Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₃-1, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆)
t₁₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1)
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂
t₁₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₀, X₄, X₆, X₆) :|: X₂ ≤ 0
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₄, X₄, 0, X₆)
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₀, X₄, X₅+1, X₆)
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₀, X₄, X₆, X₆) :|: X₆ ≤ 0
t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃
t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₁ ≤ 0
t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆)
Preprocessing
Found invariant X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l11
Found invariant 0 ≤ X₅ ∧ X₃ ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₃ ≤ 0 for location l2
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l6
Found invariant X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l12
Found invariant 0 ≤ X₅ ∧ X₃ ≤ X₄ for location l7
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₅ ∧ X₃ ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₃ ≤ 0 for location l13
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l8
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ for location l1
Found invariant X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l10
Found invariant 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ for location l9
Found invariant X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₃-1, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃
t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀
t₁₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀
t₁₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1) :|: X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀
t₁₈: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₅ ∧ X₃ ≤ X₅ ∧ X₃ ≤ X₄ ∧ X₃ ≤ 0
t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀
t₁₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₀, X₄, X₆, X₆) :|: X₂ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀
t₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₄, X₄, 0, X₆)
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₀, X₄, X₅+1, X₆) :|: 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀
t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₀, X₄, X₆, X₆) :|: X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀
t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄
t₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₁ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀
MPRF for transition t₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₃ ∧ 0 ≤ X₅ ∧ X₃ ≤ X₄ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₃-1, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆) :|: 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₅) :|: X₁ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF for transition t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₀, X₄, X₅+1, X₆) :|: 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₁₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₆ ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₁₁: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₀, X₄, X₆, X₆) :|: X₆ ≤ 0 ∧ X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₄+1 {O(n)}
MPRF for transition t₁₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₁₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, nondef.1, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄+1 {O(n)}
MPRF for transition t₁₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₂ ∧ X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₁₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₀, X₄, X₆, X₆) :|: X₂ ≤ 0 ∧ X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄ {O(n)}
MPRF for transition t₁₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆-1) :|: X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₄+1 {O(n)}
All Bounds
Timebounds
Overall timebound:14⋅X₄+8 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₄ {O(n)}
t₃: 1 {O(1)}
t₄: X₄ {O(n)}
t₆: X₄ {O(n)}
t₇: X₄ {O(n)}
t₈: X₄+1 {O(n)}
t₉: X₄ {O(n)}
t₁₀: X₄ {O(n)}
t₁₁: 2⋅X₄+1 {O(n)}
t₁₂: X₄ {O(n)}
t₁₄: X₄+1 {O(n)}
t₁₅: X₄ {O(n)}
t₁₆: X₄ {O(n)}
t₁₇: X₄+1 {O(n)}
t₁₈: 1 {O(1)}
Costbounds
Overall costbound: 14⋅X₄+8 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₄ {O(n)}
t₃: 1 {O(1)}
t₄: X₄ {O(n)}
t₆: X₄ {O(n)}
t₇: X₄ {O(n)}
t₈: X₄+1 {O(n)}
t₉: X₄ {O(n)}
t₁₀: X₄ {O(n)}
t₁₁: 2⋅X₄+1 {O(n)}
t₁₂: X₄ {O(n)}
t₁₄: X₄+1 {O(n)}
t₁₅: X₄ {O(n)}
t₁₆: X₄ {O(n)}
t₁₇: X₄+1 {O(n)}
t₁₈: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₄ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: 0 {O(1)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: 4⋅X₄+X₀ {O(n)}
t₂, X₃: X₄ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₄ {O(n)}
t₂, X₆: X₄+X₆ {O(n)}
t₃, X₀: 4⋅X₄+X₀ {O(n)}
t₃, X₃: 4⋅X₄ {O(n)}
t₃, X₄: 4⋅X₄ {O(n)}
t₃, X₅: 2⋅X₄ {O(n)}
t₃, X₆: 2⋅X₄+2⋅X₆ {O(n)}
t₄, X₀: X₄ {O(n)}
t₄, X₃: X₄ {O(n)}
t₄, X₄: X₄ {O(n)}
t₄, X₅: X₄ {O(n)}
t₄, X₆: X₄+X₆ {O(n)}
t₆, X₀: X₄ {O(n)}
t₆, X₃: X₄ {O(n)}
t₆, X₄: X₄ {O(n)}
t₆, X₅: X₄ {O(n)}
t₆, X₆: X₄+X₆ {O(n)}
t₇, X₀: X₄ {O(n)}
t₇, X₃: X₄ {O(n)}
t₇, X₄: X₄ {O(n)}
t₇, X₅: X₄ {O(n)}
t₇, X₆: X₄+X₆ {O(n)}
t₈, X₀: X₄ {O(n)}
t₈, X₃: X₄ {O(n)}
t₈, X₄: X₄ {O(n)}
t₈, X₅: X₄ {O(n)}
t₈, X₆: X₄ {O(n)}
t₉, X₀: X₄ {O(n)}
t₉, X₃: X₄ {O(n)}
t₉, X₄: X₄ {O(n)}
t₉, X₅: X₄ {O(n)}
t₉, X₆: X₄+X₆ {O(n)}
t₁₀, X₀: X₄ {O(n)}
t₁₀, X₃: X₄ {O(n)}
t₁₀, X₄: X₄ {O(n)}
t₁₀, X₅: X₄ {O(n)}
t₁₀, X₆: X₄ {O(n)}
t₁₁, X₀: 2⋅X₄ {O(n)}
t₁₁, X₃: X₄ {O(n)}
t₁₁, X₄: X₄ {O(n)}
t₁₁, X₅: 0 {O(1)}
t₁₁, X₆: 0 {O(1)}
t₁₂, X₀: X₄ {O(n)}
t₁₂, X₃: X₄ {O(n)}
t₁₂, X₄: X₄ {O(n)}
t₁₂, X₅: X₄ {O(n)}
t₁₂, X₆: X₄ {O(n)}
t₁₄, X₀: X₄ {O(n)}
t₁₄, X₃: X₄ {O(n)}
t₁₄, X₄: X₄ {O(n)}
t₁₄, X₅: X₄ {O(n)}
t₁₄, X₆: X₄ {O(n)}
t₁₅, X₀: X₄ {O(n)}
t₁₅, X₃: X₄ {O(n)}
t₁₅, X₄: X₄ {O(n)}
t₁₅, X₅: X₄ {O(n)}
t₁₅, X₆: X₄ {O(n)}
t₁₆, X₀: X₄ {O(n)}
t₁₆, X₃: X₄ {O(n)}
t₁₆, X₄: X₄ {O(n)}
t₁₆, X₅: X₄ {O(n)}
t₁₆, X₆: X₄ {O(n)}
t₁₇, X₀: X₄ {O(n)}
t₁₇, X₃: X₄ {O(n)}
t₁₇, X₄: X₄ {O(n)}
t₁₇, X₅: X₄ {O(n)}
t₁₇, X₆: X₄ {O(n)}
t₁₈, X₀: 4⋅X₄+X₀ {O(n)}
t₁₈, X₃: 4⋅X₄ {O(n)}
t₁₈, X₄: 4⋅X₄ {O(n)}
t₁₈, X₅: 2⋅X₄ {O(n)}
t₁₈, X₆: 2⋅X₄+2⋅X₆ {O(n)}