Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄)
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 1+X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₄, X₄) :|: X₄+1 ≤ X₂
t₁₆: l10(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄)
t₂₁: l11(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄)
t₁: l12(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, 1) :|: 2 < X₂
t₂: l12(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: X₂ ≤ 2
t₁₃: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₁
t₁₂: l2(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₀
t₆: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0
t₅: l3(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₃
t₂₀: l4(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄+1)
t₁₁: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, nondef.1, X₂, X₃, X₄)
t₇: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄)
t₉: l7(X₀, X₁, X₂, X₃, X₄) → l5(nondef.0, X₁, X₂, X₃, X₄)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄)
t₁₇: l9(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, nondef.3-1, X₄) :|: X₃+1 ≤ 0 ∧ 0 ≤ 1+X₃ ∧ nondef.3 ≤ 0 ∧ 0 ≤ nondef.3
t₁₈: l9(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, nondef.3-1, X₄) :|: 0 < 1+X₃ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef.3+1
t₁₉: l9(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, nondef.3-1, X₄) :|: X₃+1 < 0 ∧ nondef.3 ≤ 0 ∧ 1+X₃ ≤ 2⋅nondef.3 ∧ 2⋅nondef.3 < X₃+3
Preprocessing
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l2
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l6
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l7
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l5
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l8
Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l1
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l10
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l4
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l9
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l3
Cut unsatisfiable transition t₁₇: l9→l3
Cut unsatisfiable transition t₁₉: l9→l3
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars: nondef.0, nondef.1, nondef.3
Locations: l0, l1, l10, l11, l12, l13, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l12(X₀, X₁, X₂, X₃, X₄)
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 1+X₄ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₄, X₄) :|: X₄+1 ≤ X₂ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₂
t₁₆: l10(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀
t₂₁: l11(X₀, X₁, X₂, X₃, X₄) → l13(X₀, X₁, X₂, X₃, X₄)
t₁: l12(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, 1) :|: 2 < X₂
t₂: l12(X₀, X₁, X₂, X₃, X₄) → l11(X₀, X₁, X₂, X₃, X₄) :|: X₂ ≤ 2
t₁₃: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₁₂: l2(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₀ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₆: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₅: l3(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₂₀: l4(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄+1) :|: 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₁₁: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, nondef.1, X₂, X₃, X₄) :|: 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₇: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₉: l7(X₀, X₁, X₂, X₃, X₄) → l5(nondef.0, X₁, X₂, X₃, X₄) :|: 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
t₁₄: l8(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀
t₁₈: l9(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, nondef.3-1, X₄) :|: 0 < 1+X₃ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef.3+1 ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀
MPRF for transition t₃: l1(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₄, X₄) :|: X₄+1 ≤ X₂ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+2 {O(n)}
MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₁₃: l2(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₂₀: l4(X₀, X₁, X₂, X₃, X₄) → l1(X₀, X₁, X₂, X₃, X₄+1) :|: 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄) → l6(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
2⋅X₂⋅X₂+8⋅X₂+10 {O(n^2)}
MPRF for transition t₇: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
2⋅X₂⋅X₂+6⋅X₂+6 {O(n^2)}
MPRF for transition t₉: l7(X₀, X₁, X₂, X₃, X₄) → l5(nondef.0, X₁, X₂, X₃, X₄) :|: 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
2⋅X₂⋅X₂+5⋅X₂+3 {O(n^2)}
MPRF for transition t₁₁: l5(X₀, X₁, X₂, X₃, X₄) → l2(X₀, nondef.1, X₂, X₃, X₄) :|: 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+9⋅X₂+9 {O(n^2)}
MPRF for transition t₁₂: l2(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₀ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
3⋅X₂⋅X₂+9⋅X₂+9 {O(n^2)}
MPRF for transition t₁₄: l8(X₀, X₁, X₂, X₃, X₄) → l10(X₀, X₁, X₂, X₃, X₄) :|: 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
4⋅X₂⋅X₂+11⋅X₂+8 {O(n^2)}
MPRF for transition t₁₆: l10(X₀, X₁, X₂, X₃, X₄) → l9(X₀, X₁, X₂, X₃, X₄) :|: 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
4⋅X₂⋅X₂+9⋅X₂+3 {O(n^2)}
MPRF for transition t₁₈: l9(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, nondef.3-1, X₄) :|: 0 < 1+X₃ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef.3+1 ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+7⋅X₂+7 {O(n^2)}
Chain transitions t₂₀: l4→l1 and t₃: l1→l3 to t₁₃₈: l4→l3
Chain transitions t₁: l12→l1 and t₃: l1→l3 to t₁₃₉: l12→l3
Chain transitions t₁: l12→l1 and t₄: l1→l11 to t₁₄₀: l12→l11
Chain transitions t₂₀: l4→l1 and t₄: l1→l11 to t₁₄₁: l4→l11
Chain transitions t₁₄: l8→l10 and t₁₆: l10→l9 to t₁₄₂: l8→l9
Chain transitions t₁₁: l5→l2 and t₁₂: l2→l8 to t₁₄₃: l5→l8
Chain transitions t₁₁: l5→l2 and t₁₃: l2→l4 to t₁₄₄: l5→l4
Chain transitions t₁₈: l9→l3 and t₅: l3→l6 to t₁₄₅: l9→l6
Chain transitions t₁₃₈: l4→l3 and t₅: l3→l6 to t₁₄₆: l4→l6
Chain transitions t₁₃₈: l4→l3 and t₆: l3→l4 to t₁₄₇: l4→l4
Chain transitions t₁₈: l9→l3 and t₆: l3→l4 to t₁₄₈: l9→l4
Chain transitions t₁₃₉: l12→l3 and t₆: l3→l4 to t₁₄₉: l12→l4
Chain transitions t₁₃₉: l12→l3 and t₅: l3→l6 to t₁₅₀: l12→l6
Chain transitions t₉: l7→l5 and t₁₄₃: l5→l8 to t₁₅₁: l7→l8
Chain transitions t₉: l7→l5 and t₁₄₄: l5→l4 to t₁₅₂: l7→l4
Chain transitions t₉: l7→l5 and t₁₁: l5→l2 to t₁₅₃: l7→l2
Chain transitions t₁₄₅: l9→l6 and t₇: l6→l7 to t₁₅₄: l9→l7
Chain transitions t₁₄₆: l4→l6 and t₇: l6→l7 to t₁₅₅: l4→l7
Chain transitions t₁₅₀: l12→l6 and t₇: l6→l7 to t₁₅₆: l12→l7
Chain transitions t₁₅₄: l9→l7 and t₁₅₁: l7→l8 to t₁₅₇: l9→l8
Chain transitions t₁₅₅: l4→l7 and t₁₅₁: l7→l8 to t₁₅₈: l4→l8
Chain transitions t₁₅₅: l4→l7 and t₉: l7→l5 to t₁₅₉: l4→l5
Chain transitions t₁₅₄: l9→l7 and t₉: l7→l5 to t₁₆₀: l9→l5
Chain transitions t₁₅₆: l12→l7 and t₉: l7→l5 to t₁₆₁: l12→l5
Chain transitions t₁₅₆: l12→l7 and t₁₅₁: l7→l8 to t₁₆₂: l12→l8
Chain transitions t₁₅₆: l12→l7 and t₁₅₂: l7→l4 to t₁₆₃: l12→l4
Chain transitions t₁₅₅: l4→l7 and t₁₅₂: l7→l4 to t₁₆₄: l4→l4
Chain transitions t₁₅₄: l9→l7 and t₁₅₂: l7→l4 to t₁₆₅: l9→l4
Chain transitions t₁₅₆: l12→l7 and t₁₅₃: l7→l2 to t₁₆₆: l12→l2
Chain transitions t₁₅₅: l4→l7 and t₁₅₃: l7→l2 to t₁₆₇: l4→l2
Chain transitions t₁₅₄: l9→l7 and t₁₅₃: l7→l2 to t₁₆₈: l9→l2
Chain transitions t₁₅₇: l9→l8 and t₁₄₂: l8→l9 to t₁₆₉: l9→l9
Chain transitions t₁₅₈: l4→l8 and t₁₄₂: l8→l9 to t₁₇₀: l4→l9
Chain transitions t₁₅₈: l4→l8 and t₁₄: l8→l10 to t₁₇₁: l4→l10
Chain transitions t₁₅₇: l9→l8 and t₁₄: l8→l10 to t₁₇₂: l9→l10
Chain transitions t₁₆₂: l12→l8 and t₁₄: l8→l10 to t₁₇₃: l12→l10
Chain transitions t₁₆₂: l12→l8 and t₁₄₂: l8→l9 to t₁₇₄: l12→l9
Analysing control-flow refined program
Cut unsatisfiable transition t₁₄₀: l12→l11
Cut unsatisfiable transition t₁₄₇: l4→l4
Cut unsatisfiable transition t₁₄₉: l12→l4
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l2
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l6
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l7
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l5
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l8
Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l1
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l10
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l4
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location l9
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l3
MPRF for transition t₁₄₈: l9(X₀, X₁, X₂, X₃, X₄) -{2}> l4(X₀, X₁, X₂, nondef.3-1, X₄) :|: 0 < 1+X₃ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef.3+1 ∧ nondef.3 ≤ 1 ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 1 ≤ nondef.3 ∧ 4 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₂+3 {O(n)}
MPRF for transition t₁₆₄: l4(X₀, X₁, X₂, X₃, X₄) -{7}> l4(Temp_Int₆₁₁, Temp_Int₆₁₂, X₂, 1+X₄, 1+X₄) :|: 2+X₄ ≤ X₂ ∧ 0 < 1+X₄ ∧ Temp_Int₆₁₁ ≤ Temp_Int₆₁₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ X₄+1 ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ 2⋅X₄+1 ∧ 0 ≤ 0 ∧ 3 ≤ X₂+X₄ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ 2⋅X₄ ∧ 0 ≤ 0 ∧ 3 ≤ X₂+X₄ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ 2⋅X₄ ∧ 0 ≤ 0 ∧ 3 ≤ X₂+X₄ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ 2⋅X₄ ∧ 0 ≤ 0 ∧ 3 ≤ X₂+X₄ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ 2⋅X₄ ∧ 0 ≤ 0 ∧ 3 ≤ X₂+X₄ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
2⋅X₂+2 {O(n)}
MPRF for transition t₁₆₅: l9(X₀, X₁, X₂, X₃, X₄) -{6}> l4(Temp_Int₆₁₆, Temp_Int₆₁₇, X₂, nondef.3-1, X₄) :|: 0 < 1+X₃ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef.3+1 ∧ 1 < nondef.3 ∧ Temp_Int₆₁₆ ≤ Temp_Int₆₁₇ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 1 ≤ nondef.3 ∧ 4 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 2 ≤ nondef.3 ∧ 5 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 2 ≤ nondef.3 ∧ 5 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 2 ≤ nondef.3 ∧ 5 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 2 ≤ nondef.3 ∧ 5 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₂+3 {O(n)}
MPRF for transition t₁₇₀: l4(X₀, X₁, X₂, X₃, X₄) -{9}> l9(Temp_Int₅₈₁, Temp_Int₅₈₂, X₂, 1+X₄, 1+X₄) :|: 2+X₄ ≤ X₂ ∧ 0 < 1+X₄ ∧ Temp_Int₅₈₂ < Temp_Int₅₈₁ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ X₄+1 ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ 2⋅X₄+1 ∧ 0 ≤ 0 ∧ 3 ≤ X₂+X₄ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ 1+X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ 2⋅X₄ ∧ 0 ≤ 0 ∧ 3 ≤ X₂+X₄ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ 2⋅X₄ ∧ 0 ≤ 0 ∧ 3 ≤ X₂+X₄ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ 2⋅X₄ ∧ 0 ≤ 0 ∧ 3 ≤ X₂+X₄ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ 2⋅X₄ ∧ 0 ≤ 0 ∧ 3 ≤ X₂+X₄ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ 2⋅X₄ ∧ 0 ≤ 0 ∧ 3 ≤ X₂+X₄ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 1+Temp_Int₅₈₂ ≤ Temp_Int₅₈₁ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ 2⋅X₄ ∧ 0 ≤ 0 ∧ 3 ≤ X₂+X₄ ∧ 2+X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 3 ≤ X₂ ∧ 1+Temp_Int₅₈₂ ≤ Temp_Int₅₈₁ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
2⋅X₂+4 {O(n)}
MPRF for transition t₁₆₉: l9(X₀, X₁, X₂, X₃, X₄) -{8}> l9(Temp_Int₅₇₆, Temp_Int₅₇₇, X₂, nondef.3-1, X₄) :|: 0 < 1+X₃ ∧ 0 ≤ nondef.3 ∧ 2⋅nondef.3 ≤ 1+X₃ ∧ X₃ < 2⋅nondef.3+1 ∧ 1 < nondef.3 ∧ Temp_Int₅₇₇ < Temp_Int₅₇₆ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 1 ≤ nondef.3 ∧ 4 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 2 ≤ nondef.3 ∧ 5 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 2 ≤ nondef.3 ∧ 5 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 2 ≤ nondef.3 ∧ 5 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 2 ≤ nondef.3 ∧ 5 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 2 ≤ nondef.3 ∧ 5 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+Temp_Int₅₇₇ ≤ Temp_Int₅₇₆ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ nondef.3+X₄ ∧ nondef.3 ≤ 1+X₄ ∧ 4 ≤ X₂+X₄ ∧ nondef.3 ≤ X₂ ∧ 2 ≤ nondef.3 ∧ 5 ≤ X₂+nondef.3 ∧ 3 ≤ X₂ ∧ 1+Temp_Int₅₇₇ ≤ Temp_Int₅₇₆ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
24⋅X₂⋅X₂+108⋅X₂+122 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₆: l3→l4
Found invariant X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l7___14
Found invariant X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l8___11
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l8___3
Found invariant X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l9___9
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l10___2
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l5___5
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l9___1
Found invariant X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l2___12
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l7___6
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l3___8
Found invariant X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l5___13
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l6___7
Found invariant X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 3 ≤ X₂ for location l1
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l4
Found invariant X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ for location n_l10___10
Found invariant X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location l3
Found invariant 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l2___4
Found invariant X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ for location n_l6___15
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₃₉₁: l3(X₀, X₁, X₂, X₃, X₄) → n_l6___15(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₃ ∧ 0 < X₃ ∧ X₄ ≤ X₃ ∧ 1 ≤ X₃ ∧ 1 ≤ X₃ ∧ 0 < X₃ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂ ∧ 1+X₃ ≤ X₂ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₃₉₅: n_l6___15(X₀, X₁, X₂, X₃, X₄) → n_l7___14(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₃₉₇: n_l7___14(X₀, X₁, X₂, X₃, X₄) → n_l5___13(NoDet0, X₁, X₂, Arg3_P, Arg4_P) :|: X₄ ≤ X₃ ∧ 1 ≤ Arg3_P ∧ Arg3_P ≤ Arg4_P ∧ 1+Arg4_P ≤ X₂ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₃₉₃: n_l5___13(X₀, X₁, X₂, X₃, X₄) → n_l2___12(X₀, NoDet0, X₂, Arg3_P, Arg4_P) :|: X₄ ≤ X₃ ∧ 1 ≤ Arg3_P ∧ Arg3_P ≤ Arg4_P ∧ 1+Arg4_P ≤ X₂ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₄₁₄: n_l2___12(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₃₈₉: n_l2___12(X₀, X₁, X₂, X₃, X₄) → n_l8___11(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ X₁ < X₀ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₂ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₃₉₉: n_l8___11(X₀, X₁, X₂, X₃, X₄) → n_l10___10(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₀ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₃₈₇: n_l10___10(X₀, X₁, X₂, X₃, X₄) → n_l9___9(X₀, X₁, X₂, X₃, X₄) :|: X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀
knowledge_propagation leads to new time bound X₂+2 {O(n)} for transition t₄₀₂: n_l9___9(X₀, X₁, X₂, X₃, X₄) → n_l3___8(X₀, Arg1_P, Arg2_P, Arg3_P, Arg4_P) :|: X₄ ≤ X₃ ∧ 3 ≤ Arg2_P ∧ 1+Arg4_P ≤ Arg2_P ∧ X₃ ≤ Arg4_P ∧ X₃ < 3+2⋅Arg3_P ∧ 1+2⋅Arg3_P ≤ X₃ ∧ 1+Arg1_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₃ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀
MPRF for transition t₃₈₈: n_l10___2(X₀, X₁, X₂, X₃, X₄) → n_l9___1(X₀, X₁, X₂, X₃, X₄) :|: 1 ≤ X₃ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+10⋅X₂+12 {O(n^2)}
MPRF for transition t₃₉₀: n_l2___4(X₀, X₁, X₂, X₃, X₄) → n_l8___3(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₀ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₂ ∧ 1 ≤ X₃ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
2⋅X₂⋅X₂+10⋅X₂+12 {O(n^2)}
MPRF for transition t₃₉₂: n_l3___8(X₀, X₁, X₂, X₃, X₄) → n_l6___7(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₃ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₂ ∧ 1 ≤ X₄ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+11⋅X₂+14 {O(n^2)}
MPRF for transition t₃₉₄: n_l5___5(X₀, X₁, X₂, X₃, X₄) → n_l2___4(X₀, NoDet0, X₂, Arg3_P, Arg4_P) :|: 1 ≤ Arg3_P ∧ Arg3_P ≤ Arg4_P ∧ 1+Arg4_P ≤ X₂ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
2⋅X₂⋅X₂+12⋅X₂+18 {O(n^2)}
MPRF for transition t₃₉₆: n_l6___7(X₀, X₁, X₂, X₃, X₄) → n_l7___6(X₀, X₁, X₂, X₃, X₄) :|: 0 < X₃ ∧ 1 ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+10⋅X₂+12 {O(n^2)}
MPRF for transition t₃₉₈: n_l7___6(X₀, X₁, X₂, X₃, X₄) → n_l5___5(NoDet0, X₁, X₂, Arg3_P, Arg4_P) :|: 1 ≤ Arg3_P ∧ Arg3_P ≤ Arg4_P ∧ 1+Arg4_P ≤ X₂ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+10⋅X₂+14 {O(n^2)}
MPRF for transition t₄₀₀: n_l8___3(X₀, X₁, X₂, X₃, X₄) → n_l10___2(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₀ ∧ 1 ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 3 ≤ X₂ ∧ 1 ≤ X₃ ∧ 1+X₁ ≤ X₀ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
5⋅X₂⋅X₂+22⋅X₂+25 {O(n^2)}
MPRF for transition t₄₀₁: n_l9___1(X₀, X₁, X₂, X₃, X₄) → n_l3___8(X₀, Arg1_P, Arg2_P, Arg3_P, Arg4_P) :|: 3 ≤ Arg2_P ∧ 1+Arg4_P ≤ Arg2_P ∧ X₃ ≤ Arg4_P ∧ X₃ < 3+2⋅Arg3_P ∧ 1+2⋅Arg3_P ≤ X₃ ∧ 1+Arg1_P ≤ X₀ ∧ X₂ ≤ Arg2_P ∧ Arg2_P ≤ X₂ ∧ X₁ ≤ Arg1_P ∧ Arg1_P ≤ X₁ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂ ∧ X₃ ≤ X₄ ∧ 1+X₄ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+10⋅X₂+13 {O(n^2)}
MPRF for transition t₄₁₃: n_l3___8(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₃ ≤ 0 ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 4 ≤ X₂+X₄ ∧ 0 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₁ ≤ X₀ of depth 1:
new bound:
X₂+2 {O(n)}
MPRF for transition t₄₁₅: n_l2___4(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₁ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ ∧ 1+X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 4 ≤ X₂+X₄ ∧ 1+X₃ ≤ X₂ ∧ 1 ≤ X₃ ∧ 4 ≤ X₂+X₃ ∧ 3 ≤ X₂ of depth 1:
new bound:
X₂+1 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:22⋅X₂⋅X₂+68⋅X₂+65 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₂+2 {O(n)}
t₄: 1 {O(1)}
t₅: 2⋅X₂⋅X₂+8⋅X₂+10 {O(n^2)}
t₆: X₂+1 {O(n)}
t₇: 2⋅X₂⋅X₂+6⋅X₂+6 {O(n^2)}
t₉: 2⋅X₂⋅X₂+5⋅X₂+3 {O(n^2)}
t₁₁: 3⋅X₂⋅X₂+9⋅X₂+9 {O(n^2)}
t₁₂: 3⋅X₂⋅X₂+9⋅X₂+9 {O(n^2)}
t₁₃: X₂+1 {O(n)}
t₁₄: 4⋅X₂⋅X₂+11⋅X₂+8 {O(n^2)}
t₁₆: 4⋅X₂⋅X₂+9⋅X₂+3 {O(n^2)}
t₁₈: 2⋅X₂⋅X₂+7⋅X₂+7 {O(n^2)}
t₂₀: X₂+1 {O(n)}
t₂₁: 1 {O(1)}
Costbounds
Overall costbound: 22⋅X₂⋅X₂+68⋅X₂+65 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: 1 {O(1)}
t₃: X₂+2 {O(n)}
t₄: 1 {O(1)}
t₅: 2⋅X₂⋅X₂+8⋅X₂+10 {O(n^2)}
t₆: X₂+1 {O(n)}
t₇: 2⋅X₂⋅X₂+6⋅X₂+6 {O(n^2)}
t₉: 2⋅X₂⋅X₂+5⋅X₂+3 {O(n^2)}
t₁₁: 3⋅X₂⋅X₂+9⋅X₂+9 {O(n^2)}
t₁₂: 3⋅X₂⋅X₂+9⋅X₂+9 {O(n^2)}
t₁₃: X₂+1 {O(n)}
t₁₄: 4⋅X₂⋅X₂+11⋅X₂+8 {O(n^2)}
t₁₆: 4⋅X₂⋅X₂+9⋅X₂+3 {O(n^2)}
t₁₈: 2⋅X₂⋅X₂+7⋅X₂+7 {O(n^2)}
t₂₀: X₂+1 {O(n)}
t₂₁: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: 1 {O(1)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: X₄ {O(n)}
t₃, X₂: X₂ {O(n)}
t₃, X₃: X₂+3 {O(n)}
t₃, X₄: X₂+2 {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₂+3 {O(n)}
t₄, X₄: X₂+2 {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₂+3 {O(n)}
t₅, X₄: X₂+2 {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: 0 {O(1)}
t₆, X₄: X₂+2 {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₂+3 {O(n)}
t₇, X₄: X₂+2 {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₂+3 {O(n)}
t₉, X₄: X₂+2 {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₂+3 {O(n)}
t₁₁, X₄: X₂+2 {O(n)}
t₁₂, X₂: X₂ {O(n)}
t₁₂, X₃: X₂+3 {O(n)}
t₁₂, X₄: X₂+2 {O(n)}
t₁₃, X₂: X₂ {O(n)}
t₁₃, X₃: X₂+3 {O(n)}
t₁₃, X₄: X₂+2 {O(n)}
t₁₄, X₂: X₂ {O(n)}
t₁₄, X₃: X₂+3 {O(n)}
t₁₄, X₄: X₂+2 {O(n)}
t₁₆, X₂: X₂ {O(n)}
t₁₆, X₃: X₂+3 {O(n)}
t₁₆, X₄: X₂+2 {O(n)}
t₁₈, X₂: X₂ {O(n)}
t₁₈, X₃: X₂+3 {O(n)}
t₁₈, X₄: X₂+2 {O(n)}
t₂₀, X₂: X₂ {O(n)}
t₂₀, X₃: X₂+3 {O(n)}
t₂₀, X₄: X₂+2 {O(n)}
t₂₁, X₂: 2⋅X₂ {O(n)}
t₂₁, X₃: X₂+X₃+3 {O(n)}
t₂₁, X₄: X₂+X₄+2 {O(n)}