Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₀, X₅, X₆) :|: X₃ ≤ X₅
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₃
t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₀)
t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, 0, X₆) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ nondef.0 ≤ 0 ∧ 0 ≤ nondef.0 ∧ 0 < nondef.0
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef.0 ∧ 2⋅nondef.0 ≤ X₄ ∧ X₄ < 2⋅nondef.0+2 ∧ 0 < nondef.0
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, 0, X₆) :|: X₄ < 0 ∧ nondef.0 ≤ 0 ∧ X₄ ≤ 2⋅nondef.0 ∧ 2⋅nondef.0 < X₄+2 ∧ 0 < nondef.0
t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ nondef.0 ≤ 0 ∧ 0 ≤ nondef.0 ∧ nondef.0 ≤ 0
t₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef.0 ∧ 2⋅nondef.0 ≤ X₄ ∧ X₄ < 2⋅nondef.0+2 ∧ nondef.0 ≤ 0
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < 0 ∧ nondef.0 ≤ 0 ∧ X₄ ≤ 2⋅nondef.0 ∧ 2⋅nondef.0 < X₄+2 ∧ nondef.0 ≤ 0
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₃, X₅, X₆)
t₂₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₂
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₁
t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < X₀
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆
t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆)
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅)
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆)
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, nondef.2, X₃, X₄, X₅, X₆)

Preprocessing

Cut unsatisfiable transition t₂: l11→l1

Cut unsatisfiable transition t₄: l11→l1

Found invariant X₄ ≤ X₃ for location l11

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l2

Found invariant 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l7

Found invariant 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l5

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l13

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l8

Found invariant X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l1

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location l10

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l4

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l9

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l3

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₀, X₅, X₆) :|: X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₃ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₀) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef.0 ∧ 2⋅nondef.0 ≤ X₄ ∧ X₄ < 2⋅nondef.0+2 ∧ 0 < nondef.0 ∧ X₄ ≤ X₃
t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ nondef.0 ≤ 0 ∧ 0 ≤ nondef.0 ∧ nondef.0 ≤ 0 ∧ X₄ ≤ X₃
t₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef.0 ∧ 2⋅nondef.0 ≤ X₄ ∧ X₄ < 2⋅nondef.0+2 ∧ nondef.0 ≤ 0 ∧ X₄ ≤ X₃
t₇: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ < 0 ∧ nondef.0 ≤ 0 ∧ X₄ ≤ 2⋅nondef.0 ∧ 2⋅nondef.0 < X₄+2 ∧ nondef.0 ≤ 0 ∧ X₄ ≤ X₃
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₃, X₅, X₆)
t₂₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ 1 ∧ X₄ ≤ X₃
t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₂ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₁ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < X₀ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, nondef.2, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀

MPRF for transition t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(nondef.0, X₁, X₂, X₃, X₄, 0, X₆) :|: 0 < X₄ ∧ 0 ≤ nondef.0 ∧ 2⋅nondef.0 ≤ X₄ ∧ X₄ < 2⋅nondef.0+2 ∧ 0 < nondef.0 ∧ X₄ ≤ X₃ of depth 1:

new bound:

2⋅X₃+1 {O(n)}

MPRF for transition t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₀, X₅, X₆) :|: X₃ ≤ X₅ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃+1 {O(n)}

MPRF for transition t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₃ ∧ X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+3⋅X₃+2 {O(n^2)}

MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+3⋅X₃+2 {O(n^2)}

MPRF for transition t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+3⋅X₃+2 {O(n^2)}

MPRF for transition t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+3⋅X₃+2 {O(n^2)}

MPRF for transition t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < X₀ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+3⋅X₃+2 {O(n^2)}

MPRF for transition t₂₀: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₁ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₂₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃+2⋅X₃ {O(n^2)}

MPRF for transition t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₆ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃⋅X₃+3⋅X₃⋅X₃+3⋅X₃+1 {O(n^3)}

MPRF for transition t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃⋅X₃⋅X₃+5⋅X₃⋅X₃⋅X₃+6⋅X₃⋅X₃+X₃ {O(n^4)}

MPRF for transition t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, nondef.2, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃⋅X₃+2⋅X₃⋅X₃+X₃ {O(n^3)}

MPRF for transition t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₂ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₃⋅X₃⋅X₃⋅X₃+10⋅X₃⋅X₃⋅X₃+12⋅X₃⋅X₃+2⋅X₃ {O(n^4)}

MPRF for transition t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₀) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃⋅X₃⋅X₃⋅X₃+5⋅X₃⋅X₃⋅X₃+6⋅X₃⋅X₃+X₃ {O(n^4)}

knowledge_propagation leads to new time bound X₃⋅X₃⋅X₃+3⋅X₃⋅X₃+3⋅X₃+1 {O(n^3)} for transition t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₃⋅X₃⋅X₃+2⋅X₃⋅X₃+X₃ {O(n^3)} for transition t₁₉: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₂ ∧ X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₃⋅X₃⋅X₃+2⋅X₃⋅X₃+X₃ {O(n^3)} for transition t₂₁: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆-X₀) :|: X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀

Chain transitions t₂₂: l4→l1 and t₈: l1→l6 to t₃₀₈: l4→l6

Chain transitions t₃: l11→l1 and t₈: l1→l6 to t₃₀₉: l11→l6

Chain transitions t₃: l11→l1 and t₉: l1→l11 to t₃₁₀: l11→l11

Chain transitions t₂₂: l4→l1 and t₉: l1→l11 to t₃₁₁: l4→l11

Chain transitions t₁₉: l2→l10 and t₂₁: l10→l3 to t₃₁₂: l2→l3

Chain transitions t₁₈: l9→l2 and t₂₀: l2→l4 to t₃₁₃: l9→l4

Chain transitions t₁₈: l9→l2 and t₃₁₂: l2→l3 to t₃₁₄: l9→l3

Chain transitions t₁₈: l9→l2 and t₁₉: l2→l10 to t₃₁₅: l9→l10

Chain transitions t₃₁₄: l9→l3 and t₁₄: l3→l8 to t₃₁₆: l9→l8

Chain transitions t₁₃: l5→l3 and t₁₄: l3→l8 to t₃₁₇: l5→l8

Chain transitions t₁₃: l5→l3 and t₁₅: l3→l4 to t₃₁₈: l5→l4

Chain transitions t₃₁₄: l9→l3 and t₁₅: l3→l4 to t₃₁₉: l9→l4

Chain transitions t₃₁₉: l9→l4 and t₃₀₈: l4→l6 to t₃₂₀: l9→l6

Chain transitions t₃₁₃: l9→l4 and t₃₀₈: l4→l6 to t₃₂₁: l9→l6

Chain transitions t₃₁₃: l9→l4 and t₃₁₁: l4→l11 to t₃₂₂: l9→l11

Chain transitions t₃₁₉: l9→l4 and t₃₁₁: l4→l11 to t₃₂₃: l9→l11

Chain transitions t₃₁₈: l5→l4 and t₃₁₁: l4→l11 to t₃₂₄: l5→l11

Chain transitions t₃₁₈: l5→l4 and t₃₀₈: l4→l6 to t₃₂₅: l5→l6

Chain transitions t₃₁₈: l5→l4 and t₂₂: l4→l1 to t₃₂₆: l5→l1

Chain transitions t₃₁₃: l9→l4 and t₂₂: l4→l1 to t₃₂₇: l9→l1

Chain transitions t₃₁₉: l9→l4 and t₂₂: l4→l1 to t₃₂₈: l9→l1

Chain transitions t₁₂: l7→l5 and t₃₁₇: l5→l8 to t₃₂₉: l7→l8

Chain transitions t₁₂: l7→l5 and t₃₂₅: l5→l6 to t₃₃₀: l7→l6

Chain transitions t₁₂: l7→l5 and t₃₁₈: l5→l4 to t₃₃₁: l7→l4

Chain transitions t₁₂: l7→l5 and t₁₃: l5→l3 to t₃₃₂: l7→l3

Chain transitions t₁₂: l7→l5 and t₃₂₄: l5→l11 to t₃₃₃: l7→l11

Chain transitions t₁₂: l7→l5 and t₃₂₆: l5→l1 to t₃₃₄: l7→l1

Chain transitions t₃₂₁: l9→l6 and t₁₀: l6→l7 to t₃₃₅: l9→l7

Chain transitions t₃₂₀: l9→l6 and t₁₀: l6→l7 to t₃₃₆: l9→l7

Chain transitions t₃₃₀: l7→l6 and t₁₀: l6→l7 to t₃₃₇: l7→l7

Chain transitions t₃₀₉: l11→l6 and t₁₀: l6→l7 to t₃₃₈: l11→l7

Chain transitions t₃₁₆: l9→l8 and t₁₆: l8→l9 to t₃₃₉: l9→l9

Chain transitions t₃₂₉: l7→l8 and t₁₆: l8→l9 to t₃₄₀: l7→l9

Analysing control-flow refined program

Cut unsatisfiable transition t₃₁₀: l11→l11

Eliminate variables {X₂} that do not contribute to the problem

Found invariant X₃ ≤ X₂ for location l11

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l2

Found invariant 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l7

Found invariant 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l5

Found invariant X₃ ≤ 1 ∧ X₃ ≤ X₂ for location l13

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l8

Found invariant X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l1

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₄+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l10

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l4

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l9

Found invariant X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l3

Found invariant X₃ ≤ 1 ∧ X₃ ≤ X₂ for location l14

MPRF for transition t₄₀₂: l11(X₀, X₁, X₂, X₃, X₄, X₅) -{3}> l7(nondef.0, X₁, X₂, X₃, 0, X₅) :|: 0 < X₃ ∧ 0 ≤ nondef.0 ∧ 2⋅nondef.0 ≤ X₃ ∧ X₃ < 2⋅nondef.0+2 ∧ 0 < nondef.0 ∧ 0 < X₂ ∧ X₃ ≤ X₂ of depth 1:

new bound:

2⋅X₂+1 {O(n)}

MPRF for transition t₄₀₆: l7(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l11(X₀, nondef.1, X₂, X₀, 1+X₄, X₄) :|: X₄ < X₀ ∧ X₂ ≤ X₄+1 ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂+2 {O(n)}

MPRF for transition t₄₁₇: l9(X₀, X₁, X₂, X₃, X₄, X₅) -{4}> l11(X₀, X₁, X₂, X₀, 1+X₄, X₅) :|: nondef.2 ≤ X₁ ∧ X₂ ≤ X₄+1 ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF for transition t₄₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l11(X₀, X₁, X₂, X₀, 1+X₄, X₅-X₀) :|: X₁ < nondef.2 ∧ X₅ < 2⋅X₀ ∧ X₂ ≤ X₄+1 ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₂+3 {O(n)}

MPRF for transition t₄₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅) -{6}> l7(X₀, nondef.1, X₂, X₃, 1+X₄, X₄) :|: X₄ < X₀ ∧ 1+X₄ < X₂ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

6⋅X₂⋅X₂+10⋅X₂ {O(n^2)}

MPRF for transition t₄₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅) -{4}> l9(X₀, nondef.1, X₂, X₃, X₄, X₄) :|: X₀ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

6⋅X₂⋅X₂+13⋅X₂+5 {O(n^2)}

MPRF for transition t₄₂₅: l9(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l7(X₀, X₁, X₂, X₃, 1+X₄, X₅) :|: nondef.2 ≤ X₁ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

6⋅X₂⋅X₂+16⋅X₂+10 {O(n^2)}

MPRF for transition t₄₂₆: l9(X₀, X₁, X₂, X₃, X₄, X₅) -{7}> l7(X₀, X₁, X₂, X₃, 1+X₄, X₅-X₀) :|: X₁ < nondef.2 ∧ X₅ < 2⋅X₀ ∧ 1+X₄ < X₂ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

6⋅X₂⋅X₂+16⋅X₂+10 {O(n^2)}

MPRF for transition t₄₂₈: l9(X₀, X₁, X₂, X₃, X₄, X₅) -{5}> l9(X₀, X₁, X₂, X₃, X₄, X₅-X₀) :|: X₁ < nondef.2 ∧ 2⋅X₀ ≤ X₅ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₂ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 3 ≤ X₂+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2 ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

12⋅X₂⋅X₂⋅X₂+35⋅X₂⋅X₂+25⋅X₂ {O(n^3)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₉: l1→l11

Found invariant X₄ ≤ X₃ for location l11

Found invariant X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___24

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l2___15

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l8___17

Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l1___22

Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 4 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l1___9

Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l9___4

Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l10___2

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l4___23

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 2 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 4 ≤ X₄+X₆ ∧ 5 ≤ X₃+X₆ ∧ 3 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___5

Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l6___21

Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l7___26

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l9___16

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___13

Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l5___6

Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l7___20

Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l2___3

Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l3___12

Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l6___27

Found invariant X₆ ≤ X₅ ∧ 1+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l10___14

Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___1

Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l5___25

Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ X₅ ≤ 1+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l5___19

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l13

Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l6___8

Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 0 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l7___7

Found invariant X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location l1

Found invariant 1+X₆ ≤ X₅ ∧ 2+X₆ ≤ X₃ ∧ 1 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₅ ∧ 4 ≤ X₄+X₅ ∧ 5 ≤ X₃+X₅ ∧ 3 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 5 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 3 ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l8___10

Found invariant 1+X₆ ≤ X₅ ∧ 1+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₃ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l4___11

Found invariant X₄ ≤ 1 ∧ X₄ ≤ X₃ for location l14

Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₄ ∧ 1+X₆ ≤ X₃ ∧ X₆ ≤ X₀ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₃+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₀ ∧ 1 ≤ X₅ ∧ 3 ≤ X₄+X₅ ∧ 3 ≤ X₃+X₅ ∧ 2 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀ for location n_l3___18

knowledge_propagation leads to new time bound 2⋅X₃+1 {O(n)} for transition t₆₆₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₃ ∧ X₅ < X₀ ∧ X₅ < X₃ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₃+1 {O(n)} for transition t₆₈₄: n_l6___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ < X₀ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1+X₅ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₃+1 {O(n)} for transition t₆₈₇: n_l7___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l5___25(X₀, NoDet0, X₂, X₃, Arg4_P, Arg5_P, X₆) :|: X₅ < X₀ ∧ 0 ≤ Arg5_P ∧ 1+Arg5_P ≤ X₃ ∧ X₀ ≤ Arg4_P ∧ 2 ≤ Arg4_P ∧ Arg4_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₃+1 {O(n)} for transition t₆₈₁: n_l5___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___24(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₅ < X₀ ∧ 1+X₅ ≤ X₃ ∧ 0 ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 0 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₄ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound 2⋅X₃+1 {O(n)} for transition t₆₇₄: n_l3___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l4___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ < X₀ ∧ X₅ ≤ X₆ ∧ X₆ < X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₃+X₆ ∧ 0 ≤ X₅+X₆ ∧ X₆ ≤ X₅ ∧ 1+X₅ ≤ X₃ ∧ 2 ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₆ ≤ X₅ ∧ X₄ ≤ X₃ ∧ 1+X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₄ ∧ 1 ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₃+X₆ ∧ 1+X₅ ≤ X₃ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₀ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₀+X₆ ∧ X₀ ≤ X₄ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ X₅+X₆ ≤ 0 ∧ 2+X₆ ≤ X₄ ∧ 2+X₆ ≤ X₃ ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ 0 ∧ 2+X₅ ≤ X₄ ∧ 2+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:5⋅X₃⋅X₃⋅X₃+19⋅X₃⋅X₃+31⋅X₃+20 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₃: 2⋅X₃+1 {O(n)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₉: X₃+1 {O(n)}
t₁₀: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₂: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₃: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₄: X₃⋅X₃⋅X₃+3⋅X₃⋅X₃+3⋅X₃+1 {O(n^3)}
t₁₅: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₆: X₃⋅X₃⋅X₃+3⋅X₃⋅X₃+3⋅X₃+1 {O(n^3)}
t₁₈: X₃⋅X₃⋅X₃+2⋅X₃⋅X₃+X₃ {O(n^3)}
t₁₉: X₃⋅X₃⋅X₃+2⋅X₃⋅X₃+X₃ {O(n^3)}
t₂₀: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₁: X₃⋅X₃⋅X₃+2⋅X₃⋅X₃+X₃ {O(n^3)}
t₂₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₃: 1 {O(1)}

Costbounds

Overall costbound: 5⋅X₃⋅X₃⋅X₃+19⋅X₃⋅X₃+31⋅X₃+20 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₃: 2⋅X₃+1 {O(n)}
t₅: 1 {O(1)}
t₆: 1 {O(1)}
t₇: 1 {O(1)}
t₈: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₉: X₃+1 {O(n)}
t₁₀: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₂: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₃: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₄: X₃⋅X₃⋅X₃+3⋅X₃⋅X₃+3⋅X₃+1 {O(n^3)}
t₁₅: X₃⋅X₃+3⋅X₃+2 {O(n^2)}
t₁₆: X₃⋅X₃⋅X₃+3⋅X₃⋅X₃+3⋅X₃+1 {O(n^3)}
t₁₈: X₃⋅X₃⋅X₃+2⋅X₃⋅X₃+X₃ {O(n^3)}
t₁₉: X₃⋅X₃⋅X₃+2⋅X₃⋅X₃+X₃ {O(n^3)}
t₂₀: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₁: X₃⋅X₃⋅X₃+2⋅X₃⋅X₃+X₃ {O(n^3)}
t₂₂: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₃: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₃ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₅: 0 {O(1)}
t₃, X₆: 3⋅X₃⋅X₃+6⋅X₃+X₆ {O(n^2)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 0 {O(1)}
t₅, X₅: X₅ {O(n)}
t₅, X₆: X₆ {O(n)}
t₆, X₃: 2⋅X₃ {O(n)}
t₆, X₄: 1 {O(1)}
t₆, X₅: X₃⋅X₃+2⋅X₃+X₅ {O(n^2)}
t₆, X₆: 3⋅X₃⋅X₃+6⋅X₃+X₆ {O(n^2)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: X₃ {O(n)}
t₇, X₅: X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₈, X₆: 6⋅X₃⋅X₃+12⋅X₃+X₆ {O(n^2)}
t₉, X₃: X₃ {O(n)}
t₉, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₉, X₆: 3⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₀, X₆: 6⋅X₃⋅X₃+12⋅X₃+X₆ {O(n^2)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₂, X₆: 6⋅X₃⋅X₃+12⋅X₃+X₆ {O(n^2)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₃, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₄, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₅, X₃: X₃ {O(n)}
t₁₅, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₅, X₆: 2⋅X₃⋅X₃+4⋅X₃ {O(n^2)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₆, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₈, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₉, X₃: X₃ {O(n)}
t₁₉, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₁₉, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₀, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₁, X₃: X₃ {O(n)}
t₂₁, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₁, X₆: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₂, X₃: X₃ {O(n)}
t₂₂, X₅: X₃⋅X₃+2⋅X₃ {O(n^2)}
t₂₂, X₆: 3⋅X₃⋅X₃+6⋅X₃ {O(n^2)}
t₂₃, X₃: 4⋅X₃ {O(n)}
t₂₃, X₄: X₃+1 {O(n)}
t₂₃, X₅: X₃⋅X₃+2⋅X₃+3⋅X₅ {O(n^2)}
t₂₃, X₆: 3⋅X₃⋅X₃+3⋅X₆+6⋅X₃ {O(n^2)}