Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₂-1, X₄)
t₃: l10(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₂
t₂: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₂ < X₄
t₁: l11(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, 1, X₃, X₄)
t₁₇: l12(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄)
t₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄)
t₈: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₃
t₉: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₃ < 0
t₁₃: l5(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀ < X₁
t₁₄: l5(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀
t₁₀: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, nondef.1, X₂, X₃, X₄)
t₁₅: l8(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃-1, X₄)
t₁₆: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂+1, X₃, X₄)

Preprocessing

Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l2

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l6

Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₂ for location l12

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l7

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l5

Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₂ for location l13

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l8

Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l1

Found invariant 1 ≤ X₂ for location l10

Found invariant 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l4

Found invariant 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l9

Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄)
t₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₂-1, X₄) :|: 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂
t₃: l10(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₂ ∧ 1 ≤ X₂
t₂: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₂ < X₄ ∧ 1 ≤ X₂
t₁: l11(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, 1, X₃, X₄)
t₁₇: l12(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₂ ∧ 1 ≤ X₂
t₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂
t₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂
t₈: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₃ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₉: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₃ < 0 ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₃: l5(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀ < X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₄: l5(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₀: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₂: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, nondef.1, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₅: l8(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃-1, X₄) :|: 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁
t₁₆: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂+1, X₃, X₄) :|: 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂

MPRF for transition t₂: l10(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₂ < X₄ ∧ 1 ≤ X₂ of depth 1:

new bound:

X₄+2 {O(n)}

MPRF for transition t₄: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄) → l1(nondef.0, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ of depth 1:

new bound:

X₄+2 {O(n)}

MPRF for transition t₇: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₂-1, X₄) :|: 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF for transition t₉: l4(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₃ < 0 ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF for transition t₁₄: l5(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF for transition t₁₆: l9(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂+1, X₃, X₄) :|: 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:

new bound:

X₄+2 {O(n)}

MPRF for transition t₈: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₃ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:

new bound:

X₄⋅X₄+5⋅X₄+7 {O(n^2)}

MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:

new bound:

X₄⋅X₄+5⋅X₄+7 {O(n^2)}

MPRF for transition t₁₂: l7(X₀, X₁, X₂, X₃, X₄) → l5(X₀, nondef.1, X₂, X₃, X₄) :|: 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:

new bound:

2⋅X₄⋅X₄+8⋅X₄+7 {O(n^2)}

MPRF for transition t₁₃: l5(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₀ < X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:

new bound:

X₄⋅X₄+5⋅X₄+7 {O(n^2)}

MPRF for transition t₁₅: l8(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃-1, X₄) :|: 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₄⋅X₄+5⋅X₄+7 {O(n^2)}

Chain transitions t₆: l3→l1 and t₇: l1→l4 to t₁₀₉: l3→l4

Chain transitions t₁₆: l9→l10 and t₂: l10→l2 to t₁₁₀: l9→l2

Chain transitions t₁: l11→l10 and t₂: l10→l2 to t₁₁₁: l11→l2

Chain transitions t₁: l11→l10 and t₃: l10→l12 to t₁₁₂: l11→l12

Chain transitions t₁₆: l9→l10 and t₃: l10→l12 to t₁₁₃: l9→l12

Chain transitions t₁₁₀: l9→l2 and t₄: l2→l3 to t₁₁₄: l9→l3

Chain transitions t₁₁₁: l11→l2 and t₄: l2→l3 to t₁₁₅: l11→l3

Chain transitions t₁₁₄: l9→l3 and t₁₀₉: l3→l4 to t₁₁₆: l9→l4

Chain transitions t₁₁₅: l11→l3 and t₁₀₉: l3→l4 to t₁₁₇: l11→l4

Chain transitions t₁₁₅: l11→l3 and t₆: l3→l1 to t₁₁₈: l11→l1

Chain transitions t₁₁₄: l9→l3 and t₆: l3→l1 to t₁₁₉: l9→l1

Chain transitions t₁₁₆: l9→l4 and t₉: l4→l9 to t₁₂₀: l9→l9

Chain transitions t₁₅: l8→l4 and t₉: l4→l9 to t₁₂₁: l8→l9

Chain transitions t₁₅: l8→l4 and t₈: l4→l6 to t₁₂₂: l8→l6

Chain transitions t₁₁₆: l9→l4 and t₈: l4→l6 to t₁₂₃: l9→l6

Chain transitions t₁₁₇: l11→l4 and t₈: l4→l6 to t₁₂₄: l11→l6

Chain transitions t₁₁₇: l11→l4 and t₉: l4→l9 to t₁₂₅: l11→l9

Chain transitions t₁₂: l7→l5 and t₁₄: l5→l9 to t₁₂₆: l7→l9

Chain transitions t₁₂: l7→l5 and t₁₃: l5→l8 to t₁₂₇: l7→l8

Chain transitions t₁₂₃: l9→l6 and t₁₀: l6→l7 to t₁₂₈: l9→l7

Chain transitions t₁₂₂: l8→l6 and t₁₀: l6→l7 to t₁₂₉: l8→l7

Chain transitions t₁₂₄: l11→l6 and t₁₀: l6→l7 to t₁₃₀: l11→l7

Chain transitions t₁₂₈: l9→l7 and t₁₂₆: l7→l9 to t₁₃₁: l9→l9

Chain transitions t₁₂₉: l8→l7 and t₁₂₆: l7→l9 to t₁₃₂: l8→l9

Chain transitions t₁₂₉: l8→l7 and t₁₂₇: l7→l8 to t₁₃₃: l8→l8

Chain transitions t₁₂₈: l9→l7 and t₁₂₇: l7→l8 to t₁₃₄: l9→l8

Chain transitions t₁₃₀: l11→l7 and t₁₂₇: l7→l8 to t₁₃₅: l11→l8

Chain transitions t₁₃₀: l11→l7 and t₁₂₆: l7→l9 to t₁₃₆: l11→l9

Chain transitions t₁₃₀: l11→l7 and t₁₂: l7→l5 to t₁₃₇: l11→l5

Chain transitions t₁₂₉: l8→l7 and t₁₂: l7→l5 to t₁₃₈: l8→l5

Chain transitions t₁₂₈: l9→l7 and t₁₂: l7→l5 to t₁₃₉: l9→l5

Analysing control-flow refined program

Cut unsatisfiable transition t₁₂₀: l9→l9

Cut unsatisfiable transition t₁₂₅: l11→l9

Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l2

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l6

Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₂ for location l12

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l7

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l5

Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₂ for location l13

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location l8

Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l1

Found invariant 1 ≤ X₂ for location l10

Found invariant 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l4

Found invariant 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l9

Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l3

MPRF for transition t₁₂₁: l8(X₀, X₁, X₂, X₃, X₄) -{2}> l9(X₀, X₁, X₂, X₃-1, X₄) :|: X₃ < 1 ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₄+3 {O(n)}

MPRF for transition t₁₃₁: l9(X₀, X₁, X₂, X₃, X₄) -{9}> l9(Temp_Int₄₇₈, Temp_Int₅₅₂, 1+X₂, X₂, X₄) :|: 1+X₂ < X₄ ∧ 0 ≤ X₂ ∧ Temp_Int₅₅₂ ≤ Temp_Int₄₇₈ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+2⋅X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ 2⋅X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ 2⋅X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ 2⋅X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:

new bound:

2⋅X₄+2 {O(n)}

MPRF for transition t₁₃₂: l8(X₀, X₁, X₂, X₃, X₄) -{5}> l9(X₀, Temp_Int₅₅₇, X₂, X₃-1, X₄) :|: 1 ≤ X₃ ∧ Temp_Int₅₅₇ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₄+3 {O(n)}

MPRF for transition t₁₃₄: l9(X₀, X₁, X₂, X₃, X₄) -{9}> l8(Temp_Int₄₇₈, Temp_Int₅₆₇, 1+X₂, X₂, X₄) :|: 1+X₂ < X₄ ∧ 0 ≤ X₂ ∧ Temp_Int₄₇₈ < Temp_Int₅₆₇ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ 1+X₂ ∧ 0 ≤ 1+2⋅X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ 2⋅X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ 2⋅X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2+X₂ ≤ X₄ ∧ 0 ≤ 0 ∧ 0 ≤ X₂ ∧ 0 ≤ 2⋅X₂ ∧ 0 ≤ X₂ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:

new bound:

2⋅X₄+4 {O(n)}

MPRF for transition t₁₃₃: l8(X₀, X₁, X₂, X₃, X₄) -{5}> l8(X₀, Temp_Int₅₆₂, X₂, X₃-1, X₄) :|: 1 ≤ X₃ ∧ X₀ < Temp_Int₅₆₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

24⋅X₄⋅X₄+100⋅X₄+105 {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₉: l4→l9

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂ for location n_l6___9

Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l2

Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l8___1

Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l6___4

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l8___6

Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l7___3

Found invariant 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location n_l5___2

Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₂ for location l12

Found invariant 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l4___5

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂ for location n_l7___8

Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₂ for location l13

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂ for location n_l5___7

Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l1

Found invariant 1 ≤ X₂ for location l10

Found invariant 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂ for location l4

Found invariant 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l9

Found invariant 2 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ for location l3

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₃₁: l4(X₀, X₁, X₂, X₃, X₄) → n_l6___9(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₃ ∧ X₂ ≤ 1+X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₃₆: n_l6___9(X₀, X₁, X₂, X₃, X₄) → n_l7___8(X₀, X₁, X₂, X₃, X₄) :|: X₂ ≤ X₃+1 ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₃₈: n_l7___8(X₀, X₁, X₂, X₃, X₄) → n_l5___7(X₀, NoDet0, Arg2_P, Arg3_P, Arg4_P) :|: X₂ ≤ X₃+1 ∧ 1+Arg2_P ≤ Arg4_P ∧ 1+Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₅₀: n_l5___7(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₃₄: n_l5___7(X₀, X₁, X₂, X₃, X₄) → n_l8___6(X₀, X₁, X₂, X₃, X₄) :|: X₂ ≤ X₃+1 ∧ X₀ < X₁ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂

knowledge_propagation leads to new time bound X₄+1 {O(n)} for transition t₃₄₀: n_l8___6(X₀, X₁, X₂, X₃, X₄) → n_l4___5(X₀, X₁, X₂, X₃-1, X₄) :|: X₀ < X₁ ∧ X₂ ≤ X₃+1 ∧ 2+X₃ ≤ X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁

MPRF for transition t₃₃₂: n_l4___5(X₀, X₁, X₂, X₃, X₄) → n_l6___4(X₀, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₄⋅X₄+8⋅X₄+6 {O(n^2)}

MPRF for transition t₃₃₃: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l8___1(X₀, X₁, X₂, X₃, X₄) :|: 2+X₃ ≤ X₂ ∧ X₀ < X₁ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:

new bound:

X₄⋅X₄+6⋅X₄+7 {O(n^2)}

MPRF for transition t₃₃₅: n_l6___4(X₀, X₁, X₂, X₃, X₄) → n_l7___3(X₀, X₁, X₂, X₃, X₄) :|: 1+X₀ ≤ X₁ ∧ 2+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₄⋅X₄+6⋅X₄+6 {O(n^2)}

MPRF for transition t₃₃₇: n_l7___3(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, NoDet0, Arg2_P, Arg3_P, Arg4_P) :|: 1+X₀ ≤ X₁ ∧ 2+X₃ ≤ X₂ ∧ 1+Arg2_P ≤ Arg4_P ∧ 1+Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₄⋅X₄+7⋅X₄+5 {O(n^2)}

MPRF for transition t₃₃₉: n_l8___1(X₀, X₁, X₂, X₃, X₄) → n_l4___5(X₀, X₁, X₂, X₃-1, X₄) :|: X₀ < X₁ ∧ 2+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 1+X₀ ≤ X₁ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₄⋅X₄+6⋅X₄+6 {O(n^2)}

MPRF for transition t₃₄₈: n_l4___5(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₃ < 0 ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₄+1 {O(n)}

MPRF for transition t₃₄₉: n_l5___2(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₀ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:

new bound:

X₄+2 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:6⋅X₄⋅X₄+35⋅X₄+49 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₄+2 {O(n)}
t₃: 1 {O(1)}
t₄: X₄+1 {O(n)}
t₆: X₄+2 {O(n)}
t₇: X₄+1 {O(n)}
t₈: X₄⋅X₄+5⋅X₄+7 {O(n^2)}
t₉: X₄+1 {O(n)}
t₁₀: X₄⋅X₄+5⋅X₄+7 {O(n^2)}
t₁₂: 2⋅X₄⋅X₄+8⋅X₄+7 {O(n^2)}
t₁₃: X₄⋅X₄+5⋅X₄+7 {O(n^2)}
t₁₄: X₄+1 {O(n)}
t₁₅: X₄⋅X₄+5⋅X₄+7 {O(n^2)}
t₁₆: X₄+2 {O(n)}
t₁₇: 1 {O(1)}

Costbounds

Overall costbound: 6⋅X₄⋅X₄+35⋅X₄+49 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₄+2 {O(n)}
t₃: 1 {O(1)}
t₄: X₄+1 {O(n)}
t₆: X₄+2 {O(n)}
t₇: X₄+1 {O(n)}
t₈: X₄⋅X₄+5⋅X₄+7 {O(n^2)}
t₉: X₄+1 {O(n)}
t₁₀: X₄⋅X₄+5⋅X₄+7 {O(n^2)}
t₁₂: 2⋅X₄⋅X₄+8⋅X₄+7 {O(n^2)}
t₁₃: X₄⋅X₄+5⋅X₄+7 {O(n^2)}
t₁₄: X₄+1 {O(n)}
t₁₅: X₄⋅X₄+5⋅X₄+7 {O(n^2)}
t₁₆: X₄+2 {O(n)}
t₁₇: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: 1 {O(1)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₂, X₂: X₄+3 {O(n)}
t₂, X₃: X₃+X₄+5 {O(n)}
t₂, X₄: X₄ {O(n)}
t₃, X₂: X₄+4 {O(n)}
t₃, X₃: X₃+X₄+5 {O(n)}
t₃, X₄: 2⋅X₄ {O(n)}
t₄, X₂: X₄+3 {O(n)}
t₄, X₃: X₃+X₄+5 {O(n)}
t₄, X₄: X₄ {O(n)}
t₆, X₂: X₄+3 {O(n)}
t₆, X₃: X₃+X₄+5 {O(n)}
t₆, X₄: X₄ {O(n)}
t₇, X₂: X₄+3 {O(n)}
t₇, X₃: X₄+3 {O(n)}
t₇, X₄: X₄ {O(n)}
t₈, X₂: X₄+3 {O(n)}
t₈, X₃: X₄+4 {O(n)}
t₈, X₄: X₄ {O(n)}
t₉, X₂: X₄+3 {O(n)}
t₉, X₃: 1 {O(1)}
t₉, X₄: X₄ {O(n)}
t₁₀, X₂: X₄+3 {O(n)}
t₁₀, X₃: X₄+4 {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₂, X₂: X₄+3 {O(n)}
t₁₂, X₃: X₄+4 {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₃, X₂: X₄+3 {O(n)}
t₁₃, X₃: X₄+4 {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₄, X₂: X₄+3 {O(n)}
t₁₄, X₃: X₄+4 {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₅, X₂: X₄+3 {O(n)}
t₁₅, X₃: X₄+4 {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₆, X₂: X₄+3 {O(n)}
t₁₆, X₃: X₄+5 {O(n)}
t₁₆, X₄: X₄ {O(n)}
t₁₇, X₂: X₄+4 {O(n)}
t₁₇, X₃: X₃+X₄+5 {O(n)}
t₁₇, X₄: 2⋅X₄ {O(n)}