Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef.0, nondef.1, nondef.3, nondef.5, nondef.6, nondef.7, nondef.8
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, nondef.6, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(nondef.5, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ < X₁
t₃₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₀
t₃₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+1)
t₄₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+2)
t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, nondef.8, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅
t₄₃: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, nondef.7, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₄₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < X₂
t₄₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₉, X₁₀, X₁₁) :|: X₂ ≤ X₃
t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₉, X₁₀, X₁₁)
t₅₀: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁₇: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 ≤ 0 ∧ 0 ≤ 1+X₇ ∧ nondef.3 ≤ 0 ∧ 0 ≤ nondef.3
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1
t₁₉: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: X₇+1 < 0 ∧ nondef.3 ≤ 0 ∧ 1+X₇ ≤ 2⋅nondef.3 ∧ 2⋅nondef.3 < X₇+3
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0
t₃₀: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ < X₆
t₃₁: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈
t₂₉: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+3+2⋅X₈
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁)
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁)
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁)
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₂₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁)

Preprocessing

Cut unsatisfiable transition t₃₁: l30→l13

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l11

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l25

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l27

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l2

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l24

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l32

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l6

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l15

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l31

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l30

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l19

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l26

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l23

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l12

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location l17

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l7

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l21

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l5

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l20

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l13

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l8

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l22

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l16

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l9

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ for location l1

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l10

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l18

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l4

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l3

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l14

Cut unsatisfiable transition t₁₇: l26→l3

Cut unsatisfiable transition t₁₉: l26→l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef.0, nondef.1, nondef.3, nondef.5, nondef.6, nondef.7, nondef.8
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l3, l30, l31, l32, l33, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₃₆: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l15(X₀, nondef.6, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l12(nondef.5, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₀ < X₁ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁ ≤ X₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₃₉: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+1) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₀: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, 2⋅X₈+2) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₄₅: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l21(X₀, X₁, X₂, nondef.8, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₁: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₄₃: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l18(X₀, X₁, nondef.7, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₆: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < X₂ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₇: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₉, X₁₀, X₁₁) :|: X₂ ≤ X₃ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀
t₅₁: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀
t₅₀: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₃₀: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ < X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₉: l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l30(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 2⋅X₈+3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆

MPRF for transition t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ of depth 1:

new bound:

X₆+2 {O(n)}

MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

X₆+2 {O(n)}

MPRF for transition t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

3⋅X₆+3 {O(n)}

MPRF for transition t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

2⋅X₆⋅X₆+7⋅X₆+8 {O(n^2)}

MPRF for transition t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

3⋅X₆⋅X₆+6⋅X₆ {O(n^2)}

MPRF for transition t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

2⋅X₆⋅X₆+7⋅X₆+8 {O(n^2)}

MPRF for transition t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

4⋅X₆⋅X₆+14⋅X₆+16 {O(n^2)}

MPRF for transition t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ of depth 1:

new bound:

2⋅X₆⋅X₆+6⋅X₆+6 {O(n^2)}

MPRF for transition t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ of depth 1:

new bound:

2⋅X₆⋅X₆+5⋅X₆+3 {O(n^2)}

MPRF for transition t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ of depth 1:

new bound:

2⋅X₆⋅X₆+6⋅X₆+6 {O(n^2)}

MPRF for transition t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ of depth 1:

new bound:

2⋅X₆⋅X₆+7⋅X₆+8 {O(n^2)}

Chain transitions t₂₀: l4→l1 and t₄: l1→l31 to t₃₀₄: l4→l31

Chain transitions t₁: l29→l1 and t₄: l1→l31 to t₃₀₅: l29→l31

Chain transitions t₁: l29→l1 and t₃: l1→l3 to t₃₀₆: l29→l3

Chain transitions t₂₀: l4→l1 and t₃: l1→l3 to t₃₀₇: l4→l3

Chain transitions t₅: l3→l10 and t₇: l10→l11 to t₃₀₈: l3→l11

Chain transitions t₃₀₈: l3→l11 and t₉: l11→l9 to t₃₀₉: l3→l9

Chain transitions t₁₁: l9→l2 and t₁₃: l2→l4 to t₃₁₀: l9→l4

Chain transitions t₁₁: l9→l2 and t₁₂: l2→l25 to t₃₁₁: l9→l25

Chain transitions t₃₁₁: l9→l25 and t₁₄: l25→l27 to t₃₁₂: l9→l27

Chain transitions t₁₆: l27→l26 and t₁₈: l26→l3 to t₃₁₃: l27→l3

Chain transitions t₃₁₂: l9→l27 and t₃₁₃: l27→l3 to t₃₁₄: l9→l3

Chain transitions t₃₁₂: l9→l27 and t₁₆: l27→l26 to t₃₁₅: l9→l26

Chain transitions t₃₁₄: l9→l3 and t₃₀₉: l3→l9 to t₃₁₆: l9→l9

Chain transitions t₃₀₇: l4→l3 and t₃₀₉: l3→l9 to t₃₁₇: l4→l9

Chain transitions t₃₀₇: l4→l3 and t₆: l3→l4 to t₃₁₈: l4→l4

Chain transitions t₃₁₄: l9→l3 and t₆: l3→l4 to t₃₁₉: l9→l4

Chain transitions t₃₀₆: l29→l3 and t₆: l3→l4 to t₃₂₀: l29→l4

Chain transitions t₃₀₆: l29→l3 and t₃₀₉: l3→l9 to t₃₂₁: l29→l9

Chain transitions t₃₀₆: l29→l3 and t₃₀₈: l3→l11 to t₃₂₂: l29→l11

Chain transitions t₃₀₇: l4→l3 and t₃₀₈: l3→l11 to t₃₂₃: l4→l11

Chain transitions t₃₁₄: l9→l3 and t₃₀₈: l3→l11 to t₃₂₄: l9→l11

Chain transitions t₃₀₆: l29→l3 and t₅: l3→l10 to t₃₂₅: l29→l10

Chain transitions t₃₀₇: l4→l3 and t₅: l3→l10 to t₃₂₆: l4→l10

Chain transitions t₃₁₄: l9→l3 and t₅: l3→l10 to t₃₂₇: l9→l10

Analysing control-flow refined program

Cut unsatisfiable transition t₃₀₅: l29→l31

Cut unsatisfiable transition t₃₁₈: l4→l4

Cut unsatisfiable transition t₃₂₀: l29→l4

Eliminate variables {X₅} that do not contribute to the problem

Found invariant 1+X₈ ≤ X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₅+X₈ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₅ for location l11

Found invariant 1+X₈ ≤ X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₅+X₈ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₅ for location l25

Found invariant 1+X₈ ≤ X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₅+X₈ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₅ for location l27

Found invariant 1+X₈ ≤ X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₅+X₈ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₅ for location l2

Found invariant 3+X₉ ≤ X₈ ∧ 3+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 3 ≤ X₅+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 3+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ ∧ 4 ≤ X₁₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₀ for location l24

Found invariant 2+X₉ ≤ X₈ ∧ 2+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 3 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ for location l32

Found invariant 2+X₉ ≤ X₈ ∧ 2+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ for location l6

Found invariant 4+X₉ ≤ X₈ ∧ 4+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 4 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 4 ≤ X₈ ∧ 4 ≤ X₇+X₈ ∧ 4+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 8 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 4+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₆ ≤ X₅ ∧ 4 ≤ X₅ for location l15

Found invariant 1+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ for location l31

Found invariant 3+X₉ ≤ X₈ ∧ 3+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 3 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 3+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 3+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ for location l30

Found invariant 3+X₉ ≤ X₈ ∧ 3+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 3 ≤ X₅+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 3+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ ∧ 4 ≤ X₁₀+X₅ ∧ 1 ≤ X₁₀ for location l19

Found invariant 1+X₈ ≤ X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₅+X₈ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₅ for location l26

Found invariant 3+X₉ ≤ X₈ ∧ 3+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 3 ≤ X₅+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 3+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ ∧ 4 ≤ X₁₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₀ for location l23

Found invariant 4+X₉ ≤ X₈ ∧ 4+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 4 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 4 ≤ X₈ ∧ 4 ≤ X₇+X₈ ∧ 4+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 8 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 4+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₆ ≤ X₅ ∧ 4 ≤ X₅ for location l12

Found invariant 4+X₉ ≤ X₈ ∧ 4+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 4 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 4 ≤ X₈ ∧ 4 ≤ X₇+X₈ ∧ 4+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 8 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 4+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₆ ≤ X₅ ∧ 4 ≤ X₅ ∧ X₁ ≤ X₀ for location l17

Found invariant 2+X₉ ≤ X₈ ∧ 2+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ for location l7

Found invariant 3+X₉ ≤ X₈ ∧ 3+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 3 ≤ X₅+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 3+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ ∧ 4 ≤ X₁₀+X₅ ∧ 1 ≤ X₁₀ for location l21

Found invariant 2+X₉ ≤ X₈ ∧ 2+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ for location l5

Found invariant 3+X₉ ≤ X₈ ∧ 3+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 3 ≤ X₅+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 3+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ ∧ 4 ≤ X₁₀+X₅ ∧ 1 ≤ X₁₀ for location l20

Found invariant 4+X₉ ≤ X₈ ∧ 4+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 4 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 4 ≤ X₈ ∧ 4 ≤ X₇+X₈ ∧ 4+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 8 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 4+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₆ ≤ X₅ ∧ 4 ≤ X₅ for location l13

Found invariant 2+X₉ ≤ X₈ ∧ 2+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 3 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ for location l8

Found invariant 3+X₉ ≤ X₈ ∧ 3+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 3 ≤ X₅+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 3+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ ∧ 4 ≤ X₁₀+X₅ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₀ for location l22

Found invariant 3+X₉ ≤ X₈ ∧ 3+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 3 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 3+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 3+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ for location l16

Found invariant 1+X₈ ≤ X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₅+X₈ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₅ for location l9

Found invariant X₈ ≤ X₅ ∧ 1 ≤ X₈ ∧ 4 ≤ X₅+X₈ ∧ 3 ≤ X₅ for location l1

Found invariant 1+X₈ ≤ X₅ ∧ 1 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₅+X₈ ∧ 1+X₆ ≤ X₅ ∧ 1 ≤ X₆ ∧ 4 ≤ X₅+X₆ ∧ 3 ≤ X₅ for location l10

Found invariant 3+X₉ ≤ X₈ ∧ 3+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 3 ≤ X₅+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₅ ∧ 3 ≤ X₈ ∧ 3 ≤ X₇+X₈ ∧ 3+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 6 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 3+X₇ ≤ X₅ ∧ 1+X₇ ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 3 ≤ X₅+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1+X₆ ≤ X₅ ∧ 3 ≤ X₅ ∧ 4 ≤ X₁₀+X₅ ∧ 1 ≤ X₁₀ for location l18

Found invariant 1+X₈ ≤ X₅ ∧ 1 ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₅+X₈ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₅ for location l4

Found invariant 1+X₈ ≤ X₅ ∧ 1 ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₅+X₈ ∧ 1+X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 3 ≤ X₅+X₆ ∧ 3 ≤ X₅ for location l3

Found invariant 4+X₉ ≤ X₈ ∧ 4+X₉ ≤ X₅ ∧ 0 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 4 ≤ X₅+X₉ ∧ X₈ ≤ X₅ ∧ 4 ≤ X₈ ∧ 4 ≤ X₇+X₈ ∧ 4+X₇ ≤ X₈ ∧ 1+X₆ ≤ X₈ ∧ 8 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 4+X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 4 ≤ X₅+X₇ ∧ 1+X₆ ≤ X₅ ∧ 4 ≤ X₅ for location l14

Analysing control-flow refined program

Cut unsatisfiable transition t₆: l3→l4

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l32

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l6

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l19

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l10___15

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l2___12

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l12

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l11___6

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l20

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l25___3

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l22

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ for location l1

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l18

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l4

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l3

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l26___9

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l14

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l25___11

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l24

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l15

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l31

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l27___10

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l26___1

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l30

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l11___14

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₁₀ for location l23

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location l17

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l7

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l27___2

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 4 ≤ X₆+X₉ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l3___8

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l21

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l5

Found invariant X₉ ≤ X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l9___13

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l13

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l8

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l16

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location n_l10___7

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l2___4

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location n_l9___5

MPRF for transition t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+3 {O(n)}

MPRF for transition t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+3 {O(n)}

MPRF for transition t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+2 {O(n)}

MPRF for transition t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF for transition t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

2⋅X₆+4 {O(n)}

MPRF for transition t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+1 {O(n)}

Chain transitions t₃₄: l14→l12 and t₃₆: l12→l15 to t₁₈₃₈: l14→l15

Chain transitions t₃₀: l30→l13 and t₃₂: l13→l14 to t₁₈₃₉: l30→l14

Chain transitions t₁₈₃₉: l30→l14 and t₁₈₃₈: l14→l15 to t₁₈₄₀: l30→l15

Chain transitions t₁₈₃₉: l30→l14 and t₃₄: l14→l12 to t₁₈₄₁: l30→l12

Chain transitions t₁₈₄₀: l30→l15 and t₃₈: l15→l17 to t₁₈₄₂: l30→l17

Chain transitions t₁₈₄₀: l30→l15 and t₃₇: l15→l16 to t₁₈₄₃: l30→l16

Chain transitions t₁₈₄₃: l30→l16 and t₃₉: l16→l19 to t₁₈₄₄: l30→l19

Chain transitions t₂₉: l30→l16 and t₃₉: l16→l19 to t₁₈₄₅: l30→l19

Chain transitions t₁₈₄₂: l30→l17 and t₄₀: l17→l19 to t₁₈₄₆: l30→l19

Chain transitions t₄₃: l20→l18 and t₄₅: l18→l21 to t₁₈₄₇: l20→l21

Chain transitions t₁₈₄₆: l30→l19 and t₄₁: l19→l20 to t₁₈₄₈: l30→l20

Chain transitions t₁₈₄₅: l30→l19 and t₄₁: l19→l20 to t₁₈₄₉: l30→l20

Chain transitions t₁₈₄₄: l30→l19 and t₄₁: l19→l20 to t₁₈₅₀: l30→l20

Chain transitions t₁₈₅₀: l30→l20 and t₁₈₄₇: l20→l21 to t₁₈₅₁: l30→l21

Chain transitions t₁₈₄₉: l30→l20 and t₁₈₄₇: l20→l21 to t₁₈₅₂: l30→l21

Chain transitions t₁₈₄₉: l30→l20 and t₄₃: l20→l18 to t₁₈₅₃: l30→l18

Chain transitions t₁₈₅₀: l30→l20 and t₄₃: l20→l18 to t₁₈₅₄: l30→l18

Chain transitions t₁₈₄₈: l30→l20 and t₄₃: l20→l18 to t₁₈₅₅: l30→l18

Chain transitions t₁₈₄₈: l30→l20 and t₁₈₄₇: l20→l21 to t₁₈₅₆: l30→l21

Chain transitions t₁₈₅₆: l30→l21 and t₄₇: l21→l8 to t₁₈₅₇: l30→l8

Chain transitions t₁₈₅₂: l30→l21 and t₄₇: l21→l8 to t₁₈₅₈: l30→l8

Chain transitions t₁₈₅₂: l30→l21 and t₄₆: l21→l22 to t₁₈₅₉: l30→l22

Chain transitions t₁₈₅₆: l30→l21 and t₄₆: l21→l22 to t₁₈₆₀: l30→l22

Chain transitions t₁₈₅₁: l30→l21 and t₄₆: l21→l22 to t₁₈₆₁: l30→l22

Chain transitions t₁₈₅₁: l30→l21 and t₄₇: l21→l8 to t₁₈₆₂: l30→l8

Chain transitions t₁₈₆₁: l30→l22 and t₄₈: l22→l24 to t₁₈₆₃: l30→l24

Chain transitions t₁₈₆₀: l30→l22 and t₄₈: l22→l24 to t₁₈₆₄: l30→l24

Chain transitions t₁₈₅₉: l30→l22 and t₄₈: l22→l24 to t₁₈₆₅: l30→l24

Chain transitions t₅₀: l24→l23 and t₅₁: l23→l8 to t₁₈₆₆: l24→l8

Chain transitions t₁₈₆₅: l30→l24 and t₁₈₆₆: l24→l8 to t₁₈₆₇: l30→l8

Chain transitions t₁₈₆₄: l30→l24 and t₁₈₆₆: l24→l8 to t₁₈₆₈: l30→l8

Chain transitions t₁₈₆₄: l30→l24 and t₅₀: l24→l23 to t₁₈₆₉: l30→l23

Chain transitions t₁₈₆₅: l30→l24 and t₅₀: l24→l23 to t₁₈₇₀: l30→l23

Chain transitions t₁₈₆₃: l30→l24 and t₅₀: l24→l23 to t₁₈₇₁: l30→l23

Chain transitions t₁₈₆₃: l30→l24 and t₁₈₆₆: l24→l8 to t₁₈₇₂: l30→l8

Chain transitions t₂₇: l8→l30 and t₁₈₇₂: l30→l8 to t₁₈₇₃: l8→l8

Chain transitions t₂₇: l8→l30 and t₁₈₆₈: l30→l8 to t₁₈₇₄: l8→l8

Chain transitions t₂₇: l8→l30 and t₁₈₆₇: l30→l8 to t₁₈₇₅: l8→l8

Chain transitions t₂₇: l8→l30 and t₁₈₆₂: l30→l8 to t₁₈₇₆: l8→l8

Chain transitions t₂₇: l8→l30 and t₁₈₅₈: l30→l8 to t₁₈₇₇: l8→l8

Chain transitions t₂₇: l8→l30 and t₁₈₅₇: l30→l8 to t₁₈₇₈: l8→l8

Chain transitions t₂₇: l8→l30 and t₁₈₆₅: l30→l24 to t₁₈₇₉: l8→l24

Chain transitions t₂₇: l8→l30 and t₁₈₆₄: l30→l24 to t₁₈₈₀: l8→l24

Chain transitions t₂₇: l8→l30 and t₁₈₆₃: l30→l24 to t₁₈₈₁: l8→l24

Chain transitions t₂₇: l8→l30 and t₁₈₇₁: l30→l23 to t₁₈₈₂: l8→l23

Chain transitions t₂₇: l8→l30 and t₁₈₇₀: l30→l23 to t₁₈₈₃: l8→l23

Chain transitions t₂₇: l8→l30 and t₁₈₆₉: l30→l23 to t₁₈₈₄: l8→l23

Chain transitions t₂₇: l8→l30 and t₁₈₆₁: l30→l22 to t₁₈₈₅: l8→l22

Chain transitions t₂₇: l8→l30 and t₁₈₆₀: l30→l22 to t₁₈₈₆: l8→l22

Chain transitions t₂₇: l8→l30 and t₁₈₅₉: l30→l22 to t₁₈₈₇: l8→l22

Chain transitions t₂₇: l8→l30 and t₁₈₅₆: l30→l21 to t₁₈₈₈: l8→l21

Chain transitions t₂₇: l8→l30 and t₁₈₅₂: l30→l21 to t₁₈₈₉: l8→l21

Chain transitions t₂₇: l8→l30 and t₁₈₅₁: l30→l21 to t₁₈₉₀: l8→l21

Chain transitions t₂₇: l8→l30 and t₁₈₅₀: l30→l20 to t₁₈₉₁: l8→l20

Chain transitions t₂₇: l8→l30 and t₁₈₄₉: l30→l20 to t₁₈₉₂: l8→l20

Chain transitions t₂₇: l8→l30 and t₁₈₄₈: l30→l20 to t₁₈₉₃: l8→l20

Chain transitions t₂₇: l8→l30 and t₁₈₄₆: l30→l19 to t₁₈₉₄: l8→l19

Chain transitions t₂₇: l8→l30 and t₁₈₄₅: l30→l19 to t₁₈₉₅: l8→l19

Chain transitions t₂₇: l8→l30 and t₁₈₄₄: l30→l19 to t₁₈₉₆: l8→l19

Chain transitions t₂₇: l8→l30 and t₁₈₅₅: l30→l18 to t₁₈₉₇: l8→l18

Chain transitions t₂₇: l8→l30 and t₁₈₅₄: l30→l18 to t₁₈₉₈: l8→l18

Chain transitions t₂₇: l8→l30 and t₁₈₅₃: l30→l18 to t₁₈₉₉: l8→l18

Chain transitions t₂₇: l8→l30 and t₁₈₄₂: l30→l17 to t₁₉₀₀: l8→l17

Chain transitions t₂₇: l8→l30 and t₁₈₄₃: l30→l16 to t₁₉₀₁: l8→l16

Chain transitions t₂₇: l8→l30 and t₂₉: l30→l16 to t₁₉₀₂: l8→l16

Chain transitions t₂₇: l8→l30 and t₁₈₄₀: l30→l15 to t₁₉₀₃: l8→l15

Chain transitions t₂₇: l8→l30 and t₁₈₃₉: l30→l14 to t₁₉₀₄: l8→l14

Chain transitions t₂₇: l8→l30 and t₃₀: l30→l13 to t₁₉₀₅: l8→l13

Chain transitions t₂₇: l8→l30 and t₁₈₄₁: l30→l12 to t₁₉₀₆: l8→l12

Chain transitions t₅₂: l32→l31 and t₂₁: l31→l6 to t₁₉₀₇: l32→l6

Chain transitions t₄: l1→l31 and t₂₁: l31→l6 to t₁₉₀₈: l1→l6

Chain transitions t₄: l1→l31 and t₂₂: l31→l28 to t₁₉₀₉: l1→l28

Chain transitions t₅₂: l32→l31 and t₂₂: l31→l28 to t₁₉₁₀: l32→l28

Chain transitions t₂₈: l8→l32 and t₁₉₀₇: l32→l6 to t₁₉₁₁: l8→l6

Chain transitions t₂₈: l8→l32 and t₅₂: l32→l31 to t₁₉₁₂: l8→l31

Chain transitions t₂₈: l8→l32 and t₁₉₁₀: l32→l28 to t₁₉₁₃: l8→l28

Chain transitions t₂₅: l7→l5 and t₂₆: l5→l8 to t₁₉₁₄: l7→l8

Chain transitions t₁₉₁₁: l8→l6 and t₂₃: l6→l7 to t₁₉₁₅: l8→l7

Chain transitions t₁₉₀₈: l1→l6 and t₂₃: l6→l7 to t₁₉₁₆: l1→l7

Chain transitions t₁₉₁₅: l8→l7 and t₁₉₁₄: l7→l8 to t₁₉₁₇: l8→l8

Chain transitions t₁₉₁₆: l1→l7 and t₁₉₁₄: l7→l8 to t₁₉₁₈: l1→l8

Chain transitions t₁₉₁₆: l1→l7 and t₂₅: l7→l5 to t₁₉₁₉: l1→l5

Chain transitions t₁₉₁₅: l8→l7 and t₂₅: l7→l5 to t₁₉₂₀: l8→l5

Analysing control-flow refined program

Cut unsatisfiable transition t₁₉₀₉: l1→l28

Eliminate variables {Temp_Int₂₀₂₅₄,Temp_Int₂₀₂₅₅,Temp_Int₂₀₂₆₅,Temp_Int₂₀₂₆₆,Temp_Int₂₀₂₇₆,Temp_Int₂₀₂₇₇,Temp_Int₂₀₃₅₃,Temp_Int₂₀₃₆₄,Temp_Int₂₀₃₇₅,Temp_Int₂₀₄₂₀,Temp_Int₂₀₄₂₁,Temp_Int₂₀₄₅₆,X₀,X₁,X₂,X₃,X₁₁} that do not contribute to the problem

Analysing control-flow refined program

Cut unsatisfiable transition t₂₂₃₁: n_l8___18→l32

Cut unsatisfiable transition t₂₂₃₂: n_l8___33→l32

Cut unsatisfiable transition t₂₂₃₃: n_l8___36→l32

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l17___71

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l22___59

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₁₀ for location l32

Found invariant 1 ≤ 0 for location n_l19___30

Found invariant 1 ≤ 0 for location n_l20___22

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l21___84

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l23___80

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l6

Found invariant 1 ≤ 0 for location n_l14___46

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l19___70

Found invariant 1 ≤ 0 for location n_l20___29

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l23___64

Found invariant 1 ≤ 0 for location n_l22___26

Found invariant 1 ≤ 0 for location n_l24___25

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l22___10

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l15___90

Found invariant 1 ≤ 0 for location n_l30___49

Found invariant 1 ≤ 0 for location n_l8___33

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l18___54

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l21___67

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l23___50

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l12___91

Found invariant 1 ≤ 0 for location n_l30___32

Found invariant 1 ≤ 0 for location n_l8___18

Found invariant X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l8___79

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l24___65

Found invariant 1 ≤ 0 for location n_l13___48

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l13___77

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l22___83

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l10

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l4

Found invariant 1 ≤ 0 for location n_l16___47

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l3

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l19___56

Found invariant 1 ≤ 0 for location n_l20___40

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l21___53

Found invariant 1 ≤ 0 for location n_l16___43

Found invariant 1 ≤ 0 for location n_l23___24

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l25

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l22___3

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l2

Found invariant 1 ≤ 0 for location n_l23___16

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l16___89

Found invariant 1 ≤ 0 for location n_l15___44

Found invariant X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ for location l31

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l24___81

Found invariant 1 ≤ 0 for location n_l17___42

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l19___87

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l17___88

Found invariant 1 ≤ 0 for location n_l30___15

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l26

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l16___93

Found invariant 1 ≤ 0 for location n_l19___41

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l19___63

Found invariant 1 ≤ 0 for location n_l24___35

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l7

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l5

Found invariant X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location l8

Found invariant 1 ≤ 0 for location n_l12___45

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l14___92

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l15___73

Found invariant 1 ≤ 0 for location n_l21___27

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l20___69

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l21___11

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l22___66

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l23___1

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l18___12

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ for location l27

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l18___68

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l18___85

Found invariant 1 ≤ 0 for location n_l19___23

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l21___60

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l20___62

Found invariant 1 ≤ 0 for location n_l21___38

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l20___86

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l20___6

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l24___51

Found invariant 1 ≤ 0 for location n_l24___17

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ for location n_l16___72

Found invariant 1 ≤ 0 for location n_l22___19

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l23___8

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l18___61

Found invariant 1 ≤ 0 for location n_l18___28

Found invariant X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ for location l1

Found invariant 1 ≤ 0 for location n_l21___20

Found invariant X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l30___95

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l21___4

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l24___9

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l18___5

Found invariant 1 ≤ 0 for location n_l30___31

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l11

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l30___78

Found invariant 1 ≤ 0 for location n_l18___39

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l19___14

Found invariant X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l8___82

Found invariant 1 ≤ 0 for location n_l8___36

Found invariant 1 ≤ 0 for location n_l18___21

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l19___7

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l12___74

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l14___75

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l20___13

Found invariant 1 ≤ 0 for location n_l22___37

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l23___57

Found invariant X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ for location n_l13___94

Found invariant X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ for location n_l24___58

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l22___52

Found invariant 1 ≤ 0 for location n_l23___34

Found invariant X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l24___2

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ for location n_l20___55

Found invariant X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ for location n_l16___76

Found invariant 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ for location l9

Cut unsatisfiable transition t₂₀₉₇: n_l12___45→n_l15___44

Cut unsatisfiable transition t₂₁₀₀: n_l13___48→n_l14___46

Cut unsatisfiable transition t₂₁₀₃: n_l14___46→n_l12___45

Cut unsatisfiable transition t₂₁₀₆: n_l15___44→n_l16___43

Cut unsatisfiable transition t₂₁₀₇: n_l15___44→n_l17___42

Cut unsatisfiable transition t₂₁₁₂: n_l16___43→n_l19___41

Cut unsatisfiable transition t₂₁₁₃: n_l16___47→n_l19___23

Cut unsatisfiable transition t₂₁₁₈: n_l17___42→n_l19___30

Cut unsatisfiable transition t₂₁₂₂: n_l18___21→n_l21___20

Cut unsatisfiable transition t₂₁₂₃: n_l18___28→n_l21___27

Cut unsatisfiable transition t₂₁₂₄: n_l18___39→n_l21___38

Cut unsatisfiable transition t₂₁₃₁: n_l19___23→n_l20___22

Cut unsatisfiable transition t₂₁₃₂: n_l19___30→n_l20___29

Cut unsatisfiable transition t₂₁₃₃: n_l19___41→n_l20___40

Cut unsatisfiable transition t₂₁₄₀: n_l20___22→n_l18___21

Cut unsatisfiable transition t₂₁₄₁: n_l20___29→n_l18___28

Cut unsatisfiable transition t₂₁₄₂: n_l20___40→n_l18___39

Cut unsatisfiable transition t₂₁₅₀: n_l21___20→n_l22___19

Cut unsatisfiable transition t₂₁₅₁: n_l21___20→n_l8___18

Cut unsatisfiable transition t₂₁₅₂: n_l21___27→n_l22___26

Cut unsatisfiable transition t₂₁₅₃: n_l21___27→n_l8___36

Cut unsatisfiable transition t₂₁₅₄: n_l21___38→n_l22___37

Cut unsatisfiable transition t₂₁₅₅: n_l21___38→n_l8___36

Cut unsatisfiable transition t₂₁₆₇: n_l22___19→n_l24___17

Cut unsatisfiable transition t₂₁₆₈: n_l22___26→n_l24___25

Cut unsatisfiable transition t₂₁₇₀: n_l22___37→n_l24___35

Cut unsatisfiable transition t₂₁₇₆: n_l23___16→n_l8___33

Cut unsatisfiable transition t₂₁₇₇: n_l23___24→n_l8___33

Cut unsatisfiable transition t₂₁₇₈: n_l23___34→n_l8___33

Cut unsatisfiable transition t₂₁₈₄: n_l24___17→n_l23___16

Cut unsatisfiable transition t₂₁₈₆: n_l24___25→n_l23___24

Cut unsatisfiable transition t₂₁₈₇: n_l24___35→n_l23___34

Cut unsatisfiable transition t₂₁₉₃: n_l30___15→n_l16___47

Cut unsatisfiable transition t₂₁₉₄: n_l30___31→n_l13___48

Cut unsatisfiable transition t₂₁₉₅: n_l30___32→n_l13___77

Cut unsatisfiable transition t₂₁₉₆: n_l30___49→n_l13___48

Cut unsatisfiable transition t₂₁₉₇: n_l30___49→n_l16___47

Cut unsatisfiable transition t₂₂₀₂: n_l8___18→n_l30___15

Cut unsatisfiable transition t₂₂₀₃: n_l8___33→n_l30___32

Cut unsatisfiable transition t₂₂₀₄: n_l8___36→n_l30___31

Cut unsatisfiable transition t₂₂₀₆: n_l8___82→n_l30___49

Cut unreachable locations [n_l12___45; n_l13___48; n_l14___46; n_l15___44; n_l16___43; n_l16___47; n_l17___42; n_l18___21; n_l18___28; n_l18___39; n_l19___23; n_l19___30; n_l19___41; n_l20___22; n_l20___29; n_l20___40; n_l21___20; n_l21___27; n_l21___38; n_l22___19; n_l22___26; n_l22___37; n_l23___16; n_l23___24; n_l23___34; n_l24___17; n_l24___25; n_l24___35; n_l30___15; n_l30___31; n_l30___32; n_l30___49; n_l8___18; n_l8___33; n_l8___36] from the program graph

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₂₀₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 2+X₁₀ ≤ X₉ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₂₀₀: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₂₀₁: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₀₂: n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₀₅: n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___91(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₁₇: n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₃₆: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₄₄: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___5(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₀₉₉: n_l12___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___90(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₁₀: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₀ < X₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₁₁: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₁₆: n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀ < X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₂₀: n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₂₅: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___4(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₃₀: n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₃₈: n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₃₉: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___12(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₄₇: n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___85(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₅₆: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₅₇: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₆₉: n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₃ < X₂ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₈₅: n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₂₁: n_l18___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___11(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₂₉: n_l18___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___84(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₄₈: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₄₉: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₆₄: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₆₅: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₆₆: n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₇₄: n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₃ < X₂ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₇₅: n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₉₁: n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₉₂: n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₈₂: n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀

knowledge_propagation leads to new time bound X₆+1 {O(n)} for transition t₂₁₈₃: n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁

MPRF for transition t₂₀₉₈: n_l12___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___73(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

6⋅X₆⋅X₆+2⋅X₁₁+7⋅X₆+2 {O(n^2)}

MPRF for transition t₂₁₀₁: n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆⋅X₆+2⋅X₆+6⋅X₁₁+2 {O(n^2)}

MPRF for transition t₂₁₀₄: n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___74(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

6⋅X₆⋅X₆+2⋅X₁₁+9⋅X₆+3 {O(n^2)}

MPRF for transition t₂₁₀₈: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₀ < X₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆⋅X₆+3⋅X₁₁+X₆+1 {O(n^2)}

MPRF for transition t₂₁₀₉: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

5⋅X₆⋅X₆+2⋅X₁₁+7⋅X₆+11 {O(n^2)}

MPRF for transition t₂₁₁₄: n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₆⋅X₆+2⋅X₁₁+2⋅X₆+2 {O(n^2)}

MPRF for transition t₂₁₁₅: n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 3+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₁₀+2⋅X₁₁+3 ∧ 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ of depth 1:

new bound:

X₆⋅X₆+X₁₁+X₆ {O(n^2)}

MPRF for transition t₂₁₁₉: n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

X₆⋅X₆+7⋅X₆+X₁₁+6 {O(n^2)}

MPRF for transition t₂₁₂₆: n_l18___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___53(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆⋅X₆+2⋅X₆+X₁₁ {O(n^2)}

MPRF for transition t₂₁₂₇: n_l18___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___60(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

X₆⋅X₆+2⋅X₁₁+X₆ {O(n^2)}

MPRF for transition t₂₁₂₈: n_l18___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___67(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₆⋅X₆+4⋅X₆+7⋅X₁₁+1 {O(n^2)}

MPRF for transition t₂₁₃₄: n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆⋅X₆+2⋅X₆+6⋅X₁₁ {O(n^2)}

MPRF for transition t₂₁₃₅: n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

X₆⋅X₆+X₁₁+X₆ {O(n^2)}

MPRF for transition t₂₁₃₇: n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₆⋅X₆+X₁₁+X₆ {O(n^2)}

MPRF for transition t₂₁₄₃: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___54(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆⋅X₆+2⋅X₁₁+2⋅X₆ {O(n^2)}

MPRF for transition t₂₁₄₅: n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___61(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

12⋅X₆⋅X₆+2⋅X₁₁+20⋅X₆+7 {O(n^2)}

MPRF for transition t₂₁₄₆: n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___68(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₆⋅X₆+2⋅X₁₁+2⋅X₆ {O(n^2)}

MPRF for transition t₂₁₅₈: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆⋅X₆+2⋅X₁₁+3⋅X₆+3 {O(n^2)}

MPRF for transition t₂₁₅₉: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₂₁₆₀: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

X₆⋅X₆+2⋅X₆+X₁₁+2 {O(n^2)}

MPRF for transition t₂₁₆₁: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

X₆+2 {O(n)}

MPRF for transition t₂₁₆₂: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₆⋅X₆+2⋅X₆+X₁₁+1 {O(n^2)}

MPRF for transition t₂₁₆₃: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₂₁₇₁: n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₃ < X₂ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆⋅X₆+2⋅X₆+X₁₁+2 {O(n^2)}

MPRF for transition t₂₁₇₂: n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

X₆⋅X₆+6⋅X₆+X₁₁+3 {O(n^2)}

MPRF for transition t₂₁₇₃: n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ X₃ < X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₆⋅X₆+2⋅X₁₁+X₆+2 {O(n^2)}

MPRF for transition t₂₁₇₉: n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆⋅X₆+2⋅X₁₁+2⋅X₆ {O(n^2)}

MPRF for transition t₂₁₈₀: n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

3⋅X₆⋅X₆+17⋅X₁₁+6⋅X₆ {O(n^2)}

MPRF for transition t₂₁₈₁: n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

X₆⋅X₆+2⋅X₁₁+3⋅X₆+2 {O(n^2)}

MPRF for transition t₂₁₈₈: n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆⋅X₆+4⋅X₆+X₁₁+4 {O(n^2)}

MPRF for transition t₂₁₈₉: n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ of depth 1:

new bound:

6⋅X₆⋅X₆+11⋅X₆+X₁₁+9 {O(n^2)}

MPRF for transition t₂₁₉₀: n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₆⋅X₆+2⋅X₁₁+4⋅X₆ {O(n^2)}

MPRF for transition t₂₁₉₈: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

6⋅X₆⋅X₆+2⋅X₁₁+8⋅X₆+1 {O(n^2)}

MPRF for transition t₂₁₉₉: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

6⋅X₆⋅X₆+10⋅X₆+2⋅X₁₁+4 {O(n^2)}

MPRF for transition t₂₂₀₅: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 1+X₃ ≤ X₂ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆⋅X₆+2⋅X₆+X₁₁+1 {O(n^2)}

MPRF for transition t₂₂₃₄: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+4 {O(n)}

MPRF for transition t₂₂₃₅: n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ of depth 1:

new bound:

X₆+3 {O(n)}

CFR: Improvement to new bound with the following program:

new bound:

Infinite

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: Arg10_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l2, l25, l26, l27, l28, l29, l3, l31, l32, l33, l4, l5, l6, l7, l8, l9, n_l12___74, n_l12___91, n_l13___77, n_l13___94, n_l14___75, n_l14___92, n_l15___73, n_l15___90, n_l16___72, n_l16___76, n_l16___89, n_l16___93, n_l17___71, n_l17___88, n_l18___12, n_l18___5, n_l18___54, n_l18___61, n_l18___68, n_l18___85, n_l19___14, n_l19___56, n_l19___63, n_l19___7, n_l19___70, n_l19___87, n_l20___13, n_l20___55, n_l20___6, n_l20___62, n_l20___69, n_l20___86, n_l21___11, n_l21___4, n_l21___53, n_l21___60, n_l21___67, n_l21___84, n_l22___10, n_l22___3, n_l22___52, n_l22___59, n_l22___66, n_l22___83, n_l23___1, n_l23___50, n_l23___57, n_l23___64, n_l23___8, n_l23___80, n_l24___2, n_l24___51, n_l24___58, n_l24___65, n_l24___81, n_l24___9, n_l30___78, n_l30___95, n_l8___79, n_l8___82
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₁₀
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₂₀₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 2+X₁₀ ≤ X₉ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₀₉₈: n_l12___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___73(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₀₉₉: n_l12___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___90(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₁₀₁: n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₀₂: n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₁₀₄: n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___74(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₀₅: n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___91(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₁₀₈: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₀ < X₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₀₉: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₁₀: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₀ < X₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₁₁₁: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₁₁₄: n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₁₅: n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 3+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₁₀+2⋅X₁₁+3 ∧ 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁
t₂₁₁₆: n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀ < X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₁₇: n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₁₁₉: n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₂₀: n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₂₁: n_l18___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___11(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₂₅: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___4(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₂₆: n_l18___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___53(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₂₇: n_l18___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___60(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₂₈: n_l18___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___67(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₂₉: n_l18___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___84(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₃₀: n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₃₄: n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₃₅: n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₃₆: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₃₇: n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₃₈: n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₃₉: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___12(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₄₃: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___54(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₄₄: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___5(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₄₅: n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___61(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₄₆: n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___68(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₄₇: n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___85(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₄₈: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₄₉: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₅₆: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₅₇: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₅₈: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₅₉: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₆₀: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₆₁: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₆₂: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₆₃: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₆₄: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₆₅: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₆₆: n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₆₉: n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₃ < X₂ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₇₁: n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₃ < X₂ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₇₂: n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₇₃: n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ X₃ < X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₇₄: n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₃ < X₂ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₇₅: n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₇₉: n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₈₀: n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₈₁: n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₈₂: n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₈₃: n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₈₅: n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₈₈: n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₈₉: n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₉₀: n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₉₁: n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₉₂: n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₉₈: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₉₉: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₂₀₀: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₂₀₁: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₂₃₄: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₂₀₅: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 1+X₃ ≤ X₂ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₂₃₅: n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

CFR: Improvement to new bound with the following program:

new bound:

76⋅X₆⋅X₆+184⋅X₆+81⋅X₁₁+127 {O(n^2)}

cfr-program:

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: Arg10_P, NoDet0, nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l2, l25, l26, l27, l28, l29, l3, l31, l32, l33, l4, l5, l6, l7, l8, l9, n_l12___74, n_l12___91, n_l13___77, n_l13___94, n_l14___75, n_l14___92, n_l15___73, n_l15___90, n_l16___72, n_l16___76, n_l16___89, n_l16___93, n_l17___71, n_l17___88, n_l18___12, n_l18___5, n_l18___54, n_l18___61, n_l18___68, n_l18___85, n_l19___14, n_l19___56, n_l19___63, n_l19___7, n_l19___70, n_l19___87, n_l20___13, n_l20___55, n_l20___6, n_l20___62, n_l20___69, n_l20___86, n_l21___11, n_l21___4, n_l21___53, n_l21___60, n_l21___67, n_l21___84, n_l22___10, n_l22___3, n_l22___52, n_l22___59, n_l22___66, n_l22___83, n_l23___1, n_l23___50, n_l23___57, n_l23___64, n_l23___8, n_l23___80, n_l24___2, n_l24___51, n_l24___58, n_l24___65, n_l24___81, n_l24___9, n_l30___78, n_l30___95, n_l8___79, n_l8___82
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₉, X₈, X₉, X₁₀, X₁₁) :|: X₉+1 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, 0, X₁₁) :|: X₆ < 1+X₉ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 3 ≤ X₆
t₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₉: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l9(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₅ < X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₃: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₄ ≤ X₅ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₁₄: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₈: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3-1, X₈, X₉, X₁₀, X₁₁) :|: 0 < 1+X₇ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₇ ∧ X₇ < 2⋅nondef.3+1 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₁₆: l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₅ ≤ X₄
t₅₃: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l33(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁)
t₁: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, 1, X₁₀, X₁₁) :|: 2 < X₆
t₂: l29(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ ≤ 2
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₇ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₇ ≤ 0 ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₂: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < 2+X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₂₁: l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₁₀+2 ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀
t₅₂: l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l31(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁) :|: X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 2 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 1 ≤ X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 0 ≤ X₁₀
t₂₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉+1, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, 0, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₂₀₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 2+X₁₀ ≤ X₉ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 2 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₁₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l2(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆ ∧ 1+X₉ ≤ X₆ ∧ 1 ≤ X₉ ∧ 2 ≤ X₇+X₉ ∧ X₇ ≤ X₉ ∧ 4 ≤ X₆+X₉ ∧ 1+X₇ ≤ X₆ ∧ 1 ≤ X₇ ∧ 4 ≤ X₆+X₇ ∧ 3 ≤ X₆
t₂₀₉₈: n_l12___74(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___73(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₀₉₉: n_l12___91(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l15___90(X₀, NoDet0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₁₀₁: n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₀₂: n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₁₀₄: n_l14___75(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___74(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₀₅: n_l14___92(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l12___91(NoDet0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₁₀₈: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₀ < X₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₀₉: n_l15___73(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₁₀: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₀ < X₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₁₁₁: n_l15___90(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₁₁₄: n_l16___72(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀+2⋅X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₁₅: n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: 3+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ X₆ ≤ X₁₀+2⋅X₁₁+3 ∧ 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁
t₂₁₁₆: n_l16___89(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₀ < X₁ ∧ 3+X₁₀ < X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₁₇: n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+1) :|: X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₁₁₉: n_l17___71(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 7 ≤ X₁₁+X₉ ∧ 5+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 7 ≤ X₁₁+X₆ ∧ 5+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₂₀: n_l17___88(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, 2⋅X₈+2) :|: 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₂₁: n_l18___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___11(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₂₅: n_l18___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___4(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₂₆: n_l18___54(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___53(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₂₇: n_l18___61(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___60(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₂₈: n_l18___68(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___67(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₂₉: n_l18___85(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l21___84(X₀, X₁, X₂, NoDet0, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₃₀: n_l19___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₃₄: n_l19___56(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₃₅: n_l19___63(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₃₆: n_l19___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₃₇: n_l19___70(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₃₈: n_l19___87(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₃₉: n_l20___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___12(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₄₃: n_l20___55(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___54(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₄₄: n_l20___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___5(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₄₅: n_l20___62(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___61(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₄₆: n_l20___69(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___68(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 1+X₃ ≤ X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₄₇: n_l20___86(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l18___85(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, X₈, X₆, Arg10_P, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ Arg10_P ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₄₈: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₄₉: n_l21___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₅₆: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₃ < X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₅₇: n_l21___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 3 ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₅₈: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₅₉: n_l21___53(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₆₀: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₆₁: n_l21___60(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: 1+X₁₀+X₁₁ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₆₂: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₆₃: n_l21___67(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₆₄: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₃ < X₂ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₆₅: n_l21___84(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₆, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₆₆: n_l22___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₆₉: n_l22___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₃ < X₂ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₇₁: n_l22___52(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₃ < X₂ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₇₂: n_l22___59(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ X₃ < X₂ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₇₃: n_l22___66(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ X₃ < X₂ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₇₄: n_l22___83(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₃ < X₂ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₇₅: n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₇₉: n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₈₀: n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₈₁: n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₈₂: n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₈₃: n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₁₁, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₈₅: n_l24___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3 ≤ X₉ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ X₉ ≤ X₁₀+3 ∧ 3+X₁₀ ≤ X₉ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ X₉ ≤ 3+X₁₀ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ X₆ ≤ 3+X₁₀ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₈₈: n_l24___51(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___50(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 2+X₁₁ ≤ X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ X₆ ≤ X₁₀+X₁₁+2 ∧ 2+X₁₀+X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 8 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 8 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₈₉: n_l24___58(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___57(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+2⋅X₈+X₁₀ < X₆ ∧ X₁ ≤ X₀ ∧ 2⋅X₈+2 ≤ X₁₁ ∧ X₁₁ ≤ 2+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 10 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 3+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 5 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 10 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 4 ≤ X₁₁ ∧ 4 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₉₀: n_l24___65(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___64(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 2+X₁₀+X₁₁ < X₆ ∧ 2⋅X₈+1 ≤ X₁₁ ∧ X₁₁ ≤ 1+2⋅X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 6 ≤ X₉ ∧ 7 ≤ X₈+X₉ ∧ 5+X₈ ≤ X₉ ∧ 12 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 9 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 6 ≤ X₁₀+X₉ ∧ 6+X₁₀ ≤ X₉ ∧ 5+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 7 ≤ X₆+X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 6 ≤ X₆ ∧ 9 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 6 ≤ X₁₀+X₆ ∧ 6+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 3 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₉₁: n_l24___81(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___80(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₀ < X₁ ∧ 3+X₁₀ < X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ X₁₁ ≤ 1 ∧ 1 ≤ X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 5 ≤ X₁₁+X₉ ∧ 3+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 1 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 1 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 1+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 5 ≤ X₁₁+X₆ ∧ 3+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 1 ∧ X₁₁ ≤ 1+X₁₀ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1+X₀ ≤ X₁
t₂₁₉₂: n_l24___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l23___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ < X₉ ∧ X₁ ≤ X₀ ∧ X₁₁ ≤ 2 ∧ 2 ≤ X₁₁ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 1+X₃ ≤ X₂ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 4 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 8 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 4+X₈ ≤ X₆ ∧ 2+X₈ ≤ X₁₁ ∧ X₁₁+X₈ ≤ 2 ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ 2+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 4 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₁₁ ≤ 2 ∧ X₁₁ ≤ 2+X₁₀ ∧ 2 ≤ X₁₁ ∧ 2 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ X₁ ≤ X₀
t₂₁₉₈: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___77(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₁₉₉: n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___76(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀+2⋅X₁₁ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 5 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ 4+X₈ ≤ X₉ ∧ 10 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 6 ≤ X₁₁+X₉ ∧ 4+X₁₁ ≤ X₉ ∧ 5 ≤ X₁₀+X₉ ∧ 5+X₁₀ ≤ X₉ ∧ 4+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 5 ≤ X₆ ∧ 6 ≤ X₁₁+X₆ ∧ 4+X₁₁ ≤ X₆ ∧ 5 ≤ X₁₀+X₆ ∧ 5+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₂₀₀: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l13___94(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 3+2⋅X₈+X₁₀ < X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₂₀₁: n_l30___95(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l16___93(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₆-2⋅X₈-3, X₁₁) :|: 3+X₁₀ ≤ X₆ ∧ X₈ ≤ 0 ∧ 0 ≤ X₈ ∧ 3+2⋅X₈ ≤ X₆ ∧ X₆ ≤ 2⋅X₈+X₁₀+3 ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 3 ≤ X₈+X₉ ∧ 3+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ 0 ∧ 3+X₈ ≤ X₆ ∧ X₈ ≤ X₁₀ ∧ 0 ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ 0 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀
t₂₂₃₄: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₂₀₅: n_l8___79(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → n_l30___78(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₆, X₁₀, X₁₁) :|: X₈ ≤ X₁₁ ∧ X₁₁ ≤ X₈ ∧ 1+X₃ ≤ X₂ ∧ 3+2⋅X₈+X₁₀ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀ ∧ X₆ ≤ X₉ ∧ X₉ ≤ X₆ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 4 ≤ X₈+X₉ ∧ 2+X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₈ ∧ 4 ≤ X₆+X₈ ∧ 2 ≤ X₁₁+X₈ ∧ X₁₁ ≤ X₈ ∧ 1 ≤ X₁₀+X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀
t₂₂₃₅: n_l8___82(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l32(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₆ < X₁₀+3+2⋅X₈ ∧ X₉ ≤ X₆ ∧ X₆ ≤ X₉ ∧ 0 ≤ X₁₀ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₆ ∧ 3 ≤ X₉ ∧ 6 ≤ X₈+X₉ ∧ X₈ ≤ X₉ ∧ 6 ≤ X₆+X₉ ∧ X₆ ≤ X₉ ∧ 4 ≤ X₁₁+X₉ ∧ 2+X₁₁ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3+X₁₀ ≤ X₉ ∧ X₈ ≤ X₆ ∧ 3 ≤ X₈ ∧ 6 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 4 ≤ X₁₁+X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3+X₁₀ ≤ X₈ ∧ 3 ≤ X₆ ∧ 4 ≤ X₁₁+X₆ ∧ 2+X₁₁ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3+X₁₀ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₁ ∧ 1 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₀

All Bounds

Timebounds

Overall timebound:95⋅X₆⋅X₆+248⋅X₆+81⋅X₁₁+196 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₆+2 {O(n)}
t₄: 1 {O(1)}
t₅: 2⋅X₆⋅X₆+7⋅X₆+8 {O(n^2)}
t₆: X₆+2 {O(n)}
t₇: 3⋅X₆⋅X₆+6⋅X₆ {O(n^2)}
t₉: 2⋅X₆⋅X₆+7⋅X₆+8 {O(n^2)}
t₁₁: 4⋅X₆⋅X₆+14⋅X₆+16 {O(n^2)}
t₁₂: 2⋅X₆⋅X₆+6⋅X₆+6 {O(n^2)}
t₁₃: 3⋅X₆+3 {O(n)}
t₁₄: 2⋅X₆⋅X₆+5⋅X₆+3 {O(n^2)}
t₁₆: 2⋅X₆⋅X₆+6⋅X₆+6 {O(n^2)}
t₁₈: 2⋅X₆⋅X₆+7⋅X₆+8 {O(n^2)}
t₂₀: X₆+1 {O(n)}
t₂₁: X₆+3 {O(n)}
t₂₂: 1 {O(1)}
t₂₃: X₆+3 {O(n)}
t₂₅: X₆+2 {O(n)}
t₂₆: X₆+1 {O(n)}
t₂₈: 2⋅X₆+4 {O(n)}
t₅₂: X₆+1 {O(n)}
t₅₃: 1 {O(1)}
t₂₀₉₈: 6⋅X₆⋅X₆+2⋅X₁₁+7⋅X₆+2 {O(n^2)}
t₂₀₉₉: X₆+1 {O(n)}
t₂₁₀₁: X₆⋅X₆+2⋅X₆+6⋅X₁₁+2 {O(n^2)}
t₂₁₀₂: X₆+1 {O(n)}
t₂₁₀₄: 6⋅X₆⋅X₆+2⋅X₁₁+9⋅X₆+3 {O(n^2)}
t₂₁₀₅: X₆+1 {O(n)}
t₂₁₀₈: X₆⋅X₆+3⋅X₁₁+X₆+1 {O(n^2)}
t₂₁₀₉: 5⋅X₆⋅X₆+2⋅X₁₁+7⋅X₆+11 {O(n^2)}
t₂₁₁₀: X₆+1 {O(n)}
t₂₁₁₁: X₆+1 {O(n)}
t₂₁₁₄: X₆⋅X₆+2⋅X₁₁+2⋅X₆+2 {O(n^2)}
t₂₁₁₅: X₆⋅X₆+X₁₁+X₆ {O(n^2)}
t₂₁₁₆: X₆+1 {O(n)}
t₂₁₁₇: X₆+1 {O(n)}
t₂₁₁₉: X₆⋅X₆+7⋅X₆+X₁₁+6 {O(n^2)}
t₂₁₂₀: X₆+1 {O(n)}
t₂₁₂₁: X₆+1 {O(n)}
t₂₁₂₅: X₆+1 {O(n)}
t₂₁₂₆: X₆⋅X₆+2⋅X₆+X₁₁ {O(n^2)}
t₂₁₂₇: X₆⋅X₆+2⋅X₁₁+X₆ {O(n^2)}
t₂₁₂₈: 2⋅X₆⋅X₆+4⋅X₆+7⋅X₁₁+1 {O(n^2)}
t₂₁₂₉: X₆+1 {O(n)}
t₂₁₃₀: X₆+1 {O(n)}
t₂₁₃₄: X₆⋅X₆+2⋅X₆+6⋅X₁₁ {O(n^2)}
t₂₁₃₅: X₆⋅X₆+X₁₁+X₆ {O(n^2)}
t₂₁₃₆: X₆+1 {O(n)}
t₂₁₃₇: X₆⋅X₆+X₁₁+X₆ {O(n^2)}
t₂₁₃₈: X₆+1 {O(n)}
t₂₁₃₉: X₆+1 {O(n)}
t₂₁₄₃: X₆⋅X₆+2⋅X₁₁+2⋅X₆ {O(n^2)}
t₂₁₄₄: X₆+1 {O(n)}
t₂₁₄₅: 12⋅X₆⋅X₆+2⋅X₁₁+20⋅X₆+7 {O(n^2)}
t₂₁₄₆: X₆⋅X₆+2⋅X₁₁+2⋅X₆ {O(n^2)}
t₂₁₄₇: X₆+1 {O(n)}
t₂₁₄₈: X₆+1 {O(n)}
t₂₁₄₉: X₆+1 {O(n)}
t₂₁₅₆: X₆+1 {O(n)}
t₂₁₅₇: X₆+1 {O(n)}
t₂₁₅₈: X₆⋅X₆+2⋅X₁₁+3⋅X₆+3 {O(n^2)}
t₂₁₅₉: X₆ {O(n)}
t₂₁₆₀: X₆⋅X₆+2⋅X₆+X₁₁+2 {O(n^2)}
t₂₁₆₁: X₆+2 {O(n)}
t₂₁₆₂: X₆⋅X₆+2⋅X₆+X₁₁+1 {O(n^2)}
t₂₁₆₃: X₆ {O(n)}
t₂₁₆₄: X₆+1 {O(n)}
t₂₁₆₅: X₆+1 {O(n)}
t₂₁₆₆: X₆+1 {O(n)}
t₂₁₆₉: X₆+1 {O(n)}
t₂₁₇₁: X₆⋅X₆+2⋅X₆+X₁₁+2 {O(n^2)}
t₂₁₇₂: X₆⋅X₆+6⋅X₆+X₁₁+3 {O(n^2)}
t₂₁₇₃: X₆⋅X₆+2⋅X₁₁+X₆+2 {O(n^2)}
t₂₁₇₄: X₆+1 {O(n)}
t₂₁₇₅: X₆+1 {O(n)}
t₂₁₇₉: X₆⋅X₆+2⋅X₁₁+2⋅X₆ {O(n^2)}
t₂₁₈₀: 3⋅X₆⋅X₆+17⋅X₁₁+6⋅X₆ {O(n^2)}
t₂₁₈₁: X₆⋅X₆+2⋅X₁₁+3⋅X₆+2 {O(n^2)}
t₂₁₈₂: X₆+1 {O(n)}
t₂₁₈₃: X₆+1 {O(n)}
t₂₁₈₅: X₆+1 {O(n)}
t₂₁₈₈: X₆⋅X₆+4⋅X₆+X₁₁+4 {O(n^2)}
t₂₁₈₉: 6⋅X₆⋅X₆+11⋅X₆+X₁₁+9 {O(n^2)}
t₂₁₉₀: 2⋅X₆⋅X₆+2⋅X₁₁+4⋅X₆ {O(n^2)}
t₂₁₉₁: X₆+1 {O(n)}
t₂₁₉₂: X₆+1 {O(n)}
t₂₁₉₈: 6⋅X₆⋅X₆+2⋅X₁₁+8⋅X₆+1 {O(n^2)}
t₂₁₉₉: 6⋅X₆⋅X₆+10⋅X₆+2⋅X₁₁+4 {O(n^2)}
t₂₂₀₀: X₆+1 {O(n)}
t₂₂₀₁: X₆+1 {O(n)}
t₂₂₀₅: X₆⋅X₆+2⋅X₆+X₁₁+1 {O(n^2)}
t₂₂₀₇: X₆+1 {O(n)}
t₂₂₃₄: X₆+4 {O(n)}
t₂₂₃₅: X₆+3 {O(n)}

Costbounds

Overall costbound: 95⋅X₆⋅X₆+248⋅X₆+81⋅X₁₁+196 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₆+2 {O(n)}
t₄: 1 {O(1)}
t₅: 2⋅X₆⋅X₆+7⋅X₆+8 {O(n^2)}
t₆: X₆+2 {O(n)}
t₇: 3⋅X₆⋅X₆+6⋅X₆ {O(n^2)}
t₉: 2⋅X₆⋅X₆+7⋅X₆+8 {O(n^2)}
t₁₁: 4⋅X₆⋅X₆+14⋅X₆+16 {O(n^2)}
t₁₂: 2⋅X₆⋅X₆+6⋅X₆+6 {O(n^2)}
t₁₃: 3⋅X₆+3 {O(n)}
t₁₄: 2⋅X₆⋅X₆+5⋅X₆+3 {O(n^2)}
t₁₆: 2⋅X₆⋅X₆+6⋅X₆+6 {O(n^2)}
t₁₈: 2⋅X₆⋅X₆+7⋅X₆+8 {O(n^2)}
t₂₀: X₆+1 {O(n)}
t₂₁: X₆+3 {O(n)}
t₂₂: 1 {O(1)}
t₂₃: X₆+3 {O(n)}
t₂₅: X₆+2 {O(n)}
t₂₆: X₆+1 {O(n)}
t₂₈: 2⋅X₆+4 {O(n)}
t₅₂: X₆+1 {O(n)}
t₅₃: 1 {O(1)}
t₂₀₉₈: 6⋅X₆⋅X₆+2⋅X₁₁+7⋅X₆+2 {O(n^2)}
t₂₀₉₉: X₆+1 {O(n)}
t₂₁₀₁: X₆⋅X₆+2⋅X₆+6⋅X₁₁+2 {O(n^2)}
t₂₁₀₂: X₆+1 {O(n)}
t₂₁₀₄: 6⋅X₆⋅X₆+2⋅X₁₁+9⋅X₆+3 {O(n^2)}
t₂₁₀₅: X₆+1 {O(n)}
t₂₁₀₈: X₆⋅X₆+3⋅X₁₁+X₆+1 {O(n^2)}
t₂₁₀₉: 5⋅X₆⋅X₆+2⋅X₁₁+7⋅X₆+11 {O(n^2)}
t₂₁₁₀: X₆+1 {O(n)}
t₂₁₁₁: X₆+1 {O(n)}
t₂₁₁₄: X₆⋅X₆+2⋅X₁₁+2⋅X₆+2 {O(n^2)}
t₂₁₁₅: X₆⋅X₆+X₁₁+X₆ {O(n^2)}
t₂₁₁₆: X₆+1 {O(n)}
t₂₁₁₇: X₆+1 {O(n)}
t₂₁₁₉: X₆⋅X₆+7⋅X₆+X₁₁+6 {O(n^2)}
t₂₁₂₀: X₆+1 {O(n)}
t₂₁₂₁: X₆+1 {O(n)}
t₂₁₂₅: X₆+1 {O(n)}
t₂₁₂₆: X₆⋅X₆+2⋅X₆+X₁₁ {O(n^2)}
t₂₁₂₇: X₆⋅X₆+2⋅X₁₁+X₆ {O(n^2)}
t₂₁₂₈: 2⋅X₆⋅X₆+4⋅X₆+7⋅X₁₁+1 {O(n^2)}
t₂₁₂₉: X₆+1 {O(n)}
t₂₁₃₀: X₆+1 {O(n)}
t₂₁₃₄: X₆⋅X₆+2⋅X₆+6⋅X₁₁ {O(n^2)}
t₂₁₃₅: X₆⋅X₆+X₁₁+X₆ {O(n^2)}
t₂₁₃₆: X₆+1 {O(n)}
t₂₁₃₇: X₆⋅X₆+X₁₁+X₆ {O(n^2)}
t₂₁₃₈: X₆+1 {O(n)}
t₂₁₃₉: X₆+1 {O(n)}
t₂₁₄₃: X₆⋅X₆+2⋅X₁₁+2⋅X₆ {O(n^2)}
t₂₁₄₄: X₆+1 {O(n)}
t₂₁₄₅: 12⋅X₆⋅X₆+2⋅X₁₁+20⋅X₆+7 {O(n^2)}
t₂₁₄₆: X₆⋅X₆+2⋅X₁₁+2⋅X₆ {O(n^2)}
t₂₁₄₇: X₆+1 {O(n)}
t₂₁₄₈: X₆+1 {O(n)}
t₂₁₄₉: X₆+1 {O(n)}
t₂₁₅₆: X₆+1 {O(n)}
t₂₁₅₇: X₆+1 {O(n)}
t₂₁₅₈: X₆⋅X₆+2⋅X₁₁+3⋅X₆+3 {O(n^2)}
t₂₁₅₉: X₆ {O(n)}
t₂₁₆₀: X₆⋅X₆+2⋅X₆+X₁₁+2 {O(n^2)}
t₂₁₆₁: X₆+2 {O(n)}
t₂₁₆₂: X₆⋅X₆+2⋅X₆+X₁₁+1 {O(n^2)}
t₂₁₆₃: X₆ {O(n)}
t₂₁₆₄: X₆+1 {O(n)}
t₂₁₆₅: X₆+1 {O(n)}
t₂₁₆₆: X₆+1 {O(n)}
t₂₁₆₉: X₆+1 {O(n)}
t₂₁₇₁: X₆⋅X₆+2⋅X₆+X₁₁+2 {O(n^2)}
t₂₁₇₂: X₆⋅X₆+6⋅X₆+X₁₁+3 {O(n^2)}
t₂₁₇₃: X₆⋅X₆+2⋅X₁₁+X₆+2 {O(n^2)}
t₂₁₇₄: X₆+1 {O(n)}
t₂₁₇₅: X₆+1 {O(n)}
t₂₁₇₉: X₆⋅X₆+2⋅X₁₁+2⋅X₆ {O(n^2)}
t₂₁₈₀: 3⋅X₆⋅X₆+17⋅X₁₁+6⋅X₆ {O(n^2)}
t₂₁₈₁: X₆⋅X₆+2⋅X₁₁+3⋅X₆+2 {O(n^2)}
t₂₁₈₂: X₆+1 {O(n)}
t₂₁₈₃: X₆+1 {O(n)}
t₂₁₈₅: X₆+1 {O(n)}
t₂₁₈₈: X₆⋅X₆+4⋅X₆+X₁₁+4 {O(n^2)}
t₂₁₈₉: 6⋅X₆⋅X₆+11⋅X₆+X₁₁+9 {O(n^2)}
t₂₁₉₀: 2⋅X₆⋅X₆+2⋅X₁₁+4⋅X₆ {O(n^2)}
t₂₁₉₁: X₆+1 {O(n)}
t₂₁₉₂: X₆+1 {O(n)}
t₂₁₉₈: 6⋅X₆⋅X₆+2⋅X₁₁+8⋅X₆+1 {O(n^2)}
t₂₁₉₉: 6⋅X₆⋅X₆+10⋅X₆+2⋅X₁₁+4 {O(n^2)}
t₂₂₀₀: X₆+1 {O(n)}
t₂₂₀₁: X₆+1 {O(n)}
t₂₂₀₅: X₆⋅X₆+2⋅X₆+X₁₁+1 {O(n^2)}
t₂₂₀₇: X₆+1 {O(n)}
t₂₂₃₄: X₆+4 {O(n)}
t₂₂₃₅: X₆+3 {O(n)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₀, X₁₁: X₁₁ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: 1 {O(1)}
t₁, X₁₀: X₁₀ {O(n)}
t₁, X₁₁: X₁₁ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₂, X₅: X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₂, X₁₁: X₁₁ {O(n)}
t₃, X₀: X₀ {O(n)}
t₃, X₁: X₁ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₃ {O(n)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: X₆+3 {O(n)}
t₃, X₈: X₈ {O(n)}
t₃, X₉: X₆+2 {O(n)}
t₃, X₁₀: X₁₀ {O(n)}
t₃, X₁₁: X₁₁ {O(n)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₆+3 {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₆+2 {O(n)}
t₄, X₁₀: 0 {O(1)}
t₄, X₁₁: X₁₁ {O(n)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₆: X₆ {O(n)}
t₅, X₇: X₆+3 {O(n)}
t₅, X₈: X₈ {O(n)}
t₅, X₉: X₆+2 {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₅, X₁₁: X₁₁ {O(n)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: 0 {O(1)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₆+2 {O(n)}
t₆, X₁₀: X₁₀ {O(n)}
t₆, X₁₁: X₁₁ {O(n)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₆+3 {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₆+2 {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₇, X₁₁: X₁₁ {O(n)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₆+3 {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₆+2 {O(n)}
t₉, X₁₀: X₁₀ {O(n)}
t₉, X₁₁: X₁₁ {O(n)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₆+3 {O(n)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₆+2 {O(n)}
t₁₁, X₁₀: X₁₀ {O(n)}
t₁₁, X₁₁: X₁₁ {O(n)}
t₁₂, X₀: X₀ {O(n)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₃ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₆+3 {O(n)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₆+2 {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₂, X₁₁: X₁₁ {O(n)}
t₁₃, X₀: X₀ {O(n)}
t₁₃, X₁: X₁ {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₃ {O(n)}
t₁₃, X₆: X₆ {O(n)}
t₁₃, X₇: X₆+3 {O(n)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₆+2 {O(n)}
t₁₃, X₁₀: X₁₀ {O(n)}
t₁₃, X₁₁: X₁₁ {O(n)}
t₁₄, X₀: X₀ {O(n)}
t₁₄, X₁: X₁ {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₃ {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: X₆+3 {O(n)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₆+2 {O(n)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₄, X₁₁: X₁₁ {O(n)}
t₁₆, X₀: X₀ {O(n)}
t₁₆, X₁: X₁ {O(n)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: X₃ {O(n)}
t₁₆, X₆: X₆ {O(n)}
t₁₆, X₇: X₆+3 {O(n)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₆+2 {O(n)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₁₆, X₁₁: X₁₁ {O(n)}
t₁₈, X₀: X₀ {O(n)}
t₁₈, X₁: X₁ {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: X₃ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₇: X₆+3 {O(n)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₆+2 {O(n)}
t₁₈, X₁₀: X₁₀ {O(n)}
t₁₈, X₁₁: X₁₁ {O(n)}
t₂₀, X₀: X₀ {O(n)}
t₂₀, X₁: X₁ {O(n)}
t₂₀, X₂: X₂ {O(n)}
t₂₀, X₃: X₃ {O(n)}
t₂₀, X₆: X₆ {O(n)}
t₂₀, X₇: X₆+3 {O(n)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₆+2 {O(n)}
t₂₀, X₁₀: X₁₀ {O(n)}
t₂₀, X₁₁: X₁₁ {O(n)}
t₂₁, X₆: X₆ {O(n)}
t₂₁, X₇: X₆+3 {O(n)}
t₂₁, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+12⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅33+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅36⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅8⋅X₆⋅X₆+6⋅X₆+X₈+6 {O(EXP)}
t₂₁, X₉: X₆+2 {O(n)}
t₂₁, X₁₀: X₆+1 {O(n)}
t₂₁, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₇: X₆+3 {O(n)}
t₂₂, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+12⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅33+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅36⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅8⋅X₆⋅X₆+6⋅X₆+6 {O(EXP)}
t₂₂, X₉: X₆+2 {O(n)}
t₂₂, X₁₀: X₆+1 {O(n)}
t₂₂, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₇: X₆+3 {O(n)}
t₂₃, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+12⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅33+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅36⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅8⋅X₆⋅X₆+6⋅X₆+X₈+6 {O(EXP)}
t₂₃, X₉: X₆+2 {O(n)}
t₂₃, X₁₀: X₆+1 {O(n)}
t₂₃, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₅, X₆: X₆ {O(n)}
t₂₅, X₇: X₆+3 {O(n)}
t₂₅, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+12⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅33+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅36⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅8⋅X₆⋅X₆+6⋅X₆+X₈+6 {O(EXP)}
t₂₅, X₉: X₆+2 {O(n)}
t₂₅, X₁₀: X₆+1 {O(n)}
t₂₅, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₆, X₆: X₆ {O(n)}
t₂₆, X₇: X₆+3 {O(n)}
t₂₆, X₈: 0 {O(1)}
t₂₆, X₉: X₆+2 {O(n)}
t₂₆, X₁₀: X₆+1 {O(n)}
t₂₆, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₈, X₆: X₆ {O(n)}
t₂₈, X₇: X₆+3 {O(n)}
t₂₈, X₈: 0 {O(1)}
t₂₈, X₉: X₆+2 {O(n)}
t₂₈, X₁₀: X₆+1 {O(n)}
t₂₈, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₅₂, X₆: X₆ {O(n)}
t₅₂, X₇: X₆+3 {O(n)}
t₅₂, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+12⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅33+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅36⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅8⋅X₆⋅X₆+6⋅X₆+6 {O(EXP)}
t₅₂, X₉: X₆+2 {O(n)}
t₅₂, X₁₀: X₆+1 {O(n)}
t₅₂, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₅₃, X₆: 2⋅X₆ {O(n)}
t₅₃, X₇: X₆+X₇+3 {O(n)}
t₅₃, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+12⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅33+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅36⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅8⋅X₆⋅X₆+6⋅X₆+X₈+6 {O(EXP)}
t₅₃, X₉: X₆+X₉+2 {O(n)}
t₅₃, X₁₀: X₁₀+X₆+1 {O(n)}
t₅₃, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+2⋅X₁₁+12 {O(EXP)}
t₂₀₉₈, X₆: X₆ {O(n)}
t₂₀₉₈, X₇: X₆+3 {O(n)}
t₂₀₉₈, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₀₉₈, X₉: X₆ {O(n)}
t₂₀₉₈, X₁₀: 5⋅X₆+1 {O(n)}
t₂₀₉₈, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+3 {O(EXP)}
t₂₀₉₉, X₆: X₆ {O(n)}
t₂₀₉₉, X₇: X₆+3 {O(n)}
t₂₀₉₉, X₈: 0 {O(1)}
t₂₀₉₉, X₉: X₆ {O(n)}
t₂₀₉₉, X₁₀: 5⋅X₆+1 {O(n)}
t₂₀₉₉, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₁₀₁, X₆: X₆ {O(n)}
t₂₁₀₁, X₇: X₆+3 {O(n)}
t₂₁₀₁, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₀₁, X₉: X₆ {O(n)}
t₂₁₀₁, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₀₁, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+3 {O(EXP)}
t₂₁₀₂, X₆: X₆ {O(n)}
t₂₁₀₂, X₇: X₆+3 {O(n)}
t₂₁₀₂, X₈: 0 {O(1)}
t₂₁₀₂, X₉: X₆ {O(n)}
t₂₁₀₂, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₀₂, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₁₀₄, X₆: X₆ {O(n)}
t₂₁₀₄, X₇: X₆+3 {O(n)}
t₂₁₀₄, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₀₄, X₉: X₆ {O(n)}
t₂₁₀₄, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₀₄, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+3 {O(EXP)}
t₂₁₀₅, X₆: X₆ {O(n)}
t₂₁₀₅, X₇: X₆+3 {O(n)}
t₂₁₀₅, X₈: 0 {O(1)}
t₂₁₀₅, X₉: X₆ {O(n)}
t₂₁₀₅, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₀₅, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₁₀₈, X₆: X₆ {O(n)}
t₂₁₀₈, X₇: X₆+3 {O(n)}
t₂₁₀₈, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₀₈, X₉: X₆ {O(n)}
t₂₁₀₈, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₀₈, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+3 {O(EXP)}
t₂₁₀₉, X₆: X₆ {O(n)}
t₂₁₀₉, X₇: X₆+3 {O(n)}
t₂₁₀₉, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₀₉, X₉: X₆ {O(n)}
t₂₁₀₉, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₀₉, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+3 {O(EXP)}
t₂₁₁₀, X₆: X₆ {O(n)}
t₂₁₁₀, X₇: X₆+3 {O(n)}
t₂₁₁₀, X₈: 0 {O(1)}
t₂₁₁₀, X₉: X₆ {O(n)}
t₂₁₁₀, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₁₀, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₁₁₁, X₆: X₆ {O(n)}
t₂₁₁₁, X₇: X₆+3 {O(n)}
t₂₁₁₁, X₈: 0 {O(1)}
t₂₁₁₁, X₉: X₆ {O(n)}
t₂₁₁₁, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₁₁, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₁₁₄, X₆: X₆ {O(n)}
t₂₁₁₄, X₇: X₆+3 {O(n)}
t₂₁₁₄, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₁₄, X₉: X₆ {O(n)}
t₂₁₁₄, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₁₄, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₁₅, X₆: X₆ {O(n)}
t₂₁₁₅, X₇: X₆+3 {O(n)}
t₂₁₁₅, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₁₅, X₉: X₆ {O(n)}
t₂₁₁₅, X₁₀: X₆ {O(n)}
t₂₁₁₅, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+2 {O(EXP)}
t₂₁₁₆, X₆: X₆ {O(n)}
t₂₁₁₆, X₇: X₆+3 {O(n)}
t₂₁₁₆, X₈: 0 {O(1)}
t₂₁₁₆, X₉: X₆ {O(n)}
t₂₁₁₆, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₁₆, X₁₁: 1 {O(1)}
t₂₁₁₇, X₆: X₆ {O(n)}
t₂₁₁₇, X₇: X₆+3 {O(n)}
t₂₁₁₇, X₈: 0 {O(1)}
t₂₁₁₇, X₉: X₆ {O(n)}
t₂₁₁₇, X₁₀: X₆ {O(n)}
t₂₁₁₇, X₁₁: 1 {O(1)}
t₂₁₁₉, X₆: X₆ {O(n)}
t₂₁₁₉, X₇: X₆+3 {O(n)}
t₂₁₁₉, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₁₉, X₉: X₆ {O(n)}
t₂₁₁₉, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₁₉, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₂₀, X₆: X₆ {O(n)}
t₂₁₂₀, X₇: X₆+3 {O(n)}
t₂₁₂₀, X₈: 0 {O(1)}
t₂₁₂₀, X₉: X₆ {O(n)}
t₂₁₂₀, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₂₀, X₁₁: 2 {O(1)}
t₂₁₂₁, X₆: X₆ {O(n)}
t₂₁₂₁, X₇: X₆+3 {O(n)}
t₂₁₂₁, X₈: 0 {O(1)}
t₂₁₂₁, X₉: X₆ {O(n)}
t₂₁₂₁, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₂₁, X₁₁: 2 {O(1)}
t₂₁₂₅, X₆: X₆ {O(n)}
t₂₁₂₅, X₇: X₆+3 {O(n)}
t₂₁₂₅, X₈: 0 {O(1)}
t₂₁₂₅, X₉: X₆ {O(n)}
t₂₁₂₅, X₁₀: X₆ {O(n)}
t₂₁₂₅, X₁₁: 1 {O(1)}
t₂₁₂₆, X₆: X₆ {O(n)}
t₂₁₂₆, X₇: X₆+3 {O(n)}
t₂₁₂₆, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₂₆, X₉: X₆ {O(n)}
t₂₁₂₆, X₁₀: X₆ {O(n)}
t₂₁₂₆, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+2 {O(EXP)}
t₂₁₂₇, X₆: X₆ {O(n)}
t₂₁₂₇, X₇: X₆+3 {O(n)}
t₂₁₂₇, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₂₇, X₉: X₆ {O(n)}
t₂₁₂₇, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₂₇, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₂₈, X₆: X₆ {O(n)}
t₂₁₂₈, X₇: X₆+3 {O(n)}
t₂₁₂₈, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₂₈, X₉: X₆ {O(n)}
t₂₁₂₈, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₂₈, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₂₉, X₆: X₆ {O(n)}
t₂₁₂₉, X₇: X₆+3 {O(n)}
t₂₁₂₉, X₈: 0 {O(1)}
t₂₁₂₉, X₉: X₆ {O(n)}
t₂₁₂₉, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₂₉, X₁₁: 1 {O(1)}
t₂₁₃₀, X₆: X₆ {O(n)}
t₂₁₃₀, X₇: X₆+3 {O(n)}
t₂₁₃₀, X₈: 0 {O(1)}
t₂₁₃₀, X₉: X₆ {O(n)}
t₂₁₃₀, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₃₀, X₁₁: 2 {O(1)}
t₂₁₃₄, X₆: X₆ {O(n)}
t₂₁₃₄, X₇: X₆+3 {O(n)}
t₂₁₃₄, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₃₄, X₉: X₆ {O(n)}
t₂₁₃₄, X₁₀: X₆ {O(n)}
t₂₁₃₄, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+2 {O(EXP)}
t₂₁₃₅, X₆: X₆ {O(n)}
t₂₁₃₅, X₇: X₆+3 {O(n)}
t₂₁₃₅, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₃₅, X₉: X₆ {O(n)}
t₂₁₃₅, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₃₅, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₃₆, X₆: X₆ {O(n)}
t₂₁₃₆, X₇: X₆+3 {O(n)}
t₂₁₃₆, X₈: 0 {O(1)}
t₂₁₃₆, X₉: X₆ {O(n)}
t₂₁₃₆, X₁₀: X₆ {O(n)}
t₂₁₃₆, X₁₁: 1 {O(1)}
t₂₁₃₇, X₆: X₆ {O(n)}
t₂₁₃₇, X₇: X₆+3 {O(n)}
t₂₁₃₇, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₃₇, X₉: X₆ {O(n)}
t₂₁₃₇, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₃₇, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₃₈, X₆: X₆ {O(n)}
t₂₁₃₈, X₇: X₆+3 {O(n)}
t₂₁₃₈, X₈: 0 {O(1)}
t₂₁₃₈, X₉: X₆ {O(n)}
t₂₁₃₈, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₃₈, X₁₁: 1 {O(1)}
t₂₁₃₉, X₆: X₆ {O(n)}
t₂₁₃₉, X₇: X₆+3 {O(n)}
t₂₁₃₉, X₈: 0 {O(1)}
t₂₁₃₉, X₉: X₆ {O(n)}
t₂₁₃₉, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₃₉, X₁₁: 2 {O(1)}
t₂₁₄₃, X₆: X₆ {O(n)}
t₂₁₄₃, X₇: X₆+3 {O(n)}
t₂₁₄₃, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₄₃, X₉: X₆ {O(n)}
t₂₁₄₃, X₁₀: X₆ {O(n)}
t₂₁₄₃, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+2 {O(EXP)}
t₂₁₄₄, X₆: X₆ {O(n)}
t₂₁₄₄, X₇: X₆+3 {O(n)}
t₂₁₄₄, X₈: 0 {O(1)}
t₂₁₄₄, X₉: X₆ {O(n)}
t₂₁₄₄, X₁₀: X₆ {O(n)}
t₂₁₄₄, X₁₁: 1 {O(1)}
t₂₁₄₅, X₆: X₆ {O(n)}
t₂₁₄₅, X₇: X₆+3 {O(n)}
t₂₁₄₅, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₄₅, X₉: X₆ {O(n)}
t₂₁₄₅, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₄₅, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₄₆, X₆: X₆ {O(n)}
t₂₁₄₆, X₇: X₆+3 {O(n)}
t₂₁₄₆, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₄₆, X₉: X₆ {O(n)}
t₂₁₄₆, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₄₆, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₄₇, X₆: X₆ {O(n)}
t₂₁₄₇, X₇: X₆+3 {O(n)}
t₂₁₄₇, X₈: 0 {O(1)}
t₂₁₄₇, X₉: X₆ {O(n)}
t₂₁₄₇, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₄₇, X₁₁: 1 {O(1)}
t₂₁₄₈, X₆: X₆ {O(n)}
t₂₁₄₈, X₇: X₆+3 {O(n)}
t₂₁₄₈, X₈: 0 {O(1)}
t₂₁₄₈, X₉: X₆ {O(n)}
t₂₁₄₈, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₄₈, X₁₁: 2 {O(1)}
t₂₁₄₉, X₆: X₆ {O(n)}
t₂₁₄₉, X₇: X₆+3 {O(n)}
t₂₁₄₉, X₈: X₆ {O(n)}
t₂₁₄₉, X₉: X₆ {O(n)}
t₂₁₄₉, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₄₉, X₁₁: 2 {O(1)}
t₂₁₅₆, X₆: X₆ {O(n)}
t₂₁₅₆, X₇: X₆+3 {O(n)}
t₂₁₅₆, X₈: 0 {O(1)}
t₂₁₅₆, X₉: X₆ {O(n)}
t₂₁₅₆, X₁₀: X₆ {O(n)}
t₂₁₅₆, X₁₁: 1 {O(1)}
t₂₁₅₇, X₆: X₆ {O(n)}
t₂₁₅₇, X₇: X₆+3 {O(n)}
t₂₁₅₇, X₈: X₆ {O(n)}
t₂₁₅₇, X₉: X₆ {O(n)}
t₂₁₅₇, X₁₀: X₆ {O(n)}
t₂₁₅₇, X₁₁: 1 {O(1)}
t₂₁₅₈, X₆: X₆ {O(n)}
t₂₁₅₈, X₇: X₆+3 {O(n)}
t₂₁₅₈, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₅₈, X₉: X₆ {O(n)}
t₂₁₅₈, X₁₀: X₆ {O(n)}
t₂₁₅₈, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+2 {O(EXP)}
t₂₁₅₉, X₆: X₆ {O(n)}
t₂₁₅₉, X₇: X₆+3 {O(n)}
t₂₁₅₉, X₈: X₆ {O(n)}
t₂₁₅₉, X₉: X₆ {O(n)}
t₂₁₅₉, X₁₀: X₆ {O(n)}
t₂₁₅₉, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+2 {O(EXP)}
t₂₁₆₀, X₆: X₆ {O(n)}
t₂₁₆₀, X₇: X₆+3 {O(n)}
t₂₁₆₀, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₆₀, X₉: X₆ {O(n)}
t₂₁₆₀, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₆₀, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₆₁, X₆: X₆ {O(n)}
t₂₁₆₁, X₇: X₆+3 {O(n)}
t₂₁₆₁, X₈: X₆ {O(n)}
t₂₁₆₁, X₉: X₆ {O(n)}
t₂₁₆₁, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₆₁, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₆₂, X₆: X₆ {O(n)}
t₂₁₆₂, X₇: X₆+3 {O(n)}
t₂₁₆₂, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₆₂, X₉: X₆ {O(n)}
t₂₁₆₂, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₆₂, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₆₃, X₆: X₆ {O(n)}
t₂₁₆₃, X₇: X₆+3 {O(n)}
t₂₁₆₃, X₈: X₆ {O(n)}
t₂₁₆₃, X₉: X₆ {O(n)}
t₂₁₆₃, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₆₃, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₆₄, X₆: X₆ {O(n)}
t₂₁₆₄, X₇: X₆+3 {O(n)}
t₂₁₆₄, X₈: 0 {O(1)}
t₂₁₆₄, X₉: X₆ {O(n)}
t₂₁₆₄, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₆₄, X₁₁: 1 {O(1)}
t₂₁₆₅, X₆: X₆ {O(n)}
t₂₁₆₅, X₇: X₆+3 {O(n)}
t₂₁₆₅, X₈: X₆ {O(n)}
t₂₁₆₅, X₉: X₆ {O(n)}
t₂₁₆₅, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₆₅, X₁₁: 1 {O(1)}
t₂₁₆₆, X₆: X₆ {O(n)}
t₂₁₆₆, X₇: X₆+3 {O(n)}
t₂₁₆₆, X₈: 0 {O(1)}
t₂₁₆₆, X₉: X₆ {O(n)}
t₂₁₆₆, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₆₆, X₁₁: 2 {O(1)}
t₂₁₆₉, X₆: X₆ {O(n)}
t₂₁₆₉, X₇: X₆+3 {O(n)}
t₂₁₆₉, X₈: 0 {O(1)}
t₂₁₆₉, X₉: X₆ {O(n)}
t₂₁₆₉, X₁₀: X₆ {O(n)}
t₂₁₆₉, X₁₁: 1 {O(1)}
t₂₁₇₁, X₆: X₆ {O(n)}
t₂₁₇₁, X₇: X₆+3 {O(n)}
t₂₁₇₁, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₇₁, X₉: X₆ {O(n)}
t₂₁₇₁, X₁₀: X₆ {O(n)}
t₂₁₇₁, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+2 {O(EXP)}
t₂₁₇₂, X₆: X₆ {O(n)}
t₂₁₇₂, X₇: X₆+3 {O(n)}
t₂₁₇₂, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₇₂, X₉: X₆ {O(n)}
t₂₁₇₂, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₇₂, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₇₃, X₆: X₆ {O(n)}
t₂₁₇₃, X₇: X₆+3 {O(n)}
t₂₁₇₃, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₇₃, X₉: X₆ {O(n)}
t₂₁₇₃, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₇₃, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₇₄, X₆: X₆ {O(n)}
t₂₁₇₄, X₇: X₆+3 {O(n)}
t₂₁₇₄, X₈: 0 {O(1)}
t₂₁₇₄, X₉: X₆ {O(n)}
t₂₁₇₄, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₇₄, X₁₁: 1 {O(1)}
t₂₁₇₅, X₆: X₆ {O(n)}
t₂₁₇₅, X₇: X₆+3 {O(n)}
t₂₁₇₅, X₈: 1 {O(1)}
t₂₁₇₅, X₉: X₆ {O(n)}
t₂₁₇₅, X₁₀: X₆ {O(n)}
t₂₁₇₅, X₁₁: 1 {O(1)}
t₂₁₇₉, X₆: X₆ {O(n)}
t₂₁₇₉, X₇: X₆+3 {O(n)}
t₂₁₇₉, X₈: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+2 {O(EXP)}
t₂₁₇₉, X₉: X₆ {O(n)}
t₂₁₇₉, X₁₀: X₆ {O(n)}
t₂₁₇₉, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+2 {O(EXP)}
t₂₁₈₀, X₆: X₆ {O(n)}
t₂₁₈₀, X₇: X₆+3 {O(n)}
t₂₁₈₀, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₈₀, X₉: X₆ {O(n)}
t₂₁₈₀, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₈₀, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₈₁, X₆: X₆ {O(n)}
t₂₁₈₁, X₇: X₆+3 {O(n)}
t₂₁₈₁, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₈₁, X₉: X₆ {O(n)}
t₂₁₈₁, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₈₁, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₈₂, X₆: X₆ {O(n)}
t₂₁₈₂, X₇: X₆+3 {O(n)}
t₂₁₈₂, X₈: 2 {O(1)}
t₂₁₈₂, X₉: X₆ {O(n)}
t₂₁₈₂, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₈₂, X₁₁: 2 {O(1)}
t₂₁₈₃, X₆: X₆ {O(n)}
t₂₁₈₃, X₇: X₆+3 {O(n)}
t₂₁₈₃, X₈: 1 {O(1)}
t₂₁₈₃, X₉: X₆ {O(n)}
t₂₁₈₃, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₈₃, X₁₁: 1 {O(1)}
t₂₁₈₅, X₆: X₆ {O(n)}
t₂₁₈₅, X₇: X₆+3 {O(n)}
t₂₁₈₅, X₈: 0 {O(1)}
t₂₁₈₅, X₉: X₆ {O(n)}
t₂₁₈₅, X₁₀: X₆ {O(n)}
t₂₁₈₅, X₁₁: 1 {O(1)}
t₂₁₈₈, X₆: X₆ {O(n)}
t₂₁₈₈, X₇: X₆+3 {O(n)}
t₂₁₈₈, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₈₈, X₉: X₆ {O(n)}
t₂₁₈₈, X₁₀: X₆ {O(n)}
t₂₁₈₈, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+2 {O(EXP)}
t₂₁₈₉, X₆: X₆ {O(n)}
t₂₁₈₉, X₇: X₆+3 {O(n)}
t₂₁₈₉, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₈₉, X₉: X₆ {O(n)}
t₂₁₈₉, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₈₉, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₉₀, X₆: X₆ {O(n)}
t₂₁₉₀, X₇: X₆+3 {O(n)}
t₂₁₉₀, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₉₀, X₉: X₆ {O(n)}
t₂₁₉₀, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₉₀, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₉₁, X₆: X₆ {O(n)}
t₂₁₉₁, X₇: X₆+3 {O(n)}
t₂₁₉₁, X₈: 0 {O(1)}
t₂₁₉₁, X₉: X₆ {O(n)}
t₂₁₉₁, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₉₁, X₁₁: 1 {O(1)}
t₂₁₉₂, X₆: X₆ {O(n)}
t₂₁₉₂, X₇: X₆+3 {O(n)}
t₂₁₉₂, X₈: 0 {O(1)}
t₂₁₉₂, X₉: X₆ {O(n)}
t₂₁₉₂, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₉₂, X₁₁: 2 {O(1)}
t₂₁₉₈, X₆: X₆ {O(n)}
t₂₁₉₈, X₇: X₆+3 {O(n)}
t₂₁₉₈, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₉₈, X₉: X₆ {O(n)}
t₂₁₉₈, X₁₀: 5⋅X₆+1 {O(n)}
t₂₁₉₈, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+3 {O(EXP)}
t₂₁₉₉, X₆: X₆ {O(n)}
t₂₁₉₉, X₇: X₆+3 {O(n)}
t₂₁₉₉, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₁₉₉, X₉: X₆ {O(n)}
t₂₁₉₉, X₁₀: X₆ {O(n)}
t₂₁₉₉, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+3 {O(EXP)}
t₂₂₀₀, X₆: X₆ {O(n)}
t₂₂₀₀, X₇: X₆+3 {O(n)}
t₂₂₀₀, X₈: 0 {O(1)}
t₂₂₀₀, X₉: X₆ {O(n)}
t₂₂₀₀, X₁₀: 5⋅X₆+1 {O(n)}
t₂₂₀₀, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₂₀₁, X₆: X₆ {O(n)}
t₂₂₀₁, X₇: X₆+3 {O(n)}
t₂₂₀₁, X₈: 0 {O(1)}
t₂₂₀₁, X₉: X₆ {O(n)}
t₂₂₀₁, X₁₀: X₆ {O(n)}
t₂₂₀₁, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₂₀₅, X₆: X₆ {O(n)}
t₂₂₀₅, X₇: X₆+3 {O(n)}
t₂₂₀₅, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅3⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅9⋅X₆ {O(EXP)}
t₂₂₀₅, X₉: 4⋅X₆ {O(n)}
t₂₂₀₅, X₁₀: 5⋅X₆+1 {O(n)}
t₂₂₀₅, X₁₁: 18⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅4⋅X₆⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅6⋅X₁₁+3 {O(EXP)}
t₂₂₀₇, X₆: X₆ {O(n)}
t₂₂₀₇, X₇: X₆+3 {O(n)}
t₂₂₀₇, X₈: 0 {O(1)}
t₂₂₀₇, X₉: X₆ {O(n)}
t₂₂₀₇, X₁₀: 5⋅X₆+1 {O(n)}
t₂₂₀₇, X₁₁: 16⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₆⋅X₆+22⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+24⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅66+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅72⋅X₆+X₁₁+12 {O(EXP)}
t₂₂₃₄, X₆: X₆ {O(n)}
t₂₂₃₄, X₇: X₆+3 {O(n)}
t₂₂₃₄, X₈: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+12⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅33+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅36⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅8⋅X₆⋅X₆+6 {O(EXP)}
t₂₂₃₄, X₉: 6⋅X₆ {O(n)}
t₂₂₃₄, X₁₀: 5⋅X₆+1 {O(n)}
t₂₂₃₄, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+12⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅33+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅36⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅8⋅X₆⋅X₆+6 {O(EXP)}
t₂₂₃₅, X₆: X₆ {O(n)}
t₂₂₃₅, X₇: X₆+3 {O(n)}
t₂₂₃₅, X₈: 6⋅X₆ {O(n)}
t₂₂₃₅, X₉: 6⋅X₆ {O(n)}
t₂₂₃₅, X₁₀: 5⋅X₆+1 {O(n)}
t₂₂₃₅, X₁₁: 11⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)+12⋅2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅X₁₁+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅33+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅36⋅X₆+2^(X₆⋅X₆+2⋅X₁₁+2⋅X₆+2)⋅2^(X₆⋅X₆+7⋅X₆+X₁₁+6)⋅8⋅X₆⋅X₆+6 {O(EXP)}