Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₁₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀
t₁₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0
t₁₃: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂+1 ≤ X₃
t₁₁: l10(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 0
t₁₂: l10(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₂+1
t₁₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₁₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄)
t₇: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂
t₆: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ X₁
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, 1, X₃, 0) :|: 1 ≤ X₁ ∧ 0 < X₃
t₃: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1
t₄: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₂₂: l6(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₁: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₃, X₂, X₃, X₄) :|: 0 < X₃
t₂: l7(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₂₁: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₄, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ < X₁
t₁₉: l8(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ < 1
t₂₀: l8(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₄
t₁₀: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ X₂ ≤ X₃
t₈: l9(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 1
t₉: l9(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₂

Preprocessing

Cut unsatisfiable transition t₃: l5→l6

Cut unsatisfiable transition t₁₁: l10→l6

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l2

Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l5

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l8

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l1

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l10

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l4

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l9

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l3

Cut unsatisfiable transition t₄: l5→l6

Cut unsatisfiable transition t₈: l9→l6

Cut unsatisfiable transition t₉: l9→l6

Cut unsatisfiable transition t₁₂: l10→l6

Cut unsatisfiable transition t₂₀: l8→l6

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₁₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₃: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂+1 ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₁₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₇: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₆: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₅: l5(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, 1, X₃, 0) :|: 1 ≤ X₁ ∧ 0 < X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁
t₂₂: l6(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₁: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₃, X₂, X₃, X₄) :|: 0 < X₃
t₂: l7(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₂₁: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₄, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ < X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₉: l8(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₄ < 1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁
t₁₀: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

MPRF for transition t₅: l5(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, 1, X₃, 0) :|: 1 ≤ X₁ ∧ 0 < X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₇: l4(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₂₁: l8(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₄, X₂, X₃, X₄) :|: 1 ≤ X₄ ∧ X₄ < X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃ {O(n)}

MPRF for transition t₆: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₂+1 ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃+1 {O(n^2)}

MPRF for transition t₁₀: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₁₃: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂ ∧ X₂+1 ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₁₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+X₃ {O(n^2)}

MPRF for transition t₁₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+X₃ {O(n^2)}

MPRF for transition t₁₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₁₈: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+X₃ {O(n^2)}

Chain transitions t₁₆: l3→l1 and t₁₈: l1→l4 to t₂₁₉: l3→l4

Chain transitions t₁₆: l3→l1 and t₁₇: l1→l4 to t₂₂₀: l3→l4

Chain transitions t₁₀: l9→l10 and t₁₃: l10→l2 to t₂₂₁: l9→l2

Chain transitions t₂₂₁: l9→l2 and t₁₄: l2→l3 to t₂₂₂: l9→l3

Chain transitions t₂₂₂: l9→l3 and t₂₂₀: l3→l4 to t₂₂₃: l9→l4

Chain transitions t₂₂₂: l9→l3 and t₂₁₉: l3→l4 to t₂₂₄: l9→l4

Chain transitions t₂₂₂: l9→l3 and t₁₆: l3→l1 to t₂₂₅: l9→l1

Chain transitions t₂₂₄: l9→l4 and t₆: l4→l9 to t₂₂₆: l9→l9

Chain transitions t₂₂₃: l9→l4 and t₆: l4→l9 to t₂₂₇: l9→l9

Chain transitions t₂₂₃: l9→l4 and t₇: l4→l8 to t₂₂₈: l9→l8

Chain transitions t₂₂₄: l9→l4 and t₇: l4→l8 to t₂₂₉: l9→l8

Chain transitions t₅: l5→l4 and t₇: l4→l8 to t₂₃₀: l5→l8

Chain transitions t₅: l5→l4 and t₆: l4→l9 to t₂₃₁: l5→l9

Chain transitions t₂₁: l8→l5 and t₂₃₁: l5→l9 to t₂₃₂: l8→l9

Chain transitions t₁: l7→l5 and t₂₃₁: l5→l9 to t₂₃₃: l7→l9

Chain transitions t₁: l7→l5 and t₂₃₀: l5→l8 to t₂₃₄: l7→l8

Chain transitions t₂₁: l8→l5 and t₂₃₀: l5→l8 to t₂₃₅: l8→l8

Chain transitions t₁: l7→l5 and t₅: l5→l4 to t₂₃₆: l7→l4

Chain transitions t₂₁: l8→l5 and t₅: l5→l4 to t₂₃₇: l8→l4

Analysing control-flow refined program

Eliminate variables {Temp_Int₈₉₉,X₀} that do not contribute to the problem

Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l2

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l5

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1

Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l10

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4

Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l9

Found invariant 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l3

MPRF for transition t₂₇₀: l8(X₀, X₁, X₂, X₃) -{3}> l8(X₃, 1, X₂, 0) :|: 1 ≤ X₃ ∧ X₃ < X₀ ∧ 1 ≤ X₃ ∧ 0 < X₂ ∧ X₃ < 2 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂+1 {O(n)}

MPRF for transition t₂₇₁: l8(X₀, X₁, X₂, X₃) -{3}> l9(X₃, 1, X₂, 0) :|: 1 ≤ X₃ ∧ X₃ < X₀ ∧ 1 ≤ X₃ ∧ 0 < X₂ ∧ 2 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF for transition t₂₇₈: l9(X₀, X₁, X₂, X₃) -{6}> l8(X₀, 1+X₁, X₂, X₁) :|: 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ 0 < Temp_Int₈₈₉ ∧ X₀ < 2+X₁ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF for transition t₂₇₉: l9(X₀, X₁, X₂, X₃) -{6}> l8(X₀, 1+X₁, X₂, X₃) :|: 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ Temp_Int₈₉₄ ≤ 0 ∧ X₀ < 2+X₁ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF for transition t₂₈₀: l9(X₀, X₁, X₂, X₃) -{6}> l9(X₀, 1+X₁, X₂, X₃) :|: 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ Temp_Int₈₉₄ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₂⋅X₂+3⋅X₂+2 {O(n^2)}

MPRF for transition t₂₈₁: l9(X₀, X₁, X₂, X₃) -{6}> l9(X₀, 1+X₁, X₂, X₁) :|: 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁+1 ≤ X₂ ∧ 0 < Temp_Int₈₈₉ ∧ 2+X₁ ≤ X₀ ∧ 2+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₂⋅X₂+3⋅X₂+1 {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l2___15

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l1___6

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l9___10

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l10___4

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___12

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l1___13

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l2___3

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l3___14

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l9___17

Found invariant 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₁ for location l5

Found invariant X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location n_l10___16

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___9

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l8

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l3___2

Found invariant X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l4

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___8

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ for location n_l1___1

Found invariant 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___7

Found invariant 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l9___5

Found invariant 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 for location n_l4___11

knowledge_propagation leads to new time bound X₃ {O(n)} for transition t₄₁₅: l4(X₀, X₁, X₂, X₃, X₄) → n_l9___17(X₀, X₁, X₂, X₃, X₄) :|: X₂ ≤ 1 ∧ X₄ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂ ∧ 0 ≤ X₄ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁

knowledge_propagation leads to new time bound X₃ {O(n)} for transition t₄₁₇: n_l9___17(X₀, X₁, X₂, X₃, X₄) → n_l10___16(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ 0 ∧ X₂ ≤ 1 ∧ X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃ {O(n)} for transition t₃₉₈: n_l10___16(X₀, X₁, X₂, X₃, X₄) → n_l2___15(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ 0 ∧ X₂ ≤ 1 ∧ X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃ {O(n)} for transition t₄₀₇: n_l2___15(X₀, X₁, X₂, X₃, X₄) → n_l3___14(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ 0 ∧ X₂ ≤ 1 ∧ X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃ {O(n)} for transition t₄₁₀: n_l3___14(X₀, X₁, X₂, X₃, X₄) → n_l1___13(NoDet0, X₁, Arg2_P, X₃, Arg4_P) :|: X₄ ≤ 0 ∧ X₂ ≤ 1 ∧ 1+Arg2_P ≤ X₁ ∧ 1+Arg4_P ≤ Arg2_P ∧ 0 ≤ Arg4_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃ {O(n)} for transition t₄₀₃: n_l1___13(X₀, X₁, X₂, X₃, X₄) → n_l4___11(X₀, X₁, X₂+1, X₃, X₄) :|: X₄ ≤ 0 ∧ X₂ ≤ 1 ∧ X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

knowledge_propagation leads to new time bound X₃ {O(n)} for transition t₄₀₄: n_l1___13(X₀, X₁, X₂, X₃, X₄) → n_l4___12(X₀, X₁, X₂+1, X₃, X₂) :|: X₄ ≤ 0 ∧ X₂ ≤ 1 ∧ 0 < X₀ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ X₄ ≤ 0 ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₂+X₄ ≤ 1 ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁

MPRF for transition t₃₉₉: n_l10___4(X₀, X₁, X₂, X₃, X₄) → n_l2___3(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ 2+X₄ ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃⋅X₃+4⋅X₃ {O(n^2)}

MPRF for transition t₄₀₀: n_l10___9(X₀, X₁, X₂, X₃, X₄) → n_l2___8(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₄₀₁: n_l1___1(X₀, X₁, X₂, X₃, X₄) → n_l4___11(X₀, X₁, X₂+1, X₃, X₄) :|: 2+X₄ ≤ X₂ ∧ X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃ {O(n^2)}

MPRF for transition t₄₀₂: n_l1___1(X₀, X₁, X₂, X₃, X₄) → n_l4___12(X₀, X₁, X₂+1, X₃, X₂) :|: 2+X₄ ≤ X₂ ∧ 0 < X₀ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+X₃ {O(n^2)}

MPRF for transition t₄₀₅: n_l1___6(X₀, X₁, X₂, X₃, X₄) → n_l4___11(X₀, X₁, X₂+1, X₃, X₄) :|: X₀ ≤ 0 ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃ {O(n^2)}

MPRF for transition t₄₀₆: n_l1___6(X₀, X₁, X₂, X₃, X₄) → n_l4___12(X₀, X₁, X₂+1, X₃, X₂) :|: 0 < X₀ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₄₀₈: n_l2___3(X₀, X₁, X₂, X₃, X₄) → n_l3___2(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ 2+X₄ ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₄₀₉: n_l2___8(X₀, X₁, X₂, X₃, X₄) → n_l3___7(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₄₁₁: n_l3___2(X₀, X₁, X₂, X₃, X₄) → n_l1___1(NoDet0, X₁, Arg2_P, X₃, Arg4_P) :|: X₀ ≤ 0 ∧ 2+X₄ ≤ X₂ ∧ 1+Arg2_P ≤ X₁ ∧ 1+Arg4_P ≤ Arg2_P ∧ 0 ≤ Arg4_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃⋅X₃+3⋅X₃ {O(n^2)}

MPRF for transition t₄₁₂: n_l3___7(X₀, X₁, X₂, X₃, X₄) → n_l1___6(NoDet0, X₁, Arg2_P, X₃, Arg4_P) :|: 1+Arg2_P ≤ X₁ ∧ 1+Arg4_P ≤ Arg2_P ∧ 0 ≤ Arg4_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

3⋅X₃⋅X₃ {O(n^2)}

MPRF for transition t₄₁₃: n_l4___11(X₀, X₁, X₂, X₃, X₄) → n_l9___5(X₀, X₁, X₂, X₃, X₄) :|: 2+X₄ ≤ X₂ ∧ X₀ ≤ 0 ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₄₁₄: n_l4___12(X₀, X₁, X₂, X₃, X₄) → n_l9___10(X₀, X₁, X₂, X₃, X₄) :|: 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₃ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₄₁₆: n_l9___10(X₀, X₁, X₂, X₃, X₄) → n_l10___9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 2+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 4 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₄₁₈: n_l9___5(X₀, X₁, X₂, X₃, X₄) → n_l10___4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 0 ∧ 2+X₄ ≤ X₂ ∧ X₁ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 3+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 3 ≤ X₁ ∧ 3+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₄₂₉: n_l4___11(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 2+X₄ ≤ X₃ ∧ 2+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 2+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₄₃₀: n_l4___12(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 1+X₂ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ X₂ ≤ 1+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃+1 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:10⋅X₃⋅X₃+14⋅X₃+7 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: X₃ {O(n)}
t₆: X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₇: X₃+1 {O(n)}
t₁₀: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₄: X₃⋅X₃+X₃ {O(n^2)}
t₁₆: X₃⋅X₃+X₃ {O(n^2)}
t₁₇: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₈: X₃⋅X₃+X₃ {O(n^2)}
t₁₉: 1 {O(1)}
t₂₁: X₃ {O(n)}
t₂₂: 1 {O(1)}

Costbounds

Overall costbound: 10⋅X₃⋅X₃+14⋅X₃+7 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₅: X₃ {O(n)}
t₆: X₃⋅X₃+2⋅X₃+1 {O(n^2)}
t₇: X₃+1 {O(n)}
t₁₀: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₄: X₃⋅X₃+X₃ {O(n^2)}
t₁₆: X₃⋅X₃+X₃ {O(n^2)}
t₁₇: 2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₈: X₃⋅X₃+X₃ {O(n^2)}
t₁₉: 1 {O(1)}
t₂₁: X₃ {O(n)}
t₂₂: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₃ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₅, X₁: X₃ {O(n)}
t₅, X₂: 1 {O(1)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 0 {O(1)}
t₆, X₁: X₃ {O(n)}
t₆, X₂: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₇, X₁: X₃ {O(n)}
t₇, X₂: 6⋅X₃⋅X₃+6⋅X₃+3 {O(n^2)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: 6⋅X₃⋅X₃+6⋅X₃+2 {O(n^2)}
t₁₀, X₁: X₃ {O(n)}
t₁₀, X₂: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₁₃, X₁: X₃ {O(n)}
t₁₃, X₂: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₄: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₁₄, X₁: X₃ {O(n)}
t₁₄, X₂: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₄: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₁₆, X₁: X₃ {O(n)}
t₁₆, X₂: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₄: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₁₇, X₁: X₃ {O(n)}
t₁₇, X₂: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₁₇, X₃: X₃ {O(n)}
t₁₇, X₄: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₁₈, X₁: X₃ {O(n)}
t₁₈, X₂: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₄: 3⋅X₃⋅X₃+3⋅X₃+1 {O(n^2)}
t₁₉, X₁: X₃ {O(n)}
t₁₉, X₂: 6⋅X₃⋅X₃+6⋅X₃+3 {O(n^2)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₄: 0 {O(1)}
t₂₁, X₁: X₃ {O(n)}
t₂₁, X₂: 6⋅X₃⋅X₃+6⋅X₃+3 {O(n^2)}
t₂₁, X₃: X₃ {O(n)}
t₂₁, X₄: 6⋅X₃⋅X₃+6⋅X₃+2 {O(n^2)}
t₂₂, X₁: X₁+X₃ {O(n)}
t₂₂, X₂: 6⋅X₃⋅X₃+6⋅X₃+X₂+3 {O(n^2)}
t₂₂, X₃: 2⋅X₃ {O(n)}
t₂₂, X₄: X₄ {O(n)}