Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l3(X₀, 1, X₂) :|: X₀ ≤ X₂
t₃: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₂ < X₀
t₁: l2(X₀, X₁, X₂) → l1(1, X₁, X₂)
t₅: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ < X₁
t₄: l3(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₁ ≤ X₂
t₈: l4(X₀, X₁, X₂) → l7(X₀, X₁, X₂)
t₇: l5(X₀, X₁, X₂) → l1(X₀+1, X₁, X₂)
t₆: l6(X₀, X₁, X₂) → l3(X₀, X₁+1, X₂)

Preprocessing

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l7

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₀ for location l1

Found invariant 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂) → l2(X₀, X₁, X₂)
t₂: l1(X₀, X₁, X₂) → l3(X₀, 1, X₂) :|: X₀ ≤ X₂ ∧ 1 ≤ X₀
t₃: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: X₂ < X₀ ∧ 1 ≤ X₀
t₁: l2(X₀, X₁, X₂) → l1(1, X₁, X₂)
t₅: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄: l3(X₀, X₁, X₂) → l6(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₈: l4(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: 1+X₂ ≤ X₀ ∧ 1 ≤ X₀
t₇: l5(X₀, X₁, X₂) → l1(X₀+1, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆: l6(X₀, X₁, X₂) → l3(X₀, X₁+1, X₂) :|: 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₂: l1(X₀, X₁, X₂) → l3(X₀, 1, X₂) :|: X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂+2 {O(n)}

MPRF for transition t₅: l3(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂+2 {O(n)}

MPRF for transition t₇: l5(X₀, X₁, X₂) → l1(X₀+1, X₁, X₂) :|: 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂+2 {O(n)}

TWN: t₄: l3→l6

cycle: [t₄: l3→l6; t₆: l6→l3]
loop: (X₁ ≤ X₂,(X₁,X₂) -> (X₁+1,X₂)
order: [X₁; X₂]
closed-form:
X₁: X₁ + [[n != 0]] * n^1
X₂: X₂

Termination: true
Formula:

1 < 0
∨ X₁ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁

Stabilization-Threshold for: X₁ ≤ X₂
alphas_abs: X₁+X₂
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+2 {O(n)}

TWN - Lifting for t₄: l3→l6 of 2⋅X₁+2⋅X₂+4 {O(n)}

relevant size-bounds w.r.t. t₂:
X₁: 1 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₂: X₂+2 {O(n)}
Results in: 2⋅X₂⋅X₂+10⋅X₂+12 {O(n^2)}

TWN: t₆: l6→l3

TWN - Lifting for t₆: l6→l3 of 2⋅X₁+2⋅X₂+4 {O(n)}

relevant size-bounds w.r.t. t₂:
X₁: 1 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₂: X₂+2 {O(n)}
Results in: 2⋅X₂⋅X₂+10⋅X₂+12 {O(n^2)}

Chain transitions t₇: l5→l1 and t₃: l1→l4 to t₅₃: l5→l4

Chain transitions t₁: l2→l1 and t₃: l1→l4 to t₅₄: l2→l4

Chain transitions t₁: l2→l1 and t₂: l1→l3 to t₅₅: l2→l3

Chain transitions t₇: l5→l1 and t₂: l1→l3 to t₅₆: l5→l3

Chain transitions t₆: l6→l3 and t₄: l3→l6 to t₅₇: l6→l6

Chain transitions t₅₆: l5→l3 and t₄: l3→l6 to t₅₈: l5→l6

Chain transitions t₅₆: l5→l3 and t₅: l3→l5 to t₅₉: l5→l5

Chain transitions t₆: l6→l3 and t₅: l3→l5 to t₆₀: l6→l5

Chain transitions t₅₅: l2→l3 and t₅: l3→l5 to t₆₁: l2→l5

Chain transitions t₅₅: l2→l3 and t₄: l3→l6 to t₆₂: l2→l6

Analysing control-flow refined program

Cut unsatisfiable transition t₅₉: l5→l5

Cut unsatisfiable transition t₆₁: l2→l5

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l7

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₀ for location l1

Found invariant 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

MPRF for transition t₅₈: l5(X₀, X₁, X₂) -{3}> l6(1+X₀, 1, X₂) :|: 1+X₀ ≤ X₂ ∧ 1 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂+2 {O(n)}

MPRF for transition t₆₀: l6(X₀, X₁, X₂) -{2}> l5(X₀, 1+X₁, X₂) :|: X₂ < X₁+1 ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂+2 {O(n)}

TWN: t₅₇: l6→l6

cycle: [t₅₇: l6→l6]
loop: (1+X₁ ≤ X₂,(X₁,X₂) -> (1+X₁,X₂)
order: [X₁; X₂]
closed-form:
X₁: X₁ + [[n != 0]] * n^1
X₂: X₂

Termination: true
Formula:

1 < 0
∨ 1+X₁ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁

Stabilization-Threshold for: 1+X₁ ≤ X₂
alphas_abs: 1+X₁+X₂
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+4 {O(n)}
loop: (1+X₁ ≤ X₂,(X₁,X₂) -> (1+X₁,X₂)
order: [X₁; X₂]
closed-form:
X₁: X₁ + [[n != 0]] * n^1
X₂: X₂

Termination: true
Formula:

1 < 0
∨ 1+X₁ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1+X₁ ≤ X₂ ∧ X₂ ≤ 1+X₁

Stabilization-Threshold for: 1+X₁ ≤ X₂
alphas_abs: 1+X₁+X₂
M: 0
N: 1
Bound: 2⋅X₁+2⋅X₂+4 {O(n)}

TWN - Lifting for t₅₇: l6→l6 of 2⋅X₁+2⋅X₂+6 {O(n)}

relevant size-bounds w.r.t. t₅₈:
X₁: 1 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₅₈: X₂+2 {O(n)}
Results in: 2⋅X₂⋅X₂+12⋅X₂+16 {O(n^2)}

TWN - Lifting for t₅₇: l6→l6 of 2⋅X₁+2⋅X₂+6 {O(n)}

relevant size-bounds w.r.t. t₆₂:
X₁: 1 {O(1)}
X₂: X₂ {O(n)}
Runtime-bound of t₆₂: 1 {O(1)}
Results in: 2⋅X₂+8 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₅: l3→l5

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___3

Found invariant 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___1

Found invariant 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l7

Found invariant 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___2

Found invariant 1 ≤ X₀ for location l1

Found invariant 1+X₂ ≤ X₀ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3

knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₁₃₃: l3(X₀, X₁, X₂) → n_l6___3(X₀, X₁, X₂) :|: X₁ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₁₃₅: n_l6___3(X₀, X₁, X₂) → n_l3___2(X₀, X₁+1, X₂) :|: X₁ ≤ 1 ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₁₃₂: n_l3___2(X₀, X₁, X₂) → n_l6___1(X₀, X₁, X₂) :|: 2 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂⋅X₂+5⋅X₂+6 {O(n^2)}

MPRF for transition t₁₃₄: n_l6___1(X₀, X₁, X₂) → n_l3___2(X₀, X₁+1, X₂) :|: 2 ≤ X₁ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂⋅X₂+6⋅X₂+6 {O(n^2)}

MPRF for transition t₁₃₉: n_l3___2(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₂ < X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ 1+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂+2 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:4⋅X₂⋅X₂+23⋅X₂+34 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₂+2 {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₂⋅X₂+10⋅X₂+12 {O(n^2)}
t₅: X₂+2 {O(n)}
t₆: 2⋅X₂⋅X₂+10⋅X₂+12 {O(n^2)}
t₇: X₂+2 {O(n)}
t₈: 1 {O(1)}

Costbounds

Overall costbound: 4⋅X₂⋅X₂+23⋅X₂+34 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₂+2 {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₂⋅X₂+10⋅X₂+12 {O(n^2)}
t₅: X₂+2 {O(n)}
t₆: 2⋅X₂⋅X₂+10⋅X₂+12 {O(n^2)}
t₇: X₂+2 {O(n)}
t₈: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₁, X₀: 1 {O(1)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₂, X₀: X₂+3 {O(n)}
t₂, X₁: 1 {O(1)}
t₂, X₂: X₂ {O(n)}
t₃, X₀: X₂+4 {O(n)}
t₃, X₁: 2⋅X₂⋅X₂+10⋅X₂+X₁+13 {O(n^2)}
t₃, X₂: 2⋅X₂ {O(n)}
t₄, X₀: X₂+3 {O(n)}
t₄, X₁: 2⋅X₂⋅X₂+10⋅X₂+13 {O(n^2)}
t₄, X₂: X₂ {O(n)}
t₅, X₀: X₂+3 {O(n)}
t₅, X₁: 2⋅X₂⋅X₂+10⋅X₂+13 {O(n^2)}
t₅, X₂: X₂ {O(n)}
t₆, X₀: X₂+3 {O(n)}
t₆, X₁: 2⋅X₂⋅X₂+10⋅X₂+13 {O(n^2)}
t₆, X₂: X₂ {O(n)}
t₇, X₀: X₂+3 {O(n)}
t₇, X₁: 2⋅X₂⋅X₂+10⋅X₂+13 {O(n^2)}
t₇, X₂: X₂ {O(n)}
t₈, X₀: X₂+4 {O(n)}
t₈, X₁: 2⋅X₂⋅X₂+10⋅X₂+X₁+13 {O(n^2)}
t₈, X₂: 2⋅X₂ {O(n)}