Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂) → l3(X₀, X₁, X₂)
t₄: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₁ < 0
t₃: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 0 ≤ X₁
t₁₁: l2(X₀, X₁, X₂) → l8(X₀, X₁, X₂)
t₁: l3(X₀, X₁, X₂) → l1(X₀, X₀, X₂) :|: 0 ≤ X₀
t₂: l3(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₀ < 0
t₆: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ 1
t₅: l4(X₀, X₁, X₂) → l6(X₀, X₁, 1) :|: 1 < X₁
t₁₀: l5(X₀, X₁, X₂) → l1(X₀, X₁-1, X₂)
t₈: l6(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ X₂
t₇: l6(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: X₂ < X₁
t₉: l7(X₀, X₁, X₂) → l6(X₀, X₁, 2⋅X₂)
Preprocessing
Found invariant 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6
Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀ for location l1
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂) → l3(X₀, X₁, X₂)
t₄: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₁ < 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀
t₃: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀
t₁₁: l2(X₀, X₁, X₂) → l8(X₀, X₁, X₂)
t₁: l3(X₀, X₁, X₂) → l1(X₀, X₀, X₂) :|: 0 ≤ X₀
t₂: l3(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₀ < 0
t₆: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₅: l4(X₀, X₁, X₂) → l6(X₀, X₁, 1) :|: 1 < X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₀: l5(X₀, X₁, X₂) → l1(X₀, X₁-1, X₂) :|: X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₈: l6(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₇: l6(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₉: l7(X₀, X₁, X₂) → l6(X₀, X₁, 2⋅X₂) :|: 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₃: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₅: l4(X₀, X₁, X₂) → l6(X₀, X₁, 1) :|: 1 < X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₆: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₈: l6(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₁₀: l5(X₀, X₁, X₂) → l1(X₀, X₁-1, X₂) :|: X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+1 {O(n)}
MPRF for transition t₇: l6(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₀⋅X₀+2⋅X₀ {O(n^2)}
MPRF for transition t₉: l7(X₀, X₁, X₂) → l6(X₀, X₁, 2⋅X₂) :|: 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
Chain transitions t₁₀: l5→l1 and t₃: l1→l4 to t₇₀: l5→l4
Chain transitions t₁: l3→l1 and t₃: l1→l4 to t₇₁: l3→l4
Chain transitions t₁: l3→l1 and t₄: l1→l2 to t₇₂: l3→l2
Chain transitions t₁₀: l5→l1 and t₄: l1→l2 to t₇₃: l5→l2
Chain transitions t₇₀: l5→l4 and t₅: l4→l6 to t₇₄: l5→l6
Chain transitions t₇₁: l3→l4 and t₅: l4→l6 to t₇₅: l3→l6
Chain transitions t₇₁: l3→l4 and t₆: l4→l5 to t₇₆: l3→l5
Chain transitions t₇₀: l5→l4 and t₆: l4→l5 to t₇₇: l5→l5
Chain transitions t₉: l7→l6 and t₇: l6→l7 to t₇₈: l7→l7
Chain transitions t₇₄: l5→l6 and t₇: l6→l7 to t₇₉: l5→l7
Chain transitions t₇₄: l5→l6 and t₈: l6→l5 to t₈₀: l5→l5
Chain transitions t₉: l7→l6 and t₈: l6→l5 to t₈₁: l7→l5
Chain transitions t₇₅: l3→l6 and t₈: l6→l5 to t₈₂: l3→l5
Chain transitions t₇₅: l3→l6 and t₇: l6→l7 to t₈₃: l3→l7
Analysing control-flow refined program
Cut unsatisfiable transition t₇₂: l3→l2
Cut unsatisfiable transition t₈₀: l5→l5
Cut unsatisfiable transition t₈₂: l3→l5
Found invariant 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6
Found invariant 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀ for location l1
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
MPRF for transition t₇₇: l5(X₀, X₁, X₂) -{3}> l5(X₀, X₁-1, X₂) :|: 1 ≤ X₁ ∧ X₁ ≤ 2 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₀+1 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₀+1 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+3 {O(n)}
MPRF for transition t₇₉: l5(X₀, X₁, X₂) -{4}> l7(X₀, X₁-1, 1) :|: 1 ≤ X₁ ∧ 2 < X₁ ∧ 2 < X₁ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₀+1 ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₁ ≤ X₀+1 ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ 0 ∧ 3 ≤ X₁ ∧ 2 ≤ X₀ ∧ X₁ ≤ X₀+1 ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₀+3 {O(n)}
MPRF for transition t₈₁: l7(X₀, X₁, X₂) -{2}> l5(X₀, X₁, 2⋅X₂) :|: X₁ ≤ 2⋅X₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ 2⋅X₂ ∧ 3 ≤ X₁+2⋅X₂ ∧ 3 ≤ X₀+2⋅X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₀+4 {O(n)}
MPRF for transition t₇₈: l7(X₀, X₁, X₂) -{2}> l7(X₀, X₁, 2⋅X₂) :|: 2⋅X₂ < X₁ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ 2⋅X₂ ∧ 3 ≤ X₁+2⋅X₂ ∧ 3 ≤ X₀+2⋅X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₀⋅X₀+5⋅X₀+2 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₈: l6→l5
Found invariant 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l6___2
Found invariant X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6
Found invariant X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l7___3
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant X₁ ≤ X₀ ∧ 0 ≤ 1+X₁ ∧ 0 ≤ 1+X₀+X₁ ∧ 0 ≤ X₀ for location l1
Found invariant X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
Found invariant 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___1
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₈₅: l6(X₀, X₁, X₂) → n_l7___3(X₀, X₁, X₂) :|: X₂ < X₁ ∧ X₂ < X₁ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound X₀+1 {O(n)} for transition t₁₈₇: n_l7___3(X₀, X₁, X₂) → n_l6___2(X₀, X₁, 2⋅X₂) :|: X₂ < X₁ ∧ 2 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₈₄: n_l6___2(X₀, X₁, X₂) → n_l7___1(X₀, X₁, X₂) :|: 2 ≤ X₂ ∧ 2+X₂ ≤ 2⋅X₁ ∧ X₂ < X₁ ∧ 2 ≤ X₁ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
MPRF for transition t₁₈₆: n_l7___1(X₀, X₁, X₂) → n_l6___2(X₀, X₁, 2⋅X₂) :|: X₂ < X₁ ∧ 2 ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 3 ≤ X₁ ∧ 6 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₀⋅X₀+2⋅X₀ {O(n^2)}
MPRF for transition t₁₉₁: n_l6___2(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:3⋅X₀⋅X₀+11⋅X₀+10 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₀+1 {O(n)}
t₄: 1 {O(1)}
t₅: X₀+1 {O(n)}
t₆: X₀+1 {O(n)}
t₇: X₀⋅X₀+2⋅X₀ {O(n^2)}
t₈: X₀+1 {O(n)}
t₉: 2⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₁₀: X₀+1 {O(n)}
t₁₁: 1 {O(1)}
Costbounds
Overall costbound: 3⋅X₀⋅X₀+11⋅X₀+10 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₀+1 {O(n)}
t₄: 1 {O(1)}
t₅: X₀+1 {O(n)}
t₆: X₀+1 {O(n)}
t₇: X₀⋅X₀+2⋅X₀ {O(n^2)}
t₈: X₀+1 {O(n)}
t₉: 2⋅X₀⋅X₀+4⋅X₀ {O(n^2)}
t₁₀: X₀+1 {O(n)}
t₁₁: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₀ {O(n)}
t₁, X₂: X₂ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₀+2 {O(n)}
t₃, X₂: 2^(2⋅X₀⋅X₀+4⋅X₀)+X₂ {O(EXP)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: 1 {O(1)}
t₄, X₂: 2^(2⋅X₀⋅X₀+4⋅X₀)+X₂ {O(EXP)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₀+2 {O(n)}
t₅, X₂: 1 {O(1)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: 1 {O(1)}
t₆, X₂: 2^(2⋅X₀⋅X₀+4⋅X₀)+X₂ {O(EXP)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₀+2 {O(n)}
t₇, X₂: 2^(2⋅X₀⋅X₀+4⋅X₀) {O(EXP)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₀+2 {O(n)}
t₈, X₂: 2^(2⋅X₀⋅X₀+4⋅X₀) {O(EXP)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₀+2 {O(n)}
t₉, X₂: 2^(2⋅X₀⋅X₀+4⋅X₀) {O(EXP)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₀+2 {O(n)}
t₁₀, X₂: 2^(2⋅X₀⋅X₀+4⋅X₀)+X₂ {O(EXP)}
t₁₁, X₀: 2⋅X₀ {O(n)}
t₁₁, X₁: X₁+1 {O(n)}
t₁₁, X₂: 2^(2⋅X₀⋅X₀+4⋅X₀)+2⋅X₂ {O(EXP)}