Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₃ ≤ 0
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆)
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₅+1 < X₁
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅+1
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁-1, X₂, X₃, X₄, X₂-1, X₆)
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₀, X₂, X₃, X₄, X₄, X₆) :|: X₄ < X₀
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₄
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, 0, X₅, X₆)
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₁, X₁, X₂, X₃, X₄+1, X₅, X₆)
Preprocessing
Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l2
Found invariant X₀ ≤ X₆ ∧ 0 ≤ X₄ for location l6
Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5
Found invariant X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₄ for location l8
Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Found invariant X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₄ for location l10
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9
Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₃ ≤ 0 ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆) :|: 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₅+1 < X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅+1 ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁-1, X₂, X₃, X₄, X₂-1, X₆) :|: 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₀, X₂, X₃, X₄, X₄, X₆) :|: X₄ < X₀ ∧ X₀ ≤ X₆ ∧ 0 ≤ X₄
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₄ ∧ X₀ ≤ X₆ ∧ 0 ≤ X₄
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₆, X₁, X₂, X₃, 0, X₅, X₆)
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₄
t₁₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₁, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
MPRF for transition t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₀, X₂, X₃, X₄, X₄, X₆) :|: X₄ < X₀ ∧ X₀ ≤ X₆ ∧ 0 ≤ X₄ of depth 1:
new bound:
X₆ {O(n)}
MPRF for transition t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅+1 ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₆+1 {O(n)}
MPRF for transition t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₆ {O(n)}
MPRF for transition t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁-1, X₂, X₃, X₄, X₂-1, X₆) :|: 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₆+3 {O(n)}
MPRF for transition t₁₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₁, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₆ {O(n)}
MPRF for transition t₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₅+1 < X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₆⋅X₆+X₆ {O(n^2)}
MPRF for transition t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₆⋅X₆+2⋅X₆+1 {O(n^2)}
MPRF for transition t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, nondef.0, X₄, X₅, X₆) :|: 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₆⋅X₆+X₆ {O(n^2)}
MPRF for transition t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₃ ≤ 0 ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₆⋅X₆+X₆ {O(n^2)}
Chain transitions t₈: l3→l1 and t₉: l1→l5 to t₈₉: l3→l5
Chain transitions t₈: l3→l1 and t₁₀: l1→l4 to t₉₀: l3→l4
Chain transitions t₄: l4→l2 and t₆: l2→l3 to t₉₁: l4→l3
Chain transitions t₉₁: l4→l3 and t₈₉: l3→l5 to t₉₂: l4→l5
Chain transitions t₉₁: l4→l3 and t₉₀: l3→l4 to t₉₃: l4→l4
Chain transitions t₉₁: l4→l3 and t₈: l3→l1 to t₉₄: l4→l1
Chain transitions t₉₂: l4→l5 and t₁₁: l5→l4 to t₉₅: l4→l4
Chain transitions t₁₂: l9→l6 and t₃: l6→l8 to t₉₆: l9→l8
Chain transitions t₁: l7→l6 and t₃: l6→l8 to t₉₇: l7→l8
Chain transitions t₁: l7→l6 and t₂: l6→l4 to t₉₈: l7→l4
Chain transitions t₁₂: l9→l6 and t₂: l6→l4 to t₉₉: l9→l4
Chain transitions t₅: l4→l9 and t₉₆: l9→l8 to t₁₀₀: l4→l8
Chain transitions t₅: l4→l9 and t₁₂: l9→l6 to t₁₀₁: l4→l6
Chain transitions t₅: l4→l9 and t₉₉: l9→l4 to t₁₀₂: l4→l4
Analysing control-flow refined program
Eliminate variables {Temp_Int₅₂₁,X₂,X₃} that do not contribute to the problem
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l2
Found invariant X₀ ≤ X₄ ∧ 0 ≤ X₂ for location l6
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5
Found invariant X₀ ≤ X₄ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ for location l8
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Found invariant X₀ ≤ X₄ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ for location l10
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9
Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l3
MPRF for transition t₁₂₄: l4(X₀, X₁, X₂, X₃, X₄) -{5}> l4(X₀, X₁-1, X₂, X₃, X₄) :|: X₃+1 < X₁ ∧ 0 < Temp_Int₅₀₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₁₂₅: l4(X₀, X₁, X₂, X₃, X₄) -{3}> l4(X₁, X₁, 1+X₂, 1+X₂, X₄) :|: X₁ ≤ X₃+1 ∧ 1+X₂ < X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₁₂₃: l4(X₀, X₁, X₂, X₃, X₄) -{4}> l4(X₀, X₁, X₂, 1+X₃, X₄) :|: X₃+1 < X₁ ∧ Temp_Int₅₁₄ ≤ 0 ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₄⋅X₄+3⋅X₄ {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l2___6
Found invariant X₀ ≤ X₆ ∧ 0 ≤ X₄ for location l6
Found invariant 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___4
Found invariant 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___5
Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___8
Found invariant 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l2___3
Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5
Found invariant X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₄ for location l8
Found invariant 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l3___2
Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l3___9
Found invariant X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₀ ≤ X₄ for location l10
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9
Found invariant 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l2___10
Found invariant 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l1___1
Found invariant 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l4___7
knowledge_propagation leads to new time bound 2⋅X₆+3 {O(n)} for transition t₂₂₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___3(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₂ ≤ 1+X₅ ∧ 1+X₅ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1+X₅ < X₁ ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₅ ∧ 1+X₅ ≤ X₁ ∧ X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 3⋅X₆+3 {O(n)} for transition t₂₂₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___10(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: 1+X₅ < X₁ ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 3⋅X₆+3 {O(n)} for transition t₂₂₁: n_l2___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___9(X₀, X₁, X₂, X₃, X₄, X₂-1, X₆) :|: 1+X₅ < X₁ ∧ X₂ ≤ X₅+1 ∧ X₂ ≤ X₅+1 ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₀ ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₆+3 {O(n)} for transition t₂₂₂: n_l2___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___2(X₀, X₁, X₂, X₃, X₄, X₂-1, X₆) :|: 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 1+X₅ < X₁ ∧ X₂ ≤ X₅+1 ∧ X₂ ≤ X₅+1 ∧ X₀ ≤ X₆ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₀ ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₅ ≤ X₂ ∧ 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₆+3 {O(n)} for transition t₂₂₄: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___1(X₀, X₁, X₂, NoDet0, Arg4_P, X₂-1, Arg6_P) :|: 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ X₂ ≤ X₅+1 ∧ X₀ ≤ Arg6_P ∧ 1+Arg4_P ≤ X₂ ∧ 0 ≤ Arg4_P ∧ X₂ ≤ X₅+1 ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₅ ≤ X₂ ∧ 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound 3⋅X₆+3 {O(n)} for transition t₂₂₆: n_l3___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___8(X₀, X₁, X₂, NoDet0, Arg4_P, X₂-1, Arg6_P) :|: X₂ ≤ X₅+1 ∧ X₀ ≤ Arg6_P ∧ 1+Arg4_P ≤ X₂ ∧ 0 ≤ Arg4_P ∧ X₂ ≤ X₅+1 ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ 2+X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₆+3 {O(n)} for transition t₂₃₇: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound 3⋅X₆+3 {O(n)} for transition t₂₃₉: n_l1___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₆+3 {O(n)} for transition t₂₁₈: n_l1___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___7(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: 1+X₁ ≤ X₀ ∧ X₂ ≤ X₅+1 ∧ X₃ ≤ 0 ∧ X₂ ≤ X₅+1 ∧ X₀ ≤ X₆ ∧ 2+X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₀ ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₅ ≤ X₂ ∧ 3 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 5 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 3+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀
knowledge_propagation leads to new time bound 3⋅X₆+3 {O(n)} for transition t₂₂₀: n_l1___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___7(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₂ ≤ X₅+1 ∧ X₃ ≤ 0 ∧ X₂ ≤ X₅+1 ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ 2+X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₀ ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₂₁₉: n_l1___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___7(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: 1+X₄ ≤ X₅ ∧ X₂ ≤ X₅+1 ∧ X₃ ≤ 0 ∧ X₂ ≤ X₅+1 ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₀ ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₅ ≤ X₂ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
14⋅X₆⋅X₆+24⋅X₆ {O(n^2)}
MPRF for transition t₂₂₃: n_l2___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₂-1, X₆) :|: X₃ ≤ 0 ∧ 1+X₅ < X₁ ∧ 1+X₄ ≤ X₅ ∧ X₂ ≤ X₅+1 ∧ X₂ ≤ X₅+1 ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₀ ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₅ ≤ X₂ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
12⋅X₆⋅X₆+17⋅X₆ {O(n^2)}
MPRF for transition t₂₂₅: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___4(X₀, X₁, X₂, NoDet0, Arg4_P, X₂-1, Arg6_P) :|: X₃ ≤ 0 ∧ 1+X₄ ≤ X₅ ∧ X₂ ≤ X₅+1 ∧ X₀ ≤ Arg6_P ∧ 1+Arg4_P ≤ X₂ ∧ 0 ≤ Arg4_P ∧ X₂ ≤ X₅+1 ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₅ ≤ X₂ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 3+X₃ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 2+X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁ ∧ 3+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
7⋅X₆⋅X₆+11⋅X₆ {O(n^2)}
MPRF for transition t₂₂₉: n_l4___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___6(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₅ ∧ X₅ ≤ X₂ ∧ 1+X₄ ≤ X₅ ∧ X₃ ≤ 0 ∧ 1+X₅ < X₁ ∧ X₀ ≤ X₆ ∧ X₁ ≤ X₀ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₅ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₆ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₅ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
20⋅X₆⋅X₆+26⋅X₆ {O(n^2)}
MPRF for transition t₂₃₆: n_l4___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₅+1, X₃, X₄, X₅, X₆) :|: X₁ ≤ X₅+1 ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 2+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁ ∧ 1+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₆ {O(n)}
MPRF for transition t₂₃₈: n_l1___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 4 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 2+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 2+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 6 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁ ∧ 2+X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ X₂ ≤ 1+X₅ ∧ 4 ≤ X₁+X₅ ∧ 4 ≤ X₀+X₅ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 3+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
2⋅X₆ {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:6⋅X₆⋅X₆+11⋅X₆+9 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₆ {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₆⋅X₆+X₆ {O(n^2)}
t₅: X₆+1 {O(n)}
t₆: X₆⋅X₆+2⋅X₆+1 {O(n^2)}
t₈: 2⋅X₆⋅X₆+X₆ {O(n^2)}
t₉: X₆ {O(n)}
t₁₀: X₆⋅X₆+X₆ {O(n^2)}
t₁₁: 2⋅X₆+3 {O(n)}
t₁₂: X₆ {O(n)}
t₁₃: 1 {O(1)}
Costbounds
Overall costbound: 6⋅X₆⋅X₆+11⋅X₆+9 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₆ {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₆⋅X₆+X₆ {O(n^2)}
t₅: X₆+1 {O(n)}
t₆: X₆⋅X₆+2⋅X₆+1 {O(n^2)}
t₈: 2⋅X₆⋅X₆+X₆ {O(n^2)}
t₉: X₆ {O(n)}
t₁₀: X₆⋅X₆+X₆ {O(n^2)}
t₁₁: 2⋅X₆+3 {O(n)}
t₁₂: X₆ {O(n)}
t₁₃: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₆ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: 0 {O(1)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: X₆ {O(n)}
t₂, X₁: 2⋅X₆ {O(n)}
t₂, X₂: 4⋅X₆⋅X₆+5⋅X₆+X₂+3 {O(n^2)}
t₂, X₄: X₆ {O(n)}
t₂, X₅: X₆ {O(n)}
t₂, X₆: X₆ {O(n)}
t₃, X₀: 2⋅X₆ {O(n)}
t₃, X₁: 6⋅X₆+X₁ {O(n)}
t₃, X₂: 4⋅X₆⋅X₆+5⋅X₆+X₂+3 {O(n^2)}
t₃, X₄: X₆ {O(n)}
t₃, X₅: 4⋅X₆⋅X₆+5⋅X₆+X₅ {O(n^2)}
t₃, X₆: 2⋅X₆ {O(n)}
t₄, X₀: X₆ {O(n)}
t₄, X₁: 2⋅X₆ {O(n)}
t₄, X₂: 2⋅X₆⋅X₆+2⋅X₆ {O(n^2)}
t₄, X₄: X₆ {O(n)}
t₄, X₅: 4⋅X₆⋅X₆+5⋅X₆ {O(n^2)}
t₄, X₆: X₆ {O(n)}
t₅, X₀: X₆ {O(n)}
t₅, X₁: 6⋅X₆ {O(n)}
t₅, X₂: 4⋅X₆⋅X₆+5⋅X₆+3 {O(n^2)}
t₅, X₄: X₆ {O(n)}
t₅, X₅: 4⋅X₆⋅X₆+5⋅X₆ {O(n^2)}
t₅, X₆: X₆ {O(n)}
t₆, X₀: X₆ {O(n)}
t₆, X₁: 2⋅X₆ {O(n)}
t₆, X₂: 2⋅X₆⋅X₆+2⋅X₆ {O(n^2)}
t₆, X₄: X₆ {O(n)}
t₆, X₅: 4⋅X₆⋅X₆+5⋅X₆ {O(n^2)}
t₆, X₆: X₆ {O(n)}
t₈, X₀: X₆ {O(n)}
t₈, X₁: 2⋅X₆ {O(n)}
t₈, X₂: 2⋅X₆⋅X₆+2⋅X₆ {O(n^2)}
t₈, X₄: X₆ {O(n)}
t₈, X₅: 4⋅X₆⋅X₆+5⋅X₆ {O(n^2)}
t₈, X₆: X₆ {O(n)}
t₉, X₀: X₆ {O(n)}
t₉, X₁: 2⋅X₆ {O(n)}
t₉, X₂: 2⋅X₆⋅X₆+2⋅X₆ {O(n^2)}
t₉, X₄: X₆ {O(n)}
t₉, X₅: 4⋅X₆⋅X₆+5⋅X₆ {O(n^2)}
t₉, X₆: X₆ {O(n)}
t₁₀, X₀: X₆ {O(n)}
t₁₀, X₁: 2⋅X₆ {O(n)}
t₁₀, X₂: 2⋅X₆⋅X₆+2⋅X₆ {O(n^2)}
t₁₀, X₄: X₆ {O(n)}
t₁₀, X₅: 2⋅X₆⋅X₆+2⋅X₆ {O(n^2)}
t₁₀, X₆: X₆ {O(n)}
t₁₁, X₀: X₆ {O(n)}
t₁₁, X₁: 2⋅X₆ {O(n)}
t₁₁, X₂: 2⋅X₆⋅X₆+2⋅X₆ {O(n^2)}
t₁₁, X₄: X₆ {O(n)}
t₁₁, X₅: 2⋅X₆⋅X₆+2⋅X₆ {O(n^2)}
t₁₁, X₆: X₆ {O(n)}
t₁₂, X₀: X₆ {O(n)}
t₁₂, X₁: 6⋅X₆ {O(n)}
t₁₂, X₂: 4⋅X₆⋅X₆+5⋅X₆+3 {O(n^2)}
t₁₂, X₄: X₆ {O(n)}
t₁₂, X₅: 4⋅X₆⋅X₆+5⋅X₆ {O(n^2)}
t₁₂, X₆: X₆ {O(n)}
t₁₃, X₀: 2⋅X₆ {O(n)}
t₁₃, X₁: 6⋅X₆+X₁ {O(n)}
t₁₃, X₂: 4⋅X₆⋅X₆+5⋅X₆+X₂+3 {O(n^2)}
t₁₃, X₄: X₆ {O(n)}
t₁₃, X₅: 4⋅X₆⋅X₆+5⋅X₆+X₅ {O(n^2)}
t₁₃, X₆: 2⋅X₆ {O(n)}