Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂
t₁₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₁ ≤ 1
t₁₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 1
t₁₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 < X₂
t₂₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ < (X₄)² ∧ 0 < X₃
t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: (X₄)² ≤ X₃
t₂₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₃ ≤ 0
t₂₇: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l13(X₀, X₁, X₂, 5⋅X₃+(X₁₃)², 2⋅X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l1(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₅, X₁₆, X₆, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₀ < 1
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 3 < X₀
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: X₂ < 0
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 0 < X₂
t₇: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) :|: 1 ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₈, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.2, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
t₂₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆)
Preprocessing
Eliminate variables {X₁₄,X₁₅} that do not contribute to the problem
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11
Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l6
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ for location l15
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ for location l12
Found invariant X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l7
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ for location l5
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ for location l13
Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l8
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 2 ≤ X₁ for location l10
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ for location l16
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₅₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₅₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₅₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 2 ≤ X₁
t₅₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
t₅₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₅₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₆₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₆₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₆₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < (X₄)² ∧ 0 < X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: (X₄)² ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ ≤ 0 ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₅: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, 5⋅X₃+(X₁₃)², 2⋅X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₆₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₆₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₅, X₁₄, X₆, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₇₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₈, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₆: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, nondef.2, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
MPRF for transition t₅₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁₄+1 {O(n)}
MPRF for transition t₅₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁₄+1 {O(n)}
MPRF for transition t₅₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ of depth 1:
new bound:
X₁₄+1 {O(n)}
MPRF for transition t₇₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁₄ {O(n)}
knowledge_propagation leads to new time bound X₁₄+1 {O(n)} for transition t₇₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
MPRF for transition t₇₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ of depth 1:
new bound:
X₁₄+1 {O(n)}
MPRF for transition t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ of depth 1:
new bound:
X₁₄+1 {O(n)}
MPRF for transition t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ of depth 1:
new bound:
X₁₄+1 {O(n)}
Chain transitions t₅₈: l12→l10 and t₅₆: l10→l11 to t₂₅₂: l12→l11
Chain transitions t₂₅₂: l12→l11 and t₅₇: l11→l9 to t₂₅₃: l12→l9
Chain transitions t₇₃: l5→l12 and t₂₅₃: l12→l9 to t₂₅₄: l5→l9
Chain transitions t₇₂: l5→l12 and t₂₅₃: l12→l9 to t₂₅₅: l5→l9
Chain transitions t₇₂: l5→l12 and t₆₁: l12→l13 to t₂₅₆: l5→l13
Chain transitions t₇₃: l5→l12 and t₆₁: l12→l13 to t₂₅₇: l5→l13
Chain transitions t₇₁: l5→l12 and t₆₁: l12→l13 to t₂₅₈: l5→l13
Chain transitions t₇₁: l5→l12 and t₂₅₃: l12→l9 to t₂₅₉: l5→l9
Chain transitions t₇₁: l5→l12 and t₆₀: l12→l13 to t₂₆₀: l5→l13
Chain transitions t₇₂: l5→l12 and t₆₀: l12→l13 to t₂₆₁: l5→l13
Chain transitions t₇₃: l5→l12 and t₆₀: l12→l13 to t₂₆₂: l5→l13
Chain transitions t₇₀: l5→l12 and t₆₀: l12→l13 to t₂₆₃: l5→l13
Chain transitions t₇₀: l5→l12 and t₆₁: l12→l13 to t₂₆₄: l5→l13
Chain transitions t₇₀: l5→l12 and t₂₅₃: l12→l9 to t₂₆₅: l5→l9
Chain transitions t₇₀: l5→l12 and t₅₉: l12→l13 to t₂₆₆: l5→l13
Chain transitions t₇₁: l5→l12 and t₅₉: l12→l13 to t₂₆₇: l5→l13
Chain transitions t₇₂: l5→l12 and t₅₉: l12→l13 to t₂₆₈: l5→l13
Chain transitions t₇₃: l5→l12 and t₅₉: l12→l13 to t₂₆₉: l5→l13
Chain transitions t₇₀: l5→l12 and t₂₅₂: l12→l11 to t₂₇₀: l5→l11
Chain transitions t₇₁: l5→l12 and t₂₅₂: l12→l11 to t₂₇₁: l5→l11
Chain transitions t₇₂: l5→l12 and t₂₅₂: l12→l11 to t₂₇₂: l5→l11
Chain transitions t₇₃: l5→l12 and t₂₅₂: l12→l11 to t₂₇₃: l5→l11
Chain transitions t₇₀: l5→l12 and t₅₈: l12→l10 to t₂₇₄: l5→l10
Chain transitions t₇₁: l5→l12 and t₅₈: l12→l10 to t₂₇₅: l5→l10
Chain transitions t₇₂: l5→l12 and t₅₈: l12→l10 to t₂₇₆: l5→l10
Chain transitions t₇₃: l5→l12 and t₅₈: l12→l10 to t₂₇₇: l5→l10
Chain transitions t₇₈: l9→l5 and t₂₆₅: l5→l9 to t₂₇₈: l9→l9
Chain transitions t₇₅: l6→l5 and t₂₆₅: l5→l9 to t₂₇₉: l6→l9
Chain transitions t₇₅: l6→l5 and t₂₅₉: l5→l9 to t₂₈₀: l6→l9
Chain transitions t₇₈: l9→l5 and t₂₅₉: l5→l9 to t₂₈₁: l9→l9
Chain transitions t₆₉: l4→l5 and t₂₅₉: l5→l9 to t₂₈₂: l4→l9
Chain transitions t₆₉: l4→l5 and t₂₆₅: l5→l9 to t₂₈₃: l4→l9
Chain transitions t₆₉: l4→l5 and t₂₅₅: l5→l9 to t₂₈₄: l4→l9
Chain transitions t₇₅: l6→l5 and t₂₅₅: l5→l9 to t₂₈₅: l6→l9
Chain transitions t₇₈: l9→l5 and t₂₅₅: l5→l9 to t₂₈₆: l9→l9
Chain transitions t₆₉: l4→l5 and t₂₅₄: l5→l9 to t₂₈₇: l4→l9
Chain transitions t₇₅: l6→l5 and t₂₅₄: l5→l9 to t₂₈₈: l6→l9
Chain transitions t₇₈: l9→l5 and t₂₅₄: l5→l9 to t₂₈₉: l9→l9
Chain transitions t₆₉: l4→l5 and t₇₄: l5→l7 to t₂₉₀: l4→l7
Chain transitions t₇₅: l6→l5 and t₇₄: l5→l7 to t₂₉₁: l6→l7
Chain transitions t₇₈: l9→l5 and t₇₄: l5→l7 to t₂₉₂: l9→l7
Chain transitions t₆₉: l4→l5 and t₂₆₉: l5→l13 to t₂₉₃: l4→l13
Chain transitions t₇₅: l6→l5 and t₂₆₉: l5→l13 to t₂₉₄: l6→l13
Chain transitions t₇₈: l9→l5 and t₂₆₉: l5→l13 to t₂₉₅: l9→l13
Chain transitions t₆₉: l4→l5 and t₂₆₈: l5→l13 to t₂₉₆: l4→l13
Chain transitions t₇₅: l6→l5 and t₂₆₈: l5→l13 to t₂₉₇: l6→l13
Chain transitions t₇₈: l9→l5 and t₂₆₈: l5→l13 to t₂₉₈: l9→l13
Chain transitions t₆₉: l4→l5 and t₂₆₇: l5→l13 to t₂₉₉: l4→l13
Chain transitions t₇₅: l6→l5 and t₂₆₇: l5→l13 to t₃₀₀: l6→l13
Chain transitions t₇₈: l9→l5 and t₂₆₇: l5→l13 to t₃₀₁: l9→l13
Chain transitions t₆₉: l4→l5 and t₂₆₆: l5→l13 to t₃₀₂: l4→l13
Chain transitions t₇₅: l6→l5 and t₂₆₆: l5→l13 to t₃₀₃: l6→l13
Chain transitions t₇₈: l9→l5 and t₂₆₆: l5→l13 to t₃₀₄: l9→l13
Chain transitions t₆₉: l4→l5 and t₂₆₄: l5→l13 to t₃₀₅: l4→l13
Chain transitions t₇₅: l6→l5 and t₂₆₄: l5→l13 to t₃₀₆: l6→l13
Chain transitions t₇₈: l9→l5 and t₂₆₄: l5→l13 to t₃₀₇: l9→l13
Chain transitions t₆₉: l4→l5 and t₂₆₃: l5→l13 to t₃₀₈: l4→l13
Chain transitions t₇₅: l6→l5 and t₂₆₃: l5→l13 to t₃₀₉: l6→l13
Chain transitions t₇₈: l9→l5 and t₂₆₃: l5→l13 to t₃₁₀: l9→l13
Chain transitions t₆₉: l4→l5 and t₂₆₂: l5→l13 to t₃₁₁: l4→l13
Chain transitions t₇₅: l6→l5 and t₂₆₂: l5→l13 to t₃₁₂: l6→l13
Chain transitions t₇₈: l9→l5 and t₂₆₂: l5→l13 to t₃₁₃: l9→l13
Chain transitions t₆₉: l4→l5 and t₂₆₁: l5→l13 to t₃₁₄: l4→l13
Chain transitions t₇₅: l6→l5 and t₂₆₁: l5→l13 to t₃₁₅: l6→l13
Chain transitions t₇₈: l9→l5 and t₂₆₁: l5→l13 to t₃₁₆: l9→l13
Chain transitions t₆₉: l4→l5 and t₂₆₀: l5→l13 to t₃₁₇: l4→l13
Chain transitions t₇₅: l6→l5 and t₂₆₀: l5→l13 to t₃₁₈: l6→l13
Chain transitions t₇₈: l9→l5 and t₂₆₀: l5→l13 to t₃₁₉: l9→l13
Chain transitions t₆₉: l4→l5 and t₂₅₈: l5→l13 to t₃₂₀: l4→l13
Chain transitions t₇₅: l6→l5 and t₂₅₈: l5→l13 to t₃₂₁: l6→l13
Chain transitions t₇₈: l9→l5 and t₂₅₈: l5→l13 to t₃₂₂: l9→l13
Chain transitions t₆₉: l4→l5 and t₂₅₇: l5→l13 to t₃₂₃: l4→l13
Chain transitions t₇₅: l6→l5 and t₂₅₇: l5→l13 to t₃₂₄: l6→l13
Chain transitions t₇₈: l9→l5 and t₂₅₇: l5→l13 to t₃₂₅: l9→l13
Chain transitions t₆₉: l4→l5 and t₂₅₆: l5→l13 to t₃₂₆: l4→l13
Chain transitions t₇₅: l6→l5 and t₂₅₆: l5→l13 to t₃₂₇: l6→l13
Chain transitions t₇₈: l9→l5 and t₂₅₆: l5→l13 to t₃₂₈: l9→l13
Chain transitions t₆₉: l4→l5 and t₇₃: l5→l12 to t₃₂₉: l4→l12
Chain transitions t₇₅: l6→l5 and t₇₃: l5→l12 to t₃₃₀: l6→l12
Chain transitions t₇₈: l9→l5 and t₇₃: l5→l12 to t₃₃₁: l9→l12
Chain transitions t₆₉: l4→l5 and t₇₂: l5→l12 to t₃₃₂: l4→l12
Chain transitions t₇₅: l6→l5 and t₇₂: l5→l12 to t₃₃₃: l6→l12
Chain transitions t₇₈: l9→l5 and t₇₂: l5→l12 to t₃₃₄: l9→l12
Chain transitions t₆₉: l4→l5 and t₇₁: l5→l12 to t₃₃₅: l4→l12
Chain transitions t₇₅: l6→l5 and t₇₁: l5→l12 to t₃₃₆: l6→l12
Chain transitions t₇₈: l9→l5 and t₇₁: l5→l12 to t₃₃₇: l9→l12
Chain transitions t₆₉: l4→l5 and t₇₀: l5→l12 to t₃₃₈: l4→l12
Chain transitions t₇₅: l6→l5 and t₇₀: l5→l12 to t₃₃₉: l6→l12
Chain transitions t₇₈: l9→l5 and t₇₀: l5→l12 to t₃₄₀: l9→l12
Chain transitions t₆₉: l4→l5 and t₂₇₃: l5→l11 to t₃₄₁: l4→l11
Chain transitions t₇₅: l6→l5 and t₂₇₃: l5→l11 to t₃₄₂: l6→l11
Chain transitions t₇₈: l9→l5 and t₂₇₃: l5→l11 to t₃₄₃: l9→l11
Chain transitions t₆₉: l4→l5 and t₂₇₂: l5→l11 to t₃₄₄: l4→l11
Chain transitions t₇₅: l6→l5 and t₂₇₂: l5→l11 to t₃₄₅: l6→l11
Chain transitions t₇₈: l9→l5 and t₂₇₂: l5→l11 to t₃₄₆: l9→l11
Chain transitions t₆₉: l4→l5 and t₂₇₁: l5→l11 to t₃₄₇: l4→l11
Chain transitions t₇₅: l6→l5 and t₂₇₁: l5→l11 to t₃₄₈: l6→l11
Chain transitions t₇₈: l9→l5 and t₂₇₁: l5→l11 to t₃₄₉: l9→l11
Chain transitions t₆₉: l4→l5 and t₂₇₀: l5→l11 to t₃₅₀: l4→l11
Chain transitions t₇₅: l6→l5 and t₂₇₀: l5→l11 to t₃₅₁: l6→l11
Chain transitions t₇₈: l9→l5 and t₂₇₀: l5→l11 to t₃₅₂: l9→l11
Chain transitions t₆₉: l4→l5 and t₂₇₇: l5→l10 to t₃₅₃: l4→l10
Chain transitions t₇₅: l6→l5 and t₂₇₇: l5→l10 to t₃₅₄: l6→l10
Chain transitions t₇₈: l9→l5 and t₂₇₇: l5→l10 to t₃₅₅: l9→l10
Chain transitions t₆₉: l4→l5 and t₂₇₆: l5→l10 to t₃₅₆: l4→l10
Chain transitions t₇₅: l6→l5 and t₂₇₆: l5→l10 to t₃₅₇: l6→l10
Chain transitions t₇₈: l9→l5 and t₂₇₆: l5→l10 to t₃₅₈: l9→l10
Chain transitions t₆₉: l4→l5 and t₂₇₅: l5→l10 to t₃₅₉: l4→l10
Chain transitions t₇₅: l6→l5 and t₂₇₅: l5→l10 to t₃₆₀: l6→l10
Chain transitions t₇₈: l9→l5 and t₂₇₅: l5→l10 to t₃₆₁: l9→l10
Chain transitions t₆₉: l4→l5 and t₂₇₄: l5→l10 to t₃₆₂: l4→l10
Chain transitions t₇₅: l6→l5 and t₂₇₄: l5→l10 to t₃₆₃: l6→l10
Chain transitions t₇₈: l9→l5 and t₂₇₄: l5→l10 to t₃₆₄: l9→l10
Chain transitions t₇₇: l8→l6 and t₂₈₈: l6→l9 to t₃₆₅: l8→l9
Chain transitions t₇₇: l8→l6 and t₂₈₅: l6→l9 to t₃₆₆: l8→l9
Chain transitions t₇₇: l8→l6 and t₂₈₀: l6→l9 to t₃₆₇: l8→l9
Chain transitions t₇₇: l8→l6 and t₂₇₉: l6→l9 to t₃₆₈: l8→l9
Chain transitions t₇₇: l8→l6 and t₂₉₁: l6→l7 to t₃₆₉: l8→l7
Chain transitions t₇₇: l8→l6 and t₇₅: l6→l5 to t₃₇₀: l8→l5
Chain transitions t₇₇: l8→l6 and t₃₂₇: l6→l13 to t₃₇₁: l8→l13
Chain transitions t₇₇: l8→l6 and t₃₂₄: l6→l13 to t₃₇₂: l8→l13
Chain transitions t₇₇: l8→l6 and t₃₂₁: l6→l13 to t₃₇₃: l8→l13
Chain transitions t₇₇: l8→l6 and t₃₁₈: l6→l13 to t₃₇₄: l8→l13
Chain transitions t₇₇: l8→l6 and t₃₁₅: l6→l13 to t₃₇₅: l8→l13
Chain transitions t₇₇: l8→l6 and t₃₁₂: l6→l13 to t₃₇₆: l8→l13
Chain transitions t₇₇: l8→l6 and t₃₀₉: l6→l13 to t₃₇₇: l8→l13
Chain transitions t₇₇: l8→l6 and t₃₀₆: l6→l13 to t₃₇₈: l8→l13
Chain transitions t₇₇: l8→l6 and t₃₀₃: l6→l13 to t₃₇₉: l8→l13
Chain transitions t₇₇: l8→l6 and t₃₀₀: l6→l13 to t₃₈₀: l8→l13
Chain transitions t₇₇: l8→l6 and t₂₉₇: l6→l13 to t₃₈₁: l8→l13
Chain transitions t₇₇: l8→l6 and t₂₉₄: l6→l13 to t₃₈₂: l8→l13
Chain transitions t₇₇: l8→l6 and t₃₃₉: l6→l12 to t₃₈₃: l8→l12
Chain transitions t₇₇: l8→l6 and t₃₃₆: l6→l12 to t₃₈₄: l8→l12
Chain transitions t₇₇: l8→l6 and t₃₃₃: l6→l12 to t₃₈₅: l8→l12
Chain transitions t₇₇: l8→l6 and t₃₃₀: l6→l12 to t₃₈₆: l8→l12
Chain transitions t₇₇: l8→l6 and t₃₅₁: l6→l11 to t₃₈₇: l8→l11
Chain transitions t₇₇: l8→l6 and t₃₄₈: l6→l11 to t₃₈₈: l8→l11
Chain transitions t₇₇: l8→l6 and t₃₄₅: l6→l11 to t₃₈₉: l8→l11
Chain transitions t₇₇: l8→l6 and t₃₄₂: l6→l11 to t₃₉₀: l8→l11
Chain transitions t₇₇: l8→l6 and t₃₆₃: l6→l10 to t₃₉₁: l8→l10
Chain transitions t₇₇: l8→l6 and t₃₆₀: l6→l10 to t₃₉₂: l8→l10
Chain transitions t₇₇: l8→l6 and t₃₅₇: l6→l10 to t₃₉₃: l8→l10
Chain transitions t₇₇: l8→l6 and t₃₅₄: l6→l10 to t₃₉₄: l8→l10
Chain transitions t₂₉₂: l9→l7 and t₇₆: l7→l8 to t₃₉₅: l9→l8
Chain transitions t₃₆₉: l8→l7 and t₇₆: l7→l8 to t₃₉₆: l8→l8
Chain transitions t₂₉₀: l4→l7 and t₇₆: l7→l8 to t₃₉₇: l4→l8
Analysing control-flow refined program
Cut unsatisfiable transition t₂₈₄: l4→l9
Cut unsatisfiable transition t₂₈₆: l9→l9
Cut unsatisfiable transition t₃₁₁: l4→l13
Cut unsatisfiable transition t₃₁₃: l9→l13
Cut unsatisfiable transition t₃₂₆: l4→l13
Cut unsatisfiable transition t₃₂₈: l9→l13
Cut unsatisfiable transition t₃₄₄: l4→l11
Cut unsatisfiable transition t₃₄₆: l9→l11
Cut unsatisfiable transition t₃₅₆: l4→l10
Cut unsatisfiable transition t₃₅₈: l9→l10
Cut unsatisfiable transition t₃₆₆: l8→l9
Cut unsatisfiable transition t₃₆₈: l8→l9
Cut unsatisfiable transition t₃₇₁: l8→l13
Cut unsatisfiable transition t₃₇₆: l8→l13
Cut unsatisfiable transition t₃₇₇: l8→l13
Cut unsatisfiable transition t₃₇₈: l8→l13
Cut unsatisfiable transition t₃₇₉: l8→l13
Cut unsatisfiable transition t₃₈₃: l8→l12
Cut unsatisfiable transition t₃₈₇: l8→l11
Cut unsatisfiable transition t₃₈₉: l8→l11
Cut unsatisfiable transition t₃₉₁: l8→l10
Cut unsatisfiable transition t₃₉₃: l8→l10
Eliminate variables {X₉} that do not contribute to the problem
Found invariant 1+X₉ ≤ X₁₃ ∧ 1+X₉ ≤ X₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 2 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₃+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 0 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₃+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₃ ∧ 4 ≤ X₁+X₁₃ ∧ X₁ ≤ X₁₃ ∧ 2 ≤ X₁ for location l11
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 0 ≤ X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₃ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l6
Found invariant X₅ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₁ ≤ X₁₃ for location l15
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₃ for location l12
Found invariant 0 ≤ X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₃ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l7
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₃ for location l5
Found invariant X₅ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₁ ≤ X₁₃ for location l13
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ 0 ≤ X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₃ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location l8
Found invariant 0 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₃+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₃ ∧ 4 ≤ X₁+X₁₃ ∧ X₁ ≤ X₁₃ ∧ 2 ≤ X₁ for location l10
Found invariant X₅ ≤ X₀ ∧ X₁₀ ≤ X₃ ∧ X₁ ≤ X₁₃ for location l16
Found invariant 1+X₉ ≤ X₁₃ ∧ 1+X₉ ≤ X₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 2 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₃+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 0 ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ X₂ ≤ 1+X₆ ∧ 2 ≤ X₁₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₃+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₃ ∧ 4 ≤ X₁+X₁₃ ∧ X₁ ≤ X₁₃ ∧ 2 ≤ X₁ for location l9
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₀ ≤ X₃ ∧ X₁ ≤ X₁₃ for location l14
Analysing control-flow refined program
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₄ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₄+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₄ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₄+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ for location l15
Found invariant X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ for location l12
Found invariant X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ for location l5
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ for location l13
Found invariant X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 2 ≤ X₁ for location l10
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ for location l16
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ for location l14
knowledge_propagation leads to new time bound X₁₄ {O(n)} for transition t₇₆₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₆₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₁₄ ≤ X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₆₆: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ X₅ ∧ X₁₄ ≤ X₁ ∧ X₅ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁₄ {O(n)} for transition t₇₆₇: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁ ≤ X₁₄ ∧ 1 ≤ X₁ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁₄ {O(n)} for transition t₇₆₉: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l6___1(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg14_P) :|: 1+X₁ ≤ X₁₄ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg14_P ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₀+1 ≤ X₈ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₄ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₄+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₇₁: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l6___8(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg14_P) :|: X₀+1 ≤ X₈ ∧ X₁₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg14_P ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₀+1 ≤ X₈ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁₄ {O(n)} for transition t₇₆₃: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁ ≤ X₁₄ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₄ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₄+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₆₅: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀+1 ≤ X₈ ∧ X₁₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₈ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
MPRF for transition t₇₆₂: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 ≤ X₀ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 4 ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:
new bound:
6⋅X₁₄⋅X₁₄+28⋅X₁₄+4 {O(n^2)}
MPRF for transition t₇₆₄: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ X₀+1 ≤ X₈ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 4 ∧ X₁ ≤ X₁₄ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:
new bound:
10⋅X₁₄+2 {O(n)}
MPRF for transition t₇₆₈: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:
new bound:
6⋅X₁₄⋅X₁₄+26⋅X₁₄+8 {O(n^2)}
MPRF for transition t₇₇₀: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l6___4(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg14_P) :|: 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg14_P ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₀+1 ≤ X₈ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₄ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ of depth 1:
new bound:
20⋅X₁₄+10 {O(n)}
MPRF for transition t₇₈₀: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:
new bound:
10⋅X₁₄+8 {O(n)}
MPRF for transition t₇₈₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:
new bound:
6⋅X₁₄+2 {O(n)}
MPRF for transition t₇₈₂: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ of depth 1:
new bound:
27⋅X₁₄+7 {O(n)}
knowledge_propagation leads to new time bound 11⋅X₁₄+3 {O(n)} for transition t₇₆₂: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 ≤ X₀ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 4 ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound 11⋅X₁₄+3 {O(n)} for transition t₇₆₈: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
CFR: Improvement to new bound with the following program:
new bound:
Infinite
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: Arg14_P, Arg5_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l9, n_l5___7, n_l6___1, n_l6___4, n_l6___8, n_l7___10, n_l7___3, n_l7___6, n_l8___2, n_l8___5, n_l8___9
Transitions:
t₅₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₅₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₅₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 2 ≤ X₁
t₅₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
t₅₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₅₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₆₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₆₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₆₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < (X₄)² ∧ 0 < X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: (X₄)² ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ ≤ 0 ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₅: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, 5⋅X₃+(X₁₃)², 2⋅X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₆₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₆₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₅, X₁₄, X₆, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₇₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₆₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₁₄ ≤ X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₆₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
t₇₈₀: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₇₈₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₇₈₂: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₇₆₂: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 ≤ X₀ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 4 ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₇₆₃: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁ ≤ X₁₄ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₄ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₄+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₆₄: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ X₀+1 ≤ X₈ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 4 ∧ X₁ ≤ X₁₄ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₇₆₅: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀+1 ≤ X₈ ∧ X₁₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₈ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₆₆: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ X₅ ∧ X₁₄ ≤ X₁ ∧ X₅ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₆₇: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁ ≤ X₁₄ ∧ 1 ≤ X₁ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₆₈: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₇₆₉: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l6___1(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg14_P) :|: 1+X₁ ≤ X₁₄ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg14_P ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₀+1 ≤ X₈ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₄ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₄+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₇₀: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l6___4(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg14_P) :|: 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg14_P ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₀+1 ≤ X₈ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₄ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₇₇₁: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l6___8(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg14_P) :|: X₀+1 ≤ X₈ ∧ X₁₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg14_P ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₀+1 ≤ X₈ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
CFR: Improvement to new bound with the following program:
new bound:
107⋅X₁₄+46 {O(n)}
cfr-program:
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄
Temp_Vars: Arg14_P, Arg5_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l9, n_l5___7, n_l6___1, n_l6___4, n_l6___8, n_l7___10, n_l7___3, n_l7___6, n_l8___2, n_l8___5, n_l8___9
Transitions:
t₅₄: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₅₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l4(X₀, X₁, X₂, X₃, X₄, X₅, nondef.1, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₅₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁-1, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 2 ≤ X₁
t₅₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
t₅₈: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 < X₁ ∧ X₂ ≤ 1 ∧ 1 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₅₉: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₆₀: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₆₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, X₁₁, X₁₂, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₆₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ < (X₄)² ∧ 0 < X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: (X₄)² ≤ X₃ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₄: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₃ ≤ 0 ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₅: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l13(X₀, X₁, X₂, 5⋅X₃+(X₁₃)², 2⋅X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄
t₆₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₆₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l1(X₀, X₁, X₂, X₃, X₄, nondef.0, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₆₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₅, X₁₄, X₆, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄)
t₇₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ < 1 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₆₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l7___10(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀ ≤ X₅ ∧ X₂ ≤ X₆ ∧ X₆ ≤ X₂ ∧ X₁₄ ≤ X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₆₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l7___3(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₂ ≤ X₇ ∧ X₇ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄
t₇₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l5(X₀, X₁₀, X₇, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁
t₇₈₀: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 3 < X₀ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₇₈₁: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₂ < 0 ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₇₈₂: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 0 < X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₇₆₂: n_l5___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l7___6(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 ≤ X₀ ∧ X₂ ≤ X₉ ∧ X₉ ≤ X₂ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ 2 ≤ X₀ ∧ X₀ ≤ 4 ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀
t₇₆₃: n_l6___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁ ≤ X₁₄ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₄ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₄+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₆₄: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ X₀+1 ≤ X₈ ∧ X₀+1 ≤ X₈ ∧ X₈ ≤ 4 ∧ X₁ ≤ X₁₄ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₇₆₅: n_l6___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l5___7(X₀+1, X₁, X₉, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: X₀+1 ≤ X₈ ∧ X₁₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀+1 ≤ X₈ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₆₆: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___9(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1 ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₀ ≤ X₅ ∧ X₁₄ ≤ X₁ ∧ X₅ ≤ 3 ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₆₇: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___2(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 1+X₁ ≤ X₁₄ ∧ 1 ≤ X₁ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₆₈: n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l8___5(X₀, X₁, 0, X₃, X₄, X₅, X₆, X₇, X₀+1, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) :|: 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₀ ≤ X₈ ∧ X₈ ≤ X₀ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₄ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₇₆₉: n_l8___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l6___1(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg14_P) :|: 1+X₁ ≤ X₁₄ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ X₁₀ ≤ X₁ ∧ X₀+1 ≤ X₈ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg14_P ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₀+1 ≤ X₈ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₈ ≤ 4 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 1+X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₄ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₄+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
t₇₇₀: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l6___4(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg14_P) :|: 2 ≤ X₀ ∧ 1+X₅ ≤ X₀ ∧ X₀+1 ≤ X₈ ∧ X₉ ≤ 0 ∧ 0 ≤ X₉ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg14_P ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₀+1 ≤ X₈ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀ ≤ 3 ∧ X₁ ≤ X₁₄ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀
t₇₇₁: n_l8___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄) → n_l6___8(X₀, X₁, 0, X₃, X₄, Arg5_P, X₆, X₇, X₀+1, NoDet0, X₁₀, X₁₁, X₁₂, X₁₃, Arg14_P) :|: X₀+1 ≤ X₈ ∧ X₁₄ ≤ X₁ ∧ X₀ ≤ X₅ ∧ X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ Arg5_P ≤ X₀ ∧ X₁ ≤ Arg14_P ∧ X₁₄ ≤ Arg14_P ∧ Arg14_P ≤ X₁₄ ∧ X₀+1 ≤ X₈ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₁ ≤ X₁₄ ∧ X₅ ≤ X₀ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ ∧ X₈ ≤ 1+X₀ ∧ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀
TWN: t₆₂: l13→l14
cycle: [t₆₂: l13→l14; t₆₅: l14→l13]
loop: (X₃ < (X₄)² ∧ 0 < X₃,(X₃,X₄,X₁₃) -> (5⋅X₃+(X₁₃)²,2⋅X₄,X₁₃)
order: [X₁₃; X₃; X₄]
closed-form:
X₁₃: X₁₃
X₃: X₃ * 5^n + [[n != 0]] * 1/4⋅(X₁₃)² * 5^n + [[n != 0]] * -1/4⋅(X₁₃)²
X₄: X₄ * 2^n
Termination: true
Formula:
0 < 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² < 0
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)²
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < (X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0
∨ (X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₃+(X₁₃)² < 0
∨ (X₁₃)² < 0 ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0
Stabilization-Threshold for: 0 < X₃
alphas_abs: (X₁₃)²
M: 0
N: 1
Bound: 2⋅X₁₃⋅X₁₃+2 {O(n^2)}
Stabilization-Threshold for: X₃ < (X₄)²
alphas_abs: 4⋅(X₄)²+(X₁₃)²
M: 11
N: 1
Bound: 2⋅X₁₃⋅X₁₃+8⋅X₄⋅X₄+12 {O(n^2)}
loop: (X₃ < (X₄)² ∧ 0 < X₃,(X₃,X₄,X₁₃) -> (5⋅X₃+(X₁₃)²,2⋅X₄,X₁₃)
order: [X₁₃; X₃; X₄]
closed-form:
X₁₃: X₁₃
X₃: X₃ * 5^n + [[n != 0]] * 1/4⋅(X₁₃)² * 5^n + [[n != 0]] * -1/4⋅(X₁₃)²
X₄: X₄ * 2^n
Termination: true
Formula:
0 < 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² < 0
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)²
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < (X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0
∨ (X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₃+(X₁₃)² < 0
∨ (X₁₃)² < 0 ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0
Stabilization-Threshold for: 0 < X₃
alphas_abs: (X₁₃)²
M: 0
N: 1
Bound: 2⋅X₁₃⋅X₁₃+2 {O(n^2)}
Stabilization-Threshold for: X₃ < (X₄)²
alphas_abs: 4⋅(X₄)²+(X₁₃)²
M: 11
N: 1
Bound: 2⋅X₁₃⋅X₁₃+8⋅X₄⋅X₄+12 {O(n^2)}
loop: (X₃ < (X₄)² ∧ 0 < X₃,(X₃,X₄,X₁₃) -> (5⋅X₃+(X₁₃)²,2⋅X₄,X₁₃)
order: [X₁₃; X₃; X₄]
closed-form:
X₁₃: X₁₃
X₃: X₃ * 5^n + [[n != 0]] * 1/4⋅(X₁₃)² * 5^n + [[n != 0]] * -1/4⋅(X₁₃)²
X₄: X₄ * 2^n
Termination: true
Formula:
0 < 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² < 0
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)²
∨ 0 < 4⋅X₃+(X₁₃)² ∧ 0 < (X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0
∨ (X₁₃)² < 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 4⋅X₃+(X₁₃)² < 0
∨ (X₁₃)² < 0 ∧ 0 < 4⋅(X₄)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 4⋅X₃+(X₁₃)² ≤ 0 ∧ 0 ≤ 4⋅X₃+(X₁₃)² ∧ 0 ≤ 4⋅(X₄)² ∧ 4⋅(X₄)² ≤ 0
Stabilization-Threshold for: 0 < X₃
alphas_abs: (X₁₃)²
M: 0
N: 1
Bound: 2⋅X₁₃⋅X₁₃+2 {O(n^2)}
Stabilization-Threshold for: X₃ < (X₄)²
alphas_abs: 4⋅(X₄)²+(X₁₃)²
M: 11
N: 1
Bound: 2⋅X₁₃⋅X₁₃+8⋅X₄⋅X₄+12 {O(n^2)}
TWN - Lifting for t₆₂: l13→l14 of 4⋅X₁₃⋅X₁₃+8⋅X₄⋅X₄+16 {O(n^2)}
relevant size-bounds w.r.t. t₆₁:
X₄: 7⋅X₁₂ {O(n)}
X₁₃: 7⋅X₁₃ {O(n)}
Runtime-bound of t₆₁: 1 {O(1)}
Results in: 196⋅X₁₃⋅X₁₃+392⋅X₁₂⋅X₁₂+16 {O(n^2)}
TWN - Lifting for t₆₂: l13→l14 of 4⋅X₁₃⋅X₁₃+8⋅X₄⋅X₄+16 {O(n^2)}
relevant size-bounds w.r.t. t₆₀:
X₄: 5⋅X₁₂ {O(n)}
X₁₃: 5⋅X₁₃ {O(n)}
Runtime-bound of t₆₀: 1 {O(1)}
Results in: 100⋅X₁₃⋅X₁₃+200⋅X₁₂⋅X₁₂+16 {O(n^2)}
TWN - Lifting for t₆₂: l13→l14 of 4⋅X₁₃⋅X₁₃+8⋅X₄⋅X₄+16 {O(n^2)}
relevant size-bounds w.r.t. t₅₉:
X₄: 6⋅X₁₂ {O(n)}
X₁₃: 6⋅X₁₃ {O(n)}
Runtime-bound of t₅₉: 1 {O(1)}
Results in: 144⋅X₁₃⋅X₁₃+288⋅X₁₂⋅X₁₂+16 {O(n^2)}
TWN: t₆₅: l14→l13
TWN - Lifting for t₆₅: l14→l13 of 4⋅X₁₃⋅X₁₃+8⋅X₄⋅X₄+16 {O(n^2)}
relevant size-bounds w.r.t. t₆₁:
X₄: 7⋅X₁₂ {O(n)}
X₁₃: 7⋅X₁₃ {O(n)}
Runtime-bound of t₆₁: 1 {O(1)}
Results in: 196⋅X₁₃⋅X₁₃+392⋅X₁₂⋅X₁₂+16 {O(n^2)}
TWN - Lifting for t₆₅: l14→l13 of 4⋅X₁₃⋅X₁₃+8⋅X₄⋅X₄+16 {O(n^2)}
relevant size-bounds w.r.t. t₆₀:
X₄: 5⋅X₁₂ {O(n)}
X₁₃: 5⋅X₁₃ {O(n)}
Runtime-bound of t₆₀: 1 {O(1)}
Results in: 100⋅X₁₃⋅X₁₃+200⋅X₁₂⋅X₁₂+16 {O(n^2)}
TWN - Lifting for t₆₅: l14→l13 of 4⋅X₁₃⋅X₁₃+8⋅X₄⋅X₄+16 {O(n^2)}
relevant size-bounds w.r.t. t₅₉:
X₄: 6⋅X₁₂ {O(n)}
X₁₃: 6⋅X₁₃ {O(n)}
Runtime-bound of t₅₉: 1 {O(1)}
Results in: 144⋅X₁₃⋅X₁₃+288⋅X₁₂⋅X₁₂+16 {O(n^2)}
Chain transitions t₆₅: l14→l13 and t₆₄: l13→l15 to t₉₉₁: l14→l15
Chain transitions t₆₁: l12→l13 and t₆₄: l13→l15 to t₉₉₂: l12→l15
Chain transitions t₆₁: l12→l13 and t₆₃: l13→l15 to t₉₉₃: l12→l15
Chain transitions t₆₅: l14→l13 and t₆₃: l13→l15 to t₉₉₄: l14→l15
Chain transitions t₆₀: l12→l13 and t₆₃: l13→l15 to t₉₉₅: l12→l15
Chain transitions t₆₀: l12→l13 and t₆₄: l13→l15 to t₉₉₆: l12→l15
Chain transitions t₆₀: l12→l13 and t₆₂: l13→l14 to t₉₉₇: l12→l14
Chain transitions t₆₁: l12→l13 and t₆₂: l13→l14 to t₉₉₈: l12→l14
Chain transitions t₆₅: l14→l13 and t₆₂: l13→l14 to t₉₉₉: l14→l14
Chain transitions t₅₉: l12→l13 and t₆₂: l13→l14 to t₁₀₀₀: l12→l14
Chain transitions t₅₉: l12→l13 and t₆₃: l13→l15 to t₁₀₀₁: l12→l15
Chain transitions t₅₉: l12→l13 and t₆₄: l13→l15 to t₁₀₀₂: l12→l15
Analysing control-flow refined program
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₄ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₄+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₄ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₄+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ for location l15
Found invariant X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₄ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₄+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₄ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₄+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 3 ≤ X₁+X₁₄ ∧ 1+X₁ ≤ X₁₄ ∧ 3 ≤ X₀+X₁₄ ∧ X₀ ≤ 1+X₁₄ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ for location l12
Found invariant X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₄ for location l5
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ for location l13
Found invariant X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₄ ≤ X₁ ∧ X₁ ≤ X₁₄ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 2 ≤ X₁ for location l10
Found invariant X₅ ≤ X₀ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ for location l16
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₄ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₄+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₄ ∧ 3 ≤ X₁₀+X₁₄ ∧ 1+X₁₀ ≤ X₁₄ ∧ 4 ≤ X₁+X₁₄ ∧ X₁ ≤ X₁₄ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₄ ∧ 1 ≤ X₁₁ for location l14
TWN: t₉₉₉: l14→l14
cycle: [t₉₉₉: l14→l14]
loop: (5⋅X₃+(X₁₃)² < 4⋅(X₄)² ∧ 0 < 5⋅X₃+(X₁₃)²,(X₃,X₄,X₁₃) -> (5⋅X₃+(X₁₃)²,2⋅X₄,X₁₃)
order: [X₁₃; X₃; X₄]
closed-form:
X₁₃: X₁₃
X₃: X₃ * 5^n + [[n != 0]] * 1/4⋅(X₁₃)² * 5^n + [[n != 0]] * -1/4⋅(X₁₃)²
X₄: X₄ * 2^n
Termination: true
Formula:
0 < 20⋅X₃+5⋅(X₁₃)² ∧ 20⋅X₃+5⋅(X₁₃)² < 0
∨ 0 < 20⋅X₃+5⋅(X₁₃)² ∧ 0 < 16⋅(X₄)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)²
∨ 0 < 20⋅X₃+5⋅(X₁₃)² ∧ 0 < (X₁₃)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)² ∧ 0 ≤ 16⋅(X₄)² ∧ 16⋅(X₄)² ≤ 0
∨ (X₁₃)² < 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 20⋅X₃+5⋅(X₁₃)² < 0
∨ (X₁₃)² < 0 ∧ 0 < 16⋅(X₄)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)² ∧ 0 ≤ 16⋅(X₄)² ∧ 16⋅(X₄)² ≤ 0
Stabilization-Threshold for: 0 < 5⋅X₃+(X₁₃)²
alphas_abs: (X₁₃)²
M: 0
N: 1
Bound: 2⋅X₁₃⋅X₁₃+2 {O(n^2)}
Stabilization-Threshold for: 5⋅X₃+(X₁₃)² < 4⋅(X₄)²
alphas_abs: 16⋅(X₄)²+(X₁₃)²
M: 11
N: 1
Bound: 2⋅X₁₃⋅X₁₃+32⋅X₄⋅X₄+12 {O(n^2)}
loop: (5⋅X₃+(X₁₃)² < 4⋅(X₄)² ∧ 0 < 5⋅X₃+(X₁₃)²,(X₃,X₄,X₁₃) -> (5⋅X₃+(X₁₃)²,2⋅X₄,X₁₃)
order: [X₁₃; X₃; X₄]
closed-form:
X₁₃: X₁₃
X₃: X₃ * 5^n + [[n != 0]] * 1/4⋅(X₁₃)² * 5^n + [[n != 0]] * -1/4⋅(X₁₃)²
X₄: X₄ * 2^n
Termination: true
Formula:
0 < 20⋅X₃+5⋅(X₁₃)² ∧ 20⋅X₃+5⋅(X₁₃)² < 0
∨ 0 < 20⋅X₃+5⋅(X₁₃)² ∧ 0 < 16⋅(X₄)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)²
∨ 0 < 20⋅X₃+5⋅(X₁₃)² ∧ 0 < (X₁₃)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)² ∧ 0 ≤ 16⋅(X₄)² ∧ 16⋅(X₄)² ≤ 0
∨ (X₁₃)² < 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 20⋅X₃+5⋅(X₁₃)² < 0
∨ (X₁₃)² < 0 ∧ 0 < 16⋅(X₄)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)² ∧ 0 ≤ 16⋅(X₄)² ∧ 16⋅(X₄)² ≤ 0
Stabilization-Threshold for: 0 < 5⋅X₃+(X₁₃)²
alphas_abs: (X₁₃)²
M: 0
N: 1
Bound: 2⋅X₁₃⋅X₁₃+2 {O(n^2)}
Stabilization-Threshold for: 5⋅X₃+(X₁₃)² < 4⋅(X₄)²
alphas_abs: 16⋅(X₄)²+(X₁₃)²
M: 11
N: 1
Bound: 2⋅X₁₃⋅X₁₃+32⋅X₄⋅X₄+12 {O(n^2)}
loop: (5⋅X₃+(X₁₃)² < 4⋅(X₄)² ∧ 0 < 5⋅X₃+(X₁₃)²,(X₃,X₄,X₁₃) -> (5⋅X₃+(X₁₃)²,2⋅X₄,X₁₃)
order: [X₁₃; X₃; X₄]
closed-form:
X₁₃: X₁₃
X₃: X₃ * 5^n + [[n != 0]] * 1/4⋅(X₁₃)² * 5^n + [[n != 0]] * -1/4⋅(X₁₃)²
X₄: X₄ * 2^n
Termination: true
Formula:
0 < 20⋅X₃+5⋅(X₁₃)² ∧ 20⋅X₃+5⋅(X₁₃)² < 0
∨ 0 < 20⋅X₃+5⋅(X₁₃)² ∧ 0 < 16⋅(X₄)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)²
∨ 0 < 20⋅X₃+5⋅(X₁₃)² ∧ 0 < (X₁₃)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)² ∧ 0 ≤ 16⋅(X₄)² ∧ 16⋅(X₄)² ≤ 0
∨ (X₁₃)² < 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 20⋅X₃+5⋅(X₁₃)² < 0
∨ (X₁₃)² < 0 ∧ 0 < 16⋅(X₄)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)²
∨ (X₁₃)² < 0 ∧ 0 < (X₁₃)² ∧ 20⋅X₃+5⋅(X₁₃)² ≤ 0 ∧ 0 ≤ 20⋅X₃+5⋅(X₁₃)² ∧ 0 ≤ 16⋅(X₄)² ∧ 16⋅(X₄)² ≤ 0
Stabilization-Threshold for: 0 < 5⋅X₃+(X₁₃)²
alphas_abs: (X₁₃)²
M: 0
N: 1
Bound: 2⋅X₁₃⋅X₁₃+2 {O(n^2)}
Stabilization-Threshold for: 5⋅X₃+(X₁₃)² < 4⋅(X₄)²
alphas_abs: 16⋅(X₄)²+(X₁₃)²
M: 11
N: 1
Bound: 2⋅X₁₃⋅X₁₃+32⋅X₄⋅X₄+12 {O(n^2)}
TWN - Lifting for t₉₉₉: l14→l14 of 32⋅X₄⋅X₄+4⋅X₁₃⋅X₁₃+16 {O(n^2)}
relevant size-bounds w.r.t. t₁₀₀₀:
X₄: 14⋅X₁₂ {O(n)}
X₁₃: 14⋅X₁₃ {O(n)}
Runtime-bound of t₁₀₀₀: 1 {O(1)}
Results in: 6272⋅X₁₂⋅X₁₂+784⋅X₁₃⋅X₁₃+16 {O(n^2)}
TWN - Lifting for t₉₉₉: l14→l14 of 32⋅X₄⋅X₄+4⋅X₁₃⋅X₁₃+16 {O(n^2)}
relevant size-bounds w.r.t. t₉₉₈:
X₄: 7⋅X₁₂ {O(n)}
X₁₃: 7⋅X₁₃ {O(n)}
Runtime-bound of t₉₉₈: 1 {O(1)}
Results in: 1568⋅X₁₂⋅X₁₂+196⋅X₁₃⋅X₁₃+16 {O(n^2)}
TWN - Lifting for t₉₉₉: l14→l14 of 32⋅X₄⋅X₄+4⋅X₁₃⋅X₁₃+16 {O(n^2)}
relevant size-bounds w.r.t. t₉₉₇:
X₄: 11⋅X₁₂ {O(n)}
X₁₃: 11⋅X₁₃ {O(n)}
Runtime-bound of t₉₉₇: 1 {O(1)}
Results in: 3872⋅X₁₂⋅X₁₂+484⋅X₁₃⋅X₁₃+16 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Eliminate variables {X₁₃} that do not contribute to the problem
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₃ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₃+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₃ ∧ 3 ≤ X₁₀+X₁₃ ∧ 1+X₁₀ ≤ X₁₃ ∧ 4 ≤ X₁+X₁₃ ∧ X₁ ≤ X₁₃ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l11
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₃ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₃+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₃ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₃+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₃ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₃+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₃ ∧ 3 ≤ X₁₀+X₁₃ ∧ 1+X₁₀ ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 1+X₁ ≤ X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ X₀ ≤ 1+X₁₃ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___1
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₇ ∧ X₇+X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 2+X₁₃ ∧ X₈ ≤ 3+X₁₀ ∧ X₈ ≤ 3+X₁ ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ 2+X₇ ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₁₃+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₃ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₃+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₃ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₃+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₃ ∧ 3 ≤ X₁₀+X₁₃ ∧ 1+X₁₀ ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 1+X₁ ≤ X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ X₀ ≤ 1+X₁₃ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___2
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₃ ∧ 1 ≤ X₁₁ for location n_l13___2
Found invariant X₅ ≤ X₀ ∧ X₄ ≤ X₁₂ ∧ X₁₂ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ X₁₃ ∧ 1 ≤ X₁₁ ∧ X₁ ≤ X₁₁ ∧ X₁ ≤ 1 for location n_l14___3
Found invariant X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₃ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l6___4
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₃ for location l15
Found invariant X₉ ≤ 0 ∧ 3+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 4 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ X₈ ≤ 4+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 6 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 3 ≤ X₈ ∧ 2+X₅ ≤ X₈ ∧ 3 ≤ X₂+X₈ ∧ 3+X₂ ≤ X₈ ∧ 5 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₃ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l8___5
Found invariant X₇ ≤ 0 ∧ X₅+X₇ ≤ 3 ∧ X₇ ≤ X₂ ∧ X₂+X₇ ≤ 0 ∧ 2+X₇ ≤ X₁₃ ∧ 1+X₇ ≤ X₁₀ ∧ 1+X₇ ≤ X₁ ∧ 1+X₇ ≤ X₀ ∧ X₀+X₇ ≤ 3 ∧ 0 ≤ X₇ ∧ X₅ ≤ 3+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₃+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₀ ≤ 3+X₇ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ 1+X₁₃ ∧ X₅ ≤ 2+X₁₀ ∧ X₅ ≤ 2+X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₃+X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ 2 ≤ X₁₃ ∧ 3 ≤ X₁₀+X₁₃ ∧ 1+X₁₀ ≤ X₁₃ ∧ 3 ≤ X₁+X₁₃ ∧ 1+X₁ ≤ X₁₃ ∧ 3 ≤ X₀+X₁₃ ∧ X₀ ≤ 1+X₁₃ ∧ X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ X₀ ≤ 2+X₁₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ 2+X₁ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___3
Found invariant X₉ ≤ 0 ∧ 2+X₉ ≤ X₈ ∧ X₈+X₉ ≤ 3 ∧ X₅+X₉ ≤ 2 ∧ X₉ ≤ X₂ ∧ X₂+X₉ ≤ 0 ∧ 2+X₉ ≤ X₀ ∧ X₀+X₉ ≤ 3 ∧ 0 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ 3+X₉ ∧ X₅ ≤ 2+X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ 3+X₉ ∧ X₈ ≤ 3 ∧ X₅+X₈ ≤ 5 ∧ X₈ ≤ 3+X₂ ∧ X₂+X₈ ≤ 3 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 6 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 2 ∧ X₅ ≤ 2+X₂ ∧ X₂+X₅ ≤ 2 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 5 ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁ ≤ X₁₃ ∧ X₀ ≤ 3 ∧ 2 ≤ X₀ for location n_l7___6
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₃ for location l12
Found invariant X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₃ ≤ X₁ ∧ X₁ ≤ X₁₃ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₃ ≤ X₁ ∧ X₁ ≤ X₁₃ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l8___9
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₃ for location l5
Found invariant X₅ ≤ X₀ ∧ X₄ ≤ X₁₂ ∧ X₁₂ ≤ X₄ ∧ X₃ ≤ X₁₁ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₃ for location l13
Found invariant X₉ ≤ X₂ ∧ X₂ ≤ X₉ ∧ X₈ ≤ 4 ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ X₀ ∧ X₀+X₈ ≤ 8 ∧ 2 ≤ X₈ ∧ 1+X₅ ≤ X₈ ∧ 4 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ X₅ ≤ 3 ∧ 1+X₅ ≤ X₀ ∧ X₀+X₅ ≤ 7 ∧ X₁ ≤ X₁₃ ∧ X₀ ≤ 4 ∧ 2 ≤ X₀ for location n_l5___7
Found invariant X₈ ≤ 4 ∧ X₈ ≤ 4+X₆ ∧ X₆+X₈ ≤ 4 ∧ X₈ ≤ 1+X₅ ∧ X₅+X₈ ≤ 7 ∧ X₈ ≤ 4+X₂ ∧ X₂+X₈ ≤ 4 ∧ X₈ ≤ 1+X₀ ∧ X₀+X₈ ≤ 7 ∧ 2 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 2+X₆ ≤ X₈ ∧ 3 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₂+X₈ ∧ 2+X₂ ≤ X₈ ∧ 3 ≤ X₀+X₈ ∧ 1+X₀ ≤ X₈ ∧ X₆ ≤ 0 ∧ 1+X₆ ≤ X₅ ∧ X₅+X₆ ≤ 3 ∧ X₆ ≤ X₂ ∧ X₂+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ X₀+X₆ ≤ 3 ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 3+X₆ ∧ 0 ≤ X₂+X₆ ∧ X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ 3+X₆ ∧ X₅ ≤ 3 ∧ X₅ ≤ 3+X₂ ∧ X₂+X₅ ≤ 3 ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 6 ∧ 1 ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ X₀+X₂ ≤ 3 ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 3+X₂ ∧ X₁₃ ≤ X₁ ∧ X₁ ≤ X₁₃ ∧ X₀ ≤ 3 ∧ 1 ≤ X₀ for location n_l6___8
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₃ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₃+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₃ ∧ 4 ≤ X₁+X₁₃ ∧ X₁ ≤ X₁₃ ∧ 2 ≤ X₁ for location l10
Found invariant X₅ ≤ X₀ ∧ X₁ ≤ X₁₃ for location l16
Found invariant X₅ ≤ X₀ ∧ X₂ ≤ 1 ∧ 1+X₂ ≤ X₁₃ ∧ X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₃+X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₃ ∧ 3 ≤ X₁₀+X₁₃ ∧ 1+X₁₀ ≤ X₁₃ ∧ 4 ≤ X₁+X₁₃ ∧ X₁ ≤ X₁₃ ∧ 1+X₁₀ ≤ X₁ ∧ 1 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ 1+X₁₀ ∧ 2 ≤ X₁ for location l9
Found invariant X₅ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁₁+X₃ ∧ X₁₁ ≤ X₃ ∧ X₁ ≤ X₁₃ ∧ 1 ≤ X₁₁ for location n_l14___1
All Bounds
Timebounds
Overall timebound:1760⋅X₁₂⋅X₁₂+880⋅X₁₃⋅X₁₃+107⋅X₁₄+153 {O(n^2)}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: X₁₄+1 {O(n)}
t₅₇: X₁₄+1 {O(n)}
t₅₈: X₁₄+1 {O(n)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 440⋅X₁₃⋅X₁₃+880⋅X₁₂⋅X₁₂+48 {O(n^2)}
t₆₃: 1 {O(1)}
t₆₄: 1 {O(1)}
t₆₅: 440⋅X₁₃⋅X₁₃+880⋅X₁₂⋅X₁₂+48 {O(n^2)}
t₆₆: 1 {O(1)}
t₆₇: 1 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: 1 {O(1)}
t₇₀: X₁₄+1 {O(n)}
t₇₁: X₁₄+1 {O(n)}
t₇₂: X₁₄+1 {O(n)}
t₇₃: X₁₄+1 {O(n)}
t₇₈: X₁₄ {O(n)}
t₇₆₀: X₁₄ {O(n)}
t₇₆₁: 1 {O(1)}
t₇₆₂: 11⋅X₁₄+3 {O(n)}
t₇₆₃: X₁₄ {O(n)}
t₇₆₄: 10⋅X₁₄+2 {O(n)}
t₇₆₅: 1 {O(1)}
t₇₆₆: 1 {O(1)}
t₇₆₇: X₁₄ {O(n)}
t₇₆₈: 11⋅X₁₄+3 {O(n)}
t₇₆₉: X₁₄ {O(n)}
t₇₇₀: 20⋅X₁₄+10 {O(n)}
t₇₇₁: 1 {O(1)}
t₇₈₀: 10⋅X₁₄+8 {O(n)}
t₇₈₁: 6⋅X₁₄+2 {O(n)}
t₇₈₂: 27⋅X₁₄+7 {O(n)}
Costbounds
Overall costbound: 1760⋅X₁₂⋅X₁₂+880⋅X₁₃⋅X₁₃+107⋅X₁₄+153 {O(n^2)}
t₅₄: 1 {O(1)}
t₅₅: 1 {O(1)}
t₅₆: X₁₄+1 {O(n)}
t₅₇: X₁₄+1 {O(n)}
t₅₈: X₁₄+1 {O(n)}
t₅₉: 1 {O(1)}
t₆₀: 1 {O(1)}
t₆₁: 1 {O(1)}
t₆₂: 440⋅X₁₃⋅X₁₃+880⋅X₁₂⋅X₁₂+48 {O(n^2)}
t₆₃: 1 {O(1)}
t₆₄: 1 {O(1)}
t₆₅: 440⋅X₁₃⋅X₁₃+880⋅X₁₂⋅X₁₂+48 {O(n^2)}
t₆₆: 1 {O(1)}
t₆₇: 1 {O(1)}
t₆₈: 1 {O(1)}
t₆₉: 1 {O(1)}
t₇₀: X₁₄+1 {O(n)}
t₇₁: X₁₄+1 {O(n)}
t₇₂: X₁₄+1 {O(n)}
t₇₃: X₁₄+1 {O(n)}
t₇₈: X₁₄ {O(n)}
t₇₆₀: X₁₄ {O(n)}
t₇₆₁: 1 {O(1)}
t₇₆₂: 11⋅X₁₄+3 {O(n)}
t₇₆₃: X₁₄ {O(n)}
t₇₆₄: 10⋅X₁₄+2 {O(n)}
t₇₆₅: 1 {O(1)}
t₇₆₆: 1 {O(1)}
t₇₆₇: X₁₄ {O(n)}
t₇₆₈: 11⋅X₁₄+3 {O(n)}
t₇₆₉: X₁₄ {O(n)}
t₇₇₀: 20⋅X₁₄+10 {O(n)}
t₇₇₁: 1 {O(1)}
t₇₈₀: 10⋅X₁₄+8 {O(n)}
t₇₈₁: 6⋅X₁₄+2 {O(n)}
t₇₈₂: 27⋅X₁₄+7 {O(n)}
Sizebounds
t₅₄, X₀: X₀ {O(n)}
t₅₄, X₁: X₁ {O(n)}
t₅₄, X₂: X₂ {O(n)}
t₅₄, X₃: X₃ {O(n)}
t₅₄, X₄: X₄ {O(n)}
t₅₄, X₅: X₅ {O(n)}
t₅₄, X₆: X₆ {O(n)}
t₅₄, X₇: X₇ {O(n)}
t₅₄, X₈: X₈ {O(n)}
t₅₄, X₉: X₉ {O(n)}
t₅₄, X₁₀: X₁₀ {O(n)}
t₅₄, X₁₁: X₁₁ {O(n)}
t₅₄, X₁₂: X₁₂ {O(n)}
t₅₄, X₁₃: X₁₃ {O(n)}
t₅₄, X₁₄: X₁₄ {O(n)}
t₅₅, X₀: X₀ {O(n)}
t₅₅, X₁: X₁ {O(n)}
t₅₅, X₂: X₂ {O(n)}
t₅₅, X₃: X₃ {O(n)}
t₅₅, X₄: X₄ {O(n)}
t₅₅, X₇: X₇ {O(n)}
t₅₅, X₈: X₈ {O(n)}
t₅₅, X₉: X₉ {O(n)}
t₅₅, X₁₀: X₁₀ {O(n)}
t₅₅, X₁₁: X₁₁ {O(n)}
t₅₅, X₁₂: X₁₂ {O(n)}
t₅₅, X₁₃: X₁₃ {O(n)}
t₅₅, X₁₄: X₁₄ {O(n)}
t₅₆, X₁: X₁₄ {O(n)}
t₅₆, X₂: 1 {O(1)}
t₅₆, X₃: X₃ {O(n)}
t₅₆, X₄: X₄ {O(n)}
t₅₆, X₈: X₈+8 {O(n)}
t₅₆, X₁₀: X₁₄ {O(n)}
t₅₆, X₁₁: X₁₁ {O(n)}
t₅₆, X₁₂: X₁₂ {O(n)}
t₅₆, X₁₃: X₁₃ {O(n)}
t₅₆, X₁₄: X₁₄ {O(n)}
t₅₇, X₁: X₁₄ {O(n)}
t₅₇, X₂: 1 {O(1)}
t₅₇, X₃: X₃ {O(n)}
t₅₇, X₄: X₄ {O(n)}
t₅₇, X₈: X₈+8 {O(n)}
t₅₇, X₁₀: X₁₄ {O(n)}
t₅₇, X₁₁: X₁₁ {O(n)}
t₅₇, X₁₂: X₁₂ {O(n)}
t₅₇, X₁₃: X₁₃ {O(n)}
t₅₇, X₁₄: X₁₄ {O(n)}
t₅₈, X₁: X₁₄ {O(n)}
t₅₈, X₂: 1 {O(1)}
t₅₈, X₃: X₃ {O(n)}
t₅₈, X₄: X₄ {O(n)}
t₅₈, X₈: X₈+8 {O(n)}
t₅₈, X₁₀: 7⋅X₁₀+7⋅X₁₄ {O(n)}
t₅₈, X₁₁: X₁₁ {O(n)}
t₅₈, X₁₂: X₁₂ {O(n)}
t₅₈, X₁₃: X₁₃ {O(n)}
t₅₈, X₁₄: X₁₄ {O(n)}
t₅₉, X₁: 6⋅X₁₄ {O(n)}
t₅₉, X₃: 6⋅X₁₁ {O(n)}
t₅₉, X₄: 6⋅X₁₂ {O(n)}
t₅₉, X₈: 5⋅X₈+44 {O(n)}
t₅₉, X₁₀: 7⋅X₁₀+7⋅X₁₄ {O(n)}
t₅₉, X₁₁: 6⋅X₁₁ {O(n)}
t₅₉, X₁₂: 6⋅X₁₂ {O(n)}
t₅₉, X₁₃: 6⋅X₁₃ {O(n)}
t₅₉, X₁₄: 6⋅X₁₄ {O(n)}
t₆₀, X₁: 5⋅X₁₄ {O(n)}
t₆₀, X₃: 5⋅X₁₁ {O(n)}
t₆₀, X₄: 5⋅X₁₂ {O(n)}
t₆₀, X₈: 4⋅X₈+32 {O(n)}
t₆₀, X₁₀: 7⋅X₁₀+7⋅X₁₄ {O(n)}
t₆₀, X₁₁: 5⋅X₁₁ {O(n)}
t₆₀, X₁₂: 5⋅X₁₂ {O(n)}
t₆₀, X₁₃: 5⋅X₁₃ {O(n)}
t₆₀, X₁₄: 5⋅X₁₄ {O(n)}
t₆₁, X₁: 7⋅X₁₄ {O(n)}
t₆₁, X₃: 7⋅X₁₁ {O(n)}
t₆₁, X₄: 7⋅X₁₂ {O(n)}
t₆₁, X₈: 3⋅X₈+32 {O(n)}
t₆₁, X₁₀: 7⋅X₁₀+7⋅X₁₄ {O(n)}
t₆₁, X₁₁: 7⋅X₁₁ {O(n)}
t₆₁, X₁₂: 7⋅X₁₂ {O(n)}
t₆₁, X₁₃: 7⋅X₁₃ {O(n)}
t₆₁, X₁₄: 7⋅X₁₄ {O(n)}
t₆₂, X₁: 18⋅X₁₄ {O(n)}
t₆₂, X₄: 18⋅2^(440⋅X₁₃⋅X₁₃+880⋅X₁₂⋅X₁₂+48)⋅X₁₂ {O(EXP)}
t₆₂, X₈: 12⋅X₈+108 {O(n)}
t₆₂, X₁₀: 21⋅X₁₀+21⋅X₁₄ {O(n)}
t₆₂, X₁₁: 18⋅X₁₁ {O(n)}
t₆₂, X₁₂: 18⋅X₁₂ {O(n)}
t₆₂, X₁₃: 18⋅X₁₃ {O(n)}
t₆₂, X₁₄: 18⋅X₁₄ {O(n)}
t₆₃, X₁: 36⋅X₁₄ {O(n)}
t₆₃, X₄: 18⋅2^(440⋅X₁₃⋅X₁₃+880⋅X₁₂⋅X₁₂+48)⋅X₁₂+18⋅X₁₂ {O(EXP)}
t₆₃, X₈: 24⋅X₈+216 {O(n)}
t₆₃, X₁₀: 42⋅X₁₀+42⋅X₁₄ {O(n)}
t₆₃, X₁₁: 36⋅X₁₁ {O(n)}
t₆₃, X₁₂: 36⋅X₁₂ {O(n)}
t₆₃, X₁₃: 36⋅X₁₃ {O(n)}
t₆₃, X₁₄: 36⋅X₁₄ {O(n)}
t₆₄, X₁: 36⋅X₁₄ {O(n)}
t₆₄, X₄: 18⋅2^(440⋅X₁₃⋅X₁₃+880⋅X₁₂⋅X₁₂+48)⋅X₁₂+18⋅X₁₂ {O(EXP)}
t₆₄, X₈: 24⋅X₈+216 {O(n)}
t₆₄, X₁₀: 42⋅X₁₀+42⋅X₁₄ {O(n)}
t₆₄, X₁₁: 36⋅X₁₁ {O(n)}
t₆₄, X₁₂: 36⋅X₁₂ {O(n)}
t₆₄, X₁₃: 36⋅X₁₃ {O(n)}
t₆₄, X₁₄: 36⋅X₁₄ {O(n)}
t₆₅, X₁: 18⋅X₁₄ {O(n)}
t₆₅, X₄: 18⋅2^(440⋅X₁₃⋅X₁₃+880⋅X₁₂⋅X₁₂+48)⋅X₁₂ {O(EXP)}
t₆₅, X₈: 12⋅X₈+108 {O(n)}
t₆₅, X₁₀: 21⋅X₁₀+21⋅X₁₄ {O(n)}
t₆₅, X₁₁: 18⋅X₁₁ {O(n)}
t₆₅, X₁₂: 18⋅X₁₂ {O(n)}
t₆₅, X₁₃: 18⋅X₁₃ {O(n)}
t₆₅, X₁₄: 18⋅X₁₄ {O(n)}
t₆₆, X₁: 72⋅X₁₄ {O(n)}
t₆₆, X₄: 2^(440⋅X₁₃⋅X₁₃+880⋅X₁₂⋅X₁₂+48)⋅36⋅X₁₂+36⋅X₁₂ {O(EXP)}
t₆₆, X₈: 48⋅X₈+432 {O(n)}
t₆₆, X₁₀: 84⋅X₁₀+84⋅X₁₄ {O(n)}
t₆₆, X₁₁: 72⋅X₁₁ {O(n)}
t₆₆, X₁₂: 72⋅X₁₂ {O(n)}
t₆₆, X₁₃: 72⋅X₁₃ {O(n)}
t₆₆, X₁₄: 72⋅X₁₄ {O(n)}
t₆₇, X₀: X₀ {O(n)}
t₆₇, X₁: X₁ {O(n)}
t₆₇, X₂: X₂ {O(n)}
t₆₇, X₃: X₃ {O(n)}
t₆₇, X₄: X₄ {O(n)}
t₆₇, X₅: X₅ {O(n)}
t₆₇, X₆: X₆ {O(n)}
t₆₇, X₇: X₇ {O(n)}
t₆₇, X₈: X₈ {O(n)}
t₆₇, X₉: X₉ {O(n)}
t₆₇, X₁₀: X₁₀ {O(n)}
t₆₇, X₁₁: X₁₁ {O(n)}
t₆₇, X₁₂: X₁₂ {O(n)}
t₆₇, X₁₃: X₁₃ {O(n)}
t₆₇, X₁₄: X₁₄ {O(n)}
t₆₈, X₀: X₀ {O(n)}
t₆₈, X₁: X₁ {O(n)}
t₆₈, X₂: X₂ {O(n)}
t₆₈, X₃: X₃ {O(n)}
t₆₈, X₄: X₄ {O(n)}
t₆₈, X₆: X₆ {O(n)}
t₆₈, X₇: X₇ {O(n)}
t₆₈, X₈: X₈ {O(n)}
t₆₈, X₉: X₉ {O(n)}
t₆₈, X₁₀: X₁₀ {O(n)}
t₆₈, X₁₁: X₁₁ {O(n)}
t₆₈, X₁₂: X₁₂ {O(n)}
t₆₈, X₁₃: X₁₃ {O(n)}
t₆₈, X₁₄: X₁₄ {O(n)}
t₆₉, X₁: X₁₄ {O(n)}
t₆₉, X₃: X₃ {O(n)}
t₆₉, X₄: X₄ {O(n)}
t₆₉, X₇: X₇ {O(n)}
t₆₉, X₈: X₈ {O(n)}
t₆₉, X₉: X₉ {O(n)}
t₆₉, X₁₀: X₁₀ {O(n)}
t₆₉, X₁₁: X₁₁ {O(n)}
t₆₉, X₁₂: X₁₂ {O(n)}
t₆₉, X₁₃: X₁₃ {O(n)}
t₆₉, X₁₄: X₁₄ {O(n)}
t₇₀, X₁: X₁₄ {O(n)}
t₇₀, X₃: X₃ {O(n)}
t₇₀, X₄: X₄ {O(n)}
t₇₀, X₈: X₈+8 {O(n)}
t₇₀, X₁₀: X₁₀+X₁₄ {O(n)}
t₇₀, X₁₁: X₁₁ {O(n)}
t₇₀, X₁₂: X₁₂ {O(n)}
t₇₀, X₁₃: X₁₃ {O(n)}
t₇₀, X₁₄: X₁₄ {O(n)}
t₇₁, X₁: X₁₄ {O(n)}
t₇₁, X₃: X₃ {O(n)}
t₇₁, X₄: X₄ {O(n)}
t₇₁, X₈: X₈+8 {O(n)}
t₇₁, X₁₀: X₁₀+X₁₄ {O(n)}
t₇₁, X₁₁: X₁₁ {O(n)}
t₇₁, X₁₂: X₁₂ {O(n)}
t₇₁, X₁₃: X₁₃ {O(n)}
t₇₁, X₁₄: X₁₄ {O(n)}
t₇₂, X₁: 2⋅X₁₄ {O(n)}
t₇₂, X₃: 2⋅X₃ {O(n)}
t₇₂, X₄: 2⋅X₄ {O(n)}
t₇₂, X₈: 2⋅X₈+8 {O(n)}
t₇₂, X₁₀: X₁₀+X₁₄ {O(n)}
t₇₂, X₁₁: 2⋅X₁₁ {O(n)}
t₇₂, X₁₂: 2⋅X₁₂ {O(n)}
t₇₂, X₁₃: 2⋅X₁₃ {O(n)}
t₇₂, X₁₄: 2⋅X₁₄ {O(n)}
t₇₃, X₁: X₁₄ {O(n)}
t₇₃, X₃: X₃ {O(n)}
t₇₃, X₄: X₄ {O(n)}
t₇₃, X₈: X₈+8 {O(n)}
t₇₃, X₁₀: X₁₀+X₁₄ {O(n)}
t₇₃, X₁₁: X₁₁ {O(n)}
t₇₃, X₁₂: X₁₂ {O(n)}
t₇₃, X₁₃: X₁₃ {O(n)}
t₇₃, X₁₄: X₁₄ {O(n)}
t₇₈, X₁: X₁₄ {O(n)}
t₇₈, X₃: X₃ {O(n)}
t₇₈, X₄: X₄ {O(n)}
t₇₈, X₈: X₈+8 {O(n)}
t₇₈, X₁₀: X₁₄ {O(n)}
t₇₈, X₁₁: X₁₁ {O(n)}
t₇₈, X₁₂: X₁₂ {O(n)}
t₇₈, X₁₃: X₁₃ {O(n)}
t₇₈, X₁₄: X₁₄ {O(n)}
t₇₆₀, X₀: 3 {O(1)}
t₇₆₀, X₁: 2⋅X₁₄ {O(n)}
t₇₆₀, X₂: 0 {O(1)}
t₇₆₀, X₃: 2⋅X₃ {O(n)}
t₇₆₀, X₄: 2⋅X₄ {O(n)}
t₇₆₀, X₇: 0 {O(1)}
t₇₆₀, X₈: X₈+8 {O(n)}
t₇₆₀, X₁₀: X₁₄ {O(n)}
t₇₆₀, X₁₁: 2⋅X₁₁ {O(n)}
t₇₆₀, X₁₂: 2⋅X₁₂ {O(n)}
t₇₆₀, X₁₃: 2⋅X₁₃ {O(n)}
t₇₆₀, X₁₄: 2⋅X₁₄ {O(n)}
t₇₆₁, X₀: 3 {O(1)}
t₇₆₁, X₁: X₁₄ {O(n)}
t₇₆₁, X₂: 0 {O(1)}
t₇₆₁, X₃: X₃ {O(n)}
t₇₆₁, X₄: X₄ {O(n)}
t₇₆₁, X₅: 3 {O(1)}
t₇₆₁, X₆: 0 {O(1)}
t₇₆₁, X₇: X₇ {O(n)}
t₇₆₁, X₈: X₈ {O(n)}
t₇₆₁, X₉: X₉ {O(n)}
t₇₆₁, X₁₀: X₁₀ {O(n)}
t₇₆₁, X₁₁: X₁₁ {O(n)}
t₇₆₁, X₁₂: X₁₂ {O(n)}
t₇₆₁, X₁₃: X₁₃ {O(n)}
t₇₆₁, X₁₄: X₁₄ {O(n)}
t₇₆₂, X₀: 3 {O(1)}
t₇₆₂, X₁: 2⋅X₁₄ {O(n)}
t₇₆₂, X₂: 0 {O(1)}
t₇₆₂, X₃: 2⋅X₃ {O(n)}
t₇₆₂, X₄: 2⋅X₄ {O(n)}
t₇₆₂, X₇: X₇ {O(n)}
t₇₆₂, X₈: 3 {O(1)}
t₇₆₂, X₉: 0 {O(1)}
t₇₆₂, X₁₀: X₁₀+X₁₄ {O(n)}
t₇₆₂, X₁₁: 2⋅X₁₁ {O(n)}
t₇₆₂, X₁₂: 2⋅X₁₂ {O(n)}
t₇₆₂, X₁₃: 2⋅X₁₃ {O(n)}
t₇₆₂, X₁₄: 2⋅X₁₄ {O(n)}
t₇₆₃, X₀: 4 {O(1)}
t₇₆₃, X₁: 2⋅X₁₄ {O(n)}
t₇₆₃, X₃: 2⋅X₃ {O(n)}
t₇₆₃, X₄: 2⋅X₄ {O(n)}
t₇₆₃, X₇: 0 {O(1)}
t₇₆₃, X₈: 4 {O(1)}
t₇₆₃, X₁₀: X₁₄ {O(n)}
t₇₆₃, X₁₁: 2⋅X₁₁ {O(n)}
t₇₆₃, X₁₂: 2⋅X₁₂ {O(n)}
t₇₆₃, X₁₃: 2⋅X₁₃ {O(n)}
t₇₆₃, X₁₄: 2⋅X₁₄ {O(n)}
t₇₆₄, X₀: 4 {O(1)}
t₇₆₄, X₁: 2⋅X₁₄ {O(n)}
t₇₆₄, X₃: 2⋅X₃ {O(n)}
t₇₆₄, X₄: 2⋅X₄ {O(n)}
t₇₆₄, X₇: X₇ {O(n)}
t₇₆₄, X₈: 4 {O(1)}
t₇₆₄, X₁₀: X₁₀+X₁₄ {O(n)}
t₇₆₄, X₁₁: 2⋅X₁₁ {O(n)}
t₇₆₄, X₁₂: 2⋅X₁₂ {O(n)}
t₇₆₄, X₁₃: 2⋅X₁₃ {O(n)}
t₇₆₄, X₁₄: 2⋅X₁₄ {O(n)}
t₇₆₅, X₀: 4 {O(1)}
t₇₆₅, X₁: X₁₄ {O(n)}
t₇₆₅, X₃: X₃ {O(n)}
t₇₆₅, X₄: X₄ {O(n)}
t₇₆₅, X₅: 3 {O(1)}
t₇₆₅, X₆: 0 {O(1)}
t₇₆₅, X₇: X₇ {O(n)}
t₇₆₅, X₈: 4 {O(1)}
t₇₆₅, X₁₀: X₁₀ {O(n)}
t₇₆₅, X₁₁: X₁₁ {O(n)}
t₇₆₅, X₁₂: X₁₂ {O(n)}
t₇₆₅, X₁₃: X₁₃ {O(n)}
t₇₆₅, X₁₄: X₁₄ {O(n)}
t₇₆₆, X₀: 3 {O(1)}
t₇₆₆, X₁: X₁₄ {O(n)}
t₇₆₆, X₂: 0 {O(1)}
t₇₆₆, X₃: X₃ {O(n)}
t₇₆₆, X₄: X₄ {O(n)}
t₇₆₆, X₅: 3 {O(1)}
t₇₆₆, X₆: 0 {O(1)}
t₇₆₆, X₇: X₇ {O(n)}
t₇₆₆, X₈: 4 {O(1)}
t₇₆₆, X₉: X₉ {O(n)}
t₇₆₆, X₁₀: X₁₀ {O(n)}
t₇₆₆, X₁₁: X₁₁ {O(n)}
t₇₆₆, X₁₂: X₁₂ {O(n)}
t₇₆₆, X₁₃: X₁₃ {O(n)}
t₇₆₆, X₁₄: X₁₄ {O(n)}
t₇₆₇, X₀: 3 {O(1)}
t₇₆₇, X₁: 2⋅X₁₄ {O(n)}
t₇₆₇, X₂: 0 {O(1)}
t₇₆₇, X₃: 2⋅X₃ {O(n)}
t₇₆₇, X₄: 2⋅X₄ {O(n)}
t₇₆₇, X₇: 0 {O(1)}
t₇₆₇, X₈: 4 {O(1)}
t₇₆₇, X₁₀: X₁₄ {O(n)}
t₇₆₇, X₁₁: 2⋅X₁₁ {O(n)}
t₇₆₇, X₁₂: 2⋅X₁₂ {O(n)}
t₇₆₇, X₁₃: 2⋅X₁₃ {O(n)}
t₇₆₇, X₁₄: 2⋅X₁₄ {O(n)}
t₇₆₈, X₀: 3 {O(1)}
t₇₆₈, X₁: 2⋅X₁₄ {O(n)}
t₇₆₈, X₂: 0 {O(1)}
t₇₆₈, X₃: 2⋅X₃ {O(n)}
t₇₆₈, X₄: 2⋅X₄ {O(n)}
t₇₆₈, X₇: X₇ {O(n)}
t₇₆₈, X₈: 4 {O(1)}
t₇₆₈, X₉: 0 {O(1)}
t₇₆₈, X₁₀: X₁₀+X₁₄ {O(n)}
t₇₆₈, X₁₁: 2⋅X₁₁ {O(n)}
t₇₆₈, X₁₂: 2⋅X₁₂ {O(n)}
t₇₆₈, X₁₃: 2⋅X₁₃ {O(n)}
t₇₆₈, X₁₄: 2⋅X₁₄ {O(n)}
t₇₆₉, X₀: 3 {O(1)}
t₇₆₉, X₁: 2⋅X₁₄ {O(n)}
t₇₆₉, X₂: 0 {O(1)}
t₇₆₉, X₃: 2⋅X₃ {O(n)}
t₇₆₉, X₄: 2⋅X₄ {O(n)}
t₇₆₉, X₇: 0 {O(1)}
t₇₆₉, X₈: 4 {O(1)}
t₇₆₉, X₁₀: X₁₄ {O(n)}
t₇₆₉, X₁₁: 2⋅X₁₁ {O(n)}
t₇₆₉, X₁₂: 2⋅X₁₂ {O(n)}
t₇₆₉, X₁₃: 2⋅X₁₃ {O(n)}
t₇₆₉, X₁₄: 2⋅X₁₄ {O(n)}
t₇₇₀, X₀: 3 {O(1)}
t₇₇₀, X₁: 2⋅X₁₄ {O(n)}
t₇₇₀, X₂: 0 {O(1)}
t₇₇₀, X₃: 2⋅X₃ {O(n)}
t₇₇₀, X₄: 2⋅X₄ {O(n)}
t₇₇₀, X₇: X₇ {O(n)}
t₇₇₀, X₈: 4 {O(1)}
t₇₇₀, X₁₀: X₁₀+X₁₄ {O(n)}
t₇₇₀, X₁₁: 2⋅X₁₁ {O(n)}
t₇₇₀, X₁₂: 2⋅X₁₂ {O(n)}
t₇₇₀, X₁₃: 2⋅X₁₃ {O(n)}
t₇₇₀, X₁₄: 2⋅X₁₄ {O(n)}
t₇₇₁, X₀: 3 {O(1)}
t₇₇₁, X₁: X₁₄ {O(n)}
t₇₇₁, X₂: 0 {O(1)}
t₇₇₁, X₃: X₃ {O(n)}
t₇₇₁, X₄: X₄ {O(n)}
t₇₇₁, X₅: 3 {O(1)}
t₇₇₁, X₆: 0 {O(1)}
t₇₇₁, X₇: X₇ {O(n)}
t₇₇₁, X₈: 4 {O(1)}
t₇₇₁, X₁₀: X₁₀ {O(n)}
t₇₇₁, X₁₁: X₁₁ {O(n)}
t₇₇₁, X₁₂: X₁₂ {O(n)}
t₇₇₁, X₁₃: X₁₃ {O(n)}
t₇₇₁, X₁₄: X₁₄ {O(n)}
t₇₈₀, X₀: 4 {O(1)}
t₇₈₀, X₁: 2⋅X₁₄ {O(n)}
t₇₈₀, X₃: 2⋅X₃ {O(n)}
t₇₈₀, X₄: 2⋅X₄ {O(n)}
t₇₈₀, X₇: 2⋅X₇ {O(n)}
t₇₈₀, X₈: 4 {O(1)}
t₇₈₀, X₁₀: 2⋅X₁₀+2⋅X₁₄ {O(n)}
t₇₈₀, X₁₁: 2⋅X₁₁ {O(n)}
t₇₈₀, X₁₂: 2⋅X₁₂ {O(n)}
t₇₈₀, X₁₃: 2⋅X₁₃ {O(n)}
t₇₈₀, X₁₄: 2⋅X₁₄ {O(n)}
t₇₈₁, X₀: 4 {O(1)}
t₇₈₁, X₁: 5⋅X₁₄ {O(n)}
t₇₈₁, X₃: 5⋅X₃ {O(n)}
t₇₈₁, X₄: 5⋅X₄ {O(n)}
t₇₈₁, X₇: 2⋅X₇ {O(n)}
t₇₈₁, X₈: 4 {O(1)}
t₇₈₁, X₁₀: 2⋅X₁₀+2⋅X₁₄ {O(n)}
t₇₈₁, X₁₁: 5⋅X₁₁ {O(n)}
t₇₈₁, X₁₂: 5⋅X₁₂ {O(n)}
t₇₈₁, X₁₃: 5⋅X₁₃ {O(n)}
t₇₈₁, X₁₄: 5⋅X₁₄ {O(n)}
t₇₈₂, X₀: 4 {O(1)}
t₇₈₂, X₁: 2⋅X₁₄ {O(n)}
t₇₈₂, X₃: 2⋅X₃ {O(n)}
t₇₈₂, X₄: 2⋅X₄ {O(n)}
t₇₈₂, X₇: 2⋅X₇ {O(n)}
t₇₈₂, X₈: 4 {O(1)}
t₇₈₂, X₁₀: 2⋅X₁₀+2⋅X₁₄ {O(n)}
t₇₈₂, X₁₁: 2⋅X₁₁ {O(n)}
t₇₈₂, X₁₂: 2⋅X₁₂ {O(n)}
t₇₈₂, X₁₃: 2⋅X₁₃ {O(n)}
t₇₈₂, X₁₄: 2⋅X₁₄ {O(n)}