Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₀, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆) :|: 0 < X₆
t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1)
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇)
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0
t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: 0 < X₃
t₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₅, X₄, X₅, X₆, X₇)
t₂₅: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0
t₁₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: X₁ < 0
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: 0 < X₁
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₄
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃-X₀, X₇)
t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 0
t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇)
Preprocessing
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l11
Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l2
Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l6
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l15
Found invariant X₃ ≤ X₅ for location l12
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l7
Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l5
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l8
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l1
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l10
Found invariant X₃ ≤ X₅ ∧ X₃ ≤ 0 for location l16
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l4
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l9
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l3
Found invariant X₃ ≤ X₅ ∧ X₃ ≤ 0 for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₀, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆) :|: 0 < X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ 0 ∧ X₃ ≤ X₅
t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: 0 < X₃ ∧ X₃ ≤ X₅
t₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₅, X₄, X₅, X₆, X₇)
t₂₅: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ ≤ X₅ ∧ X₃ ≤ 0
t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₁₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: X₁ < 0 ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: 0 < X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃-X₀, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
MPRF for transition t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: 0 < X₃ ∧ X₃ ≤ X₅ of depth 1:
new bound:
X₅+1 {O(n)}
MPRF for transition t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 < X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₅+1 {O(n)}
MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₄-1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ ≤ 1 ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇) :|: 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF for transition t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: X₁ < 0 ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅+1 {O(n)}
MPRF for transition t₁₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₀, X₅, X₆, X₇) :|: 0 < X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₅+1 {O(n)}
MPRF for transition t₁₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅+2 {O(n)}
MPRF for transition t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₃-X₀, X₇) :|: 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₁₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₀, X₄, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₅ {O(n)}
MPRF for transition t₁₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₆) :|: 0 < X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
MPRF for transition t₁₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
MPRF for transition t₂₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₅⋅X₅+X₅ {O(n^2)}
MPRF for transition t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1, X₇) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
MPRF for transition t₁₅: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₇ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
12⋅X₅⋅X₅⋅X₅+14⋅X₅⋅X₅+6⋅X₅ {O(n^3)}
MPRF for transition t₁₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
24⋅X₅⋅X₅⋅X₅+26⋅X₅⋅X₅+5⋅X₅ {O(n^3)}
MPRF for transition t₁₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
26⋅X₅⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₅ {O(n^3)}
MPRF for transition t₂₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < 0 ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
16⋅X₅⋅X₅⋅X₅+16⋅X₅⋅X₅+X₅ {O(n^3)}
MPRF for transition t₂₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
24⋅X₅⋅X₅⋅X₅+28⋅X₅⋅X₅+5⋅X₅ {O(n^3)}
MPRF for transition t₂₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇-1) :|: X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
16⋅X₅⋅X₅⋅X₅+16⋅X₅⋅X₅+X₅ {O(n^3)}
Chain transitions t₁₂: l4→l1 and t₁₃: l1→l15 to t₂₅₃: l4→l15
Chain transitions t₂₄: l11→l1 and t₁₃: l1→l15 to t₂₅₄: l11→l15
Chain transitions t₂₄: l11→l1 and t₁₄: l1→l12 to t₂₅₅: l11→l12
Chain transitions t₁₂: l4→l1 and t₁₄: l1→l12 to t₂₅₆: l4→l12
Chain transitions t₂₁: l7→l10 and t₂₃: l10→l15 to t₂₅₇: l7→l15
Chain transitions t₂₀: l7→l10 and t₂₃: l10→l15 to t₂₅₈: l7→l15
Chain transitions t₂₂: l7→l11 and t₂₅₄: l11→l15 to t₂₅₉: l7→l15
Chain transitions t₁₆: l15→l11 and t₂₅₄: l11→l15 to t₂₆₀: l15→l15
Chain transitions t₁₆: l15→l11 and t₂₅₅: l11→l12 to t₂₆₁: l15→l12
Chain transitions t₂₂: l7→l11 and t₂₅₅: l11→l12 to t₂₆₂: l7→l12
Chain transitions t₁₆: l15→l11 and t₂₄: l11→l1 to t₂₆₃: l15→l1
Chain transitions t₂₂: l7→l11 and t₂₄: l11→l1 to t₂₆₄: l7→l1
Chain transitions t₂₆₂: l7→l12 and t₂: l12→l3 to t₂₆₅: l7→l3
Chain transitions t₂₅₆: l4→l12 and t₂: l12→l3 to t₂₆₆: l4→l3
Chain transitions t₂₅₆: l4→l12 and t₃: l12→l14 to t₂₆₇: l4→l14
Chain transitions t₂₆₂: l7→l12 and t₃: l12→l14 to t₂₆₈: l7→l14
Chain transitions t₂₆₁: l15→l12 and t₃: l12→l14 to t₂₆₉: l15→l14
Chain transitions t₂₆₁: l15→l12 and t₂: l12→l3 to t₂₇₀: l15→l3
Chain transitions t₁: l13→l12 and t₃: l12→l14 to t₂₇₁: l13→l14
Chain transitions t₁: l13→l12 and t₂: l12→l3 to t₂₇₂: l13→l3
Chain transitions t₈: l6→l2 and t₁₁: l2→l4 to t₂₇₃: l6→l4
Chain transitions t₈: l6→l2 and t₁₀: l2→l3 to t₂₇₄: l6→l3
Chain transitions t₈: l6→l2 and t₉: l2→l3 to t₂₇₅: l6→l3
Chain transitions t₂₆₅: l7→l3 and t₄: l3→l5 to t₂₇₆: l7→l5
Chain transitions t₂₇₅: l6→l3 and t₄: l3→l5 to t₂₇₇: l6→l5
Chain transitions t₂₇₅: l6→l3 and t₅: l3→l4 to t₂₇₈: l6→l4
Chain transitions t₂₆₅: l7→l3 and t₅: l3→l4 to t₂₇₉: l7→l4
Chain transitions t₂₇₄: l6→l3 and t₅: l3→l4 to t₂₈₀: l6→l4
Chain transitions t₂₇₄: l6→l3 and t₄: l3→l5 to t₂₈₁: l6→l5
Chain transitions t₂₆₆: l4→l3 and t₅: l3→l4 to t₂₈₂: l4→l4
Chain transitions t₂₆₆: l4→l3 and t₄: l3→l5 to t₂₈₃: l4→l5
Chain transitions t₂₇₀: l15→l3 and t₅: l3→l4 to t₂₈₄: l15→l4
Chain transitions t₂₇₀: l15→l3 and t₄: l3→l5 to t₂₈₅: l15→l5
Chain transitions t₂₇₂: l13→l3 and t₅: l3→l4 to t₂₈₆: l13→l4
Chain transitions t₂₇₂: l13→l3 and t₄: l3→l5 to t₂₈₇: l13→l5
Chain transitions t₂₇₆: l7→l5 and t₆: l5→l6 to t₂₈₈: l7→l6
Chain transitions t₂₈₁: l6→l5 and t₆: l5→l6 to t₂₈₉: l6→l6
Chain transitions t₂₇₇: l6→l5 and t₆: l5→l6 to t₂₉₀: l6→l6
Chain transitions t₂₈₃: l4→l5 and t₆: l5→l6 to t₂₉₁: l4→l6
Chain transitions t₂₈₅: l15→l5 and t₆: l5→l6 to t₂₉₂: l15→l6
Chain transitions t₂₈₇: l13→l5 and t₆: l5→l6 to t₂₉₃: l13→l6
Chain transitions t₁₉: l9→l7 and t₂₈₈: l7→l6 to t₂₉₄: l9→l6
Chain transitions t₁₉: l9→l7 and t₂₇₆: l7→l5 to t₂₉₅: l9→l5
Chain transitions t₁₉: l9→l7 and t₂₇₉: l7→l4 to t₂₉₆: l9→l4
Chain transitions t₁₉: l9→l7 and t₂₆₅: l7→l3 to t₂₉₇: l9→l3
Chain transitions t₁₉: l9→l7 and t₂₅₉: l7→l15 to t₂₉₈: l9→l15
Chain transitions t₁₉: l9→l7 and t₂₅₈: l7→l15 to t₂₉₉: l9→l15
Chain transitions t₁₉: l9→l7 and t₂₅₇: l7→l15 to t₃₀₀: l9→l15
Chain transitions t₁₉: l9→l7 and t₂₆₈: l7→l14 to t₃₀₁: l9→l14
Chain transitions t₁₉: l9→l7 and t₂₆₂: l7→l12 to t₃₀₂: l9→l12
Chain transitions t₁₉: l9→l7 and t₂₂: l7→l11 to t₃₀₃: l9→l11
Chain transitions t₁₉: l9→l7 and t₂₁: l7→l10 to t₃₀₄: l9→l10
Chain transitions t₁₉: l9→l7 and t₂₀: l7→l10 to t₃₀₅: l9→l10
Chain transitions t₁₉: l9→l7 and t₂₆₄: l7→l1 to t₃₀₆: l9→l1
Chain transitions t₁₅: l15→l8 and t₁₇: l8→l9 to t₃₀₇: l15→l9
Chain transitions t₃₀₇: l15→l9 and t₁₉: l9→l7 to t₃₀₈: l15→l7
Chain transitions t₃₀₇: l15→l9 and t₂₉₄: l9→l6 to t₃₀₉: l15→l6
Chain transitions t₃₀₇: l15→l9 and t₂₉₅: l9→l5 to t₃₁₀: l15→l5
Chain transitions t₃₀₇: l15→l9 and t₂₉₆: l9→l4 to t₃₁₁: l15→l4
Chain transitions t₃₀₇: l15→l9 and t₂₉₇: l9→l3 to t₃₁₂: l15→l3
Chain transitions t₃₀₇: l15→l9 and t₃₀₀: l9→l15 to t₃₁₃: l15→l15
Chain transitions t₃₀₇: l15→l9 and t₂₉₉: l9→l15 to t₃₁₄: l15→l15
Chain transitions t₃₀₇: l15→l9 and t₂₉₈: l9→l15 to t₃₁₅: l15→l15
Chain transitions t₃₀₇: l15→l9 and t₃₀₁: l9→l14 to t₃₁₆: l15→l14
Chain transitions t₃₀₇: l15→l9 and t₃₀₂: l9→l12 to t₃₁₇: l15→l12
Chain transitions t₃₀₇: l15→l9 and t₃₀₃: l9→l11 to t₃₁₈: l15→l11
Chain transitions t₃₀₇: l15→l9 and t₃₀₅: l9→l10 to t₃₁₉: l15→l10
Chain transitions t₃₀₇: l15→l9 and t₃₀₄: l9→l10 to t₃₂₀: l15→l10
Chain transitions t₃₀₇: l15→l9 and t₃₀₆: l9→l1 to t₃₂₁: l15→l1
Analysing control-flow refined program
Cut unsatisfiable transition t₂₅₆: l4→l12
Cut unsatisfiable transition t₂₆₆: l4→l3
Cut unsatisfiable transition t₂₆₇: l4→l14
Cut unsatisfiable transition t₂₈₂: l4→l4
Cut unsatisfiable transition t₂₈₃: l4→l5
Cut unsatisfiable transition t₂₉₁: l4→l6
Eliminate variables {Temp_Int₂₁₉₅,X₁,X₂} that do not contribute to the problem
Found invariant X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l11
Found invariant 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2
Found invariant 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l6
Found invariant X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l15
Found invariant X₁ ≤ X₃ for location l12
Found invariant X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l7
Found invariant 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l5
Found invariant X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l8
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l1
Found invariant X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l10
Found invariant X₁ ≤ X₃ ∧ X₁ ≤ 0 for location l16
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l4
Found invariant X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l9
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l3
Found invariant X₁ ≤ X₃ ∧ X₁ ≤ 0 for location l14
MPRF for transition t₄₅₂: l15(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l4(X₀-1, X₀, X₀, X₃, X₄-1, X₅) :|: X₅ ≤ 0 ∧ X₄ ≤ 1 ∧ 0 < X₀ ∧ X₀ ≤ 1 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₄₅₃: l15(X₀, X₁, X₂, X₃, X₄, X₅) -{8}> l4(X₀-1, X₀, X₀, X₃, X₄-1, X₅) :|: 0 < X₅ ∧ Temp_Int₂₂₁₉ ≤ 0 ∧ 0 ≤ Temp_Int₂₂₁₉ ∧ X₄ ≤ 1 ∧ 0 < X₀ ∧ X₀ ≤ 1 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₄₅₆: l15(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l6(X₀-1, X₀, X₀, X₃, X₄-1, X₅) :|: X₅ ≤ 0 ∧ X₄ ≤ 1 ∧ 0 < X₀ ∧ 1 < X₀ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₄₅₇: l15(X₀, X₁, X₂, X₃, X₄, X₅) -{9}> l6(X₀-1, X₀, X₀, X₃, X₄-1, X₅) :|: 0 < X₅ ∧ Temp_Int₂₂₀₃ ≤ 0 ∧ 0 ≤ Temp_Int₂₂₀₃ ∧ X₄ ≤ 1 ∧ 0 < X₀ ∧ 1 < X₀ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
MPRF for transition t₄₆₂: l4(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l15(X₀, X₁, X₂, X₃, X₁-X₀, X₁-X₀) :|: X₀ < X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
3⋅X₃+1 {O(n)}
MPRF for transition t₄₆₆: l6(X₀, X₁, X₂, X₃, X₄, X₅) -{2}> l4(X₀, X₁, X₂, X₃, X₄, X₅) :|: nondef.0 ≤ 0 ∧ 0 ≤ nondef.0 ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+2 {O(n)}
MPRF for transition t₄₆₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l4(X₀-1, X₁, X₀, X₃, X₄, X₅) :|: nondef.0 < 0 ∧ X₀ ≤ 1 ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₃+3 {O(n)}
MPRF for transition t₄₆₈: l6(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l4(X₀-1, X₁, X₀, X₃, X₄, X₅) :|: 0 < nondef.0 ∧ X₀ ≤ 1 ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
3⋅X₃+3 {O(n)}
MPRF for transition t₄₇₁: l6(X₀, X₁, X₂, X₃, X₄, X₅) -{4}> l6(X₀-1, X₁, X₀, X₃, X₄, X₅) :|: 0 < nondef.0 ∧ 1 < X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+2 {O(n)}
MPRF for transition t₄₇₂: l6(X₀, X₁, X₂, X₃, X₄, X₅) -{4}> l6(X₀-1, X₁, X₀, X₃, X₄, X₅) :|: nondef.0 < 0 ∧ 1 < X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃+2 {O(n)}
MPRF for transition t₄₄₆: l15(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l15(X₀, X₁, X₂, X₃, X₄-1, X₄-1) :|: X₅ ≤ 0 ∧ 1 < X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
42⋅X₃⋅X₃+85⋅X₃+3 {O(n^2)}
MPRF for transition t₄₄₉: l15(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l15(X₀, X₁, X₂, X₃, X₄-1, X₄-1) :|: 0 < X₅ ∧ Temp_Int₂₂₅₁ ≤ 0 ∧ 0 ≤ Temp_Int₂₂₅₁ ∧ 1 < X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
49⋅X₃⋅X₃+102⋅X₃+10 {O(n^2)}
MPRF for transition t₄₄₇: l15(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l15(X₀, X₁, X₂, X₃, X₄, X₅-1) :|: 0 < X₅ ∧ 0 < Temp_Int₂₂₃₅ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
23870⋅X₃⋅X₃⋅X₃+50363⋅X₃⋅X₃+6184⋅X₃+173 {O(n^3)}
MPRF for transition t₄₄₈: l15(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l15(X₀, X₁, X₂, X₃, X₄, X₅-1) :|: 0 < X₅ ∧ Temp_Int₂₂₄₃ < 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₁ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ 1+X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
30604⋅X₃⋅X₃⋅X₃+64544⋅X₃⋅X₃+7854⋅X₃+225 {O(n^3)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₁₄: l1→l12
Cut unsatisfiable transition t₈₅₀: n_l1___1→l12
Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l6
Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 2+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 3+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location n_l10___4
Found invariant X₃ ≤ X₅ for location l12
Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 2+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location n_l10___9
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l15___24
Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l9___6
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l4
Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l15___13
Found invariant X₇ ≤ 1+X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l1___14
Found invariant 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₃ for location l3
Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l1___1
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l9___22
Found invariant X₃ ≤ X₅ ∧ X₃ ≤ 0 for location l14
Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l10___8
Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l15___17
Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l2
Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l10___3
Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l9___11
Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2+X₂ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l11___2
Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l8___12
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ 0 ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₀ for location n_l10___20
Found invariant X₇ ≤ 0 ∧ 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₄ ∧ 1+X₇ ≤ X₃ ∧ X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l11___16
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l8___23
Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l7___10
Found invariant X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 2+X₂ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2+X₂ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l11___7
Found invariant 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l5
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l10___19
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l7___21
Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l8___15
Found invariant X₃ ≤ X₅ ∧ X₃ ≤ 0 for location l16
Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₃+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ 2 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 4 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location n_l7___5
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ X₅ ∧ X₇ ≤ X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ 0 ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location n_l11___18
knowledge_propagation leads to new time bound X₅ {O(n)} for transition t₈₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l15___24(X₀, X₁, X₂, X₃, X₀+1, X₅, X₆, X₆) :|: 0 < X₆ ∧ X₀+1 ≤ X₄ ∧ 1 ≤ X₆ ∧ 1+X₃ ≤ X₄+X₆ ∧ X₄+X₆ ≤ 1+X₃ ∧ X₀+X₆ ≤ X₃ ∧ X₃ ≤ X₀+X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₆ ∧ 0 < X₆ ∧ X₀+1 ≤ X₄ ∧ X₆ ≤ X₃ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₅ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₅ ∧ 1+X₀ ≤ X₄ ∧ X₄ ≤ 1+X₀ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₄ ∧ X₆ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₃ ∧ X₃ ≤ X₅ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₀ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₃ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 2 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
All Bounds
Timebounds
Overall timebound:118⋅X₅⋅X₅⋅X₅+139⋅X₅⋅X₅+45⋅X₅+10 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₅+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₅+1 {O(n)}
t₅: X₅ {O(n)}
t₆: X₅ {O(n)}
t₈: 2⋅X₅ {O(n)}
t₉: X₅+1 {O(n)}
t₁₀: X₅+1 {O(n)}
t₁₁: 2⋅X₅+2 {O(n)}
t₁₂: X₅ {O(n)}
t₁₃: 2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₁₄: X₅ {O(n)}
t₁₅: 12⋅X₅⋅X₅⋅X₅+14⋅X₅⋅X₅+6⋅X₅ {O(n^3)}
t₁₆: 2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₁₇: 24⋅X₅⋅X₅⋅X₅+26⋅X₅⋅X₅+5⋅X₅ {O(n^3)}
t₁₉: 26⋅X₅⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₅ {O(n^3)}
t₂₀: 16⋅X₅⋅X₅⋅X₅+16⋅X₅⋅X₅+X₅ {O(n^3)}
t₂₁: 24⋅X₅⋅X₅⋅X₅+28⋅X₅⋅X₅+5⋅X₅ {O(n^3)}
t₂₂: X₅⋅X₅+X₅ {O(n^2)}
t₂₃: 16⋅X₅⋅X₅⋅X₅+16⋅X₅⋅X₅+X₅ {O(n^3)}
t₂₄: 2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₂₅: 1 {O(1)}
Costbounds
Overall costbound: 118⋅X₅⋅X₅⋅X₅+139⋅X₅⋅X₅+45⋅X₅+10 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₅+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₅+1 {O(n)}
t₅: X₅ {O(n)}
t₆: X₅ {O(n)}
t₈: 2⋅X₅ {O(n)}
t₉: X₅+1 {O(n)}
t₁₀: X₅+1 {O(n)}
t₁₁: 2⋅X₅+2 {O(n)}
t₁₂: X₅ {O(n)}
t₁₃: 2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₁₄: X₅ {O(n)}
t₁₅: 12⋅X₅⋅X₅⋅X₅+14⋅X₅⋅X₅+6⋅X₅ {O(n^3)}
t₁₆: 2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₁₇: 24⋅X₅⋅X₅⋅X₅+26⋅X₅⋅X₅+5⋅X₅ {O(n^3)}
t₁₉: 26⋅X₅⋅X₅⋅X₅+32⋅X₅⋅X₅+8⋅X₅ {O(n^3)}
t₂₀: 16⋅X₅⋅X₅⋅X₅+16⋅X₅⋅X₅+X₅ {O(n^3)}
t₂₁: 24⋅X₅⋅X₅⋅X₅+28⋅X₅⋅X₅+5⋅X₅ {O(n^3)}
t₂₂: X₅⋅X₅+X₅ {O(n^2)}
t₂₃: 16⋅X₅⋅X₅⋅X₅+16⋅X₅⋅X₅+X₅ {O(n^3)}
t₂₄: 2⋅X₅⋅X₅+2⋅X₅ {O(n^2)}
t₂₅: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₅ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₀: X₀+X₅ {O(n)}
t₂, X₃: 2⋅X₅ {O(n)}
t₂, X₄: X₅ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: 8⋅X₅+X₆ {O(n)}
t₂, X₇: 16⋅X₅+X₇ {O(n)}
t₃, X₀: X₀+X₅ {O(n)}
t₃, X₃: 2⋅X₅ {O(n)}
t₃, X₄: 3⋅X₅+X₄+1 {O(n)}
t₃, X₅: 2⋅X₅ {O(n)}
t₃, X₆: 8⋅X₅+X₆ {O(n)}
t₃, X₇: 16⋅X₅+X₇ {O(n)}
t₄, X₀: X₅ {O(n)}
t₄, X₃: 2⋅X₅ {O(n)}
t₄, X₄: 3⋅X₅ {O(n)}
t₄, X₅: X₅ {O(n)}
t₄, X₆: 8⋅X₅+X₆ {O(n)}
t₄, X₇: 16⋅X₅+X₇ {O(n)}
t₅, X₀: 0 {O(1)}
t₅, X₃: 6⋅X₅ {O(n)}
t₅, X₄: 1 {O(1)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: 24⋅X₅+3⋅X₆ {O(n)}
t₅, X₇: 3⋅X₇+48⋅X₅ {O(n)}
t₆, X₀: X₅ {O(n)}
t₆, X₃: 2⋅X₅ {O(n)}
t₆, X₄: 3⋅X₅ {O(n)}
t₆, X₅: X₅ {O(n)}
t₆, X₆: 8⋅X₅+X₆ {O(n)}
t₆, X₇: 16⋅X₅+X₇ {O(n)}
t₈, X₀: X₅ {O(n)}
t₈, X₃: 2⋅X₅ {O(n)}
t₈, X₄: 3⋅X₅ {O(n)}
t₈, X₅: X₅ {O(n)}
t₈, X₆: 8⋅X₅+X₆ {O(n)}
t₈, X₇: 16⋅X₅+X₇ {O(n)}
t₉, X₀: X₅ {O(n)}
t₉, X₃: 2⋅X₅ {O(n)}
t₉, X₄: X₅ {O(n)}
t₉, X₅: X₅ {O(n)}
t₉, X₆: 8⋅X₅+X₆ {O(n)}
t₉, X₇: 16⋅X₅+X₇ {O(n)}
t₁₀, X₀: X₅ {O(n)}
t₁₀, X₃: 2⋅X₅ {O(n)}
t₁₀, X₄: X₅ {O(n)}
t₁₀, X₅: X₅ {O(n)}
t₁₀, X₆: 8⋅X₅+X₆ {O(n)}
t₁₀, X₇: 16⋅X₅+X₇ {O(n)}
t₁₁, X₀: X₅ {O(n)}
t₁₁, X₁: 0 {O(1)}
t₁₁, X₃: 2⋅X₅ {O(n)}
t₁₁, X₄: 3⋅X₅ {O(n)}
t₁₁, X₅: X₅ {O(n)}
t₁₁, X₆: 8⋅X₅+X₆ {O(n)}
t₁₁, X₇: 16⋅X₅+X₇ {O(n)}
t₁₂, X₀: X₅ {O(n)}
t₁₂, X₃: 8⋅X₅ {O(n)}
t₁₂, X₄: 3⋅X₅+1 {O(n)}
t₁₂, X₅: X₅ {O(n)}
t₁₂, X₆: 8⋅X₅ {O(n)}
t₁₂, X₇: 4⋅X₇+64⋅X₅ {O(n)}
t₁₃, X₀: X₅ {O(n)}
t₁₃, X₃: 8⋅X₅ {O(n)}
t₁₃, X₄: 3⋅X₅+1 {O(n)}
t₁₃, X₅: X₅ {O(n)}
t₁₃, X₆: 8⋅X₅ {O(n)}
t₁₃, X₇: 16⋅X₅ {O(n)}
t₁₄, X₀: X₅ {O(n)}
t₁₄, X₃: X₅ {O(n)}
t₁₄, X₄: 3⋅X₅+1 {O(n)}
t₁₄, X₅: X₅ {O(n)}
t₁₄, X₆: 8⋅X₅ {O(n)}
t₁₄, X₇: 16⋅X₅ {O(n)}
t₁₅, X₀: X₅ {O(n)}
t₁₅, X₃: 8⋅X₅ {O(n)}
t₁₅, X₄: 3⋅X₅+1 {O(n)}
t₁₅, X₅: X₅ {O(n)}
t₁₅, X₆: 8⋅X₅ {O(n)}
t₁₅, X₇: 16⋅X₅ {O(n)}
t₁₆, X₀: X₅ {O(n)}
t₁₆, X₃: 8⋅X₅ {O(n)}
t₁₆, X₄: 3⋅X₅+1 {O(n)}
t₁₆, X₅: X₅ {O(n)}
t₁₆, X₆: 8⋅X₅ {O(n)}
t₁₆, X₇: 0 {O(1)}
t₁₇, X₀: X₅ {O(n)}
t₁₇, X₃: 8⋅X₅ {O(n)}
t₁₇, X₄: 3⋅X₅+1 {O(n)}
t₁₇, X₅: X₅ {O(n)}
t₁₇, X₆: 8⋅X₅ {O(n)}
t₁₇, X₇: 16⋅X₅ {O(n)}
t₁₉, X₀: X₅ {O(n)}
t₁₉, X₃: 8⋅X₅ {O(n)}
t₁₉, X₄: 3⋅X₅+1 {O(n)}
t₁₉, X₅: X₅ {O(n)}
t₁₉, X₆: 8⋅X₅ {O(n)}
t₁₉, X₇: 16⋅X₅ {O(n)}
t₂₀, X₀: X₅ {O(n)}
t₂₀, X₃: 8⋅X₅ {O(n)}
t₂₀, X₄: 3⋅X₅+1 {O(n)}
t₂₀, X₅: X₅ {O(n)}
t₂₀, X₆: 8⋅X₅ {O(n)}
t₂₀, X₇: 16⋅X₅ {O(n)}
t₂₁, X₀: X₅ {O(n)}
t₂₁, X₃: 8⋅X₅ {O(n)}
t₂₁, X₄: 3⋅X₅+1 {O(n)}
t₂₁, X₅: X₅ {O(n)}
t₂₁, X₆: 8⋅X₅ {O(n)}
t₂₁, X₇: 16⋅X₅ {O(n)}
t₂₂, X₀: X₅ {O(n)}
t₂₂, X₂: 0 {O(1)}
t₂₂, X₃: 8⋅X₅ {O(n)}
t₂₂, X₄: 3⋅X₅+1 {O(n)}
t₂₂, X₅: X₅ {O(n)}
t₂₂, X₆: 8⋅X₅ {O(n)}
t₂₂, X₇: 16⋅X₅ {O(n)}
t₂₃, X₀: X₅ {O(n)}
t₂₃, X₃: 8⋅X₅ {O(n)}
t₂₃, X₄: 3⋅X₅+1 {O(n)}
t₂₃, X₅: X₅ {O(n)}
t₂₃, X₆: 8⋅X₅ {O(n)}
t₂₃, X₇: 16⋅X₅ {O(n)}
t₂₄, X₀: X₅ {O(n)}
t₂₄, X₃: 8⋅X₅ {O(n)}
t₂₄, X₄: 3⋅X₅+1 {O(n)}
t₂₄, X₅: X₅ {O(n)}
t₂₄, X₆: 8⋅X₅ {O(n)}
t₂₄, X₇: 16⋅X₅ {O(n)}
t₂₅, X₀: X₀+X₅ {O(n)}
t₂₅, X₃: 2⋅X₅ {O(n)}
t₂₅, X₄: 3⋅X₅+X₄+1 {O(n)}
t₂₅, X₅: 2⋅X₅ {O(n)}
t₂₅, X₆: 8⋅X₅+X₆ {O(n)}
t₂₅, X₇: 16⋅X₅+X₇ {O(n)}