Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄+1 ≤ X₇
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ < X₄+1
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈-2)
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₇-1)
t₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₂, X₄, X₅, X₂, X₇, X₈)
t₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆+X₃-1, X₈)
t₂₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₀
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₀ ≤ 0
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ < X₅+3
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅+3 ≤ X₈
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₅, X₅, X₆, X₈-1, X₈)
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < 2
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₁
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ ≤ 0
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₄-1, X₄, X₅, X₇+1-X₄, X₇, X₈)
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₁₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
Preprocessing
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l11
Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l2
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l6
Found invariant 2 ≤ X₃ for location l15
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l12
Found invariant X₃ ≤ 1 for location l17
Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l7
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l13
Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l8
Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l1
Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₀+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 6 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10
Found invariant X₃ ≤ 1 for location l16
Found invariant 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l4
Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l9
Found invariant 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄+1 ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ < X₄+1 ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈-2) :|: 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₀+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 6 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₇-1) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₂, X₄, X₅, X₂, X₇, X₈)
t₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆+X₃-1, X₈) :|: 2 ≤ X₃
t₂₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ ≤ 1
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₀ ∧ 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₀ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ < X₅+3 ∧ 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅+3 ≤ X₈ ∧ 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₅, X₅, X₆, X₈-1, X₈) :|: 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₃ < 2
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₁ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ ≤ 0 ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₄-1, X₄, X₅, X₇+1-X₄, X₇, X₈) :|: 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄+1 ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:
new bound:
4⋅X₂+5 {O(n)}
MPRF for transition t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF for transition t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l6(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₁ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:
new bound:
2⋅X₂ {O(n)}
MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ ≤ 0 ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:
new bound:
4⋅X₂+6 {O(n)}
MPRF for transition t₁₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₇-1) :|: 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
4⋅X₂+2 {O(n)}
MPRF for transition t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₅+3 ≤ X₈ ∧ 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
3⋅X₂+1 {O(n)}
MPRF for transition t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ < X₅+3 ∧ 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
2⋅X₂ {O(n)}
MPRF for transition t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
3⋅X₂ {O(n)}
MPRF for transition t₁₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l2(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
3⋅X₂+1 {O(n)}
MPRF for transition t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 0 < X₀ ∧ 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
3⋅X₂+1 {O(n)}
MPRF for transition t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₀ ≤ 0 ∧ 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
2⋅X₂ {O(n)}
MPRF for transition t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈-2) :|: 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₀+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 6 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF for transition t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₅, X₅, X₆, X₈-1, X₈) :|: 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
4⋅X₂ {O(n)}
MPRF for transition t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 2 ≤ X₃ of depth 1:
new bound:
12⋅X₂⋅X₂+13⋅X₂ {O(n^2)}
MPRF for transition t₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆+X₃-1, X₈) :|: 2 ≤ X₃ of depth 1:
new bound:
12⋅X₂⋅X₂+13⋅X₂ {O(n^2)}
MPRF for transition t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₇ < X₄+1 ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:
new bound:
12⋅X₂⋅X₂+9⋅X₂+1 {O(n^2)}
MPRF for transition t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l5(X₀, X₁, X₂, X₄-1, X₄, X₅, X₇+1-X₄, X₇, X₈) :|: 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:
new bound:
12⋅X₂⋅X₂+9⋅X₂+1 {O(n^2)}
Chain transitions t₂₁: l4→l1 and t₆: l1→l7 to t₁₄₂: l4→l7
Chain transitions t₄: l15→l1 and t₆: l1→l7 to t₁₄₃: l15→l7
Chain transitions t₄: l15→l1 and t₅: l1→l11 to t₁₄₄: l15→l11
Chain transitions t₂₁: l4→l1 and t₅: l1→l11 to t₁₄₅: l4→l11
Chain transitions t₁₈: l2→l10 and t₂₀: l10→l3 to t₁₄₆: l2→l3
Chain transitions t₁₄₅: l4→l11 and t₇: l11→l12 to t₁₄₇: l4→l12
Chain transitions t₁₄₄: l15→l11 and t₇: l11→l12 to t₁₄₈: l15→l12
Chain transitions t₁₄₇: l4→l12 and t₉: l12→l6 to t₁₄₉: l4→l6
Chain transitions t₁₄₈: l15→l12 and t₉: l12→l6 to t₁₅₀: l15→l6
Chain transitions t₁₀: l6→l13 and t₁₂: l13→l3 to t₁₅₁: l6→l3
Chain transitions t₂: l5→l15 and t₁₄₃: l15→l7 to t₁₅₂: l5→l7
Chain transitions t₂: l5→l15 and t₁₅₀: l15→l6 to t₁₅₃: l5→l6
Chain transitions t₂: l5→l15 and t₁₄₈: l15→l12 to t₁₅₄: l5→l12
Chain transitions t₂: l5→l15 and t₁₄₄: l15→l11 to t₁₅₅: l5→l11
Chain transitions t₂: l5→l15 and t₄: l15→l1 to t₁₅₆: l5→l1
Chain transitions t₁₇: l9→l2 and t₁₉: l2→l4 to t₁₅₇: l9→l4
Chain transitions t₁₇: l9→l2 and t₁₄₆: l2→l3 to t₁₅₈: l9→l3
Chain transitions t₁₇: l9→l2 and t₁₈: l2→l10 to t₁₅₉: l9→l10
Chain transitions t₁₅₈: l9→l3 and t₁₃: l3→l8 to t₁₆₀: l9→l8
Chain transitions t₁₅₁: l6→l3 and t₁₃: l3→l8 to t₁₆₁: l6→l8
Chain transitions t₁₅₁: l6→l3 and t₁₄: l3→l4 to t₁₆₂: l6→l4
Chain transitions t₁₅₈: l9→l3 and t₁₄: l3→l4 to t₁₆₃: l9→l4
Chain transitions t₁₆₃: l9→l4 and t₁₄₂: l4→l7 to t₁₆₄: l9→l7
Chain transitions t₁₅₇: l9→l4 and t₁₄₂: l4→l7 to t₁₆₅: l9→l7
Chain transitions t₁₅₇: l9→l4 and t₁₄₉: l4→l6 to t₁₆₆: l9→l6
Chain transitions t₁₆₃: l9→l4 and t₁₄₉: l4→l6 to t₁₆₇: l9→l6
Chain transitions t₁₆₂: l6→l4 and t₁₄₉: l4→l6 to t₁₆₈: l6→l6
Chain transitions t₁₆₂: l6→l4 and t₁₄₂: l4→l7 to t₁₆₉: l6→l7
Chain transitions t₁₆₂: l6→l4 and t₁₄₇: l4→l12 to t₁₇₀: l6→l12
Chain transitions t₁₅₇: l9→l4 and t₁₄₇: l4→l12 to t₁₇₁: l9→l12
Chain transitions t₁₆₃: l9→l4 and t₁₄₇: l4→l12 to t₁₇₂: l9→l12
Chain transitions t₁₆₂: l6→l4 and t₁₄₅: l4→l11 to t₁₇₃: l6→l11
Chain transitions t₁₅₇: l9→l4 and t₁₄₅: l4→l11 to t₁₇₄: l9→l11
Chain transitions t₁₆₃: l9→l4 and t₁₄₅: l4→l11 to t₁₇₅: l9→l11
Chain transitions t₁₆₂: l6→l4 and t₂₁: l4→l1 to t₁₇₆: l6→l1
Chain transitions t₁₅₇: l9→l4 and t₂₁: l4→l1 to t₁₇₇: l9→l1
Chain transitions t₁₆₃: l9→l4 and t₂₁: l4→l1 to t₁₇₈: l9→l1
Chain transitions t₂₂: l7→l5 and t₁₅₂: l5→l7 to t₁₇₉: l7→l7
Chain transitions t₁: l14→l5 and t₁₅₂: l5→l7 to t₁₈₀: l14→l7
Chain transitions t₁: l14→l5 and t₁₅₃: l5→l6 to t₁₈₁: l14→l6
Chain transitions t₂₂: l7→l5 and t₁₅₃: l5→l6 to t₁₈₂: l7→l6
Chain transitions t₁: l14→l5 and t₃: l5→l16 to t₁₈₃: l14→l16
Chain transitions t₂₂: l7→l5 and t₃: l5→l16 to t₁₈₄: l7→l16
Chain transitions t₁: l14→l5 and t₂: l5→l15 to t₁₈₅: l14→l15
Chain transitions t₂₂: l7→l5 and t₂: l5→l15 to t₁₈₆: l7→l15
Chain transitions t₁: l14→l5 and t₁₅₄: l5→l12 to t₁₈₇: l14→l12
Chain transitions t₂₂: l7→l5 and t₁₅₄: l5→l12 to t₁₈₈: l7→l12
Chain transitions t₁: l14→l5 and t₁₅₅: l5→l11 to t₁₈₉: l14→l11
Chain transitions t₂₂: l7→l5 and t₁₅₅: l5→l11 to t₁₉₀: l7→l11
Chain transitions t₁: l14→l5 and t₁₅₆: l5→l1 to t₁₉₁: l14→l1
Chain transitions t₂₂: l7→l5 and t₁₅₆: l5→l1 to t₁₉₂: l7→l1
Chain transitions t₁₆₀: l9→l8 and t₁₅: l8→l9 to t₁₉₃: l9→l9
Chain transitions t₁₆₁: l6→l8 and t₁₅: l8→l9 to t₁₉₄: l6→l9
Analysing control-flow refined program
Cut unsatisfiable transition t₁₆₅: l9→l7
Cut unsatisfiable transition t₁₈₀: l14→l7
Eliminate variables {X₀,X₆} that do not contribute to the problem
Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l11
Found invariant 1+X₆ ≤ X₅ ∧ 4 ≤ X₆ ∧ 9 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ 4+X₃ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2
Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l6
Found invariant 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l15
Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l12
Found invariant X₂ ≤ 1 ∧ X₂ ≤ X₁ for location l17
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l7
Found invariant 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l13
Found invariant 1+X₆ ≤ X₅ ∧ 4 ≤ X₆ ∧ 9 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ 4+X₃ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l1
Found invariant 1+X₆ ≤ X₅ ∧ 4 ≤ X₆ ∧ 9 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ 4+X₃ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10
Found invariant X₂ ≤ 1 ∧ X₂ ≤ X₁ for location l16
Found invariant 1+X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Found invariant 1+X₆ ≤ X₅ ∧ 4 ≤ X₆ ∧ 9 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ 4+X₃ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9
Found invariant 1+X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 3 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1+X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
MPRF for transition t₂₇₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{7}> l6(Temp_Int₁₂₄₂, X₁, X₂, X₃, X₃, X₅-2, X₅-1) :|: 0 < X₀ ∧ X₅ < 4+X₃ ∧ X₃+3 ≤ X₅ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₁ {O(n)}
MPRF for transition t₂₇₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
8⋅X₁+5 {O(n)}
MPRF for transition t₂₇₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{5}> l7(X₀, X₁, X₂, X₃, X₃, X₅-2, X₅-1) :|: 0 < X₀ ∧ X₅ < 4+X₃ ∧ X₅ < 3+X₃ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₁+3 {O(n)}
MPRF for transition t₂₇₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{4}> l9(X₀, X₁, X₂, X₃, X₃, X₅, X₅-1) :|: 0 < X₀ ∧ X₃+4 ≤ X₅ ∧ 2 ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₁+1 {O(n)}
MPRF for transition t₂₈₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{6}> l6(Temp_Int₁₃₆₃, X₁, X₃-1, X₃-2, X₄, X₅-1, X₆) :|: 3 ≤ X₃ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
4⋅X₁+5 {O(n)}
MPRF for transition t₂₈₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{4}> l7(X₀, X₁, X₃-1, X₃-2, X₄, X₅-1, X₆) :|: 3 ≤ X₃ ∧ X₅ < X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ 2+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₁ {O(n)}
MPRF for transition t₂₉₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{6}> l6(Temp_Int₁₂₂₂, X₁, X₂, X₄, X₄, X₆-1, X₆) :|: nondef.1 ≤ 0 ∧ X₄+2 ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 4 ≤ X₆ ∧ 9 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ 4+X₃ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
5⋅X₁+8 {O(n)}
MPRF for transition t₂₉₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{8}> l6(Temp_Int₁₂₃₂, X₁, X₂, 1+X₄, 1+X₄, X₆-3, X₆-2) :|: 0 < nondef.1 ∧ X₆ < 6+X₄ ∧ 5+X₄ ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 4 ≤ X₆ ∧ 9 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ 4+X₃ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁+4 {O(n)}
MPRF for transition t₂₉₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{6}> l7(X₀, X₁, X₂, 1+X₄, 1+X₄, X₆-3, X₆-2) :|: 0 < nondef.1 ∧ X₆ < 6+X₄ ∧ X₆ < 5+X₄ ∧ 1+X₆ ≤ X₅ ∧ 4 ≤ X₆ ∧ 9 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ 4+X₃ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₁+6 {O(n)}
MPRF for transition t₂₉₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{5}> l9(X₀, X₁, X₂, X₃, 1+X₄, X₅, X₆-2) :|: 0 < nondef.1 ∧ 6+X₄ ≤ X₆ ∧ 1+X₆ ≤ X₅ ∧ 4 ≤ X₆ ∧ 9 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3+X₄ ≤ X₆ ∧ 5 ≤ X₃+X₆ ∧ 3+X₃ ≤ X₆ ∧ 6 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 6 ≤ X₁+X₆ ∧ 5 ≤ X₀+X₆ ∧ 5 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4+X₄ ≤ X₅ ∧ 6 ≤ X₃+X₅ ∧ 4+X₃ ≤ X₅ ∧ 7 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 7 ≤ X₁+X₅ ∧ 6 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁ {O(n)}
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l11
Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l2
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l6
Found invariant X₈ ≤ 1+X₇ ∧ X₈ ≤ 1+X₅ ∧ X₈ ≤ 1+X₄ ∧ X₈ ≤ 2+X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1+X₃ ≤ X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l5___9
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ for location n_l5___5
Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 2 ≤ X₆ ∧ 4 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₂ for location n_l15___3
Found invariant X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ 1 ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₃ for location n_l15___4
Found invariant 1+X₆ ≤ X₇ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location n_l1___7
Found invariant 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 2+X₁ ≤ X₇ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0 for location n_l5___2
Found invariant X₇ ≤ X₄ ∧ 1+X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location n_l7___6
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ for location l12
Found invariant X₈ ≤ 1+X₇ ∧ X₈ ≤ 1+X₅ ∧ X₈ ≤ 1+X₄ ∧ X₈ ≤ 2+X₃ ∧ 3 ≤ X₈ ∧ 5 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 6 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 1+X₃ ≤ X₈ ∧ 4 ≤ X₁+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 5 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l15___8
Found invariant X₈ ≤ 1+X₇ ∧ X₈ ≤ 1+X₅ ∧ X₈ ≤ 1+X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ 2+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l7___10
Found invariant X₃ ≤ 1 for location l17
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2+X₁ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ X₁ ≤ 0 for location l7
Found invariant X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₃ ≤ X₆ ∧ X₂ ≤ X₆ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ for location l5
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l13
Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l8
Found invariant 4 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 4+X₁ ≤ X₇ ∧ 2 ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₁ ≤ X₆ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ X₁ ≤ 0 for location n_l15___1
Found invariant X₈ ≤ 1+X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ 2+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l1
Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₀+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 6 ≤ X₀+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10
Found invariant X₃ ≤ 1 for location l16
Found invariant 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l4
Found invariant 1+X₈ ≤ X₇ ∧ 4 ≤ X₈ ∧ 9 ≤ X₇+X₈ ∧ 5 ≤ X₅+X₈ ∧ 3+X₅ ≤ X₈ ∧ 5 ≤ X₄+X₈ ∧ 3+X₄ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 2+X₃ ≤ X₈ ∧ 5 ≤ X₁+X₈ ∧ 5 ≤ X₇ ∧ 6 ≤ X₅+X₇ ∧ 4+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₄ ≤ X₇ ∧ 7 ≤ X₃+X₇ ∧ 3+X₃ ≤ X₇ ∧ 6 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l9
Found invariant 1+X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 2 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l3
knowledge_propagation leads to new time bound 4⋅X₂ {O(n)} for transition t₄₉₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₇ ≤ X₈ ∧ X₈ ≤ 1+X₇ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₁ ∧ X₃ ≤ 1+X₅ ∧ X₅ ≤ X₈ ∧ X₇ < 1+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₃ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ X₈ ≤ 1+X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ 2+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
knowledge_propagation leads to new time bound 4⋅X₂ {O(n)} for transition t₅₀₃: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___9(X₀, X₁, X₂, X₄-1, X₄, X₅, X₇+1-X₄, X₇, X₈) :|: X₇ < 1+X₅ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₁ ∧ X₃ ≤ 1+X₅ ∧ X₇+1 ≤ X₈ ∧ X₈ ≤ 1+X₇ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ X₈ ≤ 1+X₇ ∧ X₈ ≤ 1+X₅ ∧ X₈ ≤ 1+X₄ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 3 ≤ X₃+X₈ ∧ X₃ ≤ 1+X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 2 ≤ X₃+X₇ ∧ X₃ ≤ 2+X₇ ∧ 1 ≤ X₁+X₇ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ 1+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
knowledge_propagation leads to new time bound 4⋅X₂+6 {O(n)} for transition t₅₀₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___2(X₀, X₁, X₂, X₄-1, X₄, X₅, X₇+1-X₄, X₇, X₈) :|: X₁ ≤ 0 ∧ 1+X₄ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 2+X₁ ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ X₁ ≤ 0
knowledge_propagation leads to new time bound 4⋅X₂+6 {O(n)} for transition t₅₀₀: n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l15___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₁ ≤ 0 ∧ 2 ≤ X₆ ∧ 0 ≤ X₃ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₃+X₆ ≤ X₇ ∧ X₇ ≤ X₃+X₆ ∧ 2 ≤ X₃ ∧ 2 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 2+X₁ ≤ X₇ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0
knowledge_propagation leads to new time bound 4⋅X₂ {O(n)} for transition t₅₀₂: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l15___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₈ < 2+X₅ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₁ ∧ 1 ≤ X₅ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₅+X₆ ≤ X₈ ∧ X₈ ≤ X₅+X₆ ∧ X₇+1 ≤ X₈ ∧ X₈ ≤ 1+X₇ ∧ X₃+1 ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₃ ∧ X₈ ≤ 1+X₇ ∧ X₈ ≤ 1+X₅ ∧ X₈ ≤ 1+X₄ ∧ X₈ ≤ 2+X₃ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 2 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 1 ≤ X₃+X₈ ∧ 1+X₃ ≤ X₈ ∧ 2 ≤ X₁+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 1 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁
knowledge_propagation leads to new time bound 4⋅X₂+6 {O(n)} for transition t₄₉₃: n_l15___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l1___7(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₃+X₆-1, X₈) :|: X₁ ≤ 0 ∧ 2 ≤ X₆ ∧ 3 ≤ X₄ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄+X₆ ≤ X₇+1 ∧ 1+X₇ ≤ X₄+X₆ ∧ 2 ≤ X₃ ∧ 4 ≤ X₇ ∧ 6 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 6 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 4+X₁ ≤ X₇ ∧ 2 ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2+X₁ ≤ X₆ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3+X₁ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2+X₁ ≤ X₃ ∧ X₁ ≤ 0
knowledge_propagation leads to new time bound 4⋅X₂ {O(n)} for transition t₄₉₆: n_l15___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l1___7(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₃+X₆-1, X₈) :|: X₈ < 2+X₅ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₁ ∧ 3 ≤ X₅ ∧ X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ X₅+X₆ ≤ X₈ ∧ X₈ ≤ X₅+X₆ ∧ X₇+1 ≤ X₈ ∧ X₈ ≤ 1+X₇ ∧ X₃+1 ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₃ ∧ X₈ ≤ 1+X₇ ∧ X₈ ≤ 1+X₅ ∧ X₈ ≤ 1+X₄ ∧ X₈ ≤ 2+X₃ ∧ 3 ≤ X₈ ∧ 5 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 6 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 5 ≤ X₃+X₈ ∧ 1+X₃ ≤ X₈ ∧ 4 ≤ X₁+X₈ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ 2 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 5 ≤ X₅+X₇ ∧ X₅ ≤ 1+X₇ ∧ 5 ≤ X₄+X₇ ∧ X₄ ≤ 1+X₇ ∧ 4 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 5 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 4 ≤ X₁+X₅ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₁
MPRF for transition t₄₉₅: n_l15___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l1___7(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₃+X₆-1, X₈) :|: X₆ < 2 ∧ 3 ≤ X₄ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ X₄+X₆ ≤ X₇+1 ∧ 1+X₇ ≤ X₄+X₆ ∧ 2 ≤ X₃ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ 1 ∧ 2+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ X₄ ≤ 1+X₃ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₃ of depth 1:
new bound:
1728⋅X₂⋅X₂⋅X₂⋅X₂+2640⋅X₂⋅X₂⋅X₂+1272⋅X₂⋅X₂+201⋅X₂+20 {O(n^4)}
MPRF for transition t₄₉₈: n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: 1+X₄ ≤ X₃ ∧ X₃+X₆ ≤ 1+X₇ ∧ 1+X₇ ≤ X₃+X₆ ∧ X₇ < 1+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ 1+X₆ ≤ X₇ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:
new bound:
1728⋅X₂⋅X₂⋅X₂⋅X₂+2640⋅X₂⋅X₂⋅X₂+1272⋅X₂⋅X₂+201⋅X₂+13 {O(n^4)}
MPRF for transition t₅₀₁: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l15___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₆ < 2 ∧ 0 ≤ X₃ ∧ X₃+X₆ ≤ X₇ ∧ X₇ ≤ X₃+X₆ ∧ X₃+1 ≤ X₄ ∧ X₄ ≤ 1+X₃ ∧ 2 ≤ X₃ ∧ X₇ ≤ X₄ ∧ X₇ ≤ 1+X₃ ∧ X₆ ≤ X₇ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₄ ≤ 1+X₃ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:
new bound:
1728⋅X₂⋅X₂⋅X₂⋅X₂+2640⋅X₂⋅X₂⋅X₂+1284⋅X₂⋅X₂+215⋅X₂+19 {O(n^4)}
MPRF for transition t₅₀₅: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → n_l5___5(X₀, X₁, X₂, X₄-1, X₄, X₅, X₇+1-X₄, X₇, X₈) :|: X₆ < 1 ∧ X₃ ≤ X₄+1 ∧ 1+X₄ ≤ X₃ ∧ X₄+X₆ ≤ X₇ ∧ X₇ ≤ X₄+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ X₇ ≤ X₄ ∧ 1+X₇ ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:
new bound:
864⋅X₂⋅X₂⋅X₂⋅X₂+1968⋅X₂⋅X₂⋅X₂+1650⋅X₂⋅X₂+619⋅X₂+88 {O(n^4)}
MPRF for transition t₅₁₅: n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) :|: X₄+1 ≤ X₇ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 1+X₆ ≤ X₇ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 2 ≤ X₃ of depth 1:
new bound:
4⋅X₂+5 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:48⋅X₂⋅X₂+84⋅X₂+28 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 12⋅X₂⋅X₂+13⋅X₂ {O(n^2)}
t₃: 1 {O(1)}
t₄: 12⋅X₂⋅X₂+13⋅X₂ {O(n^2)}
t₅: 4⋅X₂+5 {O(n)}
t₆: 12⋅X₂⋅X₂+9⋅X₂+1 {O(n^2)}
t₇: 2⋅X₂+2 {O(n)}
t₉: 2⋅X₂+2 {O(n)}
t₁₀: 2⋅X₂ {O(n)}
t₁₁: 4⋅X₂+6 {O(n)}
t₁₂: 4⋅X₂+2 {O(n)}
t₁₃: 3⋅X₂+1 {O(n)}
t₁₄: 2⋅X₂ {O(n)}
t₁₅: 3⋅X₂ {O(n)}
t₁₇: 3⋅X₂+1 {O(n)}
t₁₈: 3⋅X₂+1 {O(n)}
t₁₉: 2⋅X₂ {O(n)}
t₂₀: 2⋅X₂+2 {O(n)}
t₂₁: 4⋅X₂ {O(n)}
t₂₂: 12⋅X₂⋅X₂+9⋅X₂+1 {O(n^2)}
t₂₃: 1 {O(1)}
Costbounds
Overall costbound: 48⋅X₂⋅X₂+84⋅X₂+28 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 12⋅X₂⋅X₂+13⋅X₂ {O(n^2)}
t₃: 1 {O(1)}
t₄: 12⋅X₂⋅X₂+13⋅X₂ {O(n^2)}
t₅: 4⋅X₂+5 {O(n)}
t₆: 12⋅X₂⋅X₂+9⋅X₂+1 {O(n^2)}
t₇: 2⋅X₂+2 {O(n)}
t₉: 2⋅X₂+2 {O(n)}
t₁₀: 2⋅X₂ {O(n)}
t₁₁: 4⋅X₂+6 {O(n)}
t₁₂: 4⋅X₂+2 {O(n)}
t₁₃: 3⋅X₂+1 {O(n)}
t₁₄: 2⋅X₂ {O(n)}
t₁₅: 3⋅X₂ {O(n)}
t₁₇: 3⋅X₂+1 {O(n)}
t₁₈: 3⋅X₂+1 {O(n)}
t₁₉: 2⋅X₂ {O(n)}
t₂₀: 2⋅X₂+2 {O(n)}
t₂₁: 4⋅X₂ {O(n)}
t₂₂: 12⋅X₂⋅X₂+9⋅X₂+1 {O(n^2)}
t₂₃: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₂ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₂ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: 3⋅X₂+2 {O(n)}
t₂, X₄: 6⋅X₂+X₄+4 {O(n)}
t₂, X₅: 6⋅X₂+X₅+4 {O(n)}
t₂, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₂, X₇: 216⋅X₂⋅X₂⋅X₂+330⋅X₂⋅X₂+156⋅X₂+X₇+20 {O(n^3)}
t₂, X₈: 324⋅X₂⋅X₂⋅X₂+495⋅X₂⋅X₂+234⋅X₂+X₈+30 {O(n^3)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 4⋅X₂+2 {O(n)}
t₃, X₄: 6⋅X₂+X₄+4 {O(n)}
t₃, X₅: 2⋅X₅+6⋅X₂+4 {O(n)}
t₃, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+79⋅X₂+10 {O(n^3)}
t₃, X₇: 216⋅X₂⋅X₂⋅X₂+330⋅X₂⋅X₂+156⋅X₂+X₇+20 {O(n^3)}
t₃, X₈: 324⋅X₂⋅X₂⋅X₂+495⋅X₂⋅X₂+2⋅X₈+234⋅X₂+30 {O(n^3)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: 3⋅X₂+2 {O(n)}
t₄, X₄: 3⋅X₂+2 {O(n)}
t₄, X₅: 6⋅X₂+X₅+4 {O(n)}
t₄, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₄, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₄, X₈: 324⋅X₂⋅X₂⋅X₂+495⋅X₂⋅X₂+234⋅X₂+X₈+30 {O(n^3)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: 3⋅X₂+2 {O(n)}
t₅, X₄: 3⋅X₂+2 {O(n)}
t₅, X₅: 6⋅X₂+X₅+4 {O(n)}
t₅, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₅, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₅, X₈: 324⋅X₂⋅X₂⋅X₂+495⋅X₂⋅X₂+234⋅X₂+X₈+30 {O(n^3)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: 6⋅X₂+4 {O(n)}
t₆, X₄: 3⋅X₂+2 {O(n)}
t₆, X₅: 6⋅X₂+X₅+4 {O(n)}
t₆, X₆: 216⋅X₂⋅X₂⋅X₂+330⋅X₂⋅X₂+156⋅X₂+20 {O(n^3)}
t₆, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₆, X₈: 324⋅X₂⋅X₂⋅X₂+495⋅X₂⋅X₂+234⋅X₂+X₈+30 {O(n^3)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: 3⋅X₂+2 {O(n)}
t₇, X₄: 3⋅X₂+2 {O(n)}
t₇, X₅: 6⋅X₂+X₅+4 {O(n)}
t₇, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₇, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₇, X₈: 324⋅X₂⋅X₂⋅X₂+495⋅X₂⋅X₂+234⋅X₂+X₈+30 {O(n^3)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: 3⋅X₂+2 {O(n)}
t₉, X₄: 3⋅X₂+2 {O(n)}
t₉, X₅: 6⋅X₂+X₅+4 {O(n)}
t₉, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₉, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₉, X₈: 324⋅X₂⋅X₂⋅X₂+495⋅X₂⋅X₂+234⋅X₂+X₈+30 {O(n^3)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: 3⋅X₂+2 {O(n)}
t₁₀, X₄: 3⋅X₂+2 {O(n)}
t₁₀, X₅: 6⋅X₂+X₅+4 {O(n)}
t₁₀, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₀, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₀, X₈: 324⋅X₂⋅X₂⋅X₂+495⋅X₂⋅X₂+234⋅X₂+X₈+30 {O(n^3)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: 3⋅X₂+2 {O(n)}
t₁₁, X₄: 3⋅X₂+2 {O(n)}
t₁₁, X₅: 6⋅X₂+X₅+4 {O(n)}
t₁₁, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₁, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₁, X₈: 324⋅X₂⋅X₂⋅X₂+495⋅X₂⋅X₂+234⋅X₂+X₈+30 {O(n^3)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: 3⋅X₂+2 {O(n)}
t₁₂, X₄: 3⋅X₂+2 {O(n)}
t₁₂, X₅: 3⋅X₂+2 {O(n)}
t₁₂, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₂, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₂, X₈: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: 3⋅X₂+2 {O(n)}
t₁₃, X₄: 3⋅X₂+2 {O(n)}
t₁₃, X₅: 3⋅X₂+2 {O(n)}
t₁₃, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₃, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₃, X₈: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: 3⋅X₂+2 {O(n)}
t₁₄, X₄: 6⋅X₂+4 {O(n)}
t₁₄, X₅: 3⋅X₂+2 {O(n)}
t₁₄, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₄, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₄, X₈: 216⋅X₂⋅X₂⋅X₂+330⋅X₂⋅X₂+156⋅X₂+20 {O(n^3)}
t₁₅, X₂: X₂ {O(n)}
t₁₅, X₃: 3⋅X₂+2 {O(n)}
t₁₅, X₄: 3⋅X₂+2 {O(n)}
t₁₅, X₅: 3⋅X₂+2 {O(n)}
t₁₅, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₅, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₅, X₈: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₇, X₂: X₂ {O(n)}
t₁₇, X₃: 3⋅X₂+2 {O(n)}
t₁₇, X₄: 3⋅X₂+2 {O(n)}
t₁₇, X₅: 3⋅X₂+2 {O(n)}
t₁₇, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₇, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₇, X₈: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: 3⋅X₂+2 {O(n)}
t₁₈, X₄: 3⋅X₂+2 {O(n)}
t₁₈, X₅: 3⋅X₂+2 {O(n)}
t₁₈, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₈, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₈, X₈: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₉, X₂: X₂ {O(n)}
t₁₉, X₃: 3⋅X₂+2 {O(n)}
t₁₉, X₄: 3⋅X₂+2 {O(n)}
t₁₉, X₅: 3⋅X₂+2 {O(n)}
t₁₉, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₉, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₁₉, X₈: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₂₀, X₂: X₂ {O(n)}
t₂₀, X₃: 3⋅X₂+2 {O(n)}
t₂₀, X₄: 3⋅X₂+2 {O(n)}
t₂₀, X₅: 3⋅X₂+2 {O(n)}
t₂₀, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₂₀, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₂₀, X₈: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₂₁, X₂: X₂ {O(n)}
t₂₁, X₃: 3⋅X₂+2 {O(n)}
t₂₁, X₄: 3⋅X₂+2 {O(n)}
t₂₁, X₅: 6⋅X₂+4 {O(n)}
t₂₁, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₂₁, X₇: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₂₁, X₈: 324⋅X₂⋅X₂⋅X₂+495⋅X₂⋅X₂+234⋅X₂+30 {O(n^3)}
t₂₂, X₂: X₂ {O(n)}
t₂₂, X₃: 3⋅X₂+2 {O(n)}
t₂₂, X₄: 6⋅X₂+4 {O(n)}
t₂₂, X₅: 6⋅X₂+X₅+4 {O(n)}
t₂₂, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+78⋅X₂+10 {O(n^3)}
t₂₂, X₇: 216⋅X₂⋅X₂⋅X₂+330⋅X₂⋅X₂+156⋅X₂+20 {O(n^3)}
t₂₂, X₈: 324⋅X₂⋅X₂⋅X₂+495⋅X₂⋅X₂+234⋅X₂+X₈+30 {O(n^3)}
t₂₃, X₂: 2⋅X₂ {O(n)}
t₂₃, X₃: 4⋅X₂+2 {O(n)}
t₂₃, X₄: 6⋅X₂+X₄+4 {O(n)}
t₂₃, X₅: 2⋅X₅+6⋅X₂+4 {O(n)}
t₂₃, X₆: 108⋅X₂⋅X₂⋅X₂+165⋅X₂⋅X₂+79⋅X₂+10 {O(n^3)}
t₂₃, X₇: 216⋅X₂⋅X₂⋅X₂+330⋅X₂⋅X₂+156⋅X₂+X₇+20 {O(n^3)}
t₂₃, X₈: 324⋅X₂⋅X₂⋅X₂+495⋅X₂⋅X₂+2⋅X₈+234⋅X₂+30 {O(n^3)}