Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: X₃ < 0 ∧ X₃ < 0
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: X₃ < 0 ∧ 0 < X₃
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ X₃ < 0
t₁₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 0 < X₃
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₁+X₀, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: X₃ < 0 ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₁+X₀, X₁+X₀, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ < 0
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₂-1, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 0 < X₃
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₁+X₀, X₂-1, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₁, X₃, X₄, X₅, X₆) :|: X₁ < X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₁
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆)
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 < X₀
t₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0
t₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₄, X₅, X₂, X₃, X₄, X₅, X₆)
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
Preprocessing
Cut unsatisfiable transition t₁₀: l1→l4
Cut unsatisfiable transition t₁₁: l1→l4
Cut unsatisfiable transition t₁₃: l1→l4
Cut unsatisfiable transition t₁₄: l1→l4
Cut unsatisfiable transition t₁₅: l1→l4
Cut unsatisfiable transition t₁₆: l1→l4
Eliminate variables {X₆} that do not contribute to the problem
Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l1
Found invariant X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: nondef.0
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₃₆: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅)
t₃₇: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅) :|: X₃ < 0 ∧ X₃ < 0 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₃₈: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₂-1, X₁+X₀, X₂, X₃, X₄, X₅) :|: 0 < X₃ ∧ 0 < X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₃₉: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₁+X₀, X₂-1, X₂, X₃, X₄, X₅) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₄₀: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₂: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅) :|: X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁ ∧ 0 < X₀
t₄₄: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0
t₄₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0
t₄₆: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₄, X₅, X₂, X₃, X₄, X₅)
t₄₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅)
Chain transitions t₄₂: l3→l1 and t₃₉: l1→l4 to t₂₃₅: l3→l4
Chain transitions t₄₂: l3→l1 and t₃₈: l1→l4 to t₂₃₆: l3→l4
Chain transitions t₄₂: l3→l1 and t₃₇: l1→l4 to t₂₃₇: l3→l4
Chain transitions t₄₃: l4→l2 and t₄₁: l2→l3 to t₂₃₈: l4→l3
Chain transitions t₄₃: l4→l2 and t₄₀: l2→l3 to t₂₃₉: l4→l3
Chain transitions t₂₃₉: l4→l3 and t₂₃₇: l3→l4 to t₂₄₀: l4→l4
Chain transitions t₂₃₈: l4→l3 and t₂₃₇: l3→l4 to t₂₄₁: l4→l4
Chain transitions t₂₃₈: l4→l3 and t₂₃₆: l3→l4 to t₂₄₂: l4→l4
Chain transitions t₂₃₉: l4→l3 and t₂₃₆: l3→l4 to t₂₄₃: l4→l4
Chain transitions t₂₃₈: l4→l3 and t₂₃₅: l3→l4 to t₂₄₄: l4→l4
Chain transitions t₂₃₉: l4→l3 and t₂₃₅: l3→l4 to t₂₄₅: l4→l4
Chain transitions t₂₃₈: l4→l3 and t₄₂: l3→l1 to t₂₄₆: l4→l1
Chain transitions t₂₃₉: l4→l3 and t₄₂: l3→l1 to t₂₄₇: l4→l1
Analysing control-flow refined program
Eliminate variables {Temp_Int₁₃₄₇,Temp_Int₁₃₅₃,X₂,X₃} that do not contribute to the problem
Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2
Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1
Found invariant 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₅₂₁: n_l4___9→l6
Cut unsatisfiable transition t₅₂₂: n_l4___8→l6
Cut unsatisfiable transition t₅₂₅: n_l4___9→l6
Cut unsatisfiable transition t₅₂₆: n_l4___8→l6
Cut unsatisfiable transition t₅₂₉: n_l4___9→l6
Cut unsatisfiable transition t₅₃₀: n_l4___8→l6
Found invariant 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___7
Found invariant 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l4___9
Found invariant 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___3
Found invariant 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___6
Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___10
Found invariant 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___2
Found invariant 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l3___12
Found invariant X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___11
Found invariant 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___5
Found invariant X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ for location l4
Found invariant 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l4___8
Found invariant X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___1
Found invariant X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___13
Found invariant 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l2___4
MPRF for transition t₄₈₇: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₁ < X₀ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
5⋅X₄+X₅+2 {O(n)}
MPRF for transition t₄₈₈: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ X₁ ≤ X₂ ∧ X₃ < 0 ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₄+9⋅X₅+2 {O(n)}
MPRF for transition t₄₈₉: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ X₁ ≤ X₂ ∧ 0 < X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
3⋅X₄+3⋅X₅+4 {O(n)}
MPRF for transition t₄₉₀: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₄+9⋅X₅+2 {O(n)}
MPRF for transition t₄₉₁: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ < 0 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₄+3⋅X₅+4 {O(n)}
MPRF for transition t₄₉₂: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₄+4⋅X₅+4 {O(n)}
MPRF for transition t₄₉₅: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___3(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 0 < X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ < X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₄+4⋅X₅+2 {O(n)}
MPRF for transition t₄₉₆: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___6(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 0 < X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
5⋅X₄+X₅+2 {O(n)}
MPRF for transition t₄₉₉: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___2(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₁ < X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ ≤ X₂ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₅+4⋅X₄ {O(n)}
MPRF for transition t₅₀₀: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___5(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₂ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₄+3⋅X₅+6 {O(n)}
MPRF for transition t₅₀₂: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₅+4⋅X₄+2 {O(n)}
MPRF for transition t₅₀₃: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
6⋅X₄+6⋅X₅ {O(n)}
CFR: Improvement to new bound with the following program:
new bound:
Infinite
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: Arg2_P, NoDet0
Locations: l0, l4, l5, l6, l7, n_l1___1, n_l1___10, n_l1___2, n_l1___5, n_l2___13, n_l2___4, n_l2___7, n_l3___11, n_l3___12, n_l3___3, n_l3___6, n_l4___8, n_l4___9
Transitions:
t₃₆: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅)
t₄₄: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
t₄₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
t₅₀₁: l4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ 0 < X₀ ∧ 0 < X₁ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
t₄₆: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₄, X₅, X₂, X₃, X₄, X₅)
t₄₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅)
t₄₈₁: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₈₂: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ < 0 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₈₃: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₈₄: n_l1___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₄₈₅: n_l1___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₃ < 0 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₄₈₆: n_l1___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 0 < X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₄₈₇: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₁ < X₀ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₈₈: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ X₁ ≤ X₂ ∧ X₃ < 0 ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₈₉: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ X₁ ≤ X₂ ∧ 0 < X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₉₀: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₁: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ < 0 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₂: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₃: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___11(X₀, X₁, X₀, X₃, X₄, X₅) :|: 0 < X₁ ∧ 0 < X₄ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₉₄: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___12(X₀, X₁, X₁, X₃, X₄, X₅) :|: 0 < X₁ ∧ 0 < X₄ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₉₅: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___3(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 0 < X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ < X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₉₆: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___6(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 0 < X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₇: n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___1(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₈: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___10(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₄₉₉: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___2(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₁ < X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ ≤ X₂ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₀₀: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___5(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₂ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅₂₀: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₅₂₄: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₅₂₈: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₅₀₂: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₅₂₃: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₅₂₇: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₅₃₁: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₅₀₃: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
CFR: Improvement to new bound with the following program:
new bound:
43⋅X₄+47⋅X₅+30 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: Arg2_P, NoDet0
Locations: l0, l4, l5, l6, l7, n_l1___1, n_l1___10, n_l1___2, n_l1___5, n_l2___13, n_l2___4, n_l2___7, n_l3___11, n_l3___12, n_l3___3, n_l3___6, n_l4___8, n_l4___9
Transitions:
t₃₆: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅)
t₄₄: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
t₄₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
t₅₀₁: l4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ 0 < X₀ ∧ 0 < X₁ ∧ X₅ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄
t₄₆: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₄, X₅, X₂, X₃, X₄, X₅)
t₄₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅)
t₄₈₁: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₈₂: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ < 0 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₈₃: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₈₄: n_l1___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₄₈₅: n_l1___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ X₃ < 0 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₄₈₆: n_l1___10(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 0 < X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₄₈₇: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₁ < X₀ ∧ X₁ ≤ X₂ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₈₈: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ X₁ ≤ X₂ ∧ X₃ < 0 ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₈₉: n_l1___2(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ X₁ ≤ X₂ ∧ 0 < X₃ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₉₀: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___8(X₀+X₁, X₂-1, X₂, 0, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₁: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ < 0 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₂: n_l1___5(X₀, X₁, X₂, X₃, X₄, X₅) → n_l4___9(X₂-1, X₀+X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 0 < X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₃: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___11(X₀, X₁, X₀, X₃, X₄, X₅) :|: 0 < X₁ ∧ 0 < X₄ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₉₄: n_l2___13(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___12(X₀, X₁, X₁, X₃, X₄, X₅) :|: 0 < X₁ ∧ 0 < X₄ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₉₅: n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___3(X₀, X₁, X₁, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 0 < X₁ ∧ X₁+1 ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ < X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₄₉₆: n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) → n_l3___6(X₀, X₁, X₀, X₃, X₄, X₅) :|: X₀ ≤ X₁ ∧ 0 < X₀ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₇: n_l3___11(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___1(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₂ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄₉₈: n_l3___12(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___10(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₅ < X₀ ∧ 1 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₅ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₄₉₉: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___2(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₁ < X₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₁ ≤ X₂ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 3 ≤ X₀
t₅₀₀: n_l3___6(X₀, X₁, X₂, X₃, X₄, X₅) → n_l1___5(X₀, X₁, Arg2_P, NoDet0, X₄, X₅) :|: X₀ ≤ X₁ ∧ X₀ ≤ X₂ ∧ Arg2_P ≤ X₁ ∧ Arg2_P ≤ X₀ ∧ 1 ≤ Arg2_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1+X₅ ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 5 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅₂₀: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₅₂₄: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₅₂₈: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₅₀₂: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ < X₀ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ 1+X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₅₂₃: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₅₂₇: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₅₃₁: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ 0 ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₅₀₃: n_l4___9(X₀, X₁, X₂, X₃, X₄, X₅) → n_l2___7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 0 < X₁ ∧ 1+X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ 0 ≤ X₀
All Bounds
Timebounds
Overall timebound:43⋅X₄+47⋅X₅+52 {O(n)}
t₃₆: 1 {O(1)}
t₄₄: 1 {O(1)}
t₄₅: 1 {O(1)}
t₄₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈₁: 1 {O(1)}
t₄₈₂: 1 {O(1)}
t₄₈₃: 1 {O(1)}
t₄₈₄: 1 {O(1)}
t₄₈₅: 1 {O(1)}
t₄₈₆: 1 {O(1)}
t₄₈₇: 5⋅X₄+X₅+2 {O(n)}
t₄₈₈: 3⋅X₄+9⋅X₅+2 {O(n)}
t₄₈₉: 3⋅X₄+3⋅X₅+4 {O(n)}
t₄₉₀: 3⋅X₄+9⋅X₅+2 {O(n)}
t₄₉₁: 3⋅X₄+3⋅X₅+4 {O(n)}
t₄₉₂: 2⋅X₄+4⋅X₅+4 {O(n)}
t₄₉₃: 1 {O(1)}
t₄₉₄: 1 {O(1)}
t₄₉₅: 2⋅X₄+4⋅X₅+2 {O(n)}
t₄₉₆: 5⋅X₄+X₅+2 {O(n)}
t₄₉₇: 1 {O(1)}
t₄₉₈: 1 {O(1)}
t₄₉₉: 2⋅X₅+4⋅X₄ {O(n)}
t₅₀₀: 3⋅X₄+3⋅X₅+6 {O(n)}
t₅₀₁: 1 {O(1)}
t₅₀₂: 2⋅X₅+4⋅X₄+2 {O(n)}
t₅₀₃: 6⋅X₄+6⋅X₅ {O(n)}
t₅₂₀: 1 {O(1)}
t₅₂₃: 1 {O(1)}
t₅₂₄: 1 {O(1)}
t₅₂₇: 1 {O(1)}
t₅₂₈: 1 {O(1)}
t₅₃₁: 1 {O(1)}
Costbounds
Overall costbound: 43⋅X₄+47⋅X₅+52 {O(n)}
t₃₆: 1 {O(1)}
t₄₄: 1 {O(1)}
t₄₅: 1 {O(1)}
t₄₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈₁: 1 {O(1)}
t₄₈₂: 1 {O(1)}
t₄₈₃: 1 {O(1)}
t₄₈₄: 1 {O(1)}
t₄₈₅: 1 {O(1)}
t₄₈₆: 1 {O(1)}
t₄₈₇: 5⋅X₄+X₅+2 {O(n)}
t₄₈₈: 3⋅X₄+9⋅X₅+2 {O(n)}
t₄₈₉: 3⋅X₄+3⋅X₅+4 {O(n)}
t₄₉₀: 3⋅X₄+9⋅X₅+2 {O(n)}
t₄₉₁: 3⋅X₄+3⋅X₅+4 {O(n)}
t₄₉₂: 2⋅X₄+4⋅X₅+4 {O(n)}
t₄₉₃: 1 {O(1)}
t₄₉₄: 1 {O(1)}
t₄₉₅: 2⋅X₄+4⋅X₅+2 {O(n)}
t₄₉₆: 5⋅X₄+X₅+2 {O(n)}
t₄₉₇: 1 {O(1)}
t₄₉₈: 1 {O(1)}
t₄₉₉: 2⋅X₅+4⋅X₄ {O(n)}
t₅₀₀: 3⋅X₄+3⋅X₅+6 {O(n)}
t₅₀₁: 1 {O(1)}
t₅₀₂: 2⋅X₅+4⋅X₄+2 {O(n)}
t₅₀₃: 6⋅X₄+6⋅X₅ {O(n)}
t₅₂₀: 1 {O(1)}
t₅₂₃: 1 {O(1)}
t₅₂₄: 1 {O(1)}
t₅₂₇: 1 {O(1)}
t₅₂₈: 1 {O(1)}
t₅₃₁: 1 {O(1)}
Sizebounds
t₃₆, X₀: X₀ {O(n)}
t₃₆, X₁: X₁ {O(n)}
t₃₆, X₂: X₂ {O(n)}
t₃₆, X₃: X₃ {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₅: X₅ {O(n)}
t₄₄, X₀: X₄ {O(n)}
t₄₄, X₁: X₅ {O(n)}
t₄₄, X₂: X₂ {O(n)}
t₄₄, X₃: X₃ {O(n)}
t₄₄, X₄: X₄ {O(n)}
t₄₄, X₅: X₅ {O(n)}
t₄₅, X₀: X₄ {O(n)}
t₄₅, X₁: X₅ {O(n)}
t₄₅, X₂: X₂ {O(n)}
t₄₅, X₃: X₃ {O(n)}
t₄₅, X₄: X₄ {O(n)}
t₄₅, X₅: X₅ {O(n)}
t₄₆, X₀: X₄ {O(n)}
t₄₆, X₁: X₅ {O(n)}
t₄₆, X₂: X₂ {O(n)}
t₄₆, X₃: X₃ {O(n)}
t₄₆, X₄: X₄ {O(n)}
t₄₆, X₅: X₅ {O(n)}
t₄₇, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅36⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅36⋅X₅+6⋅X₅+8⋅X₄ {O(EXP)}
t₄₇, X₁: 24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅48⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅48⋅X₅+12⋅X₄+14⋅X₅ {O(EXP)}
t₄₇, X₂: 2⋅X₂+6 {O(n)}
t₄₇, X₄: 8⋅X₄ {O(n)}
t₄₇, X₅: 8⋅X₅ {O(n)}
t₄₈₁, X₀: 2⋅X₅ {O(n)}
t₄₈₁, X₁: X₅ {O(n)}
t₄₈₁, X₂: X₄ {O(n)}
t₄₈₁, X₃: 0 {O(1)}
t₄₈₁, X₄: X₄ {O(n)}
t₄₈₁, X₅: X₅ {O(n)}
t₄₈₂, X₀: X₄ {O(n)}
t₄₈₂, X₁: 2⋅X₅ {O(n)}
t₄₈₂, X₂: X₄ {O(n)}
t₄₈₂, X₄: X₄ {O(n)}
t₄₈₂, X₅: X₅ {O(n)}
t₄₈₃, X₀: X₄ {O(n)}
t₄₈₃, X₁: 2⋅X₅ {O(n)}
t₄₈₃, X₂: X₄ {O(n)}
t₄₈₃, X₄: X₄ {O(n)}
t₄₈₃, X₅: X₅ {O(n)}
t₄₈₄, X₀: 2⋅X₄ {O(n)}
t₄₈₄, X₁: X₅ {O(n)}
t₄₈₄, X₂: X₅ {O(n)}
t₄₈₄, X₃: 0 {O(1)}
t₄₈₄, X₄: X₄ {O(n)}
t₄₈₄, X₅: X₅ {O(n)}
t₄₈₅, X₀: X₄ {O(n)}
t₄₈₅, X₁: 2⋅X₄ {O(n)}
t₄₈₅, X₂: X₅ {O(n)}
t₄₈₅, X₄: X₄ {O(n)}
t₄₈₅, X₅: X₅ {O(n)}
t₄₈₆, X₀: X₄ {O(n)}
t₄₈₆, X₁: 2⋅X₄ {O(n)}
t₄₈₆, X₂: X₅ {O(n)}
t₄₈₆, X₄: X₄ {O(n)}
t₄₈₆, X₅: X₅ {O(n)}
t₄₈₇, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₄₈₇, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₄₈₇, X₂: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₄₈₇, X₃: 0 {O(1)}
t₄₈₇, X₄: 6⋅X₄ {O(n)}
t₄₈₇, X₅: 6⋅X₅ {O(n)}
t₄₈₈, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₄₈₈, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₄₈₈, X₂: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₄₈₈, X₄: 6⋅X₄ {O(n)}
t₄₈₈, X₅: 6⋅X₅ {O(n)}
t₄₈₉, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₄₈₉, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₄₈₉, X₂: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₄₈₉, X₄: 6⋅X₄ {O(n)}
t₄₈₉, X₅: 6⋅X₅ {O(n)}
t₄₉₀, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₄₉₀, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₄₉₀, X₂: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₄₉₀, X₃: 0 {O(1)}
t₄₉₀, X₄: 6⋅X₄ {O(n)}
t₄₉₀, X₅: 6⋅X₅ {O(n)}
t₄₉₁, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₄₉₁, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₄₉₁, X₂: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₄₉₁, X₄: 6⋅X₄ {O(n)}
t₄₉₁, X₅: 6⋅X₅ {O(n)}
t₄₉₂, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₄₉₂, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₄₉₂, X₂: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₄₉₂, X₄: 6⋅X₄ {O(n)}
t₄₉₂, X₅: 6⋅X₅ {O(n)}
t₄₉₃, X₀: X₄ {O(n)}
t₄₉₃, X₁: X₅ {O(n)}
t₄₉₃, X₂: X₄ {O(n)}
t₄₉₃, X₃: X₃ {O(n)}
t₄₉₃, X₄: X₄ {O(n)}
t₄₉₃, X₅: X₅ {O(n)}
t₄₉₄, X₀: X₄ {O(n)}
t₄₉₄, X₁: X₅ {O(n)}
t₄₉₄, X₂: X₅ {O(n)}
t₄₉₄, X₃: X₃ {O(n)}
t₄₉₄, X₄: X₄ {O(n)}
t₄₉₄, X₅: X₅ {O(n)}
t₄₉₅, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₄₉₅, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₄₉₅, X₂: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₄₉₅, X₃: 0 {O(1)}
t₄₉₅, X₄: 6⋅X₄ {O(n)}
t₄₉₅, X₅: 6⋅X₅ {O(n)}
t₄₉₆, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₄₉₆, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₄₉₆, X₂: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₄₉₆, X₄: 6⋅X₄ {O(n)}
t₄₉₆, X₅: 6⋅X₅ {O(n)}
t₄₉₇, X₀: X₄ {O(n)}
t₄₉₇, X₁: X₅ {O(n)}
t₄₉₇, X₂: X₄ {O(n)}
t₄₉₇, X₄: X₄ {O(n)}
t₄₉₇, X₅: X₅ {O(n)}
t₄₉₈, X₀: X₄ {O(n)}
t₄₉₈, X₁: X₅ {O(n)}
t₄₉₈, X₂: X₅ {O(n)}
t₄₉₈, X₄: X₄ {O(n)}
t₄₉₈, X₅: X₅ {O(n)}
t₄₉₉, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₄₉₉, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₄₉₉, X₂: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₄₉₉, X₄: 6⋅X₄ {O(n)}
t₄₉₉, X₅: 6⋅X₅ {O(n)}
t₅₀₀, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₅₀₀, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₅₀₀, X₂: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₅₀₀, X₄: 6⋅X₄ {O(n)}
t₅₀₀, X₅: 6⋅X₅ {O(n)}
t₅₀₁, X₀: X₄ {O(n)}
t₅₀₁, X₁: X₅ {O(n)}
t₅₀₁, X₂: X₂ {O(n)}
t₅₀₁, X₃: X₃ {O(n)}
t₅₀₁, X₄: X₄ {O(n)}
t₅₀₁, X₅: X₅ {O(n)}
t₅₀₂, X₀: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₅₀₂, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+2⋅X₅ {O(EXP)}
t₅₀₂, X₂: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅+3⋅X₅+5⋅X₄ {O(EXP)}
t₅₀₂, X₃: 0 {O(1)}
t₅₀₂, X₄: 6⋅X₄ {O(n)}
t₅₀₂, X₅: 6⋅X₅ {O(n)}
t₅₀₃, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄ {O(EXP)}
t₅₀₃, X₁: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅6⋅X₅ {O(EXP)}
t₅₀₃, X₂: 2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅36⋅X₄+2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅36⋅X₅+10⋅X₄+6⋅X₅ {O(EXP)}
t₅₀₃, X₄: 6⋅X₄ {O(n)}
t₅₀₃, X₅: 6⋅X₅ {O(n)}
t₅₂₀, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+2⋅X₄+2⋅X₅ {O(EXP)}
t₅₂₀, X₁: 0 {O(1)}
t₅₂₀, X₂: 1 {O(1)}
t₅₂₀, X₃: 0 {O(1)}
t₅₂₀, X₄: 14⋅X₄ {O(n)}
t₅₂₀, X₅: 14⋅X₅ {O(n)}
t₅₂₃, X₀: 0 {O(1)}
t₅₂₃, X₁: 24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄+4⋅X₅ {O(EXP)}
t₅₂₃, X₂: 1 {O(1)}
t₅₂₃, X₄: 28⋅X₄ {O(n)}
t₅₂₃, X₅: 28⋅X₅ {O(n)}
t₅₂₄, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+2⋅X₄+2⋅X₅ {O(EXP)}
t₅₂₄, X₁: 0 {O(1)}
t₅₂₄, X₂: 1 {O(1)}
t₅₂₄, X₃: 0 {O(1)}
t₅₂₄, X₄: 14⋅X₄ {O(n)}
t₅₂₄, X₅: 14⋅X₅ {O(n)}
t₅₂₇, X₀: 0 {O(1)}
t₅₂₇, X₁: 24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄+4⋅X₅ {O(EXP)}
t₅₂₇, X₂: 1 {O(1)}
t₅₂₇, X₄: 28⋅X₄ {O(n)}
t₅₂₇, X₅: 28⋅X₅ {O(n)}
t₅₂₈, X₀: 12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+12⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+2⋅X₄+2⋅X₅ {O(EXP)}
t₅₂₈, X₁: 0 {O(1)}
t₅₂₈, X₂: 1 {O(1)}
t₅₂₈, X₃: 0 {O(1)}
t₅₂₈, X₄: 14⋅X₄ {O(n)}
t₅₂₈, X₅: 14⋅X₅ {O(n)}
t₅₃₁, X₀: 0 {O(1)}
t₅₃₁, X₁: 24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₄+24⋅2^(2⋅X₄+4⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+3⋅X₅+4)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(3⋅X₄+9⋅X₅+2)⋅2^(5⋅X₄+X₅+2)⋅X₅+4⋅X₄+4⋅X₅ {O(EXP)}
t₅₃₁, X₂: 1 {O(1)}
t₅₃₁, X₄: 28⋅X₄ {O(n)}
t₅₃₁, X₅: 28⋅X₅ {O(n)}