Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.1, nondef.2, nondef.3, nondef.4
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, nondef.2, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, nondef.4, X₄, X₅, X₆, X₇)
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, nondef.3, X₃, X₄, X₅, X₆, X₇)
t₂₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₂ ≤ X₃
t₂₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₂
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆+3+2⋅X₅
t₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ ≤ X₄
t₃₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₇, X₆, X₇)
t₃₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 2+X₆
t₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+2 ≤ X₄
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 2
t₁: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇) :|: 2 < X₄
t₃₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇)
t₁₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ < X₄
t₁₃: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆+3+2⋅X₅
t₁₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ ≤ X₄ ∧ X₄ ≤ X₆+3+2⋅X₅
t₁₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < X₁
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₀
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+1)
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+2)
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇)
t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
Preprocessing
Cut unsatisfiable transition t₁₃: l23→l2
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l11
Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location l2
Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ for location l6
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location l15
Found invariant 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l19
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l12
Found invariant 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l23
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location l17
Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l7
Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l21
Found invariant 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l5
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l13
Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l8
Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location l1
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l10
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location l16
Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location l4
Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l9
Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location l3
Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.1, nondef.2, nondef.3, nondef.4
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, nondef.2, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄
t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, nondef.4, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₂₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, nondef.3, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₂₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₂ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₂₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆+3+2⋅X₅ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₃₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂
t₃₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₇, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂
t₃₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂
t₃₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < 2+X₆ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄
t₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+2 ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄
t₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 2
t₁: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇) :|: 2 < X₄
t₃₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₁₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ < X₄ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₁₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ ≤ X₄ ∧ X₄ ≤ X₆+3+2⋅X₅ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₁₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄
t₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₀ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+1) :|: 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄
t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+2) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀
t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄
t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄
t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄
MPRF for transition t₃: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+2 ≤ X₄ ∧ 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF for transition t₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF for transition t₇: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF for transition t₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF for transition t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆+3+2⋅X₅ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄+3 {O(n)}
MPRF for transition t₃₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₁₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ ≤ X₄ ∧ X₄ ≤ X₆+3+2⋅X₅ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄+1 {O(n^2)}
MPRF for transition t₁₂: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2⋅X₅+3+X₆ < X₄ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₁₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(nondef.1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₁₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, nondef.2, X₂, X₃, X₄, X₅, X₆, X₇) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ < X₁ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ X₀ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+1) :|: 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₂₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, 2⋅X₅+2) :|: 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₂₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, nondef.3, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₂₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, nondef.4, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₂₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₂ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₂₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₂ ≤ X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₃₀: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₃₂: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₃₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₇, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
Chain transitions t₁₆: l3→l1 and t₁₈: l1→l4 to t₁₁₈₅: l3→l4
Chain transitions t₂₅: l12→l10 and t₂₇: l10→l13 to t₁₁₈₆: l12→l13
Chain transitions t₂₂: l6→l11 and t₂₃: l11→l12 to t₁₁₈₇: l6→l12
Chain transitions t₂₁: l5→l11 and t₂₃: l11→l12 to t₁₁₈₈: l5→l12
Chain transitions t₁₁₈₇: l6→l12 and t₁₁₈₆: l12→l13 to t₁₁₈₉: l6→l13
Chain transitions t₁₁₈₈: l5→l12 and t₁₁₈₆: l12→l13 to t₁₁₉₀: l5→l13
Chain transitions t₁₁₈₈: l5→l12 and t₂₅: l12→l10 to t₁₁₉₁: l5→l10
Chain transitions t₁₁₈₇: l6→l12 and t₂₅: l12→l10 to t₁₁₉₂: l6→l10
Chain transitions t₁₁₈₉: l6→l13 and t₂₈: l13→l15 to t₁₁₉₃: l6→l15
Chain transitions t₁₁₉₀: l5→l13 and t₂₈: l13→l15 to t₁₁₉₄: l5→l15
Chain transitions t₁₁₉₀: l5→l13 and t₂₉: l13→l14 to t₁₁₉₅: l5→l14
Chain transitions t₁₁₈₉: l6→l13 and t₂₉: l13→l14 to t₁₁₉₆: l6→l14
Chain transitions t₈: l7→l14 and t₉: l14→l23 to t₁₁₉₇: l7→l23
Chain transitions t₁₁₉₆: l6→l14 and t₉: l14→l23 to t₁₁₉₈: l6→l23
Chain transitions t₁₁₉₆: l6→l14 and t₁₀: l14→l21 to t₁₁₉₉: l6→l21
Chain transitions t₈: l7→l14 and t₁₀: l14→l21 to t₁₂₀₀: l7→l21
Chain transitions t₁₁₉₅: l5→l14 and t₁₀: l14→l21 to t₁₂₀₁: l5→l21
Chain transitions t₁₁₉₅: l5→l14 and t₉: l14→l23 to t₁₂₀₂: l5→l23
Chain transitions t₃₃: l16→l14 and t₁₀: l14→l21 to t₁₂₀₃: l16→l21
Chain transitions t₃₃: l16→l14 and t₉: l14→l23 to t₁₂₀₄: l16→l23
Chain transitions t₁₁₉₃: l6→l15 and t₃₀: l15→l17 to t₁₂₀₅: l6→l17
Chain transitions t₁₁₉₄: l5→l15 and t₃₀: l15→l17 to t₁₂₀₆: l5→l17
Chain transitions t₃₂: l17→l16 and t₁₂₀₄: l16→l23 to t₁₂₀₇: l17→l23
Chain transitions t₃₂: l17→l16 and t₁₂₀₃: l16→l21 to t₁₂₀₈: l17→l21
Chain transitions t₃₂: l17→l16 and t₃₃: l16→l14 to t₁₂₀₉: l17→l14
Chain transitions t₁₂₀₅: l6→l17 and t₁₂₀₇: l17→l23 to t₁₂₁₀: l6→l23
Chain transitions t₁₂₀₆: l5→l17 and t₁₂₀₇: l17→l23 to t₁₂₁₁: l5→l23
Chain transitions t₁₂₀₆: l5→l17 and t₁₂₀₈: l17→l21 to t₁₂₁₂: l5→l21
Chain transitions t₁₂₀₅: l6→l17 and t₁₂₀₈: l17→l21 to t₁₂₁₃: l6→l21
Chain transitions t₁₂₀₆: l5→l17 and t₃₂: l17→l16 to t₁₂₁₄: l5→l16
Chain transitions t₁₂₀₅: l6→l17 and t₃₂: l17→l16 to t₁₂₁₅: l6→l16
Chain transitions t₁₂₀₆: l5→l17 and t₁₂₀₉: l17→l14 to t₁₂₁₆: l5→l14
Chain transitions t₁₂₀₅: l6→l17 and t₁₂₀₉: l17→l14 to t₁₂₁₇: l6→l14
Chain transitions t₃₄: l21→l19 and t₃: l19→l8 to t₁₂₁₈: l21→l8
Chain transitions t₁: l20→l19 and t₃: l19→l8 to t₁₂₁₉: l20→l8
Chain transitions t₁: l20→l19 and t₄: l19→l18 to t₁₂₂₀: l20→l18
Chain transitions t₃₄: l21→l19 and t₄: l19→l18 to t₁₂₂₁: l21→l18
Chain transitions t₁₂: l23→l2 and t₁₄: l2→l3 to t₁₂₂₂: l23→l3
Chain transitions t₁₂₀₀: l7→l21 and t₁₂₁₈: l21→l8 to t₁₂₂₃: l7→l8
Chain transitions t₁₂₁₃: l6→l21 and t₁₂₁₈: l21→l8 to t₁₂₂₄: l6→l8
Chain transitions t₁₂₁₃: l6→l21 and t₃₄: l21→l19 to t₁₂₂₅: l6→l19
Chain transitions t₁₂₀₀: l7→l21 and t₃₄: l21→l19 to t₁₂₂₆: l7→l19
Chain transitions t₁₁₉₉: l6→l21 and t₃₄: l21→l19 to t₁₂₂₇: l6→l19
Chain transitions t₁₁₉₉: l6→l21 and t₁₂₁₈: l21→l8 to t₁₂₂₈: l6→l8
Chain transitions t₁₁₉₉: l6→l21 and t₁₂₂₁: l21→l18 to t₁₂₂₉: l6→l18
Chain transitions t₁₂₁₃: l6→l21 and t₁₂₂₁: l21→l18 to t₁₂₃₀: l6→l18
Chain transitions t₁₂₀₀: l7→l21 and t₁₂₂₁: l21→l18 to t₁₂₃₁: l7→l18
Chain transitions t₁₂₁₂: l5→l21 and t₁₂₂₁: l21→l18 to t₁₂₃₂: l5→l18
Chain transitions t₁₂₁₂: l5→l21 and t₃₄: l21→l19 to t₁₂₃₃: l5→l19
Chain transitions t₁₂₁₂: l5→l21 and t₁₂₁₈: l21→l8 to t₁₂₃₄: l5→l8
Chain transitions t₁₂₀₁: l5→l21 and t₁₂₂₁: l21→l18 to t₁₂₃₅: l5→l18
Chain transitions t₁₂₀₁: l5→l21 and t₃₄: l21→l19 to t₁₂₃₆: l5→l19
Chain transitions t₁₂₀₁: l5→l21 and t₁₂₁₈: l21→l8 to t₁₂₃₇: l5→l8
Chain transitions t₁₁₉₇: l7→l23 and t₁₁: l23→l5 to t₁₂₃₈: l7→l5
Chain transitions t₁₂₁₀: l6→l23 and t₁₁: l23→l5 to t₁₂₃₉: l6→l5
Chain transitions t₁₂₁₀: l6→l23 and t₁₂₂₂: l23→l3 to t₁₂₄₀: l6→l3
Chain transitions t₁₁₉₇: l7→l23 and t₁₂₂₂: l23→l3 to t₁₂₄₁: l7→l3
Chain transitions t₁₁₉₈: l6→l23 and t₁₂₂₂: l23→l3 to t₁₂₄₂: l6→l3
Chain transitions t₁₁₉₈: l6→l23 and t₁₁: l23→l5 to t₁₂₄₃: l6→l5
Chain transitions t₁₁₉₈: l6→l23 and t₁₂: l23→l2 to t₁₂₄₄: l6→l2
Chain transitions t₁₂₁₀: l6→l23 and t₁₂: l23→l2 to t₁₂₄₅: l6→l2
Chain transitions t₁₁₉₇: l7→l23 and t₁₂: l23→l2 to t₁₂₄₆: l7→l2
Chain transitions t₁₂₁₁: l5→l23 and t₁₂: l23→l2 to t₁₂₄₇: l5→l2
Chain transitions t₁₂₁₁: l5→l23 and t₁₂₂₂: l23→l3 to t₁₂₄₈: l5→l3
Chain transitions t₁₂₁₁: l5→l23 and t₁₁: l23→l5 to t₁₂₄₉: l5→l5
Chain transitions t₁₂₀₂: l5→l23 and t₁₂: l23→l2 to t₁₂₅₀: l5→l2
Chain transitions t₁₂₀₂: l5→l23 and t₁₂₂₂: l23→l3 to t₁₂₅₁: l5→l3
Chain transitions t₁₂₀₂: l5→l23 and t₁₁: l23→l5 to t₁₂₅₂: l5→l5
Chain transitions t₁₂₄₁: l7→l3 and t₁₁₈₅: l3→l4 to t₁₂₅₃: l7→l4
Chain transitions t₁₂₄₂: l6→l3 and t₁₁₈₅: l3→l4 to t₁₂₅₄: l6→l4
Chain transitions t₁₂₄₂: l6→l3 and t₁₆: l3→l1 to t₁₂₅₅: l6→l1
Chain transitions t₁₂₄₁: l7→l3 and t₁₆: l3→l1 to t₁₂₅₆: l7→l1
Chain transitions t₁₂₄₀: l6→l3 and t₁₆: l3→l1 to t₁₂₅₇: l6→l1
Chain transitions t₁₂₄₀: l6→l3 and t₁₁₈₅: l3→l4 to t₁₂₅₈: l6→l4
Chain transitions t₁₂₅₁: l5→l3 and t₁₆: l3→l1 to t₁₂₅₉: l5→l1
Chain transitions t₁₂₅₁: l5→l3 and t₁₁₈₅: l3→l4 to t₁₂₆₀: l5→l4
Chain transitions t₁₂₄₈: l5→l3 and t₁₆: l3→l1 to t₁₂₆₁: l5→l1
Chain transitions t₁₂₄₈: l5→l3 and t₁₁₈₅: l3→l4 to t₁₂₆₂: l5→l4
Chain transitions t₁₂₅₃: l7→l4 and t₂₀: l4→l6 to t₁₂₆₃: l7→l6
Chain transitions t₁₂₅₈: l6→l4 and t₂₀: l4→l6 to t₁₂₆₄: l6→l6
Chain transitions t₁₂₅₈: l6→l4 and t₁₉: l4→l5 to t₁₂₆₅: l6→l5
Chain transitions t₁₂₅₃: l7→l4 and t₁₉: l4→l5 to t₁₂₆₆: l7→l5
Chain transitions t₁₂₅₄: l6→l4 and t₁₉: l4→l5 to t₁₂₆₇: l6→l5
Chain transitions t₁₂₅₄: l6→l4 and t₂₀: l4→l6 to t₁₂₆₈: l6→l6
Chain transitions t₁₂₆₂: l5→l4 and t₁₉: l4→l5 to t₁₂₆₉: l5→l5
Chain transitions t₁₂₆₂: l5→l4 and t₂₀: l4→l6 to t₁₂₇₀: l5→l6
Chain transitions t₁₂₆₀: l5→l4 and t₁₉: l4→l5 to t₁₂₇₁: l5→l5
Chain transitions t₁₂₆₀: l5→l4 and t₂₀: l4→l6 to t₁₂₇₂: l5→l6
Chain transitions t₇: l9→l7 and t₁₂₂₃: l7→l8 to t₁₂₇₃: l9→l8
Chain transitions t₇: l9→l7 and t₁₂₆₃: l7→l6 to t₁₂₇₄: l9→l6
Chain transitions t₇: l9→l7 and t₁₂₆₆: l7→l5 to t₁₂₇₅: l9→l5
Chain transitions t₇: l9→l7 and t₁₂₃₈: l7→l5 to t₁₂₇₆: l9→l5
Chain transitions t₇: l9→l7 and t₁₂₅₃: l7→l4 to t₁₂₇₇: l9→l4
Chain transitions t₇: l9→l7 and t₁₂₄₁: l7→l3 to t₁₂₇₈: l9→l3
Chain transitions t₇: l9→l7 and t₁₁₉₇: l7→l23 to t₁₂₇₉: l9→l23
Chain transitions t₇: l9→l7 and t₁₂₀₀: l7→l21 to t₁₂₈₀: l9→l21
Chain transitions t₇: l9→l7 and t₁₂₄₆: l7→l2 to t₁₂₈₁: l9→l2
Chain transitions t₇: l9→l7 and t₁₂₂₆: l7→l19 to t₁₂₈₂: l9→l19
Chain transitions t₇: l9→l7 and t₁₂₃₁: l7→l18 to t₁₂₈₃: l9→l18
Chain transitions t₇: l9→l7 and t₈: l7→l14 to t₁₂₈₄: l9→l14
Chain transitions t₇: l9→l7 and t₁₂₅₆: l7→l1 to t₁₂₈₅: l9→l1
Chain transitions t₁₂₇₃: l9→l8 and t₅: l8→l9 to t₁₂₈₆: l9→l9
Chain transitions t₁₂₂₈: l6→l8 and t₅: l8→l9 to t₁₂₈₇: l6→l9
Chain transitions t₁₂₂₄: l6→l8 and t₅: l8→l9 to t₁₂₈₈: l6→l9
Chain transitions t₁₂₃₇: l5→l8 and t₅: l8→l9 to t₁₂₈₉: l5→l9
Chain transitions t₁₂₃₄: l5→l8 and t₅: l8→l9 to t₁₂₉₀: l5→l9
Chain transitions t₁₂₁₉: l20→l8 and t₅: l8→l9 to t₁₂₉₁: l20→l9
Analysing control-flow refined program
Cut unsatisfiable transition t₁₁₉₈: l6→l23
Cut unsatisfiable transition t₁₂₀₂: l5→l23
Cut unsatisfiable transition t₁₂₂₀: l20→l18
Cut unsatisfiable transition t₁₂₂₉: l6→l18
Cut unsatisfiable transition t₁₂₃₀: l6→l18
Cut unsatisfiable transition t₁₂₃₂: l5→l18
Cut unsatisfiable transition t₁₂₃₅: l5→l18
Cut unsatisfiable transition t₁₂₄₂: l6→l3
Cut unsatisfiable transition t₁₂₄₃: l6→l5
Cut unsatisfiable transition t₁₂₄₄: l6→l2
Cut unsatisfiable transition t₁₂₅₀: l5→l2
Cut unsatisfiable transition t₁₂₅₁: l5→l3
Cut unsatisfiable transition t₁₂₅₂: l5→l5
Cut unsatisfiable transition t₁₂₅₄: l6→l4
Cut unsatisfiable transition t₁₂₅₅: l6→l1
Cut unsatisfiable transition t₁₂₅₉: l5→l1
Cut unsatisfiable transition t₁₂₆₀: l5→l4
Cut unsatisfiable transition t₁₂₆₇: l6→l5
Cut unsatisfiable transition t₁₂₆₈: l6→l6
Cut unsatisfiable transition t₁₂₇₁: l5→l5
Cut unsatisfiable transition t₁₂₇₂: l5→l6
Cut unsatisfiable transition t₁₂₇₃: l9→l8
Cut unsatisfiable transition t₁₂₈₆: l9→l9
Eliminate variables {Temp_Int₉₁₁₉,Temp_Int₉₁₂₇,X₂,X₃,X₇} that do not contribute to the problem
Found invariant 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l11
Found invariant 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₂ for location l2
Found invariant 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₂ ∧ X₁ ≤ X₀ for location l6
Found invariant 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l15
Found invariant 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l19
Found invariant 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l12
Found invariant 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l23
Found invariant 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l17
Found invariant 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l7
Found invariant 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l21
Found invariant 3+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l5
Found invariant 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l13
Found invariant 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l8
Found invariant 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₂ for location l1
Found invariant 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l10
Found invariant 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃ for location l16
Found invariant 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₂ for location l4
Found invariant 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l9
Found invariant 4+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 0 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 4 ≤ X₂ for location l3
Found invariant 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l14
Analysing control-flow refined program
Cut unsatisfiable transition t₁₈₁₀: n_l14___1→n_l23___45
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ for location n_l10___21
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l16___2
Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l5___56
Found invariant X₇ ≤ X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 1 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l14___46
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l12___22
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l11___54
Found invariant 2+X₇ ≤ X₄ ∧ 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l12___29
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l12___36
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l15___4
Found invariant 2+X₇ ≤ X₄ ∧ 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l16___24
Found invariant X₇ ≤ X₅ ∧ 5+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l4___40
Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location n_l2___61
Found invariant X₇ ≤ X₅ ∧ 5+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l5___39
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l16___47
Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l14
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₅ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ X₄ ∧ 4 ≤ X₅ ∧ 8 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₄ ∧ X₂ ≤ X₃ for location n_l14___50
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location n_l13___6
Found invariant X₇ ≤ X₅ ∧ 4+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l5___43
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l10___35
Found invariant X₇ ≤ X₅ ∧ 5+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l2___44
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location n_l11___9
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location n_l12___8
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l11___16
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ 2+X₇ ≤ X₅ ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₅ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₄ ∧ X₂ ≤ X₃ for location n_l14___5
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l15___12
Found invariant X₇ ≤ X₅ ∧ 4+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l23___45
Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l7
Found invariant 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l11___30
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l12___15
Found invariant 2+X₇ ≤ X₄ ∧ 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l15___26
Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location n_l1___58
Found invariant 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location n_l5___60
Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l8
Found invariant 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location n_l23___62
Found invariant 2+X₇ ≤ X₄ ∧ 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l17___25
Found invariant X₇ ≤ X₅ ∧ 5+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l1___41
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l14___1
Found invariant 3+X₇ ≤ X₄ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l15___33
Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location n_l4___57
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l10___52
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l16___10
Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ for location n_l3___59
Found invariant 3+X₇ ≤ X₄ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l13___34
Found invariant X₇ ≤ X₅ ∧ 5+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l3___42
Found invariant 1+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l19
Found invariant 2+X₇ ≤ X₄ ∧ 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l10___28
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l15___49
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l17___11
Found invariant X₇ ≤ X₅ ∧ 5+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 7 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ for location n_l6___38
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l13___13
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l12___53
Found invariant 3+X₇ ≤ X₄ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l16___31
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l16___17
Found invariant 2+X₇ ≤ X₄ ∧ 4 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 5 ≤ X₅+X₇ ∧ 3+X₅ ≤ X₇ ∧ 10 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l13___27
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l17___18
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l15___19
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ for location n_l13___20
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 8 ≤ X₄+X₇ ∧ 5+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 4+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 5 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l11___23
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ ∧ 1+X₃ ≤ X₂ for location n_l17___3
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₀ ≤ X₁ for location n_l13___51
Found invariant 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l6___55
Found invariant 3+X₇ ≤ X₄ ∧ 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l17___32
Found invariant X₇ ≤ 2 ∧ X₇ ≤ 2+X₆ ∧ X₇ ≤ 2+X₅ ∧ X₅+X₇ ≤ 2 ∧ 2+X₇ ≤ X₄ ∧ 2 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 6 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ X₁ ≤ X₀ for location n_l10___14
Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location l21
Found invariant 2+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄ for location l9
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 2+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 4 ≤ X₄+X₇ ∧ 3+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ X₄ ≤ 3+X₆ ∧ X₅ ≤ 0 ∧ 3+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₄ for location n_l10___7
Found invariant 3 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 4 ≤ X₅+X₇ ∧ 2+X₅ ≤ X₇ ∧ 9 ≤ X₄+X₇ ∧ 6+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 6 ≤ X₄+X₆ ∧ 5+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 7 ≤ X₄+X₅ ∧ 6 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l11___37
Found invariant X₇ ≤ 1 ∧ X₇ ≤ 1+X₆ ∧ X₇ ≤ 1+X₅ ∧ X₅+X₇ ≤ 1 ∧ 3+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 5 ≤ X₄+X₇ ∧ 4+X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₅ ≤ 0 ∧ 4+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₀ ≤ X₁ for location n_l17___48
All Bounds
Timebounds
Overall timebound:18⋅X₄⋅X₄+25⋅X₄+13 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₄+1 {O(n)}
t₄: 1 {O(1)}
t₅: X₄+1 {O(n)}
t₇: X₄+1 {O(n)}
t₈: X₄+1 {O(n)}
t₉: X₄⋅X₄+X₄ {O(n^2)}
t₁₀: X₄+3 {O(n)}
t₁₁: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₁₂: X₄⋅X₄+X₄ {O(n^2)}
t₁₄: X₄⋅X₄+X₄ {O(n^2)}
t₁₆: X₄⋅X₄+X₄ {O(n^2)}
t₁₈: X₄⋅X₄+X₄ {O(n^2)}
t₁₉: X₄⋅X₄+X₄ {O(n^2)}
t₂₀: X₄⋅X₄+X₄ {O(n^2)}
t₂₁: X₄⋅X₄+X₄ {O(n^2)}
t₂₂: X₄⋅X₄+X₄ {O(n^2)}
t₂₃: X₄⋅X₄+X₄ {O(n^2)}
t₂₅: X₄⋅X₄+X₄ {O(n^2)}
t₂₇: X₄⋅X₄+X₄ {O(n^2)}
t₂₈: X₄⋅X₄+X₄ {O(n^2)}
t₂₉: X₄⋅X₄+X₄ {O(n^2)}
t₃₀: X₄⋅X₄+X₄ {O(n^2)}
t₃₂: X₄⋅X₄+X₄ {O(n^2)}
t₃₃: X₄⋅X₄+X₄ {O(n^2)}
t₃₄: X₄ {O(n)}
t₃₅: 1 {O(1)}
Costbounds
Overall costbound: 18⋅X₄⋅X₄+25⋅X₄+13 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₄+1 {O(n)}
t₄: 1 {O(1)}
t₅: X₄+1 {O(n)}
t₇: X₄+1 {O(n)}
t₈: X₄+1 {O(n)}
t₉: X₄⋅X₄+X₄ {O(n^2)}
t₁₀: X₄+3 {O(n)}
t₁₁: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₁₂: X₄⋅X₄+X₄ {O(n^2)}
t₁₄: X₄⋅X₄+X₄ {O(n^2)}
t₁₆: X₄⋅X₄+X₄ {O(n^2)}
t₁₈: X₄⋅X₄+X₄ {O(n^2)}
t₁₉: X₄⋅X₄+X₄ {O(n^2)}
t₂₀: X₄⋅X₄+X₄ {O(n^2)}
t₂₁: X₄⋅X₄+X₄ {O(n^2)}
t₂₂: X₄⋅X₄+X₄ {O(n^2)}
t₂₃: X₄⋅X₄+X₄ {O(n^2)}
t₂₅: X₄⋅X₄+X₄ {O(n^2)}
t₂₇: X₄⋅X₄+X₄ {O(n^2)}
t₂₈: X₄⋅X₄+X₄ {O(n^2)}
t₂₉: X₄⋅X₄+X₄ {O(n^2)}
t₃₀: X₄⋅X₄+X₄ {O(n^2)}
t₃₂: X₄⋅X₄+X₄ {O(n^2)}
t₃₃: X₄⋅X₄+X₄ {O(n^2)}
t₃₄: X₄ {O(n)}
t₃₅: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: 0 {O(1)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+X₄+X₅ {O(EXP)}
t₃, X₆: X₄ {O(n)}
t₃, X₇: 2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+X₄ {O(EXP)}
t₄, X₆: X₄ {O(n)}
t₄, X₇: 2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+X₄+X₅ {O(EXP)}
t₅, X₆: X₄ {O(n)}
t₅, X₇: 2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+X₄+X₅ {O(EXP)}
t₇, X₆: X₄ {O(n)}
t₇, X₇: 2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: 0 {O(1)}
t₈, X₆: X₄ {O(n)}
t₈, X₇: 2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₉, X₆: X₄ {O(n)}
t₉, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+X₄ {O(EXP)}
t₁₀, X₆: X₄ {O(n)}
t₁₀, X₇: 2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₁₁, X₆: X₄ {O(n)}
t₁₁, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₁₂, X₆: X₄ {O(n)}
t₁₂, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₁₄, X₆: X₄ {O(n)}
t₁₄, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₁₆, X₆: X₄ {O(n)}
t₁₆, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₁₈, X₆: X₄ {O(n)}
t₁₈, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₁₉, X₆: X₄ {O(n)}
t₁₉, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₂₀, X₆: X₄ {O(n)}
t₂₀, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: 2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄ {O(EXP)}
t₂₁, X₆: X₄ {O(n)}
t₂₁, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₂₂, X₄: X₄ {O(n)}
t₂₂, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₂₂, X₆: X₄ {O(n)}
t₂₂, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₂₃, X₄: X₄ {O(n)}
t₂₃, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄ {O(EXP)}
t₂₃, X₆: X₄ {O(n)}
t₂₃, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₂₅, X₄: X₄ {O(n)}
t₂₅, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄ {O(EXP)}
t₂₅, X₆: X₄ {O(n)}
t₂₅, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₂₇, X₄: X₄ {O(n)}
t₂₇, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄ {O(EXP)}
t₂₇, X₆: X₄ {O(n)}
t₂₇, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₂₈, X₄: X₄ {O(n)}
t₂₈, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄ {O(EXP)}
t₂₈, X₆: X₄ {O(n)}
t₂₈, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₅: X₄ {O(n)}
t₂₉, X₆: X₄ {O(n)}
t₂₉, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₃₀, X₄: X₄ {O(n)}
t₃₀, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄ {O(EXP)}
t₃₀, X₆: X₄ {O(n)}
t₃₀, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₃₂, X₄: X₄ {O(n)}
t₃₂, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄ {O(EXP)}
t₃₂, X₆: X₄ {O(n)}
t₃₂, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₃₃, X₆: X₄ {O(n)}
t₃₃, X₇: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄ {O(EXP)}
t₃₄, X₄: X₄ {O(n)}
t₃₄, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+X₄ {O(EXP)}
t₃₄, X₆: X₄ {O(n)}
t₃₄, X₇: 2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+X₇ {O(EXP)}
t₃₅, X₄: 2⋅X₄ {O(n)}
t₃₅, X₅: 2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄+2⋅2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅X₄⋅X₄+X₄+X₅ {O(EXP)}
t₃₅, X₆: X₄+X₆ {O(n)}
t₃₅, X₇: 2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄+2^(X₄⋅X₄+X₄)⋅2^(X₄⋅X₄+X₄)⋅4⋅X₄⋅X₄+2⋅X₇ {O(EXP)}