Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ < 0
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₆
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₁, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀
t₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ ≤ 0
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₉, X₁₀, X₈, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 2 ≤ X₃
t₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ < 2
t₂₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₂₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀-1, 0, X₄, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₅, nondef.0, X₇, X₈, X₉, X₁₀)
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 64 ≤ X₅
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < 64
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃+1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ < 0
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₇
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ ≤ 0 ∧ 0 ≤ X₇
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.1, X₈, X₉, X₁₀)
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀)
Preprocessing
Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l2
Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l6
Found invariant X₀ ≤ X₉ ∧ X₀ ≤ 0 for location l15
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ for location l12
Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l5
Found invariant X₀ ≤ X₉ ∧ X₀ ≤ 0 for location l13
Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l1
Found invariant X₀ ≤ X₉ for location l10
Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l4
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 63 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 63+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l9
Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l3
Found invariant 1 ≤ X₉ ∧ 3 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 2 ≤ X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ < 0 ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₆ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₁, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀ ∧ X₀ ≤ X₉
t₃: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ ≤ 0 ∧ X₀ ≤ X₉
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₉, X₁₀, X₈, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 2 ≤ X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀
t₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ < 2 ∧ 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀
t₂₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ ≤ X₉ ∧ X₀ ≤ 0
t₂₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀-1, 0, X₄, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 3 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 2 ≤ X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₀
t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₅, nondef.0, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 64 ≤ X₅ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < 64 ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃+1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ < 0 ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₇ ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.1, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 63 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 63+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
MPRF for transition t₂: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₁, X₂, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀ ∧ X₀ ≤ X₉ of depth 1:
new bound:
X₉ {O(n)}
MPRF for transition t₅: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 2 ≤ X₃ ∧ 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉+1 {O(n)}
MPRF for transition t₂₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀-1, 0, X₄, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 3 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 2 ≤ X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉ {O(n)}
MPRF for transition t₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ < 2 ∧ 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
MPRF for transition t₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₉+X₁₀+2 {O(n)}
MPRF for transition t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₅, nondef.0, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
MPRF for transition t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ < 0 ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
MPRF for transition t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₆ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
MPRF for transition t₁₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₉+X₁₀+2 {O(n)}
MPRF for transition t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 64 ≤ X₅ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₉⋅X₉+2⋅X₉+X₁₀ {O(n^2)}
MPRF for transition t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ < 0 ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₉⋅X₉+4⋅X₉+X₁₀+2 {O(n^2)}
MPRF for transition t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₇ ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
MPRF for transition t₂₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃+1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
4⋅X₉⋅X₉+4⋅X₉+X₁₀ {O(n^2)}
knowledge_propagation leads to new time bound 2⋅X₉+X₁₀+2 {O(n)} for transition t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₀, X₁, X₂, X₃, X₄, X₅, nondef.0, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₉+X₁₀+2 {O(n)} for transition t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ < 0 ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₉+X₁₀+2 {O(n)} for transition t₁₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₆ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
MPRF for transition t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < 64 ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
MPRF for transition t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
MPRF for transition t₁₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.1, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
MPRF for transition t₁₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
MPRF for transition t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆, X₇, X₈, X₉, X₁₀) :|: 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 63 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 63+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:
new bound:
256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
Chain transitions t₈: l3→l1 and t₁₁: l1→l5 to t₄₇₈: l3→l5
Chain transitions t₈: l3→l1 and t₁₀: l1→l4 to t₄₇₉: l3→l4
Chain transitions t₈: l3→l1 and t₉: l1→l4 to t₄₈₀: l3→l4
Chain transitions t₂₂: l14→l10 and t₃: l10→l13 to t₄₈₁: l14→l13
Chain transitions t₁: l11→l10 and t₃: l10→l13 to t₄₈₂: l11→l13
Chain transitions t₁: l11→l10 and t₂: l10→l12 to t₄₈₃: l11→l12
Chain transitions t₂₂: l14→l10 and t₂: l10→l12 to t₄₈₄: l14→l12
Chain transitions t₂₁: l5→l12 and t₄: l12→l2 to t₄₈₅: l5→l2
Chain transitions t₄₈₄: l14→l12 and t₄: l12→l2 to t₄₈₆: l14→l2
Chain transitions t₄₈₄: l14→l12 and t₅: l12→l14 to t₄₈₇: l14→l14
Chain transitions t₂₁: l5→l12 and t₅: l12→l14 to t₄₈₈: l5→l14
Chain transitions t₄₈₃: l11→l12 and t₅: l12→l14 to t₄₈₉: l11→l14
Chain transitions t₄₈₃: l11→l12 and t₄: l12→l2 to t₄₉₀: l11→l2
Chain transitions t₄₈₅: l5→l2 and t₆: l2→l3 to t₄₉₁: l5→l3
Chain transitions t₄₈₆: l14→l2 and t₆: l2→l3 to t₄₉₂: l14→l3
Chain transitions t₄₉₀: l11→l2 and t₆: l2→l3 to t₄₉₃: l11→l3
Chain transitions t₄₉₁: l5→l3 and t₄₇₈: l3→l5 to t₄₉₄: l5→l5
Chain transitions t₄₉₂: l14→l3 and t₄₇₈: l3→l5 to t₄₉₅: l14→l5
Chain transitions t₄₉₂: l14→l3 and t₄₈₀: l3→l4 to t₄₉₆: l14→l4
Chain transitions t₄₉₁: l5→l3 and t₄₈₀: l3→l4 to t₄₉₇: l5→l4
Chain transitions t₄₉₃: l11→l3 and t₄₈₀: l3→l4 to t₄₉₈: l11→l4
Chain transitions t₄₉₃: l11→l3 and t₄₇₈: l3→l5 to t₄₉₉: l11→l5
Chain transitions t₄₉₃: l11→l3 and t₄₇₉: l3→l4 to t₅₀₀: l11→l4
Chain transitions t₄₉₂: l14→l3 and t₄₇₉: l3→l4 to t₅₀₁: l14→l4
Chain transitions t₄₉₁: l5→l3 and t₄₇₉: l3→l4 to t₅₀₂: l5→l4
Chain transitions t₄₉₃: l11→l3 and t₈: l3→l1 to t₅₀₃: l11→l1
Chain transitions t₄₉₂: l14→l3 and t₈: l3→l1 to t₅₀₄: l14→l1
Chain transitions t₄₉₁: l5→l3 and t₈: l3→l1 to t₅₀₅: l5→l1
Chain transitions t₂₀: l9→l4 and t₁₂: l4→l7 to t₅₀₆: l9→l7
Chain transitions t₅₀₂: l5→l4 and t₁₂: l4→l7 to t₅₀₇: l5→l7
Chain transitions t₅₀₂: l5→l4 and t₁₃: l4→l5 to t₅₀₈: l5→l5
Chain transitions t₂₀: l9→l4 and t₁₃: l4→l5 to t₅₀₉: l9→l5
Chain transitions t₄₉₇: l5→l4 and t₁₃: l4→l5 to t₅₁₀: l5→l5
Chain transitions t₄₉₇: l5→l4 and t₁₂: l4→l7 to t₅₁₁: l5→l7
Chain transitions t₅₀₁: l14→l4 and t₁₃: l4→l5 to t₅₁₂: l14→l5
Chain transitions t₅₀₁: l14→l4 and t₁₂: l4→l7 to t₅₁₃: l14→l7
Chain transitions t₄₉₆: l14→l4 and t₁₃: l4→l5 to t₅₁₄: l14→l5
Chain transitions t₄₉₆: l14→l4 and t₁₂: l4→l7 to t₅₁₅: l14→l7
Chain transitions t₅₀₀: l11→l4 and t₁₃: l4→l5 to t₅₁₆: l11→l5
Chain transitions t₅₀₀: l11→l4 and t₁₂: l4→l7 to t₅₁₇: l11→l7
Chain transitions t₄₉₈: l11→l4 and t₁₃: l4→l5 to t₅₁₈: l11→l5
Chain transitions t₄₉₈: l11→l4 and t₁₂: l4→l7 to t₅₁₉: l11→l7
Chain transitions t₁₆: l8→l6 and t₁₉: l6→l9 to t₅₂₀: l8→l9
Chain transitions t₁₆: l8→l6 and t₁₈: l6→l5 to t₅₂₁: l8→l5
Chain transitions t₁₆: l8→l6 and t₁₇: l6→l5 to t₅₂₂: l8→l5
Chain transitions t₅₀₆: l9→l7 and t₁₄: l7→l8 to t₅₂₃: l9→l8
Chain transitions t₅₁₁: l5→l7 and t₁₄: l7→l8 to t₅₂₄: l5→l8
Chain transitions t₅₀₇: l5→l7 and t₁₄: l7→l8 to t₅₂₅: l5→l8
Chain transitions t₅₁₅: l14→l7 and t₁₄: l7→l8 to t₅₂₆: l14→l8
Chain transitions t₅₁₃: l14→l7 and t₁₄: l7→l8 to t₅₂₇: l14→l8
Chain transitions t₅₁₉: l11→l7 and t₁₄: l7→l8 to t₅₂₈: l11→l8
Chain transitions t₅₁₇: l11→l7 and t₁₄: l7→l8 to t₅₂₉: l11→l8
Chain transitions t₅₂₃: l9→l8 and t₅₂₀: l8→l9 to t₅₃₀: l9→l9
Chain transitions t₅₂₅: l5→l8 and t₅₂₀: l8→l9 to t₅₃₁: l5→l9
Chain transitions t₅₂₅: l5→l8 and t₁₆: l8→l6 to t₅₃₂: l5→l6
Chain transitions t₅₂₃: l9→l8 and t₁₆: l8→l6 to t₅₃₃: l9→l6
Chain transitions t₅₂₄: l5→l8 and t₁₆: l8→l6 to t₅₃₄: l5→l6
Chain transitions t₅₂₄: l5→l8 and t₅₂₀: l8→l9 to t₅₃₅: l5→l9
Chain transitions t₅₂₄: l5→l8 and t₅₂₂: l8→l5 to t₅₃₆: l5→l5
Chain transitions t₅₂₅: l5→l8 and t₅₂₂: l8→l5 to t₅₃₇: l5→l5
Chain transitions t₅₂₃: l9→l8 and t₅₂₂: l8→l5 to t₅₃₈: l9→l5
Chain transitions t₅₂₇: l14→l8 and t₅₂₂: l8→l5 to t₅₃₉: l14→l5
Chain transitions t₅₂₇: l14→l8 and t₁₆: l8→l6 to t₅₄₀: l14→l6
Chain transitions t₅₂₇: l14→l8 and t₅₂₀: l8→l9 to t₅₄₁: l14→l9
Chain transitions t₅₂₇: l14→l8 and t₅₂₁: l8→l5 to t₅₄₂: l14→l5
Chain transitions t₅₂₄: l5→l8 and t₅₂₁: l8→l5 to t₅₄₃: l5→l5
Chain transitions t₅₂₅: l5→l8 and t₅₂₁: l8→l5 to t₅₄₄: l5→l5
Chain transitions t₅₂₃: l9→l8 and t₅₂₁: l8→l5 to t₅₄₅: l9→l5
Chain transitions t₅₂₆: l14→l8 and t₅₂₁: l8→l5 to t₅₄₆: l14→l5
Chain transitions t₅₂₆: l14→l8 and t₅₂₂: l8→l5 to t₅₄₇: l14→l5
Chain transitions t₅₂₆: l14→l8 and t₁₆: l8→l6 to t₅₄₈: l14→l6
Chain transitions t₅₂₆: l14→l8 and t₅₂₀: l8→l9 to t₅₄₉: l14→l9
Chain transitions t₅₂₉: l11→l8 and t₅₂₁: l8→l5 to t₅₅₀: l11→l5
Chain transitions t₅₂₉: l11→l8 and t₅₂₂: l8→l5 to t₅₅₁: l11→l5
Chain transitions t₅₂₉: l11→l8 and t₁₆: l8→l6 to t₅₅₂: l11→l6
Chain transitions t₅₂₉: l11→l8 and t₅₂₀: l8→l9 to t₅₅₃: l11→l9
Chain transitions t₅₂₈: l11→l8 and t₅₂₁: l8→l5 to t₅₅₄: l11→l5
Chain transitions t₅₂₈: l11→l8 and t₅₂₂: l8→l5 to t₅₅₅: l11→l5
Chain transitions t₅₂₈: l11→l8 and t₁₆: l8→l6 to t₅₅₆: l11→l6
Chain transitions t₅₂₈: l11→l8 and t₅₂₀: l8→l9 to t₅₅₇: l11→l9
Analysing control-flow refined program
Cut unsatisfiable transition t₄₈₇: l14→l14
Cut unsatisfiable transition t₅₀₈: l5→l5
Cut unsatisfiable transition t₅₁₀: l5→l5
Eliminate variables {Temp_Int₅₁₀₃,Temp_Int₅₁₁₄,Temp_Int₅₁₂₅,X₂,X₆} that do not contribute to the problem
Found invariant 1 ≤ X₇ ∧ X₂ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 1 ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l2
Found invariant 1 ≤ X₇ ∧ X₄ ≤ 62+X₇ ∧ X₃ ≤ 62+X₇ ∧ X₂ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 126 ∧ X₂+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ X₄ ∧ X₃ ≤ 63 ∧ X₂+X₃ ≤ 64 ∧ X₁+X₃ ≤ 64 ∧ X₃ ≤ 62+X₀ ∧ X₂ ≤ 1 ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l6
Found invariant X₀ ≤ X₇ ∧ X₀ ≤ 0 for location l15
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location l12
Found invariant 1 ≤ X₇ ∧ X₄ ≤ 62+X₇ ∧ X₃ ≤ 62+X₇ ∧ X₂ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 126 ∧ X₂+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ X₄ ∧ X₃ ≤ 63 ∧ X₂+X₃ ≤ 64 ∧ X₁+X₃ ≤ 64 ∧ X₃ ≤ 62+X₀ ∧ X₂ ≤ 1 ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l7
Found invariant 1 ≤ X₇ ∧ X₂ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 1 ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l5
Found invariant X₀ ≤ X₇ ∧ X₀ ≤ 0 for location l13
Found invariant 1 ≤ X₇ ∧ X₄ ≤ 62+X₇ ∧ X₃ ≤ 62+X₇ ∧ X₂ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 126 ∧ X₂+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ X₄ ∧ X₃ ≤ 63 ∧ X₂+X₃ ≤ 64 ∧ X₁+X₃ ≤ 64 ∧ X₃ ≤ 62+X₀ ∧ X₂ ≤ 1 ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l8
Found invariant 1 ≤ X₇ ∧ X₂ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 1 ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l1
Found invariant X₀ ≤ X₇ for location l10
Found invariant 1 ≤ X₇ ∧ X₂ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ X₄ ∧ X₂ ≤ 1 ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l4
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ X₄ ≤ 62+X₇ ∧ X₃ ≤ 62+X₇ ∧ X₂ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₅ ≤ 0 ∧ X₄+X₅ ≤ 63 ∧ X₃+X₅ ≤ 63 ∧ X₂+X₅ ≤ 1 ∧ X₁+X₅ ≤ 1 ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ X₄ ≤ 63+X₅ ∧ X₃ ≤ 63+X₅ ∧ X₂ ≤ 1+X₅ ∧ X₁ ≤ 1+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 126 ∧ X₂+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ X₄ ∧ X₃ ≤ 63 ∧ X₂+X₃ ≤ 64 ∧ X₁+X₃ ≤ 64 ∧ X₃ ≤ 62+X₀ ∧ X₂ ≤ 1 ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l9
Found invariant 1 ≤ X₇ ∧ X₂ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₂ ≤ 1 ∧ X₁+X₂ ≤ 2 ∧ X₂ ≤ X₀ ∧ X₁ ≤ X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l3
Found invariant 1 ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 2 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l14
Analysing control-flow refined program
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ 1+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 2 ∧ X₁+X₄ ≤ 1 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 2+X₄ ∧ X₁ ≤ 1+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 2 ∧ X₁+X₃ ≤ 3 ∧ X₃ ≤ 1+X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l12___20
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₃+X₅ ≤ 1 ∧ X₁+X₅ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 1 ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 1+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l7___14
Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l4___24
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 1 ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 1+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l2___19
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 63 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 63+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l9___9
Found invariant 1 ≤ X₉ ∧ 2+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ 0 ∧ X₅+X₇ ≤ 62 ∧ X₄+X₇ ≤ 62 ∧ X₃+X₇ ≤ 0 ∧ X₁+X₇ ≤ 0 ∧ 2+X₇ ≤ X₀ ∧ X₅ ≤ 63 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___11
Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 61+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 125 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ 1+X₄ ≤ X₅ ∧ X₄ ≤ 62 ∧ X₃+X₄ ≤ 63 ∧ X₁+X₄ ≤ 63 ∧ X₄ ≤ 61+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l6___4
Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l8___13
Found invariant X₀ ≤ X₉ ∧ X₀ ≤ 0 for location l15
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 61+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 62 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 62+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 125 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ 1+X₄ ≤ X₅ ∧ X₄ ≤ 62 ∧ X₃+X₄ ≤ 63 ∧ X₁+X₄ ≤ 63 ∧ X₄ ≤ 61+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l9___1
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 1 ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 1+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l1___17
Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l2___27
Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l6___12
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 61+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 62 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 62+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 125 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ 1+X₄ ≤ X₅ ∧ X₄ ≤ 62 ∧ X₃+X₄ ≤ 63 ∧ X₁+X₄ ≤ 63 ∧ X₄ ≤ 61+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l8___5
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₃+X₅ ≤ 1 ∧ X₁+X₅ ≤ 0 ∧ 1+X₅ ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1+X₅ ∧ X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 1 ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 1+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l4___16
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₇ ∧ X₅ ≤ 62+X₇ ∧ X₄ ≤ 62+X₇ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___10
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 61+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₇ ∧ X₅ ≤ 62+X₇ ∧ X₄ ≤ 61+X₇ ∧ X₃ ≤ X₇ ∧ X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 125 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ 1+X₄ ≤ X₅ ∧ X₄ ≤ 62 ∧ X₃+X₄ ≤ 63 ∧ X₁+X₄ ≤ 63 ∧ X₄ ≤ 61+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___2
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 61+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 63 ∧ X₄+X₇ ≤ 62 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 63+X₇ ∧ X₄ ≤ 62+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 125 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ 1+X₄ ≤ X₅ ∧ X₄ ≤ 62 ∧ X₃+X₄ ≤ 63 ∧ X₁+X₄ ≤ 63 ∧ X₄ ≤ 61+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l7___6
Found invariant 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ for location l12
Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l1___25
Found invariant 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l3___26
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ 0 ∧ X₆ ≤ X₄ ∧ X₄+X₆ ≤ 0 ∧ X₃+X₆ ≤ 1 ∧ X₁+X₆ ≤ 0 ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 1 ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 1+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___15
Found invariant 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₂ ≤ 62+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 126 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 126 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₂+X₃ ≤ 64 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 63 ∧ X₁+X₂ ≤ 64 ∧ X₂ ≤ 62+X₀ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l7___21
Found invariant X₀ ≤ X₉ ∧ X₀ ≤ 0 for location l13
Found invariant 1 ≤ X₉ ∧ 65 ≤ X₅+X₉ ∧ 65 ≤ X₄+X₉ ∧ X₃ ≤ X₉ ∧ 65 ≤ X₂+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 64 ≤ X₅ ∧ 128 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 63+X₃ ≤ X₅ ∧ 128 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 63+X₁ ≤ X₅ ∧ 65 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 64 ≤ X₄ ∧ 63+X₃ ≤ X₄ ∧ 128 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 63+X₁ ≤ X₄ ∧ 65 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ 63+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ 64 ≤ X₂ ∧ 63+X₁ ≤ X₂ ∧ 65 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___22
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ 0 ∧ X₃+X₆ ≤ 1 ∧ X₁+X₆ ≤ 1 ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___23
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ 65 ≤ X₅+X₉ ∧ X₅ ≤ 63+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ 64+X₇ ≤ X₅ ∧ X₅+X₇ ≤ 64 ∧ X₄+X₇ ≤ 63 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 64 ≤ X₅+X₇ ∧ X₅ ≤ 64+X₇ ∧ X₄ ≤ 63+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 64 ∧ X₄+X₅ ≤ 127 ∧ X₃+X₅ ≤ 65 ∧ X₁+X₅ ≤ 65 ∧ X₅ ≤ 63+X₀ ∧ 64 ≤ X₅ ∧ 1+X₄ ≤ X₅ ∧ 63+X₃ ≤ X₅ ∧ 63+X₁ ≤ X₅ ∧ 65 ≤ X₀+X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___7
Found invariant X₀ ≤ X₉ for location l10
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 1+X₇ ≤ X₉ ∧ X₅ ≤ 63+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₇ ≤ 0 ∧ X₅+X₇ ≤ 64 ∧ X₄+X₇ ≤ 63 ∧ X₃+X₇ ≤ 1 ∧ X₁+X₇ ≤ 1 ∧ 1+X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ X₅ ≤ 64+X₇ ∧ X₄ ≤ 63+X₇ ∧ X₃ ≤ 1+X₇ ∧ X₁ ≤ 1+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₅ ≤ 64 ∧ X₄+X₅ ≤ 127 ∧ X₃+X₅ ≤ 65 ∧ X₁+X₅ ≤ 65 ∧ X₅ ≤ 63+X₀ ∧ 1+X₄ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l4___8
Found invariant 1 ≤ X₉ ∧ 3 ≤ X₃+X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 2 ≤ X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l14
Found invariant 1 ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ X₃ ≤ X₉ ∧ 1+X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ 0 ∧ X₃+X₄ ≤ 1 ∧ X₁+X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ X₃ ≤ 1+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 1 ∧ X₃ ≤ X₀ ∧ 1+X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l3___18
Found invariant 1 ≤ X₉ ∧ 2+X₇ ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 61+X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ 1+X₇ ≤ 0 ∧ X₅+X₇ ≤ 62 ∧ X₄+X₇ ≤ 61 ∧ X₃+X₇ ≤ 0 ∧ X₁+X₇ ≤ 0 ∧ 2+X₇ ≤ X₀ ∧ X₅ ≤ 63 ∧ X₄+X₅ ≤ 125 ∧ X₃+X₅ ≤ 64 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ 1+X₄ ≤ X₅ ∧ X₄ ≤ 62 ∧ X₃+X₄ ≤ 63 ∧ X₁+X₄ ≤ 63 ∧ X₄ ≤ 61+X₀ ∧ X₃ ≤ 1 ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l5___3
knowledge_propagation leads to new time bound X₉ {O(n)} for transition t₈₉₄: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l2___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ < 2 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₉ {O(n)} for transition t₉₀₂: n_l2___27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l3___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₃ < 2 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₉ {O(n)} for transition t₉₀₄: n_l3___26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l1___25(X₀, X₁, X₂, Arg3_P, X₄, X₅, NoDet0, X₇, X₈, Arg9_P, X₁₀) :|: Arg3_P ≤ 1 ∧ X₁ ≤ Arg3_P ∧ X₀ ≤ Arg9_P ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₉ {O(n)} for transition t₈₉₈: n_l1___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l4___24(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ < 0 ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₉ {O(n)} for transition t₈₉₉: n_l1___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l4___24(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₆ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₉ {O(n)} for transition t₉₀₀: n_l1___25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l5___23(X₀, X₁, X₂, X₃, X₄, X₅, 0, X₇, X₈, X₉, X₁₀) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₉ {O(n)} for transition t₉₀₆: n_l4___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l5___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 64 ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₉ {O(n)} for transition t₉₀₇: n_l4___24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l7___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < 64 ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₄ ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₉ {O(n)} for transition t₉₁₄: n_l5___22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l12___20(X₀, X₁, X₂, X₃+1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₄ ≤ X₅ ∧ 64 ≤ X₅ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ 65 ≤ X₅+X₉ ∧ 65 ≤ X₄+X₉ ∧ X₃ ≤ X₉ ∧ 65 ≤ X₂+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₂ ∧ 64 ≤ X₅ ∧ 128 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 63+X₃ ≤ X₅ ∧ 128 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 63+X₁ ≤ X₅ ∧ 65 ≤ X₀+X₅ ∧ X₄ ≤ X₂ ∧ 64 ≤ X₄ ∧ 63+X₃ ≤ X₄ ∧ 128 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 63+X₁ ≤ X₄ ∧ 65 ≤ X₀+X₄ ∧ X₃ ≤ 1 ∧ 63+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ 64 ≤ X₂ ∧ 63+X₁ ≤ X₂ ∧ 65 ≤ X₀+X₂ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₉ {O(n)} for transition t₉₁₅: n_l5___23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l12___20(X₀, X₁, X₂, X₃+1, 0, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ 1 ≤ X₆+X₉ ∧ 1+X₆ ≤ X₉ ∧ X₃ ≤ X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₆ ≤ 0 ∧ X₃+X₆ ≤ 1 ∧ X₁+X₆ ≤ 1 ∧ 1+X₆ ≤ X₀ ∧ 0 ≤ X₆ ∧ X₃ ≤ 1+X₆ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₄ ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound 2⋅X₉ {O(n)} for transition t₉₂₅: n_l7___21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l8___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < 64 ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₀ ∧ X₃ ≤ 1 ∧ X₁ ≤ X₃ ∧ X₄ ≤ X₅ ∧ X₅ ≤ 63 ∧ 1 ≤ X₀ ∧ X₀ ≤ X₉ ∧ 1 ≤ X₉ ∧ X₅ ≤ 62+X₉ ∧ X₄ ≤ 62+X₉ ∧ X₃ ≤ X₉ ∧ X₂ ≤ 62+X₉ ∧ X₁ ≤ X₉ ∧ 2 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₅ ≤ 63 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 126 ∧ X₃+X₅ ≤ 64 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 126 ∧ X₁+X₅ ≤ 64 ∧ X₅ ≤ 62+X₀ ∧ X₄ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ 63 ∧ X₃+X₄ ≤ 64 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 126 ∧ X₁+X₄ ≤ 64 ∧ X₄ ≤ 62+X₀ ∧ X₂ ≤ X₄ ∧ X₃ ≤ 1 ∧ X₂+X₃ ≤ 64 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 2 ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₂ ≤ 63 ∧ X₁+X₂ ≤ 64 ∧ X₂ ≤ 62+X₀ ∧ X₁ ≤ 1 ∧ X₁ ≤ X₀ ∧ 1 ≤ X₀
All Bounds
Timebounds
Overall timebound:1280⋅X₉⋅X₉⋅X₉+1290⋅X₉⋅X₉+320⋅X₁₀⋅X₉+10⋅X₁₀+347⋅X₉+5⋅X₈+19 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₉ {O(n)}
t₃: 1 {O(1)}
t₄: X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
t₅: X₉+1 {O(n)}
t₆: 2⋅X₉+X₁₀+2 {O(n)}
t₈: 2⋅X₉+X₁₀+2 {O(n)}
t₉: 2⋅X₉+X₁₀+2 {O(n)}
t₁₀: 2⋅X₉+X₁₀+2 {O(n)}
t₁₁: 2⋅X₉+X₁₀+2 {O(n)}
t₁₂: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₁₃: 2⋅X₉⋅X₉+2⋅X₉+X₁₀ {O(n^2)}
t₁₄: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₁₆: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₁₇: 2⋅X₉⋅X₉+4⋅X₉+X₁₀+2 {O(n^2)}
t₁₈: X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
t₁₉: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₂₀: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₂₁: 4⋅X₉⋅X₉+4⋅X₉+X₁₀ {O(n^2)}
t₂₂: X₉ {O(n)}
t₂₃: 1 {O(1)}
Costbounds
Overall costbound: 1280⋅X₉⋅X₉⋅X₉+1290⋅X₉⋅X₉+320⋅X₁₀⋅X₉+10⋅X₁₀+347⋅X₉+5⋅X₈+19 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₉ {O(n)}
t₃: 1 {O(1)}
t₄: X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
t₅: X₉+1 {O(n)}
t₆: 2⋅X₉+X₁₀+2 {O(n)}
t₈: 2⋅X₉+X₁₀+2 {O(n)}
t₉: 2⋅X₉+X₁₀+2 {O(n)}
t₁₀: 2⋅X₉+X₁₀+2 {O(n)}
t₁₁: 2⋅X₉+X₁₀+2 {O(n)}
t₁₂: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₁₃: 2⋅X₉⋅X₉+2⋅X₉+X₁₀ {O(n^2)}
t₁₄: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₁₆: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₁₇: 2⋅X₉⋅X₉+4⋅X₉+X₁₀+2 {O(n^2)}
t₁₈: X₉⋅X₉+2⋅X₉+X₁₀+1 {O(n^2)}
t₁₉: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₂₀: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+64⋅X₉+X₈ {O(n^3)}
t₂₁: 4⋅X₉⋅X₉+4⋅X₉+X₁₀ {O(n^2)}
t₂₂: X₉ {O(n)}
t₂₃: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₁, X₀: X₉ {O(n)}
t₁, X₁: X₁₀ {O(n)}
t₁, X₂: X₈ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₂, X₀: X₉ {O(n)}
t₂, X₁: X₁₀ {O(n)}
t₂, X₂: 2⋅X₈ {O(n)}
t₂, X₃: X₁₀ {O(n)}
t₂, X₄: X₈ {O(n)}
t₂, X₅: 768⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+768⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₃, X₀: 2⋅X₉ {O(n)}
t₃, X₁: X₁₀ {O(n)}
t₃, X₂: 2⋅X₈ {O(n)}
t₃, X₃: 4⋅X₉⋅X₉+3⋅X₁₀+4⋅X₉+X₃ {O(n^2)}
t₃, X₄: X₄+X₈ {O(n)}
t₃, X₅: 768⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+768⋅X₉⋅X₉+11⋅X₈+192⋅X₉+2⋅X₅ {O(n^3)}
t₃, X₈: 2⋅X₈ {O(n)}
t₃, X₉: 2⋅X₉ {O(n)}
t₃, X₁₀: 2⋅X₁₀ {O(n)}
t₄, X₀: X₉ {O(n)}
t₄, X₁: X₁₀ {O(n)}
t₄, X₂: 2⋅X₈ {O(n)}
t₄, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₄, X₄: X₈ {O(n)}
t₄, X₅: 768⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+768⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: X₁₀ {O(n)}
t₅, X₀: X₉ {O(n)}
t₅, X₁: 2⋅X₁₀ {O(n)}
t₅, X₂: 4⋅X₈ {O(n)}
t₅, X₃: 4⋅X₉⋅X₉+3⋅X₁₀+4⋅X₉ {O(n^2)}
t₅, X₄: X₈ {O(n)}
t₅, X₅: 768⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+768⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₆, X₀: X₉ {O(n)}
t₆, X₁: X₁₀ {O(n)}
t₆, X₂: 2⋅X₈ {O(n)}
t₆, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₆, X₄: X₈ {O(n)}
t₆, X₅: 768⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+768⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₈, X₀: X₉ {O(n)}
t₈, X₁: X₁₀ {O(n)}
t₈, X₂: 2⋅X₈ {O(n)}
t₈, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₈, X₄: X₈ {O(n)}
t₈, X₅: 768⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+768⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₈, X₈: X₈ {O(n)}
t₈, X₉: X₉ {O(n)}
t₈, X₁₀: X₁₀ {O(n)}
t₉, X₀: X₉ {O(n)}
t₉, X₁: X₁₀ {O(n)}
t₉, X₂: 2⋅X₈ {O(n)}
t₉, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₉, X₄: X₈ {O(n)}
t₉, X₅: X₈ {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₁₀, X₀: X₉ {O(n)}
t₁₀, X₁: X₁₀ {O(n)}
t₁₀, X₂: 2⋅X₈ {O(n)}
t₁₀, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₁₀, X₄: X₈ {O(n)}
t₁₀, X₅: X₈ {O(n)}
t₁₀, X₈: X₈ {O(n)}
t₁₀, X₉: X₉ {O(n)}
t₁₀, X₁₀: X₁₀ {O(n)}
t₁₁, X₀: X₉ {O(n)}
t₁₁, X₁: X₁₀ {O(n)}
t₁₁, X₂: 2⋅X₈ {O(n)}
t₁₁, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₁₁, X₄: X₈ {O(n)}
t₁₁, X₅: 768⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+768⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₁₁, X₆: 0 {O(1)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₁, X₁₀: X₁₀ {O(n)}
t₁₂, X₀: X₉ {O(n)}
t₁₂, X₁: X₁₀ {O(n)}
t₁₂, X₂: 2⋅X₈ {O(n)}
t₁₂, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₁₂, X₄: 2⋅X₈ {O(n)}
t₁₂, X₅: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₉ {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₃, X₀: X₉ {O(n)}
t₁₃, X₁: X₁₀ {O(n)}
t₁₃, X₂: 2⋅X₈ {O(n)}
t₁₃, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₁₃, X₄: 4⋅X₈ {O(n)}
t₁₃, X₅: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+5⋅X₈+64⋅X₉ {O(n^3)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₉ {O(n)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₁₄, X₀: X₉ {O(n)}
t₁₄, X₁: X₁₀ {O(n)}
t₁₄, X₂: 2⋅X₈ {O(n)}
t₁₄, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₁₄, X₄: 2⋅X₈ {O(n)}
t₁₄, X₅: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₆, X₀: X₉ {O(n)}
t₁₆, X₁: X₁₀ {O(n)}
t₁₆, X₂: 2⋅X₈ {O(n)}
t₁₆, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₁₆, X₄: 2⋅X₈ {O(n)}
t₁₆, X₅: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₉ {O(n)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₁₇, X₀: X₉ {O(n)}
t₁₇, X₁: X₁₀ {O(n)}
t₁₇, X₂: 2⋅X₈ {O(n)}
t₁₇, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₁₇, X₄: 2⋅X₈ {O(n)}
t₁₇, X₅: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₁₇, X₈: X₈ {O(n)}
t₁₇, X₉: X₉ {O(n)}
t₁₇, X₁₀: X₁₀ {O(n)}
t₁₈, X₀: X₉ {O(n)}
t₁₈, X₁: X₁₀ {O(n)}
t₁₈, X₂: 2⋅X₈ {O(n)}
t₁₈, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₁₈, X₄: 2⋅X₈ {O(n)}
t₁₈, X₅: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₉ {O(n)}
t₁₈, X₁₀: X₁₀ {O(n)}
t₁₉, X₀: X₉ {O(n)}
t₁₉, X₁: X₁₀ {O(n)}
t₁₉, X₂: 2⋅X₈ {O(n)}
t₁₉, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₁₉, X₄: 2⋅X₈ {O(n)}
t₁₉, X₅: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₁₉, X₇: 0 {O(1)}
t₁₉, X₈: X₈ {O(n)}
t₁₉, X₉: X₉ {O(n)}
t₁₉, X₁₀: X₁₀ {O(n)}
t₂₀, X₀: X₉ {O(n)}
t₂₀, X₁: X₁₀ {O(n)}
t₂₀, X₂: 2⋅X₈ {O(n)}
t₂₀, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₂₀, X₄: 2⋅X₈ {O(n)}
t₂₀, X₅: 256⋅X₉⋅X₉⋅X₉+256⋅X₉⋅X₉+64⋅X₁₀⋅X₉+3⋅X₈+64⋅X₉ {O(n^3)}
t₂₀, X₇: 0 {O(1)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₉ {O(n)}
t₂₀, X₁₀: X₁₀ {O(n)}
t₂₁, X₀: X₉ {O(n)}
t₂₁, X₁: X₁₀ {O(n)}
t₂₁, X₂: 2⋅X₈ {O(n)}
t₂₁, X₃: 4⋅X₉⋅X₉+2⋅X₁₀+4⋅X₉ {O(n^2)}
t₂₁, X₄: 0 {O(1)}
t₂₁, X₅: 768⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+768⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₂₁, X₈: X₈ {O(n)}
t₂₁, X₉: X₉ {O(n)}
t₂₁, X₁₀: X₁₀ {O(n)}
t₂₂, X₀: X₉ {O(n)}
t₂₂, X₁: 0 {O(1)}
t₂₂, X₂: X₈ {O(n)}
t₂₂, X₃: 4⋅X₉⋅X₉+3⋅X₁₀+4⋅X₉ {O(n^2)}
t₂₂, X₄: X₈ {O(n)}
t₂₂, X₅: 768⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+768⋅X₉⋅X₉+11⋅X₈+192⋅X₉+X₅ {O(n^3)}
t₂₂, X₈: X₈ {O(n)}
t₂₂, X₉: X₉ {O(n)}
t₂₂, X₁₀: X₁₀ {O(n)}
t₂₃, X₀: 2⋅X₉ {O(n)}
t₂₃, X₁: X₁₀ {O(n)}
t₂₃, X₂: 2⋅X₈ {O(n)}
t₂₃, X₃: 4⋅X₉⋅X₉+3⋅X₁₀+4⋅X₉+X₃ {O(n^2)}
t₂₃, X₄: X₄+X₈ {O(n)}
t₂₃, X₅: 768⋅X₉⋅X₉⋅X₉+192⋅X₁₀⋅X₉+768⋅X₉⋅X₉+11⋅X₈+192⋅X₉+2⋅X₅ {O(n^3)}
t₂₃, X₈: 2⋅X₈ {O(n)}
t₂₃, X₉: 2⋅X₉ {O(n)}
t₂₃, X₁₀: 2⋅X₁₀ {O(n)}