Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₂, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇, X₈, X₉)
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ < 0
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ < 0
t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₀ ∧ 0 ≤ X₁
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₇, 0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ < 0
t₁₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₁₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ < X₃
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ X₇
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₀-1, X₃, X₃, X₅, X₆, X₇, X₈, X₉)
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₀, X₃, X₁, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < 0
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₅
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇, X₈, X₉)
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉)
Preprocessing
Eliminate variables {X₈,X₉} that do not contribute to the problem
Found invariant X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ for location l11
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l2
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ for location l13
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l1
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l10
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l9
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l3
Found invariant X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₄₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₂, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < 0 ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁
t₄₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 0 ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁
t₄₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁
t₅₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₇, 0, X₂, X₃, X₄, X₅, X₆, X₇)
t₅₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₇ ∧ 0 ≤ 1+X₁
t₅₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₀-1, X₃, X₃, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₀, X₃, X₁, X₅, X₆, X₇) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 0 < X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₆₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₅₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₇+1 {O(n)}
MPRF for transition t₅₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₇+1 {O(n)}
MPRF for transition t₅₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₀-1, X₃, X₃, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₇+1 {O(n)}
MPRF for transition t₅₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₇+1 {O(n)}
MPRF for transition t₆₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 0 < X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₇+1 {O(n)}
MPRF for transition t₄₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃+1, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₇⋅X₇+12⋅X₇+10 {O(n^2)}
MPRF for transition t₅₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₇⋅X₇+6⋅X₇+8 {O(n^2)}
MPRF for transition t₅₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₇⋅X₇+13⋅X₇+12 {O(n^2)}
MPRF for transition t₅₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
7⋅X₇⋅X₇+25⋅X₇+16 {O(n^2)}
MPRF for transition t₆₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
7⋅X₇⋅X₇+26⋅X₇+18 {O(n^2)}
MPRF for transition t₆₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
7⋅X₇⋅X₇+28⋅X₇+22 {O(n^2)}
MPRF for transition t₄₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₂, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
21⋅X₇⋅X₇⋅X₇⋅X₇+168⋅X₇⋅X₇⋅X₇+493⋅X₇⋅X₇+628⋅X₇+287 {O(n^4)}
MPRF for transition t₄₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ of depth 1:
new bound:
21⋅X₇⋅X₇⋅X₇⋅X₇+168⋅X₇⋅X₇⋅X₇+493⋅X₇⋅X₇+628⋅X₇+288 {O(n^4)}
MPRF for transition t₅₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₀, X₃, X₁, X₅, X₆, X₇) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
21⋅X₇⋅X₇⋅X₇⋅X₇+175⋅X₇⋅X₇⋅X₇+528⋅X₇⋅X₇+679⋅X₇+309 {O(n^4)}
MPRF for transition t₆₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
21⋅X₇⋅X₇⋅X₇⋅X₇+175⋅X₇⋅X₇⋅X₇+528⋅X₇⋅X₇+679⋅X₇+310 {O(n^4)}
MPRF for transition t₆₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
21⋅X₇⋅X₇⋅X₇⋅X₇+175⋅X₇⋅X₇⋅X₇+528⋅X₇⋅X₇+679⋅X₇+310 {O(n^4)}
Chain transitions t₅₈: l5→l1 and t₄₅: l1→l11 to t₁₈₀: l5→l11
Chain transitions t₅₇: l4→l1 and t₄₅: l1→l11 to t₁₈₁: l4→l11
Chain transitions t₅₃: l2→l10 and t₄₆: l10→l3 to t₁₈₂: l2→l3
Chain transitions t₅₂: l2→l10 and t₄₆: l10→l3 to t₁₈₃: l2→l3
Chain transitions t₁₈₀: l5→l11 and t₄₉: l11→l6 to t₁₈₄: l5→l6
Chain transitions t₁₈₁: l4→l11 and t₄₉: l11→l6 to t₁₈₅: l4→l6
Chain transitions t₁₈₁: l4→l11 and t₄₈: l11→l13 to t₁₈₆: l4→l13
Chain transitions t₁₈₀: l5→l11 and t₄₈: l11→l13 to t₁₈₇: l5→l13
Chain transitions t₅₀: l12→l11 and t₄₈: l11→l13 to t₁₈₈: l12→l13
Chain transitions t₅₀: l12→l11 and t₄₉: l11→l6 to t₁₈₉: l12→l6
Chain transitions t₅₀: l12→l11 and t₄₇: l11→l13 to t₁₉₀: l12→l13
Chain transitions t₁₈₁: l4→l11 and t₄₇: l11→l13 to t₁₉₁: l4→l13
Chain transitions t₁₈₀: l5→l11 and t₄₇: l11→l13 to t₁₉₂: l5→l13
Chain transitions t₆₄: l9→l2 and t₅₄: l2→l4 to t₁₉₃: l9→l4
Chain transitions t₆₄: l9→l2 and t₁₈₃: l2→l3 to t₁₉₄: l9→l3
Chain transitions t₆₄: l9→l2 and t₁₈₂: l2→l3 to t₁₉₅: l9→l3
Chain transitions t₆₄: l9→l2 and t₅₃: l2→l10 to t₁₉₆: l9→l10
Chain transitions t₆₄: l9→l2 and t₅₂: l2→l10 to t₁₉₇: l9→l10
Chain transitions t₁₉₅: l9→l3 and t₅₆: l3→l8 to t₁₉₈: l9→l8
Chain transitions t₁₉₄: l9→l3 and t₅₆: l3→l8 to t₁₉₉: l9→l8
Chain transitions t₁₉₄: l9→l3 and t₅₅: l3→l4 to t₂₀₀: l9→l4
Chain transitions t₁₉₅: l9→l3 and t₅₅: l3→l4 to t₂₀₁: l9→l4
Chain transitions t₆₀: l5→l3 and t₅₅: l3→l4 to t₂₀₂: l5→l4
Chain transitions t₆₀: l5→l3 and t₅₆: l3→l8 to t₂₀₃: l5→l8
Chain transitions t₅₉: l5→l3 and t₅₅: l3→l4 to t₂₀₄: l5→l4
Chain transitions t₅₉: l5→l3 and t₅₆: l3→l8 to t₂₀₅: l5→l8
Chain transitions t₂₀₁: l9→l4 and t₁₈₅: l4→l6 to t₂₀₆: l9→l6
Chain transitions t₂₀₀: l9→l4 and t₁₈₅: l4→l6 to t₂₀₇: l9→l6
Chain transitions t₂₀₀: l9→l4 and t₁₉₁: l4→l13 to t₂₀₈: l9→l13
Chain transitions t₂₀₁: l9→l4 and t₁₉₁: l4→l13 to t₂₀₉: l9→l13
Chain transitions t₁₉₃: l9→l4 and t₁₉₁: l4→l13 to t₂₁₀: l9→l13
Chain transitions t₁₉₃: l9→l4 and t₁₈₅: l4→l6 to t₂₁₁: l9→l6
Chain transitions t₁₉₃: l9→l4 and t₁₈₆: l4→l13 to t₂₁₂: l9→l13
Chain transitions t₂₀₀: l9→l4 and t₁₈₆: l4→l13 to t₂₁₃: l9→l13
Chain transitions t₂₀₁: l9→l4 and t₁₈₆: l4→l13 to t₂₁₄: l9→l13
Chain transitions t₂₀₄: l5→l4 and t₁₈₆: l4→l13 to t₂₁₅: l5→l13
Chain transitions t₂₀₄: l5→l4 and t₁₉₁: l4→l13 to t₂₁₆: l5→l13
Chain transitions t₂₀₄: l5→l4 and t₁₈₅: l4→l6 to t₂₁₇: l5→l6
Chain transitions t₂₀₄: l5→l4 and t₁₈₁: l4→l11 to t₂₁₈: l5→l11
Chain transitions t₁₉₃: l9→l4 and t₁₈₁: l4→l11 to t₂₁₉: l9→l11
Chain transitions t₂₀₀: l9→l4 and t₁₈₁: l4→l11 to t₂₂₀: l9→l11
Chain transitions t₂₀₁: l9→l4 and t₁₈₁: l4→l11 to t₂₂₁: l9→l11
Chain transitions t₂₀₂: l5→l4 and t₁₈₁: l4→l11 to t₂₂₂: l5→l11
Chain transitions t₂₀₂: l5→l4 and t₁₈₆: l4→l13 to t₂₂₃: l5→l13
Chain transitions t₂₀₂: l5→l4 and t₁₉₁: l4→l13 to t₂₂₄: l5→l13
Chain transitions t₂₀₂: l5→l4 and t₁₈₅: l4→l6 to t₂₂₅: l5→l6
Chain transitions t₂₀₂: l5→l4 and t₅₇: l4→l1 to t₂₂₆: l5→l1
Chain transitions t₂₀₄: l5→l4 and t₅₇: l4→l1 to t₂₂₇: l5→l1
Chain transitions t₁₉₃: l9→l4 and t₅₇: l4→l1 to t₂₂₈: l9→l1
Chain transitions t₂₀₀: l9→l4 and t₅₇: l4→l1 to t₂₂₉: l9→l1
Chain transitions t₂₀₁: l9→l4 and t₅₇: l4→l1 to t₂₃₀: l9→l1
Chain transitions t₆₂: l7→l5 and t₂₀₅: l5→l8 to t₂₃₁: l7→l8
Chain transitions t₆₂: l7→l5 and t₂₀₃: l5→l8 to t₂₃₂: l7→l8
Chain transitions t₆₂: l7→l5 and t₂₂₅: l5→l6 to t₂₃₃: l7→l6
Chain transitions t₆₂: l7→l5 and t₂₁₇: l5→l6 to t₂₃₄: l7→l6
Chain transitions t₆₂: l7→l5 and t₁₈₄: l5→l6 to t₂₃₅: l7→l6
Chain transitions t₆₂: l7→l5 and t₂₀₄: l5→l4 to t₂₃₆: l7→l4
Chain transitions t₆₂: l7→l5 and t₂₀₂: l5→l4 to t₂₃₇: l7→l4
Chain transitions t₆₂: l7→l5 and t₆₀: l5→l3 to t₂₃₈: l7→l3
Chain transitions t₆₂: l7→l5 and t₅₉: l5→l3 to t₂₃₉: l7→l3
Chain transitions t₆₂: l7→l5 and t₂₂₄: l5→l13 to t₂₄₀: l7→l13
Chain transitions t₆₂: l7→l5 and t₂₂₃: l5→l13 to t₂₄₁: l7→l13
Chain transitions t₆₂: l7→l5 and t₂₁₆: l5→l13 to t₂₄₂: l7→l13
Chain transitions t₆₂: l7→l5 and t₂₁₅: l5→l13 to t₂₄₃: l7→l13
Chain transitions t₆₂: l7→l5 and t₁₉₂: l5→l13 to t₂₄₄: l7→l13
Chain transitions t₆₂: l7→l5 and t₁₈₇: l5→l13 to t₂₄₅: l7→l13
Chain transitions t₆₂: l7→l5 and t₂₂₂: l5→l11 to t₂₄₆: l7→l11
Chain transitions t₆₂: l7→l5 and t₂₁₈: l5→l11 to t₂₄₇: l7→l11
Chain transitions t₆₂: l7→l5 and t₁₈₀: l5→l11 to t₂₄₈: l7→l11
Chain transitions t₆₂: l7→l5 and t₂₂₇: l5→l1 to t₂₄₉: l7→l1
Chain transitions t₆₂: l7→l5 and t₂₂₆: l5→l1 to t₂₅₀: l7→l1
Chain transitions t₆₂: l7→l5 and t₅₈: l5→l1 to t₂₅₁: l7→l1
Chain transitions t₂₁₁: l9→l6 and t₆₁: l6→l7 to t₂₅₂: l9→l7
Chain transitions t₂₀₇: l9→l6 and t₆₁: l6→l7 to t₂₅₃: l9→l7
Chain transitions t₂₀₆: l9→l6 and t₆₁: l6→l7 to t₂₅₄: l9→l7
Chain transitions t₂₃₅: l7→l6 and t₆₁: l6→l7 to t₂₅₅: l7→l7
Chain transitions t₂₃₄: l7→l6 and t₆₁: l6→l7 to t₂₅₆: l7→l7
Chain transitions t₂₃₃: l7→l6 and t₆₁: l6→l7 to t₂₅₇: l7→l7
Chain transitions t₁₈₉: l12→l6 and t₆₁: l6→l7 to t₂₅₈: l12→l7
Chain transitions t₁₉₉: l9→l8 and t₆₃: l8→l9 to t₂₅₉: l9→l9
Chain transitions t₁₉₈: l9→l8 and t₆₃: l8→l9 to t₂₆₀: l9→l9
Chain transitions t₂₃₂: l7→l8 and t₆₃: l8→l9 to t₂₆₁: l7→l9
Chain transitions t₂₃₁: l7→l8 and t₆₃: l8→l9 to t₂₆₂: l7→l9
Analysing control-flow refined program
Cut unsatisfiable transition t₁₈₈: l12→l13
Cut unsatisfiable transition t₂₁₃: l9→l13
Cut unsatisfiable transition t₂₁₄: l9→l13
Cut unsatisfiable transition t₂₄₁: l7→l13
Cut unsatisfiable transition t₂₄₃: l7→l13
Cut unsatisfiable transition t₂₄₄: l7→l13
Eliminate variables {X₂,X₄,X₅,X₆} that do not contribute to the problem
Found invariant X₀ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l11
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l2
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant X₀ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l13
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l1
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l10
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l9
Found invariant 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l3
Found invariant X₀ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l14
Cut unsatisfiable transition t₄₀₀: l7→l1
Cut unsatisfiable transition t₄₀₁: l7→l1
Cut unsatisfiable transition t₄₀₃: l7→l11
Cut unsatisfiable transition t₄₀₄: l7→l11
Cut unsatisfiable transition t₄₀₆: l7→l13
Cut unsatisfiable transition t₄₀₇: l7→l13
Cut unsatisfiable transition t₄₁₁: l7→l4
Cut unsatisfiable transition t₄₁₂: l7→l4
Cut unsatisfiable transition t₄₁₄: l7→l6
Cut unsatisfiable transition t₄₁₅: l7→l6
Cut unsatisfiable transition t₄₁₈: l7→l7
Cut unsatisfiable transition t₄₁₉: l7→l7
MPRF for transition t₄₂₂: l7(X₀, X₁, X₂, X₃) -{4}> l9(X₀, X₁, X₁, X₃) :|: 0 < nondef.0 ∧ X₁ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₄₂₃: l7(X₀, X₁, X₂, X₃) -{4}> l9(X₀, X₁, X₁, X₃) :|: nondef.0 < 0 ∧ X₁ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₄₄₅: l9(X₀, X₁, X₂, X₃) -{6}> l7(X₀-1, X₂-1, X₂, X₃) :|: nondef.1 ≤ 0 ∧ 0 ≤ nondef.1 ∧ 1 ≤ X₀ ∧ 1 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₄₄₆: l9(X₀, X₁, X₂, X₃) -{8}> l7(X₀-1, X₂, 1+X₂, X₃) :|: nondef.1 < 0 ∧ X₃ < X₂+1 ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₄₄₇: l9(X₀, X₁, X₂, X₃) -{8}> l7(X₀-1, X₂, 1+X₂, X₃) :|: 0 < nondef.1 ∧ X₃ < X₂+1 ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₄₁₇: l7(X₀, X₁, X₂, X₃) -{5}> l7(X₀, X₁-1, X₂, X₃) :|: nondef.0 ≤ 0 ∧ 0 ≤ nondef.0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
6⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
MPRF for transition t₄₅₀: l9(X₀, X₁, X₂, X₃) -{5}> l9(X₀, X₁, 1+X₂, X₃) :|: nondef.1 < 0 ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₃⋅X₃+7⋅X₃+4 {O(n^2)}
MPRF for transition t₄₅₁: l9(X₀, X₁, X₂, X₃) -{5}> l9(X₀, X₁, 1+X₂, X₃) :|: 0 < nondef.1 ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₃⋅X₃+7⋅X₃+4 {O(n^2)}
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₄₈: l11→l13
Cut unsatisfiable transition t₈₈₈: n_l11___7→l13
Found invariant X₇ ≤ X₀ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ for location l11
Found invariant 0 ≤ X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ 0 ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l10___8
Found invariant X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___3
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___6
Found invariant X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___1
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l9___10
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___9
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l8___11
Found invariant 1 ≤ X₇ ∧ 2+X₆ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1+X₆ ≤ 0 ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₁ ∧ 1+X₆ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l10___2
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l9___4
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l10___1
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ 0 ≤ 1+X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ 0 ≤ 1+X₀ for location n_l11___12
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l8___5
Found invariant 0 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ X₃ ≤ 1+X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l3___6
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l1___8
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l2___3
Found invariant 0 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___4
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___10
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ 1+X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 1+X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀ for location n_l11___7
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l2___9
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___11
Found invariant X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___2
Found invariant X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ for location l13
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l1
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___5
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l3
Found invariant 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l10___7
Found invariant X₀ ≤ X₇ ∧ 0 ≤ 1+X₁ for location l14
knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₈₆₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___12(X₂, X₄-1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₇ ∧ X₀ ≤ 1+X₂ ∧ X₂ ≤ X₀ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₀ ≤ 1+X₂ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₈₅₈: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₇ ∧ 0 ≤ X₄ ∧ 0 ≤ 1+X₀ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 1+X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ 0 ≤ 1+X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ 1+X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 2+X₁+X₂ ∧ 0 ≤ 2+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 2+X₀+X₁ ∧ 0 ≤ 1+X₀
knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₈₆₆: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₈₆₉: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___9(X₀, X₁, X₂, X₃, X₄, NoDet0, X₆, Arg7_P) :|: 1+X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₀ ≤ Arg7_P ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₈₈₃: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₈₈₆: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₁, X₄, X₅, X₆, X₇) :|: 0 < X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₇+1 {O(n)} for transition t₈₆₅: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₀, X₃, X₁, 0, X₆, X₇) :|: 1+X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ X₁+1 ≤ X₄ ∧ X₄ ≤ 1+X₁ ∧ X₀ ≤ X₂ ∧ X₂ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
All Bounds
Timebounds
Overall timebound:105⋅X₇⋅X₇⋅X₇⋅X₇+861⋅X₇⋅X₇⋅X₇+2598⋅X₇⋅X₇+3408⋅X₇+1600 {O(n^4)}
t₄₄: 1 {O(1)}
t₄₅: 21⋅X₇⋅X₇⋅X₇⋅X₇+168⋅X₇⋅X₇⋅X₇+493⋅X₇⋅X₇+628⋅X₇+287 {O(n^4)}
t₄₆: 3⋅X₇⋅X₇+12⋅X₇+10 {O(n^2)}
t₄₇: 1 {O(1)}
t₄₈: 1 {O(1)}
t₄₉: 21⋅X₇⋅X₇⋅X₇⋅X₇+168⋅X₇⋅X₇⋅X₇+493⋅X₇⋅X₇+628⋅X₇+288 {O(n^4)}
t₅₀: 1 {O(1)}
t₅₁: 1 {O(1)}
t₅₂: X₇⋅X₇+6⋅X₇+8 {O(n^2)}
t₅₃: 3⋅X₇⋅X₇+13⋅X₇+12 {O(n^2)}
t₅₄: X₇+1 {O(n)}
t₅₅: X₇+1 {O(n)}
t₅₆: 7⋅X₇⋅X₇+25⋅X₇+16 {O(n^2)}
t₅₇: X₇+1 {O(n)}
t₅₈: 21⋅X₇⋅X₇⋅X₇⋅X₇+175⋅X₇⋅X₇⋅X₇+528⋅X₇⋅X₇+679⋅X₇+309 {O(n^4)}
t₅₉: X₇+1 {O(n)}
t₆₀: X₇+1 {O(n)}
t₆₁: 21⋅X₇⋅X₇⋅X₇⋅X₇+175⋅X₇⋅X₇⋅X₇+528⋅X₇⋅X₇+679⋅X₇+310 {O(n^4)}
t₆₂: 21⋅X₇⋅X₇⋅X₇⋅X₇+175⋅X₇⋅X₇⋅X₇+528⋅X₇⋅X₇+679⋅X₇+310 {O(n^4)}
t₆₃: 7⋅X₇⋅X₇+26⋅X₇+18 {O(n^2)}
t₆₄: 7⋅X₇⋅X₇+28⋅X₇+22 {O(n^2)}
Costbounds
Overall costbound: 105⋅X₇⋅X₇⋅X₇⋅X₇+861⋅X₇⋅X₇⋅X₇+2598⋅X₇⋅X₇+3408⋅X₇+1600 {O(n^4)}
t₄₄: 1 {O(1)}
t₄₅: 21⋅X₇⋅X₇⋅X₇⋅X₇+168⋅X₇⋅X₇⋅X₇+493⋅X₇⋅X₇+628⋅X₇+287 {O(n^4)}
t₄₆: 3⋅X₇⋅X₇+12⋅X₇+10 {O(n^2)}
t₄₇: 1 {O(1)}
t₄₈: 1 {O(1)}
t₄₉: 21⋅X₇⋅X₇⋅X₇⋅X₇+168⋅X₇⋅X₇⋅X₇+493⋅X₇⋅X₇+628⋅X₇+288 {O(n^4)}
t₅₀: 1 {O(1)}
t₅₁: 1 {O(1)}
t₅₂: X₇⋅X₇+6⋅X₇+8 {O(n^2)}
t₅₃: 3⋅X₇⋅X₇+13⋅X₇+12 {O(n^2)}
t₅₄: X₇+1 {O(n)}
t₅₅: X₇+1 {O(n)}
t₅₆: 7⋅X₇⋅X₇+25⋅X₇+16 {O(n^2)}
t₅₇: X₇+1 {O(n)}
t₅₈: 21⋅X₇⋅X₇⋅X₇⋅X₇+175⋅X₇⋅X₇⋅X₇+528⋅X₇⋅X₇+679⋅X₇+309 {O(n^4)}
t₅₉: X₇+1 {O(n)}
t₆₀: X₇+1 {O(n)}
t₆₁: 21⋅X₇⋅X₇⋅X₇⋅X₇+175⋅X₇⋅X₇⋅X₇+528⋅X₇⋅X₇+679⋅X₇+310 {O(n^4)}
t₆₂: 21⋅X₇⋅X₇⋅X₇⋅X₇+175⋅X₇⋅X₇⋅X₇+528⋅X₇⋅X₇+679⋅X₇+310 {O(n^4)}
t₆₃: 7⋅X₇⋅X₇+26⋅X₇+18 {O(n^2)}
t₆₄: 7⋅X₇⋅X₇+28⋅X₇+22 {O(n^2)}
Sizebounds
t₄₄, X₀: X₀ {O(n)}
t₄₄, X₁: X₁ {O(n)}
t₄₄, X₂: X₂ {O(n)}
t₄₄, X₃: X₃ {O(n)}
t₄₄, X₄: X₄ {O(n)}
t₄₄, X₅: X₅ {O(n)}
t₄₄, X₆: X₆ {O(n)}
t₄₄, X₇: X₇ {O(n)}
t₄₅, X₀: X₇+1 {O(n)}
t₄₅, X₁: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₄₅, X₂: 3⋅X₇+5 {O(n)}
t₄₅, X₃: 6⋅X₇⋅X₇+24⋅X₇+X₃+22 {O(n^2)}
t₄₅, X₄: 6⋅X₇⋅X₇+24⋅X₇+22 {O(n^2)}
t₄₅, X₇: X₇ {O(n)}
t₄₆, X₀: X₇+1 {O(n)}
t₄₆, X₁: 6⋅X₇⋅X₇+24⋅X₇+22 {O(n^2)}
t₄₆, X₂: 2⋅X₂+6⋅X₇+10 {O(n)}
t₄₆, X₃: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₄₆, X₄: 12⋅X₇⋅X₇+2⋅X₄+48⋅X₇+44 {O(n^2)}
t₄₆, X₇: X₇ {O(n)}
t₄₇, X₀: 2⋅X₇+1 {O(n)}
t₄₇, X₁: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₄₇, X₂: 3⋅X₇+X₂+5 {O(n)}
t₄₇, X₃: 6⋅X₇⋅X₇+2⋅X₃+24⋅X₇+22 {O(n^2)}
t₄₇, X₄: 6⋅X₇⋅X₇+24⋅X₇+X₄+22 {O(n^2)}
t₄₇, X₇: 2⋅X₇ {O(n)}
t₄₈, X₀: X₇+1 {O(n)}
t₄₈, X₁: 1 {O(1)}
t₄₈, X₂: 3⋅X₇+5 {O(n)}
t₄₈, X₃: 6⋅X₇⋅X₇+24⋅X₇+X₃+22 {O(n^2)}
t₄₈, X₄: 6⋅X₇⋅X₇+24⋅X₇+22 {O(n^2)}
t₄₈, X₇: X₇ {O(n)}
t₄₉, X₀: X₇+1 {O(n)}
t₄₉, X₁: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₄₉, X₂: 3⋅X₇+X₂+5 {O(n)}
t₄₉, X₃: 6⋅X₇⋅X₇+24⋅X₇+X₃+22 {O(n^2)}
t₄₉, X₄: 6⋅X₇⋅X₇+24⋅X₇+X₄+22 {O(n^2)}
t₄₉, X₇: X₇ {O(n)}
t₅₀, X₀: X₇ {O(n)}
t₅₀, X₁: 0 {O(1)}
t₅₀, X₂: X₂ {O(n)}
t₅₀, X₃: X₃ {O(n)}
t₅₀, X₄: X₄ {O(n)}
t₅₀, X₅: X₅ {O(n)}
t₅₀, X₆: X₆ {O(n)}
t₅₀, X₇: X₇ {O(n)}
t₅₁, X₀: 3⋅X₇+2 {O(n)}
t₅₁, X₁: 3⋅X₇⋅X₇+12⋅X₇+12 {O(n^2)}
t₅₁, X₂: 6⋅X₇+X₂+10 {O(n)}
t₅₁, X₃: 12⋅X₇⋅X₇+3⋅X₃+48⋅X₇+44 {O(n^2)}
t₅₁, X₄: 12⋅X₇⋅X₇+48⋅X₇+X₄+44 {O(n^2)}
t₅₁, X₇: 3⋅X₇ {O(n)}
t₅₂, X₀: X₇+1 {O(n)}
t₅₂, X₁: 6⋅X₇⋅X₇+24⋅X₇+22 {O(n^2)}
t₅₂, X₂: 2⋅X₂+6⋅X₇+10 {O(n)}
t₅₂, X₃: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₅₂, X₄: 12⋅X₇⋅X₇+2⋅X₄+48⋅X₇+44 {O(n^2)}
t₅₂, X₇: X₇ {O(n)}
t₅₃, X₀: X₇+1 {O(n)}
t₅₃, X₁: 6⋅X₇⋅X₇+24⋅X₇+22 {O(n^2)}
t₅₃, X₂: 2⋅X₂+6⋅X₇+10 {O(n)}
t₅₃, X₃: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₅₃, X₄: 12⋅X₇⋅X₇+2⋅X₄+48⋅X₇+44 {O(n^2)}
t₅₃, X₇: X₇ {O(n)}
t₅₄, X₀: X₇+1 {O(n)}
t₅₄, X₁: 6⋅X₇⋅X₇+24⋅X₇+22 {O(n^2)}
t₅₄, X₂: 2⋅X₂+6⋅X₇+10 {O(n)}
t₅₄, X₃: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₅₄, X₄: 12⋅X₇⋅X₇+2⋅X₄+48⋅X₇+44 {O(n^2)}
t₅₄, X₆: 0 {O(1)}
t₅₄, X₇: X₇ {O(n)}
t₅₅, X₀: X₇+1 {O(n)}
t₅₅, X₁: 12⋅X₇⋅X₇+48⋅X₇+44 {O(n^2)}
t₅₅, X₂: 12⋅X₇+4⋅X₂+20 {O(n)}
t₅₅, X₃: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₅₅, X₄: 24⋅X₇⋅X₇+4⋅X₄+96⋅X₇+88 {O(n^2)}
t₅₅, X₇: X₇ {O(n)}
t₅₆, X₀: X₇+1 {O(n)}
t₅₆, X₁: 6⋅X₇⋅X₇+24⋅X₇+22 {O(n^2)}
t₅₆, X₂: 2⋅X₂+6⋅X₇+10 {O(n)}
t₅₆, X₃: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₅₆, X₄: 12⋅X₇⋅X₇+2⋅X₄+48⋅X₇+44 {O(n^2)}
t₅₆, X₇: X₇ {O(n)}
t₅₇, X₀: X₇+1 {O(n)}
t₅₇, X₁: 18⋅X₇⋅X₇+72⋅X₇+66 {O(n^2)}
t₅₇, X₂: 2⋅X₇+4 {O(n)}
t₅₇, X₃: 6⋅X₇⋅X₇+24⋅X₇+22 {O(n^2)}
t₅₇, X₄: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₅₇, X₇: X₇ {O(n)}
t₅₈, X₀: X₇+1 {O(n)}
t₅₈, X₁: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₅₈, X₂: X₇+1 {O(n)}
t₅₈, X₃: 6⋅X₇⋅X₇+24⋅X₇+X₃+22 {O(n^2)}
t₅₈, X₄: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₅₈, X₅: 0 {O(1)}
t₅₈, X₇: X₇ {O(n)}
t₅₉, X₀: X₇+1 {O(n)}
t₅₉, X₁: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₅₉, X₂: 3⋅X₇+X₂+5 {O(n)}
t₅₉, X₃: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₅₉, X₄: 6⋅X₇⋅X₇+24⋅X₇+X₄+22 {O(n^2)}
t₅₉, X₇: X₇ {O(n)}
t₆₀, X₀: X₇+1 {O(n)}
t₆₀, X₁: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₆₀, X₂: 3⋅X₇+X₂+5 {O(n)}
t₆₀, X₃: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₆₀, X₄: 6⋅X₇⋅X₇+24⋅X₇+X₄+22 {O(n^2)}
t₆₀, X₇: X₇ {O(n)}
t₆₁, X₀: X₇+1 {O(n)}
t₆₁, X₁: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₆₁, X₂: 3⋅X₇+X₂+5 {O(n)}
t₆₁, X₃: 6⋅X₇⋅X₇+24⋅X₇+X₃+22 {O(n^2)}
t₆₁, X₄: 6⋅X₇⋅X₇+24⋅X₇+X₄+22 {O(n^2)}
t₆₁, X₇: X₇ {O(n)}
t₆₂, X₀: X₇+1 {O(n)}
t₆₂, X₁: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₆₂, X₂: 3⋅X₇+X₂+5 {O(n)}
t₆₂, X₃: 6⋅X₇⋅X₇+24⋅X₇+X₃+22 {O(n^2)}
t₆₂, X₄: 6⋅X₇⋅X₇+24⋅X₇+X₄+22 {O(n^2)}
t₆₂, X₇: X₇ {O(n)}
t₆₃, X₀: X₇+1 {O(n)}
t₆₃, X₁: 6⋅X₇⋅X₇+24⋅X₇+22 {O(n^2)}
t₆₃, X₂: 2⋅X₂+6⋅X₇+10 {O(n)}
t₆₃, X₃: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₆₃, X₄: 12⋅X₇⋅X₇+2⋅X₄+48⋅X₇+44 {O(n^2)}
t₆₃, X₇: X₇ {O(n)}
t₆₄, X₀: X₇+1 {O(n)}
t₆₄, X₁: 6⋅X₇⋅X₇+24⋅X₇+22 {O(n^2)}
t₆₄, X₂: 2⋅X₂+6⋅X₇+10 {O(n)}
t₆₄, X₃: 3⋅X₇⋅X₇+12⋅X₇+11 {O(n^2)}
t₆₄, X₄: 12⋅X₇⋅X₇+2⋅X₄+48⋅X₇+44 {O(n^2)}
t₆₄, X₇: X₇ {O(n)}