Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₂ < X₁
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0)
t₄: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃+1)
t₅: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ < X₀
t₆: l4(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₃
t₇: l5(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃+1)
t₈: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)

Preprocessing

Found invariant X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ for location l6

Found invariant X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂ for location l7

Found invariant X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location l5

Found invariant X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location l1

Found invariant X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ for location l4

Found invariant X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃)
t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₂ < X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂
t₁: l2(X₀, X₁, X₂, X₃) → l1(X₀, X₁, 0, 0)
t₄: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃+1) :|: X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁
t₅: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ < X₀ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂
t₆: l4(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₀ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂
t₇: l5(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃+1) :|: X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀
t₈: l6(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ ∧ X₀ ≤ X₂

MPRF for transition t₂: l1(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: X₂ < X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ of depth 1:

new bound:

X₁ {O(n)}

MPRF for transition t₄: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃+1) :|: X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁ of depth 1:

new bound:

X₁ {O(n)}

MPRF for transition t₅: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₃ < X₀ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ of depth 1:

new bound:

X₀+1 {O(n)}

MPRF for transition t₇: l5(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂+1, X₃+1) :|: X₃ ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₀ {O(n)}

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₃: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₂ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂

All Bounds

Timebounds

Overall timebound:3⋅X₀+3⋅X₁+6 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁ {O(n)}
t₃: X₀+X₁+1 {O(n)}
t₄: X₁ {O(n)}
t₅: X₀+1 {O(n)}
t₆: 1 {O(1)}
t₇: X₀ {O(n)}
t₈: 1 {O(1)}

Costbounds

Overall costbound: 3⋅X₀+3⋅X₁+6 {O(n)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁ {O(n)}
t₃: X₀+X₁+1 {O(n)}
t₄: X₁ {O(n)}
t₅: X₀+1 {O(n)}
t₆: 1 {O(1)}
t₇: X₀ {O(n)}
t₈: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: 0 {O(1)}
t₁, X₃: 0 {O(1)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₁ {O(n)}
t₂, X₃: X₁ {O(n)}
t₃, X₀: 2⋅X₀ {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: X₀+X₁ {O(n)}
t₃, X₃: X₀+X₁ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₁ {O(n)}
t₄, X₃: X₁ {O(n)}
t₅, X₀: 2⋅X₀ {O(n)}
t₅, X₁: 2⋅X₁ {O(n)}
t₅, X₂: X₀+X₁ {O(n)}
t₅, X₃: X₀+X₁ {O(n)}
t₆, X₀: 2⋅X₀ {O(n)}
t₆, X₁: 2⋅X₁ {O(n)}
t₆, X₂: X₀+X₁ {O(n)}
t₆, X₃: X₀+X₁ {O(n)}
t₇, X₀: 2⋅X₀ {O(n)}
t₇, X₁: 2⋅X₁ {O(n)}
t₇, X₂: X₀+X₁ {O(n)}
t₇, X₃: X₀+X₁ {O(n)}
t₈, X₀: 2⋅X₀ {O(n)}
t₈, X₁: 2⋅X₁ {O(n)}
t₈, X₂: X₀+X₁ {O(n)}
t₈, X₃: X₀+X₁ {O(n)}