Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₃
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ < X₂+1
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, X₅-2, X₆, X₇, X₈, X₉)
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉)
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₂, X₃-1, X₆, X₇, X₈, X₉)
t₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₈, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₀-1, X₁+X₀-1, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ < 0
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆
t₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < X₄+3
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄+3 ≤ X₅
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₄, X₅-1, X₄, X₅, X₆, X₇, X₈, X₉)
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ < 2
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ < 0
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₇
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ ≤ 0 ∧ 0 ≤ X₇
t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉)
Preprocessing
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l11
Found invariant 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l2
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l6
Found invariant 2 ≤ X₀ for location l15
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l12
Found invariant X₀ ≤ 1 for location l17
Found invariant 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l7
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l13
Found invariant 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l8
Found invariant 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l1
Found invariant 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l10
Found invariant X₀ ≤ 1 for location l16
Found invariant 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l4
Found invariant 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l9
Found invariant 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ < X₂+1 ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, X₅-2, X₆, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₂, X₃-1, X₆, X₇, X₈, X₉) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₈, X₉, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₀-1, X₁+X₀-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀
t₂₅: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 1
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ < 0 ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < X₄+3 ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄+3 ≤ X₅ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₄, X₅-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀
t₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ < 2
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ < 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
MPRF for transition t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₈+X₉ {O(n)}
MPRF for transition t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₈+2⋅X₉ {O(n)}
MPRF for transition t₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.0, X₈, X₉) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₈+X₉ {O(n)}
MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ < 0 ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₈+2⋅X₉ {O(n)}
MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
3⋅X₈+X₉+1 {O(n)}
MPRF for transition t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
3⋅X₈+X₉+5 {O(n)}
MPRF for transition t₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₂, X₃-1, X₆, X₇, X₈, X₉) :|: 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₉+X₈ {O(n)}
MPRF for transition t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄+3 ≤ X₅ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
3⋅X₈+6⋅X₉+3 {O(n)}
MPRF for transition t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < X₄+3 ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₈+4⋅X₉+4 {O(n)}
MPRF for transition t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₈+X₉+1 {O(n)}
MPRF for transition t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₈+X₉ {O(n)}
MPRF for transition t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ < 0 ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₉+X₈+1 {O(n)}
MPRF for transition t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₉+X₈+1 {O(n)}
MPRF for transition t₂₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₈+X₉+3 {O(n)}
MPRF for transition t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄+1, X₅-2, X₆, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₉+X₈+1 {O(n)}
MPRF for transition t₂₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₄, X₅-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₈+2⋅X₉ {O(n)}
MPRF for transition t₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀ of depth 1:
new bound:
4⋅X₈⋅X₈+4⋅X₉⋅X₉+8⋅X₈⋅X₉+4⋅X₉+5⋅X₈ {O(n^2)}
MPRF for transition t₄: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₀-1, X₁+X₀-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₀ of depth 1:
new bound:
16⋅X₈⋅X₉+8⋅X₈⋅X₈+8⋅X₉⋅X₉+4⋅X₉+6⋅X₈+2 {O(n^2)}
MPRF for transition t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ < X₂+1 ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₈⋅X₈+4⋅X₉⋅X₉+8⋅X₈⋅X₉+2⋅X₉+3⋅X₈+1 {O(n^2)}
MPRF for transition t₂₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
4⋅X₈⋅X₈+4⋅X₉⋅X₉+8⋅X₈⋅X₉+2⋅X₉+3⋅X₈+1 {O(n^2)}
Chain transitions t₂₃: l4→l1 and t₆: l1→l7 to t₁₅₄: l4→l7
Chain transitions t₄: l15→l1 and t₆: l1→l7 to t₁₅₅: l15→l7
Chain transitions t₄: l15→l1 and t₅: l1→l11 to t₁₅₆: l15→l11
Chain transitions t₂₃: l4→l1 and t₅: l1→l11 to t₁₅₇: l4→l11
Chain transitions t₂₀: l2→l10 and t₂₂: l10→l3 to t₁₅₈: l2→l3
Chain transitions t₁₉: l2→l10 and t₂₂: l10→l3 to t₁₅₉: l2→l3
Chain transitions t₁₅₇: l4→l11 and t₇: l11→l12 to t₁₆₀: l4→l12
Chain transitions t₁₅₆: l15→l11 and t₇: l11→l12 to t₁₆₁: l15→l12
Chain transitions t₁₆₀: l4→l12 and t₉: l12→l6 to t₁₆₂: l4→l6
Chain transitions t₁₆₁: l15→l12 and t₉: l12→l6 to t₁₆₃: l15→l6
Chain transitions t₁₁: l6→l13 and t₁₃: l13→l3 to t₁₆₄: l6→l3
Chain transitions t₁₀: l6→l13 and t₁₃: l13→l3 to t₁₆₅: l6→l3
Chain transitions t₂: l5→l15 and t₁₅₅: l15→l7 to t₁₆₆: l5→l7
Chain transitions t₂: l5→l15 and t₁₆₃: l15→l6 to t₁₆₇: l5→l6
Chain transitions t₂: l5→l15 and t₁₆₁: l15→l12 to t₁₆₈: l5→l12
Chain transitions t₂: l5→l15 and t₁₅₆: l15→l11 to t₁₆₉: l5→l11
Chain transitions t₂: l5→l15 and t₄: l15→l1 to t₁₇₀: l5→l1
Chain transitions t₁₈: l9→l2 and t₂₁: l2→l4 to t₁₇₁: l9→l4
Chain transitions t₁₈: l9→l2 and t₁₅₉: l2→l3 to t₁₇₂: l9→l3
Chain transitions t₁₈: l9→l2 and t₁₅₈: l2→l3 to t₁₇₃: l9→l3
Chain transitions t₁₈: l9→l2 and t₂₀: l2→l10 to t₁₇₄: l9→l10
Chain transitions t₁₈: l9→l2 and t₁₉: l2→l10 to t₁₇₅: l9→l10
Chain transitions t₁₇₃: l9→l3 and t₁₄: l3→l8 to t₁₇₆: l9→l8
Chain transitions t₁₇₂: l9→l3 and t₁₄: l3→l8 to t₁₇₇: l9→l8
Chain transitions t₁₇₂: l9→l3 and t₁₅: l3→l4 to t₁₇₈: l9→l4
Chain transitions t₁₇₃: l9→l3 and t₁₅: l3→l4 to t₁₇₉: l9→l4
Chain transitions t₁₆₅: l6→l3 and t₁₅: l3→l4 to t₁₈₀: l6→l4
Chain transitions t₁₆₅: l6→l3 and t₁₄: l3→l8 to t₁₈₁: l6→l8
Chain transitions t₁₆₄: l6→l3 and t₁₅: l3→l4 to t₁₈₂: l6→l4
Chain transitions t₁₆₄: l6→l3 and t₁₄: l3→l8 to t₁₈₃: l6→l8
Chain transitions t₁₇₉: l9→l4 and t₁₅₄: l4→l7 to t₁₈₄: l9→l7
Chain transitions t₁₇₈: l9→l4 and t₁₅₄: l4→l7 to t₁₈₅: l9→l7
Chain transitions t₁₇₈: l9→l4 and t₁₆₂: l4→l6 to t₁₈₆: l9→l6
Chain transitions t₁₇₉: l9→l4 and t₁₆₂: l4→l6 to t₁₈₇: l9→l6
Chain transitions t₁₇₁: l9→l4 and t₁₆₂: l4→l6 to t₁₈₈: l9→l6
Chain transitions t₁₇₁: l9→l4 and t₁₅₄: l4→l7 to t₁₈₉: l9→l7
Chain transitions t₁₇₁: l9→l4 and t₁₆₀: l4→l12 to t₁₉₀: l9→l12
Chain transitions t₁₇₈: l9→l4 and t₁₆₀: l4→l12 to t₁₉₁: l9→l12
Chain transitions t₁₇₉: l9→l4 and t₁₆₀: l4→l12 to t₁₉₂: l9→l12
Chain transitions t₁₈₂: l6→l4 and t₁₆₀: l4→l12 to t₁₉₃: l6→l12
Chain transitions t₁₈₂: l6→l4 and t₁₆₂: l4→l6 to t₁₉₄: l6→l6
Chain transitions t₁₈₂: l6→l4 and t₁₅₄: l4→l7 to t₁₉₅: l6→l7
Chain transitions t₁₈₂: l6→l4 and t₁₅₇: l4→l11 to t₁₉₆: l6→l11
Chain transitions t₁₇₁: l9→l4 and t₁₅₇: l4→l11 to t₁₉₇: l9→l11
Chain transitions t₁₇₈: l9→l4 and t₁₅₇: l4→l11 to t₁₉₈: l9→l11
Chain transitions t₁₇₉: l9→l4 and t₁₅₇: l4→l11 to t₁₉₉: l9→l11
Chain transitions t₁₈₀: l6→l4 and t₁₅₇: l4→l11 to t₂₀₀: l6→l11
Chain transitions t₁₈₀: l6→l4 and t₁₆₀: l4→l12 to t₂₀₁: l6→l12
Chain transitions t₁₈₀: l6→l4 and t₁₆₂: l4→l6 to t₂₀₂: l6→l6
Chain transitions t₁₈₀: l6→l4 and t₁₅₄: l4→l7 to t₂₀₃: l6→l7
Chain transitions t₁₈₀: l6→l4 and t₂₃: l4→l1 to t₂₀₄: l6→l1
Chain transitions t₁₈₂: l6→l4 and t₂₃: l4→l1 to t₂₀₅: l6→l1
Chain transitions t₁₇₁: l9→l4 and t₂₃: l4→l1 to t₂₀₆: l9→l1
Chain transitions t₁₇₈: l9→l4 and t₂₃: l4→l1 to t₂₀₇: l9→l1
Chain transitions t₁₇₉: l9→l4 and t₂₃: l4→l1 to t₂₀₈: l9→l1
Chain transitions t₂₄: l7→l5 and t₁₆₆: l5→l7 to t₂₀₉: l7→l7
Chain transitions t₁: l14→l5 and t₁₆₆: l5→l7 to t₂₁₀: l14→l7
Chain transitions t₁: l14→l5 and t₁₆₇: l5→l6 to t₂₁₁: l14→l6
Chain transitions t₂₄: l7→l5 and t₁₆₇: l5→l6 to t₂₁₂: l7→l6
Chain transitions t₁: l14→l5 and t₃: l5→l16 to t₂₁₃: l14→l16
Chain transitions t₂₄: l7→l5 and t₃: l5→l16 to t₂₁₄: l7→l16
Chain transitions t₁: l14→l5 and t₂: l5→l15 to t₂₁₅: l14→l15
Chain transitions t₂₄: l7→l5 and t₂: l5→l15 to t₂₁₆: l7→l15
Chain transitions t₁: l14→l5 and t₁₆₈: l5→l12 to t₂₁₇: l14→l12
Chain transitions t₂₄: l7→l5 and t₁₆₈: l5→l12 to t₂₁₈: l7→l12
Chain transitions t₁: l14→l5 and t₁₆₉: l5→l11 to t₂₁₉: l14→l11
Chain transitions t₂₄: l7→l5 and t₁₆₉: l5→l11 to t₂₂₀: l7→l11
Chain transitions t₁: l14→l5 and t₁₇₀: l5→l1 to t₂₂₁: l14→l1
Chain transitions t₂₄: l7→l5 and t₁₇₀: l5→l1 to t₂₂₂: l7→l1
Chain transitions t₁₇₇: l9→l8 and t₁₆: l8→l9 to t₂₂₃: l9→l9
Chain transitions t₁₇₆: l9→l8 and t₁₆: l8→l9 to t₂₂₄: l9→l9
Chain transitions t₁₈₃: l6→l8 and t₁₆: l8→l9 to t₂₂₅: l6→l9
Chain transitions t₁₈₁: l6→l8 and t₁₆: l8→l9 to t₂₂₆: l6→l9
Analysing control-flow refined program
Cut unsatisfiable transition t₁₈₉: l9→l7
Eliminate variables {X₁,X₆} that do not contribute to the problem
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l11
Found invariant 2 ≤ X₆ ∧ 6 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 7 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₂ ∧ 4 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 9 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 3+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 4+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 5 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 4+X₁ ≤ X₂ ∧ 7 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l2
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l6
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₀+X₆ ∧ 2 ≤ X₀ for location l15
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l12
Found invariant X₀ ≤ X₆ ∧ X₀ ≤ 1 for location l17
Found invariant 2 ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant 2 ≤ X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l13
Found invariant 2 ≤ X₆ ∧ 6 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 7 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₂ ∧ 4 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 9 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 3+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 4+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 5 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 4+X₁ ≤ X₂ ∧ 7 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l8
Found invariant 2 ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l1
Found invariant 2 ≤ X₆ ∧ 6 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 7 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₂ ∧ 4 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 9 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 3+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 4+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 5 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 4+X₁ ≤ X₂ ∧ 7 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l10
Found invariant X₀ ≤ X₆ ∧ X₀ ≤ 1 for location l16
Found invariant 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l4
Found invariant 2 ≤ X₆ ∧ 6 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 7 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₂ ∧ 4 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3+X₃ ≤ X₄ ∧ 9 ≤ X₂+X₄ ∧ 5 ≤ X₁+X₄ ∧ 3+X₁ ≤ X₄ ∧ 6 ≤ X₀+X₄ ∧ 2+X₀ ≤ X₄ ∧ 4+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 5 ≤ X₂ ∧ 6 ≤ X₁+X₂ ∧ 4+X₁ ≤ X₂ ∧ 7 ≤ X₀+X₂ ∧ 3+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l9
Found invariant 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 4 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 4 ≤ X₀+X₆ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ X₀ ≤ 1+X₁ ∧ 2 ≤ X₀ for location l3
Analysing control-flow refined program
Found invariant 2 ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l11
Found invariant 2 ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 7 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l2
Found invariant 2 ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l6
Found invariant 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ 2+X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___9
Found invariant 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ for location n_l5___5
Found invariant X₉ ≤ X₁ ∧ X₁ ≤ X₉ ∧ X₈ ≤ X₀ ∧ 2 ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 2 ≤ X₀ for location n_l15___3
Found invariant 2 ≤ X₈ ∧ 5 ≤ X₂+X₈ ∧ 1+X₁ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 3 ≤ X₂ ∧ 2+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₀ for location n_l15___4
Found invariant 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location n_l1___7
Found invariant 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ 2+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₀+X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___2
Found invariant 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₀ for location n_l7___6
Found invariant 2 ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l12
Found invariant 2 ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 5 ≤ X₄+X₈ ∧ 4 ≤ X₃+X₈ ∧ 5 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ 2+X₀ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 5 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 3 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l15___8
Found invariant 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ 1+X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ 2+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location n_l7___10
Found invariant X₀ ≤ X₈ ∧ X₀ ≤ 1 for location l17
Found invariant 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ 2+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₂ ∧ 2+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l7
Found invariant X₉ ≤ X₁ ∧ X₁ ≤ X₉ ∧ X₈ ≤ X₀ ∧ X₀ ≤ X₈ for location l5
Found invariant 2 ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l13
Found invariant 2 ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 7 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l8
Found invariant 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 5 ≤ X₂+X₈ ∧ 4 ≤ X₁+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ 4+X₇ ≤ X₃ ∧ 3+X₇ ≤ X₂ ∧ 2+X₇ ≤ X₁ ∧ 2+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 4 ≤ X₃ ∧ 7 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l15___1
Found invariant 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ 2+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l1
Found invariant 2 ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 7 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l10
Found invariant X₀ ≤ X₈ ∧ X₀ ≤ 1 for location l16
Found invariant 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l4
Found invariant 2 ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 7 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₃ ∧ 4 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3+X₄ ≤ X₅ ∧ 9 ≤ X₃+X₅ ∧ 5 ≤ X₂+X₅ ∧ 3+X₂ ≤ X₅ ∧ 6 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 4+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 6 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 5 ≤ X₃ ∧ 6 ≤ X₂+X₃ ∧ 4+X₂ ≤ X₃ ∧ 7 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l9
Found invariant 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ for location l3
knowledge_propagation leads to new time bound 2⋅X₈+2⋅X₉ {O(n)} for transition t₄₅₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₃ ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ X₀ ≤ 1+X₄ ∧ X₄ ≤ X₅ ∧ X₃ < 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₃ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ 2+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₈+2⋅X₉ {O(n)} for transition t₄₆₁: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l5___9(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ < 1+X₂ ∧ X₂ ≤ 1+X₃ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ X₃+1 ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ 1+X₂ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ 1+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ 2+X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 3⋅X₈+X₉+5 {O(n)} for transition t₄₆₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l5___2(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₂ ≤ X₃ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ 2+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₂ ∧ 2+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 3⋅X₈+X₉+5 {O(n)} for transition t₄₅₈: n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l15___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₁ ∧ X₁ ≤ X₃ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀+X₁ ≤ X₃ ∧ X₃ ≤ X₀+X₁ ∧ X₁+X₂ ≤ X₃+1 ∧ 1+X₃ ≤ X₁+X₂ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 4 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ 2+X₇ ≤ X₃ ∧ 1+X₇ ≤ X₂ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₀+X₇ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₈+2⋅X₉ {O(n)} for transition t₄₆₀: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l15___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < 2+X₄ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₄ ∧ X₄ ≤ X₂ ∧ X₁+X₄ ≤ X₅ ∧ X₅ ≤ X₁+X₄ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃+1 ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 3 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ 2+X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound 3⋅X₈+X₉+5 {O(n)} for transition t₄₅₁: n_l15___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l1___7(X₀, X₁, X₀-1, X₀+X₁-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 2 ≤ X₁ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₁ ≤ X₃ ∧ X₃ ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 6 ≤ X₃+X₈ ∧ 5 ≤ X₂+X₈ ∧ 4 ≤ X₁+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₇ ≤ 0 ∧ 4+X₇ ≤ X₃ ∧ 3+X₇ ≤ X₂ ∧ 2+X₇ ≤ X₁ ∧ 2+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 4 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ 4 ≤ X₃ ∧ 7 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 6 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 6 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₈+2⋅X₉ {O(n)} for transition t₄₅₄: n_l15___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l1___7(X₀, X₁, X₀-1, X₀+X₁-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ < 3+X₀ ∧ 1+X₀ ≤ X₅ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ X₀+X₁+1 ≤ X₅ ∧ X₅ ≤ 1+X₀+X₁ ∧ X₀+1 ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃+1 ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ 2 ≤ X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 5 ≤ X₅+X₈ ∧ 5 ≤ X₄+X₈ ∧ 4 ≤ X₃+X₈ ∧ 5 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₅ ≤ 1+X₄ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ 1+X₂ ∧ X₅ ≤ 2+X₀ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 5 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 6 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 5 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 3 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 6 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 5 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ 2 ≤ X₃ ∧ 5 ≤ X₂+X₃ ∧ X₂ ≤ 1+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 3 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₄₅₃: n_l15___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l1___7(X₀, X₁, X₀-1, X₀+X₁-1, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ < 2 ∧ X₀+X₁ ≤ X₃ ∧ X₃ ≤ X₀+X₁ ∧ X₀+1 ≤ X₂ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 5 ≤ X₂+X₈ ∧ 1+X₁ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 3 ≤ X₂ ∧ 2+X₁ ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
14⋅X₉⋅X₉+54⋅X₈⋅X₈+56⋅X₈⋅X₉+102⋅X₈+61⋅X₉+26 {O(n^2)}
MPRF for transition t₄₅₆: n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀+X₁ ≤ 1+X₃ ∧ 1+X₃ ≤ X₀+X₁ ∧ 1+X₂ ≤ X₀ ∧ X₃ < 1+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
15⋅X₈⋅X₈+19⋅X₈⋅X₉+6⋅X₉⋅X₉+17⋅X₉+23⋅X₈+6 {O(n^2)}
MPRF for transition t₄₅₉: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l15___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ < 2 ∧ X₁ ≤ X₃ ∧ X₀+X₁ ≤ X₃ ∧ X₃ ≤ X₀+X₁ ∧ X₁+X₂ ≤ X₃+1 ∧ 1+X₃ ≤ X₁+X₂ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
1152⋅X₈⋅X₈⋅X₉⋅X₉+160⋅X₉⋅X₉⋅X₉⋅X₉+224⋅X₈⋅X₈⋅X₈⋅X₈+704⋅X₈⋅X₉⋅X₉⋅X₉+832⋅X₈⋅X₈⋅X₈⋅X₉+1064⋅X₈⋅X₉⋅X₉+1184⋅X₈⋅X₈⋅X₉+320⋅X₉⋅X₉⋅X₉+440⋅X₈⋅X₈⋅X₈+299⋅X₉⋅X₉+476⋅X₈⋅X₈+749⋅X₈⋅X₉+245⋅X₉+347⋅X₈+85 {O(n^4)}
MPRF for transition t₄₆₃: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l5___5(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ < 1 ∧ X₀+X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₀+X₁ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₀ of depth 1:
new bound:
3840⋅X₈⋅X₈⋅X₈⋅X₉+3840⋅X₈⋅X₉⋅X₉⋅X₉+5760⋅X₈⋅X₈⋅X₉⋅X₉+960⋅X₈⋅X₈⋅X₈⋅X₈+960⋅X₉⋅X₉⋅X₉⋅X₉+1200⋅X₈⋅X₈⋅X₈+3120⋅X₈⋅X₉⋅X₉+3360⋅X₈⋅X₈⋅X₉+960⋅X₉⋅X₉⋅X₉+1539⋅X₈⋅X₉+716⋅X₉⋅X₉+825⋅X₈⋅X₈+237⋅X₉+245⋅X₈+5 {O(n^4)}
MPRF for transition t₄₇₃: n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂+1 ≤ X₃ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₀ of depth 1:
new bound:
3⋅X₈+X₉+4 {O(n)}
knowledge_propagation leads to new time bound 15⋅X₈⋅X₈+19⋅X₈⋅X₉+6⋅X₉⋅X₉+17⋅X₉+23⋅X₈+6 {O(n^2)} for transition t₄₆₃: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l5___5(X₂-1, X₃+1-X₂, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ < 1 ∧ X₀+X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₀+X₁ ∧ X₀ ≤ X₂+1 ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 15⋅X₈⋅X₈+19⋅X₈⋅X₉+6⋅X₉⋅X₉+17⋅X₉+23⋅X₈+6 {O(n^2)} for transition t₄₅₉: n_l5___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l15___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ < 2 ∧ X₁ ≤ X₃ ∧ X₀+X₁ ≤ X₃ ∧ X₃ ≤ X₀+X₁ ∧ X₁+X₂ ≤ X₃+1 ∧ 1+X₃ ≤ X₁+X₂ ∧ 2 ≤ X₀ ∧ 2 ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 2 ≤ X₀+X₈ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 1+X₀ ∧ 0 ≤ X₀
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:20⋅X₈⋅X₈+20⋅X₉⋅X₉+40⋅X₈⋅X₉+43⋅X₉+44⋅X₈+28 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 4⋅X₈⋅X₈+4⋅X₉⋅X₉+8⋅X₈⋅X₉+4⋅X₉+5⋅X₈ {O(n^2)}
t₃: 1 {O(1)}
t₄: 16⋅X₈⋅X₉+8⋅X₈⋅X₈+8⋅X₉⋅X₉+4⋅X₉+6⋅X₈+2 {O(n^2)}
t₅: X₈+X₉ {O(n)}
t₆: 4⋅X₈⋅X₈+4⋅X₉⋅X₉+8⋅X₈⋅X₉+2⋅X₉+3⋅X₈+1 {O(n^2)}
t₇: 2⋅X₈+2⋅X₉ {O(n)}
t₉: X₈+X₉ {O(n)}
t₁₀: 2⋅X₈+2⋅X₉ {O(n)}
t₁₁: 3⋅X₈+X₉+1 {O(n)}
t₁₂: 3⋅X₈+X₉+5 {O(n)}
t₁₃: 2⋅X₉+X₈ {O(n)}
t₁₄: 3⋅X₈+6⋅X₉+3 {O(n)}
t₁₅: 2⋅X₈+4⋅X₉+4 {O(n)}
t₁₆: X₈+X₉+1 {O(n)}
t₁₈: 2⋅X₈+X₉ {O(n)}
t₁₉: 2⋅X₉+X₈+1 {O(n)}
t₂₀: 2⋅X₉+X₈+1 {O(n)}
t₂₁: X₈+X₉+3 {O(n)}
t₂₂: 2⋅X₉+X₈+1 {O(n)}
t₂₃: 2⋅X₈+2⋅X₉ {O(n)}
t₂₄: 4⋅X₈⋅X₈+4⋅X₉⋅X₉+8⋅X₈⋅X₉+2⋅X₉+3⋅X₈+1 {O(n^2)}
t₂₅: 1 {O(1)}
Costbounds
Overall costbound: 20⋅X₈⋅X₈+20⋅X₉⋅X₉+40⋅X₈⋅X₉+43⋅X₉+44⋅X₈+28 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 4⋅X₈⋅X₈+4⋅X₉⋅X₉+8⋅X₈⋅X₉+4⋅X₉+5⋅X₈ {O(n^2)}
t₃: 1 {O(1)}
t₄: 16⋅X₈⋅X₉+8⋅X₈⋅X₈+8⋅X₉⋅X₉+4⋅X₉+6⋅X₈+2 {O(n^2)}
t₅: X₈+X₉ {O(n)}
t₆: 4⋅X₈⋅X₈+4⋅X₉⋅X₉+8⋅X₈⋅X₉+2⋅X₉+3⋅X₈+1 {O(n^2)}
t₇: 2⋅X₈+2⋅X₉ {O(n)}
t₉: X₈+X₉ {O(n)}
t₁₀: 2⋅X₈+2⋅X₉ {O(n)}
t₁₁: 3⋅X₈+X₉+1 {O(n)}
t₁₂: 3⋅X₈+X₉+5 {O(n)}
t₁₃: 2⋅X₉+X₈ {O(n)}
t₁₄: 3⋅X₈+6⋅X₉+3 {O(n)}
t₁₅: 2⋅X₈+4⋅X₉+4 {O(n)}
t₁₆: X₈+X₉+1 {O(n)}
t₁₈: 2⋅X₈+X₉ {O(n)}
t₁₉: 2⋅X₉+X₈+1 {O(n)}
t₂₀: 2⋅X₉+X₈+1 {O(n)}
t₂₁: X₈+X₉+3 {O(n)}
t₂₂: 2⋅X₉+X₈+1 {O(n)}
t₂₃: 2⋅X₈+2⋅X₉ {O(n)}
t₂₄: 4⋅X₈⋅X₈+4⋅X₉⋅X₉+8⋅X₈⋅X₉+2⋅X₉+3⋅X₈+1 {O(n^2)}
t₂₅: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₁, X₀: X₈ {O(n)}
t₁, X₁: X₉ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₂, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₂, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₂, X₂: 4⋅X₈+4⋅X₉+X₂+2 {O(n)}
t₂, X₃: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+X₃+14 {O(n^3)}
t₂, X₄: 4⋅X₈+4⋅X₉+X₄+2 {O(n)}
t₂, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+X₅+42 {O(n^3)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₃, X₀: 2⋅X₉+3⋅X₈+1 {O(n)}
t₃, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+24⋅X₉+26⋅X₈+7 {O(n^3)}
t₃, X₂: 4⋅X₈+4⋅X₉+X₂+2 {O(n)}
t₃, X₃: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+X₃+14 {O(n^3)}
t₃, X₄: 2⋅X₄+4⋅X₈+4⋅X₉+2 {O(n)}
t₃, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+2⋅X₅+42 {O(n^3)}
t₃, X₈: 2⋅X₈ {O(n)}
t₃, X₉: 2⋅X₉ {O(n)}
t₄, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₄, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₄, X₂: 2⋅X₈+2⋅X₉+1 {O(n)}
t₄, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₄, X₄: 4⋅X₈+4⋅X₉+X₄+2 {O(n)}
t₄, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+X₅+42 {O(n^3)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₅, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₅, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₅, X₂: 2⋅X₈+2⋅X₉+1 {O(n)}
t₅, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₅, X₄: 4⋅X₈+4⋅X₉+X₄+2 {O(n)}
t₅, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+X₅+42 {O(n^3)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₆, X₀: 4⋅X₈+4⋅X₉+2 {O(n)}
t₆, X₁: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+14 {O(n^3)}
t₆, X₂: 2⋅X₈+2⋅X₉+1 {O(n)}
t₆, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₆, X₄: 4⋅X₈+4⋅X₉+X₄+2 {O(n)}
t₆, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+X₅+42 {O(n^3)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₇, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₇, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₇, X₂: 2⋅X₈+2⋅X₉+1 {O(n)}
t₇, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₇, X₄: 4⋅X₈+4⋅X₉+X₄+2 {O(n)}
t₇, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+X₅+42 {O(n^3)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₉, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₉, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₉, X₂: 2⋅X₈+2⋅X₉+1 {O(n)}
t₉, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₉, X₄: 4⋅X₈+4⋅X₉+X₄+2 {O(n)}
t₉, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+X₅+42 {O(n^3)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₁₀, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₀, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₀, X₂: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₀, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₀, X₄: 4⋅X₈+4⋅X₉+X₄+2 {O(n)}
t₁₀, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+X₅+42 {O(n^3)}
t₁₀, X₈: X₈ {O(n)}
t₁₀, X₉: X₉ {O(n)}
t₁₁, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₁, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₁, X₂: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₁, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₁, X₄: 4⋅X₈+4⋅X₉+X₄+2 {O(n)}
t₁₁, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+X₅+42 {O(n^3)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₂, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₂, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₂, X₂: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₂, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₂, X₄: 4⋅X₈+4⋅X₉+X₄+2 {O(n)}
t₁₂, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+X₅+42 {O(n^3)}
t₁₂, X₇: 0 {O(1)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₉ {O(n)}
t₁₃, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₃, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₃, X₂: 4⋅X₈+4⋅X₉+2 {O(n)}
t₁₃, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₃, X₄: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₃, X₅: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+14 {O(n^3)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₉ {O(n)}
t₁₄, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₄, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₄, X₂: 4⋅X₈+4⋅X₉+2 {O(n)}
t₁₄, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₄, X₄: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₄, X₅: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+14 {O(n^3)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₅, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₅, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₅, X₂: 8⋅X₈+8⋅X₉+4 {O(n)}
t₁₅, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₅, X₄: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₅, X₅: 128⋅X₈⋅X₈⋅X₈+128⋅X₉⋅X₉⋅X₉+384⋅X₈⋅X₈⋅X₉+384⋅X₈⋅X₉⋅X₉+128⋅X₉⋅X₉+160⋅X₈⋅X₈+288⋅X₈⋅X₉+104⋅X₈+92⋅X₉+28 {O(n^3)}
t₁₅, X₈: X₈ {O(n)}
t₁₅, X₉: X₉ {O(n)}
t₁₆, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₆, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₆, X₂: 4⋅X₈+4⋅X₉+2 {O(n)}
t₁₆, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₆, X₄: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₆, X₅: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+14 {O(n^3)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₉ {O(n)}
t₁₈, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₈, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₈, X₂: 4⋅X₈+4⋅X₉+2 {O(n)}
t₁₈, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₈, X₄: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₈, X₅: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+14 {O(n^3)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₉ {O(n)}
t₁₉, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₉, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₉, X₂: 4⋅X₈+4⋅X₉+2 {O(n)}
t₁₉, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₁₉, X₄: 2⋅X₈+2⋅X₉+1 {O(n)}
t₁₉, X₅: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+14 {O(n^3)}
t₁₉, X₈: X₈ {O(n)}
t₁₉, X₉: X₉ {O(n)}
t₂₀, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₂₀, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₂₀, X₂: 4⋅X₈+4⋅X₉+2 {O(n)}
t₂₀, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₂₀, X₄: 2⋅X₈+2⋅X₉+1 {O(n)}
t₂₀, X₅: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+14 {O(n^3)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₉ {O(n)}
t₂₁, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₂₁, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₂₁, X₂: 4⋅X₈+4⋅X₉+2 {O(n)}
t₂₁, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₂₁, X₄: 2⋅X₈+2⋅X₉+1 {O(n)}
t₂₁, X₅: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+14 {O(n^3)}
t₂₁, X₆: 0 {O(1)}
t₂₁, X₈: X₈ {O(n)}
t₂₁, X₉: X₉ {O(n)}
t₂₂, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₂₂, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₂₂, X₂: 4⋅X₈+4⋅X₉+2 {O(n)}
t₂₂, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₂₂, X₄: 2⋅X₈+2⋅X₉+1 {O(n)}
t₂₂, X₅: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+14 {O(n^3)}
t₂₂, X₈: X₈ {O(n)}
t₂₂, X₉: X₉ {O(n)}
t₂₃, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₂₃, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₂₃, X₂: 2⋅X₈+2⋅X₉+1 {O(n)}
t₂₃, X₃: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₂₃, X₄: 4⋅X₈+4⋅X₉+2 {O(n)}
t₂₃, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+42 {O(n^3)}
t₂₃, X₈: X₈ {O(n)}
t₂₃, X₉: X₉ {O(n)}
t₂₄, X₀: 2⋅X₈+2⋅X₉+1 {O(n)}
t₂₄, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+23⋅X₉+26⋅X₈+7 {O(n^3)}
t₂₄, X₂: 4⋅X₈+4⋅X₉+2 {O(n)}
t₂₄, X₃: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+14 {O(n^3)}
t₂₄, X₄: 4⋅X₈+4⋅X₉+X₄+2 {O(n)}
t₂₄, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+X₅+42 {O(n^3)}
t₂₄, X₈: X₈ {O(n)}
t₂₄, X₉: X₉ {O(n)}
t₂₅, X₀: 2⋅X₉+3⋅X₈+1 {O(n)}
t₂₅, X₁: 32⋅X₈⋅X₈⋅X₈+32⋅X₉⋅X₉⋅X₉+96⋅X₈⋅X₈⋅X₉+96⋅X₈⋅X₉⋅X₉+32⋅X₉⋅X₉+40⋅X₈⋅X₈+72⋅X₈⋅X₉+24⋅X₉+26⋅X₈+7 {O(n^3)}
t₂₅, X₂: 4⋅X₈+4⋅X₉+X₂+2 {O(n)}
t₂₅, X₃: 192⋅X₈⋅X₈⋅X₉+192⋅X₈⋅X₉⋅X₉+64⋅X₈⋅X₈⋅X₈+64⋅X₉⋅X₉⋅X₉+144⋅X₈⋅X₉+64⋅X₉⋅X₉+80⋅X₈⋅X₈+46⋅X₉+52⋅X₈+X₃+14 {O(n^3)}
t₂₅, X₄: 2⋅X₄+4⋅X₈+4⋅X₉+2 {O(n)}
t₂₅, X₅: 192⋅X₈⋅X₈⋅X₈+192⋅X₉⋅X₉⋅X₉+576⋅X₈⋅X₈⋅X₉+576⋅X₈⋅X₉⋅X₉+192⋅X₉⋅X₉+240⋅X₈⋅X₈+432⋅X₈⋅X₉+138⋅X₉+156⋅X₈+2⋅X₅+42 {O(n^3)}
t₂₅, X₈: 2⋅X₈ {O(n)}
t₂₅, X₉: 2⋅X₉ {O(n)}