀+2⋅X₉+1278 {O(n)}
t₇₃: 1 {O(1)}
t₇₄: 2⋅X₁₂+414⋅X₁₀+414⋅X₉+274994 {O(n)}

Costbounds

Overall costbound: 4⋅X₁₂+842⋅X₁₀+842⋅X₉+559801 {O(n)}
t₅₀: 1 {O(1)}
t₅₁: 11 {O(1)}
t₅₂: 1 {O(1)}
t₅₃: 101 {O(1)}
t₅₄: 1 {O(1)}
t₅₅: 11 {O(1)}
t₅₆: 101 {O(1)}
t₅₇: 1 {O(1)}
t₅₈: 1 {O(1)}
t₅₉: 213 {O(1)}
t₆₀: 101 {O(1)}
t₆₁: 101 {O(1)}
t₆₂: 101 {O(1)}
t₆₃: 101 {O(1)}
t₆₄: 1 {O(1)}
t₆₅: 2⋅X₁₀+2⋅X₉+1278 {O(n)}
t₆₆: 1 {O(1)}
t₆₇: 2⋅X₁₀+2⋅X₉+1294 {O(n)}
t₆₈: 8⋅X₁₀+8⋅X₉+5124 {O(n)}
t₆₉: 2⋅X₁₂+410⋅X₁₀+410⋅X₉+272422 {O(n)}
t₇₀: 2⋅X₁₀+2⋅X₉+1280 {O(n)}
t₇₁: 2⋅X₁₀+2⋅X₉+1282 {O(n)}
t₇₂: 2⋅X₁₀+2⋅X₉+1278 {O(n)}
t₇₃: 1 {O(1)}
t₇₄: 2⋅X₁₂+414⋅X₁₀+414⋅X₉+274994 {O(n)}

Sizebounds

t₅₀, X₀: X₀ {O(n)}
t₅₀, X₁: X₁ {O(n)}
t₅₀, X₂: X₂ {O(n)}
t₅₀, X₃: X₃ {O(n)}
t₅₀, X₄: X₄ {O(n)}
t₅₀, X₅: X₅ {O(n)}
t₅₀, X₆: X₆ {O(n)}
t₅₀, X₇: X₇ {O(n)}
t₅₀, X₈: X₈ {O(n)}
t₅₀, X₉: X₉ {O(n)}
t₅₀, X₁₀: X₁₀ {O(n)}
t₅₀, X₁₁: X₁₁ {O(n)}
t₅₀, X₁₂: X₁₂ {O(n)}
t₅₀, X₁₃: X₁₃ {O(n)}
t₅₁, X₀: X₀ {O(n)}
t₅₁, X₁: X₁₂+4899 {O(n)}
t₅₁, X₂: 3⋅X₁₂+X₂+14729 {O(n)}
t₅₁, X₃: X₃ {O(n)}
t₅₁, X₄: X₄ {O(n)}
t₅₁, X₅: X₁₀+639 {O(n)}
t₅₁, X₆: 3⋅X₁₀+X₆+1921 {O(n)}
t₅₁, X₇: X₇ {O(n)}
t₅₁, X₈: X₈ {O(n)}
t₅₁, X₉: X₉ {O(n)}
t₅₁, X₁₀: X₁₀ {O(n)}
t₅₁, X₁₁: X₁₁ {O(n)}
t₅₁, X₁₂: X₁₂ {O(n)}
t₅₁, X₁₃: 10 {O(1)}
t₅₂, X₀: X₀ {O(n)}
t₅₂, X₁: X₁₂+4899 {O(n)}
t₅₂, X₂: 3⋅X₁₂+14729 {O(n)}
t₅₂, X₃: X₃ {O(n)}
t₅₂, X₄: X₄ {O(n)}
t₅₂, X₅: X₁₀+639 {O(n)}
t₅₂, X₆: 3⋅X₁₀+1921 {O(n)}
t₅₂, X₇: X₇ {O(n)}
t₅₂, X₈: X₈ {O(n)}
t₅₂, X₉: X₉ {O(n)}
t₅₂, X₁₀: X₁₀ {O(n)}
t₅₂, X₁₁: X₁₁ {O(n)}
t₅₂, X₁₂: X₁₂ {O(n)}
t₅₂, X₁₃: 33 {O(1)}
t₅₃, X₀: X₀ {O(n)}
t₅₃, X₁: X₁₂+4899 {O(n)}
t₅₃, X₂: 3⋅X₁₂+X₂+14729 {O(n)}
t₅₃, X₃: X₃ {O(n)}
t₅₃, X₄: X₄ {O(n)}
t₅₃, X₅: X₁₀+639 {O(n)}
t₅₃, X₆: 3⋅X₁₀+X₆+1921 {O(n)}
t₅₃, X₇: X₇ {O(n)}
t₅₃, X₈: X₈ {O(n)}
t₅₃, X₉: X₉ {O(n)}
t₅₃, X₁₀: X₁₀ {O(n)}
t₅₃, X₁₁: X₁₁ {O(n)}
t₅₃, X₁₂: X₁₂ {O(n)}
t₅₃, X₁₃: 10 {O(1)}
t₅₄, X₀: X₀ {O(n)}
t₅₄, X₁: X₁₂+4899 {O(n)}
t₅₄, X₂: 3⋅X₁₂+X₂+14729 {O(n)}
t₅₄, X₃: X₃ {O(n)}
t₅₄, X₄: X₄ {O(n)}
t₅₄, X₅: X₁₀+639 {O(n)}
t₅₄, X₆: 3⋅X₁₀+X₆+1921 {O(n)}
t₅₄, X₇: X₇ {O(n)}
t₅₄, X₈: X₈ {O(n)}
t₅₄, X₉: X₉ {O(n)}
t₅₄, X₁₀: X₁₀ {O(n)}
t₅₄, X₁₁: X₁₁ {O(n)}
t₅₄, X₁₂: X₁₂ {O(n)}
t₅₄, X₁₃: 10 {O(1)}
t₅₅, X₀: X₀ {O(n)}
t₅₅, X₁: X₁₂+4899 {O(n)}
t₅₅, X₂: X₁₂+4899 {O(n)}
t₅₅, X₃: X₃ {O(n)}
t₅₅, X₄: X₄ {O(n)}
t₅₅, X₅: X₁₀+639 {O(n)}
t₅₅, X₆: X₁₀+639 {O(n)}
t₅₅, X₇: X₇ {O(n)}
t₅₅, X₈: X₈ {O(n)}
t₅₅, X₉: X₉ {O(n)}
t₅₅, X₁₀: X₁₀ {O(n)}
t₅₅, X₁₁: X₁₁ {O(n)}
t₅₅, X₁₂: X₁₂ {O(n)}
t₅₅, X₁₃: 10 {O(1)}
t₅₆, X₀: X₀ {O(n)}
t₅₆, X₁: X₁₂+4899 {O(n)}
t₅₆, X₂: 3⋅X₁₂+X₂+14729 {O(n)}
t₅₆, X₃: X₃ {O(n)}
t₅₆, X₄: X₄ {O(n)}
t₅₆, X₅: X₁₀+639 {O(n)}
t₅₆, X₆: 3⋅X₁₀+X₆+1921 {O(n)}
t₅₆, X₇: X₇ {O(n)}
t₅₆, X₈: X₈ {O(n)}
t₅₆, X₉: X₉ {O(n)}
t₅₆, X₁₀: X₁₀ {O(n)}
t₅₆, X₁₁: X₁₁ {O(n)}
t₅₆, X₁₂: X₁₂ {O(n)}
t₅₆, X₁₃: 10 {O(1)}
t₅₇, X₀: 2 {O(1)}
t₅₇, X₁: X₁₂+4899 {O(n)}
t₅₇, X₂: 3⋅X₁₂+14729 {O(n)}
t₅₇, X₃: X₁₂+4899 {O(n)}
t₅₇, X₄: X₄ {O(n)}
t₅₇, X₅: X₁₀+639 {O(n)}
t₅₇, X₆: 3⋅X₁₀+1921 {O(n)}
t₅₇, X₇: X₁₀+639 {O(n)}
t₅₇, X₈: X₈ {O(n)}
t₅₇, X₉: X₉ {O(n)}
t₅₇, X₁₀: X₁₀ {O(n)}
t₅₇, X₁₁: X₁₁ {O(n)}
t₅₇, X₁₂: X₁₂ {O(n)}
t₅₇, X₁₃: 33 {O(1)}
t₅₈, X₀: 1 {O(1)}
t₅₈, X₁: X₁₂+4899 {O(n)}
t₅₈, X₂: 3⋅X₁₂+14729 {O(n)}
t₅₈, X₃: X₁₂+4899 {O(n)}
t₅₈, X₄: X₄ {O(n)}
t₅₈, X₅: X₁₀+639 {O(n)}
t₅₈, X₆: 3⋅X₁₀+1921 {O(n)}
t₅₈, X₇: X₁₀+639 {O(n)}
t₅₈, X₈: X₈ {O(n)}
t₅₈, X₉: X₉ {O(n)}
t₅₈, X₁₀: X₁₀ {O(n)}
t₅₈, X₁₁: X₁₁ {O(n)}
t₅₈, X₁₂: X₁₂ {O(n)}
t₅₈, X₁₃: 33 {O(1)}
t₅₉, X₀: X₀ {O(n)}
t₅₉, X₁: X₁₂+4899 {O(n)}
t₅₉, X₂: 3⋅X₁₂+14729 {O(n)}
t₅₉, X₃: X₃ {O(n)}
t₅₉, X₄: X₄ {O(n)}
t₅₉, X₅: X₁₀+639 {O(n)}
t₅₉, X₆: 3⋅X₁₀+1921 {O(n)}
t₅₉, X₇: X₇ {O(n)}
t₅₉, X₈: X₈ {O(n)}
t₅₉, X₉: X₉ {O(n)}
t₅₉, X₁₀: X₁₀ {O(n)}
t₅₉, X₁₁: X₁₁ {O(n)}
t₅₉, X₁₂: X₁₂ {O(n)}
t₅₉, X₁₃: 33 {O(1)}
t₆₀, X₀: X₀ {O(n)}
t₆₀, X₁: X₁₂+4899 {O(n)}
t₆₀, X₂: 3⋅X₁₂+X₂+14729 {O(n)}
t₆₀, X₃: X₃ {O(n)}
t₆₀, X₄: X₄ {O(n)}
t₆₀, X₅: X₁₀+639 {O(n)}
t₆₀, X₆: 3⋅X₁₀+X₆+1921 {O(n)}
t₆₀, X₇: X₇ {O(n)}
t₆₀, X₈: X₈ {O(n)}
t₆₀, X₉: X₉ {O(n)}
t₆₀, X₁₀: X₁₀ {O(n)}
t₆₀, X₁₁: X₁₁ {O(n)}
t₆₀, X₁₂: X₁₂ {O(n)}
t₆₀, X₁₃: 10 {O(1)}
t₆₁, X₀: X₀ {O(n)}
t₆₁, X₁: X₁₂+4899 {O(n)}
t₆₁, X₂: 3⋅X₁₂+X₂+14729 {O(n)}
t₆₁, X₃: X₃ {O(n)}
t₆₁, X₄: X₄ {O(n)}
t₆₁, X₅: X₁₀+639 {O(n)}
t₆₁, X₆: 3⋅X₁₀+X₆+1921 {O(n)}
t₆₁, X₇: X₇ {O(n)}
t₆₁, X₈: X₈ {O(n)}
t₆₁, X₉: X₉ {O(n)}
t₆₁, X₁₀: X₁₀ {O(n)}
t₆₁, X₁₁: X₁₁ {O(n)}
t₆₁, X₁₂: X₁₂ {O(n)}
t₆₁, X₁₃: 10 {O(1)}
t₆₂, X₀: X₀ {O(n)}
t₆₂, X₁: X₁₂+4899 {O(n)}
t₆₂, X₂: X₁₂+4923 {O(n)}
t₆₂, X₃: X₃ {O(n)}
t₆₂, X₄: X₄ {O(n)}
t₆₂, X₅: X₁₀+639 {O(n)}
t₆₂, X₆: X₁₀+642 {O(n)}
t₆₂, X₇: X₇ {O(n)}
t₆₂, X₈: X₈ {O(n)}
t₆₂, X₉: X₉ {O(n)}
t₆₂, X₁₀: X₁₀ {O(n)}
t₆₂, X₁₁: X₁₁ {O(n)}
t₆₂, X₁₂: X₁₂ {O(n)}
t₆₂, X₁₃: 10 {O(1)}
t₆₃, X₀: X₀ {O(n)}
t₆₃, X₁: X₁₂+4899 {O(n)}
t₆₃, X₂: X₁₂+4907 {O(n)}
t₆₃, X₃: X₃ {O(n)}
t₆₃, X₄: X₄ {O(n)}
t₆₃, X₅: X₁₀+639 {O(n)}
t₆₃, X₆: X₁₀+640 {O(n)}
t₆₃, X₇: X₇ {O(n)}
t₆₃, X₈: X₈ {O(n)}
t₆₃, X₉: X₉ {O(n)}
t₆₃, X₁₀: X₁₀ {O(n)}
t₆₃, X₁₁: X₁₁ {O(n)}
t₆₃, X₁₂: X₁₂ {O(n)}
t₆₃, X₁₃: 10 {O(1)}
t₆₄, X₀: X₀ {O(n)}
t₆₄, X₁: X₁₂ {O(n)}
t₆₄, X₂: X₂ {O(n)}
t₆₄, X₃: X₃ {O(n)}
t₆₄, X₄: X₄ {O(n)}
t₆₄, X₅: X₁₀ {O(n)}
t₆₄, X₆: X₆ {O(n)}
t₆₄, X₇: X₇ {O(n)}
t₆₄, X₈: X₈ {O(n)}
t₆₄, X₉: X₉ {O(n)}
t₆₄, X₁₀: X₁₀ {O(n)}
t₆₄, X₁₁: X₁₁ {O(n)}
t₆₄, X₁₂: X₁₂ {O(n)}
t₆₄, X₁₃: 0 {O(1)}
t₆₅, X₀: 3 {O(1)}
t₆₅, X₁: 2⋅X₁₂+9798 {O(n)}
t₆₅, X₂: 6⋅X₁₂+29458 {O(n)}
t₆₅, X₃: 48⋅X₁₂+9522⋅X₁₀+9522⋅X₉+6334660 {O(n)}
t₆₅, X₄: 146⋅X₁₂+2⋅X₄+28566⋅X₁₀+28566⋅X₉+19013810 {O(n)}
t₆₅, X₅: 2⋅X₁₀+1278 {O(n)}
t₆₅, X₆: 6⋅X₁₀+3842 {O(n)}
t₆₅, X₇: 1242⋅X₉+1244⋅X₁₀+6⋅X₁₂+826260 {O(n)}
t₆₅, X₈: 18⋅X₁₂+2⋅X₈+3726⋅X₉+3734⋅X₁₀+2480062 {O(n)}
t₆₅, X₉: 2⋅X₉ {O(n)}
t₆₅, X₁₀: 2⋅X₁₀ {O(n)}
t₆₅, X₁₁: 2⋅X₁₁ {O(n)}
t₆₅, X₁₂: 2⋅X₁₂ {O(n)}
t₆₅, X₁₃: 66 {O(1)}
t₆₆, X₀: 3 {O(1)}
t₆₆, X₁: 2⋅X₁₂+9798 {O(n)}
t₆₆, X₂: 6⋅X₁₂+29458 {O(n)}
t₆₆, X₃: 48⋅X₁₂+9522⋅X₁₀+9522⋅X₉+6334660 {O(n)}
t₆₆, X₄: 146⋅X₁₂+2⋅X₄+28566⋅X₁₀+28566⋅X₉+19013810 {O(n)}
t₆₆, X₅: 2⋅X₁₀+1278 {O(n)}
t₆₆, X₆: 6⋅X₁₀+3842 {O(n)}
t₆₆, X₇: 1242⋅X₉+1244⋅X₁₀+6⋅X₁₂+826260 {O(n)}
t₆₆, X₈: 18⋅X₁₂+2⋅X₈+3726⋅X₉+3734⋅X₁₀+2480062 {O(n)}
t₆₆, X₉: 2⋅X₉ {O(n)}
t₆₆, X₁₀: 2⋅X₁₀ {O(n)}
t₆₆, X₁₁: 2⋅X₁₁ {O(n)}
t₆₆, X₁₂: 2⋅X₁₂ {O(n)}
t₆₆, X₁₃: 66 {O(1)}
t₆₇, X₀: 3 {O(1)}
t₆₇, X₁: 2⋅X₁₂+9798 {O(n)}
t₆₇, X₂: 6⋅X₁₂+29458 {O(n)}
t₆₇, X₃: 48⋅X₁₂+9522⋅X₁₀+9522⋅X₉+6334660 {O(n)}
t₆₇, X₄: 48⋅X₁₂+9522⋅X₁₀+9522⋅X₉+6334684 {O(n)}
t₆₇, X₅: 2⋅X₁₀+1278 {O(n)}
t₆₇, X₆: 6⋅X₁₀+3842 {O(n)}
t₆₇, X₇: 1242⋅X₉+1244⋅X₁₀+6⋅X₁₂+826260 {O(n)}
t₆₇, X₈: 1242⋅X₉+1244⋅X₁₀+6⋅X₁₂+826263 {O(n)}
t₆₇, X₉: 2⋅X₉ {O(n)}
t₆₇, X₁₀: 2⋅X₁₀ {O(n)}
t₆₇, X₁₁: 2⋅X₁₁ {O(n)}
t₆₇, X₁₂: 2⋅X₁₂ {O(n)}
t₆₇, X₁₃: 66 {O(1)}
t₆₈, X₀: 3 {O(1)}
t₆₈, X₁: 2⋅X₁₂+9798 {O(n)}
t₆₈, X₂: 6⋅X₁₂+29458 {O(n)}
t₆₈, X₃: 48⋅X₁₂+9522⋅X₁₀+9522⋅X₉+6334660 {O(n)}
t₆₈, X₄: 146⋅X₁₂+2⋅X₄+28566⋅X₁₀+28566⋅X₉+19013810 {O(n)}
t₆₈, X₅: 2⋅X₁₀+1278 {O(n)}
t₆₈, X₆: 6⋅X₁₀+3842 {O(n)}
t₆₈, X₇: 1242⋅X₉+1244⋅X₁₀+6⋅X₁₂+826260 {O(n)}
t₆₈, X₈: 18⋅X₁₂+2⋅X₈+3726⋅X₉+3734⋅X₁₀+2480062 {O(n)}
t₆₈, X₉: 2⋅X₉ {O(n)}
t₆₈, X₁₀: 2⋅X₁₀ {O(n)}
t₆₈, X₁₁: 2⋅X₁₁ {O(n)}
t₆₈, X₁₂: 2⋅X₁₂ {O(n)}
t₆₈, X₁₃: 66 {O(1)}
t₆₉, X₀: 3 {O(1)}
t₆₉, X₁: 2⋅X₁₂+9798 {O(n)}
t₆₉, X₂: 6⋅X₁₂+29458 {O(n)}
t₆₉, X₃: 48⋅X₁₂+9522⋅X₁₀+9522⋅X₉+6334660 {O(n)}
t₆₉, X₄: 50⋅X₁₂+9522⋅X₁₀+9522⋅X₉+6344458 {O(n)}
t₆₉, X₅: 2⋅X₁₀+1278 {O(n)}
t₆₉, X₆: 6⋅X₁₀+3842 {O(n)}
t₆₉, X₇: 1242⋅X₉+1244⋅X₁₀+6⋅X₁₂+826260 {O(n)}
t₆₉, X₈: 1242⋅X₉+1246⋅X₁₀+6⋅X₁₂+827538 {O(n)}
t₆₉, X₉: 2⋅X₉ {O(n)}
t₆₉, X₁₀: 2⋅X₁₀ {O(n)}
t₆₉, X₁₁: 2⋅X₁₁ {O(n)}
t₆₉, X₁₂: 2⋅X₁₂ {O(n)}
t₆₉, X₁₃: 66 {O(1)}
t₇₀, X₀: 3 {O(1)}
t₇₀, X₁: 2⋅X₁₂+9798 {O(n)}
t₇₀, X₂: 6⋅X₁₂+29458 {O(n)}
t₇₀, X₃: 48⋅X₁₂+9522⋅X₁₀+9522⋅X₉+6334660 {O(n)}
t₇₀, X₄: 146⋅X₁₂+2⋅X₄+28566⋅X₁₀+28566⋅X₉+19013810 {O(n)}
t₇₀, X₅: 2⋅X₁₀+1278 {O(n)}
t₇₀, X₆: 6⋅X₁₀+3842 {O(n)}
t₇₀, X₇: 1242⋅X₉+1244⋅X₁₀+6⋅X₁₂+826260 {O(n)}
t₇₀, X₈: 18⋅X₁₂+2⋅X₈+3726⋅X₉+3734⋅X₁₀+2480062 {O(n)}
t₇₀, X₉: 2⋅X₉ {O(n)}
t₇₀, X₁₀: 2⋅X₁₀ {O(n)}
t₇₀, X₁₁: 2⋅X₁₁ {O(n)}
t₇₀, X₁₂: 2⋅X₁₂ {O(n)}
t₇₀, X₁₃: 66 {O(1)}
t₇₁, X₀: 3 {O(1)}
t₇₁, X₁: 2⋅X₁₂+9798 {O(n)}
t₇₁, X₂: 6⋅X₁₂+29458 {O(n)}
t₇₁, X₃: 48⋅X₁₂+9522⋅X₁₀+9522⋅X₉+6334660 {O(n)}
t₇₁, X₄: 146⋅X₁₂+2⋅X₄+28566⋅X₁₀+28566⋅X₉+19013810 {O(n)}
t₇₁, X₅: 2⋅X₁₀+1278 {O(n)}
t₇₁, X₆: 6⋅X₁₀+3842 {O(n)}
t₇₁, X₇: 1242⋅X₉+1244⋅X₁₀+6⋅X₁₂+826260 {O(n)}
t₇₁, X₈: 18⋅X₁₂+2⋅X₈+3726⋅X₉+3734⋅X₁₀+2480062 {O(n)}
t₇₁, X₉: 2⋅X₉ {O(n)}
t₇₁, X₁₀: 2⋅X₁₀ {O(n)}
t₇₁, X₁₁: 2⋅X₁₁ {O(n)}
t₇₁, X₁₂: 2⋅X₁₂ {O(n)}
t₇₁, X₁₃: 66 {O(1)}
t₇₂, X₀: 3 {O(1)}
t₇₂, X₁: 2⋅X₁₂+9798 {O(n)}
t₇₂, X₂: 6⋅X₁₂+29458 {O(n)}
t₇₂, X₃: 48⋅X₁₂+9522⋅X₁₀+9522⋅X₉+6334660 {O(n)}
t₇₂, X₄: 48⋅X₁₂+9522⋅X₁₀+9522⋅X₉+6334668 {O(n)}
t₇₂, X₅: 2⋅X₁₀+1278 {O(n)}
t₇₂, X₆: 6⋅X₁₀+3842 {O(n)}
t₇₂, X₇: 1242⋅X₉+1244⋅X₁₀+6⋅X₁₂+826260 {O(n)}
t₇₂, X₈: 1242⋅X₉+1244⋅X₁₀+6⋅X₁₂+826261 {O(n)}
t₇₂, X₉: 2⋅X₉ {O(n)}
t₇₂, X₁₀: 2⋅X₁₀ {O(n)}
t₇₂, X₁₁: 2⋅X₁₁ {O(n)}
t₇₂, X₁₂: 2⋅X₁₂ {O(n)}
t₇₂, X₁₃: 66 {O(1)}
t₇₃, X₀: X₀+3 {O(n)}
t₇₃, X₁: 3⋅X₁₂+14697 {O(n)}
t₇₃, X₂: 9⋅X₁₂+X₂+44187 {O(n)}
t₇₃, X₃: 48⋅X₁₂+9522⋅X₁₀+9522⋅X₉+X₃+6334660 {O(n)}
t₇₃, X₄: 146⋅X₁₂+28566⋅X₁₀+28566⋅X₉+3⋅X₄+19013810 {O(n)}
t₇₃, X₅: 3⋅X₁₀+1917 {O(n)}
t₇₃, X₆: 9⋅X₁₀+X₆+5763 {O(n)}
t₇₃, X₇: 1242⋅X₉+1244⋅X₁₀+6⋅X₁₂+X₇+826260 {O(n)}
t₇₃, X₈: 18⋅X₁₂+3⋅X₈+3726⋅X₉+3734⋅X₁₀+2480062 {O(n)}
t₇₃, X₉: 3⋅X₉ {O(n)}
t₇₃, X₁₀: 3⋅X₁₀ {O(n)}
t₇₃, X₁₁: 3⋅X₁₁ {O(n)}
t₇₃, X₁₂: 3⋅X₁₂ {O(n)}
t₇₃, X₁₃: 76 {O(1)}
t₇₄, X₀: 3 {O(1)}
t₇₄, X₁: 2⋅X₁₂+9798 {O(n)}
t₇₄, X₂: 6⋅X₁₂+29458 {O(n)}
t₇₄, X₃: 48⋅X₁₂+9522⋅X₁₀+9522⋅X₉+6334660 {O(n)}
t₇₄, X₄: 146⋅X₁₂+28566⋅X₁₀+28566⋅X₉+19013810 {O(n)}
t₇₄, X₅: 2⋅X₁₀+1278 {O(n)}
t₇₄, X₆: 6⋅X₁₀+3842 {O(n)}
t₇₄, X₇: 1242⋅X₉+1244⋅X₁₀+6⋅X₁₂+826260 {O(n)}
t₇₄, X₈: 18⋅X₁₂+3726⋅X₉+3734⋅X₁₀+2480062 {O(n)}
t₇₄, X₉: 2⋅X₉ {O(n)}
t₇₄, X₁₀: 2⋅X₁₀ {O(n)}
t₇₄, X₁₁: 2⋅X₁₁ {O(n)}
t₇₄, X₁₂: 2⋅X₁₂ {O(n)}
t₇₄, X₁₃: 66 {O(1)}