Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₁₀: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃)
t₆: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃)
t₁₁: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀)
t₄: l5(X₀, X₁, X₂, X₃) → l2(X₃+1, X₁, X₂, X₃) :|: X₃+1 < X₁
t₅: l5(X₀, X₁, X₂, X₃) → l9(X₃+1, X₁, X₂, X₃) :|: X₁ ≤ X₃+1
t₂: l6(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₂) :|: X₂+1 < X₁
t₃: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₁ ≤ 1+X₂
t₁: l7(X₀, X₁, X₂, X₃) → l6(X₀, X₁, 0, X₃)
t₁₃: l8(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃)
t₁₂: l9(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂+1, X₃)
Preprocessing
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l2
Found invariant 0 ≤ X₂ for location l6
Found invariant 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l5
Found invariant 0 ≤ X₂ ∧ X₁ ≤ 1+X₂ for location l8
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l1
Found invariant 0 ≤ X₂ ∧ X₁ ≤ 1+X₂ for location l10
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l4
Found invariant 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ for location l9
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₁₀: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₆: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
t₄: l5(X₀, X₁, X₂, X₃) → l2(X₃+1, X₁, X₂, X₃) :|: X₃+1 < X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₅: l5(X₀, X₁, X₂, X₃) → l9(X₃+1, X₁, X₂, X₃) :|: X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
t₂: l6(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₂) :|: X₂+1 < X₁ ∧ 0 ≤ X₂
t₃: l6(X₀, X₁, X₂, X₃) → l8(X₀, X₁, X₂, X₃) :|: X₁ ≤ 1+X₂ ∧ 0 ≤ X₂
t₁: l7(X₀, X₁, X₂, X₃) → l6(X₀, X₁, 0, X₃)
t₁₃: l8(X₀, X₁, X₂, X₃) → l10(X₀, X₁, X₂, X₃) :|: 0 ≤ X₂ ∧ X₁ ≤ 1+X₂
t₁₂: l9(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀
MPRF for transition t₂: l6(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₂) :|: X₂+1 < X₁ ∧ 0 ≤ X₂ of depth 1:
new bound:
X₁+1 {O(n)}
MPRF for transition t₅: l5(X₀, X₁, X₂, X₃) → l9(X₃+1, X₁, X₂, X₃) :|: X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁ {O(n)}
MPRF for transition t₁₂: l9(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂+1, X₃) :|: 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₁ {O(n)}
MPRF for transition t₄: l5(X₀, X₁, X₂, X₃) → l2(X₃+1, X₁, X₂, X₃) :|: X₃+1 < X₁ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₆: l2(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₈: l3(X₀, X₁, X₂, X₃) → l1(X₀, X₁, X₂, X₃) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₁₀: l1(X₀, X₁, X₂, X₃) → l4(X₀, X₁, X₂, X₃) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₁₁: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₀) :|: 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₁⋅X₁+X₁ {O(n^2)}
Chain transitions t₈: l3→l1 and t₁₀: l1→l4 to t₇₈: l3→l4
Chain transitions t₄: l5→l2 and t₆: l2→l3 to t₇₉: l5→l3
Chain transitions t₇₉: l5→l3 and t₇₈: l3→l4 to t₈₀: l5→l4
Chain transitions t₇₉: l5→l3 and t₈: l3→l1 to t₈₁: l5→l1
Chain transitions t₈₀: l5→l4 and t₁₁: l4→l5 to t₈₂: l5→l5
Chain transitions t₁₂: l9→l6 and t₃: l6→l8 to t₈₃: l9→l8
Chain transitions t₁: l7→l6 and t₃: l6→l8 to t₈₄: l7→l8
Chain transitions t₁: l7→l6 and t₂: l6→l5 to t₈₅: l7→l5
Chain transitions t₁₂: l9→l6 and t₂: l6→l5 to t₈₆: l9→l5
Chain transitions t₅: l5→l9 and t₈₃: l9→l8 to t₈₇: l5→l8
Chain transitions t₅: l5→l9 and t₁₂: l9→l6 to t₈₈: l5→l6
Chain transitions t₅: l5→l9 and t₈₆: l9→l5 to t₈₉: l5→l5
Analysing control-flow refined program
Eliminate variables {X₀} that do not contribute to the problem
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l2
Found invariant 0 ≤ X₁ for location l6
Found invariant 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l5
Found invariant 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l8
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Found invariant 0 ≤ X₁ ∧ X₀ ≤ 1+X₁ for location l10
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l4
Found invariant 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 3 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l9
Found invariant 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l3
MPRF for transition t₁₁₇: l5(X₀, X₁, X₂) -{3}> l5(X₀, 1+X₁, 1+X₁) :|: X₀ ≤ X₂+1 ∧ 2+X₁ < X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₀ {O(n)}
MPRF for transition t₁₁₆: l5(X₀, X₁, X₂) -{5}> l5(X₀, X₁, 1+X₂) :|: X₂+1 < X₀ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 2+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₀⋅X₀+2⋅X₀ {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₅: l5→l9
Found invariant 0 ≤ X₂ for location l6
Found invariant X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l4___6
Found invariant 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l5___5
Found invariant X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l1___7
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 3+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l3___3
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 3+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l1___2
Found invariant X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l2___9
Found invariant X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ for location n_l3___8
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 3+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l4___1
Found invariant X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ for location l5
Found invariant 0 ≤ X₂ ∧ X₁ ≤ 1+X₂ for location l8
Found invariant 0 ≤ X₂ ∧ X₁ ≤ 1+X₂ for location l10
Found invariant 1+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ X₁ ≤ 1+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ X₀ ≤ X₁ ∧ 2 ≤ X₀ for location l9
Found invariant 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 3+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ for location n_l2___4
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₂₀₆: l5(X₀, X₁, X₂, X₃) → n_l2___9(X₃+1, X₁, X₂, X₃) :|: 1+X₃ < X₁ ∧ 1+X₃ < X₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₂₀₁: n_l2___9(X₀, X₁, X₂, X₃) → n_l3___8(X₀, X₁, X₂, X₀-1) :|: X₀ < X₁ ∧ X₀ ≤ X₃+1 ∧ X₀ ≤ X₃+1 ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₂₀₃: n_l3___8(X₀, X₁, X₂, X₃) → n_l1___7(X₀, X₁, X₂, X₀-1) :|: X₀ ≤ X₃+1 ∧ X₀ ≤ X₃+1 ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₁₉₉: n_l1___7(X₀, X₁, X₂, X₃) → n_l4___6(X₀, X₁, X₂, X₀-1) :|: X₀ ≤ X₃+1 ∧ X₀ ≤ X₃+1 ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
knowledge_propagation leads to new time bound X₁+1 {O(n)} for transition t₂₀₅: n_l4___6(X₀, X₁, X₂, X₃) → n_l5___5(X₀, X₁, X₂, X₀) :|: X₀ ≤ X₃+1 ∧ X₀ ≤ X₃+1 ∧ 1+X₀ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀
MPRF for transition t₁₉₈: n_l1___2(X₀, X₁, X₂, X₃) → n_l4___1(X₀, X₁, X₂, X₀-1) :|: 2+X₂ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ X₀ ≤ X₃+1 ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 3+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+2⋅X₁+X₀ {O(n^2)}
MPRF for transition t₂₀₀: n_l2___4(X₀, X₁, X₂, X₃) → n_l3___3(X₀, X₁, X₂, X₀-1) :|: X₀ < X₁ ∧ 2+X₂ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ X₀ ≤ X₃+1 ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 3+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₂₀₂: n_l3___3(X₀, X₁, X₂, X₃) → n_l1___2(X₀, X₁, X₂, X₀-1) :|: 2+X₂ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ X₀ ≤ X₃+1 ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 3+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₁⋅X₁+3⋅X₁+1 {O(n^2)}
MPRF for transition t₂₀₄: n_l4___1(X₀, X₁, X₂, X₃) → n_l5___5(X₀, X₁, X₂, X₀) :|: 2+X₂ ≤ X₀ ∧ X₀ ≤ X₃+1 ∧ X₀ ≤ X₃+1 ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 2+X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 4 ≤ X₁+X₃ ∧ 3 ≤ X₀+X₃ ∧ X₀ ≤ 1+X₃ ∧ 3+X₂ ≤ X₁ ∧ 2+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 3 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₂₀₇: n_l5___5(X₀, X₁, X₂, X₃) → n_l2___4(X₃+1, X₁, X₂, X₃) :|: X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ 1+X₂ ≤ X₀ ∧ 1+X₀ ≤ X₁ ∧ 1+X₃ < X₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ X₂ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₂ ≤ X₃ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁⋅X₁+X₁ {O(n^2)}
MPRF for transition t₂₁₄: n_l5___5(X₀, X₁, X₂, X₃) → l9(X₃+1, X₁, X₂, X₃) :|: X₁ ≤ X₃+1 ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁+X₃ ∧ 2+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁ ∧ 1+X₃ ≤ X₁ ∧ X₃ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₀ ≤ X₃ ∧ 2+X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₁ {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:8⋅X₁⋅X₁+8⋅X₁+5 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₁⋅X₁+X₁ {O(n^2)}
t₅: X₁ {O(n)}
t₆: 2⋅X₁⋅X₁+X₁ {O(n^2)}
t₈: 2⋅X₁⋅X₁+X₁ {O(n^2)}
t₁₀: X₁⋅X₁+X₁ {O(n^2)}
t₁₁: 2⋅X₁⋅X₁+X₁ {O(n^2)}
t₁₂: X₁ {O(n)}
t₁₃: 1 {O(1)}
Costbounds
Overall costbound: 8⋅X₁⋅X₁+8⋅X₁+5 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₁⋅X₁+X₁ {O(n^2)}
t₅: X₁ {O(n)}
t₆: 2⋅X₁⋅X₁+X₁ {O(n^2)}
t₈: 2⋅X₁⋅X₁+X₁ {O(n^2)}
t₁₀: X₁⋅X₁+X₁ {O(n^2)}
t₁₁: 2⋅X₁⋅X₁+X₁ {O(n^2)}
t₁₂: X₁ {O(n)}
t₁₃: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: 0 {O(1)}
t₁, X₃: X₃ {O(n)}
t₂, X₀: X₁⋅X₁+2⋅X₁+X₀+1 {O(n^2)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₁ {O(n)}
t₂, X₃: X₁ {O(n)}
t₃, X₀: X₁⋅X₁+2⋅X₁+X₀+1 {O(n^2)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: X₁ {O(n)}
t₃, X₃: X₁⋅X₁+2⋅X₁+X₃ {O(n^2)}
t₄, X₀: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₁ {O(n)}
t₄, X₃: X₁⋅X₁+3⋅X₁ {O(n^2)}
t₅, X₀: X₁⋅X₁+2⋅X₁+1 {O(n^2)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₁ {O(n)}
t₅, X₃: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₆, X₀: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₁ {O(n)}
t₆, X₃: X₁⋅X₁+3⋅X₁ {O(n^2)}
t₈, X₀: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₁ {O(n)}
t₈, X₃: X₁⋅X₁+3⋅X₁ {O(n^2)}
t₁₀, X₀: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₁ {O(n)}
t₁₀, X₃: X₁⋅X₁+3⋅X₁ {O(n^2)}
t₁₁, X₀: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₁ {O(n)}
t₁₁, X₃: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₁₂, X₀: X₁⋅X₁+2⋅X₁+1 {O(n^2)}
t₁₂, X₁: X₁ {O(n)}
t₁₂, X₂: X₁ {O(n)}
t₁₂, X₃: X₁⋅X₁+2⋅X₁ {O(n^2)}
t₁₃, X₀: X₁⋅X₁+2⋅X₁+X₀+1 {O(n^2)}
t₁₃, X₁: 2⋅X₁ {O(n)}
t₁₃, X₂: X₁ {O(n)}
t₁₃, X₃: X₁⋅X₁+2⋅X₁+X₃ {O(n^2)}