Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ 0
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₉, X₃, X₀, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₈, X₁₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₁₁
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₁ ≤ 0
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₄
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₁₀, X₄, X₂, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ 0
t₁₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₁, X₁-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂+X₄, X₃, X₄-1, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: (X₃)² ≤ X₅
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ ≤ 0
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < (X₃)² ∧ 0 < X₅
t₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, 2⋅X₃, X₄, 5⋅X₅+(X₄)², X₆, X₇, X₈, X₉, X₁₀, X₁₁)

Preprocessing

Eliminate variables {X₆,X₇} that do not contribute to the problem

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ for location l7

Found invariant 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ for location l5

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1+X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ for location l8

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₁ for location l1

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ for location l4

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂₇: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ ≤ 0 ∧ 1 ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₁
t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₇, X₃, X₀, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₁
t₃₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₃₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₆, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₉
t₃₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₉ ≤ 0
t₃₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₄ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁
t₃₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₈, X₄, X₂, X₆, X₇, X₈, X₉) :|: X₄ ≤ 0 ∧ 1 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁
t₃₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₁, X₁-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁
t₃₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂+X₄, X₃, X₄-1, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: (X₃)² ≤ X₅ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁
t₃₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁
t₃₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < (X₃)² ∧ 0 < X₅ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁
t₄₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, 2⋅X₃, X₄, 5⋅X₅+(X₄)², X₆, X₇, X₈, X₉) :|: 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1+X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁

MPRF for transition t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₇, X₃, X₀, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₁ of depth 1:

new bound:

X₉+1 {O(n)}

MPRF for transition t₃₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₈, X₄, X₂, X₆, X₇, X₈, X₉) :|: X₄ ≤ 0 ∧ 1 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₉ {O(n)}

MPRF for transition t₃₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₁, X₁-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₉ {O(n)}

MPRF for transition t₃₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: (X₃)² ≤ X₅ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₉ {O(n)}

MPRF for transition t₃₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₉ {O(n)}

TWN: t₃₃: l4→l6

cycle: [t₃₃: l4→l6; t₃₆: l6→l4]
loop: (0 < X₄,(X₄) -> (X₄-1)
order: [X₄]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}

TWN - Lifting for t₃₃: l4→l6 of 2⋅X₄+4 {O(n)}

relevant size-bounds w.r.t. t₂₉:
X₄: 2⋅X₉+X₆ {O(n)}
Runtime-bound of t₂₉: X₉+1 {O(n)}
Results in: 2⋅X₆⋅X₉+4⋅X₉⋅X₉+2⋅X₆+8⋅X₉+4 {O(n^2)}

TWN: t₃₆: l6→l4

TWN - Lifting for t₃₆: l6→l4 of 2⋅X₄+4 {O(n)}

relevant size-bounds w.r.t. t₂₉:
X₄: 2⋅X₉+X₆ {O(n)}
Runtime-bound of t₂₉: X₉+1 {O(n)}
Results in: 2⋅X₆⋅X₉+4⋅X₉⋅X₉+2⋅X₆+8⋅X₉+4 {O(n^2)}

TWN: t₃₉: l7→l8

cycle: [t₃₉: l7→l8; t₄₀: l8→l7]
loop: (X₅ < (X₃)² ∧ 0 < X₅,(X₃,X₄,X₅) -> (2⋅X₃,X₄,5⋅X₅+(X₄)²)
order: [X₃; X₄; X₅]
closed-form:
X₃: X₃ * 2^n
X₄: X₄
X₅: X₅ * 5^n + [[n != 0]] * 1/4⋅(X₄)² * 5^n + [[n != 0]] * -1/4⋅(X₄)²

Termination: true
Formula:

0 < 4⋅X₅+(X₄)² ∧ 4⋅X₅+(X₄)² < 0
∨ 0 < 4⋅X₅+(X₄)² ∧ 0 < 4⋅(X₃)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₅+(X₄)²
∨ 0 < 4⋅X₅+(X₄)² ∧ 0 < (X₄)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₅+(X₄)² ∧ 0 ≤ 4⋅(X₃)² ∧ 4⋅(X₃)² ≤ 0
∨ (X₄)² < 0 ∧ 0 ≤ 4⋅X₅+(X₄)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 4⋅X₅+(X₄)² < 0
∨ (X₄)² < 0 ∧ 0 < 4⋅(X₃)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₅+(X₄)²
∨ (X₄)² < 0 ∧ 0 < (X₄)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₅+(X₄)² ∧ 0 ≤ 4⋅(X₃)² ∧ 4⋅(X₃)² ≤ 0

Stabilization-Threshold for: 0 < X₅
alphas_abs: (X₄)²
M: 0
N: 1
Bound: 2⋅X₄⋅X₄+2 {O(n^2)}
Stabilization-Threshold for: X₅ < (X₃)²
alphas_abs: 4⋅(X₃)²+(X₄)²
M: 11
N: 1
Bound: 2⋅X₄⋅X₄+8⋅X₃⋅X₃+12 {O(n^2)}

TWN - Lifting for t₃₉: l7→l8 of 4⋅X₄⋅X₄+8⋅X₃⋅X₃+16 {O(n^2)}

relevant size-bounds w.r.t. t₃₄:
X₃: 2⋅X₈ {O(n)}
X₄: 2⋅X₆+4⋅X₉ {O(n)}
Runtime-bound of t₃₄: X₉ {O(n)}
Results in: 16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉ {O(n^3)}

TWN: t₄₀: l8→l7

TWN - Lifting for t₄₀: l8→l7 of 4⋅X₄⋅X₄+8⋅X₃⋅X₃+16 {O(n^2)}

relevant size-bounds w.r.t. t₃₄:
X₃: 2⋅X₈ {O(n)}
X₄: 2⋅X₆+4⋅X₉ {O(n)}
Runtime-bound of t₃₄: X₉ {O(n)}
Results in: 16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉ {O(n^3)}

Chain transitions t₃₅: l5→l1 and t₂₉: l1→l4 to t₉₂: l5→l4

Chain transitions t₃₁: l3→l1 and t₂₉: l1→l4 to t₉₃: l3→l4

Chain transitions t₃₁: l3→l1 and t₂₈: l1→l2 to t₉₄: l3→l2

Chain transitions t₃₅: l5→l1 and t₂₈: l1→l2 to t₉₅: l5→l2

Chain transitions t₃₆: l6→l4 and t₃₄: l4→l7 to t₉₆: l6→l7

Chain transitions t₉₂: l5→l4 and t₃₄: l4→l7 to t₉₇: l5→l7

Chain transitions t₉₂: l5→l4 and t₃₃: l4→l6 to t₉₈: l5→l6

Chain transitions t₃₆: l6→l4 and t₃₃: l4→l6 to t₉₉: l6→l6

Chain transitions t₉₃: l3→l4 and t₃₃: l4→l6 to t₁₀₀: l3→l6

Chain transitions t₉₃: l3→l4 and t₃₄: l4→l7 to t₁₀₁: l3→l7

Chain transitions t₃₈: l7→l5 and t₉₇: l5→l7 to t₁₀₂: l7→l7

Chain transitions t₃₇: l7→l5 and t₉₇: l5→l7 to t₁₀₃: l7→l7

Chain transitions t₃₇: l7→l5 and t₉₈: l5→l6 to t₁₀₄: l7→l6

Chain transitions t₃₈: l7→l5 and t₉₈: l5→l6 to t₁₀₅: l7→l6

Chain transitions t₃₇: l7→l5 and t₉₂: l5→l4 to t₁₀₆: l7→l4

Chain transitions t₃₈: l7→l5 and t₉₂: l5→l4 to t₁₀₇: l7→l4

Chain transitions t₃₇: l7→l5 and t₉₅: l5→l2 to t₁₀₈: l7→l2

Chain transitions t₃₈: l7→l5 and t₉₅: l5→l2 to t₁₀₉: l7→l2

Chain transitions t₃₇: l7→l5 and t₃₅: l5→l1 to t₁₁₀: l7→l1

Chain transitions t₃₈: l7→l5 and t₃₅: l5→l1 to t₁₁₁: l7→l1

Chain transitions t₃₉: l7→l8 and t₄₀: l8→l7 to t₁₁₂: l7→l7

Analysing control-flow refined program

Cut unsatisfiable transition t₉₄: l3→l2

Cut unsatisfiable transition t₁₀₂: l7→l7

Cut unsatisfiable transition t₁₀₃: l7→l7

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ for location l7

Found invariant 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ for location l5

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1+X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ for location l8

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₁ for location l1

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ for location l4

MPRF for transition t₉₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) -{2}> l7(X₀, X₁, X₂+X₄, X₈, X₄-1, X₂+X₄, X₆, X₇, X₈, X₉) :|: X₄ ≤ 1 ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂+X₄ ∧ X₄ ≤ X₀+1 ∧ 1 ≤ X₁ ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₉+1 {O(n)}

MPRF for transition t₁₀₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) -{4}> l6(X₁, X₁-1, X₇, X₃, X₁, X₅, X₆, X₇, X₈, X₉) :|: (X₃)² ≤ X₅ ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1 ≤ X₁ ∧ 1 ≤ X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 ≤ X₁ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₉ {O(n)}

MPRF for transition t₁₀₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) -{4}> l6(X₁, X₁-1, X₇, X₃, X₁, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 < X₁ ∧ 0 < X₁ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1 ≤ X₁ ∧ 1 ≤ X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 ≤ X₁ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₉ {O(n)}

TWN: t₉₉: l6→l6

cycle: [t₉₉: l6→l6]
loop: (1 < X₄,(X₄) -> (X₄-1)
order: [X₄]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 1 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 1 < X₄
alphas_abs: 1+X₄
M: 0
N: 1
Bound: 2⋅X₄+4 {O(n)}
loop: (1 < X₄,(X₄) -> (X₄-1)
order: [X₄]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 1 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 1 < X₄
alphas_abs: 1+X₄
M: 0
N: 1
Bound: 2⋅X₄+4 {O(n)}
loop: (1 < X₄,(X₄) -> (X₄-1)
order: [X₄]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 1 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 1 < X₄
alphas_abs: 1+X₄
M: 0
N: 1
Bound: 2⋅X₄+4 {O(n)}

TWN - Lifting for t₉₉: l6→l6 of 2⋅X₄+6 {O(n)}

relevant size-bounds w.r.t. t₁₀₅:
X₄: 5⋅X₉ {O(n)}
Runtime-bound of t₁₀₅: 2⋅X₉ {O(n)}
Results in: 20⋅X₉⋅X₉+12⋅X₉ {O(n^2)}

TWN - Lifting for t₉₉: l6→l6 of 2⋅X₄+6 {O(n)}

relevant size-bounds w.r.t. t₁₀₄:
X₄: 5⋅X₉ {O(n)}
Runtime-bound of t₁₀₄: 2⋅X₉ {O(n)}
Results in: 20⋅X₉⋅X₉+12⋅X₉ {O(n^2)}

TWN - Lifting for t₉₉: l6→l6 of 2⋅X₄+6 {O(n)}

relevant size-bounds w.r.t. t₁₀₀:
X₄: X₆ {O(n)}
Runtime-bound of t₁₀₀: 1 {O(1)}
Results in: 2⋅X₆+6 {O(n)}

TWN: t₁₁₂: l7→l7

cycle: [t₁₁₂: l7→l7]
loop: (X₅ < (X₃)² ∧ 0 < X₅,(X₃,X₄,X₅) -> (2⋅X₃,X₄,5⋅X₅+(X₄)²)
order: [X₃; X₄; X₅]
closed-form:
X₃: X₃ * 2^n
X₄: X₄
X₅: X₅ * 5^n + [[n != 0]] * 1/4⋅(X₄)² * 5^n + [[n != 0]] * -1/4⋅(X₄)²

Termination: true
Formula:

0 < 4⋅X₅+(X₄)² ∧ 4⋅X₅+(X₄)² < 0
∨ 0 < 4⋅X₅+(X₄)² ∧ 0 < 4⋅(X₃)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₅+(X₄)²
∨ 0 < 4⋅X₅+(X₄)² ∧ 0 < (X₄)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₅+(X₄)² ∧ 0 ≤ 4⋅(X₃)² ∧ 4⋅(X₃)² ≤ 0
∨ (X₄)² < 0 ∧ 0 ≤ 4⋅X₅+(X₄)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 4⋅X₅+(X₄)² < 0
∨ (X₄)² < 0 ∧ 0 < 4⋅(X₃)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₅+(X₄)²
∨ (X₄)² < 0 ∧ 0 < (X₄)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₅+(X₄)² ∧ 0 ≤ 4⋅(X₃)² ∧ 4⋅(X₃)² ≤ 0

Stabilization-Threshold for: 0 < X₅
alphas_abs: (X₄)²
M: 0
N: 1
Bound: 2⋅X₄⋅X₄+2 {O(n^2)}
Stabilization-Threshold for: X₅ < (X₃)²
alphas_abs: 4⋅(X₃)²+(X₄)²
M: 11
N: 1
Bound: 2⋅X₄⋅X₄+8⋅X₃⋅X₃+12 {O(n^2)}
loop: (X₅ < (X₃)² ∧ 0 < X₅,(X₃,X₄,X₅) -> (2⋅X₃,X₄,5⋅X₅+(X₄)²)
order: [X₃; X₄; X₅]
closed-form:
X₃: X₃ * 2^n
X₄: X₄
X₅: X₅ * 5^n + [[n != 0]] * 1/4⋅(X₄)² * 5^n + [[n != 0]] * -1/4⋅(X₄)²

Termination: true
Formula:

0 < 4⋅X₅+(X₄)² ∧ 4⋅X₅+(X₄)² < 0
∨ 0 < 4⋅X₅+(X₄)² ∧ 0 < 4⋅(X₃)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₅+(X₄)²
∨ 0 < 4⋅X₅+(X₄)² ∧ 0 < (X₄)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₅+(X₄)² ∧ 0 ≤ 4⋅(X₃)² ∧ 4⋅(X₃)² ≤ 0
∨ (X₄)² < 0 ∧ 0 ≤ 4⋅X₅+(X₄)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 4⋅X₅+(X₄)² < 0
∨ (X₄)² < 0 ∧ 0 < 4⋅(X₃)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₅+(X₄)²
∨ (X₄)² < 0 ∧ 0 < (X₄)² ∧ 4⋅X₅+(X₄)² ≤ 0 ∧ 0 ≤ 4⋅X₅+(X₄)² ∧ 0 ≤ 4⋅(X₃)² ∧ 4⋅(X₃)² ≤ 0

Stabilization-Threshold for: 0 < X₅
alphas_abs: (X₄)²
M: 0
N: 1
Bound: 2⋅X₄⋅X₄+2 {O(n^2)}
Stabilization-Threshold for: X₅ < (X₃)²
alphas_abs: 4⋅(X₃)²+(X₄)²
M: 11
N: 1
Bound: 2⋅X₄⋅X₄+8⋅X₃⋅X₃+12 {O(n^2)}

TWN - Lifting for t₁₁₂: l7→l7 of 4⋅X₄⋅X₄+8⋅X₃⋅X₃+16 {O(n^2)}

relevant size-bounds w.r.t. t₉₆:
X₃: 3⋅X₈ {O(n)}
X₄: 0 {O(1)}
Runtime-bound of t₉₆: 2⋅X₉+1 {O(n)}
Results in: 144⋅X₈⋅X₈⋅X₉+72⋅X₈⋅X₈+32⋅X₉+16 {O(n^3)}

TWN - Lifting for t₁₁₂: l7→l7 of 4⋅X₄⋅X₄+8⋅X₃⋅X₃+16 {O(n^2)}

relevant size-bounds w.r.t. t₁₀₁:
X₃: X₈ {O(n)}
X₄: X₆ {O(n)}
Runtime-bound of t₁₀₁: 1 {O(1)}
Results in: 4⋅X₆⋅X₆+8⋅X₈⋅X₈+16 {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___3

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 3 ≤ X₀+X₉ ∧ 1+X₇ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l6___1

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location n_l8___1

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location n_l8___3

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₇ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___2

Found invariant 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ for location l7

Found invariant 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location n_l7___2

Found invariant 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ for location l5

Found invariant 1 ≤ X₉ ∧ 1 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 0 ≤ X₁ for location l1

Found invariant 1 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ for location l4

knowledge_propagation leads to new time bound X₉+1 {O(n)} for transition t₂₆₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₄ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₉ ∧ 1 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₄ ≤ X₀ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound X₉+1 {O(n)} for transition t₂₆₈: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l4___2(X₀, X₁, X₂+X₄, X₃, X₄-1, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₄ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₉ ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₂₆₅: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₄ ∧ 1+X₄ ≤ X₀ ∧ 1+X₄+X₇ ≤ X₂ ∧ 0 < X₄ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₉ ∧ 1 ≤ X₁ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₉ ∧ 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₇ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₉⋅X₉+X₆⋅X₉+4⋅X₉+X₆+1 {O(n^2)}

MPRF for transition t₂₆₇: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l4___2(X₀, X₁, X₂+X₄, X₃, X₄-1, X₅, X₆, X₇, X₈, X₉) :|: 1+X₄+X₇ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 < X₄ ∧ X₁ ≤ X₉ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₀ ∧ X₁ ≤ X₉ ∧ 1 ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 3 ≤ X₀+X₉ ∧ 1+X₇ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

3⋅X₉⋅X₉+X₆⋅X₉+3⋅X₉+X₆ {O(n^2)}

MPRF for transition t₂₇₂: n_l4___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₈, X₄, X₂, X₆, X₇, X₈, X₉) :|: X₄ ≤ 0 ∧ 1 ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ 1+X₇ ≤ X₂ ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₉+1 {O(n)}

MPRF for transition t₂₈₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l8___3(X₀, X₁, X₂, X₃, X₄, Arg5_P, X₆, Arg7_P, X₈, Arg9_P) :|: X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₂ ≤ Arg5_P ∧ Arg7_P ≤ X₂ ∧ X₁ ≤ Arg9_P ∧ 0 < Arg5_P ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₄ ≤ 0 ∧ X₂ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₁ ≤ X₉ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₇ ≤ X₂ ∧ X₁ ≤ X₉ ∧ X₄ ≤ 0 ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₇ ≤ X₂ ∧ X₁ ≤ X₉ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ 0 ∧ X₄ ≤ 0 ∧ 1 ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₉ {O(n)}

MPRF for transition t₂₈₆: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l7___2(X₀, X₁, X₂, 2⋅X₃, Arg4_P, NoDet0, X₆, Arg7_P, X₈, Arg9_P) :|: 0 < X₂ ∧ X₃ ≤ X₈ ∧ X₈ ≤ X₃ ∧ X₅ ≤ X₂ ∧ Arg4_P ≤ 0 ∧ Arg7_P ≤ X₂ ∧ X₁ ≤ Arg9_P ∧ Arg4_P ≤ X₀ ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₄ ≤ 0 ∧ X₇ ≤ X₂ ∧ X₁ ≤ X₉ ∧ 1 ≤ X₁ ∧ X₄ ≤ X₀ ∧ X₂ ≤ X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₅ ∧ 1 ≤ X₁ ∧ 1 ≤ X₉ ∧ 2 ≤ X₅+X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₈ ≤ X₃ ∧ X₃ ≤ X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 1+X₄ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₉+1 {O(n)}

MPRF for transition t₂₉₁: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: (X₃)² ≤ X₅ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₉ ∧ 1+X₄ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ X₉ ∧ X₇ ≤ X₂ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₉ {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:128⋅X₆⋅X₉⋅X₉+128⋅X₉⋅X₉⋅X₉+32⋅X₆⋅X₆⋅X₉+64⋅X₈⋅X₈⋅X₉+4⋅X₆⋅X₉+8⋅X₉⋅X₉+4⋅X₆+54⋅X₉+14 {O(n^3)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: X₉+1 {O(n)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: 2⋅X₆⋅X₉+4⋅X₉⋅X₉+2⋅X₆+8⋅X₉+4 {O(n^2)}
t₃₄: X₉ {O(n)}
t₃₅: 2⋅X₉ {O(n)}
t₃₆: 2⋅X₆⋅X₉+4⋅X₉⋅X₉+2⋅X₆+8⋅X₉+4 {O(n^2)}
t₃₇: X₉ {O(n)}
t₃₈: X₉ {O(n)}
t₃₉: 16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉ {O(n^3)}
t₄₀: 16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉ {O(n^3)}

Costbounds

Overall costbound: 128⋅X₆⋅X₉⋅X₉+128⋅X₉⋅X₉⋅X₉+32⋅X₆⋅X₆⋅X₉+64⋅X₈⋅X₈⋅X₉+4⋅X₆⋅X₉+8⋅X₉⋅X₉+4⋅X₆+54⋅X₉+14 {O(n^3)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: X₉+1 {O(n)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: 2⋅X₆⋅X₉+4⋅X₉⋅X₉+2⋅X₆+8⋅X₉+4 {O(n^2)}
t₃₄: X₉ {O(n)}
t₃₅: 2⋅X₉ {O(n)}
t₃₆: 2⋅X₆⋅X₉+4⋅X₉⋅X₉+2⋅X₆+8⋅X₉+4 {O(n^2)}
t₃₇: X₉ {O(n)}
t₃₈: X₉ {O(n)}
t₃₉: 16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉ {O(n^3)}
t₄₀: 16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉ {O(n^3)}

Sizebounds

t₂₇, X₀: X₀ {O(n)}
t₂₇, X₁: X₁ {O(n)}
t₂₇, X₂: X₂ {O(n)}
t₂₇, X₃: X₃ {O(n)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₅: X₅ {O(n)}
t₂₇, X₆: X₆ {O(n)}
t₂₇, X₇: X₇ {O(n)}
t₂₇, X₈: X₈ {O(n)}
t₂₇, X₉: X₉ {O(n)}
t₂₈, X₀: 2⋅X₉ {O(n)}
t₂₈, X₁: 0 {O(1)}
t₂₈, X₂: 32⋅X₆⋅X₉⋅X₉+32⋅X₉⋅X₉⋅X₉+8⋅X₆⋅X₆⋅X₉+48⋅X₆⋅X₉+64⋅X₉⋅X₉+8⋅X₆⋅X₆+16⋅X₇+20⋅X₆+40⋅X₉ {O(n^3)}
t₂₈, X₃: 2^(16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉)⋅4⋅X₈+4⋅X₈ {O(EXP)}
t₂₈, X₄: 16⋅X₉+8⋅X₆ {O(n)}
t₂₈, X₆: X₆ {O(n)}
t₂₈, X₇: X₇ {O(n)}
t₂₈, X₈: X₈ {O(n)}
t₂₈, X₉: X₉ {O(n)}
t₂₉, X₀: 2⋅X₉+X₆ {O(n)}
t₂₉, X₁: X₉ {O(n)}
t₂₉, X₂: 2⋅X₇ {O(n)}
t₂₉, X₃: 2^(16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉)⋅4⋅X₈+4⋅X₈+X₃ {O(EXP)}
t₂₉, X₄: 2⋅X₉+X₆ {O(n)}
t₂₉, X₆: X₆ {O(n)}
t₂₉, X₇: X₇ {O(n)}
t₂₉, X₈: X₈ {O(n)}
t₂₉, X₉: X₉ {O(n)}
t₃₀, X₀: 2⋅X₉+X₀ {O(n)}
t₃₀, X₁: X₁ {O(n)}
t₃₀, X₂: 32⋅X₆⋅X₉⋅X₉+32⋅X₉⋅X₉⋅X₉+8⋅X₆⋅X₆⋅X₉+48⋅X₆⋅X₉+64⋅X₉⋅X₉+8⋅X₆⋅X₆+16⋅X₇+20⋅X₆+40⋅X₉+X₂ {O(n^3)}
t₃₀, X₃: 2^(16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉)⋅4⋅X₈+4⋅X₈+X₃ {O(EXP)}
t₃₀, X₄: 16⋅X₉+8⋅X₆+X₄ {O(n)}
t₃₀, X₆: 2⋅X₆ {O(n)}
t₃₀, X₇: 2⋅X₇ {O(n)}
t₃₀, X₈: 2⋅X₈ {O(n)}
t₃₀, X₉: 2⋅X₉ {O(n)}
t₃₁, X₀: X₆ {O(n)}
t₃₁, X₁: X₉ {O(n)}
t₃₁, X₂: X₂ {O(n)}
t₃₁, X₃: X₃ {O(n)}
t₃₁, X₄: X₄ {O(n)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: X₇ {O(n)}
t₃₁, X₈: X₈ {O(n)}
t₃₁, X₉: X₉ {O(n)}
t₃₂, X₀: X₀ {O(n)}
t₃₂, X₁: X₁ {O(n)}
t₃₂, X₂: X₂ {O(n)}
t₃₂, X₃: X₃ {O(n)}
t₃₂, X₄: X₄ {O(n)}
t₃₂, X₅: X₅ {O(n)}
t₃₂, X₆: X₆ {O(n)}
t₃₂, X₇: X₇ {O(n)}
t₃₂, X₈: X₈ {O(n)}
t₃₂, X₉: X₉ {O(n)}
t₃₃, X₀: 2⋅X₉+X₆ {O(n)}
t₃₃, X₁: X₉ {O(n)}
t₃₃, X₂: 2⋅X₆⋅X₆⋅X₉+8⋅X₆⋅X₉⋅X₉+8⋅X₉⋅X₉⋅X₉+12⋅X₆⋅X₉+16⋅X₉⋅X₉+2⋅X₆⋅X₆+10⋅X₉+2⋅X₇+5⋅X₆ {O(n^3)}
t₃₃, X₃: 2^(16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉)⋅4⋅X₈+4⋅X₈+X₃ {O(EXP)}
t₃₃, X₄: 2⋅X₉+X₆ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₃, X₇: X₇ {O(n)}
t₃₃, X₈: X₈ {O(n)}
t₃₃, X₉: X₉ {O(n)}
t₃₄, X₀: 2⋅X₆+4⋅X₉ {O(n)}
t₃₄, X₁: X₉ {O(n)}
t₃₄, X₂: 2⋅X₆⋅X₆⋅X₉+8⋅X₆⋅X₉⋅X₉+8⋅X₉⋅X₉⋅X₉+12⋅X₆⋅X₉+16⋅X₉⋅X₉+2⋅X₆⋅X₆+10⋅X₉+4⋅X₇+5⋅X₆ {O(n^3)}
t₃₄, X₃: 2⋅X₈ {O(n)}
t₃₄, X₄: 2⋅X₆+4⋅X₉ {O(n)}
t₃₄, X₅: 2⋅X₆⋅X₆⋅X₉+8⋅X₆⋅X₉⋅X₉+8⋅X₉⋅X₉⋅X₉+12⋅X₆⋅X₉+16⋅X₉⋅X₉+2⋅X₆⋅X₆+10⋅X₉+4⋅X₇+5⋅X₆ {O(n^3)}
t₃₄, X₆: X₆ {O(n)}
t₃₄, X₇: X₇ {O(n)}
t₃₄, X₈: X₈ {O(n)}
t₃₄, X₉: X₉ {O(n)}
t₃₅, X₀: 2⋅X₉ {O(n)}
t₃₅, X₁: X₉ {O(n)}
t₃₅, X₂: 32⋅X₆⋅X₉⋅X₉+32⋅X₉⋅X₉⋅X₉+8⋅X₆⋅X₆⋅X₉+48⋅X₆⋅X₉+64⋅X₉⋅X₉+8⋅X₆⋅X₆+16⋅X₇+20⋅X₆+40⋅X₉ {O(n^3)}
t₃₅, X₃: 2^(16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉)⋅4⋅X₈+4⋅X₈ {O(EXP)}
t₃₅, X₄: 16⋅X₉+8⋅X₆ {O(n)}
t₃₅, X₆: X₆ {O(n)}
t₃₅, X₇: X₇ {O(n)}
t₃₅, X₈: X₈ {O(n)}
t₃₅, X₉: X₉ {O(n)}
t₃₆, X₀: 2⋅X₉+X₆ {O(n)}
t₃₆, X₁: X₉ {O(n)}
t₃₆, X₂: 2⋅X₆⋅X₆⋅X₉+8⋅X₆⋅X₉⋅X₉+8⋅X₉⋅X₉⋅X₉+12⋅X₆⋅X₉+16⋅X₉⋅X₉+2⋅X₆⋅X₆+10⋅X₉+2⋅X₇+5⋅X₆ {O(n^3)}
t₃₆, X₃: 2^(16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉)⋅4⋅X₈+4⋅X₈+X₃ {O(EXP)}
t₃₆, X₄: 2⋅X₉+X₆ {O(n)}
t₃₆, X₆: X₆ {O(n)}
t₃₆, X₇: X₇ {O(n)}
t₃₆, X₈: X₈ {O(n)}
t₃₆, X₉: X₉ {O(n)}
t₃₇, X₀: 4⋅X₆+8⋅X₉ {O(n)}
t₃₇, X₁: X₉ {O(n)}
t₃₇, X₂: 16⋅X₆⋅X₉⋅X₉+16⋅X₉⋅X₉⋅X₉+4⋅X₆⋅X₆⋅X₉+24⋅X₆⋅X₉+32⋅X₉⋅X₉+4⋅X₆⋅X₆+10⋅X₆+20⋅X₉+8⋅X₇ {O(n^3)}
t₃₇, X₃: 2⋅2^(16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉)⋅X₈+2⋅X₈ {O(EXP)}
t₃₇, X₄: 4⋅X₆+8⋅X₉ {O(n)}
t₃₇, X₆: X₆ {O(n)}
t₃₇, X₇: X₇ {O(n)}
t₃₇, X₈: X₈ {O(n)}
t₃₇, X₉: X₉ {O(n)}
t₃₈, X₀: 4⋅X₆+8⋅X₉ {O(n)}
t₃₈, X₁: X₉ {O(n)}
t₃₈, X₂: 16⋅X₆⋅X₉⋅X₉+16⋅X₉⋅X₉⋅X₉+4⋅X₆⋅X₆⋅X₉+24⋅X₆⋅X₉+32⋅X₉⋅X₉+4⋅X₆⋅X₆+10⋅X₆+20⋅X₉+8⋅X₇ {O(n^3)}
t₃₈, X₃: 2⋅2^(16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉)⋅X₈+2⋅X₈ {O(EXP)}
t₃₈, X₄: 4⋅X₆+8⋅X₉ {O(n)}
t₃₈, X₆: X₆ {O(n)}
t₃₈, X₇: X₇ {O(n)}
t₃₈, X₈: X₈ {O(n)}
t₃₈, X₉: X₉ {O(n)}
t₃₉, X₀: 2⋅X₆+4⋅X₉ {O(n)}
t₃₉, X₁: X₉ {O(n)}
t₃₉, X₂: 2⋅X₆⋅X₆⋅X₉+8⋅X₆⋅X₉⋅X₉+8⋅X₉⋅X₉⋅X₉+12⋅X₆⋅X₉+16⋅X₉⋅X₉+2⋅X₆⋅X₆+10⋅X₉+4⋅X₇+5⋅X₆ {O(n^3)}
t₃₉, X₃: 2⋅2^(16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉)⋅X₈ {O(EXP)}
t₃₉, X₄: 2⋅X₆+4⋅X₉ {O(n)}
t₃₉, X₆: X₆ {O(n)}
t₃₉, X₇: X₇ {O(n)}
t₃₉, X₈: X₈ {O(n)}
t₃₉, X₉: X₉ {O(n)}
t₄₀, X₀: 2⋅X₆+4⋅X₉ {O(n)}
t₄₀, X₁: X₉ {O(n)}
t₄₀, X₂: 2⋅X₆⋅X₆⋅X₉+8⋅X₆⋅X₉⋅X₉+8⋅X₉⋅X₉⋅X₉+12⋅X₆⋅X₉+16⋅X₉⋅X₉+2⋅X₆⋅X₆+10⋅X₉+4⋅X₇+5⋅X₆ {O(n^3)}
t₄₀, X₃: 2⋅2^(16⋅X₆⋅X₆⋅X₉+32⋅X₈⋅X₈⋅X₉+64⋅X₆⋅X₉⋅X₉+64⋅X₉⋅X₉⋅X₉+16⋅X₉)⋅X₈ {O(EXP)}
t₄₀, X₄: 2⋅X₆+4⋅X₉ {O(n)}
t₄₀, X₆: X₆ {O(n)}
t₄₀, X₇: X₇ {O(n)}
t₄₀, X₈: X₈ {O(n)}
t₄₀, X₉: X₉ {O(n)}