Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, 1, X₄, X₅) :|: X₁ ≤ X₅
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, 1, X₂, X₃, X₄, X₅)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₃
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₃ ≤ X₁
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l10(X₀, X₁, X₂, X₃, X₄, X₅)
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅)
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₂+1, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₂+1
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₂+1, X₁, X₂, X₃, 1, X₅) :|: X₂+1 ≤ X₅
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅)
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₀ < X₄
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₀
t₁₀: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄+1, X₅)

Preprocessing

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l6

Found invariant X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7

Found invariant 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l5

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l8

Found invariant 1 ≤ X₁ for location l1

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₁ for location l10

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₁ for location l4

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l9

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, 1, X₄, X₅) :|: X₁ ≤ X₅ ∧ 1 ≤ X₁
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₁ ∧ 1 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, 1, X₂, X₃, X₄, X₅)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₃ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l10(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1+X₅ ≤ X₁ ∧ 1 ≤ X₁
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₂+1, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₂+1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₂+1, X₁, X₂, X₃, 1, X₅) :|: X₂+1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅) :|: X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₀ < X₄ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₁₀: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀

MPRF for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, 1, X₄, X₅) :|: X₁ ≤ X₅ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅+2 {O(n)}

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₅+2 {O(n)}

MPRF for transition t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁+1, X₂, X₃, X₄, X₅) :|: 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₅+1 {O(n)}

MPRF for transition t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₃ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

4⋅X₅⋅X₅+6⋅X₅+3 {O(n^2)}

MPRF for transition t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₂+1, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₂+1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}

MPRF for transition t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅) :|: X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}

MPRF for transition t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₂+1, X₁, X₂, X₃, 1, X₅) :|: X₂+1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+X₅ {O(n^3)}

MPRF for transition t₉: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₀ < X₄ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+X₅ {O(n^3)}

MPRF for transition t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

4⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+8⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+26⋅X₅⋅X₅⋅X₅⋅X₅+34⋅X₅⋅X₅⋅X₅+22⋅X₅⋅X₅+9⋅X₅ {O(n^6)}

MPRF for transition t₁₀: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+X₅ {O(n^4)}

knowledge_propagation leads to new time bound 2⋅X₅⋅X₅⋅X₅⋅X₅+4⋅X₅⋅X₅⋅X₅+3⋅X₅⋅X₅+2⋅X₅ {O(n^4)} for transition t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀

Chain transitions t₁₂: l5→l1 and t₃: l1→l4 to t₁₀₄: l5→l4

Chain transitions t₁: l2→l1 and t₃: l1→l4 to t₁₀₅: l2→l4

Chain transitions t₁: l2→l1 and t₂: l1→l3 to t₁₀₆: l2→l3

Chain transitions t₁₂: l5→l1 and t₂: l1→l3 to t₁₀₇: l5→l3

Chain transitions t₁₁: l7→l3 and t₄: l3→l6 to t₁₀₈: l7→l6

Chain transitions t₁₀₇: l5→l3 and t₄: l3→l6 to t₁₀₉: l5→l6

Chain transitions t₁₀₇: l5→l3 and t₅: l3→l5 to t₁₁₀: l5→l5

Chain transitions t₁₁: l7→l3 and t₅: l3→l5 to t₁₁₁: l7→l5

Chain transitions t₁₀₆: l2→l3 and t₅: l3→l5 to t₁₁₂: l2→l5

Chain transitions t₁₀₆: l2→l3 and t₄: l3→l6 to t₁₁₃: l2→l6

Chain transitions t₉: l8→l6 and t₆: l6→l8 to t₁₁₄: l8→l8

Chain transitions t₁₀₈: l7→l6 and t₆: l6→l8 to t₁₁₅: l7→l8

Chain transitions t₁₀₈: l7→l6 and t₇: l6→l7 to t₁₁₆: l7→l7

Chain transitions t₉: l8→l6 and t₇: l6→l7 to t₁₁₇: l8→l7

Chain transitions t₁₀₉: l5→l6 and t₇: l6→l7 to t₁₁₈: l5→l7

Chain transitions t₁₀₉: l5→l6 and t₆: l6→l8 to t₁₁₉: l5→l8

Chain transitions t₁₁₃: l2→l6 and t₇: l6→l7 to t₁₂₀: l2→l7

Chain transitions t₁₁₃: l2→l6 and t₆: l6→l8 to t₁₂₁: l2→l8

Chain transitions t₈: l8→l9 and t₁₀: l9→l8 to t₁₂₂: l8→l8

Analysing control-flow refined program

Cut unsatisfiable transition t₁₁₀: l5→l5

Cut unsatisfiable transition t₁₁₂: l2→l5

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l6

Found invariant X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7

Found invariant X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l8

Found invariant 1 ≤ X₁ for location l1

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₁ for location l10

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₁ for location l4

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l9

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l3

MPRF for transition t₁₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l5(X₀, X₁, X₂, 1+X₃, X₄, X₅) :|: X₁ < X₃+1 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₅+5 {O(n)}

MPRF for transition t₁₁₈: l5(X₀, X₁, X₂, X₃, X₄, X₅) -{4}> l7(2+X₁, 1+X₁, 1+X₁, 1, X₄, X₅) :|: 1+X₁ ≤ X₅ ∧ 0 ≤ X₁ ∧ X₅ < 2+X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ 1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₅+5 {O(n)}

MPRF for transition t₁₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅) -{4}> l8(2+X₁, 1+X₁, 1+X₁, 1, 1, X₅) :|: 1+X₁ ≤ X₅ ∧ 0 ≤ X₁ ∧ 2+X₁ ≤ X₅ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1+X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₁ ∧ 0 ≤ X₁ ∧ 1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ 0 ∧ 0 ≤ X₁ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₅+8 {O(n)}

MPRF for transition t₁₁₅: l7(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l8(X₁+1, X₁, X₁, 1+X₃, 1, X₅) :|: 1+X₃ ≤ X₁ ∧ X₁+1 ≤ X₅ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ 2⋅X₁ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

9⋅X₅⋅X₅+87⋅X₅+212 {O(n^2)}

MPRF for transition t₁₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l7(X₁+1, X₁, X₁, 1+X₃, X₄, X₅) :|: 1+X₃ ≤ X₁ ∧ X₅ < X₁+1 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ 2⋅X₁ ∧ 0 ≤ 0 ∧ 1 ≤ X₁ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

9⋅X₅⋅X₅+90⋅X₅+227 {O(n^2)}

MPRF for transition t₁₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l7(X₀+1, X₁, X₀, X₃, X₄, X₅) :|: X₀ < X₄ ∧ X₅ < X₀+1 ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁+X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

9⋅X₅⋅X₅+89⋅X₅+221 {O(n^2)}

MPRF for transition t₁₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l8(X₀+1, X₁, X₀, X₃, 1, X₅) :|: X₀ < X₄ ∧ X₀+1 ≤ X₅ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀ ∧ 2 ≤ X₁+X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

9⋅X₅⋅X₅⋅X₅+98⋅X₅⋅X₅+311⋅X₅+225 {O(n^3)}

MPRF for transition t₁₂₂: l8(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l8(X₀, X₁, X₂, X₃, X₄+1, X₅) :|: X₄ ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

162⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+3771⋅X₅⋅X₅⋅X₅⋅X₅⋅X₅+35561⋅X₅⋅X₅⋅X₅⋅X₅+172681⋅X₅⋅X₅⋅X₅+451242⋅X₅⋅X₅+594932⋅X₅+306226 {O(n^6)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₅: l3→l5

Found invariant 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l6___3

Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location n_l6___9

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location n_l6___13

Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location n_l7___12

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l8___11

Found invariant 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l9___7

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l8___6

Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 3 ≤ X₀ for location n_l7___8

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___2

Found invariant X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5

Found invariant 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 2+X₂ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 4 ≤ X₁+X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l8___4

Found invariant 1 ≤ X₁ for location l1

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₁ for location l10

Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₁ for location l4

Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 5 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___1

Found invariant 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l3

Found invariant X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ 1+X₂ ∧ X₃ ≤ 1+X₁ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location n_l3___10

Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 4 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 4 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l9___5

knowledge_propagation leads to new time bound X₅+2 {O(n)} for transition t₃₁₈: l3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l6___13(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₃ ≤ X₁ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound X₅+2 {O(n)} for transition t₃₁₉: n_l6___13(X₀, X₁, X₂, X₃, X₄, X₅) → n_l7___12(X₂+1, X₁, X₂, X₃, X₄, X₅) :|: X₂ ≤ X₁ ∧ X₅ < 1+X₂ ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₁ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound X₅+2 {O(n)} for transition t₃₂₄: n_l7___12(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___10(X₀, X₁, X₀-1, X₃+1, X₄, X₀-1) :|: X₅ < X₀ ∧ X₀ ≤ X₁+1 ∧ X₀ ≤ X₂+1 ∧ X₀ ≤ X₂+1 ∧ X₀ ≤ X₅+1 ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₀ ≤ 1+X₅ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀

All Bounds

Timebounds

Overall timebound:4⋅X₅⋅X₅⋅X₅⋅X₅+10⋅X₅⋅X₅⋅X₅+16⋅X₅⋅X₅+19⋅X₅+12 {O(n^4)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₅+2 {O(n)}
t₃: 1 {O(1)}
t₄: 4⋅X₅⋅X₅+6⋅X₅+3 {O(n^2)}
t₅: X₅+2 {O(n)}
t₆: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+X₅ {O(n^3)}
t₇: 2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₈: 2⋅X₅⋅X₅⋅X₅⋅X₅+4⋅X₅⋅X₅⋅X₅+3⋅X₅⋅X₅+2⋅X₅ {O(n^4)}
t₉: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+X₅ {O(n^3)}
t₁₀: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+X₅ {O(n^4)}
t₁₁: 2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₁₂: 2⋅X₅+1 {O(n)}
t₁₃: 1 {O(1)}

Costbounds

Overall costbound: 4⋅X₅⋅X₅⋅X₅⋅X₅+10⋅X₅⋅X₅⋅X₅+16⋅X₅⋅X₅+19⋅X₅+12 {O(n^4)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₅+2 {O(n)}
t₃: 1 {O(1)}
t₄: 4⋅X₅⋅X₅+6⋅X₅+3 {O(n^2)}
t₅: X₅+2 {O(n)}
t₆: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+X₅ {O(n^3)}
t₇: 2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₈: 2⋅X₅⋅X₅⋅X₅⋅X₅+4⋅X₅⋅X₅⋅X₅+3⋅X₅⋅X₅+2⋅X₅ {O(n^4)}
t₉: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+X₅ {O(n^3)}
t₁₀: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+X₅ {O(n^4)}
t₁₁: 2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₁₂: 2⋅X₅+1 {O(n)}
t₁₃: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: 1 {O(1)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₂, X₀: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+X₀+10 {O(n^3)}
t₂, X₁: 2⋅X₅+2 {O(n)}
t₂, X₂: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+X₂+8 {O(n^3)}
t₂, X₃: 1 {O(1)}
t₂, X₄: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+X₄+X₅+1 {O(n^4)}
t₂, X₅: X₅ {O(n)}
t₃, X₀: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+X₀+10 {O(n^3)}
t₃, X₁: 2⋅X₅+3 {O(n)}
t₃, X₂: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+X₂+8 {O(n^3)}
t₃, X₃: 2⋅X₅⋅X₅+2⋅X₅+X₃+1 {O(n^2)}
t₃, X₄: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+2⋅X₄+X₅+1 {O(n^4)}
t₃, X₅: 2⋅X₅ {O(n)}
t₄, X₀: 4⋅X₅⋅X₅⋅X₅+4⋅X₅⋅X₅+18⋅X₅+X₀+20 {O(n^3)}
t₄, X₁: 2⋅X₅+2 {O(n)}
t₄, X₂: 4⋅X₅+4 {O(n)}
t₄, X₃: 2⋅X₅⋅X₅+2⋅X₅+1 {O(n^2)}
t₄, X₄: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+X₄+X₅+1 {O(n^4)}
t₄, X₅: X₅ {O(n)}
t₅, X₀: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+10 {O(n^3)}
t₅, X₁: 2⋅X₅+2 {O(n)}
t₅, X₂: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₅, X₃: 2⋅X₅⋅X₅+2⋅X₅+1 {O(n^2)}
t₅, X₄: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+X₄+X₅+1 {O(n^4)}
t₅, X₅: X₅ {O(n)}
t₆, X₀: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+5⋅X₅+4 {O(n^3)}
t₆, X₁: 2⋅X₅+2 {O(n)}
t₆, X₂: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₆, X₃: 2⋅X₅⋅X₅+2⋅X₅+1 {O(n^2)}
t₆, X₄: 1 {O(1)}
t₆, X₅: X₅ {O(n)}
t₇, X₀: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+10 {O(n^3)}
t₇, X₁: 2⋅X₅+2 {O(n)}
t₇, X₂: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₇, X₃: 2⋅X₅⋅X₅+2⋅X₅+1 {O(n^2)}
t₇, X₄: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+X₄+X₅+1 {O(n^4)}
t₇, X₅: X₅ {O(n)}
t₈, X₀: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+5⋅X₅+4 {O(n^3)}
t₈, X₁: 2⋅X₅+2 {O(n)}
t₈, X₂: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₈, X₃: 2⋅X₅⋅X₅+2⋅X₅+1 {O(n^2)}
t₈, X₄: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+X₅+1 {O(n^4)}
t₈, X₅: X₅ {O(n)}
t₉, X₀: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+5⋅X₅+4 {O(n^3)}
t₉, X₁: 2⋅X₅+2 {O(n)}
t₉, X₂: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+5⋅X₅+4 {O(n^3)}
t₉, X₃: 2⋅X₅⋅X₅+2⋅X₅+1 {O(n^2)}
t₉, X₄: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+X₅+1 {O(n^4)}
t₉, X₅: X₅ {O(n)}
t₁₀, X₀: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+5⋅X₅+4 {O(n^3)}
t₁₀, X₁: 2⋅X₅+2 {O(n)}
t₁₀, X₂: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₁₀, X₃: 2⋅X₅⋅X₅+2⋅X₅+1 {O(n^2)}
t₁₀, X₄: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+X₅+1 {O(n^4)}
t₁₀, X₅: X₅ {O(n)}
t₁₁, X₀: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+10 {O(n^3)}
t₁₁, X₁: 2⋅X₅+2 {O(n)}
t₁₁, X₂: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₁₁, X₃: 2⋅X₅⋅X₅+2⋅X₅+1 {O(n^2)}
t₁₁, X₄: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+X₄+X₅+1 {O(n^4)}
t₁₁, X₅: X₅ {O(n)}
t₁₂, X₀: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+10 {O(n^3)}
t₁₂, X₁: 2⋅X₅+2 {O(n)}
t₁₂, X₂: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+8 {O(n^3)}
t₁₂, X₃: 2⋅X₅⋅X₅+2⋅X₅+1 {O(n^2)}
t₁₂, X₄: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+X₄+X₅+1 {O(n^4)}
t₁₂, X₅: X₅ {O(n)}
t₁₃, X₀: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+X₀+10 {O(n^3)}
t₁₃, X₁: 2⋅X₅+3 {O(n)}
t₁₃, X₂: 2⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅+9⋅X₅+X₂+8 {O(n^3)}
t₁₃, X₃: 2⋅X₅⋅X₅+2⋅X₅+X₃+1 {O(n^2)}
t₁₃, X₄: 2⋅X₅⋅X₅⋅X₅⋅X₅+2⋅X₅⋅X₅⋅X₅+X₅⋅X₅+2⋅X₄+X₅+1 {O(n^4)}
t₁₃, X₅: 2⋅X₅ {O(n)}