Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆
t₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇)
t₁₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇)
t₂₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1)
t₂₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂
t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₃, X₃, X₆, X₇) :|: 0 < X₃
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄
t₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 0
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₆)
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)

Preprocessing

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l11

Found invariant X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l6

Found invariant X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l12

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l7

Found invariant X₇ ≤ 1+X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l5

Found invariant X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l13

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l8

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l1

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l10

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l9

Found invariant X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location l3

Found invariant X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₁₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁
t₂₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₃, X₃, X₆, X₇) :|: 0 < X₃
t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ X₇ ≤ 1+X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₇ ≤ 1+X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 0 ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃

MPRF for transition t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

2⋅X₃ {O(n)}

MPRF for transition t₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₄-1, X₂, X₃, X₄, X₅, X₆, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

2⋅X₃ {O(n)}

MPRF for transition t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₃ < X₇ ∧ X₇ ≤ 1+X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

2⋅X₃ {O(n)}

MPRF for transition t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₁, X₇, X₆, X₇) :|: X₂ ≤ 0 ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

2⋅X₃ {O(n)}

MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

16⋅X₃⋅X₃+24⋅X₃+2 {O(n^2)}

MPRF for transition t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

12⋅X₃⋅X₃+19⋅X₃+2 {O(n^2)}

MPRF for transition t₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

16⋅X₃⋅X₃+24⋅X₃+3 {O(n^2)}

MPRF for transition t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:

new bound:

4⋅X₃⋅X₃+9⋅X₃+2 {O(n^2)}

MPRF for transition t₁₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

12⋅X₃⋅X₃+19⋅X₃+2 {O(n^2)}

MPRF for transition t₁₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ X₇ ≤ 1+X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

4⋅X₃⋅X₃+13⋅X₃+3 {O(n^2)}

MPRF for transition t₁₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

4⋅X₃⋅X₃+9⋅X₃+2 {O(n^2)}

MPRF for transition t₁₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

12⋅X₃⋅X₃+3⋅X₃ {O(n^2)}

MPRF for transition t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

8⋅X₃⋅X₃+10⋅X₃+2 {O(n^2)}

MPRF for transition t₂₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ of depth 1:

new bound:

4⋅X₃⋅X₃+9⋅X₃+2 {O(n^2)}

Chain transitions t₃: l6→l1 and t₅: l1→l9 to t₁₉₄: l6→l9

Chain transitions t₁₂: l11→l1 and t₅: l1→l9 to t₁₉₅: l11→l9

Chain transitions t₁₂: l11→l1 and t₆: l1→l8 to t₁₉₆: l11→l8

Chain transitions t₃: l6→l1 and t₆: l1→l8 to t₁₉₇: l6→l8

Chain transitions t₇: l9→l10 and t₉: l10→l7 to t₁₉₈: l9→l7

Chain transitions t₁₀: l7→l11 and t₁₉₅: l11→l9 to t₁₉₉: l7→l9

Chain transitions t₁₀: l7→l11 and t₁₉₆: l11→l8 to t₂₀₀: l7→l8

Chain transitions t₁₀: l7→l11 and t₁₂: l11→l1 to t₂₀₁: l7→l1

Chain transitions t₁₄: l5→l12 and t₁₆: l12→l13 to t₂₀₂: l5→l13

Chain transitions t₂₀₂: l5→l13 and t₁₈: l13→l3 to t₂₀₃: l5→l3

Chain transitions t₁₉: l3→l14 and t₂₁: l14→l5 to t₂₀₄: l3→l5

Chain transitions t₂₀₃: l5→l3 and t₂₀: l3→l6 to t₂₀₅: l5→l6

Chain transitions t₂₀₃: l5→l3 and t₂₀₄: l3→l5 to t₂₀₆: l5→l5

Chain transitions t₂₀₃: l5→l3 and t₁₉: l3→l14 to t₂₀₇: l5→l14

Chain transitions t₂₀₅: l5→l6 and t₁₉₄: l6→l9 to t₂₀₈: l5→l9

Chain transitions t₁₅: l5→l6 and t₁₉₄: l6→l9 to t₂₀₉: l5→l9

Chain transitions t₁₅: l5→l6 and t₁₉₇: l6→l8 to t₂₁₀: l5→l8

Chain transitions t₂₀₅: l5→l6 and t₁₉₇: l6→l8 to t₂₁₁: l5→l8

Chain transitions t₂: l4→l6 and t₁₉₇: l6→l8 to t₂₁₂: l4→l8

Chain transitions t₂: l4→l6 and t₁₉₄: l6→l9 to t₂₁₃: l4→l9

Chain transitions t₂: l4→l6 and t₄: l6→l2 to t₂₁₄: l4→l2

Chain transitions t₁₅: l5→l6 and t₄: l6→l2 to t₂₁₅: l5→l2

Chain transitions t₂₀₅: l5→l6 and t₄: l6→l2 to t₂₁₆: l5→l2

Chain transitions t₂: l4→l6 and t₃: l6→l1 to t₂₁₇: l4→l1

Chain transitions t₁₅: l5→l6 and t₃: l6→l1 to t₂₁₈: l5→l1

Chain transitions t₂₀₅: l5→l6 and t₃: l6→l1 to t₂₁₉: l5→l1

Chain transitions t₁₉₈: l9→l7 and t₁₉₉: l7→l9 to t₂₂₀: l9→l9

Chain transitions t₁₉₈: l9→l7 and t₂₀₀: l7→l8 to t₂₂₁: l9→l8

Chain transitions t₁₉₈: l9→l7 and t₁₁: l7→l8 to t₂₂₂: l9→l8

Chain transitions t₁₉₈: l9→l7 and t₁₀: l7→l11 to t₂₂₃: l9→l11

Chain transitions t₁₉₈: l9→l7 and t₂₀₁: l7→l1 to t₂₂₄: l9→l1

Chain transitions t₂₂₂: l9→l8 and t₁₃: l8→l5 to t₂₂₅: l9→l5

Chain transitions t₂₂₁: l9→l8 and t₁₃: l8→l5 to t₂₂₆: l9→l5

Chain transitions t₂₁₁: l5→l8 and t₁₃: l8→l5 to t₂₂₇: l5→l5

Chain transitions t₂₁₀: l5→l8 and t₁₃: l8→l5 to t₂₂₈: l5→l5

Chain transitions t₂₁₂: l4→l8 and t₁₃: l8→l5 to t₂₂₉: l4→l5

Analysing control-flow refined program

Cut unsatisfiable transition t₂₁₀: l5→l8

Cut unsatisfiable transition t₂₁₂: l4→l8

Cut unsatisfiable transition t₂₁₄: l4→l2

Cut unsatisfiable transition t₂₂₈: l5→l5

Cut unsatisfiable transition t₂₂₉: l4→l5

Eliminate variables {X₀,X₂} that do not contribute to the problem

Found invariant X₄ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l11

Found invariant X₃ ≤ 1+X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ 1+X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l6

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ for location l12

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l7

Found invariant X₅ ≤ 1+X₁ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ for location l5

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ for location l13

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₃ ≤ 1+X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l8

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₃ ≤ 1+X₁ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l1

Found invariant X₄ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l10

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l9

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ for location l3

Found invariant X₅ ≤ X₁ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ for location l14

MPRF for transition t₂₉₅: l5(X₀, X₁, X₂, X₃, X₄, X₅) -{7}> l5(X₀-1, X₁, X₀, X₅, X₅, X₅) :|: X₅ ≤ X₁ ∧ Temp_Int₁₃₇₆ ≤ 0 ∧ 0 ≤ X₀ ∧ X₅ < 0 ∧ X₅ ≤ 1+X₁ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ of depth 1:

new bound:

X₁ {O(n)}

MPRF for transition t₂₉₉: l5(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l9(X₀, X₁, X₀, X₅, X₅, X₅) :|: X₅ ≤ X₁ ∧ Temp_Int₁₃₇₆ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF for transition t₃₀₀: l5(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l9(X₀, X₁, X₀, X₅, X₅, X₅) :|: X₁ < X₅ ∧ 0 ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1+X₁ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF for transition t₃₀₄: l9(X₀, X₁, X₂, X₃, X₄, X₅) -{4}> l5(X₂-1, X₁, X₂, X₃, X₄, X₄) :|: Temp_Int₁₃₃₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF for transition t₃₀₅: l9(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l5(X₂-1, X₁, X₂, X₃, X₄-1, X₄-1) :|: 0 < Temp_Int₁₃₃₄ ∧ X₄ < 1 ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₁+1 {O(n)}

MPRF for transition t₂₉₄: l5(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l5(X₀, X₁, X₂, X₃, X₄, X₅+1) :|: X₅ ≤ X₁ ∧ 0 < Temp_Int₁₃₇₆ ∧ X₅ ≤ 1+X₁ ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ 1+X₀ of depth 1:

new bound:

6⋅X₁⋅X₁+11⋅X₁+3 {O(n^2)}

MPRF for transition t₃₀₉: l9(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l9(X₀, X₁, X₂, X₃, X₄-1, X₅) :|: 0 < Temp_Int₁₃₃₄ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 1+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

2⋅X₁⋅X₁+11⋅X₁+8 {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₅₇₄: n_l1___3→l8

Cut unsatisfiable transition t₅₇₅: n_l1___32→l8

Cut unsatisfiable transition t₅₇₆: n_l1___9→l8

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l5___20

Found invariant X₅ ≤ X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l6

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2+X₁ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location n_l1___9

Found invariant X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 0 ≤ 1+X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ 2+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ 2+X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l6___13

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l3___17

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l12___19

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l1___32

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2+X₁ ≤ X₆ ∧ 3 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l11___5

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l9___31

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l13___18

Found invariant X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l14___10

Found invariant X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2+X₁ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location n_l7___6

Found invariant X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ 1+X₁ for location n_l3___11

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ 2+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l14___16

Found invariant 1+X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l10___24

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ 1+X₇ ∧ 0 ≤ 2+X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 2+X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₂ ≤ 1+X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₂ ≤ 1+X₆ ∧ 0 ≤ 1+X₁+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₂ ≤ 1+X₅ ∧ 0 ≤ 1+X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₂ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₁ ∧ 0 ≤ X₁ for location n_l1___1

Found invariant 1+X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l8___21

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l11___28

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l10___30

Found invariant X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l12___14

Found invariant 1+X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l9___25

Found invariant 1+X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l11___22

Found invariant X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l13___12

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₀ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ X₀ ≤ 0 for location n_l8___27

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l7___29

Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l1___26

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 3+X₁ ≤ X₇ ∧ 2+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 3+X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 3+X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 1+X₁ ∧ X₀ ≤ 1+X₁ ∧ X₀ ≤ 0 for location n_l5___2

Found invariant X₇ ≤ 1+X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ 1+X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ 2+X₁+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ 2+X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ 1+X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ 1+X₁ for location n_l5___15

Found invariant 1+X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location n_l7___23

Found invariant 1+X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 0 ≤ 1+X₆ ∧ 0 ≤ 2+X₅+X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ 1+X₃ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l8

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ 2+X₀ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2+X₁ ≤ X₆ ∧ 2+X₀ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 2+X₀ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l8___4

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2+X₁ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location n_l9___8

Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2+X₄ ≤ X₇ ∧ 3 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2+X₁ ≤ X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1+X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2+X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2+X₁ ≤ X₆ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 1+X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location n_l10___7

All Bounds

Timebounds

Overall timebound:92⋅X₃⋅X₃+149⋅X₃+27 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₃+1 {O(n)}
t₄: 1 {O(1)}
t₅: 16⋅X₃⋅X₃+24⋅X₃+2 {O(n^2)}
t₆: X₃+1 {O(n)}
t₇: 12⋅X₃⋅X₃+19⋅X₃+2 {O(n^2)}
t₉: 16⋅X₃⋅X₃+24⋅X₃+3 {O(n^2)}
t₁₀: 4⋅X₃⋅X₃+9⋅X₃+2 {O(n^2)}
t₁₁: 2⋅X₃ {O(n)}
t₁₂: 12⋅X₃⋅X₃+19⋅X₃+2 {O(n^2)}
t₁₃: 2⋅X₃ {O(n)}
t₁₄: 4⋅X₃⋅X₃+13⋅X₃+3 {O(n^2)}
t₁₅: 2⋅X₃ {O(n)}
t₁₆: 4⋅X₃⋅X₃+9⋅X₃+2 {O(n^2)}
t₁₈: 12⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₉: 8⋅X₃⋅X₃+10⋅X₃+2 {O(n^2)}
t₂₀: 2⋅X₃ {O(n)}
t₂₁: 4⋅X₃⋅X₃+9⋅X₃+2 {O(n^2)}
t₂₂: 1 {O(1)}

Costbounds

Overall costbound: 92⋅X₃⋅X₃+149⋅X₃+27 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₃+1 {O(n)}
t₄: 1 {O(1)}
t₅: 16⋅X₃⋅X₃+24⋅X₃+2 {O(n^2)}
t₆: X₃+1 {O(n)}
t₇: 12⋅X₃⋅X₃+19⋅X₃+2 {O(n^2)}
t₉: 16⋅X₃⋅X₃+24⋅X₃+3 {O(n^2)}
t₁₀: 4⋅X₃⋅X₃+9⋅X₃+2 {O(n^2)}
t₁₁: 2⋅X₃ {O(n)}
t₁₂: 12⋅X₃⋅X₃+19⋅X₃+2 {O(n^2)}
t₁₃: 2⋅X₃ {O(n)}
t₁₄: 4⋅X₃⋅X₃+13⋅X₃+3 {O(n^2)}
t₁₅: 2⋅X₃ {O(n)}
t₁₆: 4⋅X₃⋅X₃+9⋅X₃+2 {O(n^2)}
t₁₈: 12⋅X₃⋅X₃+3⋅X₃ {O(n^2)}
t₁₉: 8⋅X₃⋅X₃+10⋅X₃+2 {O(n^2)}
t₂₀: 2⋅X₃ {O(n)}
t₂₁: 4⋅X₃⋅X₃+9⋅X₃+2 {O(n^2)}
t₂₂: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₃ {O(n)}
t₂, X₅: X₃ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₃, X₁: 3⋅X₃+X₁+3 {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₃+1 {O(n)}
t₃, X₅: 8⋅X₃⋅X₃+21⋅X₃+8 {O(n^2)}
t₃, X₆: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₃, X₇: 12⋅X₃⋅X₃+30⋅X₃+X₇+12 {O(n^2)}
t₄, X₁: 3⋅X₃+3 {O(n)}
t₄, X₃: 2⋅X₃ {O(n)}
t₄, X₄: 1 {O(1)}
t₄, X₅: 8⋅X₃⋅X₃+20⋅X₃+8 {O(n^2)}
t₄, X₆: 12⋅X₃⋅X₃+30⋅X₃+15 {O(n^2)}
t₄, X₇: 12⋅X₃⋅X₃+30⋅X₃+12 {O(n^2)}
t₅, X₁: 3⋅X₃+X₁+3 {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: X₃+1 {O(n)}
t₅, X₅: 8⋅X₃⋅X₃+21⋅X₃+8 {O(n^2)}
t₅, X₆: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₅, X₇: 12⋅X₃⋅X₃+30⋅X₃+X₇+12 {O(n^2)}
t₆, X₁: 2⋅X₁+6⋅X₃+6 {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: X₃+1 {O(n)}
t₆, X₅: 16⋅X₃⋅X₃+42⋅X₃+16 {O(n^2)}
t₆, X₆: 1 {O(1)}
t₆, X₇: 24⋅X₃⋅X₃+2⋅X₇+60⋅X₃+24 {O(n^2)}
t₇, X₁: 3⋅X₃+X₁+3 {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₃+1 {O(n)}
t₇, X₅: 8⋅X₃⋅X₃+21⋅X₃+8 {O(n^2)}
t₇, X₆: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₇, X₇: 12⋅X₃⋅X₃+30⋅X₃+X₇+12 {O(n^2)}
t₉, X₁: 3⋅X₃+X₁+3 {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₃+1 {O(n)}
t₉, X₅: 8⋅X₃⋅X₃+21⋅X₃+8 {O(n^2)}
t₉, X₆: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₉, X₇: 12⋅X₃⋅X₃+30⋅X₃+X₇+12 {O(n^2)}
t₁₀, X₁: 3⋅X₃+X₁+3 {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₃+1 {O(n)}
t₁₀, X₅: 8⋅X₃⋅X₃+21⋅X₃+8 {O(n^2)}
t₁₀, X₆: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₁₀, X₇: 12⋅X₃⋅X₃+30⋅X₃+X₇+12 {O(n^2)}
t₁₁, X₁: 3⋅X₃+X₁+3 {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₃+1 {O(n)}
t₁₁, X₅: 8⋅X₃⋅X₃+21⋅X₃+8 {O(n^2)}
t₁₁, X₆: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₁₁, X₇: 12⋅X₃⋅X₃+30⋅X₃+X₇+12 {O(n^2)}
t₁₂, X₁: 3⋅X₃+X₁+3 {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₄: X₃+1 {O(n)}
t₁₂, X₅: 8⋅X₃⋅X₃+21⋅X₃+8 {O(n^2)}
t₁₂, X₆: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₁₂, X₇: 12⋅X₃⋅X₃+30⋅X₃+X₇+12 {O(n^2)}
t₁₃, X₁: X₃+1 {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: 2⋅X₃+2 {O(n)}
t₁₃, X₅: 24⋅X₃⋅X₃+63⋅X₃+24 {O(n^2)}
t₁₃, X₆: 4⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}
t₁₃, X₇: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₁₄, X₁: X₃+1 {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: 2⋅X₃+2 {O(n)}
t₁₄, X₅: 24⋅X₃⋅X₃+63⋅X₃+24 {O(n^2)}
t₁₄, X₆: 4⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}
t₁₄, X₇: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₁₅, X₁: 2⋅X₃+2 {O(n)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₄: X₃+1 {O(n)}
t₁₅, X₅: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₁₅, X₆: 8⋅X₃⋅X₃+20⋅X₃+10 {O(n^2)}
t₁₅, X₇: 8⋅X₃⋅X₃+20⋅X₃+8 {O(n^2)}
t₁₆, X₁: X₃+1 {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: 2⋅X₃+2 {O(n)}
t₁₆, X₅: 24⋅X₃⋅X₃+63⋅X₃+24 {O(n^2)}
t₁₆, X₆: 4⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}
t₁₆, X₇: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₁₈, X₁: X₃+1 {O(n)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₄: 2⋅X₃+2 {O(n)}
t₁₈, X₅: 24⋅X₃⋅X₃+63⋅X₃+24 {O(n^2)}
t₁₈, X₆: 4⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}
t₁₈, X₇: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₁₉, X₁: X₃+1 {O(n)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: 2⋅X₃+2 {O(n)}
t₁₉, X₅: 24⋅X₃⋅X₃+63⋅X₃+24 {O(n^2)}
t₁₉, X₆: 4⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}
t₁₉, X₇: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₂₀, X₁: X₃+1 {O(n)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₄: X₃+1 {O(n)}
t₂₀, X₅: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₂₀, X₆: 4⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}
t₂₀, X₇: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₂₁, X₁: X₃+1 {O(n)}
t₂₁, X₃: X₃ {O(n)}
t₂₁, X₄: 2⋅X₃+2 {O(n)}
t₂₁, X₅: 24⋅X₃⋅X₃+63⋅X₃+24 {O(n^2)}
t₂₁, X₆: 4⋅X₃⋅X₃+10⋅X₃+5 {O(n^2)}
t₂₁, X₇: 4⋅X₃⋅X₃+10⋅X₃+4 {O(n^2)}
t₂₂, X₁: 3⋅X₃+X₁+3 {O(n)}
t₂₂, X₃: 3⋅X₃ {O(n)}
t₂₂, X₄: X₄+1 {O(n)}
t₂₂, X₅: 8⋅X₃⋅X₃+20⋅X₃+X₅+8 {O(n^2)}
t₂₂, X₆: 12⋅X₃⋅X₃+30⋅X₃+X₆+15 {O(n^2)}
t₂₂, X₇: 12⋅X₃⋅X₃+30⋅X₃+X₇+12 {O(n^2)}