Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆)
t₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₄-1, X₃, X₄, X₅, X₆)
t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂
t₂₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆)
t₁₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₁₉: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < 0
t₂₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₀
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ X₁
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆)
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, 1)
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, 0, X₄, 0, X₆) :|: 0 < X₂
t₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0
Preprocessing
Found invariant X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l11
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l2
Found invariant X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l6
Found invariant 1+X₂ ≤ X₄ for location l15
Found invariant 1+X₂ ≤ X₄ for location l12
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l7
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l5
Found invariant X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l13
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l8
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l1
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l4
Found invariant 1+X₂ ≤ X₄ for location l9
Found invariant X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l3
Found invariant X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l14
Cut unsatisfiable transition t₁₉: l14→l13
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₄-1, X₃, X₄, X₅, X₆)
t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₂₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₂ ≤ X₄
t₂₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂
t₁₈: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂
t₂₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₀ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ X₁ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, 1) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
t₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, 0, X₄, 0, X₆) :|: 0 < X₂ ∧ 1+X₂ ≤ X₄
t₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 1+X₂ ≤ X₄
MPRF for transition t₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, 0, X₄, 0, X₆) :|: 0 < X₂ ∧ 1+X₂ ≤ X₄ of depth 1:
new bound:
X₄+2 {O(n)}
MPRF for transition t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF for transition t₂₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF for transition t₂₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF for transition t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF for transition t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF for transition t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF for transition t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF for transition t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₀ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+3⋅X₄+2 {O(n^2)}
MPRF for transition t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ X₁ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+3⋅X₄+2 {O(n^2)}
MPRF for transition t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₄⋅X₄+3⋅X₄+2 {O(n^2)}
MPRF for transition t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄ {O(n^2)}
MPRF for transition t₁₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, 1) :|: X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₄⋅X₄+6⋅X₄+4 {O(n^2)}
MPRF for transition t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄ {O(n^2)}
Chain transitions t₈: l3→l1 and t₁₀: l1→l4 to t₂₇₃: l3→l4
Chain transitions t₂: l9→l11 and t₄: l11→l2 to t₂₇₄: l9→l2
Chain transitions t₁₇: l6→l11 and t₄: l11→l2 to t₂₇₅: l6→l2
Chain transitions t₁₇: l6→l11 and t₅: l11→l14 to t₂₇₆: l6→l14
Chain transitions t₂: l9→l11 and t₅: l11→l14 to t₂₇₇: l9→l14
Chain transitions t₂₀: l14→l13 and t₂₁: l13→l9 to t₂₇₈: l14→l9
Chain transitions t₂₇₇: l9→l14 and t₂₇₈: l14→l9 to t₂₇₉: l9→l9
Chain transitions t₂₇₆: l6→l14 and t₂₇₈: l14→l9 to t₂₈₀: l6→l9
Chain transitions t₂₇₆: l6→l14 and t₂₀: l14→l13 to t₂₈₁: l6→l13
Chain transitions t₂₇₇: l9→l14 and t₂₀: l14→l13 to t₂₈₂: l9→l13
Chain transitions t₂₇₆: l6→l14 and t₁₈: l14→l12 to t₂₈₃: l6→l12
Chain transitions t₂₇₇: l9→l14 and t₁₈: l14→l12 to t₂₈₄: l9→l12
Chain transitions t₂₇₄: l9→l2 and t₆: l2→l3 to t₂₈₅: l9→l3
Chain transitions t₂₇₅: l6→l2 and t₆: l2→l3 to t₂₈₆: l6→l3
Chain transitions t₂₈₅: l9→l3 and t₂₇₃: l3→l4 to t₂₈₇: l9→l4
Chain transitions t₂₈₆: l6→l3 and t₂₇₃: l3→l4 to t₂₈₈: l6→l4
Chain transitions t₂₈₆: l6→l3 and t₈: l3→l1 to t₂₈₉: l6→l1
Chain transitions t₂₈₅: l9→l3 and t₈: l3→l1 to t₂₉₀: l9→l1
Chain transitions t₂₈₇: l9→l4 and t₁₂: l4→l6 to t₂₉₁: l9→l6
Chain transitions t₂₈₈: l6→l4 and t₁₂: l4→l6 to t₂₉₂: l6→l6
Chain transitions t₂₈₈: l6→l4 and t₁₁: l4→l5 to t₂₉₃: l6→l5
Chain transitions t₂₈₇: l9→l4 and t₁₁: l4→l5 to t₂₉₄: l9→l5
Chain transitions t₂₉₄: l9→l5 and t₁₃: l5→l8 to t₂₉₅: l9→l8
Chain transitions t₂₉₃: l6→l5 and t₁₃: l5→l8 to t₂₉₆: l6→l8
Chain transitions t₁₅: l8→l7 and t₁₆: l7→l6 to t₂₉₇: l8→l6
Chain transitions t₂₉₅: l9→l8 and t₁₅: l8→l7 to t₂₉₈: l9→l7
Chain transitions t₂₉₆: l6→l8 and t₁₅: l8→l7 to t₂₉₉: l6→l7
Chain transitions t₂₉₆: l6→l8 and t₂₉₇: l8→l6 to t₃₀₀: l6→l6
Chain transitions t₂₉₅: l9→l8 and t₂₉₇: l8→l6 to t₃₀₁: l9→l6
Analysing control-flow refined program
Cut unsatisfiable transition t₂₇₇: l9→l14
Cut unsatisfiable transition t₂₇₉: l9→l9
Cut unsatisfiable transition t₂₈₂: l9→l13
Cut unsatisfiable transition t₂₈₄: l9→l12
Eliminate variables {Temp_Int₁₆₉₀,Temp_Int₁₆₉₇,X₀,X₁} that do not contribute to the problem
Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11
Found invariant 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 2 ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6
Found invariant 1+X₀ ≤ X₂ for location l15
Found invariant 1+X₀ ≤ X₂ for location l12
Found invariant X₃ ≤ 1 ∧ 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l7
Found invariant 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 2 ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ X₃ ≤ 1 ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ X₀ ≤ X₁ for location l13
Found invariant X₃ ≤ 1 ∧ 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8
Found invariant 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l1
Found invariant 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Found invariant 1+X₀ ≤ X₂ for location l9
Found invariant 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
Found invariant X₄ ≤ X₃ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l14
MPRF for transition t₃₇₀: l6(X₀, X₁, X₂, X₃, X₄) -{4}> l9(X₀-1, 1+X₁, X₂, X₄, X₄) :|: X₀ ≤ X₁+1 ∧ 0 < X₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 2 ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₃₇₈: l9(X₀, X₁, X₂, X₃, X₄) -{6}> l6(X₀, 0, X₂, 0, 0) :|: 0 < X₀ ∧ 0 < X₀ ∧ Temp_Int₁₆₇₆ ≤ Temp_Int₁₆₇₇ ∧ 1+X₀ ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₃₇₉: l9(X₀, X₁, X₂, X₃, X₄) -{9}> l6(X₀, 0, X₂, 0, 1) :|: 0 < X₀ ∧ 0 < X₀ ∧ Temp_Int₁₆₇₇ < Temp_Int₁₆₇₆ ∧ 1+X₀ ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₃₆₆: l6(X₀, X₁, X₂, X₃, X₄) -{6}> l6(X₀, 1+X₁, X₂, X₄, X₄) :|: 1+X₁ < X₀ ∧ Temp_Int₁₆₈₃ ≤ Temp_Int₁₆₈₄ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 2 ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+4⋅X₂+2 {O(n^2)}
MPRF for transition t₃₆₇: l6(X₀, X₁, X₂, X₃, X₄) -{9}> l6(X₀, 1+X₁, X₂, X₄, 1) :|: 1+X₁ < X₀ ∧ Temp_Int₁₆₈₄ < Temp_Int₁₆₈₃ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₃+X₄ ≤ 2 ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ 2+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 2 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+4⋅X₂+2 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₅: l11→l14
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location l11
Found invariant X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l6___1
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l11___10
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l2___19
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location n_l4___6
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ X₀ ≤ X₁ for location n_l6___4
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l7___12
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l8___13
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l8___3
Found invariant 1+X₂ ≤ X₄ for location l15
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l5___5
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l1___17
Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁ for location n_l6___14
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location n_l1___7
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l4___16
Found invariant 1+X₂ ≤ X₄ for location l12
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location n_l2___9
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ for location n_l3___8
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l5___15
Found invariant X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 1 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₃+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l6___11
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l7___2
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l13
Found invariant 1+X₂ ≤ X₄ for location l9
Found invariant X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₂ for location l14
Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l3___18
knowledge_propagation leads to new time bound X₄+2 {O(n)} for transition t₅₂₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂ ∧ X₃ < X₂ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+2 {O(n)} for transition t₅₂₈: n_l2___19(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂ ∧ X₅ ≤ 1 ∧ 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+2 {O(n)} for transition t₅₃₀: n_l3___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___17(NoDet0, X₁, X₂, Arg3_P, Arg4_P, Arg5_P, X₆) :|: Arg5_P ≤ 1 ∧ 0 ≤ Arg5_P ∧ 1+Arg3_P ≤ X₂ ∧ 1+X₂ ≤ Arg4_P ∧ Arg5_P ≤ Arg3_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+2 {O(n)} for transition t₅₂₆: n_l1___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___16(X₀, NoDet0, X₂, Arg3_P, Arg4_P, Arg5_P, X₆) :|: Arg5_P ≤ 1 ∧ 0 ≤ Arg5_P ∧ 1+Arg3_P ≤ X₂ ∧ 1+X₂ ≤ Arg4_P ∧ Arg5_P ≤ Arg3_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+2 {O(n)} for transition t₅₃₂: n_l4___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₀ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+2 {O(n)} for transition t₅₃₃: n_l4___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ X₁ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₄+2 {O(n)} for transition t₅₃₆: n_l5___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₀ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₄+2 {O(n)} for transition t₅₄₀: n_l6___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___10(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: X₀ ≤ X₁ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1 ∧ 0 ≤ X₆ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₅ ≤ X₆ ∧ X₆ ≤ 1 ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₃+X₆ ≤ 0 ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₀ ≤ X₁
knowledge_propagation leads to new time bound X₄+2 {O(n)} for transition t₅₄₄: n_l8___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₄+2 {O(n)} for transition t₅₄₂: n_l7___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, 1) :|: X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₄+2 {O(n)} for transition t₅₃₉: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___10(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: 1+X₁ ≤ X₀ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 1 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₃ ∧ X₃+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₀
MPRF for transition t₅₂₄: n_l11___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l2___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ 1 ∧ 0 ≤ X₆ ∧ 1 ≤ X₃ ∧ X₃ < X₂ ∧ X₅ ≤ 1 ∧ 1 ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
2⋅X₄⋅X₄+5⋅X₄+2 {O(n^2)}
MPRF for transition t₅₂₇: n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___6(X₀, NoDet0, X₂, Arg3_P, Arg4_P, Arg5_P, X₆) :|: 1 ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ Arg5_P ≤ 1 ∧ 0 ≤ Arg5_P ∧ 1+Arg3_P ≤ X₂ ∧ 1+X₂ ≤ Arg4_P ∧ Arg5_P ≤ Arg3_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
2⋅X₄⋅X₄+12⋅X₄+15 {O(n^2)}
MPRF for transition t₅₂₉: n_l2___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₂ ∧ 1 ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
2⋅X₄⋅X₄+9⋅X₄+7 {O(n^2)}
MPRF for transition t₅₃₁: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l1___7(NoDet0, X₁, X₂, Arg3_P, Arg4_P, Arg5_P, X₆) :|: 1 ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ Arg5_P ≤ 1 ∧ 0 ≤ Arg5_P ∧ 1+Arg3_P ≤ X₂ ∧ 1+X₂ ≤ Arg4_P ∧ Arg5_P ≤ Arg3_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
2⋅X₄⋅X₄+9⋅X₄+7 {O(n^2)}
MPRF for transition t₅₃₄: n_l4___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₁ < X₀ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
4⋅X₄⋅X₄+16⋅X₄+13 {O(n^2)}
MPRF for transition t₅₃₅: n_l4___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: 1 ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₀ ≤ X₁ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ of depth 1:
new bound:
2⋅X₄⋅X₄+9⋅X₄+8 {O(n^2)}
MPRF for transition t₅₃₇: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 1 ∧ 0 ≤ X₆ ∧ 1 ≤ X₃ ∧ X₁ < X₀ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₄⋅X₄+7⋅X₄+8 {O(n^2)}
MPRF for transition t₅₃₈: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___10(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ X₆ ≤ 1 ∧ 1 ≤ X₆ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ 1+X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
6⋅X₄⋅X₄+26⋅X₄+22 {O(n^2)}
MPRF for transition t₅₄₁: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l11___10(X₀, X₁, X₂, X₃+1, X₄, X₆, X₆) :|: 1 ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₆ ≤ X₅ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₅ ≤ X₆ ∧ X₆ ≤ 1 ∧ X₅ ≤ X₆ ∧ X₅ ≤ X₃ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ X₀ ≤ X₁ of depth 1:
new bound:
6⋅X₄⋅X₄+17⋅X₄+7 {O(n^2)}
MPRF for transition t₅₄₃: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, 1) :|: 1 ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₄⋅X₄+7⋅X₄+6 {O(n^2)}
MPRF for transition t₅₄₅: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1 ≤ X₃ ∧ X₅ ≤ X₆ ∧ X₆ ≤ X₅ ∧ X₅ ≤ 1 ∧ 0 ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1+X₂ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₅ ≤ 1 ∧ 1+X₃ ≤ X₂ ∧ 1+X₂ ≤ X₄ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 2+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1+X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 2+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 5 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₄⋅X₄+9⋅X₄+11 {O(n^2)}
MPRF for transition t₅₅₈: n_l11___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₃ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ ∧ X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 2 ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ X₅ ≤ 1 ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₂ of depth 1:
new bound:
X₄+2 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:11⋅X₄⋅X₄+31⋅X₄+20 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₄+2 {O(n)}
t₃: 1 {O(1)}
t₄: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₅: X₄+1 {O(n)}
t₆: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₈: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₁: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₂: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₅: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₆: 2⋅X₄⋅X₄+6⋅X₄+4 {O(n^2)}
t₁₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₈: 1 {O(1)}
t₂₀: X₄+1 {O(n)}
t₂₁: X₄+1 {O(n)}
t₂₂: 1 {O(1)}
Costbounds
Overall costbound: 11⋅X₄⋅X₄+31⋅X₄+20 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₄+2 {O(n)}
t₃: 1 {O(1)}
t₄: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₅: X₄+1 {O(n)}
t₆: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₈: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₀: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₁: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₂: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₃: X₄⋅X₄+3⋅X₄+2 {O(n^2)}
t₁₅: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₆: 2⋅X₄⋅X₄+6⋅X₄+4 {O(n^2)}
t₁₇: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₈: 1 {O(1)}
t₂₀: X₄+1 {O(n)}
t₂₁: X₄+1 {O(n)}
t₂₂: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₄+1 {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₂: X₄+1 {O(n)}
t₂, X₃: 0 {O(1)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: 0 {O(1)}
t₂, X₆: X₆+1 {O(n)}
t₃, X₂: 2⋅X₄+2 {O(n)}
t₃, X₃: X₄⋅X₄+2⋅X₄+X₃ {O(n^2)}
t₃, X₄: 2⋅X₄ {O(n)}
t₃, X₅: X₅+1 {O(n)}
t₃, X₆: X₆+1 {O(n)}
t₄, X₂: X₄+1 {O(n)}
t₄, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: 1 {O(1)}
t₄, X₆: X₆+2 {O(n)}
t₅, X₂: X₄+1 {O(n)}
t₅, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: 1 {O(1)}
t₅, X₆: 1 {O(1)}
t₆, X₂: X₄+1 {O(n)}
t₆, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: 1 {O(1)}
t₆, X₆: X₆+2 {O(n)}
t₈, X₂: X₄+1 {O(n)}
t₈, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: 1 {O(1)}
t₈, X₆: X₆+2 {O(n)}
t₁₀, X₂: X₄+1 {O(n)}
t₁₀, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: 1 {O(1)}
t₁₀, X₆: X₆+2 {O(n)}
t₁₁, X₂: X₄+1 {O(n)}
t₁₁, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: 1 {O(1)}
t₁₁, X₆: X₆+2 {O(n)}
t₁₂, X₂: X₄+1 {O(n)}
t₁₂, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: 1 {O(1)}
t₁₂, X₆: 1 {O(1)}
t₁₃, X₂: X₄+1 {O(n)}
t₁₃, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: 1 {O(1)}
t₁₃, X₆: X₆+2 {O(n)}
t₁₅, X₂: X₄+1 {O(n)}
t₁₅, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: 1 {O(1)}
t₁₅, X₆: X₆+2 {O(n)}
t₁₆, X₂: X₄+1 {O(n)}
t₁₆, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: 1 {O(1)}
t₁₆, X₆: 1 {O(1)}
t₁₇, X₂: X₄+1 {O(n)}
t₁₇, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: 1 {O(1)}
t₁₇, X₆: 1 {O(1)}
t₁₈, X₂: X₄+1 {O(n)}
t₁₈, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: 0 {O(1)}
t₁₈, X₆: 1 {O(1)}
t₂₀, X₂: X₄+1 {O(n)}
t₂₀, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: 1 {O(1)}
t₂₀, X₆: 1 {O(1)}
t₂₁, X₂: X₄+1 {O(n)}
t₂₁, X₃: X₄⋅X₄+2⋅X₄ {O(n^2)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: 1 {O(1)}
t₂₁, X₆: 1 {O(1)}
t₂₂, X₂: 3⋅X₄+3 {O(n)}
t₂₂, X₃: 2⋅X₄⋅X₄+4⋅X₄+X₃ {O(n^2)}
t₂₂, X₄: 3⋅X₄ {O(n)}
t₂₂, X₅: X₅+1 {O(n)}
t₂₂, X₆: X₆+2 {O(n)}