Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ < 0
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₇, X₉, X₁₀) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₁-1, X₃, X₄, X₅, X₅+1, X₇, X₈, X₉, X₁₀)
t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₆
t₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₂, X₂, X₃, X₄, X₆, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ ≤ 0
t₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₆-1, X₈, X₁₀-1, X₁₀)
t₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₃, X₃, X₄, X₅, X₇, X₇, X₈, X₉, X₁₀) :|: X₉ ≤ 0
t₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₉
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₃
t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₇, X₉, X₁₀) :|: X₃ ≤ 0
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₇+1, X₉, X₁₀)
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₈, X₈, X₉-1, X₁₀)
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₁
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ 0
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁₀, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀)
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
Preprocessing
Found invariant 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location l11
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location l2
Found invariant X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ ≤ X₁₀ for location l6
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location l12
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ 1+X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location l5
Found invariant 1+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location l13
Found invariant X₅ ≤ 0 ∧ X₁+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ 0 for location l8
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location l1
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location l10
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location l4
Found invariant X₅ ≤ 0 ∧ X₁+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ 0 for location l9
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location l3
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location l14
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀
Temp_Vars: nondef.0
Locations: l0, l1, l10, l11, l12, l13, l14, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀)
t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ < 0 ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₇, X₉, X₁₀) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
t₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₁-1, X₃, X₄, X₅, X₅+1, X₇, X₈, X₉, X₁₀) :|: X₅ ≤ 0 ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
t₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₂, X₂, X₃, X₄, X₆, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
t₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₆-1, X₈, X₁₀-1, X₁₀) :|: 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
t₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₃, X₃, X₄, X₅, X₇, X₇, X₈, X₉, X₁₀) :|: X₉ ≤ 0 ∧ 1+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
t₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₉ ∧ 1+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₃ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₇, X₉, X₁₀) :|: X₃ ≤ 0 ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₇+1, X₉, X₁₀) :|: 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₈, X₈, X₉-1, X₁₀) :|: 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ 1+X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ ≤ X₁₀
t₃: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₁ ≤ 0 ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ ≤ X₁₀
t₁: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₁₀, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀)
t₂₀: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₅ ≤ 0 ∧ X₁+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ 0
MPRF for transition t₂: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ ≤ X₁₀ of depth 1:
new bound:
X₁₀ {O(n)}
MPRF for transition t₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₁-1, X₃, X₄, X₅, X₅+1, X₇, X₈, X₉, X₁₀) :|: X₅ ≤ 0 ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₁₀ {O(n)}
MPRF for transition t₅: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₆ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₁₀+1 {O(n)}
MPRF for transition t₆: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l6(X₀, X₂, X₂, X₃, X₄, X₆, X₆, X₇, X₈, X₉, X₁₀) :|: X₆ ≤ 0 ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₁₀ {O(n)}
MPRF for transition t₇: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₂, X₄, X₅, X₆, X₆-1, X₈, X₁₀-1, X₁₀) :|: 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ of depth 1:
new bound:
2⋅X₁₀ {O(n)}
MPRF for transition t₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₃, X₃, X₄, X₅, X₇, X₇, X₈, X₉, X₁₀) :|: X₉ ≤ 0 ∧ 1+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₁₀ {O(n)}
MPRF for transition t₁₅: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ < 0 ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁₀+1 {O(n)}
MPRF for transition t₁₆: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₁₀+3 {O(n)}
MPRF for transition t₁₈: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₃-1, X₅, X₆, X₇, X₇+1, X₉, X₁₀) :|: 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ of depth 1:
new bound:
2⋅X₁₀ {O(n)}
MPRF for transition t₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₉ ∧ 1+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₁₀⋅X₁₀+X₁₀ {O(n^2)}
MPRF for transition t₁₀: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₃ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₁₀⋅X₁₀+X₁₀ {O(n^2)}
MPRF for transition t₁₁: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₇, X₉, X₁₀) :|: X₃ ≤ 0 ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₁₀⋅X₁₀+X₁₀ {O(n^2)}
MPRF for transition t₁₂: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁₀⋅X₁₀+X₁₀ {O(n^2)}
MPRF for transition t₁₄: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ of depth 1:
new bound:
X₁₀⋅X₁₀+X₁₀ {O(n^2)}
MPRF for transition t₁₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l5(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇, X₇, X₉, X₁₀) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ of depth 1:
new bound:
3⋅X₁₀⋅X₁₀+3⋅X₁₀ {O(n^2)}
MPRF for transition t₁₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l13(X₀, X₁, X₂, X₄, X₄, X₅, X₆, X₈, X₈, X₉-1, X₁₀) :|: 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ 1+X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ 0 ≤ X₃+X₈ ∧ 0 ≤ X₂+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 0 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₁₀⋅X₁₀+X₁₀ {O(n^2)}
Chain transitions t₁₄: l3→l1 and t₁₇: l1→l5 to t₂₃₉: l3→l5
Chain transitions t₁₄: l3→l1 and t₁₆: l1→l4 to t₂₄₀: l3→l4
Chain transitions t₁₄: l3→l1 and t₁₅: l1→l4 to t₂₄₁: l3→l4
Chain transitions t₂: l6→l10 and t₄: l10→l11 to t₂₄₂: l6→l11
Chain transitions t₂₄₂: l6→l11 and t₆: l11→l6 to t₂₄₃: l6→l6
Chain transitions t₉: l13→l11 and t₆: l11→l6 to t₂₄₄: l13→l6
Chain transitions t₉: l13→l11 and t₅: l11→l12 to t₂₄₅: l13→l12
Chain transitions t₂₄₂: l6→l11 and t₅: l11→l12 to t₂₄₆: l6→l12
Chain transitions t₂₄₆: l6→l12 and t₇: l12→l13 to t₂₄₇: l6→l13
Chain transitions t₂₄₅: l13→l12 and t₇: l12→l13 to t₂₄₈: l13→l13
Chain transitions t₈: l13→l14 and t₁₁: l14→l5 to t₂₄₉: l13→l5
Chain transitions t₈: l13→l14 and t₁₀: l14→l2 to t₂₅₀: l13→l2
Chain transitions t₂₅₀: l13→l2 and t₁₂: l2→l3 to t₂₅₁: l13→l3
Chain transitions t₂₅₁: l13→l3 and t₂₃₉: l3→l5 to t₂₅₂: l13→l5
Chain transitions t₂₅₁: l13→l3 and t₂₄₁: l3→l4 to t₂₅₃: l13→l4
Chain transitions t₂₅₁: l13→l3 and t₂₄₀: l3→l4 to t₂₅₄: l13→l4
Chain transitions t₂₅₁: l13→l3 and t₁₄: l3→l1 to t₂₅₅: l13→l1
Chain transitions t₂₅₄: l13→l4 and t₁₈: l4→l5 to t₂₅₆: l13→l5
Chain transitions t₂₅₃: l13→l4 and t₁₈: l4→l5 to t₂₅₇: l13→l5
Chain transitions t₂₅₇: l13→l5 and t₁₉: l5→l13 to t₂₅₈: l13→l13
Chain transitions t₂₅₆: l13→l5 and t₁₉: l5→l13 to t₂₅₉: l13→l13
Chain transitions t₂₅₂: l13→l5 and t₁₉: l5→l13 to t₂₆₀: l13→l13
Chain transitions t₂₄₉: l13→l5 and t₁₉: l5→l13 to t₂₆₁: l13→l13
Analysing control-flow refined program
Cut unsatisfiable transition t₂₄₃: l6→l6
Eliminate variables {Temp_Int₂₄₇₆,X₀,X₄,X₈} that do not contribute to the problem
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l11
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l2
Found invariant X₀ ≤ X₇ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ for location l6
Found invariant 1 ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l12
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l5
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l13
Found invariant X₀ ≤ X₇ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 for location l8
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l1
Found invariant 1 ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₀+X₃ ∧ 1 ≤ X₀ for location l10
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l4
Found invariant X₀ ≤ X₇ ∧ X₃ ≤ 0 ∧ X₀+X₃ ≤ 0 ∧ 0 ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₀ ≤ 0 for location l9
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 3 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 3 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 4 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₁+X₆ ∧ 3 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 1 ≤ X₂+X₅ ∧ 1 ≤ X₁+X₅ ∧ 2 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₁+X₄ ∧ 3 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ 1+X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁ ∧ 2+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₁+X₃ ∧ 2 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 1 ≤ X₂ ∧ 2 ≤ X₁+X₂ ∧ 3 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l3
Found invariant 2 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₅+X₇ ∧ 3 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 2+X₃ ≤ X₇ ∧ 2 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 2 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 3 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₁+X₆ ∧ 2 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ for location l14
MPRF for transition t₂₉₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{3}> l13(X₀, X₂, X₂, X₃, X₅, X₅-1, X₇-1, X₇) :|: X₆ ≤ 0 ∧ 0 < X₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₇ {O(n)}
MPRF for transition t₂₉₇: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{7}> l13(X₀, X₁, X₂-1, X₃, X₄, 1+X₅, X₆-1, X₇) :|: 0 < X₆ ∧ 0 < X₂ ∧ Temp_Int₂₄₅₄ < 0 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₇ {O(n)}
MPRF for transition t₂₉₈: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{7}> l13(X₀, X₁, X₂-1, X₃, X₄, 1+X₅, X₆-1, X₇) :|: 0 < X₆ ∧ 0 < X₂ ∧ 0 < Temp_Int₂₄₆₅ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₇ {O(n)}
MPRF for transition t₃₁₀: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{2}> l6(X₂, X₂, X₂, X₅, X₅, X₅, X₆, X₇) :|: X₆ ≤ 0 ∧ X₅ ≤ 0 ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₁+X₇ ∧ 1+X₁ ≤ X₇ ∧ 2 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ X₃ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ X₄ ≤ 1+X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₁+X₅ ∧ 1 ≤ X₀+X₅ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 1 ≤ X₁+X₄ ∧ 2 ≤ X₀+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₃ ≤ X₁ ∧ 1+X₃ ≤ X₀ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ X₂ ≤ X₁ ∧ 1+X₂ ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₁ ≤ X₀ ∧ 0 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀ of depth 1:
new bound:
X₇ {O(n)}
MPRF for transition t₃₁₄: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) -{4}> l13(X₀, X₀-1, X₀-1, X₃, 1+X₃, X₃, X₇-1, X₇) :|: 0 < X₀ ∧ 0 < 1+X₃ ∧ X₀ ≤ X₇ ∧ X₃ ≤ 0 ∧ 0 ≤ X₃ of depth 1:
new bound:
X₇ {O(n)}
TWN: t₂₉₉: l13→l13
cycle: [t₂₉₉: l13→l13; t₃₀₀: l13→l13]
loop: (0 < X₆ ∧ 0 < X₂ ∨ 0 < X₆ ∧ X₂ ≤ 0,(X₂,X₆) -> (X₂,X₆-1)
order: [X₂; X₆]
closed-form:
X₂: X₂
X₆: X₆ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
0 < X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < 0 ∧ 1 < 0
∨ X₂ < 0 ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 < 0
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 0 < X₆
alphas_abs: X₆
M: 0
N: 1
Bound: 2⋅X₆+2 {O(n)}
loop: (0 < X₆ ∧ 0 < X₂ ∨ 0 < X₆ ∧ X₂ ≤ 0,(X₂,X₆) -> (X₂,X₆-1)
order: [X₂; X₆]
closed-form:
X₂: X₂
X₆: X₆ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
0 < X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < 0 ∧ 1 < 0
∨ X₂ < 0 ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 < 0
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 0 < X₆
alphas_abs: X₆
M: 0
N: 1
Bound: 2⋅X₆+2 {O(n)}
loop: (0 < X₆ ∧ 0 < X₂ ∨ 0 < X₆ ∧ X₂ ≤ 0,(X₂,X₆) -> (X₂,X₆-1)
order: [X₂; X₆]
closed-form:
X₂: X₂
X₆: X₆ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
0 < X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < 0 ∧ 1 < 0
∨ X₂ < 0 ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 < 0
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 0 < X₆
alphas_abs: X₆
M: 0
N: 1
Bound: 2⋅X₆+2 {O(n)}
loop: (0 < X₆ ∧ 0 < X₂ ∨ 0 < X₆ ∧ X₂ ≤ 0,(X₂,X₆) -> (X₂,X₆-1)
order: [X₂; X₆]
closed-form:
X₂: X₂
X₆: X₆ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
0 < X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < 0 ∧ 1 < 0
∨ X₂ < 0 ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 < 0
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 0 < X₆
alphas_abs: X₆
M: 0
N: 1
Bound: 2⋅X₆+2 {O(n)}
loop: (0 < X₆ ∧ 0 < X₂ ∨ 0 < X₆ ∧ X₂ ≤ 0,(X₂,X₆) -> (X₂,X₆-1)
order: [X₂; X₆]
closed-form:
X₂: X₂
X₆: X₆ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
0 < X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < 0 ∧ 1 < 0
∨ X₂ < 0 ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 < 0
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 0 < X₆
alphas_abs: X₆
M: 0
N: 1
Bound: 2⋅X₆+2 {O(n)}
loop: (0 < X₆ ∧ 0 < X₂ ∨ 0 < X₆ ∧ X₂ ≤ 0,(X₂,X₆) -> (X₂,X₆-1)
order: [X₂; X₆]
closed-form:
X₂: X₂
X₆: X₆ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
0 < X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < 0 ∧ 1 < 0
∨ X₂ < 0 ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 < 0
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 0 < X₆
alphas_abs: X₆
M: 0
N: 1
Bound: 2⋅X₆+2 {O(n)}
loop: (0 < X₆ ∧ 0 < X₂ ∨ 0 < X₆ ∧ X₂ ≤ 0,(X₂,X₆) -> (X₂,X₆-1)
order: [X₂; X₆]
closed-form:
X₂: X₂
X₆: X₆ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
0 < X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < 0 ∧ 1 < 0
∨ X₂ < 0 ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 < 0
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 0 < X₆
alphas_abs: X₆
M: 0
N: 1
Bound: 2⋅X₆+2 {O(n)}
loop: (0 < X₆ ∧ 0 < X₂ ∨ 0 < X₆ ∧ X₂ ≤ 0,(X₂,X₆) -> (X₂,X₆-1)
order: [X₂; X₆]
closed-form:
X₂: X₂
X₆: X₆ + [[n != 0]] * -1 * n^1
Termination: true
Formula:
0 < X₂ ∧ 1 < 0
∨ 0 < X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ < 0 ∧ 1 < 0
∨ X₂ < 0 ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 < 0
∨ X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 0 < X₆ ∧ 1 ≤ 0 ∧ 0 ≤ 1
Stabilization-Threshold for: 0 < X₆
alphas_abs: X₆
M: 0
N: 1
Bound: 2⋅X₆+2 {O(n)}
TWN - Lifting for t₂₉₉: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₃₁₄:
X₆: 2⋅X₇ {O(n)}
Runtime-bound of t₃₁₄: X₇ {O(n)}
Results in: 4⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₂₉₉: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₂₉₈:
X₆: 7⋅X₇ {O(n)}
Runtime-bound of t₂₉₈: X₇ {O(n)}
Results in: 14⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₂₉₉: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₂₉₇:
X₆: 7⋅X₇ {O(n)}
Runtime-bound of t₂₉₇: X₇ {O(n)}
Results in: 14⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₂₉₉: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₂₉₆:
X₆: 5⋅X₇ {O(n)}
Runtime-bound of t₂₉₆: X₇ {O(n)}
Results in: 10⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₂₉₉: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₃₁₄:
X₆: 2⋅X₇ {O(n)}
Runtime-bound of t₃₁₄: X₇ {O(n)}
Results in: 4⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₂₉₉: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₂₉₈:
X₆: 7⋅X₇ {O(n)}
Runtime-bound of t₂₉₈: X₇ {O(n)}
Results in: 14⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₂₉₉: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₂₉₇:
X₆: 7⋅X₇ {O(n)}
Runtime-bound of t₂₉₇: X₇ {O(n)}
Results in: 14⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₂₉₉: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₂₉₆:
X₆: 5⋅X₇ {O(n)}
Runtime-bound of t₂₉₆: X₇ {O(n)}
Results in: 10⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN: t₃₀₀: l13→l13
TWN - Lifting for t₃₀₀: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₃₁₄:
X₆: 2⋅X₇ {O(n)}
Runtime-bound of t₃₁₄: X₇ {O(n)}
Results in: 4⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₃₀₀: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₂₉₈:
X₆: 7⋅X₇ {O(n)}
Runtime-bound of t₂₉₈: X₇ {O(n)}
Results in: 14⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₃₀₀: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₂₉₇:
X₆: 7⋅X₇ {O(n)}
Runtime-bound of t₂₉₇: X₇ {O(n)}
Results in: 14⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₃₀₀: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₂₉₆:
X₆: 5⋅X₇ {O(n)}
Runtime-bound of t₂₉₆: X₇ {O(n)}
Results in: 10⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₃₀₀: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₃₁₄:
X₆: 2⋅X₇ {O(n)}
Runtime-bound of t₃₁₄: X₇ {O(n)}
Results in: 4⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₃₀₀: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₂₉₈:
X₆: 7⋅X₇ {O(n)}
Runtime-bound of t₂₉₈: X₇ {O(n)}
Results in: 14⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₃₀₀: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₂₉₇:
X₆: 7⋅X₇ {O(n)}
Runtime-bound of t₂₉₇: X₇ {O(n)}
Results in: 14⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
TWN - Lifting for t₃₀₀: l13→l13 of 2⋅X₆+6 {O(n)}
relevant size-bounds w.r.t. t₂₉₆:
X₆: 5⋅X₇ {O(n)}
Runtime-bound of t₂₉₆: X₇ {O(n)}
Results in: 10⋅X₇⋅X₇+6⋅X₇ {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Found invariant 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ X₅ ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 1 ≤ X₁₀+X₆ ∧ 1 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location l11
Found invariant 2+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location n_l13___3
Found invariant 2+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 4 ≤ X₁₀+X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 3 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location n_l14___2
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ 1+X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ 1+X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 0 ∧ 2+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location n_l5___16
Found invariant 2+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2+X₀ ≤ X₁₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l13___12
Found invariant 2+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₈+X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 0 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₂+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location n_l13___6
Found invariant X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ ≤ X₁₀ for location l6
Found invariant 2+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 3 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 3+X₀ ≤ X₁₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l14___11
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location n_l3___15
Found invariant 2+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₂+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 3 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location n_l14___5
Found invariant 2+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 4 ≤ X₁+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 4 ≤ X₁₀+X₇ ∧ 4 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁₀+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 4 ≤ X₁+X₄ ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 4 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁₀+X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁₀ ∧ 6 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 3 ≤ X₁ for location n_l2___1
Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location l12
Found invariant 2+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 3 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location n_l1___8
Found invariant 2+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₂+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 3 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ 3+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ 3+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 3 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location n_l5___4
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location n_l2___17
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ 1+X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2+X₀ ≤ X₁₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l5___13
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₈ ≤ 1+X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location l5
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location n_l14___18
Found invariant 1+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 1 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location l13
Found invariant X₅ ≤ 0 ∧ X₁+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ 0 for location l8
Found invariant 2+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 3 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location n_l3___9
Found invariant 2+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 3 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 3+X₀ ≤ X₁₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l5___7
Found invariant X₅ ≤ 0 ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ for location l10
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location l4
Found invariant X₅ ≤ 0 ∧ X₁+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₁ ≤ X₅ ∧ X₁ ≤ X₁₀ ∧ X₁ ≤ 0 for location l9
Found invariant 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ for location n_l1___14
Found invariant 2+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 3 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 3 ≤ X₀+X₁₀ ∧ 3+X₀ ≤ X₁₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ for location n_l2___10
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₁₃: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l14___18(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₉ ≤ X₁₀ ∧ 1+X₉ ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₀ ∧ 0 < X₉ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₆ ≤ 1+X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₇ ∧ X₁ ≤ X₁₀ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 0 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 1 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 1 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₁₇: n_l14___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l2___17(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₉ ∧ X₁ ≤ 1+X₉ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₇+1 ∧ 1+X₇ ≤ X₆ ∧ X₉+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1+X₉ ≤ X₁₀ ∧ 0 < X₃ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₆ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₁₈: n_l14___18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l5___16(X₀, X₁, X₂, 0, 0, 0, X₆, X₇, X₇, X₉, X₁₀) :|: 0 < X₉ ∧ X₁ ≤ 1+X₉ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₇+1 ∧ 1+X₇ ≤ X₆ ∧ X₉+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1+X₉ ≤ X₁₀ ∧ X₃ ≤ 0 ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₆ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₁ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₂₆: n_l2___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l3___15(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₂ ∧ X₁ ≤ 1+X₉ ∧ X₉+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₆ ≤ X₇+1 ∧ 1+X₇ ≤ X₆ ∧ X₂ ≤ X₃ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₆ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₂₇: n_l3___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l1___14(NoDet0, X₁, X₂, Arg3_P, X₄, 0, Arg6_P, X₇, X₈, Arg9_P, Arg10_P) :|: X₁ ≤ 1+X₉ ∧ X₆ ≤ X₇+1 ∧ 1+X₇ ≤ X₆ ∧ X₂ ≤ X₃ ∧ X₉+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1+Arg9_P ≤ Arg10_P ∧ 1 ≤ Arg3_P ∧ 1 ≤ Arg9_P ∧ Arg3_P ≤ X₂ ∧ X₁ ≤ Arg10_P ∧ Arg6_P ≤ 1+X₇ ∧ 1 ≤ Arg6_P ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₆ ≤ Arg6_P ∧ Arg6_P ≤ X₆ ∧ X₃ ≤ Arg3_P ∧ Arg3_P ≤ X₃ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₃₀: n_l5___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l13___6(X₀, X₁, X₂, X₄, X₄, 0, X₆, X₈, X₈, X₉-1, X₁₀) :|: X₁ ≤ 1+X₉ ∧ X₄ ≤ 0 ∧ X₃ ≤ 0 ∧ X₂ ≤ 0 ∧ X₆ ≤ X₈+1 ∧ 1+X₈ ≤ X₆ ∧ X₉+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₆ ≤ X₇+1 ∧ 1+X₇ ≤ X₆ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₇ ≤ X₈ ∧ X₆ ≤ 1+X₇ ∧ X₈ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₉ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₄ ∧ X₄ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1+X₄ ≤ X₉ ∧ 1 ≤ X₃+X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₂+X₉ ∧ 1+X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ X₈ ≤ X₇ ∧ 1+X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 0 ≤ X₄+X₈ ∧ X₄ ≤ X₈ ∧ 0 ≤ X₃+X₈ ∧ X₃ ≤ X₈ ∧ 0 ≤ X₂+X₈ ∧ X₂ ≤ X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 1 ≤ X₁+X₈ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ X₄ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ X₂ ≤ X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₂+X₆ ∧ 1+X₂ ≤ X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₄+X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₃+X₅ ≤ 0 ∧ X₅ ≤ X₂ ∧ X₂+X₅ ≤ 0 ∧ 2+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ X₂ ≤ X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₃+X₄ ≤ 0 ∧ X₄ ≤ X₂ ∧ X₂+X₄ ≤ 0 ∧ 2+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 1 ≤ X₁+X₄ ∧ X₃ ≤ 0 ∧ X₃ ≤ X₂ ∧ X₂+X₃ ≤ 0 ∧ 2+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ X₂ ≤ 0 ∧ 2+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 2 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₃₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l13___3(X₀, X₁, X₂, X₄, X₄, 0, X₆, X₈, X₈, X₉-1, X₁₀) :|: 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₃ ∧ X₇+1 ≤ X₈ ∧ X₃ ≤ X₄+1 ∧ 1+X₄ ≤ X₃ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ X₈ ≤ 1+X₇ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₇ ≤ X₈ ∧ X₆ ≤ 1+X₇ ∧ X₈ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₉ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₄ ∧ X₄ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₈ ≤ 1+X₇ ∧ 1 ≤ X₈ ∧ 1 ≤ X₇+X₈ ∧ 1+X₇ ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ 1+X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ X₃ ≤ 1+X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₄₆: n_l13___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l11(X₀, X₁, X₃, X₃, X₄, X₅, X₇, X₇, X₈, X₉, X₁₀) :|: X₉ ≤ 0 ∧ 1+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 1 ≤ X₁₀+X₉ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 0 ≤ X₃+X₇ ∧ 0 ≤ X₂+X₇ ∧ 1 ≤ X₁₀+X₇ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 2 ≤ X₁₀+X₆ ∧ 2 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₃ ∧ X₅ ≤ X₂ ∧ 1+X₅ ≤ X₁₀ ∧ 1+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₂+X₅ ∧ 1 ≤ X₁₀+X₅ ∧ 1 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 1 ≤ X₁₀+X₃ ∧ 1 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₂ ∧ 1 ≤ X₁₀+X₂ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₁ ∧ 2+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₄₈: n_l1___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: X₀ < 0 ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₅₀: n_l1___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₀ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 3 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₁₄: n_l13___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l14___2(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀) :|: 1+X₉ ≤ X₁₀ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ 2+X₉ ≤ X₁₀ ∧ X₄ ≤ X₂ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₄ ∧ 1+X₉ ≤ X₁₀ ∧ 0 < X₉ ∧ X₃ ≤ X₂ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₆ ∧ 0 ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ 0 ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2+X₉ ≤ X₁₀ ∧ 0 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ X₅ ≤ X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 2 ≤ X₁₀+X₉ ∧ 2 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 3 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 3 ≤ X₁₀+X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 2 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 2 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₁₉: n_l14___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l2___1(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀) :|: 0 ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 < X₉ ∧ 2+X₉ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1+X₉ ≤ X₁₀ ∧ 0 < X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₉ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 4 ≤ X₁₀+X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 3 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₂₀: n_l14___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l5___4(X₀, X₁, X₂, 0, 0, 0, X₆, X₇, X₇, X₉, X₁₀) :|: 0 ≤ X₄ ∧ X₄ ≤ X₂ ∧ 0 < X₉ ∧ 2+X₉ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1+X₉ ≤ X₁₀ ∧ X₃ ≤ 0 ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₉ ∧ 1 ≤ X₆ ∧ X₁ ≤ X₁₀ ∧ 0 ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ 0 ≤ X₃ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₃+X₉ ∧ 2 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 2 ≤ X₂+X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 3 ≤ X₁+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 4 ≤ X₁₀+X₇ ∧ 3 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ X₅ ≤ X₄ ∧ X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 3 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₄ ≤ X₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 1 ≤ X₂+X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 2 ≤ X₁+X₄ ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 2 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 4 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 3 ≤ X₁₀ ∧ 5 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₂₂: n_l1___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l5___13(0, X₁, X₂, X₃, X₃, 0, X₆, X₇, X₇, X₉, X₁₀) :|: X₁ ≤ 1+X₉ ∧ X₆ ≤ X₇+1 ∧ 1+X₇ ≤ X₆ ∧ X₂ ≤ X₃ ∧ X₉+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ 1+X₉ ≤ X₁₀ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₃ ≤ X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ X₃ ≤ X₂ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₂₄: n_l2___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l3___9(X₀, X₁, X₂, X₃, X₄, 0, X₆, X₇, X₈, X₉, X₁₀) :|: 0 < X₄ ∧ X₄ ≤ X₂ ∧ 2+X₉ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₈ ≤ X₇ ∧ X₃ ≤ X₄ ∧ X₄ ≤ X₃ ∧ 1+X₉ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ X₁ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₉ ∧ 1 ≤ X₃ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₂ ∧ 1+X₂ ≤ X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 2+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 2 ≤ X₈+X₉ ∧ 2 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ 2 ≤ X₃+X₉ ∧ 3 ≤ X₂+X₉ ∧ 4 ≤ X₁₀+X₉ ∧ 4 ≤ X₁+X₉ ∧ X₈ ≤ X₇ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 2 ≤ X₆+X₈ ∧ X₆ ≤ X₈ ∧ 1 ≤ X₅+X₈ ∧ 1+X₅ ≤ X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₃+X₈ ∧ 3 ≤ X₂+X₈ ∧ 4 ≤ X₁₀+X₈ ∧ 4 ≤ X₁+X₈ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1+X₅ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₃+X₇ ∧ 3 ≤ X₂+X₇ ∧ 4 ≤ X₁₀+X₇ ∧ 4 ≤ X₁+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 3 ≤ X₂+X₆ ∧ 4 ≤ X₁₀+X₆ ∧ 4 ≤ X₁+X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 2+X₅ ≤ X₂ ∧ 3+X₅ ≤ X₁₀ ∧ 3+X₅ ≤ X₁ ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 2 ≤ X₂+X₅ ∧ 3 ≤ X₁₀+X₅ ∧ 3 ≤ X₁+X₅ ∧ X₄ ≤ X₃ ∧ 1+X₄ ≤ X₂ ∧ 2+X₄ ≤ X₁₀ ∧ 2+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 3 ≤ X₂+X₄ ∧ 4 ≤ X₁₀+X₄ ∧ 4 ≤ X₁+X₄ ∧ 1+X₃ ≤ X₂ ∧ 2+X₃ ≤ X₁₀ ∧ 2+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 3 ≤ X₂+X₃ ∧ 4 ≤ X₁₀+X₃ ∧ 4 ≤ X₁+X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 2 ≤ X₂ ∧ 5 ≤ X₁₀+X₂ ∧ 5 ≤ X₁+X₂ ∧ 3 ≤ X₁₀ ∧ 6 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 3 ≤ X₁
knowledge_propagation leads to new time bound 2⋅X₁₀ {O(n)} for transition t₅₂₉: n_l5___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀) → n_l13___12(X₀, X₁, X₂, X₄, X₄, 0, X₆, X₈, X₈, X₉-1, X₁₀) :|: X₁ ≤ 1+X₉ ∧ 1 ≤ X₂ ∧ X₂ ≤ X₄ ∧ X₂ ≤ X₃ ∧ X₆ ≤ X₈+1 ∧ 1+X₈ ≤ X₆ ∧ X₉+1 ≤ X₁₀ ∧ X₁₀ ≤ 1+X₉ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ X₆ ≤ X₇+1 ∧ 1+X₇ ≤ X₆ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₆ ∧ 1+X₂ ≤ X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ X₄ ≤ X₂ ∧ X₃ ≤ X₂ ∧ X₇ ≤ X₈ ∧ X₆ ≤ 1+X₇ ∧ X₈ ≤ 1+X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₉ ∧ 0 ≤ X₄ ∧ X₁ ≤ X₁₀ ∧ X₃ ≤ X₂ ∧ X₃ ≤ 1+X₄ ∧ X₄ ≤ X₃ ∧ 1+X₂ ≤ X₁ ∧ X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₉ ≤ X₁₀ ∧ 1 ≤ X₉ ∧ 1 ≤ X₈+X₉ ∧ 1 ≤ X₇+X₉ ∧ 2 ≤ X₆+X₉ ∧ 1 ≤ X₅+X₉ ∧ 1+X₅ ≤ X₉ ∧ 2 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 2 ≤ X₃+X₉ ∧ X₃ ≤ X₉ ∧ 2 ≤ X₂+X₉ ∧ X₂ ≤ X₉ ∧ 3 ≤ X₁₀+X₉ ∧ X₁₀ ≤ 1+X₉ ∧ 3 ≤ X₁+X₉ ∧ X₁ ≤ 1+X₉ ∧ 1 ≤ X₀+X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₇ ∧ 1+X₈ ≤ X₆ ∧ 0 ≤ X₈ ∧ 0 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 0 ≤ X₅+X₈ ∧ X₅ ≤ X₈ ∧ 1 ≤ X₄+X₈ ∧ 1 ≤ X₃+X₈ ∧ 1 ≤ X₂+X₈ ∧ 2 ≤ X₁₀+X₈ ∧ 2 ≤ X₁+X₈ ∧ 0 ≤ X₀+X₈ ∧ X₀ ≤ X₈ ∧ 1+X₇ ≤ X₆ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 0 ≤ X₅+X₇ ∧ X₅ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 2 ≤ X₁₀+X₇ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀+X₇ ∧ X₀ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1+X₅ ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 2 ≤ X₃+X₆ ∧ 2 ≤ X₂+X₆ ∧ 3 ≤ X₁₀+X₆ ∧ 3 ≤ X₁+X₆ ∧ 1 ≤ X₀+X₆ ∧ 1+X₀ ≤ X₆ ∧ X₅ ≤ 0 ∧ 1+X₅ ≤ X₄ ∧ 1+X₅ ≤ X₃ ∧ 1+X₅ ≤ X₂ ∧ 2+X₅ ≤ X₁₀ ∧ 2+X₅ ≤ X₁ ∧ X₅ ≤ X₀ ∧ X₀+X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1 ≤ X₄+X₅ ∧ 1 ≤ X₃+X₅ ∧ 1 ≤ X₂+X₅ ∧ 2 ≤ X₁₀+X₅ ∧ 2 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₀ ≤ X₅ ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ 1+X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 2 ≤ X₂+X₄ ∧ X₂ ≤ X₄ ∧ 3 ≤ X₁₀+X₄ ∧ 3 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 1+X₀ ≤ X₄ ∧ X₃ ≤ X₂ ∧ 1+X₃ ≤ X₁₀ ∧ 1+X₃ ≤ X₁ ∧ 1 ≤ X₃ ∧ 2 ≤ X₂+X₃ ∧ X₂ ≤ X₃ ∧ 3 ≤ X₁₀+X₃ ∧ 3 ≤ X₁+X₃ ∧ 1 ≤ X₀+X₃ ∧ 1+X₀ ≤ X₃ ∧ 1+X₂ ≤ X₁₀ ∧ 1+X₂ ≤ X₁ ∧ 1 ≤ X₂ ∧ 3 ≤ X₁₀+X₂ ∧ 3 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 1+X₀ ≤ X₂ ∧ 2 ≤ X₁₀ ∧ 4 ≤ X₁+X₁₀ ∧ X₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₁₀ ∧ 2+X₀ ≤ X₁₀ ∧ 2 ≤ X₁ ∧ 2 ≤ X₀+X₁ ∧ 2+X₀ ≤ X₁ ∧ X₀ ≤ 0 ∧ 0 ≤ X₀
All Bounds
Timebounds
Overall timebound:9⋅X₁₀⋅X₁₀+21⋅X₁₀+9 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁₀ {O(n)}
t₃: 1 {O(1)}
t₄: X₁₀ {O(n)}
t₅: X₁₀+1 {O(n)}
t₆: X₁₀ {O(n)}
t₇: 2⋅X₁₀ {O(n)}
t₈: X₁₀⋅X₁₀+X₁₀ {O(n^2)}
t₉: X₁₀ {O(n)}
t₁₀: X₁₀⋅X₁₀+X₁₀ {O(n^2)}
t₁₁: X₁₀⋅X₁₀+X₁₀ {O(n^2)}
t₁₂: X₁₀⋅X₁₀+X₁₀ {O(n^2)}
t₁₄: X₁₀⋅X₁₀+X₁₀ {O(n^2)}
t₁₅: X₁₀+1 {O(n)}
t₁₆: 2⋅X₁₀+3 {O(n)}
t₁₇: 3⋅X₁₀⋅X₁₀+3⋅X₁₀ {O(n^2)}
t₁₈: 2⋅X₁₀ {O(n)}
t₁₉: X₁₀⋅X₁₀+X₁₀ {O(n^2)}
t₂₀: 1 {O(1)}
Costbounds
Overall costbound: 9⋅X₁₀⋅X₁₀+21⋅X₁₀+9 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₁₀ {O(n)}
t₃: 1 {O(1)}
t₄: X₁₀ {O(n)}
t₅: X₁₀+1 {O(n)}
t₆: X₁₀ {O(n)}
t₇: 2⋅X₁₀ {O(n)}
t₈: X₁₀⋅X₁₀+X₁₀ {O(n^2)}
t₉: X₁₀ {O(n)}
t₁₀: X₁₀⋅X₁₀+X₁₀ {O(n^2)}
t₁₁: X₁₀⋅X₁₀+X₁₀ {O(n^2)}
t₁₂: X₁₀⋅X₁₀+X₁₀ {O(n^2)}
t₁₄: X₁₀⋅X₁₀+X₁₀ {O(n^2)}
t₁₅: X₁₀+1 {O(n)}
t₁₆: 2⋅X₁₀+3 {O(n)}
t₁₇: 3⋅X₁₀⋅X₁₀+3⋅X₁₀ {O(n^2)}
t₁₈: 2⋅X₁₀ {O(n)}
t₁₉: X₁₀⋅X₁₀+X₁₀ {O(n^2)}
t₂₀: 1 {O(1)}
Sizebounds
t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₀, X₈: X₈ {O(n)}
t₀, X₉: X₉ {O(n)}
t₀, X₁₀: X₁₀ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁₀ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: X₃ {O(n)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: 0 {O(1)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₁, X₈: X₈ {O(n)}
t₁, X₉: X₉ {O(n)}
t₁, X₁₀: X₁₀ {O(n)}
t₂, X₁: X₁₀ {O(n)}
t₂, X₂: X₁₀+X₂ {O(n)}
t₂, X₃: 2⋅X₁₀+X₃ {O(n)}
t₂, X₄: 3⋅X₁₀+X₄ {O(n)}
t₂, X₅: 0 {O(1)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: 2⋅X₁₀⋅X₁₀+2⋅X₁₀+X₇+2 {O(n^2)}
t₂, X₈: 4⋅X₁₀⋅X₁₀+4⋅X₁₀+X₈+6 {O(n^2)}
t₂, X₉: X₉ {O(n)}
t₂, X₁₀: X₁₀ {O(n)}
t₃, X₁: 2⋅X₁₀ {O(n)}
t₃, X₂: X₁₀+X₂ {O(n)}
t₃, X₃: 2⋅X₁₀+X₃ {O(n)}
t₃, X₄: 2⋅X₄+3⋅X₁₀ {O(n)}
t₃, X₅: 0 {O(1)}
t₃, X₆: X₆ {O(n)}
t₃, X₇: 2⋅X₁₀⋅X₁₀+2⋅X₁₀+X₇+2 {O(n^2)}
t₃, X₈: 4⋅X₁₀⋅X₁₀+2⋅X₈+4⋅X₁₀+6 {O(n^2)}
t₃, X₉: X₉ {O(n)}
t₃, X₁₀: 2⋅X₁₀ {O(n)}
t₄, X₁: X₁₀ {O(n)}
t₄, X₂: X₁₀ {O(n)}
t₄, X₃: 2⋅X₁₀+X₃ {O(n)}
t₄, X₄: 3⋅X₁₀+X₄ {O(n)}
t₄, X₅: 0 {O(1)}
t₄, X₆: 1 {O(1)}
t₄, X₇: 2⋅X₁₀⋅X₁₀+2⋅X₁₀+X₇+2 {O(n^2)}
t₄, X₈: 4⋅X₁₀⋅X₁₀+4⋅X₁₀+X₈+6 {O(n^2)}
t₄, X₉: X₉ {O(n)}
t₄, X₁₀: X₁₀ {O(n)}
t₅, X₁: X₁₀ {O(n)}
t₅, X₂: X₁₀ {O(n)}
t₅, X₃: 4⋅X₁₀+X₃ {O(n)}
t₅, X₄: 3⋅X₁₀+X₄ {O(n)}
t₅, X₅: 0 {O(1)}
t₅, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₅, X₇: 4⋅X₁₀⋅X₁₀+4⋅X₁₀+X₇+4 {O(n^2)}
t₅, X₈: 4⋅X₁₀⋅X₁₀+4⋅X₁₀+X₈+6 {O(n^2)}
t₅, X₉: X₉ {O(n)}
t₅, X₁₀: X₁₀ {O(n)}
t₆, X₁: X₁₀ {O(n)}
t₆, X₂: X₁₀ {O(n)}
t₆, X₃: 2⋅X₁₀ {O(n)}
t₆, X₄: 3⋅X₁₀+X₄ {O(n)}
t₆, X₅: 0 {O(1)}
t₆, X₆: 0 {O(1)}
t₆, X₇: 2⋅X₁₀⋅X₁₀+2⋅X₁₀+2 {O(n^2)}
t₆, X₈: 4⋅X₁₀⋅X₁₀+4⋅X₁₀+X₈+6 {O(n^2)}
t₆, X₉: 0 {O(1)}
t₆, X₁₀: X₁₀ {O(n)}
t₇, X₁: X₁₀ {O(n)}
t₇, X₂: X₁₀ {O(n)}
t₇, X₃: X₁₀ {O(n)}
t₇, X₄: 3⋅X₁₀+X₄ {O(n)}
t₇, X₅: 0 {O(1)}
t₇, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₇, X₇: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₇, X₈: 4⋅X₁₀⋅X₁₀+4⋅X₁₀+X₈+6 {O(n^2)}
t₇, X₉: X₁₀ {O(n)}
t₇, X₁₀: X₁₀ {O(n)}
t₈, X₁: X₁₀ {O(n)}
t₈, X₂: X₁₀ {O(n)}
t₈, X₃: X₁₀ {O(n)}
t₈, X₄: 6⋅X₁₀+X₄ {O(n)}
t₈, X₅: 0 {O(1)}
t₈, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₈, X₇: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₈, X₈: 8⋅X₁₀⋅X₁₀+8⋅X₁₀+X₈+12 {O(n^2)}
t₈, X₉: X₁₀ {O(n)}
t₈, X₁₀: X₁₀ {O(n)}
t₉, X₁: X₁₀ {O(n)}
t₉, X₂: X₁₀ {O(n)}
t₉, X₃: 2⋅X₁₀ {O(n)}
t₉, X₄: 3⋅X₁₀+X₄ {O(n)}
t₉, X₅: 0 {O(1)}
t₉, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₉, X₇: 2⋅X₁₀⋅X₁₀+2⋅X₁₀+2 {O(n^2)}
t₉, X₈: 4⋅X₁₀⋅X₁₀+4⋅X₁₀+X₈+6 {O(n^2)}
t₉, X₉: 0 {O(1)}
t₉, X₁₀: X₁₀ {O(n)}
t₁₀, X₁: X₁₀ {O(n)}
t₁₀, X₂: X₁₀ {O(n)}
t₁₀, X₃: X₁₀ {O(n)}
t₁₀, X₄: 6⋅X₁₀+X₄ {O(n)}
t₁₀, X₅: 0 {O(1)}
t₁₀, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₀, X₇: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₀, X₈: 8⋅X₁₀⋅X₁₀+8⋅X₁₀+X₈+12 {O(n^2)}
t₁₀, X₉: X₁₀ {O(n)}
t₁₀, X₁₀: X₁₀ {O(n)}
t₁₁, X₁: X₁₀ {O(n)}
t₁₁, X₂: X₁₀ {O(n)}
t₁₁, X₃: 0 {O(1)}
t₁₁, X₄: 0 {O(1)}
t₁₁, X₅: 0 {O(1)}
t₁₁, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₁, X₇: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₁, X₈: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₁, X₉: X₁₀ {O(n)}
t₁₁, X₁₀: X₁₀ {O(n)}
t₁₂, X₁: X₁₀ {O(n)}
t₁₂, X₂: X₁₀ {O(n)}
t₁₂, X₃: X₁₀ {O(n)}
t₁₂, X₄: 6⋅X₁₀+X₄ {O(n)}
t₁₂, X₅: 0 {O(1)}
t₁₂, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₂, X₇: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₂, X₈: 8⋅X₁₀⋅X₁₀+8⋅X₁₀+X₈+12 {O(n^2)}
t₁₂, X₉: X₁₀ {O(n)}
t₁₂, X₁₀: X₁₀ {O(n)}
t₁₄, X₁: X₁₀ {O(n)}
t₁₄, X₂: X₁₀ {O(n)}
t₁₄, X₃: X₁₀ {O(n)}
t₁₄, X₄: 6⋅X₁₀+X₄ {O(n)}
t₁₄, X₅: 0 {O(1)}
t₁₄, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₄, X₇: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₄, X₈: 8⋅X₁₀⋅X₁₀+8⋅X₁₀+X₈+12 {O(n^2)}
t₁₄, X₉: X₁₀ {O(n)}
t₁₄, X₁₀: X₁₀ {O(n)}
t₁₅, X₁: X₁₀ {O(n)}
t₁₅, X₂: X₁₀ {O(n)}
t₁₅, X₃: X₁₀ {O(n)}
t₁₅, X₄: 6⋅X₁₀+X₄ {O(n)}
t₁₅, X₅: 0 {O(1)}
t₁₅, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₅, X₇: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₅, X₈: 8⋅X₁₀⋅X₁₀+8⋅X₁₀+X₈+12 {O(n^2)}
t₁₅, X₉: X₁₀ {O(n)}
t₁₅, X₁₀: X₁₀ {O(n)}
t₁₆, X₁: X₁₀ {O(n)}
t₁₆, X₂: X₁₀ {O(n)}
t₁₆, X₃: X₁₀ {O(n)}
t₁₆, X₄: 6⋅X₁₀+X₄ {O(n)}
t₁₆, X₅: 0 {O(1)}
t₁₆, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₆, X₇: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₆, X₈: 8⋅X₁₀⋅X₁₀+8⋅X₁₀+X₈+12 {O(n^2)}
t₁₆, X₉: X₁₀ {O(n)}
t₁₆, X₁₀: X₁₀ {O(n)}
t₁₇, X₀: 0 {O(1)}
t₁₇, X₁: X₁₀ {O(n)}
t₁₇, X₂: X₁₀ {O(n)}
t₁₇, X₃: X₁₀ {O(n)}
t₁₇, X₄: X₁₀ {O(n)}
t₁₇, X₅: 0 {O(1)}
t₁₇, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₇, X₇: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₇, X₈: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₇, X₉: X₁₀ {O(n)}
t₁₇, X₁₀: X₁₀ {O(n)}
t₁₈, X₁: X₁₀ {O(n)}
t₁₈, X₂: X₁₀ {O(n)}
t₁₈, X₃: X₁₀ {O(n)}
t₁₈, X₄: 2⋅X₁₀ {O(n)}
t₁₈, X₅: 0 {O(1)}
t₁₈, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₈, X₇: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₈, X₈: 2⋅X₁₀⋅X₁₀+2⋅X₁₀+4 {O(n^2)}
t₁₈, X₉: X₁₀ {O(n)}
t₁₈, X₁₀: X₁₀ {O(n)}
t₁₉, X₁: X₁₀ {O(n)}
t₁₉, X₂: X₁₀ {O(n)}
t₁₉, X₃: X₁₀ {O(n)}
t₁₉, X₄: 3⋅X₁₀ {O(n)}
t₁₉, X₅: 0 {O(1)}
t₁₉, X₆: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₉, X₇: X₁₀⋅X₁₀+X₁₀+1 {O(n^2)}
t₁₉, X₈: 4⋅X₁₀⋅X₁₀+4⋅X₁₀+6 {O(n^2)}
t₁₉, X₉: X₁₀ {O(n)}
t₁₉, X₁₀: X₁₀ {O(n)}
t₂₀, X₁: 2⋅X₁₀ {O(n)}
t₂₀, X₂: X₁₀+X₂ {O(n)}
t₂₀, X₃: 2⋅X₁₀+X₃ {O(n)}
t₂₀, X₄: 2⋅X₄+3⋅X₁₀ {O(n)}
t₂₀, X₅: 0 {O(1)}
t₂₀, X₆: X₆ {O(n)}
t₂₀, X₇: 2⋅X₁₀⋅X₁₀+2⋅X₁₀+X₇+2 {O(n^2)}
t₂₀, X₈: 4⋅X₁₀⋅X₁₀+2⋅X₈+4⋅X₁₀+6 {O(n^2)}
t₂₀, X₉: X₉ {O(n)}
t₂₀, X₁₀: 2⋅X₁₀ {O(n)}