Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₃
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₀
t₉: l2(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁, X₂, X₃, X₄) :|: 0 ≤ X₃
t₁: l3(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₃ < 0
t₅: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₀-X₃-1, X₂, X₃, 2⋅X₃+100)
t₇: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₁, X₁, X₂, X₃, X₄) :|: X₄ ≤ 0
t₆: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₄
t₈: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄-1)

Preprocessing

Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 0 ≤ X₃ ∧ X₀ ≤ X₂ for location l1

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l4

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₀ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂
t₉: l2(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁, X₂, X₃, X₄) :|: 0 ≤ X₃
t₁: l3(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₃ < 0
t₅: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₀-X₃-1, X₂, X₃, 2⋅X₃+100) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀
t₇: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₁, X₁, X₂, X₃, X₄) :|: X₄ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₆: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₈: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄-1) :|: 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₀ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ of depth 1:

new bound:

X₂+1 {O(n)}

MPRF for transition t₅: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₀-X₃-1, X₂, X₃, 2⋅X₃+100) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF for transition t₇: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₁, X₁, X₂, X₃, X₄) :|: X₄ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

TWN: t₆: l5→l6

cycle: [t₆: l5→l6; t₈: l6→l5]
loop: (0 < X₄,(X₄) -> (X₄-1)
order: [X₄]
closed-form:
X₄: X₄ + [[n != 0]] * -1 * n^1

Termination: true
Formula:

1 < 0
∨ 0 < X₄ ∧ 1 ≤ 0 ∧ 0 ≤ 1

Stabilization-Threshold for: 0 < X₄
alphas_abs: X₄
M: 0
N: 1
Bound: 2⋅X₄+2 {O(n)}

TWN - Lifting for t₆: l5→l6 of 2⋅X₄+4 {O(n)}

relevant size-bounds w.r.t. t₅:
X₄: 2⋅X₃+100 {O(n)}
Runtime-bound of t₅: X₂ {O(n)}
Results in: 4⋅X₂⋅X₃+204⋅X₂ {O(n^2)}

TWN: t₈: l6→l5

TWN - Lifting for t₈: l6→l5 of 2⋅X₄+4 {O(n)}

relevant size-bounds w.r.t. t₅:
X₄: 2⋅X₃+100 {O(n)}
Runtime-bound of t₅: X₂ {O(n)}
Results in: 4⋅X₂⋅X₃+204⋅X₂ {O(n^2)}

Chain transitions t₇: l5→l1 and t₃: l1→l4 to t₅₉: l5→l4

Chain transitions t₂: l3→l1 and t₃: l1→l4 to t₆₀: l3→l4

Chain transitions t₂: l3→l1 and t₄: l1→l2 to t₆₁: l3→l2

Chain transitions t₇: l5→l1 and t₄: l1→l2 to t₆₂: l5→l2

Chain transitions t₅₉: l5→l4 and t₅: l4→l5 to t₆₃: l5→l5

Chain transitions t₆₀: l3→l4 and t₅: l4→l5 to t₆₄: l3→l5

Chain transitions t₆: l5→l6 and t₈: l6→l5 to t₆₅: l5→l5

Analysing control-flow refined program

Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l6

Found invariant 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 0 ≤ X₃ ∧ X₀ ≤ X₂ for location l1

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l4

MPRF for transition t₆₃: l5(X₀, X₁, X₂, X₃, X₄) -{3}> l5(X₁, X₁-X₃-1, X₂, X₃, 2⋅X₃+100) :|: X₄ ≤ 0 ∧ X₃ < X₁ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

MPRF for transition t₆₅: l5(X₀, X₁, X₂, X₃, X₄) -{2}> l5(X₀, X₁, X₂, X₃, X₄-1) :|: 0 < X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

100⋅X₂+200⋅X₃+101 {O(n)}

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₇: l5→l1

Cut unsatisfiable transition t₁₃₇: n_l5___4→l1

Found invariant 99 ≤ X₄ ∧ 99 ≤ X₃+X₄ ∧ 99+X₃ ≤ X₄ ∧ 100 ≤ X₂+X₄ ∧ 99 ≤ X₁+X₄ ∧ 100 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___3

Found invariant 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___1

Found invariant 100 ≤ X₄ ∧ 100 ≤ X₃+X₄ ∧ 100+X₃ ≤ X₄ ∧ 101 ≤ X₂+X₄ ∧ 100 ≤ X₁+X₄ ∧ 101 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___5

Found invariant 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___2

Found invariant 99 ≤ X₄ ∧ 99 ≤ X₃+X₄ ∧ 99+X₃ ≤ X₄ ∧ 100 ≤ X₂+X₄ ∧ 99 ≤ X₁+X₄ ∧ 100 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l5___4

Found invariant 100 ≤ X₄ ∧ 100 ≤ X₃+X₄ ∧ 100+X₃ ≤ X₄ ∧ 101 ≤ X₂+X₄ ∧ 100 ≤ X₁+X₄ ∧ 101 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant 0 ≤ X₃ ∧ X₀ ≤ X₂ for location l1

Found invariant 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ for location l4

knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₁₂₉: l5(X₀, X₁, X₂, X₃, X₄) → n_l6___5(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₄ ∧ 1 ≤ X₄ ∧ 100+2⋅X₃ ≤ X₄ ∧ X₄ ≤ 100+2⋅X₃ ∧ X₀ ≤ 1+X₁+X₃ ∧ 1+X₁+X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ 0 ≤ X₄ ∧ 0 < X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 100 ≤ X₄ ∧ 100 ≤ X₃+X₄ ∧ 100+X₃ ≤ X₄ ∧ 101 ≤ X₂+X₄ ∧ 100 ≤ X₁+X₄ ∧ 101 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₁₃₂: n_l6___5(X₀, X₁, X₂, X₃, X₄) → n_l5___4(X₀, X₁, X₂, X₃, X₄-1) :|: 100 ≤ X₄ ∧ X₄ ≤ 98+2⋅X₀ ∧ 2⋅X₀+98 ≤ 2⋅X₁+X₄ ∧ 2⋅X₁+X₄ ≤ 98+2⋅X₀ ∧ 2⋅X₃+100 ≤ X₄ ∧ X₄ ≤ 100+2⋅X₃ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 100 ≤ X₄ ∧ 100 ≤ X₃+X₄ ∧ 100+X₃ ≤ X₄ ∧ 101 ≤ X₂+X₄ ∧ 100 ≤ X₁+X₄ ∧ 101 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₁₂₈: n_l5___4(X₀, X₁, X₂, X₃, X₄) → n_l6___3(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 0 ≤ X₄ ∧ 0 < X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 99 ≤ X₄ ∧ 99 ≤ X₃+X₄ ∧ 99+X₃ ≤ X₄ ∧ 100 ≤ X₂+X₄ ∧ 99 ≤ X₁+X₄ ∧ 100 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₂ {O(n)} for transition t₁₃₁: n_l6___3(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, X₁, X₂, X₃, X₄-1) :|: 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 99 ≤ X₄ ∧ 99 ≤ X₃+X₄ ∧ 99+X₃ ≤ X₄ ∧ 100 ≤ X₂+X₄ ∧ 99 ≤ X₁+X₄ ∧ 100 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₁₂₇: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l6___1(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₄ ∧ 0 < X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

98⋅X₂+98⋅X₃+97 {O(n)}

MPRF for transition t₁₃₀: n_l6___1(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, X₁, X₂, X₃, X₄-1) :|: 0 < X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

98⋅X₂+98⋅X₃+98 {O(n)}

MPRF for transition t₁₃₆: n_l5___2(X₀, X₁, X₂, X₃, X₄) → l1(X₁, X₁, X₂, X₃, X₄) :|: X₄ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₂ {O(n)}

CFR did not improve the program. Rolling back

CFR: Improvement to new bound with the following program:

new bound:

196⋅X₃+203⋅X₂+196 {O(n)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l7, n_l5___2, n_l5___4, n_l6___1, n_l6___3, n_l6___5
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₃ < X₀ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂
t₉: l2(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁, X₂, X₃, X₄) :|: 0 ≤ X₃
t₁: l3(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₃ < 0
t₅: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₀-X₃-1, X₂, X₃, 2⋅X₃+100) :|: 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₀
t₁₂₉: l5(X₀, X₁, X₂, X₃, X₄) → n_l6___5(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₄ ∧ 1 ≤ X₄ ∧ 100+2⋅X₃ ≤ X₄ ∧ X₄ ≤ 100+2⋅X₃ ∧ X₀ ≤ 1+X₁+X₃ ∧ 1+X₁+X₃ ≤ X₀ ∧ 1 ≤ X₄ ∧ 0 ≤ X₄ ∧ 0 < X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 100 ≤ X₄ ∧ 100 ≤ X₃+X₄ ∧ 100+X₃ ≤ X₄ ∧ 101 ≤ X₂+X₄ ∧ 100 ≤ X₁+X₄ ∧ 101 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₆: n_l5___2(X₀, X₁, X₂, X₃, X₄) → l1(X₁, X₁, X₂, X₃, X₄) :|: X₄ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₇: n_l5___2(X₀, X₁, X₂, X₃, X₄) → n_l6___1(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₄ ∧ 0 < X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₂₈: n_l5___4(X₀, X₁, X₂, X₃, X₄) → n_l6___3(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₄ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄ ∧ 0 ≤ X₄ ∧ 0 < X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1+X₃ ≤ X₀ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 99 ≤ X₄ ∧ 99 ≤ X₃+X₄ ∧ 99+X₃ ≤ X₄ ∧ 100 ≤ X₂+X₄ ∧ 99 ≤ X₁+X₄ ∧ 100 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₀: n_l6___1(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, X₁, X₂, X₃, X₄-1) :|: 0 < X₄ ∧ 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₁: n_l6___3(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, X₁, X₂, X₃, X₄-1) :|: 1+X₁ ≤ X₀ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₃ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 99 ≤ X₄ ∧ 99 ≤ X₃+X₄ ∧ 99+X₃ ≤ X₄ ∧ 100 ≤ X₂+X₄ ∧ 99 ≤ X₁+X₄ ∧ 100 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₁₃₂: n_l6___5(X₀, X₁, X₂, X₃, X₄) → n_l5___4(X₀, X₁, X₂, X₃, X₄-1) :|: 100 ≤ X₄ ∧ X₄ ≤ 98+2⋅X₀ ∧ 2⋅X₀+98 ≤ 2⋅X₁+X₄ ∧ 2⋅X₁+X₄ ≤ 98+2⋅X₀ ∧ 2⋅X₃+100 ≤ X₄ ∧ X₄ ≤ 100+2⋅X₃ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 100 ≤ X₄ ∧ 100 ≤ X₃+X₄ ∧ 100+X₃ ≤ X₄ ∧ 101 ≤ X₂+X₄ ∧ 100 ≤ X₁+X₄ ∧ 101 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀

All Bounds

Timebounds

Overall timebound:196⋅X₃+203⋅X₂+201 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₂+1 {O(n)}
t₄: 1 {O(1)}
t₅: X₂ {O(n)}
t₉: 1 {O(1)}
t₁₂₇: 98⋅X₂+98⋅X₃+97 {O(n)}
t₁₂₈: X₂ {O(n)}
t₁₂₉: X₂ {O(n)}
t₁₃₀: 98⋅X₂+98⋅X₃+98 {O(n)}
t₁₃₁: X₂ {O(n)}
t₁₃₂: X₂ {O(n)}
t₁₃₆: X₂ {O(n)}

Costbounds

Overall costbound: 196⋅X₃+203⋅X₂+201 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₂+1 {O(n)}
t₄: 1 {O(1)}
t₅: X₂ {O(n)}
t₉: 1 {O(1)}
t₁₂₇: 98⋅X₂+98⋅X₃+97 {O(n)}
t₁₂₈: X₂ {O(n)}
t₁₂₉: X₂ {O(n)}
t₁₃₀: 98⋅X₂+98⋅X₃+98 {O(n)}
t₁₃₁: X₂ {O(n)}
t₁₃₂: X₂ {O(n)}
t₁₃₆: X₂ {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₂, X₀: X₂ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₃, X₀: X₂ {O(n)}
t₃, X₁: X₁+X₂ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₄: X₄ {O(n)}
t₄, X₀: 2⋅X₂ {O(n)}
t₄, X₁: X₁+X₂ {O(n)}
t₄, X₂: 2⋅X₂ {O(n)}
t₄, X₃: 2⋅X₃ {O(n)}
t₄, X₄: X₄ {O(n)}
t₅, X₀: X₂ {O(n)}
t₅, X₁: X₂ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 2⋅X₃+100 {O(n)}
t₉, X₀: 2⋅X₂+X₀ {O(n)}
t₉, X₁: 2⋅X₁+X₂ {O(n)}
t₉, X₂: 3⋅X₂ {O(n)}
t₉, X₃: 3⋅X₃ {O(n)}
t₉, X₄: 2⋅X₄ {O(n)}
t₁₂₇, X₀: X₂ {O(n)}
t₁₂₇, X₁: X₂ {O(n)}
t₁₂₇, X₂: X₂ {O(n)}
t₁₂₇, X₃: X₃ {O(n)}
t₁₂₇, X₄: 2⋅X₃+100 {O(n)}
t₁₂₈, X₀: X₂ {O(n)}
t₁₂₈, X₁: X₂ {O(n)}
t₁₂₈, X₂: X₂ {O(n)}
t₁₂₈, X₃: X₃ {O(n)}
t₁₂₈, X₄: 2⋅X₃+100 {O(n)}
t₁₂₉, X₀: X₂ {O(n)}
t₁₂₉, X₁: X₂ {O(n)}
t₁₂₉, X₂: X₂ {O(n)}
t₁₂₉, X₃: X₃ {O(n)}
t₁₂₉, X₄: 2⋅X₃+100 {O(n)}
t₁₃₀, X₀: X₂ {O(n)}
t₁₃₀, X₁: X₂ {O(n)}
t₁₃₀, X₂: X₂ {O(n)}
t₁₃₀, X₃: X₃ {O(n)}
t₁₃₀, X₄: 2⋅X₃+100 {O(n)}
t₁₃₁, X₀: X₂ {O(n)}
t₁₃₁, X₁: X₂ {O(n)}
t₁₃₁, X₂: X₂ {O(n)}
t₁₃₁, X₃: X₃ {O(n)}
t₁₃₁, X₄: 2⋅X₃+100 {O(n)}
t₁₃₂, X₀: X₂ {O(n)}
t₁₃₂, X₁: X₂ {O(n)}
t₁₃₂, X₂: X₂ {O(n)}
t₁₃₂, X₃: X₃ {O(n)}
t₁₃₂, X₄: 2⋅X₃+100 {O(n)}
t₁₃₆, X₀: X₂ {O(n)}
t₁₃₆, X₁: X₂ {O(n)}
t₁₃₆, X₂: X₂ {O(n)}
t₁₃₆, X₃: X₃ {O(n)}
t₁₃₆, X₄: 0 {O(1)}