Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3, nondef.4, nondef.5
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₀+1 ≤ X₉
t₃₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ < 1+X₀
t₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₃+1, X₁₁, X₁₂, X₁₃) :|: X₁ < 0
t₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₃+1, X₁₁, X₁₂, X₁₃) :|: 0 < X₁
t₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₃, X₁₁, X₁₂, X₁₃) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l10(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₂₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₂₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₃₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₂ < 0
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₂
t₃₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l15(X₀, X₁, nondef.4, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₄₉: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃₉: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₁₁+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₁+1, X₁₃)
t₂₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₁₃+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₂, X₁₃) :|: X₇ < 0
t₂₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₁₃+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₂, X₁₃) :|: 0 < X₇
t₂₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₁₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₂, X₁₃) :|: X₇ ≤ 0 ∧ 0 ≤ X₇
t₄₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₄₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(X₀, X₁, X₂, X₃, nondef.5, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, X₁₃)
t₉: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₁₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l7(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₁₅: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁, X₁₂, X₁₃)
t₁₉: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₆ < 0
t₂₀: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₆
t₂₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₃₁: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₁+1 < X₈
t₃₂: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₈ ≤ X₁₁+1
t₄₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₄ < 0
t₄₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₄
t₄₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₃) :|: X₄ ≤ 0 ∧ 0 ≤ X₄
t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₂ < X₈
t₄₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₃) :|: X₈ ≤ X₁₂
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₁₁, X₁₀, X₁₁, X₁₂, X₁₃)
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l26(X₀, X₁, X₂, X₃, X₄, X₅, nondef.2, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₅ < 0
t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₅
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₅ ≤ 0 ∧ 0 ≤ X₅
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₀ < X₈
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₈ ≤ X₁₀
t₁₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)

Preprocessing

Found invariant 1+X₁₀ ≤ X₈ for location l25

Found invariant 1+X₁₀ ≤ X₈ for location l24

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ for location l15

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ for location l19

Found invariant 1+X₁₀ ≤ X₈ for location l23

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ for location l17

Found invariant X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ for location l28

Found invariant 1+X₁₀ ≤ X₈ for location l7

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l20

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l21

Found invariant X₁₀ ≤ X₁₁ for location l5

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l22

Found invariant X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ for location l1

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ for location l16

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l4

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l3

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃
Temp_Vars: nondef.0, nondef.1, nondef.2, nondef.3, nondef.4, nondef.5
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l2, l20, l21, l22, l23, l24, l25, l26, l27, l28, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₀+1 ≤ X₉ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁
t₃₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ < 1+X₀ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁
t₄: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₃+1, X₁₁, X₁₂, X₁₃) :|: X₁ < 0
t₅: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₃+1, X₁₁, X₁₂, X₁₃) :|: 0 < X₁
t₆: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₃, X₁₁, X₁₂, X₁₃) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l10(X₀, nondef.0, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₂₂: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₂₄: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, nondef.3, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃₈: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁
t₃₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₂ < 0 ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁
t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₂ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁
t₃₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁
t₃₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l15(X₀, X₁, nondef.4, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁
t₄₉: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l27(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₃₉: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₁₁+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₁+1, X₁₃) :|: 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁
t₂₅: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₁₃+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₂, X₁₃) :|: X₇ < 0
t₂₆: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₁₃+1, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₂, X₁₃) :|: 0 < X₇
t₂₇: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₁₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₀, X₁₂, X₁₃) :|: X₇ ≤ 0 ∧ 0 ≤ X₇
t₄₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₄₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(X₀, X₁, X₂, X₃, nondef.5, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, X₁₃) :|: 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₉: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₁₀ ≤ X₈
t₁₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l7(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₁₀ ≤ X₈
t₁₅: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁, X₁₂, X₁₃) :|: 1+X₁₀ ≤ X₈
t₁₉: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₆ < 0
t₂₀: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₆
t₂₁: l26(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₆ ≤ 0 ∧ 0 ≤ X₆
t₃₁: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₁+1 < X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁
t₃₂: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₈ ≤ X₁₁+1 ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁
t₄₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₄ < 0 ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₄₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₄ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₄₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₃) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₂ < X₈ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₄₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₃) :|: X₈ ≤ X₁₂ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₁₁, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₀ ≤ X₁₁
t₁₈: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l26(X₀, X₁, X₂, X₃, X₄, X₅, nondef.2, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₅ < 0 ∧ 1+X₁₀ ≤ X₈
t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₅ ∧ 1+X₁₀ ≤ X₈
t₁₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₅ ≤ 0 ∧ 0 ≤ X₅ ∧ 1+X₁₀ ≤ X₈
t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₀ < X₈
t₈: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₈ ≤ X₁₀
t₁₆: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃)

MPRF for transition t₇: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₀ < X₈ of depth 1:

new bound:

3⋅X₁₃+3⋅X₈+5 {O(n)}

MPRF for transition t₉: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₁₀ ≤ X₈ of depth 1:

new bound:

3⋅X₁₃+3⋅X₈+2 {O(n)}

MPRF for transition t₁₁: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l7(X₀, X₁, X₂, X₃, X₄, nondef.1, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₁₀ ≤ X₈ of depth 1:

new bound:

3⋅X₁₃+3⋅X₈+2 {O(n)}

MPRF for transition t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₅ < 0 ∧ 1+X₁₀ ≤ X₈ of depth 1:

new bound:

3⋅X₁₃+3⋅X₈+2 {O(n)}

MPRF for transition t₁₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₅ ∧ 1+X₁₀ ≤ X₈ of depth 1:

new bound:

3⋅X₁₃+3⋅X₈+2 {O(n)}

MPRF for transition t₁₅: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀+1, X₁₁, X₁₂, X₁₃) :|: 1+X₁₀ ≤ X₈ of depth 1:

new bound:

3⋅X₁₃+3⋅X₈+2 {O(n)}

MPRF for transition t₃₁: l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₁+1 < X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₃₃: l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₃₅: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l15(X₀, X₁, nondef.4, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+60 {O(n)}

MPRF for transition t₃₆: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₂ < 0 ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₃₇: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₂ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+60 {O(n)}

MPRF for transition t₃₉: l19(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₁₁+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₁+1, X₁₃) :|: 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₄₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₂ < X₈ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₄₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₃) :|: X₈ ≤ X₁₂ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₄₂: l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

180⋅X₁₃+180⋅X₈+120 {O(n)}

MPRF for transition t₄₄: l21(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l3(X₀, X₁, X₂, X₃, nondef.5, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

180⋅X₁₃+180⋅X₈+126 {O(n)}

MPRF for transition t₄₅: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₄ < 0 ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₄₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₄ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₄₇: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l5(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₂, X₁₂, X₁₃) :|: X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₄₈: l22(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂+1, X₁₃) :|: 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+60 {O(n)}

knowledge_propagation leads to new time bound 180⋅X₁₃+180⋅X₈+129 {O(n)} for transition t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₁₁, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₀ ≤ X₁₁

MPRF for transition t₂₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₀+1 ≤ X₉ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

116640⋅X₈⋅X₈+145800⋅X₁₃⋅X₁₃+262440⋅X₁₃⋅X₈+180864⋅X₈+201384⋅X₁₃+69488 {O(n^2)}

MPRF for transition t₃₀: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l28(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ < 1+X₀ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

136080⋅X₈⋅X₈+170100⋅X₁₃⋅X₁₃+306180⋅X₁₃⋅X₈+206550⋅X₈+229230⋅X₁₃+77226 {O(n^2)}

Chain transitions t₃₅: l17→l15 and t₃₇: l15→l19 to t₃₁₆: l17→l19

Chain transitions t₃₅: l17→l15 and t₃₆: l15→l19 to t₃₁₇: l17→l19

Chain transitions t₃₅: l17→l15 and t₃₈: l15→l18 to t₃₁₈: l17→l18

Chain transitions t₃₁: l28→l16 and t₃₃: l16→l17 to t₃₁₉: l28→l17

Chain transitions t₃₁₉: l28→l17 and t₃₁₇: l17→l19 to t₃₂₀: l28→l19

Chain transitions t₃₁₉: l28→l17 and t₃₁₆: l17→l19 to t₃₂₁: l28→l19

Chain transitions t₃₁₉: l28→l17 and t₃₁₈: l17→l18 to t₃₂₂: l28→l18

Chain transitions t₃₁₉: l28→l17 and t₃₅: l17→l15 to t₃₂₃: l28→l15

Chain transitions t₃₂₁: l28→l19 and t₃₉: l19→l4 to t₃₂₄: l28→l4

Chain transitions t₃₂₀: l28→l19 and t₃₉: l19→l4 to t₃₂₅: l28→l4

Chain transitions t₄₀: l4→l20 and t₄₂: l20→l21 to t₃₂₆: l4→l21

Chain transitions t₃₂₆: l4→l21 and t₄₄: l21→l3 to t₃₂₇: l4→l3

Chain transitions t₄₆: l3→l22 and t₄₈: l22→l4 to t₃₂₈: l3→l4

Chain transitions t₄₅: l3→l22 and t₄₈: l22→l4 to t₃₂₉: l3→l4

Chain transitions t₃₀: l1→l28 and t₃₂₅: l28→l4 to t₃₃₀: l1→l4

Chain transitions t₃₀: l1→l28 and t₃₂₄: l28→l4 to t₃₃₁: l1→l4

Chain transitions t₃₀: l1→l28 and t₃₂₁: l28→l19 to t₃₃₂: l1→l19

Chain transitions t₃₀: l1→l28 and t₃₂₀: l28→l19 to t₃₃₃: l1→l19

Chain transitions t₃₀: l1→l28 and t₃₂₂: l28→l18 to t₃₃₄: l1→l18

Chain transitions t₃₀: l1→l28 and t₃₂: l28→l18 to t₃₃₅: l1→l18

Chain transitions t₃₀: l1→l28 and t₃₁₉: l28→l17 to t₃₃₆: l1→l17

Chain transitions t₃₀: l1→l28 and t₃₁: l28→l16 to t₃₃₇: l1→l16

Chain transitions t₃₀: l1→l28 and t₃₂₃: l28→l15 to t₃₃₈: l1→l15

Chain transitions t₃₂₇: l4→l3 and t₄₇: l3→l5 to t₃₃₉: l4→l5

Chain transitions t₃₂₇: l4→l3 and t₃₂₉: l3→l4 to t₃₄₀: l4→l4

Chain transitions t₃₂₇: l4→l3 and t₃₂₈: l3→l4 to t₃₄₁: l4→l4

Chain transitions t₃₂₇: l4→l3 and t₄₆: l3→l22 to t₃₄₂: l4→l22

Chain transitions t₃₂₇: l4→l3 and t₄₅: l3→l22 to t₃₄₃: l4→l22

Chain transitions t₃₃₉: l4→l5 and t₂₈: l5→l1 to t₃₄₄: l4→l1

Chain transitions t₄₁: l4→l5 and t₂₈: l5→l1 to t₃₄₅: l4→l1

Chain transitions t₂₇: l2→l5 and t₂₈: l5→l1 to t₃₄₆: l2→l1

Chain transitions t₂₆: l2→l5 and t₂₈: l5→l1 to t₃₄₇: l2→l1

Chain transitions t₂₅: l2→l5 and t₂₈: l5→l1 to t₃₄₈: l2→l1

Analysing control-flow refined program

Eliminate variables {Temp_Int₃₉₄₅,X₂,X₄} that do not contribute to the problem

Found invariant 1+X₈ ≤ X₆ for location l25

Found invariant 1+X₈ ≤ X₆ for location l24

Found invariant 2+X₉ ≤ X₆ ∧ X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ 2+X₇ ≤ X₆ ∧ X₇ ≤ X₀ for location l15

Found invariant 2+X₉ ≤ X₆ ∧ X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ 2+X₇ ≤ X₆ ∧ X₇ ≤ X₀ for location l19

Found invariant 1+X₈ ≤ X₆ for location l23

Found invariant 2+X₉ ≤ X₆ ∧ X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ 2+X₇ ≤ X₆ ∧ X₇ ≤ X₀ for location l17

Found invariant X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ X₇ ≤ X₀ for location l28

Found invariant 1+X₈ ≤ X₆ for location l7

Found invariant 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ X₂ ≤ 1+X₉ ∧ 2+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₂ ∧ 1+X₈ ≤ X₁₀ ∧ 2+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ X₂ ≤ X₁₀ for location l20

Found invariant 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ X₂ ≤ 1+X₉ ∧ 2+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₂ ∧ 1+X₈ ≤ X₁₀ ∧ 2+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ X₂ ≤ X₁₀ for location l21

Found invariant X₈ ≤ X₉ for location l5

Found invariant 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ X₂ ≤ 1+X₉ ∧ 2+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₂ ∧ 1+X₈ ≤ X₁₀ ∧ 2+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ X₂ ≤ X₁₀ for location l22

Found invariant X₈ ≤ X₉ ∧ X₇ ≤ X₉ for location l1

Found invariant 2+X₉ ≤ X₆ ∧ X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ 2+X₈ ≤ X₆ ∧ 2+X₇ ≤ X₆ ∧ X₇ ≤ X₀ for location l16

Found invariant 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ X₂ ≤ 1+X₉ ∧ 2+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₂ ∧ 1+X₈ ≤ X₁₀ ∧ 2+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ X₁₀ ≤ X₆ ∧ X₂ ≤ X₁₀ for location l4

Found invariant 2+X₉ ≤ X₆ ∧ 1+X₉ ≤ X₂ ∧ 1+X₉ ≤ X₁₀ ∧ X₈ ≤ X₉ ∧ X₇ ≤ X₉ ∧ X₂ ≤ 1+X₉ ∧ 2+X₈ ≤ X₆ ∧ 1+X₈ ≤ X₂ ∧ 1+X₈ ≤ X₁₀ ∧ 2+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₂ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ X₀ ∧ 1+X₂ ≤ X₆ ∧ 1+X₁₀ ≤ X₆ ∧ X₂ ≤ X₁₀ for location l3

MPRF for transition t₄₃₅: l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₈ ≤ X₆ of depth 1:

new bound:

3⋅X₁₁+3⋅X₆+2 {O(n)}

MPRF for transition t₄₃₆: l24(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l7(X₀, X₁, X₂, nondef.1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 1+X₈ ≤ X₆ of depth 1:

new bound:

3⋅X₁₁+3⋅X₆+2 {O(n)}

MPRF for transition t₄₃₇: l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈+1, X₉, X₁₀, X₁₁) :|: 1+X₈ ≤ X₆ of depth 1:

new bound:

3⋅X₁₁+3⋅X₆+5 {O(n)}

MPRF for transition t₄₅₃: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₃ < 0 ∧ 1+X₈ ≤ X₆ of depth 1:

new bound:

3⋅X₁₁+3⋅X₆+2 {O(n)}

MPRF for transition t₄₅₄: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l25(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: 0 < X₃ ∧ 1+X₈ ≤ X₆ of depth 1:

new bound:

3⋅X₁₁+3⋅X₆+2 {O(n)}

MPRF for transition t₄₅₆: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) → l23(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁) :|: X₈ < X₆ of depth 1:

new bound:

3⋅X₁₁+3⋅X₆+2 {O(n)}

Analysing control-flow refined program

Found invariant 1+X₁₀ ≤ X₈ for location l25

Found invariant 3+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 3+X₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ for location n_l16___13

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 2+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₁₂ ∧ X₈ ≤ X₁₁ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₃ ≤ X₁₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁₀ ≤ X₁₂ ∧ 1+X₀ ≤ X₁₂ ∧ 2+X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₀ for location n_l5___17

Found invariant 3+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 3+X₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ for location n_l17___12

Found invariant X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀ for location n_l28___6

Found invariant 1+X₁₀ ≤ X₈ for location l24

Found invariant 3+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 3+X₀ ≤ X₈ ∧ 1+X₂ ≤ 0 ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ for location n_l19___10

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 1 ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀ for location n_l19___1

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 1+X₂ ≤ 0 ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀ for location n_l19___2

Found invariant 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ for location n_l28___14

Found invariant 3+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 3+X₀ ≤ X₈ ∧ 1 ≤ X₂ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ for location n_l19___9

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀ for location n_l15___3

Found invariant X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ for location n_l1___7

Found invariant 1+X₁₀ ≤ X₈ for location l23

Found invariant 3+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 3+X₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ for location n_l15___11

Found invariant 1+X₁₀ ≤ X₈ for location l7

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀ for location n_l16___5

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l21

Found invariant X₁₀ ≤ X₁₁ for location l5

Found invariant 1+X₉ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ for location n_l1___15

Found invariant X₉ ≤ X₈ ∧ X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₈ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₂ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₁₂ ∧ X₈ ≤ X₁₁ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₃ ≤ X₁₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁₀ ≤ X₁₂ ∧ 1+X₀ ≤ X₁₂ ∧ 2+X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₀ for location n_l1___16

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l20

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l22

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 2+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 1+X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 2+X₁₁ ≤ X₁₂ ∧ 2+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l4

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ X₁₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₁₂ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location n_l4___8

Found invariant 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ for location l3

Found invariant 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀ for location n_l17___4

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+60 {O(n)} for transition t₇₂₇: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l5___17(X₃, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₈, X₈, X₁₃) :|: 2+X₁₁ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₃ ≤ X₁₁+1 ∧ 1+X₁₁ ≤ X₃ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ X₉ ≤ X₁₁ ∧ 2+X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₈ ∧ 1+X₁₀ ≤ X₃ ∧ X₃ ≤ X₁₁+1 ∧ 1+X₁₁ ≤ X₃ ∧ X₈ ≤ X₁₂ ∧ X₁₂ ≤ X₈ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ X₉ ≤ X₀ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 2+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 1+X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 2+X₁₁ ≤ X₁₂ ∧ 2+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+60 {O(n)} for transition t₇₂₈: n_l5___17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l1___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₁₁, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₀ ≤ X₁₂ ∧ 1+X₉ ≤ X₀ ∧ 1+X₁₀ ≤ X₀ ∧ X₈ ≤ X₁₂ ∧ X₁₂ ≤ X₈ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 2+X₉ ≤ X₁₂ ∧ 2+X₉ ≤ X₁₁ ∧ 1+X₉ ≤ X₀ ∧ X₈ ≤ X₁₂ ∧ X₈ ≤ X₁₁ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₃ ≤ X₁₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁₀ ≤ X₁₂ ∧ 1+X₀ ≤ X₁₂ ∧ 2+X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₀

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+63 {O(n)} for transition t₇₂₉: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₁₁, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₉ ≤ X₀ ∧ 1+X₁₀ ≤ X₀ ∧ 1+X₁₁ ≤ X₈ ∧ X₀ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ X₁₂ ≤ X₁₁ ∧ X₄ ≤ 0 ∧ 0 ≤ X₄ ∧ X₀ ≤ X₃ ∧ X₃ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₃₀: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₁₁, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₀ ≤ X₁₃ ∧ X₁₃ ≤ X₀ ∧ X₁₁ ≤ X₁₀ ∧ X₇ ≤ 0 ∧ 0 ≤ X₇ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₃₁: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₁₁, X₁₀, X₁₁, X₁₂, X₁₃) :|: 0 < X₇ ∧ X₁₁ ≤ X₁₀ ∧ X₀ ≤ X₁₃+1 ∧ 1+X₁₃ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁

knowledge_propagation leads to new time bound 1 {O(1)} for transition t₇₃₂: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₁₁, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₇ < 0 ∧ X₁₁ ≤ X₁₀ ∧ X₀ ≤ X₁₃+1 ∧ 1+X₁₃ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+60 {O(n)} for transition t₇₂₂: n_l1___16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l1___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ X₁₁ ∧ 1+X₀ ≤ X₉ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ 1+X₀ ≤ X₉ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₁₁ ∧ 1+X₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₈ ∧ X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₈ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₂ ≤ X₉ ∧ X₁₁ ≤ X₉ ∧ 2+X₁₀ ≤ X₉ ∧ 1+X₀ ≤ X₉ ∧ X₈ ≤ X₁₂ ∧ X₈ ≤ X₁₁ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 1+X₀ ≤ X₈ ∧ 1+X₃ ≤ X₁₂ ∧ 1+X₃ ≤ X₁₁ ∧ X₃ ≤ X₀ ∧ 1+X₁₀ ≤ X₃ ∧ X₀ ≤ X₃ ∧ X₁₂ ≤ X₁₁ ∧ X₁₁ ≤ X₁₂ ∧ 2+X₁₀ ≤ X₁₂ ∧ 1+X₀ ≤ X₁₂ ∧ 2+X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ ∧ 1+X₁₀ ≤ X₀

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+66 {O(n)} for transition t₇₂₃: n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l1___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ X₁₁ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ X₉ ≤ X₁₁ ∧ 1+X₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+66 {O(n)} for transition t₇₂₄: n_l1___7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l28___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ X₁₁ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ X₉ < 1+X₀ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+66 {O(n)} for transition t₇₂₆: n_l28___6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l16___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ < 1+X₀ ∧ X₁₀ ≤ X₉ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ 1+X₁₁ < X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+66 {O(n)} for transition t₇₁₃: n_l16___5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l17___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₉ < X₈ ∧ X₁₀ ≤ X₉ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+66 {O(n)} for transition t₇₁₅: n_l17___4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l15___3(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, Arg8_P, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃) :|: 2+X₁₁ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ Arg9_P ≤ Arg11_P ∧ Arg10_P ≤ Arg11_P ∧ 2+Arg11_P ≤ Arg8_P ∧ Arg9_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₀ ≤ X₁₁ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+66 {O(n)} for transition t₇₁₀: n_l15___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l19___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₁₁ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 0 < X₂ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+66 {O(n)} for transition t₇₁₁: n_l15___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l19___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₁₁ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₂ < 0 ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+66 {O(n)} for transition t₇₁₆: n_l19___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l4___8(X₀, X₁, X₂, X₁₁+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₁+1, X₁₃) :|: X₁₀ ≤ X₉ ∧ 0 < X₂ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 1 ≤ X₂ ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀

knowledge_propagation leads to new time bound 90⋅X₁₃+90⋅X₈+66 {O(n)} for transition t₇₁₈: n_l19___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l4___8(X₀, X₁, X₂, X₁₁+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₁+1, X₁₃) :|: X₂ < 0 ∧ X₁₀ ≤ X₉ ∧ X₉ ≤ X₁₁ ∧ X₁₁ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ 2+X₉ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₁ ≤ X₉ ∧ X₁₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 1+X₂ ≤ 0 ∧ X₁₁ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₀

MPRF for transition t₇₀₈: n_l15___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l19___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₁₁ ≤ X₈ ∧ 1+X₀ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₂ < 0 ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ 3+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 3+X₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₇₀₉: n_l15___11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l19___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 2+X₁₁ ≤ X₈ ∧ 1+X₀ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 0 < X₂ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ 3+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 3+X₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₇₁₂: n_l16___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l17___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₁₁ < X₈ ∧ 1+X₀ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ 3+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 3+X₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₇₁₄: n_l17___12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l15___11(X₀, X₁, NoDet0, X₃, X₄, X₅, X₆, X₇, Arg8_P, Arg9_P, Arg10_P, Arg11_P, X₁₂, X₁₃) :|: 2+X₁₁ ≤ X₈ ∧ 1+X₀ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ Arg9_P ≤ Arg11_P ∧ Arg10_P ≤ Arg11_P ∧ 2+Arg11_P ≤ Arg8_P ∧ Arg9_P ≤ X₀ ∧ X₁₁ ≤ Arg11_P ∧ Arg11_P ≤ X₁₁ ∧ X₁₀ ≤ Arg10_P ∧ Arg10_P ≤ X₁₀ ∧ X₉ ≤ Arg9_P ∧ Arg9_P ≤ X₉ ∧ X₈ ≤ Arg8_P ∧ Arg8_P ≤ X₈ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 3+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 3+X₀ ≤ X₈ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₇₁₇: n_l19___10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l4___8(X₀, X₁, X₂, X₁₁+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₁+1, X₁₃) :|: X₂ < 0 ∧ 2+X₁₁ ≤ X₈ ∧ 1+X₀ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ 3+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 3+X₀ ≤ X₈ ∧ 1+X₂ ≤ 0 ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₇₁₉: n_l19___9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l4___8(X₀, X₁, X₂, X₁₁+1, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₁+1, X₁₃) :|: 2+X₁₁ ≤ X₈ ∧ 1+X₀ ≤ X₁₁ ∧ 0 < X₂ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ 3+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ 3+X₀ ≤ X₈ ∧ 1 ≤ X₂ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+66 {O(n)}

MPRF for transition t₇₂₀: n_l1___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l1___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉-1, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₁₁ ∧ 1+X₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₉ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ of depth 1:

new bound:

137700⋅X₈⋅X₈+162000⋅X₁₃⋅X₁₃+299700⋅X₁₃⋅X₈+205488⋅X₈+223254⋅X₁₃+76853 {O(n^2)}

MPRF for transition t₇₂₁: n_l1___15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l28___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₉ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ < 1+X₀ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₉ ≤ X₁₁ ∧ X₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ of depth 1:

new bound:

432⋅X₈+540⋅X₁₃+372 {O(n)}

MPRF for transition t₇₂₅: n_l28___14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → n_l16___13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: 1+X₉ ≤ X₁₁ ∧ X₉ < 1+X₀ ∧ X₀ ≤ X₉ ∧ 1+X₁₁ < X₈ ∧ X₉ ≤ X₁₁ ∧ X₁₀ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ X₀ ≤ X₉ ∧ X₁₀ ≤ X₁₁ ∧ 1+X₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}

MPRF for transition t₇₄₉: n_l4___8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) → l20(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃) :|: X₁₂ < X₈ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ ∧ 2+X₉ ≤ X₈ ∧ 1+X₉ ≤ X₃ ∧ 1+X₉ ≤ X₁₂ ∧ X₉ ≤ X₁₁ ∧ X₉ ≤ X₀ ∧ 1+X₃ ≤ X₈ ∧ 1+X₁₂ ≤ X₈ ∧ 2+X₁₁ ≤ X₈ ∧ 2+X₁₀ ≤ X₈ ∧ X₃ ≤ X₁₂ ∧ X₃ ≤ 1+X₁₁ ∧ X₁₂ ≤ X₃ ∧ 1+X₁₁ ≤ X₃ ∧ 1+X₁₀ ≤ X₃ ∧ X₁₂ ≤ 1+X₁₁ ∧ 1+X₁₁ ≤ X₁₂ ∧ 1+X₁₀ ≤ X₁₂ ∧ X₁₀ ≤ X₁₁ of depth 1:

new bound:

90⋅X₁₃+90⋅X₈+63 {O(n)}