Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁₀ ≤ X₀
t₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, 0, X₂, X₀, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ < X₁₀
t₁₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₅
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁₀ < 0
t₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₉ < 0
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ < 0
t₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₉ ≤ X₁
t₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ < X₉
t₁₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(X₃+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₉: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₃, X₃, X₁+1, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₄, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ ≤ X₂
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₂ < X₅
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)

Preprocessing

Eliminate variables {X₆,X₇,X₈} that do not contribute to the problem

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀ for location l1

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₂₉: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀
t₃₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, 0, X₂, X₀, X₄, X₅, X₆, X₇) :|: X₀ < X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀
t₃₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₃₃: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅
t₃₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < 0
t₃₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ < 0
t₃₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 0
t₃₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₁ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < X₆ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₃₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₃+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₃, X₃, X₁+1, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₄, X₂, X₂, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₄₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

MPRF for transition t₃₁: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, 0, X₂, X₀, X₄, X₅, X₆, X₇) :|: X₀ < X₇ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₃₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₁ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₃₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₃+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₄₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₅+X₇ {O(n)}

MPRF for transition t₄₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₅ {O(n)}

MPRF for transition t₃₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < X₆ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₆⋅X₇+X₆+X₇+1 {O(n^2)}

MPRF for transition t₄₀: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₃, X₃, X₁+1, X₅, X₆, X₇) :|: 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₆⋅X₇+X₆ {O(n^2)}

MPRF for transition t₄₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₄, X₂, X₂, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₆⋅X₇+X₆ {O(n^2)}

Chain transitions t₃₉: l5→l1 and t₃₁: l1→l4 to t₉₂: l5→l4

Chain transitions t₃₃: l3→l1 and t₃₁: l1→l4 to t₉₃: l3→l4

Chain transitions t₃₃: l3→l1 and t₃₀: l1→l2 to t₉₄: l3→l2

Chain transitions t₃₉: l5→l1 and t₃₀: l1→l2 to t₉₅: l5→l2

Chain transitions t₄₁: l7→l4 and t₃₈: l4→l6 to t₉₆: l7→l6

Chain transitions t₉₂: l5→l4 and t₃₈: l4→l6 to t₉₇: l5→l6

Chain transitions t₉₂: l5→l4 and t₃₇: l4→l5 to t₉₈: l5→l5

Chain transitions t₄₁: l7→l4 and t₃₇: l4→l5 to t₉₉: l7→l5

Chain transitions t₉₃: l3→l4 and t₃₇: l4→l5 to t₁₀₀: l3→l5

Chain transitions t₉₃: l3→l4 and t₃₈: l4→l6 to t₁₀₁: l3→l6

Chain transitions t₉₆: l7→l6 and t₄₀: l6→l7 to t₁₀₂: l7→l7

Chain transitions t₉₇: l5→l6 and t₄₀: l6→l7 to t₁₀₃: l5→l7

Chain transitions t₁₀₁: l3→l6 and t₄₀: l6→l7 to t₁₀₄: l3→l7

Chain transitions t₄₂: l7→l8 and t₄₃: l8→l7 to t₁₀₅: l7→l7

Analysing control-flow refined program

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀ for location l1

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4

MPRF for transition t₉₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{3}> l5(1+X₃, 0, X₂, 1+X₃, X₄, X₅, X₆, X₇) :|: 1+X₃ < X₇ ∧ X₆ ≤ 0 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 2+2⋅X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₇ {O(n)}

MPRF for transition t₉₉: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{2}> l5(X₀, X₄, X₂, X₂, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ X₆ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₂ ∧ 0 ≤ X₄+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₇+1 {O(n)}

MPRF for transition t₁₀₃: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{4}> l7(1+X₃, 0, 1+X₃, 1+X₃, 1, X₅, X₆, X₇) :|: 1+X₃ < X₇ ∧ 0 < X₆ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 2+2⋅X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 0 ≤ X₃+X₇ ∧ 1 ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 2+2⋅X₃ ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₇ {O(n)}

MPRF for transition t₁₀₅: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{2}> l7(X₀, X₁, X₂+1, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₅ {O(n)}

TWN: t₁₀₂: l7→l7

cycle: [t₁₀₂: l7→l7]
loop: (X₅ ≤ X₂ ∧ X₄ < X₆,(X₂,X₄,X₅,X₆) -> (X₂,X₄+1,X₅,X₆)
order: [X₂; X₄; X₅; X₆]
closed-form:
X₂: X₂
X₄: X₄ + [[n != 0]] * n^1
X₅: X₅
X₆: X₆

Termination: true
Formula:

1 < 0 ∧ X₅ < X₂
∨ 1 < 0 ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅
∨ X₄ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ < X₂
∨ X₄ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅

Stabilization-Threshold for: X₄ < X₆
alphas_abs: X₄+X₆
M: 0
N: 1
Bound: 2⋅X₄+2⋅X₆+2 {O(n)}
loop: (X₅ ≤ X₂ ∧ X₄ < X₆,(X₂,X₄,X₅,X₆) -> (X₂,X₄+1,X₅,X₆)
order: [X₂; X₄; X₅; X₆]
closed-form:
X₂: X₂
X₄: X₄ + [[n != 0]] * n^1
X₅: X₅
X₆: X₆

Termination: true
Formula:

1 < 0 ∧ X₅ < X₂
∨ 1 < 0 ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅
∨ X₄ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ < X₂
∨ X₄ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅

Stabilization-Threshold for: X₄ < X₆
alphas_abs: X₄+X₆
M: 0
N: 1
Bound: 2⋅X₄+2⋅X₆+2 {O(n)}
loop: (X₅ ≤ X₂ ∧ X₄ < X₆,(X₂,X₄,X₅,X₆) -> (X₂,X₄+1,X₅,X₆)
order: [X₂; X₄; X₅; X₆]
closed-form:
X₂: X₂
X₄: X₄ + [[n != 0]] * n^1
X₅: X₅
X₆: X₆

Termination: true
Formula:

1 < 0 ∧ X₅ < X₂
∨ 1 < 0 ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅
∨ X₄ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ < X₂
∨ X₄ < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1 ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅

Stabilization-Threshold for: X₄ < X₆
alphas_abs: X₄+X₆
M: 0
N: 1
Bound: 2⋅X₄+2⋅X₆+2 {O(n)}

TWN - Lifting for t₁₀₂: l7→l7 of 2⋅X₄+2⋅X₆+5 {O(n)}

relevant size-bounds w.r.t. t₁₀₅:
X₄: 2 {O(1)}
X₆: X₆ {O(n)}
Runtime-bound of t₁₀₅: 2⋅X₅ {O(n)}
Results in: 4⋅X₅⋅X₆+18⋅X₅ {O(n^2)}

TWN - Lifting for t₁₀₂: l7→l7 of 2⋅X₄+2⋅X₆+5 {O(n)}

relevant size-bounds w.r.t. t₁₀₃:
X₄: 1 {O(1)}
X₆: X₆ {O(n)}
Runtime-bound of t₁₀₃: 2⋅X₇ {O(n)}
Results in: 4⋅X₆⋅X₇+14⋅X₇ {O(n^2)}

TWN - Lifting for t₁₀₂: l7→l7 of 2⋅X₄+2⋅X₆+5 {O(n)}

relevant size-bounds w.r.t. t₁₀₄:
X₄: 1 {O(1)}
X₆: X₆ {O(n)}
Runtime-bound of t₁₀₄: 1 {O(1)}
Results in: 2⋅X₆+7 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₂₅₁: n_l7___1→l8

Found invariant 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___2

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___5

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l4___3

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l7

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1+X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l8

Found invariant 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ 0 ≤ X₅+X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀ for location l1

Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4

Found invariant 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___1

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l7___4

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₂₃₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < X₆ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₂₄₁: n_l6___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___4(X₀, X₁, X₃, X₃, X₁+1, X₅, X₆, X₇) :|: X₁ < X₆ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₁ ≤ X₆ ∧ X₀ ≤ X₃ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₂₄₃: n_l7___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___3(X₀, X₁+1, X₂, X₂, X₁+1, X₅, X₆, X₇) :|: X₁+1 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₅ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₂ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁ ≤ X₆ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound X₅ {O(n)} for transition t₂₄₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___3(X₀, X₁+1, X₂, X₂, X₁+1, X₅, X₆, X₇) :|: X₂ ≤ X₅ ∧ 1+X₃ ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ X₆ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₄ ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₂ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁ ≤ X₆ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1+X₃ ≤ X₅ ∧ 2 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₁ ≤ X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₀ ≤ X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₂₅₂: n_l7___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ X₁ ≤ X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1 ∧ X₄ ≤ 1+X₃ ∧ X₄ ≤ 1+X₂ ∧ X₄ ≤ 1+X₁ ∧ X₁+X₄ ≤ 1 ∧ X₄ ≤ 1+X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀

MPRF for transition t₂₃₈: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ ≤ X₃ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₅ ≤ X₂ ∧ X₁ < X₆ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₁ ∧ 1+X₀ ≤ X₇ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

4⋅X₆⋅X₇+2⋅X₇+X₆ {O(n^2)}

MPRF for transition t₂₄₀: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___1(X₀, X₁, X₃, X₃, X₁+1, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₁ < X₆ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀ ∧ 1+X₁ ≤ X₆ ∧ X₀ ≤ X₃ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 3 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

4⋅X₆⋅X₇+5⋅X₇+X₆ {O(n^2)}

MPRF for transition t₂₄₂: n_l7___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l4___3(X₀, X₁+1, X₂, X₂, X₁+1, X₅, X₆, X₇) :|: X₅ ≤ X₂ ∧ 1 ≤ X₁ ∧ X₁+1 ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₁+1 ≤ X₄ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₀ ∧ 1+X₁ ≤ X₆ ∧ 1+X₀ ≤ X₇ ∧ X₄ ≤ 1+X₁ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₁ ∧ X₃ ≤ X₂ ∧ 1+X₀ ≤ X₇ ∧ 1+X₁ ≤ X₆ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₀ ∧ X₄ ≤ 1+X₁ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 4 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 1+X₁ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

2⋅X₆⋅X₇+X₇ {O(n^2)}

MPRF for transition t₂₅₀: n_l4___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₁ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₁ ≤ X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:3⋅X₆⋅X₇+2⋅X₅+3⋅X₆+5⋅X₇+8 {O(n^2)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
t₃₁: X₇ {O(n)}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 1 {O(1)}
t₃₇: X₇ {O(n)}
t₃₈: X₆⋅X₇+X₆+X₇+1 {O(n^2)}
t₃₉: X₇ {O(n)}
t₄₀: X₆⋅X₇+X₆ {O(n^2)}
t₄₁: X₆⋅X₇+X₆ {O(n^2)}
t₄₂: X₅+X₇ {O(n)}
t₄₃: X₅ {O(n)}

Costbounds

Overall costbound: 3⋅X₆⋅X₇+2⋅X₅+3⋅X₆+5⋅X₇+8 {O(n^2)}
t₂₉: 1 {O(1)}
t₃₀: 1 {O(1)}
t₃₁: X₇ {O(n)}
t₃₂: 1 {O(1)}
t₃₃: 1 {O(1)}
t₃₄: 1 {O(1)}
t₃₅: 1 {O(1)}
t₃₆: 1 {O(1)}
t₃₇: X₇ {O(n)}
t₃₈: X₆⋅X₇+X₆+X₇+1 {O(n^2)}
t₃₉: X₇ {O(n)}
t₄₀: X₆⋅X₇+X₆ {O(n^2)}
t₄₁: X₆⋅X₇+X₆ {O(n^2)}
t₄₂: X₅+X₇ {O(n)}
t₄₃: X₅ {O(n)}

Sizebounds

t₂₉, X₀: X₀ {O(n)}
t₂₉, X₁: X₁ {O(n)}
t₂₉, X₂: X₂ {O(n)}
t₂₉, X₃: X₃ {O(n)}
t₂₉, X₄: X₄ {O(n)}
t₂₉, X₅: X₅ {O(n)}
t₂₉, X₆: X₆ {O(n)}
t₂₉, X₇: X₇ {O(n)}
t₃₀, X₀: X₅+X₇ {O(n)}
t₃₀, X₁: X₆⋅X₇+X₁+X₆ {O(n^2)}
t₃₀, X₂: 2⋅X₂+2⋅X₅+2⋅X₇ {O(n)}
t₃₀, X₃: X₃+X₅+X₇ {O(n)}
t₃₀, X₄: 2⋅X₆⋅X₇+2⋅X₄+2⋅X₆+2 {O(n^2)}
t₃₀, X₅: 2⋅X₅ {O(n)}
t₃₀, X₆: 2⋅X₆ {O(n)}
t₃₀, X₇: 2⋅X₇ {O(n)}
t₃₁, X₀: X₅+X₇ {O(n)}
t₃₁, X₁: 0 {O(1)}
t₃₁, X₂: 2⋅X₅+2⋅X₇+X₂ {O(n)}
t₃₁, X₃: X₅+X₇ {O(n)}
t₃₁, X₄: 2⋅X₆⋅X₇+2⋅X₆+X₄+2 {O(n^2)}
t₃₁, X₅: X₅ {O(n)}
t₃₁, X₆: X₆ {O(n)}
t₃₁, X₇: X₇ {O(n)}
t₃₂, X₀: 3⋅X₀+X₅+X₇ {O(n)}
t₃₂, X₁: X₆⋅X₇+4⋅X₁+X₆ {O(n^2)}
t₃₂, X₂: 2⋅X₅+2⋅X₇+5⋅X₂ {O(n)}
t₃₂, X₃: 4⋅X₃+X₅+X₇ {O(n)}
t₃₂, X₄: 2⋅X₆⋅X₇+2⋅X₆+5⋅X₄+2 {O(n^2)}
t₃₂, X₅: 5⋅X₅ {O(n)}
t₃₂, X₆: 5⋅X₆ {O(n)}
t₃₂, X₇: 5⋅X₇ {O(n)}
t₃₃, X₀: 0 {O(1)}
t₃₃, X₁: X₁ {O(n)}
t₃₃, X₂: X₂ {O(n)}
t₃₃, X₃: X₃ {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₃, X₅: X₅ {O(n)}
t₃₃, X₆: X₆ {O(n)}
t₃₃, X₇: X₇ {O(n)}
t₃₄, X₀: X₀ {O(n)}
t₃₄, X₁: X₁ {O(n)}
t₃₄, X₂: X₂ {O(n)}
t₃₄, X₃: X₃ {O(n)}
t₃₄, X₄: X₄ {O(n)}
t₃₄, X₅: X₅ {O(n)}
t₃₄, X₆: X₆ {O(n)}
t₃₄, X₇: X₇ {O(n)}
t₃₅, X₀: X₀ {O(n)}
t₃₅, X₁: X₁ {O(n)}
t₃₅, X₂: X₂ {O(n)}
t₃₅, X₃: X₃ {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₅, X₅: X₅ {O(n)}
t₃₅, X₆: X₆ {O(n)}
t₃₅, X₇: X₇ {O(n)}
t₃₆, X₀: X₀ {O(n)}
t₃₆, X₁: X₁ {O(n)}
t₃₆, X₂: X₂ {O(n)}
t₃₆, X₃: X₃ {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₆, X₅: X₅ {O(n)}
t₃₆, X₆: X₆ {O(n)}
t₃₆, X₇: X₇ {O(n)}
t₃₇, X₀: 2⋅X₅+2⋅X₇ {O(n)}
t₃₇, X₁: X₆⋅X₇+X₆ {O(n^2)}
t₃₇, X₂: 2⋅X₅+2⋅X₇+X₂ {O(n)}
t₃₇, X₃: X₅+X₇ {O(n)}
t₃₇, X₄: 2⋅X₆⋅X₇+2⋅X₆+X₄+2 {O(n^2)}
t₃₇, X₅: X₅ {O(n)}
t₃₇, X₆: X₆ {O(n)}
t₃₇, X₇: X₇ {O(n)}
t₃₈, X₀: X₅+X₇ {O(n)}
t₃₈, X₁: X₆⋅X₇+X₆ {O(n^2)}
t₃₈, X₂: 4⋅X₅+4⋅X₇+X₂ {O(n)}
t₃₈, X₃: X₅+X₇ {O(n)}
t₃₈, X₄: 4⋅X₆⋅X₇+4⋅X₆+X₄+4 {O(n^2)}
t₃₈, X₅: X₅ {O(n)}
t₃₈, X₆: X₆ {O(n)}
t₃₈, X₇: X₇ {O(n)}
t₃₉, X₀: X₅+X₇ {O(n)}
t₃₉, X₁: X₆⋅X₇+X₆ {O(n^2)}
t₃₉, X₂: 2⋅X₅+2⋅X₇+X₂ {O(n)}
t₃₉, X₃: X₅+X₇ {O(n)}
t₃₉, X₄: 2⋅X₆⋅X₇+2⋅X₆+X₄+2 {O(n^2)}
t₃₉, X₅: X₅ {O(n)}
t₃₉, X₆: X₆ {O(n)}
t₃₉, X₇: X₇ {O(n)}
t₄₀, X₀: X₅+X₇ {O(n)}
t₄₀, X₁: X₆⋅X₇+X₆ {O(n^2)}
t₄₀, X₂: X₅+X₇ {O(n)}
t₄₀, X₃: X₅+X₇ {O(n)}
t₄₀, X₄: X₆⋅X₇+X₆+1 {O(n^2)}
t₄₀, X₅: X₅ {O(n)}
t₄₀, X₆: X₆ {O(n)}
t₄₀, X₇: X₇ {O(n)}
t₄₁, X₀: X₅+X₇ {O(n)}
t₄₁, X₁: X₆⋅X₇+X₆ {O(n^2)}
t₄₁, X₂: 2⋅X₅+2⋅X₇ {O(n)}
t₄₁, X₃: X₅+X₇ {O(n)}
t₄₁, X₄: 2⋅X₆⋅X₇+2⋅X₆+2 {O(n^2)}
t₄₁, X₅: X₅ {O(n)}
t₄₁, X₆: X₆ {O(n)}
t₄₁, X₇: X₇ {O(n)}
t₄₂, X₀: X₅+X₇ {O(n)}
t₄₂, X₁: X₆⋅X₇+X₆ {O(n^2)}
t₄₂, X₂: X₅+X₇ {O(n)}
t₄₂, X₃: X₅+X₇ {O(n)}
t₄₂, X₄: X₆⋅X₇+X₆+1 {O(n^2)}
t₄₂, X₅: X₅ {O(n)}
t₄₂, X₆: X₆ {O(n)}
t₄₂, X₇: X₇ {O(n)}
t₄₃, X₀: X₅+X₇ {O(n)}
t₄₃, X₁: X₆⋅X₇+X₆ {O(n^2)}
t₄₃, X₂: X₅+X₇ {O(n)}
t₄₃, X₃: X₅+X₇ {O(n)}
t₄₃, X₄: X₆⋅X₇+X₆+1 {O(n^2)}
t₄₃, X₅: X₅ {O(n)}
t₄₃, X₆: X₆ {O(n)}
t₄₃, X₇: X₇ {O(n)}