Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < 0
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < 0
t₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₁
t₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁
t₁₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₄, X₆, X₂, X₃, X₄, X₅, X₆)
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₁, X₀, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: X₀ < X₁
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: X₁ < X₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₁, X₂, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₁
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₂
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂-X₁, X₃, X₄, X₅, X₆)
Preprocessing
Cut unsatisfiable transition t₂: l2→l5
Eliminate variables {X₃,X₅} that do not contribute to the problem
Found invariant X₁ ≤ X₄ for location l2
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant X₁ ≤ X₄ for location l1
Found invariant X₁ ≤ X₄ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₂₉: l0(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄)
t₃₀: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ X₁ ≤ X₄
t₃₁: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₀ < 0 ∧ X₁ ≤ X₄
t₃₂: l2(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 0 ∧ X₁ ≤ X₄
t₃₃: l2(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₄
t₃₄: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ X₄
t₃₅: l4(X₀, X₁, X₂, X₃, X₄) → l2(X₃, X₄, X₂, X₃, X₄)
t₃₆: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₁, X₀, X₂, X₃, X₄) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₇: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₀, X₃, X₄) :|: X₀ < X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₈: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₀, X₃, X₄) :|: X₁ < X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₉: l6(X₀, X₁, X₂, X₃, X₄) → l2(X₁, X₂, X₂, X₃, X₄) :|: X₂ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₀: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₁: l7(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂-X₁, X₃, X₄) :|: 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₄₀: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₃+2⋅X₄ {O(n)}
MPRF for transition t₄₁: l7(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂-X₁, X₃, X₄) :|: 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₃+X₄+2 {O(n)}
MPRF for transition t₃₇: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₀, X₃, X₄) :|: X₀ < X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
12⋅X₃⋅X₄+6⋅X₃⋅X₃+6⋅X₄⋅X₄+X₃+X₄ {O(n^2)}
MPRF for transition t₃₉: l6(X₀, X₁, X₂, X₃, X₄) → l2(X₁, X₂, X₂, X₃, X₄) :|: X₂ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+2⋅X₄⋅X₄+4⋅X₃⋅X₄+4⋅X₃+5⋅X₄+1 {O(n^2)}
MPRF for transition t₃₈: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₀, X₃, X₄) :|: X₁ < X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
16⋅X₃⋅X₃⋅X₄+20⋅X₃⋅X₄⋅X₄+4⋅X₃⋅X₃⋅X₃+8⋅X₄⋅X₄⋅X₄+10⋅X₃⋅X₃+22⋅X₄⋅X₄+30⋅X₃⋅X₄+13⋅X₄+6⋅X₃+2 {O(n^3)}
Chain transitions t₃₉: l6→l2 and t₃₃: l2→l5 to t₁₂₂: l6→l5
Chain transitions t₃₆: l5→l2 and t₃₃: l2→l5 to t₁₂₃: l5→l5
Chain transitions t₃₆: l5→l2 and t₃₂: l2→l3 to t₁₂₄: l5→l3
Chain transitions t₃₉: l6→l2 and t₃₂: l2→l3 to t₁₂₅: l6→l3
Chain transitions t₃₅: l4→l2 and t₃₂: l2→l3 to t₁₂₆: l4→l3
Chain transitions t₃₅: l4→l2 and t₃₃: l2→l5 to t₁₂₇: l4→l5
Chain transitions t₃₅: l4→l2 and t₃₁: l2→l3 to t₁₂₈: l4→l3
Chain transitions t₃₆: l5→l2 and t₃₁: l2→l3 to t₁₂₉: l5→l3
Chain transitions t₃₉: l6→l2 and t₃₁: l2→l3 to t₁₃₀: l6→l3
Chain transitions t₃₅: l4→l2 and t₃₀: l2→l3 to t₁₃₁: l4→l3
Chain transitions t₃₆: l5→l2 and t₃₀: l2→l3 to t₁₃₂: l5→l3
Chain transitions t₃₉: l6→l2 and t₃₀: l2→l3 to t₁₃₃: l6→l3
Chain transitions t₄₁: l7→l6 and t₄₀: l6→l7 to t₁₃₄: l7→l7
Chain transitions t₃₈: l5→l6 and t₄₀: l6→l7 to t₁₃₅: l5→l7
Chain transitions t₃₈: l5→l6 and t₁₂₂: l6→l5 to t₁₃₆: l5→l5
Chain transitions t₄₁: l7→l6 and t₁₂₂: l6→l5 to t₁₃₇: l7→l5
Chain transitions t₃₇: l5→l6 and t₁₂₂: l6→l5 to t₁₃₈: l5→l5
Chain transitions t₃₇: l5→l6 and t₄₀: l6→l7 to t₁₃₉: l5→l7
Chain transitions t₃₇: l5→l6 and t₁₃₃: l6→l3 to t₁₄₀: l5→l3
Chain transitions t₃₈: l5→l6 and t₁₃₃: l6→l3 to t₁₄₁: l5→l3
Chain transitions t₄₁: l7→l6 and t₁₃₃: l6→l3 to t₁₄₂: l7→l3
Chain transitions t₃₇: l5→l6 and t₁₃₀: l6→l3 to t₁₄₃: l5→l3
Chain transitions t₃₈: l5→l6 and t₁₃₀: l6→l3 to t₁₄₄: l5→l3
Chain transitions t₄₁: l7→l6 and t₁₃₀: l6→l3 to t₁₄₅: l7→l3
Chain transitions t₃₇: l5→l6 and t₁₂₅: l6→l3 to t₁₄₆: l5→l3
Chain transitions t₃₈: l5→l6 and t₁₂₅: l6→l3 to t₁₄₇: l5→l3
Chain transitions t₄₁: l7→l6 and t₁₂₅: l6→l3 to t₁₄₈: l7→l3
Chain transitions t₃₇: l5→l6 and t₃₉: l6→l2 to t₁₄₉: l5→l2
Chain transitions t₃₈: l5→l6 and t₃₉: l6→l2 to t₁₅₀: l5→l2
Chain transitions t₄₁: l7→l6 and t₃₉: l6→l2 to t₁₅₁: l7→l2
Analysing control-flow refined program
Cut unsatisfiable transition t₁₂₄: l5→l3
Cut unsatisfiable transition t₁₂₉: l5→l3
Cut unsatisfiable transition t₁₃₂: l5→l3
Cut unsatisfiable transition t₁₃₆: l5→l5
Cut unsatisfiable transition t₁₃₉: l5→l7
Cut unsatisfiable transition t₁₄₁: l5→l3
Cut unsatisfiable transition t₁₄₂: l7→l3
Cut unsatisfiable transition t₁₄₃: l5→l3
Cut unsatisfiable transition t₁₄₄: l5→l3
Cut unsatisfiable transition t₁₄₅: l7→l3
Cut unsatisfiable transition t₁₄₆: l5→l3
Cut unsatisfiable transition t₁₄₇: l5→l3
Cut unsatisfiable transition t₁₄₈: l7→l3
Cut unsatisfiable transition t₁₅₀: l5→l2
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant X₁ ≤ X₄ for location l1
Found invariant X₁ ≤ X₄ for location l3
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₁₃₈: l5(X₀, X₁, X₂, X₃, X₄) -{3}> l5(X₁, X₀, X₀, X₃, X₄) :|: X₀ < X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ 0 ∧ 1 ≤ X₁+X₀ ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₁₃₄: l7(X₀, X₁, X₂, X₃, X₄) -{2}> l7(X₀, X₁, X₂-X₁, X₃, X₄) :|: 2⋅X₁ < X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₁ ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀+X₁ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₃+X₄ {O(n)}
MPRF for transition t₁₃₅: l5(X₀, X₁, X₂, X₃, X₄) -{2}> l7(X₀, X₁, X₀, X₃, X₄) :|: X₁ < X₀ ∧ X₁ < X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ 0 ∧ 1 ≤ X₁+X₀ ∧ 0 ≤ 2⋅X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₃+2⋅X₄+1 {O(n)}
MPRF for transition t₁₃₇: l7(X₀, X₁, X₂, X₃, X₄) -{3}> l5(X₁, X₂-X₁, X₂-X₁, X₃, X₄) :|: X₂ ≤ 2⋅X₁ ∧ X₁ < X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₁ ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀+X₁ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ X₂ ≤ X₁+X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₃+X₄+2 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₃₉₄: n_l2___11→l3
Cut unsatisfiable transition t₃₉₅: n_l2___2→l3
Cut unsatisfiable transition t₃₉₆: n_l2___4→l3
Cut unsatisfiable transition t₃₉₈: n_l2___11→l3
Cut unsatisfiable transition t₃₉₉: n_l2___2→l3
Cut unsatisfiable transition t₄₀₀: n_l2___4→l3
Cut unsatisfiable transition t₄₀₁: n_l2___7→l3
Cut unsatisfiable transition t₄₀₂: n_l6___10→l7
Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l6___9
Found invariant X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l2
Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___1
Found invariant X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___7
Found invariant 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l6___5
Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6
Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location n_l6___10
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___11
Found invariant X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l5___6
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___8
Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___2
Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l5___12
Found invariant X₁ ≤ X₄ ∧ X₃ ≤ X₀ for location l1
Found invariant X₁ ≤ X₄ ∧ X₃ ≤ X₀ for location l3
Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l2___4
Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___3
knowledge_propagation leads to new time bound X₃+X₄+2 {O(n)} for transition t₃₇₈: l6(X₀, X₁, X₂, X₃, X₄) → n_l2___4(X₁, X₂, X₂, X₃, X₄) :|: X₁+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₂ ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound X₃+X₄+2 {O(n)} for transition t₃₆₇: n_l2___4(X₀, X₁, X₂, X₃, X₄) → n_l5___3(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₄ ∧ 0 ≤ X₀ ∧ 0 < X₁ ∧ 1 ≤ X₀ ∧ 0 < X₀ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₀ ∧ 0 < X₁ ∧ X₁ ≤ X₄ ∧ X₁ ≤ X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₃+X₄+2 {O(n)} for transition t₃₇₄: n_l5___3(X₀, X₁, X₂, X₃, X₄) → n_l6___5(X₀, X₁, X₀, X₃, X₄) :|: X₀ ≤ X₄ ∧ X₁ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₁ < X₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₃+X₄+3 {O(n)} for transition t₄₀₃: n_l6___5(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:inf {Infinity}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: inf {Infinity}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: inf {Infinity}
t₃₇: 12⋅X₃⋅X₄+6⋅X₃⋅X₃+6⋅X₄⋅X₄+X₃+X₄ {O(n^2)}
t₃₈: 16⋅X₃⋅X₃⋅X₄+20⋅X₃⋅X₄⋅X₄+4⋅X₃⋅X₃⋅X₃+8⋅X₄⋅X₄⋅X₄+10⋅X₃⋅X₃+22⋅X₄⋅X₄+30⋅X₃⋅X₄+13⋅X₄+6⋅X₃+2 {O(n^3)}
t₃₉: 2⋅X₃⋅X₃+2⋅X₄⋅X₄+4⋅X₃⋅X₄+4⋅X₃+5⋅X₄+1 {O(n^2)}
t₄₀: 2⋅X₃+2⋅X₄ {O(n)}
t₄₁: X₃+X₄+2 {O(n)}
Costbounds
Overall costbound: inf {Infinity}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: inf {Infinity}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: inf {Infinity}
t₃₇: 12⋅X₃⋅X₄+6⋅X₃⋅X₃+6⋅X₄⋅X₄+X₃+X₄ {O(n^2)}
t₃₈: 16⋅X₃⋅X₃⋅X₄+20⋅X₃⋅X₄⋅X₄+4⋅X₃⋅X₃⋅X₃+8⋅X₄⋅X₄⋅X₄+10⋅X₃⋅X₃+22⋅X₄⋅X₄+30⋅X₃⋅X₄+13⋅X₄+6⋅X₃+2 {O(n^3)}
t₃₉: 2⋅X₃⋅X₃+2⋅X₄⋅X₄+4⋅X₃⋅X₄+4⋅X₃+5⋅X₄+1 {O(n^2)}
t₄₀: 2⋅X₃+2⋅X₄ {O(n)}
t₄₁: X₃+X₄+2 {O(n)}
Sizebounds
t₂₉, X₀: X₀ {O(n)}
t₂₉, X₁: X₁ {O(n)}
t₂₉, X₂: X₂ {O(n)}
t₂₉, X₃: X₃ {O(n)}
t₂₉, X₄: X₄ {O(n)}
t₃₀, X₀: 2⋅X₃+X₄ {O(n)}
t₃₀, X₁: 0 {O(1)}
t₃₀, X₂: 2⋅X₃+2⋅X₄+X₂ {O(n)}
t₃₀, X₃: 2⋅X₃ {O(n)}
t₃₀, X₄: 2⋅X₄ {O(n)}
t₃₁, X₀: X₃ {O(n)}
t₃₁, X₁: X₄ {O(n)}
t₃₁, X₂: X₂ {O(n)}
t₃₁, X₃: X₃ {O(n)}
t₃₁, X₄: X₄ {O(n)}
t₃₂, X₀: 2⋅X₃+X₄ {O(n)}
t₃₂, X₁: 2⋅X₄+X₃ {O(n)}
t₃₂, X₂: 2⋅X₃+2⋅X₄+X₂ {O(n)}
t₃₂, X₃: 2⋅X₃ {O(n)}
t₃₂, X₄: 2⋅X₄ {O(n)}
t₃₃, X₀: X₃+X₄ {O(n)}
t₃₃, X₁: X₃+X₄ {O(n)}
t₃₃, X₂: 2⋅X₃+2⋅X₄+X₂ {O(n)}
t₃₃, X₃: X₃ {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₄, X₀: 2⋅X₄+5⋅X₃ {O(n)}
t₃₄, X₁: 3⋅X₄+X₃ {O(n)}
t₃₄, X₂: 3⋅X₂+4⋅X₃+4⋅X₄ {O(n)}
t₃₄, X₃: 5⋅X₃ {O(n)}
t₃₄, X₄: 5⋅X₄ {O(n)}
t₃₅, X₀: X₃ {O(n)}
t₃₅, X₁: X₄ {O(n)}
t₃₅, X₂: X₂ {O(n)}
t₃₅, X₃: X₃ {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₆, X₀: X₃+X₄ {O(n)}
t₃₆, X₁: X₃+X₄ {O(n)}
t₃₆, X₂: 2⋅X₃+2⋅X₄+X₂ {O(n)}
t₃₆, X₃: X₃ {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₇, X₀: X₃+X₄ {O(n)}
t₃₇, X₁: X₃+X₄ {O(n)}
t₃₇, X₂: X₃+X₄ {O(n)}
t₃₇, X₃: X₃ {O(n)}
t₃₇, X₄: X₄ {O(n)}
t₃₈, X₀: X₃+X₄ {O(n)}
t₃₈, X₁: X₃+X₄ {O(n)}
t₃₈, X₂: X₃+X₄ {O(n)}
t₃₈, X₃: X₃ {O(n)}
t₃₈, X₄: X₄ {O(n)}
t₃₉, X₀: X₃+X₄ {O(n)}
t₃₉, X₁: X₃+X₄ {O(n)}
t₃₉, X₂: 2⋅X₃+2⋅X₄ {O(n)}
t₃₉, X₃: X₃ {O(n)}
t₃₉, X₄: X₄ {O(n)}
t₄₀, X₀: X₃+X₄ {O(n)}
t₄₀, X₁: X₃+X₄ {O(n)}
t₄₀, X₂: X₃+X₄ {O(n)}
t₄₀, X₃: X₃ {O(n)}
t₄₀, X₄: X₄ {O(n)}
t₄₁, X₀: X₃+X₄ {O(n)}
t₄₁, X₁: X₃+X₄ {O(n)}
t₄₁, X₂: X₃+X₄ {O(n)}
t₄₁, X₃: X₃ {O(n)}
t₄₁, X₄: X₄ {O(n)}