Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₂: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₀
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0
t₁₃: l10(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₀ ∧ X₁ < 0
t₁₄: l10(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0
t₁₅: l10(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄) → l1(X₃, X₃, X₂, X₃, X₄)
t₅: l3(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: X₀ < X₁
t₄: l3(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀
t₂₂: l4(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₈: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₂+1, X₁+1, X₂, X₃, X₄) :|: 3+X₁ < X₂ ∧ 3+X₁ < X₂
t₉: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁+1, X₂, X₃, X₄) :|: 3+X₁ < X₂ ∧ X₂ ≤ X₁+3
t₁₀: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₂+1, X₁+2, X₂, X₃, X₄) :|: X₂ ≤ X₁+3 ∧ 3+X₁ < X₂
t₁₁: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁+2, X₂, X₃, X₄) :|: X₂ ≤ X₁+3 ∧ X₂ ≤ X₁+3
t₁₂: l6(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁-1, X₂, X₃, X₄)
t₁₆: l7(X₀, X₁, X₂, X₃, X₄) → l1(X₀-1, X₁+1, X₂, X₃, X₄) :|: X₁+1 < 0 ∧ X₁+1 < 0
t₁₇: l7(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁+1, X₂, X₃, X₄) :|: X₁+1 < 0 ∧ 0 ≤ 1+X₁
t₁₈: l7(X₀, X₁, X₂, X₃, X₄) → l1(X₀-1, X₁, X₂, X₃, X₄) :|: 0 ≤ 1+X₁ ∧ X₁+1 < 0
t₁₉: l7(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₁
t₂₀: l8(X₀, X₁, X₂, X₃, X₄) → l1(X₀+1, X₁-1, X₂, X₃, X₄) :|: X₀+1 < 2⋅X₁
t₂₁: l8(X₀, X₁, X₂, X₃, X₄) → l1(X₀+1, X₁+1, X₂, X₃, X₄) :|: 2⋅X₁ ≤ X₀+1
t₆: l9(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₀+1, X₃, X₄) :|: X₁ < 5
t₇: l9(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₀+1, X₃, X₄) :|: 5 ≤ X₁

Preprocessing

Cut unsatisfiable transition t₉: l5→l1

Cut unsatisfiable transition t₁₀: l5→l1

Cut unsatisfiable transition t₁₃: l10→l7

Cut unsatisfiable transition t₁₇: l7→l1

Cut unsatisfiable transition t₁₈: l7→l1

Cut unreachable locations [l7] from the program graph

Eliminate variables {X₄} that do not contribute to the problem

Found invariant X₃ ≤ 0 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 1 ∧ X₀ ≤ 0 for location l11

Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location l6

Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l5

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ for location l1

Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l10

Found invariant X₃ ≤ 0 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 1 ∧ X₀ ≤ 0 for location l4

Found invariant X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l9

Found invariant X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 1 ≤ X₀ for location l3

Cut unsatisfiable transition t₄₈: l10→l8

Cut unsatisfiable transition t₅₈: l8→l1

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l8, l9
Transitions:
t₄₅: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₄₆: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 0 < X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀
t₄₇: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀
t₄₉: l10(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅₀: l2(X₀, X₁, X₂, X₃) → l1(X₃, X₃, X₂, X₃)
t₅₁: l3(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 1 ≤ X₀
t₅₂: l3(X₀, X₁, X₂, X₃) → l9(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 1 ≤ X₀
t₅₃: l4(X₀, X₁, X₂, X₃) → l11(X₀, X₁, X₂, X₃) :|: X₃ ≤ 0 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ X₁ ≤ 1 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 1 ∧ X₀ ≤ 0
t₅₄: l5(X₀, X₁, X₂, X₃) → l1(X₂+1, X₁+1, X₂, X₃) :|: 3+X₁ < X₂ ∧ 3+X₁ < X₂ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₅₅: l5(X₀, X₁, X₂, X₃) → l1(X₂, X₁+2, X₂, X₃) :|: X₂ ≤ X₁+3 ∧ X₂ ≤ X₁+3 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₅₆: l6(X₀, X₁, X₂, X₃) → l1(X₂, X₁-1, X₂, X₃) :|: 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ 5 ≤ X₀
t₅₇: l8(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁-1, X₂, X₃) :|: X₀+1 < 2⋅X₁ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₅₉: l9(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₀+1, X₃) :|: X₁ < 5 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₆₀: l9(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₀+1, X₃) :|: 5 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀

MPRF for transition t₅₅: l5(X₀, X₁, X₂, X₃) → l1(X₂, X₁+2, X₂, X₃) :|: X₂ ≤ X₁+3 ∧ X₂ ≤ X₁+3 ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃+7 {O(n)}

MPRF for transition t₄₉: l10(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: 0 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

15⋅X₃+91 {O(n)}

MPRF for transition t₅₁: l3(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

17⋅X₃+107 {O(n)}

MPRF for transition t₅₇: l8(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁-1, X₂, X₃) :|: X₀+1 < 2⋅X₁ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

15⋅X₃+91 {O(n)}

Chain transitions t₅₇: l8→l1 and t₄₇: l1→l4 to t₂₃₈: l8→l4

Chain transitions t₅₆: l6→l1 and t₄₇: l1→l4 to t₂₃₉: l6→l4

Chain transitions t₅₆: l6→l1 and t₄₆: l1→l3 to t₂₄₀: l6→l3

Chain transitions t₅₇: l8→l1 and t₄₆: l1→l3 to t₂₄₁: l8→l3

Chain transitions t₅₅: l5→l1 and t₄₆: l1→l3 to t₂₄₂: l5→l3

Chain transitions t₅₅: l5→l1 and t₄₇: l1→l4 to t₂₄₃: l5→l4

Chain transitions t₅₄: l5→l1 and t₄₆: l1→l3 to t₂₄₄: l5→l3

Chain transitions t₅₄: l5→l1 and t₄₇: l1→l4 to t₂₄₅: l5→l4

Chain transitions t₅₀: l2→l1 and t₄₆: l1→l3 to t₂₄₆: l2→l3

Chain transitions t₅₀: l2→l1 and t₄₇: l1→l4 to t₂₄₇: l2→l4

Chain transitions t₅₁: l3→l10 and t₄₉: l10→l8 to t₂₄₈: l3→l8

Chain transitions t₂₄₁: l8→l3 and t₅₂: l3→l9 to t₂₄₉: l8→l9

Chain transitions t₂₄₀: l6→l3 and t₅₂: l3→l9 to t₂₅₀: l6→l9

Chain transitions t₂₄₀: l6→l3 and t₂₄₈: l3→l8 to t₂₅₁: l6→l8

Chain transitions t₂₄₁: l8→l3 and t₂₄₈: l3→l8 to t₂₅₂: l8→l8

Chain transitions t₂₄₄: l5→l3 and t₂₄₈: l3→l8 to t₂₅₃: l5→l8

Chain transitions t₂₄₄: l5→l3 and t₅₂: l3→l9 to t₂₅₄: l5→l9

Chain transitions t₂₄₄: l5→l3 and t₅₁: l3→l10 to t₂₅₅: l5→l10

Chain transitions t₂₄₀: l6→l3 and t₅₁: l3→l10 to t₂₅₆: l6→l10

Chain transitions t₂₄₁: l8→l3 and t₅₁: l3→l10 to t₂₅₇: l8→l10

Chain transitions t₂₄₂: l5→l3 and t₅₁: l3→l10 to t₂₅₈: l5→l10

Chain transitions t₂₄₂: l5→l3 and t₂₄₈: l3→l8 to t₂₅₉: l5→l8

Chain transitions t₂₄₂: l5→l3 and t₅₂: l3→l9 to t₂₆₀: l5→l9

Chain transitions t₂₄₆: l2→l3 and t₅₁: l3→l10 to t₂₆₁: l2→l10

Chain transitions t₂₄₆: l2→l3 and t₂₄₈: l3→l8 to t₂₆₂: l2→l8

Chain transitions t₂₄₆: l2→l3 and t₅₂: l3→l9 to t₂₆₃: l2→l9

Chain transitions t₅₉: l9→l5 and t₂₆₀: l5→l9 to t₂₆₄: l9→l9

Chain transitions t₅₉: l9→l5 and t₂₅₄: l5→l9 to t₂₆₅: l9→l9

Chain transitions t₅₉: l9→l5 and t₂₅₉: l5→l8 to t₂₆₆: l9→l8

Chain transitions t₅₉: l9→l5 and t₂₅₃: l5→l8 to t₂₆₇: l9→l8

Chain transitions t₅₉: l9→l5 and t₂₄₅: l5→l4 to t₂₆₈: l9→l4

Chain transitions t₅₉: l9→l5 and t₂₄₃: l5→l4 to t₂₆₉: l9→l4

Chain transitions t₅₉: l9→l5 and t₂₄₄: l5→l3 to t₂₇₀: l9→l3

Chain transitions t₅₉: l9→l5 and t₂₄₂: l5→l3 to t₂₇₁: l9→l3

Chain transitions t₅₉: l9→l5 and t₂₅₈: l5→l10 to t₂₇₂: l9→l10

Chain transitions t₅₉: l9→l5 and t₂₅₅: l5→l10 to t₂₇₃: l9→l10

Chain transitions t₅₉: l9→l5 and t₅₅: l5→l1 to t₂₇₄: l9→l1

Chain transitions t₅₉: l9→l5 and t₅₄: l5→l1 to t₂₇₅: l9→l1

Chain transitions t₆₀: l9→l6 and t₂₅₀: l6→l9 to t₂₇₆: l9→l9

Chain transitions t₆₀: l9→l6 and t₂₅₁: l6→l8 to t₂₇₇: l9→l8

Chain transitions t₆₀: l9→l6 and t₂₃₉: l6→l4 to t₂₇₈: l9→l4

Chain transitions t₆₀: l9→l6 and t₂₄₀: l6→l3 to t₂₇₉: l9→l3

Chain transitions t₆₀: l9→l6 and t₂₅₆: l6→l10 to t₂₈₀: l9→l10

Chain transitions t₆₀: l9→l6 and t₅₆: l6→l1 to t₂₈₁: l9→l1

Analysing control-flow refined program

Cut unsatisfiable transition t₂₃₈: l8→l4

Cut unsatisfiable transition t₂₅₂: l8→l8

Cut unsatisfiable transition t₂₅₇: l8→l10

Cut unsatisfiable transition t₂₆₁: l2→l10

Cut unsatisfiable transition t₂₆₂: l2→l8

Cut unsatisfiable transition t₂₆₇: l9→l8

Cut unsatisfiable transition t₂₆₈: l9→l4

Cut unsatisfiable transition t₂₆₉: l9→l4

Cut unsatisfiable transition t₂₇₃: l9→l10

Cut unsatisfiable transition t₂₇₇: l9→l8

Cut unsatisfiable transition t₂₇₈: l9→l4

Cut unsatisfiable transition t₂₈₀: l9→l10

Eliminate variables {X₂} that do not contribute to the problem

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l11

Found invariant X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 6 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ 5 ≤ X₀ for location l6

Found invariant X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 3+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₂ ≤ 4 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 10 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 9 ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 4+X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ for location l8

Found invariant X₂ ≤ X₀ ∧ X₁ ≤ 5+X₂ ∧ X₁ ≤ 1+X₀ for location l1

Found invariant X₂ ≤ 4 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 10 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 9 ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 4+X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ for location l10

Found invariant X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 0 ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location l4

Found invariant X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9

Found invariant X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 1+X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

MPRF for transition t₃₇₈: l8(X₀, X₁, X₂) -{3}> l9(1+X₀, X₁-1, X₂) :|: X₀+1 < 2⋅X₁ ∧ 0 < 1+X₀ ∧ X₁ ≤ 2+X₀ ∧ X₂ ≤ 4 ∧ 2+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 10 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 9 ∧ 1 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 4+X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ of depth 1:

new bound:

X₂+5 {O(n)}

MPRF for transition t₃₈₈: l9(X₀, X₁, X₂) -{5}> l8(1+X₀, 2+X₁, X₂) :|: X₁ < 5 ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2+X₁ ∧ 0 < 1+X₀ ∧ X₀ < 1+X₁ ∧ 0 ≤ 2+X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

4⋅X₂+17 {O(n)}

MPRF for transition t₃₈₉: l9(X₀, X₁, X₂) -{4}> l9(1+X₀, 2+X₁, X₂) :|: X₁ < 5 ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 2+X₁ ∧ 0 < 1+X₀ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 5+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂+11 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₅₈₅: n_l3___1→l10

Cut unsatisfiable transition t₅₈₆: n_l3___10→l10

Cut unsatisfiable transition t₅₈₇: n_l3___14→l10

Cut unsatisfiable transition t₅₈₈: n_l3___18→l10

Cut unsatisfiable transition t₅₈₉: n_l3___22→l10

Cut unsatisfiable transition t₅₉₀: n_l3___28→l10

Cut unsatisfiable transition t₅₉₂: n_l3___38→l10

Cut unsatisfiable transition t₅₉₃: n_l3___6→l10

Found invariant 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 2+X₁ ∧ X₂ ≤ 1+X₀ ∧ 7 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 13 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 6 ≤ X₀ for location n_l6___3

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___38

Found invariant X₃ ≤ 3 ∧ 4+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 7 ∧ 3+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 7 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 13 ∧ 7 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 13 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 10 ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 6 ∧ 6 ≤ X₀ for location n_l5___26

Found invariant X₃ ≤ 4 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 11 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 9 ∧ 3+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 11 ∧ X₂ ≤ 7 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 14 ∧ 6 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 5 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 7 ∧ 6 ≤ X₀ for location n_l9___27

Found invariant X₃ ≤ 5 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 13 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 11 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 12 ∧ X₂ ≤ 8 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 14 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 15 ∧ 8 ≤ X₂ ∧ 14 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 15 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 13 ∧ 6 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 7 ∧ 7 ≤ X₀ for location n_l6___12

Found invariant X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location n_l3___6

Found invariant X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 6 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 3 ≤ X₀ for location n_l9___32

Found invariant X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 8 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 6 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 10 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 11 ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ for location n_l5___4

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 7 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 7 ≤ X₀ for location n_l9___17

Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 7 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 15 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 5 ∧ 3+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 8 ≤ X₀ for location n_l9___21

Found invariant X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 5 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 10 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ for location n_l3___33

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ 1+X₁ for location l1

Found invariant X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 5 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 10 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ for location l10

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 0 for location l4

Found invariant X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 8 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 8 ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 5 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 9 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 9 ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 1 ≤ X₀ for location n_l5___36

Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 11 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 9 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 11 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 2+X₁ ∧ X₂ ≤ X₀ ∧ 6 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ 6 ≤ X₀ for location n_l3___10

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 7 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 7 ≤ X₀ for location n_l3___18

Found invariant X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 0 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 0 ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 0 for location l11

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 7 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 7 ≤ X₀ for location n_l1___19

Found invariant X₃ ≤ 4 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 11 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 7 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 13 ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 5 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 5 ≤ X₀ for location n_l6___30

Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 8 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ 4+X₁ ≤ X₂ ∧ 15 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ 3+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 7 ≤ X₀ for location n_l5___16

Found invariant X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l9___37

Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 11 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 9 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 11 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 2+X₁ ∧ X₂ ≤ X₀ ∧ 6 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ 6 ≤ X₀ for location n_l9___9

Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 11 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 9 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 11 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 2+X₁ ∧ X₂ ≤ X₀ ∧ 6 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ 6 ≤ X₀ for location n_l1___11

Found invariant X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 5 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 10 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ for location n_l1___34

Found invariant X₃ ≤ 4 ∧ 4+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 12 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 9 ∧ 3+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 11 ∧ X₂ ≤ 8 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 15 ∧ 8 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 15 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 5 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 5 ≤ X₁ ∧ 12 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 7 ∧ 7 ≤ X₀ for location n_l6___25

Found invariant 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 8 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 17 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 5 ∧ 4+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 14 ≤ X₀+X₁ ∧ 9 ≤ X₀ for location n_l1___24

Found invariant X₃ ≤ 4 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 11 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 9 ∧ 3+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 11 ∧ X₂ ≤ 7 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 14 ∧ 6 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 5 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 7 ∧ 6 ≤ X₀ for location n_l1___29

Found invariant X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 6 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 3 ≤ X₀ for location n_l1___2

Found invariant X₃ ≤ 5 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 12 ∧ X₃ ≤ 1+X₁ ∧ X₁+X₃ ≤ 9 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 11 ∧ 5 ≤ X₃ ∧ 12 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 9 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 11 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 7 ∧ X₂ ≤ 3+X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 13 ∧ 7 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 13 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 10 ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 6 ∧ 6 ≤ X₀ for location n_l5___8

Found invariant X₃ ≤ 5 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 12 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 11 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 12 ∧ X₂ ≤ 7 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 14 ∧ 7 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 13 ∧ 6 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 7 ∧ 7 ≤ X₀ for location n_l3___14

Found invariant X₃ ≤ 5 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 12 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 11 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 12 ∧ X₂ ≤ 7 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 14 ∧ 7 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 13 ∧ 6 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 7 ∧ 7 ≤ X₀ for location n_l1___23

Found invariant X₃ ≤ 4 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 11 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 9 ∧ 3+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 11 ∧ X₂ ≤ 7 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 14 ∧ 6 ≤ X₂ ∧ 10 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 12 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 5 ∧ 2+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 4 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 7 ∧ 6 ≤ X₀ for location n_l3___28

Found invariant X₃ ≤ 2 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 7 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ X₂ ≤ 5 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 9 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 9 ∧ 4 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 7 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 3 ≤ X₀ for location n_l5___31

Found invariant X₃ ≤ 5 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 12 ∧ 1+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 11 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 12 ∧ X₂ ≤ 7 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 13 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 14 ∧ 7 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 13 ∧ 6 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 7 ∧ 7 ≤ X₀ for location n_l9___13

Found invariant X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 5 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 10 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀ for location l8

Found invariant X₃ ≤ 1+X₂ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 7 ≤ X₂ ∧ 12 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 15 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ X₁ ≤ 5 ∧ 3+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 8 ≤ X₀ for location n_l3___22

Found invariant 2+X₃ ≤ X₂ ∧ X₃ ≤ 1+X₁ ∧ 1+X₃ ≤ X₀ ∧ 6 ≤ X₃ ∧ 14 ≤ X₂+X₃ ∧ X₂ ≤ 2+X₃ ∧ 11 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 13 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ X₂ ≤ 3+X₁ ∧ X₂ ≤ 1+X₀ ∧ 8 ≤ X₂ ∧ 13 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 15 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 12 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ 7 ≤ X₀ for location n_l6___7

Found invariant X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 6 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 3 ≤ X₀ for location n_l3___1

Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 9 ≤ X₂ ∧ 14 ≤ X₁+X₂ ∧ 4+X₁ ≤ X₂ ∧ 17 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 5 ∧ 3+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 8 ≤ X₀ for location n_l6___20

Found invariant X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location n_l9___5

Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 9 ≤ X₂ ∧ 14 ≤ X₁+X₂ ∧ 4+X₁ ≤ X₂ ∧ 17 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 8 ≤ X₀ for location n_l6___15

Found invariant 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 5 ≤ X₃ ∧ 11 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 10 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 10 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1+X₁ ∧ X₂ ≤ 1+X₀ ∧ 6 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 11 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 10 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 5 ≤ X₀ for location n_l6___35

Cut unsatisfiable transition t₅₄₀: n_l3___33→n_l9___32

Cut unsatisfiable transition t₅₄₅: n_l5___26→n_l1___24

knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₅₃₂: l1(X₀, X₁, X₂, X₃) → n_l3___6(X₀, X₁, X₂, X₃) :|: 0 < X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 1+X₁ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₀ ∧ 0 < X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ 1+X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₃₃: l1(X₀, X₁, X₂, X₃) → n_l3___38(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₀ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 0 < X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ 1+X₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₄₁: n_l3___38(X₀, X₁, X₂, X₃) → n_l9___37(X₀, X₁, X₂, X₃) :|: 0 < X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₅₄₂: n_l3___6(X₀, X₁, X₂, X₃) → n_l9___5(X₀, X₁, X₂, X₃) :|: 1+X₃ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₆₆: n_l9___37(X₀, X₁, X₂, X₃) → n_l5___36(X₀, X₁, X₀+1, X₃) :|: X₀ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₁ < 5 ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₅₆₈: n_l9___5(X₀, X₁, X₂, X₃) → n_l5___4(X₀, X₁, X₀+1, X₃) :|: 1+X₃ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ X₁+1 ∧ 1+X₁ ≤ X₀ ∧ X₁ < 5 ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₅₄₇: n_l5___36(X₀, X₁, X₂, X₃) → n_l1___34(X₀+1, X₁+2, X₀+1, X₃) :|: X₃ < 5 ∧ 1 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₃+1 ∧ X₀ ≤ 2+X₁ ∧ X₀+1 ≤ X₂ ∧ X₃ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₁ ≤ 4 ∧ X₂ ≤ 1+X₀ ∧ X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 8 ∧ X₃ ≤ X₀ ∧ X₀+X₃ ≤ 8 ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 5 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 9 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 9 ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₅₄₈: n_l5___4(X₀, X₁, X₂, X₃) → n_l1___2(X₀+1, X₁+2, X₀+1, X₃) :|: X₂ < 7 ∧ 3 ≤ X₂ ∧ 2+X₃ ≤ X₂ ∧ X₀+1 ≤ X₂ ∧ X₁+2 ≤ X₂ ∧ X₂ ≤ 2+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₁ ≤ 4 ∧ X₂ ≤ 1+X₀ ∧ X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 8 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 6 ∧ X₂ ≤ 2+X₁ ∧ X₁+X₂ ≤ 10 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 11 ∧ 3 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ 1+X₁ ≤ X₀ ∧ X₀+X₁ ≤ 9 ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₅₂₇: n_l1___2(X₀, X₁, X₂, X₃) → n_l3___1(X₀, X₁, X₂, X₃) :|: 0 < X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₀ ≤ 2+X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 2 ≤ X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 6 ∧ X₂ ≤ 1+X₁ ∧ 0 < X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 6 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₅₃₄: n_l3___1(X₀, X₁, X₂, X₃) → n_l9___32(X₀, X₁, X₂, X₃) :|: 2 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₂ ≤ 1+X₁ ∧ 1+X₃ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 6 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₅₆₄: n_l9___32(X₀, X₁, X₂, X₃) → n_l5___31(X₀, X₁, X₀+1, X₃) :|: 2 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₂ ≤ 1+X₁ ∧ 1+X₃ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₁ < 5 ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₃ ≤ 4 ∧ 2+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 10 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 10 ∧ X₂ ≤ 6 ∧ X₂ ≤ X₁ ∧ X₁+X₂ ≤ 12 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 12 ∧ 3 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 12 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 6 ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 15⋅X₃+91 {O(n)} for transition t₅₄₆: n_l5___31(X₀, X₁, X₂, X₃) → n_l1___34(X₀+1, X₁+2, X₀+1, X₃) :|: 3 ≤ X₂ ∧ X₁ < 5 ∧ X₂ ≤ 2+X₁ ∧ 2+X₃ ≤ X₂ ∧ X₀+1 ≤ X₂ ∧ X₀ ≤ 2+X₁ ∧ X₀+1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₁ ≤ 4 ∧ X₂ ≤ 1+X₀ ∧ X₃ ≤ 2 ∧ 3+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 7 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 6 ∧ 2+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 6 ∧ X₂ ≤ 5 ∧ X₂ ≤ 1+X₁ ∧ X₁+X₂ ≤ 9 ∧ X₂ ≤ 1+X₀ ∧ X₀+X₂ ≤ 9 ∧ 4 ≤ X₂ ∧ 7 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 7 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 4 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 8 ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 4 ∧ 3 ≤ X₀

knowledge_propagation leads to new time bound 15⋅X₃+92 {O(n)} for transition t₅₃₁: n_l1___34(X₀, X₁, X₂, X₃) → n_l3___33(X₀, X₁, X₂, X₃) :|: 0 < X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ 2+X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 2 ≤ X₂ ∧ X₁ ≤ 1+X₂ ∧ X₁ ≤ 6 ∧ X₂ ≤ 1+X₁ ∧ 0 < X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 5 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 10 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound 15⋅X₃+92 {O(n)} for transition t₅₉₁: n_l3___33(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₃ ≤ 4 ∧ 1+X₃ ≤ X₂ ∧ X₂+X₃ ≤ 9 ∧ 2+X₃ ≤ X₁ ∧ X₁+X₃ ≤ 10 ∧ 1+X₃ ≤ X₀ ∧ X₀+X₃ ≤ 9 ∧ X₂ ≤ 5 ∧ 1+X₂ ≤ X₁ ∧ X₁+X₂ ≤ 11 ∧ X₂ ≤ X₀ ∧ X₀+X₂ ≤ 10 ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 6 ∧ X₁ ≤ 1+X₀ ∧ X₀+X₁ ≤ 11 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 5 ∧ 2 ≤ X₀

MPRF for transition t₅₅₁: n_l6___15(X₀, X₁, X₂, X₃) → n_l1___19(X₀+1, X₁-1, X₀+1, X₃) :|: 1+X₃ ≤ X₀ ∧ 2+X₁ < X₀ ∧ X₀+1 ≤ X₂ ∧ X₀+1 ≤ X₂ ∧ 5 ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 5 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ 1+X₀ ∧ 9 ≤ X₂ ∧ 14 ≤ X₁+X₂ ∧ 4+X₁ ≤ X₂ ∧ 17 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 5 ≤ X₁ ∧ 13 ≤ X₀+X₁ ∧ 8 ≤ X₀ of depth 1:

new bound:

X₃+31 {O(n)}

MPRF for transition t₅₆₀: n_l9___17(X₀, X₁, X₂, X₃) → n_l6___15(X₀, X₁, X₀+1, X₃) :|: 1+X₃ ≤ X₀ ∧ 2+X₁ < X₀ ∧ 4 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ 5 ≤ X₁ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 7 ≤ X₂ ∧ 11 ≤ X₁+X₂ ∧ 3+X₁ ≤ X₂ ∧ 14 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 3+X₁ ≤ X₀ ∧ 4 ≤ X₁ ∧ 11 ≤ X₀+X₁ ∧ 7 ≤ X₀ of depth 1:

new bound:

X₃+31 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₄₅: 1 {O(1)}
t₄₆: inf {Infinity}
t₄₇: 1 {O(1)}
t₄₉: 15⋅X₃+91 {O(n)}
t₅₀: 1 {O(1)}
t₅₁: 17⋅X₃+107 {O(n)}
t₅₂: inf {Infinity}
t₅₃: 1 {O(1)}
t₅₄: inf {Infinity}
t₅₅: X₃+7 {O(n)}
t₅₆: inf {Infinity}
t₅₇: 15⋅X₃+91 {O(n)}
t₅₉: inf {Infinity}
t₆₀: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
t₄₅: 1 {O(1)}
t₄₆: inf {Infinity}
t₄₇: 1 {O(1)}
t₄₉: 15⋅X₃+91 {O(n)}
t₅₀: 1 {O(1)}
t₅₁: 17⋅X₃+107 {O(n)}
t₅₂: inf {Infinity}
t₅₃: 1 {O(1)}
t₅₄: inf {Infinity}
t₅₅: X₃+7 {O(n)}
t₅₆: inf {Infinity}
t₅₇: 15⋅X₃+91 {O(n)}
t₅₉: inf {Infinity}
t₆₀: inf {Infinity}

Sizebounds

t₄₅, X₀: X₀ {O(n)}
t₄₅, X₁: X₁ {O(n)}
t₄₅, X₂: X₂ {O(n)}
t₄₅, X₃: X₃ {O(n)}
t₄₆, X₃: X₃ {O(n)}
t₄₇, X₀: X₃ {O(n)}
t₄₇, X₁: X₃ {O(n)}
t₄₇, X₂: X₂ {O(n)}
t₄₇, X₃: X₃ {O(n)}
t₄₉, X₃: X₃ {O(n)}
t₅₀, X₀: X₃ {O(n)}
t₅₀, X₁: X₃ {O(n)}
t₅₀, X₂: X₂ {O(n)}
t₅₀, X₃: X₃ {O(n)}
t₅₁, X₃: X₃ {O(n)}
t₅₂, X₃: X₃ {O(n)}
t₅₃, X₀: X₃ {O(n)}
t₅₃, X₁: X₃ {O(n)}
t₅₃, X₂: X₂ {O(n)}
t₅₃, X₃: X₃ {O(n)}
t₅₄, X₃: X₃ {O(n)}
t₅₅, X₀: 7 {O(1)}
t₅₅, X₁: 6 {O(1)}
t₅₅, X₂: 7 {O(1)}
t₅₅, X₃: X₃ {O(n)}
t₅₆, X₃: X₃ {O(n)}
t₅₇, X₃: X₃ {O(n)}
t₅₉, X₃: X₃ {O(n)}
t₆₀, X₃: X₃ {O(n)}