Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇)
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇)
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < 0
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 0
t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₃ ∧ 0 ≤ X₅
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₂, X₄, 0, X₆, X₇)
t₂₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁
t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆)
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: X₀ ≤ 0
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇)
Preprocessing
Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l11
Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l2
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l6
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l7
Found invariant 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l5
Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l13
Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l8
Found invariant 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location l1
Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10
Found invariant 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l4
Found invariant X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l9
Found invariant 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l3
Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₅ < 0 ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₂, X₄, 0, X₆, X₇)
t₂₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ 1+X₅ ∧ X₃ ≤ X₂
t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆) :|: 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂
t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
MPRF for transition t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₁₁: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₂ < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₁₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₆) :|: 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₁₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
7⋅X₂⋅X₂+24⋅X₂+14 {O(n^2)}
MPRF for transition t₁₂: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
7⋅X₂⋅X₂+24⋅X₂+14 {O(n^2)}
MPRF for transition t₁₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
7⋅X₂⋅X₂+24⋅X₂+14 {O(n^2)}
MPRF for transition t₁₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+5⋅X₂+2 {O(n^2)}
MPRF for transition t₁₇: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1, X₇) :|: X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₂⋅X₂+3⋅X₂+2 {O(n^2)}
MPRF for transition t₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ of depth 1:
new bound:
X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+6⋅X₂+4 {O(n^3)}
MPRF for transition t₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+6⋅X₂+4 {O(n^3)}
MPRF for transition t₇: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+6⋅X₂+4 {O(n^3)}
MPRF for transition t₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: X₀ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+6⋅X₂+4 {O(n^3)}
MPRF for transition t₁₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ of depth 1:
new bound:
X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+7⋅X₂+5 {O(n^3)}
Chain transitions t₉: l5→l1 and t₁₉: l1→l11 to t₁₇₁: l5→l11
Chain transitions t₁₈: l4→l1 and t₁₉: l1→l11 to t₁₇₂: l4→l11
Chain transitions t₁₅: l2→l10 and t₁₇: l10→l3 to t₁₇₃: l2→l3
Chain transitions t₁₇₁: l5→l11 and t₂: l11→l6 to t₁₇₄: l5→l6
Chain transitions t₁₇₂: l4→l11 and t₂: l11→l6 to t₁₇₅: l4→l6
Chain transitions t₁₇₂: l4→l11 and t₄: l11→l13 to t₁₇₆: l4→l13
Chain transitions t₁₇₁: l5→l11 and t₄: l11→l13 to t₁₇₇: l5→l13
Chain transitions t₁: l12→l11 and t₄: l11→l13 to t₁₇₈: l12→l13
Chain transitions t₁: l12→l11 and t₂: l11→l6 to t₁₇₉: l12→l6
Chain transitions t₁: l12→l11 and t₃: l11→l13 to t₁₈₀: l12→l13
Chain transitions t₁₇₂: l4→l11 and t₃: l11→l13 to t₁₈₁: l4→l13
Chain transitions t₁₇₁: l5→l11 and t₃: l11→l13 to t₁₈₂: l5→l13
Chain transitions t₁₄: l9→l2 and t₁₆: l2→l4 to t₁₈₃: l9→l4
Chain transitions t₁₄: l9→l2 and t₁₇₃: l2→l3 to t₁₈₄: l9→l3
Chain transitions t₁₄: l9→l2 and t₁₅: l2→l10 to t₁₈₅: l9→l10
Chain transitions t₁₈₄: l9→l3 and t₁₀: l3→l8 to t₁₈₆: l9→l8
Chain transitions t₈: l5→l3 and t₁₀: l3→l8 to t₁₈₇: l5→l8
Chain transitions t₈: l5→l3 and t₁₁: l3→l4 to t₁₈₈: l5→l4
Chain transitions t₁₈₄: l9→l3 and t₁₁: l3→l4 to t₁₈₉: l9→l4
Chain transitions t₁₈₉: l9→l4 and t₁₇₅: l4→l6 to t₁₉₀: l9→l6
Chain transitions t₁₈₃: l9→l4 and t₁₇₅: l4→l6 to t₁₉₁: l9→l6
Chain transitions t₁₈₃: l9→l4 and t₁₈₁: l4→l13 to t₁₉₂: l9→l13
Chain transitions t₁₈₉: l9→l4 and t₁₈₁: l4→l13 to t₁₉₃: l9→l13
Chain transitions t₁₈₈: l5→l4 and t₁₈₁: l4→l13 to t₁₉₄: l5→l13
Chain transitions t₁₈₈: l5→l4 and t₁₇₅: l4→l6 to t₁₉₅: l5→l6
Chain transitions t₁₈₈: l5→l4 and t₁₇₆: l4→l13 to t₁₉₆: l5→l13
Chain transitions t₁₈₃: l9→l4 and t₁₇₆: l4→l13 to t₁₉₇: l9→l13
Chain transitions t₁₈₉: l9→l4 and t₁₇₆: l4→l13 to t₁₉₈: l9→l13
Chain transitions t₁₈₈: l5→l4 and t₁₇₂: l4→l11 to t₁₉₉: l5→l11
Chain transitions t₁₈₃: l9→l4 and t₁₇₂: l4→l11 to t₂₀₀: l9→l11
Chain transitions t₁₈₉: l9→l4 and t₁₇₂: l4→l11 to t₂₀₁: l9→l11
Chain transitions t₁₈₈: l5→l4 and t₁₈: l4→l1 to t₂₀₂: l5→l1
Chain transitions t₁₈₃: l9→l4 and t₁₈: l4→l1 to t₂₀₃: l9→l1
Chain transitions t₁₈₉: l9→l4 and t₁₈: l4→l1 to t₂₀₄: l9→l1
Chain transitions t₇: l7→l5 and t₁₈₇: l5→l8 to t₂₀₅: l7→l8
Chain transitions t₇: l7→l5 and t₁₉₅: l5→l6 to t₂₀₆: l7→l6
Chain transitions t₇: l7→l5 and t₁₇₄: l5→l6 to t₂₀₇: l7→l6
Chain transitions t₇: l7→l5 and t₁₈₈: l5→l4 to t₂₀₈: l7→l4
Chain transitions t₇: l7→l5 and t₈: l5→l3 to t₂₀₉: l7→l3
Chain transitions t₇: l7→l5 and t₁₉₆: l5→l13 to t₂₁₀: l7→l13
Chain transitions t₇: l7→l5 and t₁₉₄: l5→l13 to t₂₁₁: l7→l13
Chain transitions t₇: l7→l5 and t₁₈₂: l5→l13 to t₂₁₂: l7→l13
Chain transitions t₇: l7→l5 and t₁₇₇: l5→l13 to t₂₁₃: l7→l13
Chain transitions t₇: l7→l5 and t₁₉₉: l5→l11 to t₂₁₄: l7→l11
Chain transitions t₇: l7→l5 and t₁₇₁: l5→l11 to t₂₁₅: l7→l11
Chain transitions t₇: l7→l5 and t₂₀₂: l5→l1 to t₂₁₆: l7→l1
Chain transitions t₇: l7→l5 and t₉: l5→l1 to t₂₁₇: l7→l1
Chain transitions t₁₉₁: l9→l6 and t₅: l6→l7 to t₂₁₈: l9→l7
Chain transitions t₁₉₀: l9→l6 and t₅: l6→l7 to t₂₁₉: l9→l7
Chain transitions t₂₀₇: l7→l6 and t₅: l6→l7 to t₂₂₀: l7→l7
Chain transitions t₂₀₆: l7→l6 and t₅: l6→l7 to t₂₂₁: l7→l7
Chain transitions t₁₇₉: l12→l6 and t₅: l6→l7 to t₂₂₂: l12→l7
Chain transitions t₁₈₆: l9→l8 and t₁₂: l8→l9 to t₂₂₃: l9→l9
Chain transitions t₂₀₅: l7→l8 and t₁₂: l8→l9 to t₂₂₄: l7→l9
Analysing control-flow refined program
Cut unsatisfiable transition t₁₇₈: l12→l13
Cut unsatisfiable transition t₁₉₈: l9→l13
Cut unsatisfiable transition t₂₁₀: l7→l13
Cut unsatisfiable transition t₂₁₂: l7→l13
Eliminate variables {X₁,X₄,X₇} that do not contribute to the problem
Found invariant 0 ≤ 1+X₃ ∧ X₂ ≤ X₁ for location l11
Found invariant X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l2
Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l6
Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l7
Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l5
Found invariant 0 ≤ 1+X₃ ∧ X₂ ≤ X₁ for location l13
Found invariant X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8
Found invariant X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ for location l1
Found invariant X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l10
Found invariant X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l4
Found invariant X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l9
Found invariant X₄ ≤ 1+X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l3
Found invariant 0 ≤ 1+X₃ ∧ X₂ ≤ X₁ for location l14
Cut unsatisfiable transition t₂₉₉: l7→l1
Cut unsatisfiable transition t₃₀₁: l7→l11
Cut unsatisfiable transition t₃₀₃: l7→l13
Cut unsatisfiable transition t₃₀₆: l7→l4
Cut unsatisfiable transition t₃₀₈: l7→l6
Cut unsatisfiable transition t₃₁₁: l7→l7
MPRF for transition t₃₁₃: l7(X₀, X₁, X₂, X₃, X₄) -{4}> l9(nondef.0, X₁, X₂, X₃, X₃) :|: 0 < nondef.0 ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₃₂₈: l9(X₀, X₁, X₂, X₃, X₄) -{6}> l7(X₀, X₁, X₂-1, X₄-1, X₄) :|: nondef.1 ≤ 0 ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₃₂₉: l9(X₀, X₁, X₂, X₃, X₄) -{8}> l7(X₀, X₁, X₂-1, X₄, 1+X₄) :|: 0 < nondef.1 ∧ X₁ < X₄+1 ∧ 1 ≤ X₂ ∧ 0 ≤ X₄ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₃₁₀: l7(X₀, X₁, X₂, X₃, X₄) -{5}> l7(nondef.0, X₁, X₂, X₃-1, X₄) :|: nondef.0 ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁ of depth 1:
new bound:
2⋅X₁⋅X₁+2⋅X₁ {O(n^2)}
MPRF for transition t₃₃₁: l9(X₀, X₁, X₂, X₃, X₄) -{5}> l9(X₀, X₁, X₂, X₃, 1+X₄) :|: 0 < nondef.1 ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁⋅X₁+5⋅X₁+3 {O(n^2)}
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₄: l11→l13
Cut unsatisfiable transition t₅₆₄: n_l11___7→l13
Found invariant X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₂ ≤ X₃ for location l11
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location n_l6___3
Found invariant X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 for location n_l6___6
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location n_l5___1
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l2___7
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂ for location n_l5___9
Found invariant X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___1
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ 2+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 2+X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l11___12
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l10___6
Found invariant X₆ ≤ 1+X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___5
Found invariant X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l9___3
Found invariant X₇ ≤ X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 for location n_l1___8
Found invariant X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l2___2
Found invariant X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ for location n_l5___4
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l7___10
Found invariant X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ 1+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ X₀ ≤ 1+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 for location n_l11___7
Found invariant X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l6___11
Found invariant X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ for location n_l7___2
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l8___9
Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l13
Found invariant X₆ ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 1+X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___4
Found invariant X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l1
Found invariant 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l4
Found invariant X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₀ ≤ X₇ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₀ ≤ X₃ ∧ 0 ≤ X₂ ∧ X₀ ≤ X₂ ∧ X₀ ≤ 0 for location n_l7___5
Found invariant X₆ ≤ X₅ ∧ X₆ ≤ X₂ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ X₅ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location n_l9___8
Found invariant X₆ ≤ X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀ for location l3
Found invariant 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ for location l14
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₅₄₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l11___12(X₀, X₁, X₂, X₄, X₄, X₇-1, X₆, X₇) :|: 1+X₄ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ 1 ≤ X₀ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₃ ≤ 1+X₄ ∧ X₅ ≤ X₇ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₅ ≤ X₇ ∧ X₃ ≤ 1+X₄ ∧ X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 1+X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₅₄₁: n_l11___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ 0 ≤ 1+X₅ ∧ X₃ ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₇ ∧ 0 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 0 ≤ 1+X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 0 ≤ 1+X₄+X₇ ∧ 0 ≤ 1+X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 0 ≤ X₆ ∧ 0 ≤ 1+X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 0 ≤ 1+X₄+X₆ ∧ 0 ≤ 1+X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ 1+X₅ ∧ 0 ≤ 2+X₄+X₅ ∧ 0 ≤ 2+X₃+X₅ ∧ 0 ≤ 1+X₂+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 0 ≤ 2+X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ 1+X₂+X₄ ∧ 0 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ 1+X₃ ∧ 0 ≤ 1+X₂+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₅₄₉: n_l6___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₃ ≤ X₂ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₅₅₂: n_l7___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l5___9(NoDet0, X₁, Arg2_P, Arg3_P, X₄, Arg5_P, X₆, X₇) :|: 1+X₃ ≤ X₂ ∧ 1 ≤ X₀ ∧ X₅+1 ≤ X₆ ∧ X₆ ≤ 1+X₅ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ 0 ≤ Arg5_P ∧ Arg3_P ≤ Arg2_P ∧ 0 ≤ Arg3_P ∧ X₅ ≤ Arg5_P ∧ Arg5_P ≤ X₅ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₀+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₅₆₉: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₅, X₇) :|: 0 < X₀ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₅₄₈: n_l5___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l1___8(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₅) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₆ ≤ X₇ ∧ X₇ ≤ X₆ ∧ X₅+1 ≤ X₇ ∧ X₇ ≤ 1+X₅ ∧ X₀ ≤ 0 ∧ X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₅ ∧ X₇ ≤ X₆ ∧ X₇ ≤ 1+X₅ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ X₆ ≤ 1+X₅ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂
All Bounds
Timebounds
Overall timebound:5⋅X₂⋅X₂⋅X₂+44⋅X₂⋅X₂+115⋅X₂+76 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+6⋅X₂+4 {O(n^3)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+6⋅X₂+4 {O(n^3)}
t₇: X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+6⋅X₂+4 {O(n^3)}
t₈: X₂+1 {O(n)}
t₉: X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+6⋅X₂+4 {O(n^3)}
t₁₀: 7⋅X₂⋅X₂+24⋅X₂+14 {O(n^2)}
t₁₁: X₂+1 {O(n)}
t₁₂: 7⋅X₂⋅X₂+24⋅X₂+14 {O(n^2)}
t₁₄: 7⋅X₂⋅X₂+24⋅X₂+14 {O(n^2)}
t₁₅: 2⋅X₂⋅X₂+5⋅X₂+2 {O(n^2)}
t₁₆: X₂+1 {O(n)}
t₁₇: X₂⋅X₂+3⋅X₂+2 {O(n^2)}
t₁₈: X₂+1 {O(n)}
t₁₉: X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+7⋅X₂+5 {O(n^3)}
t₂₀: 1 {O(1)}
Costbounds
Overall costbound: 5⋅X₂⋅X₂⋅X₂+44⋅X₂⋅X₂+115⋅X₂+76 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+6⋅X₂+4 {O(n^3)}
t₃: 1 {O(1)}
t₄: 1 {O(1)}
t₅: X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+6⋅X₂+4 {O(n^3)}
t₇: X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+6⋅X₂+4 {O(n^3)}
t₈: X₂+1 {O(n)}
t₉: X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+6⋅X₂+4 {O(n^3)}
t₁₀: 7⋅X₂⋅X₂+24⋅X₂+14 {O(n^2)}
t₁₁: X₂+1 {O(n)}
t₁₂: 7⋅X₂⋅X₂+24⋅X₂+14 {O(n^2)}
t₁₄: 7⋅X₂⋅X₂+24⋅X₂+14 {O(n^2)}
t₁₅: 2⋅X₂⋅X₂+5⋅X₂+2 {O(n^2)}
t₁₆: X₂+1 {O(n)}
t₁₇: X₂⋅X₂+3⋅X₂+2 {O(n^2)}
t₁₈: X₂+1 {O(n)}
t₁₉: X₂⋅X₂⋅X₂+4⋅X₂⋅X₂+7⋅X₂+5 {O(n^3)}
t₂₀: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₂ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: 0 {O(1)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₂+1 {O(n)}
t₂, X₄: 3⋅X₂+X₄+5 {O(n)}
t₂, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₂, X₆: 2⋅X₂⋅X₂+6⋅X₂+X₆+6 {O(n^2)}
t₂, X₇: 2⋅X₂⋅X₂+6⋅X₂+X₇+6 {O(n^2)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₂+1 {O(n)}
t₃, X₄: 3⋅X₂+X₄+5 {O(n)}
t₃, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₃, X₆: 2⋅X₂⋅X₂+2⋅X₆+6⋅X₂+6 {O(n^2)}
t₃, X₇: 2⋅X₂⋅X₂+6⋅X₂+X₇+6 {O(n^2)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₂+1 {O(n)}
t₄, X₄: 3⋅X₂+5 {O(n)}
t₄, X₅: 1 {O(1)}
t₄, X₆: 2⋅X₂⋅X₂+6⋅X₂+X₆+6 {O(n^2)}
t₄, X₇: 2⋅X₂⋅X₂+6⋅X₂+6 {O(n^2)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₂+1 {O(n)}
t₅, X₄: 3⋅X₂+X₄+5 {O(n)}
t₅, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₅, X₆: 2⋅X₂⋅X₂+6⋅X₂+X₆+6 {O(n^2)}
t₅, X₇: 2⋅X₂⋅X₂+6⋅X₂+X₇+6 {O(n^2)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₂+1 {O(n)}
t₇, X₄: 3⋅X₂+X₄+5 {O(n)}
t₇, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₇, X₆: 2⋅X₂⋅X₂+6⋅X₂+X₆+6 {O(n^2)}
t₇, X₇: 2⋅X₂⋅X₂+6⋅X₂+X₇+6 {O(n^2)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₂+1 {O(n)}
t₈, X₄: 3⋅X₂+X₄+5 {O(n)}
t₈, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₈, X₆: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₈, X₇: 2⋅X₂⋅X₂+6⋅X₂+X₇+6 {O(n^2)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₂+1 {O(n)}
t₉, X₄: X₂+1 {O(n)}
t₉, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₉, X₆: 2⋅X₂⋅X₂+6⋅X₂+X₆+6 {O(n^2)}
t₉, X₇: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₂+1 {O(n)}
t₁₀, X₄: 3⋅X₂+X₄+5 {O(n)}
t₁₀, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₀, X₆: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₀, X₇: 2⋅X₂⋅X₂+6⋅X₂+X₇+6 {O(n^2)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₂+1 {O(n)}
t₁₁, X₄: 2⋅X₄+6⋅X₂+10 {O(n)}
t₁₁, X₅: 2⋅X₂⋅X₂+6⋅X₂+6 {O(n^2)}
t₁₁, X₆: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₁, X₇: 4⋅X₂⋅X₂+12⋅X₂+2⋅X₇+12 {O(n^2)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₂+1 {O(n)}
t₁₂, X₄: 3⋅X₂+X₄+5 {O(n)}
t₁₂, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₂, X₆: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₂, X₇: 2⋅X₂⋅X₂+6⋅X₂+X₇+6 {O(n^2)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₂+1 {O(n)}
t₁₄, X₄: 3⋅X₂+X₄+5 {O(n)}
t₁₄, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₄, X₆: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₄, X₇: 2⋅X₂⋅X₂+6⋅X₂+X₇+6 {O(n^2)}
t₁₅, X₂: X₂ {O(n)}
t₁₅, X₃: X₂+1 {O(n)}
t₁₅, X₄: 3⋅X₂+X₄+5 {O(n)}
t₁₅, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₅, X₆: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₅, X₇: 2⋅X₂⋅X₂+6⋅X₂+X₇+6 {O(n^2)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: X₂+1 {O(n)}
t₁₆, X₄: 3⋅X₂+X₄+5 {O(n)}
t₁₆, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₆, X₆: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₆, X₇: 2⋅X₂⋅X₂+6⋅X₂+X₇+6 {O(n^2)}
t₁₇, X₂: X₂ {O(n)}
t₁₇, X₃: X₂+1 {O(n)}
t₁₇, X₄: 3⋅X₂+X₄+5 {O(n)}
t₁₇, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₇, X₆: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₇, X₇: 2⋅X₂⋅X₂+6⋅X₂+X₇+6 {O(n^2)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: X₂+1 {O(n)}
t₁₈, X₄: 2⋅X₂+4 {O(n)}
t₁₈, X₅: 3⋅X₂⋅X₂+9⋅X₂+9 {O(n^2)}
t₁₈, X₆: 2⋅X₂⋅X₂+6⋅X₂+6 {O(n^2)}
t₁₈, X₇: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₉, X₂: X₂ {O(n)}
t₁₉, X₃: X₂+1 {O(n)}
t₁₉, X₄: 3⋅X₂+5 {O(n)}
t₁₉, X₅: X₂⋅X₂+3⋅X₂+3 {O(n^2)}
t₁₉, X₆: 2⋅X₂⋅X₂+6⋅X₂+X₆+6 {O(n^2)}
t₁₉, X₇: 2⋅X₂⋅X₂+6⋅X₂+6 {O(n^2)}
t₂₀, X₂: 3⋅X₂ {O(n)}
t₂₀, X₃: 3⋅X₂+2 {O(n)}
t₂₀, X₄: 6⋅X₂+X₄+10 {O(n)}
t₂₀, X₅: X₂⋅X₂+3⋅X₂+4 {O(n^2)}
t₂₀, X₆: 4⋅X₂⋅X₂+12⋅X₂+3⋅X₆+12 {O(n^2)}
t₂₀, X₇: 4⋅X₂⋅X₂+12⋅X₂+X₇+12 {O(n^2)}