Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l10(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₃ < 2
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: 2 ≤ X₃
t₁₄: l10(X₀, X₁, X₂, X₃, X₄, X₅) → l11(X₀, X₁, X₂, X₃, X₄, X₅)
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₀
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₅
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₀-1, X₅+1-X₀, X₅)
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅)
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, nondef.0, X₂, X₃, X₄, X₅)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅-1)
t₁: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₂, X₂, X₅)
t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₃-1, X₁, X₂, X₃, X₄, X₄+X₃-1)
Preprocessing
Found invariant X₃ ≤ 1 ∧ X₃ ≤ X₂ for location l11
Found invariant 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l2
Found invariant 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l6
Found invariant 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l5
Found invariant X₃ ≤ X₂ for location l1
Found invariant X₃ ≤ 1 ∧ X₃ ≤ X₂ for location l10
Found invariant X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l4
Found invariant X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location l9
Found invariant X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l8(X₀, X₁, X₂, X₃, X₄, X₅)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l10(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₃ < 2 ∧ X₃ ≤ X₂
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: 2 ≤ X₃ ∧ X₃ ≤ X₂
t₁₄: l10(X₀, X₁, X₂, X₃, X₄, X₅) → l11(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₃ ≤ 1 ∧ X₃ ≤ X₂
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₀ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₀-1, X₅+1-X₀, X₅) :|: X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, nondef.0, X₂, X₃, X₄, X₅) :|: 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅-1) :|: 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁: l8(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₂, X₂, X₅)
t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₃-1, X₁, X₂, X₃, X₄, X₄+X₃-1) :|: X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2 ≤ X₂
MPRF for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l9(X₀, X₁, X₂, X₃, X₄, X₅) :|: 2 ≤ X₃ ∧ X₃ ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₄: l9(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₃-1, X₁, X₂, X₃, X₄, X₄+X₃-1) :|: X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂ {O(n)}
MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ < X₀ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₂+2 {O(n)}
MPRF for transition t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, nondef.0, X₂, X₃, X₄, X₅) :|: 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+1 {O(n)}
MPRF for transition t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅) :|: 0 < X₁ ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₂+1 {O(n)}
MPRF for transition t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ 0 ∧ 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF for transition t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅-1) :|: 1 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂ {O(n)}
MPRF for transition t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀, X₁, X₂, X₀-1, X₅+1-X₀, X₅) :|: X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂ {O(n)}
All Bounds
Timebounds
Overall timebound:20⋅X₂+12 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₂+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₂+1 {O(n)}
t₅: 2⋅X₂ {O(n)}
t₆: X₂ {O(n)}
t₇: 4⋅X₂+2 {O(n)}
t₉: 2⋅X₂+1 {O(n)}
t₁₀: 3⋅X₂+1 {O(n)}
t₁₁: 2⋅X₂+2 {O(n)}
t₁₂: 2⋅X₂ {O(n)}
t₁₃: 2⋅X₂ {O(n)}
t₁₄: 1 {O(1)}
Costbounds
Overall costbound: 20⋅X₂+12 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₂+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₂+1 {O(n)}
t₅: 2⋅X₂ {O(n)}
t₆: X₂ {O(n)}
t₇: 4⋅X₂+2 {O(n)}
t₉: 2⋅X₂+1 {O(n)}
t₁₀: 3⋅X₂+1 {O(n)}
t₁₁: 2⋅X₂+2 {O(n)}
t₁₂: 2⋅X₂ {O(n)}
t₁₃: 2⋅X₂ {O(n)}
t₁₄: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₂ {O(n)}
t₁, X₄: X₂ {O(n)}
t₁, X₅: X₅ {O(n)}
t₂, X₀: 2⋅X₂+X₀ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₂ {O(n)}
t₂, X₄: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₂, X₅: 10⋅X₂⋅X₂+10⋅X₂+X₅ {O(n^2)}
t₃, X₀: 2⋅X₂+X₀ {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₂ {O(n)}
t₃, X₄: 5⋅X₂⋅X₂+6⋅X₂ {O(n^2)}
t₃, X₅: 10⋅X₂⋅X₂+10⋅X₂+X₅ {O(n^2)}
t₄, X₀: X₂ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₂ {O(n)}
t₄, X₄: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₄, X₅: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₅, X₀: X₂ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₂ {O(n)}
t₅, X₄: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₅, X₅: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₆, X₀: X₂ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: 2⋅X₂ {O(n)}
t₆, X₄: 10⋅X₂⋅X₂+10⋅X₂ {O(n^2)}
t₆, X₅: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₇, X₀: X₂ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₂ {O(n)}
t₇, X₄: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₇, X₅: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₉, X₀: X₂ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₂ {O(n)}
t₉, X₄: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₉, X₅: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₁₀, X₀: X₂ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₂ {O(n)}
t₁₀, X₄: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₁₀, X₅: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₁₁, X₀: X₂ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₂ {O(n)}
t₁₁, X₄: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₁₁, X₅: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₁₂, X₀: X₂ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₂ {O(n)}
t₁₂, X₄: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₁₂, X₅: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₁₃, X₀: 2⋅X₂ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₂ {O(n)}
t₁₃, X₄: 5⋅X₂⋅X₂+5⋅X₂ {O(n^2)}
t₁₃, X₅: 10⋅X₂⋅X₂+10⋅X₂ {O(n^2)}
t₁₄, X₀: 2⋅X₂+X₀ {O(n)}
t₁₄, X₂: 2⋅X₂ {O(n)}
t₁₄, X₃: 2⋅X₂ {O(n)}
t₁₄, X₄: 5⋅X₂⋅X₂+6⋅X₂ {O(n^2)}
t₁₄, X₅: 10⋅X₂⋅X₂+10⋅X₂+X₅ {O(n^2)}