Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₃
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆)
t₁₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆)
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₄, X₄, X₅, X₆)
t₂₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 1
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: 1 < X₆
t₁₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: X₂ < 0
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: 0 < X₂
t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆)
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < 0
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₄ ≤ X₅
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₄
t₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆)
Preprocessing
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l11
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l2
Found invariant 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l6
Found invariant X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l7
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l5
Found invariant X₃ ≤ X₄ ∧ X₃ ≤ 0 for location l13
Found invariant 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l8
Found invariant X₃ ≤ X₄ for location l1
Found invariant 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l10
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ for location l4
Found invariant 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l9
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location l3
Found invariant X₃ ≤ X₄ ∧ X₃ ≤ 0 for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ X₃ ≤ X₄
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₃ ∧ X₃ ≤ X₄
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₄, X₄, X₅, X₆)
t₂₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ X₄ ∧ X₃ ≤ 0
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: 1 < X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: X₂ < 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: 0 < X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃
t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < 0 ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₄ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
MPRF for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₃ ∧ X₃ ≤ X₄ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₄ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ 1 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₂₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF for transition t₂₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃-1, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₄ {O(n)}
TWN: t₄: l7→l8
cycle: [t₁₂: l10→l7; t₉: l6→l10; t₁₀: l6→l10; t₈: l9→l6; t₆: l8→l9; t₄: l7→l8]
loop: (X₅ < X₄ ∨ X₅ < X₄,(X₄,X₅) -> (X₄,1+X₅)
order: [X₄; X₅]
closed-form:
X₄: X₄
X₅: X₅ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₅ < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ X₅ < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₅ < X₄
alphas_abs: X₅+X₄
M: 0
N: 1
Bound: 2⋅X₄+2⋅X₅+2 {O(n)}
TWN - Lifting for t₄: l7→l8 of 2⋅X₄+2⋅X₅+4 {O(n)}
relevant size-bounds w.r.t. t₂:
X₄: X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₂: X₄ {O(n)}
Results in: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
TWN: t₆: l8→l9
TWN - Lifting for t₆: l8→l9 of 2⋅X₄+2⋅X₅+4 {O(n)}
relevant size-bounds w.r.t. t₂:
X₄: X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₂: X₄ {O(n)}
Results in: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
TWN: t₈: l9→l6
TWN - Lifting for t₈: l9→l6 of 2⋅X₄+2⋅X₅+4 {O(n)}
relevant size-bounds w.r.t. t₂:
X₄: X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₂: X₄ {O(n)}
Results in: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
TWN: t₉: l6→l10
TWN - Lifting for t₉: l6→l10 of 2⋅X₄+2⋅X₅+4 {O(n)}
relevant size-bounds w.r.t. t₂:
X₄: X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₂: X₄ {O(n)}
Results in: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
TWN: t₁₀: l6→l10
TWN - Lifting for t₁₀: l6→l10 of 2⋅X₄+2⋅X₅+4 {O(n)}
relevant size-bounds w.r.t. t₂:
X₄: X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₂: X₄ {O(n)}
Results in: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
TWN: t₁₂: l10→l7
TWN - Lifting for t₁₂: l10→l7 of 2⋅X₄+2⋅X₅+4 {O(n)}
relevant size-bounds w.r.t. t₂:
X₄: X₄ {O(n)}
X₅: 0 {O(1)}
Runtime-bound of t₂: X₄ {O(n)}
Results in: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
MPRF for transition t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₆-1, X₂, X₃, X₄, X₅, X₆) :|: 1 < X₆ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄+1 {O(n^2)}
MPRF for transition t₁₅: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₁₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄⋅X₄+2⋅X₄+1 {O(n^2)}
MPRF for transition t₁₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: X₂ < 0 ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
MPRF for transition t₁₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₁) :|: 0 < X₂ ∧ X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₄⋅X₄+X₄ {O(n^2)}
Chain transitions t₂₁: l4→l1 and t₂: l1→l7 to t₂₀₈: l4→l7
Chain transitions t₁: l12→l1 and t₂: l1→l7 to t₂₀₉: l12→l7
Chain transitions t₁: l12→l1 and t₃: l1→l13 to t₂₁₀: l12→l13
Chain transitions t₂₁: l4→l1 and t₃: l1→l13 to t₂₁₁: l4→l13
Chain transitions t₁₀: l6→l10 and t₁₂: l10→l7 to t₂₁₂: l6→l7
Chain transitions t₉: l6→l10 and t₁₂: l10→l7 to t₂₁₃: l6→l7
Chain transitions t₁₅: l5→l11 and t₁₇: l11→l3 to t₂₁₄: l5→l3
Chain transitions t₅: l7→l2 and t₁₃: l2→l5 to t₂₁₅: l7→l5
Chain transitions t₁₁: l6→l2 and t₁₃: l2→l5 to t₂₁₆: l6→l5
Chain transitions t₁₁: l6→l2 and t₁₄: l2→l4 to t₂₁₇: l6→l4
Chain transitions t₅: l7→l2 and t₁₄: l2→l4 to t₂₁₈: l7→l4
Chain transitions t₁₉: l3→l2 and t₁₄: l2→l4 to t₂₁₉: l3→l4
Chain transitions t₁₉: l3→l2 and t₁₃: l2→l5 to t₂₂₀: l3→l5
Chain transitions t₁₈: l3→l2 and t₁₄: l2→l4 to t₂₂₁: l3→l4
Chain transitions t₁₈: l3→l2 and t₁₃: l2→l5 to t₂₂₂: l3→l5
Chain transitions t₂₁₄: l5→l3 and t₂₂₂: l3→l5 to t₂₂₃: l5→l5
Chain transitions t₂₁₄: l5→l3 and t₂₂₀: l3→l5 to t₂₂₄: l5→l5
Chain transitions t₂₁₄: l5→l3 and t₂₂₁: l3→l4 to t₂₂₅: l5→l4
Chain transitions t₂₁₄: l5→l3 and t₂₁₉: l3→l4 to t₂₂₆: l5→l4
Chain transitions t₂₁₄: l5→l3 and t₂₀: l3→l4 to t₂₂₇: l5→l4
Chain transitions t₂₁₄: l5→l3 and t₁₉: l3→l2 to t₂₂₈: l5→l2
Chain transitions t₂₁₄: l5→l3 and t₁₈: l3→l2 to t₂₂₉: l5→l2
Chain transitions t₂₁₈: l7→l4 and t₂₀₈: l4→l7 to t₂₃₀: l7→l7
Chain transitions t₂₁₇: l6→l4 and t₂₀₈: l4→l7 to t₂₃₁: l6→l7
Chain transitions t₂₁₇: l6→l4 and t₂₁₁: l4→l13 to t₂₃₂: l6→l13
Chain transitions t₂₁₈: l7→l4 and t₂₁₁: l4→l13 to t₂₃₃: l7→l13
Chain transitions t₂₂₇: l5→l4 and t₂₁₁: l4→l13 to t₂₃₄: l5→l13
Chain transitions t₂₂₇: l5→l4 and t₂₀₈: l4→l7 to t₂₃₅: l5→l7
Chain transitions t₂₂₇: l5→l4 and t₂₁: l4→l1 to t₂₃₆: l5→l1
Chain transitions t₂₁₇: l6→l4 and t₂₁: l4→l1 to t₂₃₇: l6→l1
Chain transitions t₂₁₈: l7→l4 and t₂₁: l4→l1 to t₂₃₈: l7→l1
Chain transitions t₂₂₆: l5→l4 and t₂₁: l4→l1 to t₂₃₉: l5→l1
Chain transitions t₂₂₆: l5→l4 and t₂₁₁: l4→l13 to t₂₄₀: l5→l13
Chain transitions t₂₂₆: l5→l4 and t₂₀₈: l4→l7 to t₂₄₁: l5→l7
Chain transitions t₂₂₅: l5→l4 and t₂₁: l4→l1 to t₂₄₂: l5→l1
Chain transitions t₂₂₅: l5→l4 and t₂₁₁: l4→l13 to t₂₄₃: l5→l13
Chain transitions t₂₂₅: l5→l4 and t₂₀₈: l4→l7 to t₂₄₄: l5→l7
Chain transitions t₈: l9→l6 and t₂₃₁: l6→l7 to t₂₄₅: l9→l7
Chain transitions t₈: l9→l6 and t₂₁₃: l6→l7 to t₂₄₆: l9→l7
Chain transitions t₈: l9→l6 and t₂₁₂: l6→l7 to t₂₄₇: l9→l7
Chain transitions t₈: l9→l6 and t₂₁₆: l6→l5 to t₂₄₈: l9→l5
Chain transitions t₈: l9→l6 and t₂₁₇: l6→l4 to t₂₄₉: l9→l4
Chain transitions t₈: l9→l6 and t₁₁: l6→l2 to t₂₅₀: l9→l2
Chain transitions t₈: l9→l6 and t₂₃₂: l6→l13 to t₂₅₁: l9→l13
Chain transitions t₈: l9→l6 and t₁₀: l6→l10 to t₂₅₂: l9→l10
Chain transitions t₈: l9→l6 and t₉: l6→l10 to t₂₅₃: l9→l10
Chain transitions t₈: l9→l6 and t₂₃₇: l6→l1 to t₂₅₄: l9→l1
Chain transitions t₄: l7→l8 and t₆: l8→l9 to t₂₅₅: l7→l9
Chain transitions t₂₅₅: l7→l9 and t₂₄₇: l9→l7 to t₂₅₆: l7→l7
Chain transitions t₂₅₅: l7→l9 and t₂₄₆: l9→l7 to t₂₅₇: l7→l7
Chain transitions t₂₅₅: l7→l9 and t₂₄₅: l9→l7 to t₂₅₈: l7→l7
Chain transitions t₂₅₅: l7→l9 and t₈: l9→l6 to t₂₅₉: l7→l6
Chain transitions t₂₅₅: l7→l9 and t₂₄₈: l9→l5 to t₂₆₀: l7→l5
Chain transitions t₂₅₅: l7→l9 and t₂₄₉: l9→l4 to t₂₆₁: l7→l4
Chain transitions t₂₅₅: l7→l9 and t₂₅₀: l9→l2 to t₂₆₂: l7→l2
Chain transitions t₂₅₅: l7→l9 and t₂₅₁: l9→l13 to t₂₆₃: l7→l13
Chain transitions t₂₅₅: l7→l9 and t₂₅₃: l9→l10 to t₂₆₄: l7→l10
Chain transitions t₂₅₅: l7→l9 and t₂₅₂: l9→l10 to t₂₆₅: l7→l10
Chain transitions t₂₅₅: l7→l9 and t₂₅₄: l9→l1 to t₂₆₆: l7→l1
Analysing control-flow refined program
Cut unsatisfiable transition t₂₃₀: l7→l7
Eliminate variables {Temp_Int₁₅₅₁,X₀,X₂} that do not contribute to the problem
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l11
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l2
Found invariant 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l6
Found invariant X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l7
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant X₁ ≤ X₂ ∧ X₁ ≤ 0 for location l13
Found invariant 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l8
Found invariant X₁ ≤ X₂ for location l1
Found invariant 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l10
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ 1+X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ 1+X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ 1+X₀ for location l4
Found invariant 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ for location l9
Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l3
Found invariant X₁ ≤ X₂ ∧ X₁ ≤ 0 for location l14
MPRF for transition t₃₄₂: l5(X₀, X₁, X₂, X₃, X₄) -{5}> l7(X₀, X₁-1, X₂, 0, X₄) :|: Temp_Int₁₂₅₉ ≤ 0 ∧ 0 ≤ Temp_Int₁₂₅₉ ∧ 1 < X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₃₄₃: l5(X₀, X₁, X₂, X₃, X₄) -{6}> l7(X₀-1, X₁-1, X₂, 0, X₀) :|: 0 < Temp_Int₁₂₅₉ ∧ X₀ ≤ 1 ∧ 1 < X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+3 {O(n)}
MPRF for transition t₃₄₄: l5(X₀, X₁, X₂, X₃, X₄) -{6}> l7(X₀-1, X₁-1, X₂, 0, X₀) :|: Temp_Int₁₂₅₉ < 0 ∧ X₀ ≤ 1 ∧ 1 < X₁ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂+3 {O(n)}
MPRF for transition t₃₅₅: l7(X₀, X₁, X₂, X₃, X₄) -{2}> l5(X₃-1, X₁, X₂, X₃, X₃) :|: X₂ ≤ X₃ ∧ 1 < X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₃₅₆: l7(X₀, X₁, X₂, X₃, X₄) -{5}> l5(X₃-1, X₁, X₂, X₃, X₃) :|: X₃ < X₂ ∧ Temp_Int₁₅₅₈ ≤ 0 ∧ 0 ≤ Temp_Int₁₅₅₈ ∧ 1 < X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₃₆₀: l7(X₀, X₁, X₂, X₃, X₄) -{7}> l7(X₃-1, X₁-1, X₂, 0, X₃) :|: X₃ < X₂ ∧ Temp_Int₁₅₄₆ ≤ 0 ∧ 0 ≤ Temp_Int₁₅₄₆ ∧ X₃ ≤ 1 ∧ 1 < X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₂ {O(n)}
TWN: t₃₅₈: l7→l7
cycle: [t₃₅₈: l7→l7; t₃₅₉: l7→l7]
loop: (X₃ < X₂ ∨ X₃ < X₂,(X₂,X₃) -> (X₂,X₃+1)
order: [X₂; X₃]
closed-form:
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₃ < X₂
alphas_abs: X₃+X₂
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₃+2 {O(n)}
loop: (X₃ < X₂ ∨ X₃ < X₂,(X₂,X₃) -> (X₂,X₃+1)
order: [X₂; X₃]
closed-form:
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₃ < X₂
alphas_abs: X₃+X₂
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₃+2 {O(n)}
loop: (X₃ < X₂ ∨ X₃ < X₂,(X₂,X₃) -> (X₂,X₃+1)
order: [X₂; X₃]
closed-form:
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₃ < X₂
alphas_abs: X₃+X₂
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₃+2 {O(n)}
loop: (X₃ < X₂ ∨ X₃ < X₂,(X₂,X₃) -> (X₂,X₃+1)
order: [X₂; X₃]
closed-form:
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₃ < X₂
alphas_abs: X₃+X₂
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₃+2 {O(n)}
loop: (X₃ < X₂ ∨ X₃ < X₂,(X₂,X₃) -> (X₂,X₃+1)
order: [X₂; X₃]
closed-form:
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₃ < X₂
alphas_abs: X₃+X₂
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₃+2 {O(n)}
loop: (X₃ < X₂ ∨ X₃ < X₂,(X₂,X₃) -> (X₂,X₃+1)
order: [X₂; X₃]
closed-form:
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₃ < X₂
alphas_abs: X₃+X₂
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₃+2 {O(n)}
loop: (X₃ < X₂ ∨ X₃ < X₂,(X₂,X₃) -> (X₂,X₃+1)
order: [X₂; X₃]
closed-form:
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₃ < X₂
alphas_abs: X₃+X₂
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₃+2 {O(n)}
loop: (X₃ < X₂ ∨ X₃ < X₂,(X₂,X₃) -> (X₂,X₃+1)
order: [X₂; X₃]
closed-form:
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₃ < X₂
alphas_abs: X₃+X₂
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₃+2 {O(n)}
loop: (X₃ < X₂ ∨ X₃ < X₂,(X₂,X₃) -> (X₂,X₃+1)
order: [X₂; X₃]
closed-form:
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₃ < X₂
alphas_abs: X₃+X₂
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₃+2 {O(n)}
loop: (X₃ < X₂ ∨ X₃ < X₂,(X₂,X₃) -> (X₂,X₃+1)
order: [X₂; X₃]
closed-form:
X₂: X₂
X₃: X₃ + [[n != 0]] * n^1
Termination: true
Formula:
1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ 1 < 0
∨ X₃ < X₂ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: X₃ < X₂
alphas_abs: X₃+X₂
M: 0
N: 1
Bound: 2⋅X₂+2⋅X₃+2 {O(n)}
TWN - Lifting for t₃₅₈: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₆₀:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₆₀: X₂ {O(n)}
Results in: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
TWN - Lifting for t₃₅₈: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₄₄:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₄₄: 2⋅X₂+3 {O(n)}
Results in: 4⋅X₂⋅X₂+14⋅X₂+12 {O(n^2)}
TWN - Lifting for t₃₅₈: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₄₃:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₄₃: 2⋅X₂+3 {O(n)}
Results in: 4⋅X₂⋅X₂+14⋅X₂+12 {O(n^2)}
TWN - Lifting for t₃₅₈: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₄₂:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₄₂: X₂ {O(n)}
Results in: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
TWN - Lifting for t₃₅₈: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₂₅:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₂₅: 1 {O(1)}
Results in: 2⋅X₂+4 {O(n)}
TWN - Lifting for t₃₅₈: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₆₀:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₆₀: X₂ {O(n)}
Results in: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
TWN - Lifting for t₃₅₈: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₄₄:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₄₄: 2⋅X₂+3 {O(n)}
Results in: 4⋅X₂⋅X₂+14⋅X₂+12 {O(n^2)}
TWN - Lifting for t₃₅₈: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₄₃:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₄₃: 2⋅X₂+3 {O(n)}
Results in: 4⋅X₂⋅X₂+14⋅X₂+12 {O(n^2)}
TWN - Lifting for t₃₅₈: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₄₂:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₄₂: X₂ {O(n)}
Results in: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
TWN - Lifting for t₃₅₈: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₂₅:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₂₅: 1 {O(1)}
Results in: 2⋅X₂+4 {O(n)}
TWN: t₃₅₉: l7→l7
TWN - Lifting for t₃₅₉: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₆₀:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₆₀: X₂ {O(n)}
Results in: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
TWN - Lifting for t₃₅₉: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₄₄:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₄₄: 2⋅X₂+3 {O(n)}
Results in: 4⋅X₂⋅X₂+14⋅X₂+12 {O(n^2)}
TWN - Lifting for t₃₅₉: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₄₃:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₄₃: 2⋅X₂+3 {O(n)}
Results in: 4⋅X₂⋅X₂+14⋅X₂+12 {O(n^2)}
TWN - Lifting for t₃₅₉: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₄₂:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₄₂: X₂ {O(n)}
Results in: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
TWN - Lifting for t₃₅₉: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₂₅:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₂₅: 1 {O(1)}
Results in: 2⋅X₂+4 {O(n)}
TWN - Lifting for t₃₅₉: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₆₀:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₆₀: X₂ {O(n)}
Results in: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
TWN - Lifting for t₃₅₉: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₄₄:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₄₄: 2⋅X₂+3 {O(n)}
Results in: 4⋅X₂⋅X₂+14⋅X₂+12 {O(n^2)}
TWN - Lifting for t₃₅₉: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₄₃:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₄₃: 2⋅X₂+3 {O(n)}
Results in: 4⋅X₂⋅X₂+14⋅X₂+12 {O(n^2)}
TWN - Lifting for t₃₅₉: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₄₂:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₄₂: X₂ {O(n)}
Results in: 2⋅X₂⋅X₂+4⋅X₂ {O(n^2)}
TWN - Lifting for t₃₅₉: l7→l7 of 2⋅X₂+2⋅X₃+4 {O(n)}
relevant size-bounds w.r.t. t₃₂₅:
X₂: X₂ {O(n)}
X₃: 0 {O(1)}
Runtime-bound of t₃₂₅: 1 {O(1)}
Results in: 2⋅X₂+4 {O(n)}
MPRF for transition t₃₄₀: l5(X₀, X₁, X₂, X₃, X₄) -{4}> l5(X₀-1, X₁, X₂, X₃, X₀) :|: Temp_Int₁₂₅₉ < 0 ∧ 1 < X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2304⋅X₂⋅X₂⋅X₂⋅X₂+14592⋅X₂⋅X₂⋅X₂+33856⋅X₂⋅X₂+34048⋅X₂+12544 {O(n^4)}
MPRF for transition t₃₄₁: l5(X₀, X₁, X₂, X₃, X₄) -{4}> l5(X₀-1, X₁, X₂, X₃, X₀) :|: 0 < Temp_Int₁₂₅₉ ∧ 1 < X₀ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2304⋅X₂⋅X₂⋅X₂⋅X₂+14592⋅X₂⋅X₂⋅X₂+33856⋅X₂⋅X₂+34048⋅X₂+12544 {O(n^4)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₅: l7→l2
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₀+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₀ ≤ 0 for location n_l10___8
Found invariant 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l6___3
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l6___9
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l2
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l9___10
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ X₁ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l2___7
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l3___4
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l8___11
Found invariant 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2+X₀ ≤ X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₀ ≤ 0 for location n_l10___2
Found invariant 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l9___4
Found invariant 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l10___1
Found invariant 1+X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l8___5
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l11___2
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l11___5
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l11___9
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l5___10
Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 5 ≤ X₅+X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 3 ≤ X₅ ∧ 6 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 4 ≤ X₁+X₅ ∧ 2+X₁ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l5___6
Found invariant X₅ ≤ X₄ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location n_l7___6
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l7
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 3 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 3 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ X₃ ≤ 1+X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₁ for location n_l3___8
Found invariant X₃ ≤ X₄ ∧ X₃ ≤ 0 for location l13
Found invariant X₃ ≤ X₄ for location l1
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 0 ≤ 1+X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 0 ≤ 1+X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ 1+X₁ for location l4
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l3___1
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location n_l10___7
Found invariant X₃ ≤ X₄ ∧ X₃ ≤ 0 for location l14
Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ X₆ ≤ 1+X₁ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 5 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ 2+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ X₅ ≤ 1+X₁ ∧ 2 ≤ X₅ ∧ 5 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 3 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 2 ≤ X₀+X₅ ∧ 2+X₀ ≤ X₅ ∧ 3 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ 2+X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 3+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l5___3
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₆₈₈: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₄ ∧ X₅ < X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₆₉₀: n_l8___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₆₉₂: n_l9___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___9(NoDet0, X₁, X₂, Arg3_P, Arg4_P, Arg5_P, X₆) :|: 1+Arg5_P ≤ Arg4_P ∧ Arg3_P ≤ Arg4_P ∧ 0 ≤ Arg5_P ∧ 1 ≤ Arg3_P ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ 1+X₅ ≤ X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₇₀₅: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₆₈₆: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 1+X₅ ≤ X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₆₈₇: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l10___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ < 0 ∧ 1+X₅ ≤ X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₆₈₂: n_l10___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 0 < X₀ ∧ 1+X₅ ≤ X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₄ {O(n)} for transition t₆₈₃: n_l10___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___6(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₀ < 0 ∧ 1+X₅ ≤ X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 1+X₅ ≤ X₄ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₀+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₀ ≤ X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2+X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₀ ≤ 0
All Bounds
Timebounds
Overall timebound:17⋅X₄⋅X₄+37⋅X₄+7 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₄ {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₅: X₄ {O(n)}
t₆: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₈: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₉: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₁: X₄ {O(n)}
t₁₂: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₃: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₁₄: X₄ {O(n)}
t₁₅: X₄⋅X₄+X₄ {O(n^2)}
t₁₇: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₁₈: X₄⋅X₄+X₄ {O(n^2)}
t₁₉: X₄⋅X₄+X₄ {O(n^2)}
t₂₀: X₄+1 {O(n)}
t₂₁: X₄ {O(n)}
t₂₂: 1 {O(1)}
Costbounds
Overall costbound: 17⋅X₄⋅X₄+37⋅X₄+7 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₄ {O(n)}
t₃: 1 {O(1)}
t₄: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₅: X₄ {O(n)}
t₆: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₈: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₉: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₀: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₁: X₄ {O(n)}
t₁₂: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₃: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₁₄: X₄ {O(n)}
t₁₅: X₄⋅X₄+X₄ {O(n^2)}
t₁₇: X₄⋅X₄+2⋅X₄+1 {O(n^2)}
t₁₈: X₄⋅X₄+X₄ {O(n^2)}
t₁₉: X₄⋅X₄+X₄ {O(n^2)}
t₂₀: X₄+1 {O(n)}
t₂₁: X₄ {O(n)}
t₂₂: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₄ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₁: 4⋅X₄⋅X₄+8⋅X₄+X₁+1 {O(n^2)}
t₂, X₃: X₄ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: 0 {O(1)}
t₂, X₆: 12⋅X₄⋅X₄+24⋅X₄+X₆+1 {O(n^2)}
t₃, X₁: 4⋅X₄⋅X₄+8⋅X₄+X₁+1 {O(n^2)}
t₃, X₃: 2⋅X₄ {O(n)}
t₃, X₄: 2⋅X₄ {O(n)}
t₃, X₅: 16⋅X₄⋅X₄+32⋅X₄+X₅ {O(n^2)}
t₃, X₆: 12⋅X₄⋅X₄+24⋅X₄+X₆+1 {O(n^2)}
t₄, X₁: 4⋅X₄⋅X₄+8⋅X₄+X₁+1 {O(n^2)}
t₄, X₃: X₄ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₄, X₆: 12⋅X₄⋅X₄+24⋅X₄+X₆+1 {O(n^2)}
t₅, X₁: 4⋅X₄⋅X₄+8⋅X₄+X₁+1 {O(n^2)}
t₅, X₃: X₄ {O(n)}
t₅, X₄: X₄ {O(n)}
t₅, X₅: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₅, X₆: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₆, X₁: 4⋅X₄⋅X₄+8⋅X₄+X₁+1 {O(n^2)}
t₆, X₃: X₄ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₆, X₆: 12⋅X₄⋅X₄+24⋅X₄+X₆+1 {O(n^2)}
t₈, X₁: 4⋅X₄⋅X₄+8⋅X₄+X₁+1 {O(n^2)}
t₈, X₃: X₄ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₈, X₆: 12⋅X₄⋅X₄+24⋅X₄+X₆+1 {O(n^2)}
t₉, X₁: 4⋅X₄⋅X₄+8⋅X₄+X₁+1 {O(n^2)}
t₉, X₃: X₄ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₉, X₆: 12⋅X₄⋅X₄+24⋅X₄+X₆+1 {O(n^2)}
t₁₀, X₁: 4⋅X₄⋅X₄+8⋅X₄+X₁+1 {O(n^2)}
t₁₀, X₃: X₄ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₀, X₆: 12⋅X₄⋅X₄+24⋅X₄+X₆+1 {O(n^2)}
t₁₁, X₀: 0 {O(1)}
t₁₁, X₁: 4⋅X₄⋅X₄+8⋅X₄+X₁+1 {O(n^2)}
t₁₁, X₃: X₄ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₁, X₆: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₂, X₁: 4⋅X₄⋅X₄+8⋅X₄+X₁+1 {O(n^2)}
t₁₂, X₃: X₄ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: 2⋅X₄⋅X₄+4⋅X₄ {O(n^2)}
t₁₂, X₆: 12⋅X₄⋅X₄+24⋅X₄+X₆+1 {O(n^2)}
t₁₃, X₁: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₃, X₃: X₄ {O(n)}
t₁₃, X₄: X₄ {O(n)}
t₁₃, X₅: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₃, X₆: 12⋅X₄⋅X₄+24⋅X₄ {O(n^2)}
t₁₄, X₁: 1 {O(1)}
t₁₄, X₃: X₄ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: 12⋅X₄⋅X₄+24⋅X₄ {O(n^2)}
t₁₄, X₆: 1 {O(1)}
t₁₅, X₁: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₅, X₃: X₄ {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₅, X₆: 12⋅X₄⋅X₄+24⋅X₄ {O(n^2)}
t₁₇, X₁: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₇, X₃: X₄ {O(n)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₇, X₆: 12⋅X₄⋅X₄+24⋅X₄ {O(n^2)}
t₁₈, X₁: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₈, X₃: X₄ {O(n)}
t₁₈, X₄: X₄ {O(n)}
t₁₈, X₅: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₈, X₆: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₉, X₁: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₉, X₃: X₄ {O(n)}
t₁₉, X₄: X₄ {O(n)}
t₁₉, X₅: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₁₉, X₆: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₂₀, X₁: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₂₀, X₂: 0 {O(1)}
t₂₀, X₃: X₄ {O(n)}
t₂₀, X₄: X₄ {O(n)}
t₂₀, X₅: 4⋅X₄⋅X₄+8⋅X₄ {O(n^2)}
t₂₀, X₆: 12⋅X₄⋅X₄+24⋅X₄ {O(n^2)}
t₂₁, X₁: 4⋅X₄⋅X₄+8⋅X₄+1 {O(n^2)}
t₂₁, X₃: X₄ {O(n)}
t₂₁, X₄: X₄ {O(n)}
t₂₁, X₅: 16⋅X₄⋅X₄+32⋅X₄ {O(n^2)}
t₂₁, X₆: 12⋅X₄⋅X₄+24⋅X₄+1 {O(n^2)}
t₂₂, X₁: 4⋅X₄⋅X₄+8⋅X₄+X₁+1 {O(n^2)}
t₂₂, X₃: 2⋅X₄ {O(n)}
t₂₂, X₄: 2⋅X₄ {O(n)}
t₂₂, X₅: 16⋅X₄⋅X₄+32⋅X₄+X₅ {O(n^2)}
t₂₂, X₆: 12⋅X₄⋅X₄+24⋅X₄+X₆+1 {O(n^2)}