Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₆-1, X₁, X₂, X₃, X₄, X₄, X₆)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₂)
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₀) :|: 0 < X₀
t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0
t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, 0, X₂, X₅, X₄, X₅, X₆) :|: X₅ < 8
t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₅-8, X₂, 8, X₄, X₅, X₆) :|: 8 ≤ X₅
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₁, X₆) :|: X₃ < 1
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: 1 ≤ X₃
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
Preprocessing
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ for location l6
Found invariant X₆ ≤ 1 ∧ X₅+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₀+X₆ ≤ 1 ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₀+X₅ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l7
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂ for location l5
Found invariant X₆ ≤ 1 ∧ X₅+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₀+X₆ ≤ 1 ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₀+X₅ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l8
Found invariant X₆ ≤ X₂ for location l1
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ for location l4
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₆-1, X₁, X₂, X₃, X₄, X₄, X₆) :|: X₆ ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₂)
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₀) :|: 0 < X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂
t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂
t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, 0, X₂, X₅, X₄, X₅, X₆) :|: X₅ < 8 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂
t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₅-8, X₂, 8, X₄, X₅, X₆) :|: 8 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₁, X₆) :|: X₃ < 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: 1 ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 1 ∧ X₅+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₀+X₆ ≤ 1 ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₀+X₅ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0
MPRF for transition t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₀) :|: 0 < X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₆-1, X₁, X₂, X₃, X₄, X₄, X₆) :|: X₆ ≤ X₂
MPRF for transition t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ of depth 1:
new bound:
2⋅X₂⋅X₄+4⋅X₄ {O(n^2)}
MPRF for transition t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ of depth 1:
new bound:
X₂+2 {O(n)}
MPRF for transition t₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, 0, X₂, X₅, X₄, X₅, X₆) :|: X₅ < 8 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂ of depth 1:
new bound:
X₂⋅X₄+2⋅X₄ {O(n^2)}
MPRF for transition t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₅-8, X₂, 8, X₄, X₅, X₆) :|: 8 ≤ X₅ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂ of depth 1:
new bound:
8⋅X₂⋅X₄+16⋅X₄ {O(n^2)}
MPRF for transition t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: 1 ≤ X₃ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
9⋅X₂⋅X₄+18⋅X₄ {O(n^2)}
MPRF for transition t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₁, X₆) :|: X₃ < 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
X₂⋅X₄+2⋅X₄ {O(n^2)}
Chain transitions t₁₀: l4→l1 and t₂: l1→l3 to t₁₁₅: l4→l3
Chain transitions t₁: l2→l1 and t₂: l1→l3 to t₁₁₆: l2→l3
Chain transitions t₈: l6→l3 and t₃: l3→l5 to t₁₁₇: l6→l5
Chain transitions t₁₁₅: l4→l3 and t₃: l3→l5 to t₁₁₈: l4→l5
Chain transitions t₁₁₅: l4→l3 and t₄: l3→l4 to t₁₁₉: l4→l4
Chain transitions t₈: l6→l3 and t₄: l3→l4 to t₁₂₀: l6→l4
Chain transitions t₁₁₆: l2→l3 and t₄: l3→l4 to t₁₂₁: l2→l4
Chain transitions t₁₁₆: l2→l3 and t₃: l3→l5 to t₁₂₂: l2→l5
Chain transitions t₁₁₇: l6→l5 and t₆: l5→l6 to t₁₂₃: l6→l6
Chain transitions t₁₁₈: l4→l5 and t₆: l5→l6 to t₁₂₄: l4→l6
Chain transitions t₁₁₈: l4→l5 and t₅: l5→l6 to t₁₂₅: l4→l6
Chain transitions t₁₁₇: l6→l5 and t₅: l5→l6 to t₁₂₆: l6→l6
Chain transitions t₁₂₂: l2→l5 and t₅: l5→l6 to t₁₂₇: l2→l6
Chain transitions t₁₂₂: l2→l5 and t₆: l5→l6 to t₁₂₈: l2→l6
Analysing control-flow refined program
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ for location l6
Found invariant X₆ ≤ 1 ∧ X₅+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₀+X₆ ≤ 1 ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₀+X₅ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l7
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂ for location l5
Found invariant X₆ ≤ 1 ∧ X₅+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₀+X₆ ≤ 1 ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₀+X₅ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l8
Found invariant X₆ ≤ X₂ for location l1
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ for location l4
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ for location l3
knowledge_propagation leads to new time bound 9⋅X₂⋅X₄+18⋅X₄ {O(n^2)} for transition t₁₂₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{2}> l4(X₀, X₁, X₂, X₃, X₄, X₁, X₆) :|: X₃ < 1 ∧ X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₁ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁
knowledge_propagation leads to new time bound 9⋅X₂⋅X₄+18⋅X₄ {O(n^2)} for transition t₁₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l6(X₀, X₁-8, X₂, 8, X₄, X₁, X₆) :|: X₃ < 1 ∧ 0 < X₁ ∧ 8 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₁ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₄+X₁ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁
knowledge_propagation leads to new time bound 9⋅X₂⋅X₄+18⋅X₄ {O(n^2)} for transition t₁₂₄: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{4}> l6(X₀-1, X₄-8, X₂, 8, X₄, X₄, X₀) :|: 0 < X₀ ∧ 0 < X₄ ∧ 8 ≤ X₄ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 ≤ X₄ ∧ 2 ≤ 2⋅X₄ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂
knowledge_propagation leads to new time bound 9⋅X₂⋅X₄+18⋅X₄ {O(n^2)} for transition t₁₂₅: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{4}> l6(X₀-1, 0, X₂, X₄, X₄, X₄, X₀) :|: 0 < X₀ ∧ 0 < X₄ ∧ X₄ < 8 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 ≤ X₄ ∧ 2 ≤ 2⋅X₄ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂
knowledge_propagation leads to new time bound 9⋅X₂⋅X₄+18⋅X₄ {O(n^2)} for transition t₁₂₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l6(X₀, 0, X₂, X₁, X₄, X₁, X₆) :|: X₃ < 1 ∧ 0 < X₁ ∧ X₁ < 8 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₁ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₁ ∧ 2 ≤ X₄+X₁ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁
MPRF for transition t₁₁₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l4(X₀-1, X₁, X₂, X₃, X₄, X₄, X₀) :|: 0 < X₀ ∧ X₄ ≤ 0 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ X₀ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 7 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 14 ∧ X₅ ≤ 7+X₁ ∧ X₁+X₅ ≤ 7 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 7 ∧ X₃ ≤ 7+X₁ ∧ X₁+X₃ ≤ 7 ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ for location n_l6___6
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 8 ≤ X₅ ∧ 16 ≤ X₄+X₅ ∧ 15 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 8 ≤ X₁+X₅ ∧ 8+X₁ ≤ X₅ ∧ 8 ≤ X₄ ∧ 15 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 8+X₁ ≤ X₄ ∧ X₃ ≤ 7 ∧ X₃ ≤ 7+X₁ ∧ 7 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ for location n_l6___1
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 8 ≤ X₅ ∧ 16 ≤ X₄+X₅ ∧ 16 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 8 ≤ X₁+X₅ ∧ 8+X₁ ≤ X₅ ∧ 8 ≤ X₄ ∧ 16 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 8+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 8 ≤ X₃ ∧ 8 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ for location n_l6___5
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 6 ∧ X₃ ≤ 6+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ for location n_l6___4
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ for location n_l3___3
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ for location n_l5___2
Found invariant X₆ ≤ 1 ∧ X₅+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₀+X₆ ≤ 1 ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₀+X₅ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l7
Found invariant X₆ ≤ 1 ∧ X₅+X₆ ≤ 1 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₀+X₆ ≤ 1 ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₀+X₅ ≤ 0 ∧ 1+X₀ ≤ X₂ ∧ X₀ ≤ 0 for location l8
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂ for location n_l5___7
Found invariant X₆ ≤ X₂ for location l1
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ for location l4
Found invariant X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ 1+X₀ ≤ X₂ for location l3
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₂₈₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₀+1) :|: X₀+1 ≤ X₆ ∧ X₄ ≤ X₅ ∧ 0 < X₅ ∧ X₀+1 ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₄ ≤ X₅ ∧ 1+X₀ ≤ X₂
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₂₈₇: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___5(X₀, X₅-8, X₂, 8, X₄, X₅, X₀+1) :|: 0 < X₄ ∧ X₄ ≤ X₅ ∧ X₀+1 ≤ X₆ ∧ 8 ≤ X₅ ∧ X₀+1 ≤ X₆ ∧ 1+X₀ ≤ X₂ ∧ X₅ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₂₈₈: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___6(X₀, 0, X₂, X₅, X₄, X₅, X₀+1) :|: 0 < X₄ ∧ X₄ ≤ X₅ ∧ X₀+1 ≤ X₆ ∧ X₅ < 8 ∧ X₀+1 ≤ X₆ ∧ 1+X₀ ≤ X₂ ∧ X₅ ≤ X₄ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1+X₀ ≤ X₂
MPRF for transition t₂₈₃: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅, X₀+1) :|: X₀+1 ≤ X₆ ∧ 0 < X₅ ∧ X₀+1 ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
2⋅X₂⋅X₄+28⋅X₂⋅X₂+4⋅X₄+91⋅X₂+71 {O(n^2)}
MPRF for transition t₂₈₅: n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___5(X₀, X₅-8, X₂, 8, X₄, X₅, X₀+1) :|: 0 < X₅ ∧ X₀+1 ≤ X₆ ∧ 8 ≤ X₅ ∧ X₀+1 ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
212⋅X₂⋅X₄+392⋅X₂+424⋅X₄+840 {O(n^2)}
MPRF for transition t₂₈₆: n_l5___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___6(X₀, 0, X₂, X₅, X₄, X₅, X₀+1) :|: 0 < X₅ ∧ X₀+1 ≤ X₆ ∧ X₅ < 8 ∧ X₀+1 ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
2⋅X₂⋅X₄+4⋅X₄ {O(n^2)}
MPRF for transition t₂₈₉: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___4(X₀, X₁, X₂, X₃-1, X₄, X₅, X₀+1) :|: X₀+1 ≤ X₆ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1+X₃ ≤ X₅ ∧ X₃ ≤ 7 ∧ 1 ≤ X₃ ∧ X₀+1 ≤ X₆ ∧ X₅ ≤ 8+X₁ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₆ ≤ 1+X₀ ∧ X₃ ≤ 8 ∧ X₃ ≤ X₅ ∧ 1+X₀ ≤ X₆ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₅ ≤ 8+X₁ ∧ 1+X₁ ≤ X₅ ∧ X₃ ≤ X₅ ∧ X₃ ≤ 8 ∧ 1+X₀ ≤ X₆ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₅ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₅ ∧ X₃ ≤ 8 ∧ X₅ ≤ 8+X₁ ∧ 1+X₁ ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 8 ≤ X₅ ∧ 16 ≤ X₄+X₅ ∧ 15 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 8 ≤ X₁+X₅ ∧ 8+X₁ ≤ X₅ ∧ 8 ≤ X₄ ∧ 15 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 8+X₁ ≤ X₄ ∧ X₃ ≤ 7 ∧ X₃ ≤ 7+X₁ ∧ 7 ≤ X₃ ∧ 7 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
96⋅X₂⋅X₄+192⋅X₄ {O(n^2)}
MPRF for transition t₂₉₀: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___3(X₀, X₁, X₂, X₃, X₄, X₁, X₀+1) :|: X₀+1 ≤ X₆ ∧ 1+X₃ ≤ X₅ ∧ X₃ ≤ 7 ∧ X₃ < 1 ∧ X₀+1 ≤ X₆ ∧ X₅ ≤ 8+X₁ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₆ ≤ 1+X₀ ∧ X₃ ≤ 8 ∧ X₃ ≤ X₅ ∧ 1+X₀ ≤ X₆ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₅ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₅ ≤ 8+X₁ ∧ 0 ≤ X₁ ∧ 1+X₁ ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 6 ∧ X₃ ≤ 6+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
2⋅X₂⋅X₄+15⋅X₂+4⋅X₄+9 {O(n^2)}
MPRF for transition t₂₉₁: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___4(X₀, X₁, X₂, X₃-1, X₄, X₅, X₀+1) :|: X₀+1 ≤ X₆ ∧ 1+X₃ ≤ X₅ ∧ X₃ ≤ 7 ∧ 1 ≤ X₃ ∧ X₀+1 ≤ X₆ ∧ X₅ ≤ 8+X₁ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₆ ≤ 1+X₀ ∧ X₃ ≤ 8 ∧ X₃ ≤ X₅ ∧ 1+X₀ ≤ X₆ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₅ ≤ 8+X₁ ∧ 0 ≤ X₃ ∧ 1+X₁ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₅ ∧ X₃ ≤ 8 ∧ X₅ ≤ 8+X₁ ∧ 1+X₁ ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 6 ∧ X₃ ≤ 6+X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
19⋅X₂⋅X₄+24⋅X₂⋅X₂+176⋅X₂+45⋅X₄+263 {O(n^2)}
MPRF for transition t₂₉₂: n_l6___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___1(X₀, X₁, X₂, X₃-1, X₄, X₅, X₀+1) :|: X₀+1 ≤ X₆ ∧ 1 ≤ X₃ ∧ 8 ≤ X₃ ∧ 8+X₁ ≤ X₅ ∧ 8+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ X₀+1 ≤ X₆ ∧ X₅ ≤ 8+X₁ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₆ ≤ 1+X₀ ∧ X₃ ≤ 8 ∧ X₃ ≤ X₅ ∧ X₃ ≤ 8 ∧ 1+X₀ ≤ X₆ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ 8+X₁ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₂ ∧ 1+X₀ ≤ X₆ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₅ ≤ 8+X₁ ∧ 1+X₁ ≤ X₅ ∧ X₃ ≤ X₅ ∧ X₃ ≤ 8 ∧ X₅ ≤ X₄ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₅ ∧ X₃ ≤ 8 ∧ X₅ ≤ 8+X₁ ∧ 1+X₁ ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 8+X₁ ∧ 8 ≤ X₅ ∧ 16 ≤ X₄+X₅ ∧ 16 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 8 ≤ X₁+X₅ ∧ 8+X₁ ≤ X₅ ∧ 8 ≤ X₄ ∧ 16 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 8 ≤ X₁+X₄ ∧ 8+X₁ ≤ X₄ ∧ X₃ ≤ 8 ∧ X₃ ≤ 8+X₁ ∧ 8 ≤ X₃ ∧ 8 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
3⋅X₂⋅X₄+15⋅X₂+7⋅X₄+38 {O(n^2)}
MPRF for transition t₂₉₃: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___4(X₀, X₁, X₂, X₃-1, X₄, X₅, X₀+1) :|: X₀+1 ≤ X₆ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ X₀+1 ≤ X₆ ∧ X₅ ≤ 8+X₁ ∧ 1+X₁ ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₆ ≤ 1+X₀ ∧ X₃ ≤ 8 ∧ X₃ ≤ X₅ ∧ 1+X₀ ≤ X₆ ∧ X₆ ≤ 1+X₀ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ X₅ ≤ 8+X₁ ∧ 1+X₁ ≤ X₅ ∧ X₃ ≤ X₅ ∧ X₃ ≤ 8 ∧ X₅ ≤ X₄ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₅ ∧ X₃ ≤ 8 ∧ X₅ ≤ 8+X₁ ∧ 1+X₁ ≤ X₅ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 7 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 14 ∧ X₅ ≤ 7+X₁ ∧ X₁+X₅ ≤ 7 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 7 ∧ X₃ ≤ 7+X₁ ∧ X₁+X₃ ≤ 7 ∧ 1 ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ of depth 1:
new bound:
2⋅X₂⋅X₄+4⋅X₄+X₂+2 {O(n^2)}
MPRF for transition t₃₀₄: n_l3___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ 0 ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₀ ≤ X₂ ∧ X₆ ≤ X₂ ∧ X₆ ≤ 1+X₀ ∧ 1+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₀ ≤ X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
16⋅X₂+39 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:21⋅X₂⋅X₄+3⋅X₂+42⋅X₄+9 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₂+2 {O(n)}
t₃: 2⋅X₂⋅X₄+4⋅X₄ {O(n^2)}
t₄: X₂+2 {O(n)}
t₅: X₂⋅X₄+2⋅X₄ {O(n^2)}
t₆: 8⋅X₂⋅X₄+16⋅X₄ {O(n^2)}
t₇: 9⋅X₂⋅X₄+18⋅X₄ {O(n^2)}
t₈: X₂⋅X₄+2⋅X₄ {O(n^2)}
t₉: 1 {O(1)}
t₁₀: X₂+1 {O(n)}
t₁₁: 1 {O(1)}
Costbounds
Overall costbound: 21⋅X₂⋅X₄+3⋅X₂+42⋅X₄+9 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₂+2 {O(n)}
t₃: 2⋅X₂⋅X₄+4⋅X₄ {O(n^2)}
t₄: X₂+2 {O(n)}
t₅: X₂⋅X₄+2⋅X₄ {O(n^2)}
t₆: 8⋅X₂⋅X₄+16⋅X₄ {O(n^2)}
t₇: 9⋅X₂⋅X₄+18⋅X₄ {O(n^2)}
t₈: X₂⋅X₄+2⋅X₄ {O(n^2)}
t₉: 1 {O(1)}
t₁₀: X₂+1 {O(n)}
t₁₁: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₂ {O(n)}
t₂, X₀: 2⋅X₂+2 {O(n)}
t₂, X₁: 2⋅X₄+X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: 2⋅X₄ {O(n)}
t₂, X₆: 3⋅X₂+2 {O(n)}
t₃, X₀: 2⋅X₂+2 {O(n)}
t₃, X₁: 4⋅X₄+X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₃, X₅: 2⋅X₄ {O(n)}
t₃, X₆: 3⋅X₂+2 {O(n)}
t₄, X₀: 2⋅X₂+2 {O(n)}
t₄, X₁: 2⋅X₄+X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: 4⋅X₄ {O(n)}
t₄, X₆: 6⋅X₂+4 {O(n)}
t₅, X₀: 2⋅X₂+2 {O(n)}
t₅, X₁: 0 {O(1)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: 7 {O(1)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: 7 {O(1)}
t₅, X₆: 3⋅X₂+2 {O(n)}
t₆, X₀: 2⋅X₂+2 {O(n)}
t₆, X₁: 2⋅X₄ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: 8 {O(1)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: 2⋅X₄ {O(n)}
t₆, X₆: 3⋅X₂+2 {O(n)}
t₇, X₀: 2⋅X₂+2 {O(n)}
t₇, X₁: 2⋅X₄ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: 7 {O(1)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: 2⋅X₄+7 {O(n)}
t₇, X₆: 3⋅X₂+2 {O(n)}
t₈, X₀: 2⋅X₂+2 {O(n)}
t₈, X₁: 2⋅X₄ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: 0 {O(1)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: 2⋅X₄ {O(n)}
t₈, X₆: 3⋅X₂+2 {O(n)}
t₉, X₀: 2⋅X₂+2 {O(n)}
t₉, X₁: 2⋅X₄+X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: 4⋅X₄ {O(n)}
t₉, X₆: 6⋅X₂+4 {O(n)}
t₁₀, X₀: 2⋅X₂+2 {O(n)}
t₁₀, X₁: 2⋅X₄+X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: 4⋅X₄ {O(n)}
t₁₀, X₆: 2⋅X₂+2 {O(n)}
t₁₁, X₀: 2⋅X₂+2 {O(n)}
t₁₁, X₁: 2⋅X₄+X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: 4⋅X₄ {O(n)}
t₁₁, X₆: 6⋅X₂+4 {O(n)}