Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₄ ≤ X₁
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₀, X₅, X₆)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₅
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₃
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆)
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅)
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆)
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+X₅ < X₆
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄+X₅
t₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1)

Preprocessing

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l6

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l7

Found invariant 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l5

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l8

Found invariant X₀ ≤ X₄ for location l1

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l10

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l4

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l9

Found invariant X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆
Temp_Vars:
Locations: l0, l1, l10, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆)
t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₄ ≤ X₁ ∧ X₀ ≤ X₄
t₃: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₁ < X₄ ∧ X₀ ≤ X₄
t₁: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₀, X₅, X₆)
t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁
t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁
t₁₂: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄
t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁
t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+X₅ < X₆ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄+X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁
t₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁

MPRF for transition t₂: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₂, X₆) :|: X₄ ≤ X₁ ∧ X₀ ≤ X₄ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF for transition t₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF for transition t₁₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l1(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆) :|: 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF for transition t₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}

MPRF for transition t₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}

MPRF for transition t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+X₅ < X₆ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

4⋅X₀⋅X₂+4⋅X₀⋅X₃+4⋅X₁⋅X₂+4⋅X₁⋅X₃+8⋅X₂+8⋅X₃+X₀+X₁+2 {O(n^2)}

MPRF for transition t₁₀: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l3(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}

MPRF for transition t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄+X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₃+3⋅X₁⋅X₃+4⋅X₂⋅X₃+4⋅X₃⋅X₃+X₀⋅X₂+X₁⋅X₂+2⋅X₂+8⋅X₃+X₀+X₁+3 {O(n^3)}

knowledge_propagation leads to new time bound 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₃+3⋅X₁⋅X₃+4⋅X₂⋅X₃+4⋅X₃⋅X₃+X₀⋅X₂+X₁⋅X₂+2⋅X₂+8⋅X₃+X₀+X₁+3 {O(n^3)} for transition t₉: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁

Chain transitions t₁₁: l5→l1 and t₃: l1→l4 to t₉₈: l5→l4

Chain transitions t₁: l2→l1 and t₃: l1→l4 to t₉₉: l2→l4

Chain transitions t₁: l2→l1 and t₂: l1→l3 to t₁₀₀: l2→l3

Chain transitions t₁₁: l5→l1 and t₂: l1→l3 to t₁₀₁: l5→l3

Chain transitions t₁₀: l7→l3 and t₄: l3→l6 to t₁₀₂: l7→l6

Chain transitions t₁₀₁: l5→l3 and t₄: l3→l6 to t₁₀₃: l5→l6

Chain transitions t₁₀₁: l5→l3 and t₅: l3→l5 to t₁₀₄: l5→l5

Chain transitions t₁₀: l7→l3 and t₅: l3→l5 to t₁₀₅: l7→l5

Chain transitions t₁₀₀: l2→l3 and t₅: l3→l5 to t₁₀₆: l2→l5

Chain transitions t₁₀₀: l2→l3 and t₄: l3→l6 to t₁₀₇: l2→l6

Chain transitions t₁₀₂: l7→l6 and t₆: l6→l8 to t₁₀₈: l7→l8

Chain transitions t₁₀₃: l5→l6 and t₆: l6→l8 to t₁₀₉: l5→l8

Chain transitions t₁₀₇: l2→l6 and t₆: l6→l8 to t₁₁₀: l2→l8

Chain transitions t₈: l8→l7 and t₁₀₈: l7→l8 to t₁₁₁: l8→l8

Chain transitions t₈: l8→l7 and t₁₀₂: l7→l6 to t₁₁₂: l8→l6

Chain transitions t₈: l8→l7 and t₁₀₅: l7→l5 to t₁₁₃: l8→l5

Chain transitions t₈: l8→l7 and t₁₀: l7→l3 to t₁₁₄: l8→l3

Chain transitions t₇: l8→l9 and t₉: l9→l8 to t₁₁₅: l8→l8

Analysing control-flow refined program

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l6

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l7

Found invariant 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l5

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l8

Found invariant X₀ ≤ X₄ for location l1

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l10

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l4

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location l9

Found invariant X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l3

MPRF for transition t₁₀₄: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l5(X₀, X₁, X₂, X₃, 1+X₄, X₂, X₆) :|: 1+X₄ ≤ X₁ ∧ X₃ < X₂ ∧ 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₀ ≤ X₄+1 ∧ 0 ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1+X₄ ∧ X₀ ≤ X₁ ∧ 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀+2⋅X₁+2 {O(n)}

MPRF for transition t₁₀₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{4}> l8(X₀, X₁, X₂, X₃, 1+X₄, X₂, 1+X₄-X₂) :|: 1+X₄ ≤ X₁ ∧ X₂ ≤ X₃ ∧ 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₀ ≤ X₄+1 ∧ 0 ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1+X₄ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₃ ∧ 0 ≤ 0 ∧ 1+X₄ ≤ X₁ ∧ X₀ ≤ 1+X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀+2⋅X₁+2 {O(n)}

MPRF for transition t₁₁₃: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{3}> l5(X₀, X₁, X₂, X₃, X₄, 1+X₅, X₆) :|: X₄+X₅ < X₆ ∧ X₃ < X₅+1 ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₅+1 ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀+2⋅X₁+1 {O(n)}

MPRF for transition t₁₁₁: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{4}> l8(X₀, X₁, X₂, X₃, X₄, 1+X₅, X₄-1-X₅) :|: X₄+X₅ < X₆ ∧ 1+X₅ ≤ X₃ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₂ ≤ X₅+1 ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ ∧ 1+X₅ ≤ X₃ ∧ X₂ ≤ 1+X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₂+2⋅X₀⋅X₃+2⋅X₁⋅X₂+2⋅X₁⋅X₃+2⋅X₀+2⋅X₁+3⋅X₂+3⋅X₃+3 {O(n^2)}

MPRF for transition t₁₁₅: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) -{2}> l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₆ ≤ X₄+X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

12⋅X₀⋅X₀⋅X₂⋅X₂+12⋅X₀⋅X₀⋅X₃⋅X₃+12⋅X₁⋅X₁⋅X₂⋅X₂+12⋅X₁⋅X₁⋅X₃⋅X₃+24⋅X₀⋅X₀⋅X₂⋅X₃+24⋅X₀⋅X₁⋅X₂⋅X₂+24⋅X₀⋅X₁⋅X₃⋅X₃+24⋅X₁⋅X₁⋅X₂⋅X₃+48⋅X₀⋅X₁⋅X₂⋅X₃+36⋅X₀⋅X₃⋅X₃+36⋅X₁⋅X₃⋅X₃+38⋅X₁⋅X₁⋅X₂+38⋅X₁⋅X₁⋅X₃+44⋅X₀⋅X₀⋅X₂+44⋅X₀⋅X₀⋅X₃+52⋅X₀⋅X₂⋅X₂+52⋅X₁⋅X₂⋅X₂+82⋅X₀⋅X₁⋅X₂+82⋅X₀⋅X₁⋅X₃+88⋅X₀⋅X₂⋅X₃+88⋅X₁⋅X₂⋅X₃+115⋅X₁⋅X₃+124⋅X₀⋅X₃+135⋅X₁⋅X₂+144⋅X₀⋅X₂+27⋅X₃⋅X₃+32⋅X₁⋅X₁+38⋅X₀⋅X₀+51⋅X₂⋅X₂+70⋅X₀⋅X₁+78⋅X₂⋅X₃+117⋅X₂+87⋅X₃+88⋅X₁+97⋅X₀+63 {O(n^4)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

Analysing control-flow refined program

Found invariant X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l6___9

Found invariant X₅ ≤ X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l6___4

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l8___3

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l8___8

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l9___1

Found invariant X₅ ≤ 1+X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l3___5

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l7___2

Found invariant 1+X₃ ≤ X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l5

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l9___6

Found invariant X₀ ≤ X₄ for location l1

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l10

Found invariant 1+X₁ ≤ X₄ ∧ X₀ ≤ X₄ for location l4

Found invariant X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ for location n_l7___7

Found invariant X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ for location l3

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₂₅₀: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₅ ≤ X₂ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁

knowledge_propagation leads to new time bound X₀+X₁+1 {O(n)} for transition t₂₅₃: n_l6___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅) :|: X₅ ≤ X₂ ∧ X₂ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁

MPRF for transition t₂₅₁: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: 1+X₂ ≤ X₅ ∧ X₅ ≤ 1+X₃ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ 1+X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₃+2⋅X₁⋅X₃+3⋅X₀⋅X₂+3⋅X₁⋅X₂+3⋅X₃+4⋅X₂ {O(n^2)}

MPRF for transition t₂₅₂: n_l6___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₄-X₅) :|: 1+X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ 1+X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₂+2⋅X₁⋅X₂+X₀⋅X₃+X₁⋅X₃+2⋅X₂+X₃ {O(n^2)}

MPRF for transition t₂₅₄: n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: X₄+X₅ < X₆ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₂+2⋅X₁⋅X₂+X₀⋅X₃+X₁⋅X₃+2⋅X₂+X₀+X₁+X₃+1 {O(n^2)}

MPRF for transition t₂₅₅: n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅+1, X₆) :|: 2⋅X₅ < 0 ∧ X₄ ≤ X₅+X₆ ∧ X₅+X₆ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₄ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

4⋅X₀⋅X₂+4⋅X₁⋅X₂+2⋅X₃+4⋅X₂+2 {O(n^2)}

MPRF for transition t₂₅₆: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄+X₅ < X₆ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₂+2⋅X₁⋅X₂+X₀⋅X₃+X₁⋅X₃+2⋅X₂+X₀+X₁+X₃+1 {O(n^2)}

MPRF for transition t₂₅₈: n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l7___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ X₅+X₆ ∧ X₅+X₆ ≤ X₄ ∧ X₄+X₅ < X₆ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₂+2⋅X₁⋅X₂+X₀⋅X₃+X₁⋅X₃+2⋅X₂+X₀+X₁+X₃+1 {O(n^2)}

MPRF for transition t₂₅₉: n_l8___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₄ ≤ X₅+X₆ ∧ X₅+X₆ ≤ X₄ ∧ X₆ ≤ X₄+X₅ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₂+2⋅X₁⋅X₂+X₀⋅X₃+X₁⋅X₃+2⋅X₂+X₀+X₁+X₃+1 {O(n^2)}

MPRF for transition t₂₆₁: n_l9___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₂+X₆ ≤ X₄ ∧ X₄ ≤ X₃+X₆ ∧ X₆ ≤ X₄ ∧ X₄ ≤ X₅+X₆ ∧ X₅+X₆ ≤ X₄ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₂+2⋅X₁⋅X₂+X₀⋅X₃+X₁⋅X₃+2⋅X₂+X₀+X₁+X₃+1 {O(n^2)}

MPRF for transition t₂₇₁: n_l3___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₃ < X₅ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₀ ≤ X₁ ∧ X₅ ≤ 1+X₃ ∧ 1+X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

X₀+X₁+1 {O(n)}

MPRF for transition t₂₅₇: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄+X₅ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₀⋅X₂⋅X₂+4⋅X₀⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₁⋅X₂⋅X₂+4⋅X₁⋅X₁⋅X₂⋅X₃+8⋅X₀⋅X₁⋅X₂⋅X₂+8⋅X₀⋅X₁⋅X₂⋅X₃+X₀⋅X₀⋅X₃⋅X₃+X₁⋅X₁⋅X₃⋅X₃+12⋅X₀⋅X₁⋅X₂+14⋅X₀⋅X₂⋅X₂+14⋅X₁⋅X₂⋅X₂+15⋅X₀⋅X₂⋅X₃+15⋅X₁⋅X₂⋅X₃+3⋅X₀⋅X₀⋅X₃+3⋅X₁⋅X₁⋅X₃+4⋅X₀⋅X₃⋅X₃+4⋅X₁⋅X₃⋅X₃+6⋅X₀⋅X₀⋅X₂+6⋅X₀⋅X₁⋅X₃+6⋅X₁⋅X₁⋅X₂+10⋅X₂⋅X₂+11⋅X₂⋅X₃+13⋅X₀⋅X₂+13⋅X₁⋅X₂+2⋅X₀⋅X₀+2⋅X₁⋅X₁+3⋅X₃⋅X₃+4⋅X₀⋅X₁+7⋅X₀⋅X₃+7⋅X₁⋅X₃+3⋅X₀+3⋅X₁+6⋅X₃+7⋅X₂+1 {O(n^4)}

MPRF for transition t₂₆₀: n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆+1) :|: X₆ ≤ X₄+X₅ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁ of depth 1:

new bound:

2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₂⋅X₃+2⋅X₀⋅X₃+2⋅X₁⋅X₃+2⋅X₃⋅X₃+4⋅X₂⋅X₃+4⋅X₃ {O(n^3)}

knowledge_propagation leads to new time bound 2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₃⋅X₃+4⋅X₀⋅X₂⋅X₃+4⋅X₁⋅X₂⋅X₃+2⋅X₀⋅X₂+2⋅X₁⋅X₂+2⋅X₃⋅X₃+3⋅X₀⋅X₃+3⋅X₁⋅X₃+4⋅X₂⋅X₃+2⋅X₂+5⋅X₃+X₀+X₁+1 {O(n^3)} for transition t₂₅₇: n_l8___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆) → n_l9___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆) :|: X₆ ≤ X₄+X₅ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₄ ≤ X₁ ∧ X₄ ≤ X₁ ∧ X₂ ≤ X₅ ∧ X₅ ≤ X₃ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₂ ≤ X₅ ∧ X₄ ≤ X₁ ∧ X₀ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₀ ≤ X₁

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:4⋅X₀⋅X₂⋅X₃+4⋅X₀⋅X₃⋅X₃+4⋅X₁⋅X₂⋅X₃+4⋅X₁⋅X₃⋅X₃+13⋅X₀⋅X₃+13⋅X₁⋅X₃+8⋅X₂⋅X₃+8⋅X₃⋅X₃+9⋅X₀⋅X₂+9⋅X₁⋅X₂+18⋅X₂+30⋅X₃+9⋅X₀+9⋅X₁+21 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₀+X₁+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}
t₅: X₀+X₁+1 {O(n)}
t₆: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}
t₇: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₃+3⋅X₁⋅X₃+4⋅X₂⋅X₃+4⋅X₃⋅X₃+X₀⋅X₂+X₁⋅X₂+2⋅X₂+8⋅X₃+X₀+X₁+3 {O(n^3)}
t₈: 4⋅X₀⋅X₂+4⋅X₀⋅X₃+4⋅X₁⋅X₂+4⋅X₁⋅X₃+8⋅X₂+8⋅X₃+X₀+X₁+2 {O(n^2)}
t₉: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₃+3⋅X₁⋅X₃+4⋅X₂⋅X₃+4⋅X₃⋅X₃+X₀⋅X₂+X₁⋅X₂+2⋅X₂+8⋅X₃+X₀+X₁+3 {O(n^3)}
t₁₀: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}
t₁₁: X₀+X₁+1 {O(n)}
t₁₂: 1 {O(1)}

Costbounds

Overall costbound: 4⋅X₀⋅X₂⋅X₃+4⋅X₀⋅X₃⋅X₃+4⋅X₁⋅X₂⋅X₃+4⋅X₁⋅X₃⋅X₃+13⋅X₀⋅X₃+13⋅X₁⋅X₃+8⋅X₂⋅X₃+8⋅X₃⋅X₃+9⋅X₀⋅X₂+9⋅X₁⋅X₂+18⋅X₂+30⋅X₃+9⋅X₀+9⋅X₁+21 {O(n^3)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₀+X₁+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}
t₅: X₀+X₁+1 {O(n)}
t₆: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}
t₇: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₃+3⋅X₁⋅X₃+4⋅X₂⋅X₃+4⋅X₃⋅X₃+X₀⋅X₂+X₁⋅X₂+2⋅X₂+8⋅X₃+X₀+X₁+3 {O(n^3)}
t₈: 4⋅X₀⋅X₂+4⋅X₀⋅X₃+4⋅X₁⋅X₂+4⋅X₁⋅X₃+8⋅X₂+8⋅X₃+X₀+X₁+2 {O(n^2)}
t₉: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₃+3⋅X₁⋅X₃+4⋅X₂⋅X₃+4⋅X₃⋅X₃+X₀⋅X₂+X₁⋅X₂+2⋅X₂+8⋅X₃+X₀+X₁+3 {O(n^3)}
t₁₀: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₂+2⋅X₃+X₀+X₁+2 {O(n^2)}
t₁₁: X₀+X₁+1 {O(n)}
t₁₂: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₀ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₂, X₀: X₀ {O(n)}
t₂, X₁: X₁ {O(n)}
t₂, X₂: X₂ {O(n)}
t₂, X₃: X₃ {O(n)}
t₂, X₄: 2⋅X₀+X₁+1 {O(n)}
t₂, X₅: 2⋅X₂ {O(n)}
t₂, X₆: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₂+3⋅X₁⋅X₂+4⋅X₂⋅X₃+4⋅X₃⋅X₃+5⋅X₀⋅X₃+5⋅X₁⋅X₃+10⋅X₂+12⋅X₃+5⋅X₁+7⋅X₀+X₆+9 {O(n^3)}
t₃, X₀: 2⋅X₀ {O(n)}
t₃, X₁: 2⋅X₁ {O(n)}
t₃, X₂: 2⋅X₂ {O(n)}
t₃, X₃: 2⋅X₃ {O(n)}
t₃, X₄: 3⋅X₀+X₁+1 {O(n)}
t₃, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+6⋅X₂+X₀+X₁+X₅+2 {O(n^2)}
t₃, X₆: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₂+3⋅X₁⋅X₂+4⋅X₂⋅X₃+4⋅X₃⋅X₃+5⋅X₀⋅X₃+5⋅X₁⋅X₃+10⋅X₂+12⋅X₃+2⋅X₆+5⋅X₁+7⋅X₀+9 {O(n^3)}
t₄, X₀: X₀ {O(n)}
t₄, X₁: X₁ {O(n)}
t₄, X₂: X₂ {O(n)}
t₄, X₃: X₃ {O(n)}
t₄, X₄: 2⋅X₀+X₁+1 {O(n)}
t₄, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+4⋅X₂+X₀+X₁+2 {O(n^2)}
t₄, X₆: 4⋅X₀⋅X₂⋅X₃+4⋅X₀⋅X₃⋅X₃+4⋅X₁⋅X₂⋅X₃+4⋅X₁⋅X₃⋅X₃+10⋅X₀⋅X₃+10⋅X₁⋅X₃+6⋅X₀⋅X₂+6⋅X₁⋅X₂+8⋅X₂⋅X₃+8⋅X₃⋅X₃+10⋅X₁+14⋅X₀+20⋅X₂+24⋅X₃+X₆+18 {O(n^3)}
t₅, X₀: X₀ {O(n)}
t₅, X₁: X₁ {O(n)}
t₅, X₂: X₂ {O(n)}
t₅, X₃: X₃ {O(n)}
t₅, X₄: 2⋅X₀+X₁+1 {O(n)}
t₅, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+6⋅X₂+X₀+X₁+2 {O(n^2)}
t₅, X₆: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₂+3⋅X₁⋅X₂+4⋅X₂⋅X₃+4⋅X₃⋅X₃+5⋅X₀⋅X₃+5⋅X₁⋅X₃+10⋅X₂+12⋅X₃+5⋅X₁+7⋅X₀+X₆+9 {O(n^3)}
t₆, X₀: X₀ {O(n)}
t₆, X₁: X₁ {O(n)}
t₆, X₂: X₂ {O(n)}
t₆, X₃: X₃ {O(n)}
t₆, X₄: 2⋅X₀+X₁+1 {O(n)}
t₆, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+4⋅X₂+X₀+X₁+2 {O(n^2)}
t₆, X₆: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₁+2⋅X₃+3⋅X₀+4⋅X₂+3 {O(n^2)}
t₇, X₀: X₀ {O(n)}
t₇, X₁: X₁ {O(n)}
t₇, X₂: X₂ {O(n)}
t₇, X₃: X₃ {O(n)}
t₇, X₄: 2⋅X₀+X₁+1 {O(n)}
t₇, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+4⋅X₂+X₀+X₁+2 {O(n^2)}
t₇, X₆: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+2⋅X₀⋅X₂+2⋅X₁⋅X₂+4⋅X₀⋅X₃+4⋅X₁⋅X₃+4⋅X₂⋅X₃+4⋅X₃⋅X₃+10⋅X₃+3⋅X₁+4⋅X₀+6⋅X₂+6 {O(n^3)}
t₈, X₀: X₀ {O(n)}
t₈, X₁: X₁ {O(n)}
t₈, X₂: X₂ {O(n)}
t₈, X₃: X₃ {O(n)}
t₈, X₄: 2⋅X₀+X₁+1 {O(n)}
t₈, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+4⋅X₂+X₀+X₁+2 {O(n^2)}
t₈, X₆: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₂+3⋅X₁⋅X₂+4⋅X₂⋅X₃+4⋅X₃⋅X₃+5⋅X₀⋅X₃+5⋅X₁⋅X₃+10⋅X₂+12⋅X₃+5⋅X₁+7⋅X₀+9 {O(n^3)}
t₉, X₀: X₀ {O(n)}
t₉, X₁: X₁ {O(n)}
t₉, X₂: X₂ {O(n)}
t₉, X₃: X₃ {O(n)}
t₉, X₄: 2⋅X₀+X₁+1 {O(n)}
t₉, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+4⋅X₂+X₀+X₁+2 {O(n^2)}
t₉, X₆: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+2⋅X₀⋅X₂+2⋅X₁⋅X₂+4⋅X₀⋅X₃+4⋅X₁⋅X₃+4⋅X₂⋅X₃+4⋅X₃⋅X₃+10⋅X₃+3⋅X₁+4⋅X₀+6⋅X₂+6 {O(n^3)}
t₁₀, X₀: X₀ {O(n)}
t₁₀, X₁: X₁ {O(n)}
t₁₀, X₂: X₂ {O(n)}
t₁₀, X₃: X₃ {O(n)}
t₁₀, X₄: 2⋅X₀+X₁+1 {O(n)}
t₁₀, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+4⋅X₂+X₀+X₁+2 {O(n^2)}
t₁₀, X₆: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₂+3⋅X₁⋅X₂+4⋅X₂⋅X₃+4⋅X₃⋅X₃+5⋅X₀⋅X₃+5⋅X₁⋅X₃+10⋅X₂+12⋅X₃+5⋅X₁+7⋅X₀+9 {O(n^3)}
t₁₁, X₀: X₀ {O(n)}
t₁₁, X₁: X₁ {O(n)}
t₁₁, X₂: X₂ {O(n)}
t₁₁, X₃: X₃ {O(n)}
t₁₁, X₄: 2⋅X₀+X₁+1 {O(n)}
t₁₁, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+6⋅X₂+X₀+X₁+2 {O(n^2)}
t₁₁, X₆: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₂+3⋅X₁⋅X₂+4⋅X₂⋅X₃+4⋅X₃⋅X₃+5⋅X₀⋅X₃+5⋅X₁⋅X₃+10⋅X₂+12⋅X₃+5⋅X₁+7⋅X₀+X₆+9 {O(n^3)}
t₁₂, X₀: 2⋅X₀ {O(n)}
t₁₂, X₁: 2⋅X₁ {O(n)}
t₁₂, X₂: 2⋅X₂ {O(n)}
t₁₂, X₃: 2⋅X₃ {O(n)}
t₁₂, X₄: 3⋅X₀+X₁+1 {O(n)}
t₁₂, X₅: X₀⋅X₂+X₀⋅X₃+X₁⋅X₂+X₁⋅X₃+2⋅X₃+6⋅X₂+X₀+X₁+X₅+2 {O(n^2)}
t₁₂, X₆: 2⋅X₀⋅X₂⋅X₃+2⋅X₀⋅X₃⋅X₃+2⋅X₁⋅X₂⋅X₃+2⋅X₁⋅X₃⋅X₃+3⋅X₀⋅X₂+3⋅X₁⋅X₂+4⋅X₂⋅X₃+4⋅X₃⋅X₃+5⋅X₀⋅X₃+5⋅X₁⋅X₃+10⋅X₂+12⋅X₃+2⋅X₆+5⋅X₁+7⋅X₀+9 {O(n^3)}