Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₅: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₀
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ < X₃
t₁₀: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)
t₃: l3(X₀, X₁, X₂, X₃) → l1(0, 0, X₂, X₃) :|: 0 < X₂ ∧ X₂ < X₃
t₁: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₂: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂
t₆: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: X₁ < X₂ ∧ X₁ < X₂
t₇: l4(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁+1, X₂, X₃) :|: X₁ < X₂ ∧ X₂ ≤ X₁
t₈: l4(X₀, X₁, X₂, X₃) → l1(X₀, 0, X₂, X₃) :|: X₂ ≤ X₁ ∧ X₁ < X₂
t₉: l4(X₀, X₁, X₂, X₃) → l1(X₀+1, 0, X₂, X₃) :|: X₂ ≤ X₁ ∧ X₂ ≤ X₁

Preprocessing

Cut unsatisfiable transition t₇: l4→l1

Cut unsatisfiable transition t₈: l4→l1

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l1

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₅: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₀ < X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₀: l2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃)
t₃: l3(X₀, X₁, X₂, X₃) → l1(0, 0, X₂, X₃) :|: 0 < X₂ ∧ X₂ < X₃
t₁: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₂ ≤ 0
t₂: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂
t₆: l4(X₀, X₁, X₂, X₃) → l1(X₀, X₁+1, X₂, X₃) :|: X₁ < X₂ ∧ X₁ < X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₉: l4(X₀, X₁, X₂, X₃) → l1(X₀+1, 0, X₂, X₃) :|: X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

MPRF for transition t₉: l4(X₀, X₁, X₂, X₃) → l1(X₀+1, 0, X₂, X₃) :|: X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₃ {O(n)}

TWN: t₄: l1→l4

cycle: [t₄: l1→l4; t₆: l4→l1]
loop: (X₀ < X₃ ∧ X₁ < X₂ ∧ X₁ < X₂,(X₀,X₁,X₂,X₃) -> (X₀,X₁+1,X₂,X₃)
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: X₂
X₃: X₃

Termination: true
Formula:

1 < 0 ∧ X₀ < X₃
∨ X₁ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ < X₃

Stabilization-Threshold for: X₁ < X₂
alphas_abs: X₁+X₂
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+2 {O(n)}
loop: (X₀ < X₃ ∧ X₁ < X₂ ∧ X₁ < X₂,(X₀,X₁,X₂,X₃) -> (X₀,X₁+1,X₂,X₃)
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: X₂
X₃: X₃

Termination: true
Formula:

1 < 0 ∧ X₀ < X₃
∨ X₁ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₀ < X₃

Stabilization-Threshold for: X₁ < X₂
alphas_abs: X₁+X₂
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+2 {O(n)}

TWN - Lifting for t₄: l1→l4 of 2⋅X₁+2⋅X₂+5 {O(n)}

relevant size-bounds w.r.t. t₉:
X₁: 0 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₉: X₃ {O(n)}
Results in: 2⋅X₂⋅X₃+5⋅X₃ {O(n^2)}

TWN - Lifting for t₄: l1→l4 of 2⋅X₁+2⋅X₂+5 {O(n)}

relevant size-bounds w.r.t. t₃:
X₁: 0 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₃: 1 {O(1)}
Results in: 2⋅X₂+5 {O(n)}

TWN: t₆: l4→l1

TWN - Lifting for t₆: l4→l1 of 2⋅X₁+2⋅X₂+5 {O(n)}

relevant size-bounds w.r.t. t₉:
X₁: 0 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₉: X₃ {O(n)}
Results in: 2⋅X₂⋅X₃+5⋅X₃ {O(n^2)}

TWN - Lifting for t₆: l4→l1 of 2⋅X₁+2⋅X₂+5 {O(n)}

relevant size-bounds w.r.t. t₃:
X₁: 0 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₃: 1 {O(1)}
Results in: 2⋅X₂+5 {O(n)}

Chain transitions t₉: l4→l1 and t₄: l1→l4 to t₆₅: l4→l4

Chain transitions t₆: l4→l1 and t₄: l1→l4 to t₆₆: l4→l4

Chain transitions t₆: l4→l1 and t₅: l1→l2 to t₆₇: l4→l2

Chain transitions t₉: l4→l1 and t₅: l1→l2 to t₆₈: l4→l2

Chain transitions t₃: l3→l1 and t₅: l1→l2 to t₆₉: l3→l2

Chain transitions t₃: l3→l1 and t₄: l1→l4 to t₇₀: l3→l4

Analysing control-flow refined program

Cut unsatisfiable transition t₆₇: l4→l2

Cut unsatisfiable transition t₆₉: l3→l2

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l1

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4

MPRF for transition t₆₅: l4(X₀, X₁, X₂, X₃) -{2}> l4(1+X₀, 0, X₂, X₃) :|: X₂ ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1+X₀ < X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 0 ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₃ {O(n)}

TWN: t₆₆: l4→l4

cycle: [t₆₆: l4→l4]
loop: (X₁ < X₂ ∧ X₁ < X₂ ∧ X₀ < X₃,(X₀,X₁,X₂,X₃) -> (X₀,1+X₁,X₂,X₃)
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: X₂
X₃: X₃

Termination: true
Formula:

X₀ < X₃ ∧ 1 < 0
∨ X₀ < X₃ ∧ X₁ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: X₁ < X₂
alphas_abs: X₁+X₂
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+2 {O(n)}
loop: (X₁ < X₂ ∧ X₁ < X₂ ∧ X₀ < X₃,(X₀,X₁,X₂,X₃) -> (X₀,1+X₁,X₂,X₃)
order: [X₀; X₁; X₂; X₃]
closed-form:
X₀: X₀
X₁: X₁ + [[n != 0]] * n^1
X₂: X₂
X₃: X₃

Termination: true
Formula:

X₀ < X₃ ∧ 1 < 0
∨ X₀ < X₃ ∧ X₁ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: X₁ < X₂
alphas_abs: X₁+X₂
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+2 {O(n)}

TWN - Lifting for t₆₆: l4→l4 of 2⋅X₁+2⋅X₂+5 {O(n)}

relevant size-bounds w.r.t. t₆₅:
X₁: 0 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₆₅: X₃ {O(n)}
Results in: 2⋅X₂⋅X₃+5⋅X₃ {O(n^2)}

TWN - Lifting for t₆₆: l4→l4 of 2⋅X₁+2⋅X₂+5 {O(n)}

relevant size-bounds w.r.t. t₇₀:
X₁: 0 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₇₀: 1 {O(1)}
Results in: 2⋅X₂+5 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₅: l1→l2

Cut unsatisfiable transition t₁₅₀: n_l1___1→l2

Cut unsatisfiable transition t₁₅₂: n_l1___5→l2

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l4___6

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___2

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l4___4

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___3

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l1___5

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ X₀+X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location l1

Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___1

MPRF for transition t₁₃₆: n_l1___1(X₀, X₁, X₂, X₃) → n_l4___4(X₀, X₁, X₂, X₃) :|: X₀ < X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₀ < X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₁₃₇: n_l1___3(X₀, X₁, X₂, X₃) → n_l4___2(X₀, X₁, X₂, X₃) :|: X₁ < X₂ ∧ X₁ ≤ 0 ∧ 1 ≤ X₀ ∧ X₀ < X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₁₄₀: n_l4___2(X₀, X₁, X₂, X₃) → n_l1___1(X₀, X₁+1, X₂, X₃) :|: X₀ < X₃ ∧ 1 ≤ X₀ ∧ X₁ ≤ 0 ∧ X₁ < X₂ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₁₄₁: n_l4___4(X₀, X₁, X₂, X₃) → n_l1___3(X₀+1, 0, X₁, X₃) :|: 1 ≤ X₁ ∧ 1 ≤ X₁ ∧ X₂ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₂ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₁₃₈: n_l1___5(X₀, X₁, X₂, X₃) → n_l4___4(X₀, X₁, X₂, X₃) :|: X₀ < X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ X₀ < X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+X₂+2 {O(n^2)}

MPRF for transition t₁₄₂: n_l4___4(X₀, X₁, X₂, X₃) → n_l1___5(X₀, X₁+1, X₂, X₃) :|: 1 ≤ X₁ ∧ X₁ < X₂ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₃ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+X₂+2 {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:4⋅X₂⋅X₃+11⋅X₃+4⋅X₂+16 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 2⋅X₂⋅X₃+2⋅X₂+5⋅X₃+5 {O(n^2)}
t₅: 1 {O(1)}
t₆: 2⋅X₂⋅X₃+2⋅X₂+5⋅X₃+5 {O(n^2)}
t₉: X₃ {O(n)}
t₁₀: 1 {O(1)}

Costbounds

Overall costbound: 4⋅X₂⋅X₃+11⋅X₃+4⋅X₂+16 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: 1 {O(1)}
t₄: 2⋅X₂⋅X₃+2⋅X₂+5⋅X₃+5 {O(n^2)}
t₅: 1 {O(1)}
t₆: 2⋅X₂⋅X₃+2⋅X₂+5⋅X₃+5 {O(n^2)}
t₉: X₃ {O(n)}
t₁₀: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₃, X₀: 0 {O(1)}
t₃, X₁: 0 {O(1)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₄, X₀: X₃ {O(n)}
t₄, X₁: 2⋅X₂⋅X₃+2⋅X₂+5⋅X₃+5 {O(n^2)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₅, X₀: X₃ {O(n)}
t₅, X₁: 0 {O(1)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₆, X₀: X₃ {O(n)}
t₆, X₁: 2⋅X₂⋅X₃+2⋅X₂+5⋅X₃+5 {O(n^2)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₉, X₀: X₃ {O(n)}
t₉, X₁: 0 {O(1)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₁₀, X₀: 2⋅X₀+X₃ {O(n)}
t₁₀, X₁: 2⋅X₁ {O(n)}
t₁₀, X₂: 3⋅X₂ {O(n)}
t₁₀, X₃: 3⋅X₃ {O(n)}