Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 0
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₀
t₂₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₀, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ 5+X₈ ∧ X₈ ≤ 5
t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₈+5 < 0
t₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 5 < X₈
t₁₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, -2⋅X₁, 3⋅X₂-(X₈)³, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, -2⋅X₃, 3⋅X₄-(X₈)³, X₅, X₆, X₇, X₈, X₉)
t₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ < 0
t₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₁
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: (X₁)²+(X₈)⁵ < X₂
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ (X₁)²+(X₈)⁵
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₀, X₉, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₈
t₁₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₈ ≤ 0
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ < 0
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₃
t₁₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₃ ≤ 0 ∧ 0 ≤ X₃
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: (X₃)²+(X₈)⁵ < X₄
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ (X₃)²+(X₈)⁵
t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₅, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
Preprocessing
Eliminate variables {X₆,X₇} that do not contribute to the problem
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l11
Found invariant X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l2
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l6
Found invariant X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l12
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l13
Found invariant X₀ ≤ X₅ for location l1
Found invariant X₀ ≤ X₅ ∧ X₀ ≤ 0 for location l10
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l4
Found invariant X₀ ≤ X₅ ∧ X₀ ≤ 0 for location l9
Found invariant X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₄₆: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₀ ≤ X₅
t₄₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀ ∧ X₀ ≤ X₅
t₄₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₅ ∧ X₀ ≤ 0
t₅₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₀, X₇, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ 5+X₆ ∧ X₆ ≤ 5 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₅₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+5 < 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₅₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 5 < X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₅₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, -2⋅X₁, 3⋅X₂-(X₆)³, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₅₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, -2⋅X₃, 3⋅X₄-(X₆)³, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₅₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 0 ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₅₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₅₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₅₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: (X₁)²+(X₆)⁵ < X₂ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₅₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ (X₁)²+(X₆)⁵ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₆₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₀, X₇, X₅, X₆, X₇) :|: 0 < X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₆₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₆₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₆₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₆₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₆₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: (X₃)²+(X₆)⁵ < X₄ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₆₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ (X₃)²+(X₆)⁵ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₆₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₆₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₅, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
MPRF for transition t₄₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀ ∧ X₀ ≤ X₅ of depth 1:
new bound:
X₅+1 {O(n)}
MPRF for transition t₅₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₀, X₇, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ 5+X₆ ∧ X₆ ≤ 5 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₅₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+5 < 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅+1 {O(n)}
MPRF for transition t₅₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 5 < X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅+1 {O(n)}
MPRF for transition t₅₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₅₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ (X₁)²+(X₆)⁵ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF for transition t₆₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₀, X₇, X₅, X₆, X₇) :|: 0 < X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
10⋅X₅+4 {O(n)}
MPRF for transition t₆₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₆₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅+1 {O(n)}
MPRF for transition t₆₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ (X₃)²+(X₆)⁵ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
10⋅X₅+X₆+5 {O(n)}
MPRF for transition t₆₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
TWN: t₅₃: l12→l2
cycle: [t₅₈: l3→l12; t₅₅: l2→l3; t₅₆: l2→l3; t₅₃: l12→l2]
loop: (X₁ < 0 ∧ 4⋅(X₁)²+(X₆)⁵+(X₆)³ < 3⋅X₂ ∨ 0 < X₁ ∧ 4⋅(X₁)²+(X₆)⁵+(X₆)³ < 3⋅X₂,(X₁,X₂,X₆) -> (-2⋅X₁,3⋅X₂-(X₆)³,X₆)
order: [X₁; X₆; X₂]
closed-form:
X₁: X₁ * 4^n
X₆: X₆
X₂: X₂ * 9^n + [[n != 0]] * -1/2⋅(X₆)³ * 9^n + [[n != 0]] * 1/2⋅(X₆)³
Termination: true
Formula:
32⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ X₁ < 0
∨ 32⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ X₁ < 0
∨ 32⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ X₁ < 0
∨ 9⋅(X₆)³ < 18⋅X₂ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ X₁ < 0
∨ 9⋅(X₆)³ < 18⋅X₂ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ X₁ < 0
∨ 9⋅(X₆)³ < 18⋅X₂ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ X₁ < 0
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 9⋅(X₆)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ X₁ < 0
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 9⋅(X₆)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ X₁ < 0
∨ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 9⋅(X₆)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ X₁ < 0
∨ 32⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ X₁ < 0
∨ 32⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ X₁ < 0
∨ 32⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ X₁ < 0
∨ 9⋅(X₆)³ < 18⋅X₂ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ X₁ < 0
∨ 9⋅(X₆)³ < 18⋅X₂ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ X₁ < 0
∨ 9⋅(X₆)³ < 18⋅X₂ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ X₁ < 0
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 9⋅(X₆)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ X₁ < 0
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 9⋅(X₆)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ X₁ < 0
∨ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 9⋅(X₆)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ X₁ < 0
∨ 32⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 0 < X₁
∨ 32⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < X₁
∨ 32⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < X₁
∨ 9⋅(X₆)³ < 18⋅X₂ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 0 < X₁
∨ 9⋅(X₆)³ < 18⋅X₂ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < X₁
∨ 9⋅(X₆)³ < 18⋅X₂ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < X₁
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 9⋅(X₆)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 0 < X₁
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 9⋅(X₆)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < X₁
∨ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 9⋅(X₆)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < X₁
∨ 32⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 0 < X₁
∨ 32⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < X₁
∨ 32⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < X₁
∨ 9⋅(X₆)³ < 18⋅X₂ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 0 < X₁
∨ 9⋅(X₆)³ < 18⋅X₂ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < X₁
∨ 9⋅(X₆)³ < 18⋅X₂ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < X₁
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 9⋅(X₆)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 0 < X₁
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 9⋅(X₆)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < X₁
∨ 32⋅(X₁)² ≤ 0 ∧ 0 ≤ 32⋅(X₁)² ∧ 9⋅(X₆)³ ≤ 18⋅X₂ ∧ 18⋅X₂ ≤ 9⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < X₁
Stabilization-Threshold for: 16⋅(X₁)²+(X₆)⁵+4⋅(X₆)³ < 9⋅X₂
alphas_abs: 18⋅X₂+9⋅(X₆)³+2⋅(X₆)⁵
M: 0
N: 1
Bound: 4⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+18⋅X₆⋅X₆⋅X₆+36⋅X₂+2 {O(n^5)}
Stabilization-Threshold for: 4⋅(X₁)²+(X₆)⁵+(X₆)³ < 3⋅X₂
alphas_abs: 6⋅X₂+3⋅(X₆)³+2⋅(X₆)⁵
M: 0
N: 1
Bound: 4⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+6⋅X₆⋅X₆⋅X₆+12⋅X₂+2 {O(n^5)}
TWN - Lifting for t₅₃: l12→l2 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+48⋅X₆⋅X₆⋅X₆+96⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₅₀:
X₂: X₇ {O(n)}
X₆: 5 {O(1)}
Runtime-bound of t₅₀: X₅ {O(n)}
Results in: 96⋅X₅⋅X₇+56021⋅X₅ {O(n^2)}
TWN: t₅₄: l13→l5
cycle: [t₆₅: l6→l13; t₆₂: l5→l6; t₆₃: l5→l6; t₅₄: l13→l5]
loop: (X₃ < 0 ∧ 4⋅(X₃)²+(X₆)⁵+(X₆)³ < 3⋅X₄ ∨ 0 < X₃ ∧ 4⋅(X₃)²+(X₆)⁵+(X₆)³ < 3⋅X₄,(X₃,X₄,X₆) -> (-2⋅X₃,3⋅X₄-(X₆)³,X₆)
order: [X₃; X₆; X₄]
closed-form:
X₃: X₃ * 4^n
X₆: X₆
X₄: X₄ * 9^n + [[n != 0]] * -1/2⋅(X₆)³ * 9^n + [[n != 0]] * 1/2⋅(X₆)³
Termination: true
Formula:
32⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ X₃ < 0
∨ 32⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ X₃ < 0
∨ 32⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ X₃ < 0
∨ 9⋅(X₆)³ < 18⋅X₄ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ X₃ < 0
∨ 9⋅(X₆)³ < 18⋅X₄ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ X₃ < 0
∨ 9⋅(X₆)³ < 18⋅X₄ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ X₃ < 0
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₆)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ X₃ < 0
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₆)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ X₃ < 0
∨ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₆)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ X₃ < 0
∨ 32⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ X₃ < 0
∨ 32⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ X₃ < 0
∨ 32⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ X₃ < 0
∨ 9⋅(X₆)³ < 18⋅X₄ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ X₃ < 0
∨ 9⋅(X₆)³ < 18⋅X₄ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ X₃ < 0
∨ 9⋅(X₆)³ < 18⋅X₄ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ X₃ < 0
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₆)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ X₃ < 0
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₆)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ X₃ < 0
∨ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₆)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ X₃ < 0
∨ 32⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < X₃
∨ 32⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < X₃
∨ 32⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < X₃
∨ 9⋅(X₆)³ < 18⋅X₄ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < X₃
∨ 9⋅(X₆)³ < 18⋅X₄ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < X₃
∨ 9⋅(X₆)³ < 18⋅X₄ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < X₃
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₆)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < X₃
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₆)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < X₃
∨ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₆)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < X₃
∨ 32⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < X₃
∨ 32⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < X₃
∨ 32⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < X₃
∨ 9⋅(X₆)³ < 18⋅X₄ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < X₃
∨ 9⋅(X₆)³ < 18⋅X₄ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < X₃
∨ 9⋅(X₆)³ < 18⋅X₄ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < X₃
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₆)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < X₃
∨ 2⋅(X₆)⁵ < (X₆)³ ∧ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₆)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < X₃
∨ 32⋅(X₃)² ≤ 0 ∧ 0 ≤ 32⋅(X₃)² ∧ 9⋅(X₆)³ ≤ 18⋅X₄ ∧ 18⋅X₄ ≤ 9⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < X₃
Stabilization-Threshold for: 16⋅(X₃)²+(X₆)⁵+4⋅(X₆)³ < 9⋅X₄
alphas_abs: 18⋅X₄+9⋅(X₆)³+2⋅(X₆)⁵
M: 0
N: 1
Bound: 4⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+18⋅X₆⋅X₆⋅X₆+36⋅X₄+2 {O(n^5)}
Stabilization-Threshold for: 4⋅(X₃)²+(X₆)⁵+(X₆)³ < 3⋅X₄
alphas_abs: 6⋅X₄+3⋅(X₆)³+2⋅(X₆)⁵
M: 0
N: 1
Bound: 4⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+6⋅X₆⋅X₆⋅X₆+12⋅X₄+2 {O(n^5)}
TWN - Lifting for t₅₄: l13→l5 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+48⋅X₆⋅X₆⋅X₆+96⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₆₀:
X₄: X₇ {O(n)}
X₆: X₆+10 {O(n)}
Runtime-bound of t₆₀: 10⋅X₅+4 {O(n)}
Results in: 160⋅X₅⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+64⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+8000⋅X₅⋅X₆⋅X₆⋅X₆⋅X₆+160480⋅X₅⋅X₆⋅X₆⋅X₆+3200⋅X₆⋅X₆⋅X₆⋅X₆+1614400⋅X₅⋅X₆⋅X₆+64192⋅X₆⋅X₆⋅X₆+645760⋅X₆⋅X₆+8144000⋅X₅⋅X₆+960⋅X₅⋅X₇+16480210⋅X₅+3257600⋅X₆+384⋅X₇+6592084 {O(n^6)}
TWN: t₅₅: l2→l3
TWN - Lifting for t₅₅: l2→l3 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+48⋅X₆⋅X₆⋅X₆+96⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₅₀:
X₂: X₇ {O(n)}
X₆: 5 {O(1)}
Runtime-bound of t₅₀: X₅ {O(n)}
Results in: 96⋅X₅⋅X₇+56021⋅X₅ {O(n^2)}
TWN: t₅₆: l2→l3
TWN - Lifting for t₅₆: l2→l3 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+48⋅X₆⋅X₆⋅X₆+96⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₅₀:
X₂: X₇ {O(n)}
X₆: 5 {O(1)}
Runtime-bound of t₅₀: X₅ {O(n)}
Results in: 96⋅X₅⋅X₇+56021⋅X₅ {O(n^2)}
TWN: t₅₈: l3→l12
TWN - Lifting for t₅₈: l3→l12 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+48⋅X₆⋅X₆⋅X₆+96⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₅₀:
X₂: X₇ {O(n)}
X₆: 5 {O(1)}
Runtime-bound of t₅₀: X₅ {O(n)}
Results in: 96⋅X₅⋅X₇+56021⋅X₅ {O(n^2)}
TWN: t₆₂: l5→l6
TWN - Lifting for t₆₂: l5→l6 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+48⋅X₆⋅X₆⋅X₆+96⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₆₀:
X₄: X₇ {O(n)}
X₆: X₆+10 {O(n)}
Runtime-bound of t₆₀: 10⋅X₅+4 {O(n)}
Results in: 160⋅X₅⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+64⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+8000⋅X₅⋅X₆⋅X₆⋅X₆⋅X₆+160480⋅X₅⋅X₆⋅X₆⋅X₆+3200⋅X₆⋅X₆⋅X₆⋅X₆+1614400⋅X₅⋅X₆⋅X₆+64192⋅X₆⋅X₆⋅X₆+645760⋅X₆⋅X₆+8144000⋅X₅⋅X₆+960⋅X₅⋅X₇+16480210⋅X₅+3257600⋅X₆+384⋅X₇+6592084 {O(n^6)}
TWN: t₆₃: l5→l6
TWN - Lifting for t₆₃: l5→l6 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+48⋅X₆⋅X₆⋅X₆+96⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₆₀:
X₄: X₇ {O(n)}
X₆: X₆+10 {O(n)}
Runtime-bound of t₆₀: 10⋅X₅+4 {O(n)}
Results in: 160⋅X₅⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+64⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+8000⋅X₅⋅X₆⋅X₆⋅X₆⋅X₆+160480⋅X₅⋅X₆⋅X₆⋅X₆+3200⋅X₆⋅X₆⋅X₆⋅X₆+1614400⋅X₅⋅X₆⋅X₆+64192⋅X₆⋅X₆⋅X₆+645760⋅X₆⋅X₆+8144000⋅X₅⋅X₆+960⋅X₅⋅X₇+16480210⋅X₅+3257600⋅X₆+384⋅X₇+6592084 {O(n^6)}
TWN: t₆₅: l6→l13
TWN - Lifting for t₆₅: l6→l13 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+48⋅X₆⋅X₆⋅X₆+96⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₆₀:
X₄: X₇ {O(n)}
X₆: X₆+10 {O(n)}
Runtime-bound of t₆₀: 10⋅X₅+4 {O(n)}
Results in: 160⋅X₅⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+64⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+8000⋅X₅⋅X₆⋅X₆⋅X₆⋅X₆+160480⋅X₅⋅X₆⋅X₆⋅X₆+3200⋅X₆⋅X₆⋅X₆⋅X₆+1614400⋅X₅⋅X₆⋅X₆+64192⋅X₆⋅X₆⋅X₆+645760⋅X₆⋅X₆+8144000⋅X₅⋅X₆+960⋅X₅⋅X₇+16480210⋅X₅+3257600⋅X₆+384⋅X₇+6592084 {O(n^6)}
Chain transitions t₆₈: l8→l1 and t₄₈: l1→l11 to t₁₆₈: l8→l11
Chain transitions t₆₇: l7→l1 and t₄₈: l1→l11 to t₁₆₉: l7→l11
Chain transitions t₆₇: l7→l1 and t₄₇: l1→l10 to t₁₇₀: l7→l10
Chain transitions t₆₈: l8→l1 and t₄₇: l1→l10 to t₁₇₁: l8→l10
Chain transitions t₁₆₈: l8→l11 and t₅₂: l11→l4 to t₁₇₂: l8→l4
Chain transitions t₁₆₉: l7→l11 and t₅₂: l11→l4 to t₁₇₃: l7→l4
Chain transitions t₁₆₉: l7→l11 and t₅₁: l11→l4 to t₁₇₄: l7→l4
Chain transitions t₁₆₈: l8→l11 and t₅₁: l11→l4 to t₁₇₅: l8→l4
Chain transitions t₁₆₉: l7→l11 and t₅₀: l11→l2 to t₁₇₆: l7→l2
Chain transitions t₁₆₈: l8→l11 and t₅₀: l11→l2 to t₁₇₇: l8→l2
Chain transitions t₅₈: l3→l12 and t₅₃: l12→l2 to t₁₇₈: l3→l2
Chain transitions t₆₅: l6→l13 and t₅₄: l13→l5 to t₁₇₉: l6→l5
Chain transitions t₁₇₇: l8→l2 and t₅₇: l2→l7 to t₁₈₀: l8→l7
Chain transitions t₁₇₆: l7→l2 and t₅₇: l2→l7 to t₁₈₁: l7→l7
Chain transitions t₁₇₆: l7→l2 and t₅₆: l2→l3 to t₁₈₂: l7→l3
Chain transitions t₁₇₇: l8→l2 and t₅₆: l2→l3 to t₁₈₃: l8→l3
Chain transitions t₁₇₈: l3→l2 and t₅₆: l2→l3 to t₁₈₄: l3→l3
Chain transitions t₁₇₈: l3→l2 and t₅₇: l2→l7 to t₁₈₅: l3→l7
Chain transitions t₁₇₈: l3→l2 and t₅₅: l2→l3 to t₁₈₆: l3→l3
Chain transitions t₁₇₆: l7→l2 and t₅₅: l2→l3 to t₁₈₇: l7→l3
Chain transitions t₁₇₇: l8→l2 and t₅₅: l2→l3 to t₁₈₈: l8→l3
Chain transitions t₁₇₅: l8→l4 and t₆₁: l4→l7 to t₁₈₉: l8→l7
Chain transitions t₁₇₂: l8→l4 and t₆₁: l4→l7 to t₁₉₀: l8→l7
Chain transitions t₁₇₂: l8→l4 and t₆₀: l4→l5 to t₁₉₁: l8→l5
Chain transitions t₁₇₅: l8→l4 and t₆₀: l4→l5 to t₁₉₂: l8→l5
Chain transitions t₁₇₄: l7→l4 and t₆₀: l4→l5 to t₁₉₃: l7→l5
Chain transitions t₁₇₄: l7→l4 and t₆₁: l4→l7 to t₁₉₄: l7→l7
Chain transitions t₁₇₃: l7→l4 and t₆₀: l4→l5 to t₁₉₅: l7→l5
Chain transitions t₁₇₃: l7→l4 and t₆₁: l4→l7 to t₁₉₆: l7→l7
Chain transitions t₁₉₂: l8→l5 and t₆₄: l5→l7 to t₁₉₇: l8→l7
Chain transitions t₁₉₁: l8→l5 and t₆₄: l5→l7 to t₁₉₈: l8→l7
Chain transitions t₁₉₁: l8→l5 and t₆₃: l5→l6 to t₁₉₉: l8→l6
Chain transitions t₁₉₂: l8→l5 and t₆₃: l5→l6 to t₂₀₀: l8→l6
Chain transitions t₁₉₅: l7→l5 and t₆₃: l5→l6 to t₂₀₁: l7→l6
Chain transitions t₁₉₅: l7→l5 and t₆₄: l5→l7 to t₂₀₂: l7→l7
Chain transitions t₁₉₅: l7→l5 and t₆₂: l5→l6 to t₂₀₃: l7→l6
Chain transitions t₁₉₁: l8→l5 and t₆₂: l5→l6 to t₂₀₄: l8→l6
Chain transitions t₁₉₂: l8→l5 and t₆₂: l5→l6 to t₂₀₅: l8→l6
Chain transitions t₁₉₃: l7→l5 and t₆₂: l5→l6 to t₂₀₆: l7→l6
Chain transitions t₁₉₃: l7→l5 and t₆₃: l5→l6 to t₂₀₇: l7→l6
Chain transitions t₁₉₃: l7→l5 and t₆₄: l5→l7 to t₂₀₈: l7→l7
Chain transitions t₁₇₉: l6→l5 and t₆₂: l5→l6 to t₂₀₉: l6→l6
Chain transitions t₁₇₉: l6→l5 and t₆₃: l5→l6 to t₂₁₀: l6→l6
Chain transitions t₁₇₉: l6→l5 and t₆₄: l5→l7 to t₂₁₁: l6→l7
Analysing control-flow refined program
Cut unsatisfiable transition t₁₈₀: l8→l7
Cut unsatisfiable transition t₁₈₁: l7→l7
Cut unsatisfiable transition t₁₈₅: l3→l7
Cut unsatisfiable transition t₁₈₇: l7→l3
Cut unsatisfiable transition t₁₈₈: l8→l3
Cut unsatisfiable transition t₁₉₀: l8→l7
Cut unsatisfiable transition t₁₉₂: l8→l5
Cut unsatisfiable transition t₁₉₃: l7→l5
Cut unsatisfiable transition t₁₉₆: l7→l7
Cut unsatisfiable transition t₁₉₇: l8→l7
Cut unsatisfiable transition t₁₉₈: l8→l7
Cut unsatisfiable transition t₂₀₀: l8→l6
Cut unsatisfiable transition t₂₀₂: l7→l7
Cut unsatisfiable transition t₂₀₃: l7→l6
Cut unsatisfiable transition t₂₀₄: l8→l6
Cut unsatisfiable transition t₂₀₅: l8→l6
Cut unsatisfiable transition t₂₀₆: l7→l6
Cut unsatisfiable transition t₂₀₇: l7→l6
Cut unsatisfiable transition t₂₀₈: l7→l7
Cut unsatisfiable transition t₂₁₁: l6→l7
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l11
Found invariant X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l2
Found invariant 6 ≤ X₆ ∧ 7 ≤ X₅+X₆ ∧ 7 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l6
Found invariant X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l12
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l7
Found invariant 6 ≤ X₆ ∧ 7 ≤ X₅+X₆ ∧ 7 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l5
Found invariant 6 ≤ X₆ ∧ 7 ≤ X₅+X₆ ∧ 7 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l13
Found invariant X₀ ≤ X₅ for location l1
Found invariant X₀ ≤ X₅ ∧ X₀ ≤ 0 for location l10
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l4
Found invariant X₀ ≤ X₅ ∧ X₀ ≤ 0 for location l9
Found invariant X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l3
knowledge_propagation leads to new time bound 2⋅X₅ {O(n)} for transition t₁₈₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{4}> l3(X₀-1, X₀-1, X₇, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₀ ∧ 0 ≤ 5+X₆ ∧ X₆ ≤ 5 ∧ 1 < X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ 1 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 2 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 3+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 3+X₀+X₆ ∧ 1 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 2 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 10⋅X₅+X₆+5 {O(n)} for transition t₂₀₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{5}> l6(X₀-1, X₁, X₂, X₀-1, X₇, X₅, X₆, X₇) :|: 1 < X₀ ∧ 5 < X₆ ∧ 0 < X₆ ∧ 1 < X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ 1 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 2 ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 2 ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 2 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
MPRF for transition t₁₉₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{4}> l7(X₀-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₀ ∧ X₆+5 < 0 ∧ X₆ ≤ 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ 1+X₅ ∧ 1 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 2 ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ X₀ ≤ 1+X₅ ∧ 2 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
TWN: t₁₈₄: l3→l3
cycle: [t₁₈₄: l3→l3; t₁₈₆: l3→l3]
loop: ((X₁)²+(X₆)⁵ < X₂ ∧ 2⋅X₁ < 0 ∨ (X₁)²+(X₆)⁵ < X₂ ∧ 0 < 2⋅X₁,(X₁,X₂,X₆) -> (-2⋅X₁,3⋅X₂-(X₆)³,X₆)
order: [X₁; X₆; X₂]
closed-form:
X₁: X₁ * 4^n
X₆: X₆
X₂: X₂ * 9^n + [[n != 0]] * -1/2⋅(X₆)³ * 9^n + [[n != 0]] * 1/2⋅(X₆)³
Termination: true
Formula:
0 < 4⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅(X₁)² < 0
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 0 < 4⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 2⋅(X₁)² < 0
∨ 0 < 4⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 0 < 4⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 0 < 4⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 2⋅(X₁)² < 0
∨ 0 < 4⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅(X₁)² < 0
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 4⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 2⋅(X₁)² < 0
∨ 4⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 4⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 4⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 2⋅(X₁)² < 0
∨ 4⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅(X₁)² < 0
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 0 < 4⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 2⋅(X₁)² < 0
∨ 0 < 4⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 0 < 4⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 0 < 4⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 2⋅(X₁)² < 0
∨ 0 < 4⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅(X₁)² < 0
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 4⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 2⋅(X₁)² < 0
∨ 4⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 4⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 4⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 2⋅(X₁)² < 0
∨ 4⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
Stabilization-Threshold for: 4⋅(X₁)²+(X₆)⁵+(X₆)³ < 3⋅X₂
alphas_abs: 6⋅X₂+3⋅(X₆)³+2⋅(X₆)⁵
M: 0
N: 1
Bound: 4⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+6⋅X₆⋅X₆⋅X₆+12⋅X₂+2 {O(n^5)}
Stabilization-Threshold for: (X₁)²+(X₆)⁵ < X₂
alphas_abs: 2⋅X₂+(X₆)³+2⋅(X₆)⁵
M: 0
N: 1
Bound: 4⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+2⋅X₆⋅X₆⋅X₆+4⋅X₂+2 {O(n^5)}
loop: ((X₁)²+(X₆)⁵ < X₂ ∧ 2⋅X₁ < 0 ∨ (X₁)²+(X₆)⁵ < X₂ ∧ 0 < 2⋅X₁,(X₁,X₂,X₆) -> (-2⋅X₁,3⋅X₂-(X₆)³,X₆)
order: [X₁; X₆; X₂]
closed-form:
X₁: X₁ * 4^n
X₆: X₆
X₂: X₂ * 9^n + [[n != 0]] * -1/2⋅(X₆)³ * 9^n + [[n != 0]] * 1/2⋅(X₆)³
Termination: true
Formula:
0 < 4⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅(X₁)² < 0
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 0 < 4⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 2⋅(X₁)² < 0
∨ 0 < 4⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 0 < 4⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 0 < 4⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 2⋅(X₁)² < 0
∨ 0 < 4⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅(X₁)² < 0
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 4⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 2⋅(X₁)² < 0
∨ 4⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 4⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 4⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 2⋅(X₁)² < 0
∨ 4⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 2⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅(X₁)² < 0
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 0 < 4⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 2⋅(X₁)² < 0
∨ 0 < 4⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 0 < 4⋅X₁ ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 0 < 4⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 2⋅(X₁)² < 0
∨ 0 < 4⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 0 < 4⋅X₁ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅(X₁)² < 0
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 4⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 2⋅(X₁)² < 0
∨ 4⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 4⋅X₁ < 0 ∧ 3⋅(X₆)³ < 6⋅X₂ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
∨ 4⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 2⋅(X₁)² < 0
∨ 4⋅X₁ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ (X₆)³ < 2⋅X₂ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)²
∨ 4⋅X₁ < 0 ∧ 8⋅(X₁)² ≤ 0 ∧ 0 ≤ 8⋅(X₁)² ∧ 3⋅(X₆)³ ≤ 6⋅X₂ ∧ 6⋅X₂ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₁ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₁)² ≤ 0 ∧ 0 ≤ 2⋅(X₁)² ∧ (X₆)³ ≤ 2⋅X₂ ∧ 2⋅X₂ ≤ (X₆)³
Stabilization-Threshold for: 4⋅(X₁)²+(X₆)⁵+(X₆)³ < 3⋅X₂
alphas_abs: 6⋅X₂+3⋅(X₆)³+2⋅(X₆)⁵
M: 0
N: 1
Bound: 4⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+6⋅X₆⋅X₆⋅X₆+12⋅X₂+2 {O(n^5)}
Stabilization-Threshold for: (X₁)²+(X₆)⁵ < X₂
alphas_abs: 2⋅X₂+(X₆)³+2⋅(X₆)⁵
M: 0
N: 1
Bound: 4⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+2⋅X₆⋅X₆⋅X₆+4⋅X₂+2 {O(n^5)}
TWN - Lifting for t₁₈₄: l3→l3 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+16⋅X₆⋅X₆⋅X₆+32⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₁₈₃:
X₂: X₇ {O(n)}
X₆: X₆ {O(n)}
Runtime-bound of t₁₈₃: 1 {O(1)}
Results in: 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+16⋅X₆⋅X₆⋅X₆+32⋅X₇+21 {O(n^5)}
TWN - Lifting for t₁₈₄: l3→l3 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+16⋅X₆⋅X₆⋅X₆+32⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₁₈₂:
X₂: 0 {O(1)}
X₆: 5 {O(1)}
Runtime-bound of t₁₈₂: 2⋅X₅ {O(n)}
Results in: 104042⋅X₅ {O(n)}
TWN: t₁₈₆: l3→l3
TWN - Lifting for t₁₈₆: l3→l3 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+16⋅X₆⋅X₆⋅X₆+32⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₁₈₃:
X₂: X₇ {O(n)}
X₆: X₆ {O(n)}
Runtime-bound of t₁₈₃: 1 {O(1)}
Results in: 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+16⋅X₆⋅X₆⋅X₆+32⋅X₇+21 {O(n^5)}
TWN - Lifting for t₁₈₆: l3→l3 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+16⋅X₆⋅X₆⋅X₆+32⋅X₂+21 {O(n^5)}
relevant size-bounds w.r.t. t₁₈₂:
X₂: 0 {O(1)}
X₆: 5 {O(1)}
Runtime-bound of t₁₈₂: 2⋅X₅ {O(n)}
Results in: 104042⋅X₅ {O(n)}
TWN: t₂₀₉: l6→l6
cycle: [t₂₀₉: l6→l6; t₂₁₀: l6→l6]
loop: ((X₃)²+(X₆)⁵ < X₄ ∧ 0 < 2⋅X₃ ∨ (X₃)²+(X₆)⁵ < X₄ ∧ 2⋅X₃ < 0,(X₃,X₄,X₆) -> (-2⋅X₃,3⋅X₄-(X₆)³,X₆)
order: [X₃; X₆; X₄]
closed-form:
X₃: X₃ * 4^n
X₆: X₆
X₄: X₄ * 9^n + [[n != 0]] * -1/2⋅(X₆)³ * 9^n + [[n != 0]] * 1/2⋅(X₆)³
Termination: true
Formula:
4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 4⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 4⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 0 < 4⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 0 < 4⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 4⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 4⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 0 < 4⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 0 < 4⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
Stabilization-Threshold for: 4⋅(X₃)²+(X₆)⁵+(X₆)³ < 3⋅X₄
alphas_abs: 6⋅X₄+3⋅(X₆)³+2⋅(X₆)⁵
M: 0
N: 1
Bound: 4⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+6⋅X₆⋅X₆⋅X₆+12⋅X₄+2 {O(n^5)}
Stabilization-Threshold for: (X₃)²+(X₆)⁵ < X₄
alphas_abs: 2⋅X₄+(X₆)³+2⋅(X₆)⁵
M: 0
N: 1
Bound: 4⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+2⋅X₆⋅X₆⋅X₆+4⋅X₄+2 {O(n^5)}
loop: ((X₃)²+(X₆)⁵ < X₄ ∧ 0 < 2⋅X₃ ∨ (X₃)²+(X₆)⁵ < X₄ ∧ 2⋅X₃ < 0,(X₃,X₄,X₆) -> (-2⋅X₃,3⋅X₄-(X₆)³,X₆)
order: [X₃; X₆; X₄]
closed-form:
X₃: X₃ * 4^n
X₆: X₆
X₄: X₄ * 9^n + [[n != 0]] * -1/2⋅(X₆)³ * 9^n + [[n != 0]] * 1/2⋅(X₆)³
Termination: true
Formula:
4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 4⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 4⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 0 < 4⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 0 < 4⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 0 < 2⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 4⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 4⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 4⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 4⋅X₃ < 0 ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² < 0 ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 0 < 4⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 3⋅(X₆)³ < 6⋅X₄ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
∨ 0 < 4⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₃)² < 0
∨ 0 < 4⋅X₃ ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ (X₆)³ < 2⋅X₄ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)²
∨ 0 < 4⋅X₃ ∧ 8⋅(X₃)² ≤ 0 ∧ 0 ≤ 8⋅(X₃)² ∧ 3⋅(X₆)³ ≤ 6⋅X₄ ∧ 6⋅X₄ ≤ 3⋅(X₆)³ ∧ 2⋅X₃ < 0 ∧ 2⋅(X₆)⁵ < (X₆)³ ∧ 2⋅(X₃)² ≤ 0 ∧ 0 ≤ 2⋅(X₃)² ∧ (X₆)³ ≤ 2⋅X₄ ∧ 2⋅X₄ ≤ (X₆)³
Stabilization-Threshold for: 4⋅(X₃)²+(X₆)⁵+(X₆)³ < 3⋅X₄
alphas_abs: 6⋅X₄+3⋅(X₆)³+2⋅(X₆)⁵
M: 0
N: 1
Bound: 4⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+6⋅X₆⋅X₆⋅X₆+12⋅X₄+2 {O(n^5)}
Stabilization-Threshold for: (X₃)²+(X₆)⁵ < X₄
alphas_abs: 2⋅X₄+(X₆)³+2⋅(X₆)⁵
M: 0
N: 1
Bound: 4⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+2⋅X₆⋅X₆⋅X₆+4⋅X₄+2 {O(n^5)}
TWN - Lifting for t₂₀₉: l6→l6 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+16⋅X₆⋅X₆⋅X₆+32⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₁₉₉:
X₄: X₇ {O(n)}
X₆: X₆ {O(n)}
Runtime-bound of t₁₉₉: 1 {O(1)}
Results in: 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+16⋅X₆⋅X₆⋅X₆+32⋅X₇+21 {O(n^5)}
TWN - Lifting for t₂₀₉: l6→l6 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+16⋅X₆⋅X₆⋅X₆+32⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₂₀₁:
X₄: 0 {O(1)}
X₆: 0 {O(1)}
Runtime-bound of t₂₀₁: 10⋅X₅+X₆+5 {O(n)}
Results in: 21⋅X₆+210⋅X₅+105 {O(n)}
TWN: t₂₁₀: l6→l6
TWN - Lifting for t₂₁₀: l6→l6 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+16⋅X₆⋅X₆⋅X₆+32⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₁₉₉:
X₄: X₇ {O(n)}
X₆: X₆ {O(n)}
Runtime-bound of t₁₉₉: 1 {O(1)}
Results in: 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+16⋅X₆⋅X₆⋅X₆+32⋅X₇+21 {O(n^5)}
TWN - Lifting for t₂₁₀: l6→l6 of 16⋅X₆⋅X₆⋅X₆⋅X₆⋅X₆+16⋅X₆⋅X₆⋅X₆+32⋅X₄+21 {O(n^5)}
relevant size-bounds w.r.t. t₂₀₁:
X₄: 0 {O(1)}
X₆: 0 {O(1)}
Runtime-bound of t₂₀₁: 10⋅X₅+X₆+5 {O(n)}
Results in: 21⋅X₆+210⋅X₅+105 {O(n)}
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₅₇: l2→l7
Cut unsatisfiable transition t₆₄: l5→l7
Cut unsatisfiable transition t₇₅₄: n_l2___3→l7
Cut unsatisfiable transition t₇₅₅: n_l2___6→l7
Cut unsatisfiable transition t₇₈₈: n_l5___1→l7
Cut unsatisfiable transition t₇₈₉: n_l5___4→l7
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l11
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3+X₃ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ 0 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ 1 ≤ X₀ for location n_l6___3
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l6___6
Found invariant X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₁+X₆ ≤ 3 ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ X₁ ≤ 3+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 1 ≤ X₀ for location n_l2___6
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 5 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 5 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l5___1
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3+X₃ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ 0 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ 1 ≤ X₀ for location n_l13___2
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l13___5
Found invariant X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₁+X₆ ≤ 3 ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ X₁ ≤ 3+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 1 ≤ X₀ for location n_l3___5
Found invariant X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 1+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___3
Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3+X₃ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ 0 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ 1 ≤ X₀ for location n_l5___4
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l7
Found invariant X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 1+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l12___1
Found invariant X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___8
Found invariant X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l5
Found invariant X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l12___7
Found invariant X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 1+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___2
Found invariant X₀ ≤ X₅ for location l1
Found invariant X₀ ≤ X₅ ∧ X₀ ≤ 0 for location l10
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ for location l4
Found invariant X₀ ≤ X₅ ∧ X₀ ≤ 0 for location l9
Found invariant X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₁+X₆ ≤ 3 ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ X₁ ≤ 3+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 1 ≤ X₀ for location n_l12___4
knowledge_propagation leads to new time bound X₅ {O(n)} for transition t₇₃₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 < X₁ ∧ X₆ ≤ 5 ∧ 0 ≤ 5+X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₀ ≤ X₅ ∧ 0 ≤ 5+X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₀ ≤ X₅ ∧ 0 ≤ 5+X₆ ∧ X₆ ≤ 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₆ ∧ X₆ ≤ 5 ∧ X₀ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₅ {O(n)} for transition t₇₄₂: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___7(X₀, X₁, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ Arg6_P ≤ 5 ∧ 0 ≤ 5+Arg6_P ∧ X₀ ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ 5 ∧ 0 ≤ 5+X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₅ {O(n)} for transition t₇₅₃: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ (X₁)²+(X₆)⁵ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 10⋅X₅+4 {O(n)} for transition t₇₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 0 < X₃ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₅ {O(n)} for transition t₇₃₆: n_l12___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___6(X₀, -2⋅X₁, NoDet0, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ Arg6_P ≤ 5 ∧ 0 ≤ 5+Arg6_P ∧ X₀ ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ 5 ∧ 0 ≤ 5+X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
MPRF for transition t₇₅₁: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ (X₁)²+(X₆)⁵ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 1+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF for transition t₇₅₂: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ (X₁)²+(X₆)⁵ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₁+X₆ ≤ 3 ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ X₁ ≤ 3+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₇₈₆: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ (X₃)²+(X₆)⁵ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3+X₃ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ 0 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅+1 {O(n)}
MPRF for transition t₇₈₇: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ (X₃)²+(X₆)⁵ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
10⋅X₅+X₆ {O(n)}
TWN: t₇₃₄: n_l12___1→n_l2___6
cycle: [t₇₄₀: n_l3___2→n_l12___1; t₇₃₇: n_l2___3→n_l3___2; t₇₃₅: n_l12___4→n_l2___3; t₇₄₁: n_l3___5→n_l12___4; t₇₃₈: n_l2___6→n_l3___5; t₇₃₄: n_l12___1→n_l2___6]
loop: (X₁ < 0 ∧ 1+X₁ ≤ 0 ∧ X₁ < 0 ∧ 1 ≤ X₁ ∧ 1+2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 1+2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 1 ≤ 2⋅X₁ ∧ 1+4⋅X₁ ≤ 0,(X₁) -> (4⋅X₁)
order: [X₁]
closed-form:
X₁: X₁ * 4^n
Termination: true
Formula:
4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 1 < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 1 < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 1 < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 1 < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 0
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 0
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 1 < 0 ∧ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 < 2⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 < 0 ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 < 0 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 0 ≤ 2⋅X₁ ∧ 2⋅X₁ ≤ 0 ∧ 2⋅X₁ < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 1 < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 0 < X₁ ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 < X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ 1 < 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 < 0 ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 0 ≤ X₁ ∧ X₁ ≤ 0 ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₁ < 0 ∧ 1 < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁
∨ 4⋅X₁ ≤ 0 ∧ 0 ≤ 4⋅X₁ ∧ 2⋅X₁ < 0 ∧ 2⋅X₁ ≤ 0 ∧ 0 ≤ 2⋅X₁ ∧ X₁ < 0 ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 1+4⋅X₁ ≤ 0
alphas_abs: 1
M: 0
N: 1
Bound: 4 {O(1)}
Stabilization-Threshold for: 1 ≤ 2⋅X₁
alphas_abs: 1
M: 0
N: 1
Bound: 4 {O(1)}
Stabilization-Threshold for: 1+2⋅X₁ ≤ 0
alphas_abs: 1
M: 0
N: 1
Bound: 4 {O(1)}
Stabilization-Threshold for: 1 ≤ X₁
alphas_abs: 1
M: 0
N: 1
Bound: 4 {O(1)}
Stabilization-Threshold for: 1+X₁ ≤ 0
alphas_abs: 1
M: 0
N: 1
Bound: 4 {O(1)}
TWN - Lifting for t₇₃₄: n_l12___1→n_l2___6 of 24 {O(1)}
relevant size-bounds w.r.t. t₇₃₆:
Runtime-bound of t₇₃₆: X₅ {O(n)}
Results in: 24⋅X₅ {O(n)}
TWN: t₇₃₅: n_l12___4→n_l2___3
TWN - Lifting for t₇₃₅: n_l12___4→n_l2___3 of 24 {O(1)}
relevant size-bounds w.r.t. t₇₃₆:
Runtime-bound of t₇₃₆: X₅ {O(n)}
Results in: 24⋅X₅ {O(n)}
TWN: t₇₃₇: n_l2___3→n_l3___2
TWN - Lifting for t₇₃₇: n_l2___3→n_l3___2 of 24 {O(1)}
relevant size-bounds w.r.t. t₇₃₆:
Runtime-bound of t₇₃₆: X₅ {O(n)}
Results in: 24⋅X₅ {O(n)}
TWN: t₇₃₈: n_l2___6→n_l3___5
TWN - Lifting for t₇₃₈: n_l2___6→n_l3___5 of 24 {O(1)}
relevant size-bounds w.r.t. t₇₃₆:
Runtime-bound of t₇₃₆: X₅ {O(n)}
Results in: 24⋅X₅ {O(n)}
TWN: t₇₄₀: n_l3___2→n_l12___1
TWN - Lifting for t₇₄₀: n_l3___2→n_l12___1 of 24 {O(1)}
relevant size-bounds w.r.t. t₇₃₆:
Runtime-bound of t₇₃₆: X₅ {O(n)}
Results in: 24⋅X₅ {O(n)}
TWN: t₇₄₁: n_l3___5→n_l12___4
TWN - Lifting for t₇₄₁: n_l3___5→n_l12___4 of 24 {O(1)}
relevant size-bounds w.r.t. t₇₃₆:
Runtime-bound of t₇₃₆: X₅ {O(n)}
Results in: 24⋅X₅ {O(n)}
TWN: t₇₇₁: n_l13___2→n_l5___1
cycle: [t₇₇₆: n_l6___3→n_l13___2; t₇₇₄: n_l5___4→n_l6___3; t₇₇₂: n_l13___5→n_l5___4; t₇₇₇: n_l6___6→n_l13___5; t₇₇₃: n_l5___1→n_l6___6; t₇₇₁: n_l13___2→n_l5___1]
loop: (0 < X₃ ∧ 0 < X₃ ∧ 0 < X₃ ∧ X₃ < 0 ∧ 0 < 2⋅X₃ ∧ 0 < 2⋅X₃ ∧ 0 < 2⋅X₃ ∧ 2⋅X₃ < 0,(X₃) -> (4⋅X₃)
order: [X₃]
closed-form:
X₃: X₃ * 4^n
Termination: true
Formula:
2⋅X₃ < 0 ∧ 0 < 2⋅X₃ ∧ X₃ < 0 ∧ 0 < X₃
TWN - Lifting for t₇₇₁: n_l13___2→n_l5___1 of 6 {O(1)}
relevant size-bounds w.r.t. t₇₇₅:
Runtime-bound of t₇₇₅: 10⋅X₅+4 {O(n)}
Results in: 60⋅X₅+24 {O(n)}
TWN: t₇₇₂: n_l13___5→n_l5___4
TWN - Lifting for t₇₇₂: n_l13___5→n_l5___4 of 6 {O(1)}
relevant size-bounds w.r.t. t₇₇₅:
Runtime-bound of t₇₇₅: 10⋅X₅+4 {O(n)}
Results in: 60⋅X₅+24 {O(n)}
TWN: t₇₇₃: n_l5___1→n_l6___6
TWN - Lifting for t₇₇₃: n_l5___1→n_l6___6 of 6 {O(1)}
relevant size-bounds w.r.t. t₇₇₅:
Runtime-bound of t₇₇₅: 10⋅X₅+4 {O(n)}
Results in: 60⋅X₅+24 {O(n)}
TWN: t₇₇₄: n_l5___4→n_l6___3
TWN - Lifting for t₇₇₄: n_l5___4→n_l6___3 of 6 {O(1)}
relevant size-bounds w.r.t. t₇₇₅:
Runtime-bound of t₇₇₅: 10⋅X₅+4 {O(n)}
Results in: 60⋅X₅+24 {O(n)}
TWN: t₇₇₆: n_l6___3→n_l13___2
TWN - Lifting for t₇₇₆: n_l6___3→n_l13___2 of 6 {O(1)}
relevant size-bounds w.r.t. t₇₇₅:
Runtime-bound of t₇₇₅: 10⋅X₅+4 {O(n)}
Results in: 60⋅X₅+24 {O(n)}
TWN: t₇₇₇: n_l6___6→n_l13___5
TWN - Lifting for t₇₇₇: n_l6___6→n_l13___5 of 6 {O(1)}
relevant size-bounds w.r.t. t₇₇₅:
Runtime-bound of t₇₇₅: 10⋅X₅+4 {O(n)}
Results in: 60⋅X₅+24 {O(n)}
CFR did not improve the program. Rolling back
CFR: Improvement to new bound with the following program:
new bound:
549⋅X₅+X₆+156 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: Arg5_P, Arg6_P, NoDet0
Locations: l0, l1, l10, l11, l2, l4, l5, l7, l8, l9, n_l12___1, n_l12___4, n_l12___7, n_l13___2, n_l13___5, n_l2___3, n_l2___6, n_l3___2, n_l3___5, n_l3___8, n_l5___1, n_l5___4, n_l6___3, n_l6___6
Transitions:
t₄₆: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₄₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ 0 ∧ X₀ ≤ X₅ ∧ X₀ ≤ X₅
t₄₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₀ ∧ X₀ ≤ X₅ ∧ X₀ ≤ X₅
t₄₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₀ ≤ X₅ ∧ X₀ ≤ 0 ∧ X₀ ≤ X₅ ∧ X₀ ≤ 0
t₅₀: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₀, X₇, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ 5+X₆ ∧ X₆ ≤ 5 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₅₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆+5 < 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₅₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 5 < X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₇₃₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 < X₁ ∧ X₆ ≤ 5 ∧ 0 ≤ 5+X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₀ ≤ X₅ ∧ 0 ≤ 5+X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₀ ≤ X₅ ∧ 0 ≤ 5+X₆ ∧ X₆ ≤ 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₆ ∧ X₆ ≤ 5 ∧ X₀ ≤ X₅ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₀, X₇, X₅, X₆, X₇) :|: 0 < X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₆₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₇₇₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 0 < X₃ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅ ∧ X₇ ≤ X₄ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₆₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀
t₆₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₅, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇₃₄: n_l12___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___6(X₀, -2⋅X₁, NoDet0, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: 1 ≤ X₁ ∧ Arg6_P ≤ 5 ∧ 0 ≤ 5+Arg6_P ∧ X₀ ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ 5 ∧ 0 ≤ 5+X₆ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 1+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇₃₅: n_l12___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___3(X₀, -2⋅X₁, NoDet0, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: 1+X₁ ≤ 0 ∧ Arg6_P ≤ 5 ∧ 0 ≤ 5+Arg6_P ∧ X₀ ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ 5 ∧ 0 ≤ 5+X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₁+X₆ ≤ 3 ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ X₁ ≤ 3+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 1 ≤ X₀
t₇₃₆: n_l12___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l2___6(X₀, -2⋅X₁, NoDet0, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ Arg6_P ≤ 5 ∧ 0 ≤ 5+Arg6_P ∧ X₀ ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₆ ≤ 5 ∧ 0 ≤ 5+X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇₇₁: n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___1(X₀, X₁, X₂, -2⋅X₃, NoDet0, Arg5_P, Arg6_P, X₇) :|: X₃ < 0 ∧ 1 ≤ Arg6_P ∧ X₀ ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3+X₃ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ 0 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ 1 ≤ X₀
t₇₇₂: n_l13___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___4(X₀, X₁, X₂, -2⋅X₃, NoDet0, Arg5_P, Arg6_P, X₇) :|: 0 < X₃ ∧ 1 ≤ Arg6_P ∧ X₀ ≤ Arg5_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₇₃₇: n_l2___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ 1 ≤ X₁ ∧ 0 < X₁ ∧ X₆ ≤ 5 ∧ 0 ≤ 5+X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₀ ≤ X₅ ∧ 0 ≤ 5+X₆ ∧ X₆ ≤ 5 ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₆ ∧ X₆ ≤ 5 ∧ X₀ ≤ X₅ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 1+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇₃₈: n_l2___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 0 ∧ 1+X₁ ≤ 0 ∧ X₁ < 0 ∧ X₆ ≤ 5 ∧ 0 ≤ 5+X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₆ ∧ X₆ ≤ 5 ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 0 ≤ 5+X₆ ∧ X₆ ≤ 5 ∧ X₀ ≤ X₅ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₁+X₆ ≤ 3 ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ X₁ ≤ 3+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 1 ≤ X₀
t₇₅₁: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ (X₁)²+(X₆)⁵ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 1+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇₄₀: n_l3___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___1(X₀, X₁, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: 1 ≤ X₁ ∧ Arg6_P ≤ 5 ∧ 0 ≤ 5+Arg6_P ∧ X₀ ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ 5 ∧ 0 ≤ 5+X₆ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 1+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 1+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 5 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇₅₂: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ (X₁)²+(X₆)⁵ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₁+X₆ ≤ 3 ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ X₁ ≤ 3+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 1 ≤ X₀
t₇₄₁: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___4(X₀, X₁, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: 1+X₁ ≤ 0 ∧ Arg6_P ≤ 5 ∧ 0 ≤ 5+Arg6_P ∧ X₀ ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ 5 ∧ 0 ≤ 5+X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₁+X₆ ≤ 3 ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ X₁ ≤ 3+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₁ ≤ 0 ∧ 3+X₁ ≤ X₀ ∧ 1+X₀+X₁ ≤ 0 ∧ 1 ≤ X₀
t₇₅₃: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ (X₁)²+(X₆)⁵ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇₄₂: n_l3___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l12___7(X₀, X₁, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ Arg6_P ≤ 5 ∧ 0 ≤ 5+Arg6_P ∧ X₀ ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₆ ≤ 5 ∧ 0 ≤ 5+X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₇ ≤ X₂ ∧ X₂ ≤ X₇ ∧ X₆ ≤ 5 ∧ X₆ ≤ 4+X₅ ∧ X₆ ≤ 4+X₁ ∧ X₆ ≤ 4+X₀ ∧ 0 ≤ 5+X₆ ∧ 0 ≤ 4+X₅+X₆ ∧ 0 ≤ 4+X₁+X₆ ∧ 0 ≤ 4+X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀
t₇₇₃: n_l5___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₃ ∧ 0 < X₃ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 5 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 5 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 4 ≤ X₃ ∧ 5 ≤ X₀+X₃ ∧ 3+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₇₇₄: n_l5___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < 0 ∧ X₃ < 0 ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3+X₃ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ 0 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ 1 ≤ X₀
t₇₈₆: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ (X₃)²+(X₆)⁵ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3+X₃ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ 0 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ 1 ≤ X₀
t₇₇₆: n_l6___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___2(X₀, X₁, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: X₃ < 0 ∧ 1 ≤ Arg6_P ∧ X₀ ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3+X₃ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 3+X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 2+X₃ ≤ 0 ∧ 3+X₃ ≤ X₀ ∧ 1+X₀+X₃ ≤ 0 ∧ 1 ≤ X₀
t₇₈₇: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ (X₃)²+(X₆)⁵ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₇₇₇: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___5(X₀, X₁, X₂, X₃, X₄, Arg5_P, Arg6_P, X₇) :|: 0 < X₃ ∧ 1 ≤ Arg6_P ∧ X₀ ≤ Arg5_P ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ 1 ≤ X₆ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
All Bounds
Timebounds
Overall timebound:549⋅X₅+X₆+160 {O(n)}
t₄₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈: X₅+1 {O(n)}
t₄₉: 1 {O(1)}
t₅₀: X₅ {O(n)}
t₅₁: X₅+1 {O(n)}
t₅₂: X₅+1 {O(n)}
t₆₀: 10⋅X₅+4 {O(n)}
t₆₁: X₅ {O(n)}
t₆₇: X₅ {O(n)}
t₆₈: 1 {O(1)}
t₇₃₄: 24⋅X₅ {O(n)}
t₇₃₅: 24⋅X₅ {O(n)}
t₇₃₆: X₅ {O(n)}
t₇₃₇: 24⋅X₅ {O(n)}
t₇₃₈: 24⋅X₅ {O(n)}
t₇₃₉: X₅ {O(n)}
t₇₄₀: 24⋅X₅ {O(n)}
t₇₄₁: 24⋅X₅ {O(n)}
t₇₄₂: X₅ {O(n)}
t₇₅₁: 2⋅X₅ {O(n)}
t₇₅₂: X₅ {O(n)}
t₇₅₃: X₅ {O(n)}
t₇₇₁: 60⋅X₅+24 {O(n)}
t₇₇₂: 60⋅X₅+24 {O(n)}
t₇₇₃: 60⋅X₅+24 {O(n)}
t₇₇₄: 60⋅X₅+24 {O(n)}
t₇₇₅: 10⋅X₅+4 {O(n)}
t₇₇₆: 60⋅X₅+24 {O(n)}
t₇₇₇: 60⋅X₅+24 {O(n)}
t₇₈₆: 2⋅X₅+1 {O(n)}
t₇₈₇: 10⋅X₅+X₆ {O(n)}
Costbounds
Overall costbound: 549⋅X₅+X₆+160 {O(n)}
t₄₆: 1 {O(1)}
t₄₇: 1 {O(1)}
t₄₈: X₅+1 {O(n)}
t₄₉: 1 {O(1)}
t₅₀: X₅ {O(n)}
t₅₁: X₅+1 {O(n)}
t₅₂: X₅+1 {O(n)}
t₆₀: 10⋅X₅+4 {O(n)}
t₆₁: X₅ {O(n)}
t₆₇: X₅ {O(n)}
t₆₈: 1 {O(1)}
t₇₃₄: 24⋅X₅ {O(n)}
t₇₃₅: 24⋅X₅ {O(n)}
t₇₃₆: X₅ {O(n)}
t₇₃₇: 24⋅X₅ {O(n)}
t₇₃₈: 24⋅X₅ {O(n)}
t₇₃₉: X₅ {O(n)}
t₇₄₀: 24⋅X₅ {O(n)}
t₇₄₁: 24⋅X₅ {O(n)}
t₇₄₂: X₅ {O(n)}
t₇₅₁: 2⋅X₅ {O(n)}
t₇₅₂: X₅ {O(n)}
t₇₅₃: X₅ {O(n)}
t₇₇₁: 60⋅X₅+24 {O(n)}
t₇₇₂: 60⋅X₅+24 {O(n)}
t₇₇₃: 60⋅X₅+24 {O(n)}
t₇₇₄: 60⋅X₅+24 {O(n)}
t₇₇₅: 10⋅X₅+4 {O(n)}
t₇₇₆: 60⋅X₅+24 {O(n)}
t₇₇₇: 60⋅X₅+24 {O(n)}
t₇₈₆: 2⋅X₅+1 {O(n)}
t₇₈₇: 10⋅X₅+X₆ {O(n)}
Sizebounds
t₄₆, X₀: X₀ {O(n)}
t₄₆, X₁: X₁ {O(n)}
t₄₆, X₂: X₂ {O(n)}
t₄₆, X₃: X₃ {O(n)}
t₄₆, X₄: X₄ {O(n)}
t₄₆, X₅: X₅ {O(n)}
t₄₆, X₆: X₆ {O(n)}
t₄₆, X₇: X₇ {O(n)}
t₄₇, X₀: 2⋅X₅ {O(n)}
t₄₇, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+2⋅X₁+X₅ {O(EXP)}
t₄₇, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+2⋅X₃+X₅ {O(EXP)}
t₄₇, X₅: 2⋅X₅ {O(n)}
t₄₇, X₆: 2⋅X₆+15 {O(n)}
t₄₇, X₇: 2⋅X₇ {O(n)}
t₄₈, X₀: X₅ {O(n)}
t₄₈, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₄₈, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₄₈, X₅: X₅ {O(n)}
t₄₈, X₆: X₆+15 {O(n)}
t₄₈, X₇: X₇ {O(n)}
t₄₉, X₀: 2⋅X₅ {O(n)}
t₄₉, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+2⋅X₁+X₅ {O(EXP)}
t₄₉, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+2⋅X₃+X₅ {O(EXP)}
t₄₉, X₅: 2⋅X₅ {O(n)}
t₄₉, X₆: 2⋅X₆+15 {O(n)}
t₄₉, X₇: 2⋅X₇ {O(n)}
t₅₀, X₀: X₅ {O(n)}
t₅₀, X₁: X₅ {O(n)}
t₅₀, X₂: X₇ {O(n)}
t₅₀, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₅₀, X₅: X₅ {O(n)}
t₅₀, X₆: 5 {O(1)}
t₅₀, X₇: X₇ {O(n)}
t₅₁, X₀: X₅ {O(n)}
t₅₁, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₅₁, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₅₁, X₅: X₅ {O(n)}
t₅₁, X₆: X₆+15 {O(n)}
t₅₁, X₇: X₇ {O(n)}
t₅₂, X₀: X₅ {O(n)}
t₅₂, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₅₂, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₅₂, X₅: X₅ {O(n)}
t₅₂, X₆: X₆+15 {O(n)}
t₅₂, X₇: X₇ {O(n)}
t₆₀, X₀: X₅ {O(n)}
t₆₀, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₆₀, X₃: X₅ {O(n)}
t₆₀, X₄: X₇ {O(n)}
t₆₀, X₅: X₅ {O(n)}
t₆₀, X₆: X₆+15 {O(n)}
t₆₀, X₇: X₇ {O(n)}
t₆₁, X₀: X₅ {O(n)}
t₆₁, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₆₁, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₆₁, X₅: X₅ {O(n)}
t₆₁, X₆: X₆+15 {O(n)}
t₆₁, X₇: X₇ {O(n)}
t₆₇, X₀: X₅ {O(n)}
t₆₇, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₆₇, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₆₇, X₅: X₅ {O(n)}
t₆₇, X₆: X₆+15 {O(n)}
t₆₇, X₇: X₇ {O(n)}
t₆₈, X₀: X₅ {O(n)}
t₆₈, X₁: X₁ {O(n)}
t₆₈, X₂: X₂ {O(n)}
t₆₈, X₃: X₃ {O(n)}
t₆₈, X₄: X₄ {O(n)}
t₆₈, X₅: X₅ {O(n)}
t₆₈, X₆: X₆ {O(n)}
t₆₈, X₇: X₇ {O(n)}
t₇₃₄, X₀: X₅ {O(n)}
t₇₃₄, X₁: 2⋅2^(24⋅X₅)⋅2^(24⋅X₅)⋅X₅ {O(EXP)}
t₇₃₄, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₇₃₄, X₅: X₅ {O(n)}
t₇₃₄, X₆: 5 {O(1)}
t₇₃₄, X₇: X₇ {O(n)}
t₇₃₅, X₀: X₅ {O(n)}
t₇₃₅, X₁: 2⋅2^(24⋅X₅)⋅2^(24⋅X₅)⋅X₅ {O(EXP)}
t₇₃₅, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₇₃₅, X₅: X₅ {O(n)}
t₇₃₅, X₆: 5 {O(1)}
t₇₃₅, X₇: X₇ {O(n)}
t₇₃₆, X₀: X₅ {O(n)}
t₇₃₆, X₁: 2⋅X₅ {O(n)}
t₇₃₆, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₇₃₆, X₅: X₅ {O(n)}
t₇₃₆, X₆: 5 {O(1)}
t₇₃₆, X₇: X₇ {O(n)}
t₇₃₇, X₀: X₅ {O(n)}
t₇₃₇, X₁: 2⋅2^(24⋅X₅)⋅2^(24⋅X₅)⋅X₅ {O(EXP)}
t₇₃₇, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₇₃₇, X₅: X₅ {O(n)}
t₇₃₇, X₆: 5 {O(1)}
t₇₃₇, X₇: X₇ {O(n)}
t₇₃₈, X₀: X₅ {O(n)}
t₇₃₈, X₁: 2⋅2^(24⋅X₅)⋅2^(24⋅X₅)⋅X₅ {O(EXP)}
t₇₃₈, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₇₃₈, X₅: X₅ {O(n)}
t₇₃₈, X₆: 5 {O(1)}
t₇₃₈, X₇: X₇ {O(n)}
t₇₃₉, X₀: X₅ {O(n)}
t₇₃₉, X₁: X₅ {O(n)}
t₇₃₉, X₂: X₇ {O(n)}
t₇₃₉, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₇₃₉, X₅: X₅ {O(n)}
t₇₃₉, X₆: 5 {O(1)}
t₇₃₉, X₇: X₇ {O(n)}
t₇₄₀, X₀: X₅ {O(n)}
t₇₄₀, X₁: 2⋅2^(24⋅X₅)⋅2^(24⋅X₅)⋅X₅ {O(EXP)}
t₇₄₀, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₇₄₀, X₅: X₅ {O(n)}
t₇₄₀, X₆: 5 {O(1)}
t₇₄₀, X₇: X₇ {O(n)}
t₇₄₁, X₀: X₅ {O(n)}
t₇₄₁, X₁: 2⋅2^(24⋅X₅)⋅2^(24⋅X₅)⋅X₅ {O(EXP)}
t₇₄₁, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₇₄₁, X₅: X₅ {O(n)}
t₇₄₁, X₆: 5 {O(1)}
t₇₄₁, X₇: X₇ {O(n)}
t₇₄₂, X₀: X₅ {O(n)}
t₇₄₂, X₁: X₅ {O(n)}
t₇₄₂, X₂: X₇ {O(n)}
t₇₄₂, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₇₄₂, X₅: X₅ {O(n)}
t₇₄₂, X₆: 5 {O(1)}
t₇₄₂, X₇: X₇ {O(n)}
t₇₅₁, X₀: X₅ {O(n)}
t₇₅₁, X₁: 2⋅2^(24⋅X₅)⋅2^(24⋅X₅)⋅X₅ {O(EXP)}
t₇₅₁, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₇₅₁, X₅: X₅ {O(n)}
t₇₅₁, X₆: 5 {O(1)}
t₇₅₁, X₇: X₇ {O(n)}
t₇₅₂, X₀: X₅ {O(n)}
t₇₅₂, X₁: 2⋅2^(24⋅X₅)⋅2^(24⋅X₅)⋅X₅ {O(EXP)}
t₇₅₂, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₇₅₂, X₅: X₅ {O(n)}
t₇₅₂, X₆: 5 {O(1)}
t₇₅₂, X₇: X₇ {O(n)}
t₇₅₃, X₀: X₅ {O(n)}
t₇₅₃, X₁: X₅ {O(n)}
t₇₅₃, X₂: X₇ {O(n)}
t₇₅₃, X₃: 2⋅2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₃+X₅ {O(EXP)}
t₇₅₃, X₅: X₅ {O(n)}
t₇₅₃, X₆: 5 {O(1)}
t₇₅₃, X₇: X₇ {O(n)}
t₇₇₁, X₀: X₅ {O(n)}
t₇₇₁, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₇₇₁, X₃: 2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅ {O(EXP)}
t₇₇₁, X₅: X₅ {O(n)}
t₇₇₁, X₆: X₆+15 {O(n)}
t₇₇₁, X₇: X₇ {O(n)}
t₇₇₂, X₀: X₅ {O(n)}
t₇₇₂, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₇₇₂, X₃: 2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅ {O(EXP)}
t₇₇₂, X₅: X₅ {O(n)}
t₇₇₂, X₆: X₆+15 {O(n)}
t₇₇₂, X₇: X₇ {O(n)}
t₇₇₃, X₀: X₅ {O(n)}
t₇₇₃, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₇₇₃, X₃: 2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅ {O(EXP)}
t₇₇₃, X₅: X₅ {O(n)}
t₇₇₃, X₆: X₆+15 {O(n)}
t₇₇₃, X₇: X₇ {O(n)}
t₇₇₄, X₀: X₅ {O(n)}
t₇₇₄, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₇₇₄, X₃: 2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅ {O(EXP)}
t₇₇₄, X₅: X₅ {O(n)}
t₇₇₄, X₆: X₆+15 {O(n)}
t₇₇₄, X₇: X₇ {O(n)}
t₇₇₅, X₀: X₅ {O(n)}
t₇₇₅, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₇₇₅, X₃: X₅ {O(n)}
t₇₇₅, X₄: X₇ {O(n)}
t₇₇₅, X₅: X₅ {O(n)}
t₇₇₅, X₆: X₆+15 {O(n)}
t₇₇₅, X₇: X₇ {O(n)}
t₇₇₆, X₀: X₅ {O(n)}
t₇₇₆, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₇₇₆, X₃: 2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅ {O(EXP)}
t₇₇₆, X₅: X₅ {O(n)}
t₇₇₆, X₆: X₆+15 {O(n)}
t₇₇₆, X₇: X₇ {O(n)}
t₇₇₇, X₀: X₅ {O(n)}
t₇₇₇, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₇₇₇, X₃: 2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅ {O(EXP)}
t₇₇₇, X₅: X₅ {O(n)}
t₇₇₇, X₆: X₆+15 {O(n)}
t₇₇₇, X₇: X₇ {O(n)}
t₇₈₆, X₀: X₅ {O(n)}
t₇₈₆, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₇₈₆, X₃: 2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅ {O(EXP)}
t₇₈₆, X₅: X₅ {O(n)}
t₇₈₆, X₆: X₆+15 {O(n)}
t₇₈₆, X₇: X₇ {O(n)}
t₇₈₇, X₀: X₅ {O(n)}
t₇₈₇, X₁: 2^(24⋅X₅)⋅2^(24⋅X₅)⋅4⋅X₅+X₁+X₅ {O(EXP)}
t₇₈₇, X₃: 2^(60⋅X₅+24)⋅2^(60⋅X₅+24)⋅X₅+X₅ {O(EXP)}
t₇₈₇, X₅: X₅ {O(n)}
t₇₈₇, X₆: X₆+15 {O(n)}
t₇₈₇, X₇: X₇ {O(n)}