Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ < X₁
t₃: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ < X₀
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ < X₀
t₆: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₀ ≤ X₁
t₇: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ < X₀
t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₁
t₉: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)

Preprocessing

Cut unsatisfiable transition t₆: l3→l1

Cut unsatisfiable transition t₇: l3→l1

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5

Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ for location l1

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4

Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₃: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀
t₉: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁

MPRF for transition t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ of depth 1:

new bound:

X₂+X₃ {O(n)}

MPRF for transition t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF for transition t₃: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ of depth 1:

new bound:

2⋅X₂⋅X₂+2⋅X₃⋅X₃+4⋅X₂⋅X₃+6⋅X₂+6⋅X₃+5 {O(n^2)}

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ of depth 1:

new bound:

2⋅X₂⋅X₂+2⋅X₃⋅X₃+4⋅X₂⋅X₃+5⋅X₂+5⋅X₃+3 {O(n^2)}

Chain transitions t₈: l3→l1 and t₄: l1→l4 to t₇₈: l3→l4

Chain transitions t₅: l3→l1 and t₄: l1→l4 to t₇₉: l3→l4

Chain transitions t₅: l3→l1 and t₃: l1→l3 to t₈₀: l3→l3

Chain transitions t₈: l3→l1 and t₃: l1→l3 to t₈₁: l3→l3

Chain transitions t₁: l2→l1 and t₃: l1→l3 to t₈₂: l2→l3

Chain transitions t₁: l2→l1 and t₄: l1→l4 to t₈₃: l2→l4

Chain transitions t₁: l2→l1 and t₂: l1→l3 to t₈₄: l2→l3

Chain transitions t₅: l3→l1 and t₂: l1→l3 to t₈₅: l3→l3

Chain transitions t₈: l3→l1 and t₂: l1→l3 to t₈₆: l3→l3

Analysing control-flow refined program

Cut unsatisfiable transition t₈₁: l3→l3

Cut unsatisfiable transition t₈₅: l3→l3

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5

Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ for location l1

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4

Found invariant X₃ ≤ X₁ ∧ X₂ ≤ X₀ for location l3

MPRF for transition t₈₀: l3(X₀, X₁, X₂, X₃) -{2}> l3(X₀, 1+X₁, X₂, X₃) :|: X₁ < X₀ ∧ X₁ < X₀ ∧ 1+X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 1+X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ of depth 1:

new bound:

X₂+X₃ {O(n)}

MPRF for transition t₈₆: l3(X₀, X₁, X₂, X₃) -{2}> l3(1+X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 1+X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₁₉₄: n_l1___3→n_l3___2

Cut unsatisfiable transition t₁₉₅: n_l1___6→n_l3___4

Cut unreachable locations [n_l3___2; n_l3___4] from the program graph

Found invariant X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ for location n_l1___6

Found invariant X₃ ≤ X₁ ∧ 2+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ for location n_l3___5

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l1___3

Found invariant X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l3___8

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l5

Found invariant X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ for location l1

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l4

Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___1

Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___7

MPRF for transition t₁₉₃: n_l1___3(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ of depth 1:

new bound:

X₂+X₃+2 {O(n)}

MPRF for transition t₁₉₉: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:

new bound:

X₂+X₃+1 {O(n)}

MPRF for transition t₁₉₆: n_l1___6(X₀, X₁, X₂, X₃) → n_l3___5(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₁ ∧ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₂+X₃+2 {O(n)}

MPRF for transition t₂₀₂: n_l3___5(X₀, X₁, X₂, X₃) → n_l1___6(X₀+1, X₁, X₂, X₃) :|: X₀ < X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₂+X₃+2 {O(n)}

CFR did not improve the program. Rolling back

CFR: Improvement to new bound with the following program:

new bound:

4⋅X₂+4⋅X₃+7 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l4, l5, n_l1___3, n_l1___6, n_l3___1, n_l3___5, n_l3___7, n_l3___8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
t₁₉₇: l1(X₀, X₁, X₂, X₃) → n_l3___7(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
t₁₉₈: l1(X₀, X₁, X₂, X₃) → n_l3___8(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₉: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁
t₂₁₅: n_l1___3(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀
t₁₉₃: n_l1___3(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀
t₂₁₆: n_l1___6(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁
t₁₉₆: n_l1___6(X₀, X₁, X₂, X₃) → n_l3___5(X₀, X₁, X₂, X₃) :|: 1+X₂ ≤ X₀ ∧ X₀ ≤ 1+X₁ ∧ X₀ < X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁
t₁₉₉: n_l3___1(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀
t₂₀₂: n_l3___5(X₀, X₁, X₂, X₃) → n_l1___6(X₀+1, X₁, X₂, X₃) :|: X₀ < X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 2+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁
t₂₀₃: n_l3___7(X₀, X₁, X₂, X₃) → n_l1___3(X₀, X₁+1, X₂, X₃) :|: X₁ < X₀ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₁ < X₀ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀
t₂₀₄: n_l3___8(X₀, X₁, X₂, X₃) → n_l1___6(X₀+1, X₁, X₂, X₃) :|: X₀ < X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1+X₀ ≤ X₁

All Bounds

Timebounds

Overall timebound:4⋅X₂+4⋅X₃+17 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 1 {O(1)}
t₉: 1 {O(1)}
t₁₉₃: X₂+X₃+2 {O(n)}
t₁₉₆: X₂+X₃+2 {O(n)}
t₁₉₇: 1 {O(1)}
t₁₉₈: 1 {O(1)}
t₁₉₉: X₂+X₃+1 {O(n)}
t₂₀₂: X₂+X₃+2 {O(n)}
t₂₀₃: 1 {O(1)}
t₂₀₄: 1 {O(1)}
t₂₁₅: 1 {O(1)}
t₂₁₆: 1 {O(1)}

Costbounds

Overall costbound: 4⋅X₂+4⋅X₃+17 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₄: 1 {O(1)}
t₉: 1 {O(1)}
t₁₉₃: X₂+X₃+2 {O(n)}
t₁₉₆: X₂+X₃+2 {O(n)}
t₁₉₇: 1 {O(1)}
t₁₉₈: 1 {O(1)}
t₁₉₉: X₂+X₃+1 {O(n)}
t₂₀₂: X₂+X₃+2 {O(n)}
t₂₀₃: 1 {O(1)}
t₂₀₄: 1 {O(1)}
t₂₁₅: 1 {O(1)}
t₂₁₆: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: X₂ {O(n)}
t₁, X₁: X₃ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₄, X₀: X₂ {O(n)}
t₄, X₁: X₃ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₉, X₀: 6⋅X₂+X₃+4 {O(n)}
t₉, X₁: 6⋅X₃+X₂+3 {O(n)}
t₉, X₂: 5⋅X₂ {O(n)}
t₉, X₃: 5⋅X₃ {O(n)}
t₁₉₃, X₀: X₂ {O(n)}
t₁₉₃, X₁: 2⋅X₃+X₂+2 {O(n)}
t₁₉₃, X₂: X₂ {O(n)}
t₁₉₃, X₃: X₃ {O(n)}
t₁₉₆, X₀: 2⋅X₂+X₃+3 {O(n)}
t₁₉₆, X₁: X₃ {O(n)}
t₁₉₆, X₂: X₂ {O(n)}
t₁₉₆, X₃: X₃ {O(n)}
t₁₉₇, X₀: X₂ {O(n)}
t₁₉₇, X₁: X₃ {O(n)}
t₁₉₇, X₂: X₂ {O(n)}
t₁₉₇, X₃: X₃ {O(n)}
t₁₉₈, X₀: X₂ {O(n)}
t₁₉₈, X₁: X₃ {O(n)}
t₁₉₈, X₂: X₂ {O(n)}
t₁₉₈, X₃: X₃ {O(n)}
t₁₉₉, X₀: X₂ {O(n)}
t₁₉₉, X₁: 2⋅X₃+X₂+2 {O(n)}
t₁₉₉, X₂: X₂ {O(n)}
t₁₉₉, X₃: X₃ {O(n)}
t₂₀₂, X₀: 2⋅X₂+X₃+3 {O(n)}
t₂₀₂, X₁: X₃ {O(n)}
t₂₀₂, X₂: X₂ {O(n)}
t₂₀₂, X₃: X₃ {O(n)}
t₂₀₃, X₀: X₂ {O(n)}
t₂₀₃, X₁: X₃+1 {O(n)}
t₂₀₃, X₂: X₂ {O(n)}
t₂₀₃, X₃: X₃ {O(n)}
t₂₀₄, X₀: X₂+1 {O(n)}
t₂₀₄, X₁: X₃ {O(n)}
t₂₀₄, X₂: X₂ {O(n)}
t₂₀₄, X₃: X₃ {O(n)}
t₂₁₅, X₀: 2⋅X₂ {O(n)}
t₂₁₅, X₁: 3⋅X₃+X₂+3 {O(n)}
t₂₁₅, X₂: 2⋅X₂ {O(n)}
t₂₁₅, X₃: 2⋅X₃ {O(n)}
t₂₁₆, X₀: 3⋅X₂+X₃+4 {O(n)}
t₂₁₆, X₁: 2⋅X₃ {O(n)}
t₂₁₆, X₂: 2⋅X₂ {O(n)}
t₂₁₆, X₃: 2⋅X₃ {O(n)}