Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < 0
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 0 < X₁
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₄, X₆, X₂, X₃, X₄, X₅, X₆)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₁, X₀, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ 0
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₁, X₀, X₂, X₃, X₄, X₅, X₆) :|: X₁ ≤ 0
t₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₁, X₀, X₂, X₃, X₄, X₅, X₆) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 0 < X₁ ∧ X₀ < X₁
t₉: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₀, X₃, X₄, X₅, X₆) :|: 0 < X₀ ∧ 0 < X₁ ∧ X₁ < X₀
t₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₁, X₂, X₂, X₃, X₄, X₅, X₆) :|: X₂ ≤ X₁
t₁₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₂
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂-X₁, X₃, X₄, X₅, X₆)

Preprocessing

Eliminate variables {X₃,X₅} that do not contribute to the problem

Found invariant X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6

Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l7

Found invariant X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l4

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₂₈: l0(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄)
t₂₉: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: X₁ < 0
t₃₀: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₁
t₃₁: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₃₂: l2(X₀, X₁, X₂, X₃, X₄) → l1(X₃, X₄, X₂, X₃, X₄)
t₃₃: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₁, X₀, X₂, X₃, X₄) :|: X₀ ≤ 0
t₃₄: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₁, X₀, X₂, X₃, X₄) :|: X₁ ≤ 0
t₃₅: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₁, X₀, X₂, X₃, X₄) :|: X₀ ≤ X₁ ∧ X₁ ≤ X₀
t₃₆: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₀, X₃, X₄) :|: 0 < X₀ ∧ 0 < X₁ ∧ X₀ < X₁
t₃₇: l3(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₀, X₃, X₄) :|: 0 < X₀ ∧ 0 < X₁ ∧ X₁ < X₀
t₃₈: l4(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₃₉: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₁, X₂, X₂, X₃, X₄) :|: X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₀: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₄₁: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂-X₁, X₃, X₄) :|: X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀

MPRF for transition t₄₀: l5(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₃+X₄+2 {O(n)}

MPRF for transition t₄₁: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂-X₁, X₃, X₄) :|: X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

X₃+X₄ {O(n)}

Chain transitions t₃₉: l5→l1 and t₃₁: l1→l4 to t₂₅₅: l5→l4

Chain transitions t₃₅: l3→l1 and t₃₁: l1→l4 to t₂₅₆: l3→l4

Chain transitions t₃₅: l3→l1 and t₃₀: l1→l3 to t₂₅₇: l3→l3

Chain transitions t₃₉: l5→l1 and t₃₀: l1→l3 to t₂₅₈: l5→l3

Chain transitions t₃₄: l3→l1 and t₃₀: l1→l3 to t₂₅₉: l3→l3

Chain transitions t₃₄: l3→l1 and t₃₁: l1→l4 to t₂₆₀: l3→l4

Chain transitions t₃₄: l3→l1 and t₂₉: l1→l3 to t₂₆₁: l3→l3

Chain transitions t₃₅: l3→l1 and t₂₉: l1→l3 to t₂₆₂: l3→l3

Chain transitions t₃₉: l5→l1 and t₂₉: l1→l3 to t₂₆₃: l5→l3

Chain transitions t₃₃: l3→l1 and t₂₉: l1→l3 to t₂₆₄: l3→l3

Chain transitions t₃₃: l3→l1 and t₃₀: l1→l3 to t₂₆₅: l3→l3

Chain transitions t₃₃: l3→l1 and t₃₁: l1→l4 to t₂₆₆: l3→l4

Chain transitions t₃₂: l2→l1 and t₂₉: l1→l3 to t₂₆₇: l2→l3

Chain transitions t₃₂: l2→l1 and t₃₀: l1→l3 to t₂₆₈: l2→l3

Chain transitions t₃₂: l2→l1 and t₃₁: l1→l4 to t₂₆₉: l2→l4

Chain transitions t₄₁: l6→l5 and t₄₀: l5→l6 to t₂₇₀: l6→l6

Chain transitions t₃₇: l3→l5 and t₄₀: l5→l6 to t₂₇₁: l3→l6

Chain transitions t₃₇: l3→l5 and t₂₅₅: l5→l4 to t₂₇₂: l3→l4

Chain transitions t₄₁: l6→l5 and t₂₅₅: l5→l4 to t₂₇₃: l6→l4

Chain transitions t₃₆: l3→l5 and t₂₅₅: l5→l4 to t₂₇₄: l3→l4

Chain transitions t₃₆: l3→l5 and t₄₀: l5→l6 to t₂₇₅: l3→l6

Chain transitions t₃₆: l3→l5 and t₂₆₃: l5→l3 to t₂₇₆: l3→l3

Chain transitions t₃₇: l3→l5 and t₂₆₃: l5→l3 to t₂₇₇: l3→l3

Chain transitions t₄₁: l6→l5 and t₂₆₃: l5→l3 to t₂₇₈: l6→l3

Chain transitions t₃₆: l3→l5 and t₂₅₈: l5→l3 to t₂₇₉: l3→l3

Chain transitions t₃₇: l3→l5 and t₂₅₈: l5→l3 to t₂₈₀: l3→l3

Chain transitions t₄₁: l6→l5 and t₂₅₈: l5→l3 to t₂₈₁: l6→l3

Chain transitions t₃₆: l3→l5 and t₃₉: l5→l1 to t₂₈₂: l3→l1

Chain transitions t₃₇: l3→l5 and t₃₉: l5→l1 to t₂₈₃: l3→l1

Chain transitions t₄₁: l6→l5 and t₃₉: l5→l1 to t₂₈₄: l6→l1

Analysing control-flow refined program

Cut unsatisfiable transition t₂₅₆: l3→l4

Cut unsatisfiable transition t₂₆₅: l3→l3

Cut unsatisfiable transition t₂₇₂: l3→l4

Cut unsatisfiable transition t₂₇₃: l6→l4

Cut unsatisfiable transition t₂₇₄: l3→l4

Cut unsatisfiable transition t₂₇₅: l3→l6

Cut unsatisfiable transition t₂₇₆: l3→l3

Cut unsatisfiable transition t₂₇₇: l3→l3

Cut unsatisfiable transition t₂₇₈: l6→l3

Cut unsatisfiable transition t₂₈₀: l3→l3

Cut unsatisfiable transition t₂₈₃: l3→l1

Found invariant X₂ ≤ X₀ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6

Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l7

Found invariant X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5

Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l4

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₂₇₉: l3(X₀, X₁, X₂, X₃, X₄) -{3}> l3(X₁, X₀, X₀, X₃, X₄) :|: 0 < X₀ ∧ 0 < X₁ ∧ X₀ < X₁ ∧ X₀ ≤ X₁ ∧ 0 < X₀ ∧ 0 ≤ 0 ∧ 2 ≤ X₁+X₀ ∧ 2 ≤ 2⋅X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₂₇₀: l6(X₀, X₁, X₂, X₃, X₄) -{2}> l6(X₀, X₁, X₂-X₁, X₃, X₄) :|: 2⋅X₁ < X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ X₂ ≤ X₀+X₁ ∧ 2 ≤ X₂ ∧ 2+X₁ ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₃+2⋅X₄ {O(n)}

MPRF for transition t₂₇₁: l3(X₀, X₁, X₂, X₃, X₄) -{2}> l6(X₀, X₁, X₀, X₃, X₄) :|: 0 < X₀ ∧ 0 < X₁ ∧ X₁ < X₀ ∧ X₁ < X₀ ∧ 0 ≤ 0 ∧ 2 ≤ X₁+X₀ ∧ 2 ≤ 2⋅X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₃+2⋅X₄ {O(n)}

MPRF for transition t₂₈₁: l6(X₀, X₁, X₂, X₃, X₄) -{3}> l3(X₁, X₂-X₁, X₂-X₁, X₃, X₄) :|: X₂ ≤ 2⋅X₁ ∧ X₁ < X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ X₂ ≤ X₀+X₁ ∧ 2 ≤ X₂ ∧ 2+X₁ ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₀ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:

new bound:

2⋅X₃+2⋅X₄+4 {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Cut unsatisfiable transition t₁₀₆₅: n_l1___12→l4

Cut unsatisfiable transition t₁₀₆₇: n_l1___15→l4

Cut unsatisfiable transition t₁₀₆₈: n_l1___17→l4

Cut unsatisfiable transition t₁₀₆₉: n_l1___20→l4

Cut unsatisfiable transition t₁₀₇₀: n_l1___21→l4

Cut unsatisfiable transition t₁₀₇₁: n_l1___23→l4

Cut unsatisfiable transition t₁₀₇₄: n_l1___3→l4

Cut unsatisfiable transition t₁₀₇₅: n_l1___5→l4

Cut unsatisfiable transition t₁₀₇₆: n_l1___8→l4

Cut unsatisfiable transition t₁₀₇₈: n_l5___11→l6

Cut unsatisfiable transition t₁₀₈₁: n_l1___12→l4

Cut unsatisfiable transition t₁₀₈₃: n_l1___15→l4

Cut unsatisfiable transition t₁₀₈₄: n_l1___17→l4

Cut unsatisfiable transition t₁₀₈₅: n_l1___20→l4

Cut unsatisfiable transition t₁₀₈₆: n_l1___21→l4

Cut unsatisfiable transition t₁₀₈₇: n_l1___23→l4

Cut unsatisfiable transition t₁₀₉₀: n_l1___3→l4

Cut unsatisfiable transition t₁₀₉₁: n_l1___5→l4

Cut unsatisfiable transition t₁₀₉₂: n_l1___8→l4

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___12

Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l3___4

Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6

Found invariant X₄ ≤ X₁ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 4 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___11

Found invariant 1+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ 2+X₁+X₄ ≤ 0 ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1+X₁ ≤ 0 for location n_l3___27

Found invariant X₄ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ 1+X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l1___17

Found invariant 1+X₄ ≤ 0 ∧ 2+X₃+X₄ ≤ 0 ∧ 2+X₁+X₄ ≤ 0 ∧ 2+X₀+X₄ ≤ 0 ∧ 1+X₃ ≤ 0 ∧ 2+X₁+X₃ ≤ 0 ∧ 2+X₀+X₃ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l1___20

Found invariant 1+X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ 2+X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₁ ≤ X₃ ∧ 1+X₀ ≤ 0 for location n_l1___24

Found invariant 1+X₄ ≤ 0 ∧ 2+X₃+X₄ ≤ 0 ∧ 2+X₁+X₄ ≤ 0 ∧ 2+X₀+X₄ ≤ 0 ∧ 1+X₃ ≤ 0 ∧ 2+X₁+X₃ ≤ 0 ∧ 2+X₀+X₃ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___19

Found invariant 1+X₄ ≤ 0 ∧ 2+X₃+X₄ ≤ 0 ∧ 2+X₁+X₄ ≤ 0 ∧ 2+X₀+X₄ ≤ 0 ∧ 1+X₃ ≤ 0 ∧ 2+X₁+X₃ ≤ 0 ∧ 2+X₀+X₃ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location n_l1___21

Found invariant 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₄ ≤ X₁ ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 3 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₀ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l5___10

Found invariant 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l5___2

Found invariant X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 1+X₃ ≤ X₄ ∧ 1+X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 0 ∧ 1+X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l1___13

Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___3

Found invariant X₄ ≤ X₂ ∧ X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l5___6

Found invariant 1+X₄ ≤ 0 ∧ 1+X₃+X₄ ≤ 0 ∧ 1+X₁+X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ 2+X₀+X₄ ≤ 0 ∧ X₀ ≤ X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ X₁+X₃ ≤ 0 ∧ 1+X₀+X₃ ≤ 0 ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 1+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location n_l1___25

Found invariant X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l1___8

Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l7

Found invariant 1+X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 2+X₃+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ 2+X₁+X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ 2+X₀+X₄ ≤ 0 ∧ X₃ ≤ X₄ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 2+X₁+X₃ ≤ 0 ∧ X₃ ≤ X₀ ∧ 2+X₀+X₃ ≤ 0 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___14

Found invariant X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ for location n_l3___26

Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l1___15

Found invariant 1+X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ 2+X₃+X₄ ≤ 0 ∧ X₄ ≤ X₁ ∧ 2+X₁+X₄ ≤ 0 ∧ X₄ ≤ X₀ ∧ 2+X₀+X₄ ≤ 0 ∧ X₃ ≤ X₄ ∧ X₁ ≤ X₄ ∧ X₀ ≤ X₄ ∧ 1+X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 2+X₁+X₃ ≤ 0 ∧ X₃ ≤ X₀ ∧ 2+X₀+X₃ ≤ 0 ∧ X₁ ≤ X₃ ∧ X₀ ≤ X₃ ∧ 1+X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 2+X₀+X₁ ≤ 0 ∧ X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l1___23

Found invariant 1+X₄ ≤ 0 ∧ 2+X₃+X₄ ≤ 0 ∧ 2+X₁+X₄ ≤ 0 ∧ 2+X₀+X₄ ≤ 0 ∧ 1+X₃ ≤ 0 ∧ 2+X₁+X₃ ≤ 0 ∧ 2+X₀+X₃ ≤ 0 ∧ 1+X₁ ≤ 0 ∧ 2+X₀+X₁ ≤ 0 ∧ 1+X₀ ≤ 0 for location n_l3___22

Found invariant X₄ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___9

Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l1___5

Found invariant 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___1

Found invariant X₄ ≤ X₁ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₀ ≤ X₃ for location l1

Found invariant X₁ ≤ 0 ∧ 0 ≤ X₁ for location l4

Found invariant X₄ ≤ X₀ ∧ X₁ ≤ X₄ ∧ X₃ ≤ X₀ ∧ X₁ ≤ X₃ ∧ 1+X₁ ≤ 0 ∧ 2+X₁ ≤ X₀ ∧ 1 ≤ X₀ for location n_l3___16

Found invariant X₄ ≤ X₀ ∧ 2 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 1+X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l3___7

Found invariant X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₃ ≤ X₁ ∧ X₀ ≤ X₃ ∧ 1 ≤ X₁ ∧ 2+X₀ ≤ X₁ ∧ 1+X₀ ≤ 0 for location n_l3___18

knowledge_propagation leads to new time bound X₃+X₄ {O(n)} for transition t₁₀₃₈: l5(X₀, X₁, X₂, X₃, X₄) → n_l1___5(X₁, X₂, X₂, X₃, X₄) :|: X₁+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 3 ≤ X₀+X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀

knowledge_propagation leads to new time bound X₃+X₄ {O(n)} for transition t₁₀₁₂: n_l1___5(X₀, X₁, X₂, X₃, X₄) → n_l3___4(X₀, X₁, X₂, X₃, X₄) :|: 2 ≤ X₀+X₁ ∧ 0 < X₀ ∧ 1 ≤ X₀ ∧ 0 < X₁ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₀+X₂ ∧ 0 < X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₃+X₄ {O(n)} for transition t₁₀₃₄: n_l3___4(X₀, X₁, X₂, X₃, X₄) → n_l5___2(X₀, X₁, X₀, X₃, X₄) :|: X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ X₁ ≤ X₂ ∧ X₂ ≤ X₁ ∧ X₁ < X₀ ∧ 0 < X₁ ∧ 1 ≤ X₄ ∧ 3 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₃+X₄ {O(n)} for transition t₁₀₇₉: n_l5___2(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₂ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ ∧ 2 ≤ X₄ ∧ 4 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁+X₄ ∧ 1+X₁ ≤ X₄ ∧ 4 ≤ X₀+X₄ ∧ X₀ ≤ X₄ ∧ 2 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 4 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ X₂ ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
t₂₈: 1 {O(1)}
t₂₉: inf {Infinity}
t₃₀: inf {Infinity}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: inf {Infinity}
t₃₄: inf {Infinity}
t₃₅: inf {Infinity}
t₃₆: inf {Infinity}
t₃₇: inf {Infinity}
t₃₈: 1 {O(1)}
t₃₉: inf {Infinity}
t₄₀: X₃+X₄+2 {O(n)}
t₄₁: X₃+X₄ {O(n)}

Costbounds

Overall costbound: inf {Infinity}
t₂₈: 1 {O(1)}
t₂₉: inf {Infinity}
t₃₀: inf {Infinity}
t₃₁: 1 {O(1)}
t₃₂: 1 {O(1)}
t₃₃: inf {Infinity}
t₃₄: inf {Infinity}
t₃₅: inf {Infinity}
t₃₆: inf {Infinity}
t₃₇: inf {Infinity}
t₃₈: 1 {O(1)}
t₃₉: inf {Infinity}
t₄₀: X₃+X₄+2 {O(n)}
t₄₁: X₃+X₄ {O(n)}

Sizebounds

t₂₈, X₀: X₀ {O(n)}
t₂₈, X₁: X₁ {O(n)}
t₂₈, X₂: X₂ {O(n)}
t₂₈, X₃: X₃ {O(n)}
t₂₈, X₄: X₄ {O(n)}
t₂₉, X₀: X₃+X₄ {O(n)}
t₂₉, X₁: X₃+X₄ {O(n)}
t₂₉, X₂: 2⋅X₃+2⋅X₄+X₂ {O(n)}
t₂₉, X₃: X₃ {O(n)}
t₂₉, X₄: X₄ {O(n)}
t₃₀, X₀: X₃+X₄ {O(n)}
t₃₀, X₁: X₃+X₄ {O(n)}
t₃₀, X₂: 2⋅X₃+2⋅X₄+X₂ {O(n)}
t₃₀, X₃: X₃ {O(n)}
t₃₀, X₄: X₄ {O(n)}
t₃₁, X₀: 4⋅X₄+5⋅X₃ {O(n)}
t₃₁, X₁: 0 {O(1)}
t₃₁, X₂: 4⋅X₂+8⋅X₃+8⋅X₄ {O(n)}
t₃₁, X₃: 5⋅X₃ {O(n)}
t₃₁, X₄: 5⋅X₄ {O(n)}
t₃₂, X₀: X₃ {O(n)}
t₃₂, X₁: X₄ {O(n)}
t₃₂, X₂: X₂ {O(n)}
t₃₂, X₃: X₃ {O(n)}
t₃₂, X₄: X₄ {O(n)}
t₃₃, X₀: X₃+X₄ {O(n)}
t₃₃, X₁: X₃+X₄ {O(n)}
t₃₃, X₂: 2⋅X₃+2⋅X₄+X₂ {O(n)}
t₃₃, X₃: X₃ {O(n)}
t₃₃, X₄: X₄ {O(n)}
t₃₄, X₀: X₃+X₄ {O(n)}
t₃₄, X₁: X₃+X₄ {O(n)}
t₃₄, X₂: 2⋅X₃+2⋅X₄+X₂ {O(n)}
t₃₄, X₃: X₃ {O(n)}
t₃₄, X₄: X₄ {O(n)}
t₃₅, X₀: X₃+X₄ {O(n)}
t₃₅, X₁: X₃+X₄ {O(n)}
t₃₅, X₂: 2⋅X₃+2⋅X₄+X₂ {O(n)}
t₃₅, X₃: X₃ {O(n)}
t₃₅, X₄: X₄ {O(n)}
t₃₆, X₀: X₃+X₄ {O(n)}
t₃₆, X₁: X₃+X₄ {O(n)}
t₃₆, X₂: X₃+X₄ {O(n)}
t₃₆, X₃: X₃ {O(n)}
t₃₆, X₄: X₄ {O(n)}
t₃₇, X₀: X₃+X₄ {O(n)}
t₃₇, X₁: X₃+X₄ {O(n)}
t₃₇, X₂: X₃+X₄ {O(n)}
t₃₇, X₃: X₃ {O(n)}
t₃₇, X₄: X₄ {O(n)}
t₃₈, X₀: 4⋅X₄+5⋅X₃ {O(n)}
t₃₈, X₁: 0 {O(1)}
t₃₈, X₂: 4⋅X₂+8⋅X₃+8⋅X₄ {O(n)}
t₃₈, X₃: 5⋅X₃ {O(n)}
t₃₈, X₄: 5⋅X₄ {O(n)}
t₃₉, X₀: X₃+X₄ {O(n)}
t₃₉, X₁: X₃+X₄ {O(n)}
t₃₉, X₂: 2⋅X₃+2⋅X₄ {O(n)}
t₃₉, X₃: X₃ {O(n)}
t₃₉, X₄: X₄ {O(n)}
t₄₀, X₀: X₃+X₄ {O(n)}
t₄₀, X₁: X₃+X₄ {O(n)}
t₄₀, X₂: X₃+X₄ {O(n)}
t₄₀, X₃: X₃ {O(n)}
t₄₀, X₄: X₄ {O(n)}
t₄₁, X₀: X₃+X₄ {O(n)}
t₄₁, X₁: X₃+X₄ {O(n)}
t₄₁, X₂: X₃+X₄ {O(n)}
t₄₁, X₃: X₃ {O(n)}
t₄₁, X₄: X₄ {O(n)}