Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₄
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ 0
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₉, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0
t₁₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, nondef.2, X₇, X₈, X₉)
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 0
t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₀
t₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₇, X₈, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉)
t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₅ ∧ 0 < X₂
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉)
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀-1, X₃, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)

Preprocessing

Found invariant 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l11

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₀ ≤ X₇ ∧ X₀ ≤ 0 for location l15

Found invariant X₀ ≤ X₇ for location l12

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l9

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l3

Found invariant X₀ ≤ X₇ ∧ X₀ ≤ 0 for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆ ∧ 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀
t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₉, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0 ∧ 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀
t₁₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, nondef.2, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ 0 ∧ X₀ ≤ X₇
t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₀ ∧ X₀ ≤ X₇
t₁: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₇, X₈, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉)
t₂₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ X₇ ∧ X₀ ≤ 0
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀
t₉: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀
t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₅ ∧ 0 < X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l6(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀
t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀
t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀-1, X₃, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀

MPRF for transition t₂: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₀ ∧ X₀ ≤ X₇ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l1(X₀, X₁, X₂, X₃, nondef.0, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₁, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₄ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₁₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₁₆: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₁₈: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l10(X₀, X₁, X₂, X₃, X₄, X₅, nondef.2, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF for transition t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₁+1, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₆ ∧ 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF for transition t₂₀: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₉, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₆ ≤ 0 ∧ 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

MPRF for transition t₂₁: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l12(X₀-1, X₃, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ of depth 1:

new bound:

2⋅X₇ {O(n)}

MPRF for transition t₁₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₅ ∧ 0 < X₂ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇⋅X₉+X₇+X₈+1 {O(n^2)}

MPRF for transition t₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇⋅X₉+X₇+X₈+1 {O(n^2)}

TWN: t₉: l4→l7

TWN - Lifting for t₉: l4→l7 of 2⋅X₂+6 {O(n)}

relevant size-bounds w.r.t. t₇:
X₂: X₇+X₈+X₉+1 {O(n)}
Runtime-bound of t₇: X₇ {O(n)}
Results in: 2⋅X₇⋅X₇+2⋅X₇⋅X₈+2⋅X₇⋅X₉+8⋅X₇ {O(n^2)}

TWN: t₁₁: l7→l6

TWN - Lifting for t₁₁: l7→l6 of 2⋅X₂+6 {O(n)}

relevant size-bounds w.r.t. t₇:
X₂: X₇+X₈+X₉+1 {O(n)}
Runtime-bound of t₇: X₇ {O(n)}
Results in: 2⋅X₇⋅X₇+2⋅X₇⋅X₈+2⋅X₇⋅X₉+8⋅X₇ {O(n^2)}

Chain transitions t₆: l3→l1 and t₈: l1→l5 to t₁₃₁: l3→l5

Chain transitions t₆: l3→l1 and t₇: l1→l4 to t₁₃₂: l3→l4

Chain transitions t₁₈: l11→l10 and t₂₀: l10→l9 to t₁₃₃: l11→l9

Chain transitions t₁₈: l11→l10 and t₁₉: l10→l9 to t₁₃₄: l11→l9

Chain transitions t₁₆: l5→l11 and t₁₃₄: l11→l9 to t₁₃₅: l5→l9

Chain transitions t₁₆: l5→l11 and t₁₃₃: l11→l9 to t₁₃₆: l5→l9

Chain transitions t₁₆: l5→l11 and t₁₈: l11→l10 to t₁₃₇: l5→l10

Chain transitions t₂₁: l9→l12 and t₂: l12→l2 to t₁₃₈: l9→l2

Chain transitions t₁: l13→l12 and t₂: l12→l2 to t₁₃₉: l13→l2

Chain transitions t₁: l13→l12 and t₃: l12→l14 to t₁₄₀: l13→l14

Chain transitions t₂₁: l9→l12 and t₃: l12→l14 to t₁₄₁: l9→l14

Chain transitions t₁₃₈: l9→l2 and t₄: l2→l3 to t₁₄₂: l9→l3

Chain transitions t₁₃₉: l13→l2 and t₄: l2→l3 to t₁₄₃: l13→l3

Chain transitions t₁₄₂: l9→l3 and t₁₃₁: l3→l5 to t₁₄₄: l9→l5

Chain transitions t₁₄₃: l13→l3 and t₁₃₁: l3→l5 to t₁₄₅: l13→l5

Chain transitions t₁₄₃: l13→l3 and t₁₃₂: l3→l4 to t₁₄₆: l13→l4

Chain transitions t₁₄₂: l9→l3 and t₁₃₂: l3→l4 to t₁₄₇: l9→l4

Chain transitions t₁₄₃: l13→l3 and t₆: l3→l1 to t₁₄₈: l13→l1

Chain transitions t₁₄₂: l9→l3 and t₆: l3→l1 to t₁₄₉: l9→l1

Chain transitions t₁₄₇: l9→l4 and t₉: l4→l7 to t₁₅₀: l9→l7

Chain transitions t₁₅: l8→l4 and t₉: l4→l7 to t₁₅₁: l8→l7

Chain transitions t₁₄₆: l13→l4 and t₉: l4→l7 to t₁₅₂: l13→l7

Chain transitions t₁₄₄: l9→l5 and t₁₃₆: l5→l9 to t₁₅₃: l9→l9

Chain transitions t₁₄₅: l13→l5 and t₁₃₆: l5→l9 to t₁₅₄: l13→l9

Chain transitions t₁₄₅: l13→l5 and t₁₃₅: l5→l9 to t₁₅₅: l13→l9

Chain transitions t₁₄₄: l9→l5 and t₁₃₅: l5→l9 to t₁₅₆: l9→l9

Chain transitions t₁₄₅: l13→l5 and t₁₆: l5→l11 to t₁₅₇: l13→l11

Chain transitions t₁₄₄: l9→l5 and t₁₆: l5→l11 to t₁₅₈: l9→l11

Chain transitions t₁₄₅: l13→l5 and t₁₃₇: l5→l10 to t₁₅₉: l13→l10

Chain transitions t₁₄₄: l9→l5 and t₁₃₇: l5→l10 to t₁₆₀: l9→l10

Chain transitions t₁₁: l7→l6 and t₁₄: l6→l9 to t₁₆₁: l7→l9

Chain transitions t₁₁: l7→l6 and t₁₃: l6→l9 to t₁₆₂: l7→l9

Chain transitions t₁₁: l7→l6 and t₁₂: l6→l8 to t₁₆₃: l7→l8

Chain transitions t₁₅₀: l9→l7 and t₁₆₂: l7→l9 to t₁₆₄: l9→l9

Chain transitions t₁₅₁: l8→l7 and t₁₆₂: l7→l9 to t₁₆₅: l8→l9

Chain transitions t₁₅₁: l8→l7 and t₁₆₁: l7→l9 to t₁₆₆: l8→l9

Chain transitions t₁₅₀: l9→l7 and t₁₆₁: l7→l9 to t₁₆₇: l9→l9

Chain transitions t₁₅₂: l13→l7 and t₁₆₁: l7→l9 to t₁₆₈: l13→l9

Chain transitions t₁₅₂: l13→l7 and t₁₆₂: l7→l9 to t₁₆₉: l13→l9

Chain transitions t₁₅₂: l13→l7 and t₁₆₃: l7→l8 to t₁₇₀: l13→l8

Chain transitions t₁₅₁: l8→l7 and t₁₆₃: l7→l8 to t₁₇₁: l8→l8

Chain transitions t₁₅₀: l9→l7 and t₁₆₃: l7→l8 to t₁₇₂: l9→l8

Chain transitions t₁₅₂: l13→l7 and t₁₁: l7→l6 to t₁₇₃: l13→l6

Chain transitions t₁₅₁: l8→l7 and t₁₁: l7→l6 to t₁₇₄: l8→l6

Chain transitions t₁₅₀: l9→l7 and t₁₁: l7→l6 to t₁₇₅: l9→l6

Analysing control-flow refined program

Eliminate variables {Temp_Int₁₃₁₂,Temp_Int₁₃₂₂,X₆} that do not contribute to the problem

Found invariant 1 ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l11

Found invariant 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location l6

Found invariant X₀ ≤ X₆ ∧ X₀ ≤ 0 for location l15

Found invariant X₀ ≤ X₆ for location l12

Found invariant 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location l7

Found invariant 1 ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l8

Found invariant 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₆ ∧ 1+X₄ ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₀ for location l9

Found invariant 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₀ for location l3

Found invariant X₀ ≤ X₆ ∧ X₀ ≤ 0 for location l14

MPRF for transition t₂₃₉: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) -{4}> l9(X₀, X₁, X₂-1, X₂-1, X₄, Temp_Int₁₃₆₇, X₆, X₇, X₈) :|: Temp_Int₁₃₆₇ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

5⋅X₆+4 {O(n)}

MPRF for transition t₂₄₀: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) -{4}> l9(X₀, X₁, X₂-1, X₂-1, X₄, Temp_Int₁₃₇₆, X₆, X₇, X₈) :|: X₂ ≤ 1 ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

5⋅X₆+4 {O(n)}

MPRF for transition t₂₅₂: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) -{8}> l8(X₀-1, X₃, X₃, X₃, Temp_Int₁₁₉₄, Temp_Int₁₄₃₃, X₆, X₇, X₈) :|: 1 < X₀ ∧ 0 < Temp_Int₁₁₉₄ ∧ 0 < Temp_Int₁₄₃₃ ∧ 0 < X₃ ∧ 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₀ of depth 1:

new bound:

5⋅X₆+5 {O(n)}

MPRF for transition t₂₅₃: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) -{8}> l9(X₀-1, X₃, X₂, X₈, Temp_Int₁₁₆₆, X₅, X₆, X₇, X₈) :|: 1 < X₀ ∧ Temp_Int₁₁₆₆ ≤ 0 ∧ Temp_Int₁₂₅₆ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₀ of depth 1:

new bound:

5⋅X₆ {O(n)}

MPRF for transition t₂₅₄: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) -{8}> l9(X₀-1, X₃, X₂, X₃+1, Temp_Int₁₁₆₆, X₅, X₆, X₇, X₈) :|: 1 < X₀ ∧ Temp_Int₁₁₆₆ ≤ 0 ∧ 0 < Temp_Int₁₂₈₂ ∧ 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₀ of depth 1:

new bound:

5⋅X₆ {O(n)}

MPRF for transition t₂₅₅: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) -{8}> l9(X₀-1, X₃, X₃, X₃, Temp_Int₁₁₉₄, Temp_Int₁₃₅₈, X₆, X₇, X₈) :|: 1 < X₀ ∧ 0 < Temp_Int₁₁₉₄ ∧ Temp_Int₁₃₅₈ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₀ of depth 1:

new bound:

5⋅X₆ {O(n)}

MPRF for transition t₂₅₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) -{8}> l9(X₀-1, X₃, X₃, X₃, Temp_Int₁₁₉₄, Temp_Int₁₃₈₅, X₆, X₇, X₈) :|: 1 < X₀ ∧ 0 < Temp_Int₁₁₉₄ ∧ X₃ ≤ 0 ∧ 1 ≤ X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₀ of depth 1:

new bound:

5⋅X₆ {O(n)}

MPRF for transition t₂₃₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈) -{4}> l8(X₀, X₁, X₂-1, X₃, X₄, Temp_Int₁₄₂₃, X₆, X₇, X₈) :|: 0 < Temp_Int₁₄₂₃ ∧ 1 < X₂ ∧ 1 ≤ X₆ ∧ 2 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ X₀ ≤ X₆ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

170⋅X₆⋅X₈+25⋅X₆⋅X₆+4⋅X₇+5⋅X₆+X₈+1 {O(n^2)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l11

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l6___6

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l2

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l6___2

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___1

Found invariant X₀ ≤ X₇ ∧ X₀ ≤ 0 for location l15

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l4___4

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l8___5

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location n_l7___3

Found invariant X₀ ≤ X₇ for location l12

Found invariant 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l5

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l1

Found invariant 1 ≤ X₇ ∧ 1+X₄ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₄ ≤ 0 ∧ 1+X₄ ≤ X₀ ∧ 1 ≤ X₀ for location l10

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location l4

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l9

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀ for location n_l7___7

Found invariant 1 ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ for location l3

Found invariant X₀ ≤ X₇ ∧ X₀ ≤ 0 for location l14

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₅₁₃: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₀ ≤ X₇ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₅₁₇: n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l6___6(X₀, X₁, X₂, X₃, Arg4_P, NoDet0, X₆, Arg7_P, X₈, X₉) :|: X₀ ≤ Arg7_P ∧ 1 ≤ Arg4_P ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₅₂₇: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₅₂₉: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₅₁₅: n_l6___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₂ ∧ 0 < X₅ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ X₁ ≤ X₂ ∧ 1 ≤ X₀

knowledge_propagation leads to new time bound X₇ {O(n)} for transition t₅₁₉: n_l8___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l4___4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₅ ∧ 0 < X₂ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ X₁ ≤ X₂ ∧ 2 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀

MPRF for transition t₅₁₂: n_l4___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₅ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ X₀ ≤ X₇ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+2⋅X₇ {O(n^2)}

MPRF for transition t₅₁₄: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l8___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 0 < X₂ ∧ 0 < X₅ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+2⋅X₇ {O(n^2)}

MPRF for transition t₅₁₆: n_l7___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l6___2(X₀, X₁, X₂, X₃, Arg4_P, NoDet0, X₆, Arg7_P, X₈, X₉) :|: 1 ≤ X₅ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ X₀ ≤ Arg7_P ∧ 1 ≤ Arg4_P ∧ X₇ ≤ Arg7_P ∧ Arg7_P ≤ X₇ ∧ X₄ ≤ Arg4_P ∧ Arg4_P ≤ X₄ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+2⋅X₇ {O(n^2)}

MPRF for transition t₅₁₈: n_l8___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → n_l4___4(X₀, X₁, X₂-1, X₃, X₄, X₅, X₆, X₇, X₈, X₉) :|: 0 < X₅ ∧ 1+X₂ ≤ X₁ ∧ 0 < X₂ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₀ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₅ ∧ 1 ≤ X₀ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₅ ∧ 2 ≤ X₄+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₀+X₂ ∧ 2 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇⋅X₇+X₇⋅X₈+X₇⋅X₉+X₇ {O(n^2)}

MPRF for transition t₅₂₆: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₅ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇+1 {O(n)}

MPRF for transition t₅₂₈: n_l6___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉) → l9(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₇, X₈, X₉) :|: X₂ ≤ 0 ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 2 ≤ X₀+X₄ ∧ X₂ ≤ X₁ ∧ 1 ≤ X₀ ∧ 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:

new bound:

X₇ {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:4⋅X₇⋅X₈+6⋅X₇⋅X₇+6⋅X₇⋅X₉+2⋅X₈+31⋅X₇+8 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₇ {O(n)}
t₃: 1 {O(1)}
t₄: X₇ {O(n)}
t₆: X₇ {O(n)}
t₇: X₇ {O(n)}
t₈: X₇ {O(n)}
t₉: 2⋅X₇⋅X₇+2⋅X₇⋅X₈+2⋅X₇⋅X₉+8⋅X₇ {O(n^2)}
t₁₁: 2⋅X₇⋅X₇+2⋅X₇⋅X₈+2⋅X₇⋅X₉+8⋅X₇ {O(n^2)}
t₁₂: X₇⋅X₇+X₇⋅X₉+X₇+X₈+1 {O(n^2)}
t₁₃: X₇ {O(n)}
t₁₄: X₇ {O(n)}
t₁₅: X₇⋅X₇+X₇⋅X₉+X₇+X₈+1 {O(n^2)}
t₁₆: X₇ {O(n)}
t₁₈: X₇+1 {O(n)}
t₁₉: X₇+1 {O(n)}
t₂₀: X₇ {O(n)}
t₂₁: 2⋅X₇ {O(n)}
t₂₂: 1 {O(1)}

Costbounds

Overall costbound: 4⋅X₇⋅X₈+6⋅X₇⋅X₇+6⋅X₇⋅X₉+2⋅X₈+31⋅X₇+8 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₇ {O(n)}
t₃: 1 {O(1)}
t₄: X₇ {O(n)}
t₆: X₇ {O(n)}
t₇: X₇ {O(n)}
t₈: X₇ {O(n)}
t₉: 2⋅X₇⋅X₇+2⋅X₇⋅X₈+2⋅X₇⋅X₉+8⋅X₇ {O(n^2)}
t₁₁: 2⋅X₇⋅X₇+2⋅X₇⋅X₈+2⋅X₇⋅X₉+8⋅X₇ {O(n^2)}
t₁₂: X₇⋅X₇+X₇⋅X₉+X₇+X₈+1 {O(n^2)}
t₁₃: X₇ {O(n)}
t₁₄: X₇ {O(n)}
t₁₅: X₇⋅X₇+X₇⋅X₉+X₇+X₈+1 {O(n^2)}
t₁₆: X₇ {O(n)}
t₁₈: X₇+1 {O(n)}
t₁₉: X₇+1 {O(n)}
t₂₀: X₇ {O(n)}
t₂₁: 2⋅X₇ {O(n)}
t₂₂: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₁, X₀: X₇ {O(n)}
t₁, X₁: X₈ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₂, X₀: X₇ {O(n)}
t₂, X₁: X₇+X₈+X₉+1 {O(n)}
t₂, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂+2 {O(n)}
t₂, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₂, X₇: X₇ {O(n)}
t₂, X₈: X₈ {O(n)}
t₂, X₉: X₉ {O(n)}
t₃, X₀: 2⋅X₇ {O(n)}
t₃, X₁: 2⋅X₈+X₇+X₉+1 {O(n)}
t₃, X₂: 2⋅X₂+2⋅X₇+2⋅X₈+2⋅X₉+2 {O(n)}
t₃, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₃, X₇: 2⋅X₇ {O(n)}
t₃, X₈: 2⋅X₈ {O(n)}
t₃, X₉: 2⋅X₉ {O(n)}
t₄, X₀: X₇ {O(n)}
t₄, X₁: X₇+X₈+X₉+1 {O(n)}
t₄, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂+2 {O(n)}
t₄, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₄, X₇: X₇ {O(n)}
t₄, X₈: X₈ {O(n)}
t₄, X₉: X₉ {O(n)}
t₆, X₀: X₇ {O(n)}
t₆, X₁: X₇+X₈+X₉+1 {O(n)}
t₆, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂+2 {O(n)}
t₆, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₆, X₇: X₇ {O(n)}
t₆, X₈: X₈ {O(n)}
t₆, X₉: X₉ {O(n)}
t₇, X₀: X₇ {O(n)}
t₇, X₁: X₇+X₈+X₉+1 {O(n)}
t₇, X₂: X₇+X₈+X₉+1 {O(n)}
t₇, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₇, X₇: X₇ {O(n)}
t₇, X₈: X₈ {O(n)}
t₇, X₉: X₉ {O(n)}
t₈, X₀: X₇ {O(n)}
t₈, X₁: X₇+X₈+X₉+1 {O(n)}
t₈, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂+2 {O(n)}
t₈, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₈, X₇: X₇ {O(n)}
t₈, X₈: X₈ {O(n)}
t₈, X₉: X₉ {O(n)}
t₉, X₀: X₇ {O(n)}
t₉, X₁: X₇+X₈+X₉+1 {O(n)}
t₉, X₂: X₇+X₈+X₉+1 {O(n)}
t₉, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₉, X₇: X₇ {O(n)}
t₉, X₈: X₈ {O(n)}
t₉, X₉: X₉ {O(n)}
t₁₁, X₀: X₇ {O(n)}
t₁₁, X₁: X₇+X₈+X₉+1 {O(n)}
t₁₁, X₂: X₇+X₈+X₉+1 {O(n)}
t₁₁, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₁₁, X₇: X₇ {O(n)}
t₁₁, X₈: X₈ {O(n)}
t₁₁, X₉: X₉ {O(n)}
t₁₂, X₀: X₇ {O(n)}
t₁₂, X₁: X₇+X₈+X₉+1 {O(n)}
t₁₂, X₂: X₇+X₈+X₉+1 {O(n)}
t₁₂, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₁₂, X₇: X₇ {O(n)}
t₁₂, X₈: X₈ {O(n)}
t₁₂, X₉: X₉ {O(n)}
t₁₃, X₀: X₇ {O(n)}
t₁₃, X₁: X₇+X₈+X₉+1 {O(n)}
t₁₃, X₂: X₇+X₈+X₉+1 {O(n)}
t₁₃, X₃: X₇+X₈+X₉+1 {O(n)}
t₁₃, X₇: X₇ {O(n)}
t₁₃, X₈: X₈ {O(n)}
t₁₃, X₉: X₉ {O(n)}
t₁₄, X₀: X₇ {O(n)}
t₁₄, X₁: X₇+X₈+X₉+1 {O(n)}
t₁₄, X₂: X₇+X₈+X₉+1 {O(n)}
t₁₄, X₃: X₇+X₈+X₉+1 {O(n)}
t₁₄, X₇: X₇ {O(n)}
t₁₄, X₈: X₈ {O(n)}
t₁₄, X₉: X₉ {O(n)}
t₁₅, X₀: X₇ {O(n)}
t₁₅, X₁: X₇+X₈+X₉+1 {O(n)}
t₁₅, X₂: X₇+X₈+X₉+1 {O(n)}
t₁₅, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₁₅, X₇: X₇ {O(n)}
t₁₅, X₈: X₈ {O(n)}
t₁₅, X₉: X₉ {O(n)}
t₁₆, X₀: X₇ {O(n)}
t₁₆, X₁: X₇+X₈+X₉+1 {O(n)}
t₁₆, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂+2 {O(n)}
t₁₆, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₁₆, X₇: X₇ {O(n)}
t₁₆, X₈: X₈ {O(n)}
t₁₆, X₉: X₉ {O(n)}
t₁₈, X₀: X₇ {O(n)}
t₁₈, X₁: X₇+X₈+X₉+1 {O(n)}
t₁₈, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂+2 {O(n)}
t₁₈, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₁₈, X₇: X₇ {O(n)}
t₁₈, X₈: X₈ {O(n)}
t₁₈, X₉: X₉ {O(n)}
t₁₉, X₀: X₇ {O(n)}
t₁₉, X₁: X₇+X₈+X₉+1 {O(n)}
t₁₉, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂+2 {O(n)}
t₁₉, X₃: X₇+X₈+X₉+1 {O(n)}
t₁₉, X₇: X₇ {O(n)}
t₁₉, X₈: X₈ {O(n)}
t₁₉, X₉: X₉ {O(n)}
t₂₀, X₀: X₇ {O(n)}
t₂₀, X₁: X₇+X₈+X₉+1 {O(n)}
t₂₀, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂+2 {O(n)}
t₂₀, X₃: X₉ {O(n)}
t₂₀, X₇: X₇ {O(n)}
t₂₀, X₈: X₈ {O(n)}
t₂₀, X₉: X₉ {O(n)}
t₂₁, X₀: X₇ {O(n)}
t₂₁, X₁: X₇+X₈+X₉+1 {O(n)}
t₂₁, X₂: 2⋅X₇+2⋅X₈+2⋅X₉+X₂+2 {O(n)}
t₂₁, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+3 {O(n)}
t₂₁, X₇: X₇ {O(n)}
t₂₁, X₈: X₈ {O(n)}
t₂₁, X₉: X₉ {O(n)}
t₂₂, X₀: 2⋅X₇ {O(n)}
t₂₂, X₁: 2⋅X₈+X₇+X₉+1 {O(n)}
t₂₂, X₂: 2⋅X₂+2⋅X₇+2⋅X₈+2⋅X₉+2 {O(n)}
t₂₂, X₃: 3⋅X₇+3⋅X₈+4⋅X₉+X₃+3 {O(n)}
t₂₂, X₇: 2⋅X₇ {O(n)}
t₂₂, X₈: 2⋅X₈ {O(n)}
t₂₂, X₉: 2⋅X₉ {O(n)}