Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 0 ≤ X₀
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ < 0
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₄: l3(X₀, X₁, X₂, X₃) → l1(X₀+X₁, -X₁-1, X₂, X₃) :|: 0 ≤ X₁
t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀+X₁, -X₁, X₂, X₃) :|: X₁ < 0
t₆: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)
Found invariant 1+X₀ ≤ 0 for location l5
Found invariant 1+X₀ ≤ 0 for location l4
Found invariant 0 ≤ X₀ for location l3
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 0 ≤ X₀
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ < 0
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₂, X₃, X₂, X₃)
t₄: l3(X₀, X₁, X₂, X₃) → l1(X₀+X₁, -X₁-1, X₂, X₃) :|: 0 ≤ X₁ ∧ 0 ≤ X₀
t₅: l3(X₀, X₁, X₂, X₃) → l1(X₀+X₁, -X₁, X₂, X₃) :|: X₁ < 0 ∧ 0 ≤ X₀
t₆: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: 1+X₀ ≤ 0
new bound:
2⋅X₂+X₃+1 {O(n)}
cycle: [t₂: l1→l3; t₅: l3→l1]
Termination: true
Formula:
Termination: true
Formula:
Overall timebound:27⋅X₃+54⋅X₂+57 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 13⋅X₃+26⋅X₂+26 {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₂+X₃+1 {O(n)}
t₅: 13⋅X₃+26⋅X₂+26 {O(n)}
t₆: 1 {O(1)}
Overall costbound: 27⋅X₃+54⋅X₂+57 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 13⋅X₃+26⋅X₂+26 {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₂+X₃+1 {O(n)}
t₅: 13⋅X₃+26⋅X₂+26 {O(n)}
t₆: 1 {O(1)}
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: X₂ {O(n)}
t₁, X₁: X₃ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: 2⋅X₃⋅X₃+4⋅X₂⋅X₂+6⋅X₂⋅X₃+5⋅X₃+7⋅X₂+2 {O(n^2)}
t₂, X₁: 2⋅X₂+2⋅X₃+1 {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₃, X₀: 2⋅X₃⋅X₃+4⋅X₂⋅X₂+6⋅X₂⋅X₃+5⋅X₃+8⋅X₂+2 {O(n^2)}
t₃, X₁: 2⋅X₂+3⋅X₃+1 {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₄, X₀: 2⋅X₃⋅X₃+4⋅X₂⋅X₂+6⋅X₂⋅X₃+5⋅X₃+7⋅X₂+2 {O(n^2)}
t₄, X₁: 2⋅X₂+2⋅X₃+1 {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₅, X₀: 2⋅X₃⋅X₃+4⋅X₂⋅X₂+6⋅X₂⋅X₃+5⋅X₃+7⋅X₂+2 {O(n^2)}
t₅, X₁: 2⋅X₂+2⋅X₃+1 {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₆, X₀: 2⋅X₃⋅X₃+4⋅X₂⋅X₂+6⋅X₂⋅X₃+5⋅X₃+8⋅X₂+2 {O(n^2)}
t₆, X₁: 2⋅X₂+3⋅X₃+1 {O(n)}
t₆, X₂: 2⋅X₂ {O(n)}
t₆, X₃: 2⋅X₃ {O(n)}