Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅) → l3(X₀, X₁, X₂, X₃, X₄, X₅)
t₄: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₅ ≤ X₀
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, 0, X₂, X₃, X₄, X₅) :|: X₀ < X₅
t₉: l2(X₀, X₁, X₂, X₃, X₄, X₅) → l7(X₀, X₁, X₂, X₃, X₄, X₅)
t₁: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l1(0, X₁, X₂, X₃, X₄, X₅) :|: 1 ≤ X₄
t₂: l3(X₀, X₁, X₂, X₃, X₄, X₅) → l2(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₄ < 1
t₆: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l5(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₀ < X₁
t₅: l4(X₀, X₁, X₂, X₃, X₄, X₅) → l6(X₀, X₁, X₂, X₃, X₄, X₅) :|: X₁ ≤ X₀
t₈: l5(X₀, X₁, X₂, X₃, X₄, X₅) → l1(X₀+1, X₁, X₂, X₃, X₄, X₅)
t₇: l6(X₀, X₁, X₂, X₃, X₄, X₅) → l4(X₀, X₁+X₄, X₂, X₃, X₄, X₅)
Preprocessing
Eliminate variables {X₂,X₃} that do not contribute to the problem
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7
Transitions:
t₁₉: l0(X₀, X₁, X₂, X₃) → l3(X₀, X₁, X₂, X₃)
t₂₀: l1(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₃ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₂₁: l1(X₀, X₁, X₂, X₃) → l4(X₀, 0, X₂, X₃) :|: X₀ < X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₀
t₂₂: l2(X₀, X₁, X₂, X₃) → l7(X₀, X₁, X₂, X₃)
t₂₃: l3(X₀, X₁, X₂, X₃) → l1(0, X₁, X₂, X₃) :|: 1 ≤ X₂
t₂₄: l3(X₀, X₁, X₂, X₃) → l2(X₀, X₁, X₂, X₃) :|: X₂ < 1
t₂₅: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₂₆: l4(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
t₂₇: l5(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀
t₂₈: l6(X₀, X₁, X₂, X₃) → l4(X₀, X₁+X₂, X₂, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₂₁: l1(X₀, X₁, X₂, X₃) → l4(X₀, 0, X₂, X₃) :|: X₀ < X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃ {O(n)}
MPRF for transition t₂₅: l4(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃ {O(n)}
MPRF for transition t₂₇: l5(X₀, X₁, X₂, X₃) → l1(X₀+1, X₁, X₂, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃ {O(n)}
MPRF for transition t₂₆: l4(X₀, X₁, X₂, X₃) → l6(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+X₃+1 {O(n^2)}
MPRF for transition t₂₈: l6(X₀, X₁, X₂, X₃) → l4(X₀, X₁+X₂, X₂, X₃) :|: 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
Chain transitions t₂₇: l5→l1 and t₂₁: l1→l4 to t₅₉: l5→l4
Chain transitions t₂₃: l3→l1 and t₂₁: l1→l4 to t₆₀: l3→l4
Chain transitions t₂₃: l3→l1 and t₂₀: l1→l2 to t₆₁: l3→l2
Chain transitions t₂₇: l5→l1 and t₂₀: l1→l2 to t₆₂: l5→l2
Chain transitions t₂₈: l6→l4 and t₂₆: l4→l6 to t₆₃: l6→l6
Chain transitions t₅₉: l5→l4 and t₂₆: l4→l6 to t₆₄: l5→l6
Chain transitions t₅₉: l5→l4 and t₂₅: l4→l5 to t₆₅: l5→l5
Chain transitions t₂₈: l6→l4 and t₂₅: l4→l5 to t₆₆: l6→l5
Chain transitions t₆₀: l3→l4 and t₂₅: l4→l5 to t₆₇: l3→l5
Chain transitions t₆₀: l3→l4 and t₂₆: l4→l6 to t₆₈: l3→l6
Analysing control-flow refined program
Cut unsatisfiable transition t₆₅: l5→l5
Cut unsatisfiable transition t₆₇: l3→l5
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l6
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
MPRF for transition t₆₄: l5(X₀, X₁, X₂, X₃) -{3}> l6(1+X₀, 0, X₂, X₃) :|: 1+X₀ < X₃ ∧ 0 ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₃ ∧ 0 ≤ X₀+X₃ ∧ 2+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ 0 ∧ 0 ≤ 1+X₀ ∧ 0 ≤ 1+X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃ {O(n)}
MPRF for transition t₆₆: l6(X₀, X₁, X₂, X₃) -{2}> l5(X₀, X₁+X₂, X₂, X₃) :|: X₀ < X₁+X₂ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+2⋅X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₁+X₂ ∧ 0 ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃ {O(n)}
MPRF for transition t₆₃: l6(X₀, X₁, X₂, X₃) -{2}> l6(X₀, X₁+X₂, X₂, X₃) :|: X₁+X₂ ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₂+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+2⋅X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₁+X₂ ∧ 0 ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃ {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₂₅: l4→l5
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l6___3
Found invariant 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___1
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location n_l4___2
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1+X₀ ≤ X₁ ∧ 0 ≤ X₀ for location l5
Found invariant 1 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₀ for location l1
Found invariant 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location l4
knowledge_propagation leads to new time bound X₃ {O(n)} for transition t₁₄₂: l4(X₀, X₁, X₂, X₃) → n_l6___3(X₀, X₁, X₂, X₃) :|: X₁ ≤ X₀ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
knowledge_propagation leads to new time bound X₃ {O(n)} for transition t₁₄₄: n_l6___3(X₀, X₁, X₂, X₃) → n_l4___2(X₀, X₁+X₂, X₂, X₃) :|: 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₁ ≤ 0 ∧ X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀
MPRF for transition t₁₄₁: n_l4___2(X₀, X₁, X₂, X₃) → n_l6___1(X₀, X₁, X₂, X₃) :|: X₂ ≤ X₁ ∧ X₁ ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ 0 ≤ X₁ ∧ 1 ≤ X₂ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
2⋅X₃⋅X₃+2⋅X₃ {O(n^2)}
MPRF for transition t₁₄₃: n_l6___1(X₀, X₁, X₂, X₃) → n_l4___2(X₀, X₁+X₂, X₂, X₃) :|: X₂ ≤ X₁ ∧ 1+X₀ ≤ X₃ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂ ∧ 0 ≤ X₁ ∧ X₁ ≤ X₀ ∧ 1+X₀ ≤ X₃ ∧ 2 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 1+X₂ ≤ X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₁ ≤ X₃ ∧ 3 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₃⋅X₃+X₃ {O(n^2)}
MPRF for transition t₁₄₈: n_l4___2(X₀, X₁, X₂, X₃) → l5(X₀, X₁, X₂, X₃) :|: X₀ < X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₃+1 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:2⋅X₃⋅X₃+5⋅X₃+6 {O(n^2)}
t₁₉: 1 {O(1)}
t₂₀: 1 {O(1)}
t₂₁: X₃ {O(n)}
t₂₂: 1 {O(1)}
t₂₃: 1 {O(1)}
t₂₄: 1 {O(1)}
t₂₅: X₃ {O(n)}
t₂₆: X₃⋅X₃+X₃+1 {O(n^2)}
t₂₇: X₃ {O(n)}
t₂₈: X₃⋅X₃+X₃ {O(n^2)}
Costbounds
Overall costbound: 2⋅X₃⋅X₃+5⋅X₃+6 {O(n^2)}
t₁₉: 1 {O(1)}
t₂₀: 1 {O(1)}
t₂₁: X₃ {O(n)}
t₂₂: 1 {O(1)}
t₂₃: 1 {O(1)}
t₂₄: 1 {O(1)}
t₂₅: X₃ {O(n)}
t₂₆: X₃⋅X₃+X₃+1 {O(n^2)}
t₂₇: X₃ {O(n)}
t₂₈: X₃⋅X₃+X₃ {O(n^2)}
Sizebounds
t₁₉, X₀: X₀ {O(n)}
t₁₉, X₁: X₁ {O(n)}
t₁₉, X₂: X₂ {O(n)}
t₁₉, X₃: X₃ {O(n)}
t₂₀, X₀: X₃ {O(n)}
t₂₀, X₁: X₂⋅X₃⋅X₃+X₂⋅X₃+X₁+X₂ {O(n^3)}
t₂₀, X₂: 2⋅X₂ {O(n)}
t₂₀, X₃: 2⋅X₃ {O(n)}
t₂₁, X₀: X₃ {O(n)}
t₂₁, X₁: 0 {O(1)}
t₂₁, X₂: X₂ {O(n)}
t₂₁, X₃: X₃ {O(n)}
t₂₂, X₀: X₀+X₃ {O(n)}
t₂₂, X₁: X₂⋅X₃⋅X₃+X₂⋅X₃+2⋅X₁+X₂ {O(n^3)}
t₂₂, X₂: 3⋅X₂ {O(n)}
t₂₂, X₃: 3⋅X₃ {O(n)}
t₂₃, X₀: 0 {O(1)}
t₂₃, X₁: X₁ {O(n)}
t₂₃, X₂: X₂ {O(n)}
t₂₃, X₃: X₃ {O(n)}
t₂₄, X₀: X₀ {O(n)}
t₂₄, X₁: X₁ {O(n)}
t₂₄, X₂: X₂ {O(n)}
t₂₄, X₃: X₃ {O(n)}
t₂₅, X₀: X₃ {O(n)}
t₂₅, X₁: X₂⋅X₃⋅X₃+X₂⋅X₃+X₂ {O(n^3)}
t₂₅, X₂: X₂ {O(n)}
t₂₅, X₃: X₃ {O(n)}
t₂₆, X₀: X₃ {O(n)}
t₂₆, X₁: X₂⋅X₃⋅X₃+X₂⋅X₃+X₂ {O(n^3)}
t₂₆, X₂: X₂ {O(n)}
t₂₆, X₃: X₃ {O(n)}
t₂₇, X₀: X₃ {O(n)}
t₂₇, X₁: X₂⋅X₃⋅X₃+X₂⋅X₃+X₂ {O(n^3)}
t₂₇, X₂: X₂ {O(n)}
t₂₇, X₃: X₃ {O(n)}
t₂₈, X₀: X₃ {O(n)}
t₂₈, X₁: X₂⋅X₃⋅X₃+X₂⋅X₃+X₂ {O(n^3)}
t₂₈, X₂: X₂ {O(n)}
t₂₈, X₃: X₃ {O(n)}