Initial Problem

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₀ < 0
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: 0 < X₀
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₀
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₃) :|: X₂ < 0
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₃) :|: 0 < X₂
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂
t₂₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, nondef.2, X₃, X₄, X₅, X₆, X₇)
t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄
t₂₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₄ ≤ X₇
t₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₃
t₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₆
t₁: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, 0, X₄, X₅, X₆, X₇)
t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₂₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1)
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₄
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₅+1, X₄, X₅, X₆, X₇)
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 0
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇)
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇)

Preprocessing

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l11

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ for location l2

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l6

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l12

Found invariant X₆ ≤ X₃ ∧ 0 ≤ X₃ for location l17

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l7

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₃ for location l5

Found invariant X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l13

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l8

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ for location l1

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l10

Found invariant X₆ ≤ X₃ ∧ 0 ≤ X₃ for location l16

Found invariant 1+X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l18

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l4

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ for location l9

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ for location l3

Found invariant 0 ≤ X₃ for location l14

Problem after Preprocessing

Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇
Temp_Vars: nondef.0, nondef.1, nondef.2
Locations: l0, l1, l10, l11, l12, l13, l14, l15, l16, l17, l18, l2, l3, l4, l5, l6, l7, l8, l9
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇)
t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₀ < 0 ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃
t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: 0 < X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃
t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃
t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₃) :|: X₂ < 0 ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₃) :|: 0 < X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, nondef.2, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₃: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₃ ∧ 0 ≤ X₃
t₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₆ ∧ 0 ≤ X₃
t₁: l15(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, 0, X₄, X₅, X₆, X₇)
t₂₉: l17(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l16(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₃ ∧ 0 ≤ X₃
t₂₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: 1+X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃
t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃
t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃
t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₅+1, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₃
t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 0 ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃
t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁

MPRF for transition t₂: l14(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₃ < X₆ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF for transition t₄: l2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF for transition t₆: l3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l1(nondef.0, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF for transition t₇: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: X₀ < 0 ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF for transition t₈: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₃, X₅, X₆, X₇) :|: 0 < X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF for transition t₉: l1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₃, X₆, X₇) :|: X₀ ≤ 0 ∧ 0 ≤ X₀ ∧ 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₁₀: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₄ < X₆ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF for transition t₁₁: l4(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₆ ≤ X₄ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF for transition t₁₂: l7(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₁₄: l8(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l6(X₀, nondef.1, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

2⋅X₆ {O(n)}

MPRF for transition t₁₅: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ < 0 ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₁₆: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 0 < X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₁₇: l6(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₁ ≤ 0 ∧ 0 ≤ X₁ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₁₈: l9(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l4(X₀, X₁, X₂, X₃, X₄+1, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₁₉: l10(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₂₁: l12(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l11(X₀, X₁, nondef.2, X₃, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF for transition t₂₂: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₃) :|: X₂ < 0 ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₂₃: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₃) :|: 0 < X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₂₄: l11(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₂ ≤ 0 ∧ 0 ≤ X₂ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₂₆: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆+1 {O(n)}

MPRF for transition t₂₈: l5(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l14(X₀, X₁, X₂, X₅+1, X₄, X₅, X₆, X₇) :|: 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆ {O(n)}

MPRF for transition t₂₅: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

2⋅X₆⋅X₆+2⋅X₆ {O(n^2)}

MPRF for transition t₂₇: l18(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: 1+X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆⋅X₆+X₆ {O(n^2)}

Chain transitions t₆: l3→l1 and t₉: l1→l5 to t₁₅₈: l3→l5

Chain transitions t₆: l3→l1 and t₈: l1→l4 to t₁₅₉: l3→l4

Chain transitions t₆: l3→l1 and t₇: l1→l4 to t₁₆₀: l3→l4

Chain transitions t₁₆: l6→l10 and t₁₉: l10→l12 to t₁₆₁: l6→l12

Chain transitions t₁₅: l6→l10 and t₁₉: l10→l12 to t₁₆₂: l6→l12

Chain transitions t₁₁: l4→l10 and t₁₉: l10→l12 to t₁₆₃: l4→l12

Chain transitions t₂₁: l12→l11 and t₂₄: l11→l5 to t₁₆₄: l12→l5

Chain transitions t₂₁: l12→l11 and t₂₃: l11→l13 to t₁₆₅: l12→l13

Chain transitions t₂₁: l12→l11 and t₂₂: l11→l13 to t₁₆₆: l12→l13

Chain transitions t₁₆₂: l6→l12 and t₁₆₄: l12→l5 to t₁₆₇: l6→l5

Chain transitions t₁₆₁: l6→l12 and t₁₆₄: l12→l5 to t₁₆₈: l6→l5

Chain transitions t₁₆₁: l6→l12 and t₁₆₆: l12→l13 to t₁₆₉: l6→l13

Chain transitions t₁₆₂: l6→l12 and t₁₆₆: l12→l13 to t₁₇₀: l6→l13

Chain transitions t₁₆₃: l4→l12 and t₁₆₆: l12→l13 to t₁₇₁: l4→l13

Chain transitions t₁₆₃: l4→l12 and t₁₆₄: l12→l5 to t₁₇₂: l4→l5

Chain transitions t₁₆₃: l4→l12 and t₁₆₅: l12→l13 to t₁₇₃: l4→l13

Chain transitions t₁₆₁: l6→l12 and t₁₆₅: l12→l13 to t₁₇₄: l6→l13

Chain transitions t₁₆₂: l6→l12 and t₁₆₅: l12→l13 to t₁₇₅: l6→l13

Chain transitions t₁₆₃: l4→l12 and t₂₁: l12→l11 to t₁₇₆: l4→l11

Chain transitions t₁₆₁: l6→l12 and t₂₁: l12→l11 to t₁₇₇: l6→l11

Chain transitions t₁₆₂: l6→l12 and t₂₁: l12→l11 to t₁₇₈: l6→l11

Chain transitions t₁₇₅: l6→l13 and t₂₆: l13→l5 to t₁₇₉: l6→l5

Chain transitions t₁₇₄: l6→l13 and t₂₆: l13→l5 to t₁₈₀: l6→l5

Chain transitions t₁₇₄: l6→l13 and t₂₅: l13→l18 to t₁₈₁: l6→l18

Chain transitions t₁₇₅: l6→l13 and t₂₅: l13→l18 to t₁₈₂: l6→l18

Chain transitions t₁₇₀: l6→l13 and t₂₅: l13→l18 to t₁₈₃: l6→l18

Chain transitions t₁₇₀: l6→l13 and t₂₆: l13→l5 to t₁₈₄: l6→l5

Chain transitions t₁₆₉: l6→l13 and t₂₅: l13→l18 to t₁₈₅: l6→l18

Chain transitions t₁₆₉: l6→l13 and t₂₆: l13→l5 to t₁₈₆: l6→l5

Chain transitions t₁₇₃: l4→l13 and t₂₅: l13→l18 to t₁₈₇: l4→l18

Chain transitions t₁₇₃: l4→l13 and t₂₆: l13→l5 to t₁₈₈: l4→l5

Chain transitions t₁₇₁: l4→l13 and t₂₅: l13→l18 to t₁₈₉: l4→l18

Chain transitions t₁₇₁: l4→l13 and t₂₆: l13→l5 to t₁₉₀: l4→l5

Chain transitions t₂₇: l18→l13 and t₂₅: l13→l18 to t₁₉₁: l18→l18

Chain transitions t₂₇: l18→l13 and t₂₆: l13→l5 to t₁₉₂: l18→l5

Chain transitions t₂₈: l5→l14 and t₂: l14→l2 to t₁₉₃: l5→l2

Chain transitions t₁: l15→l14 and t₂: l14→l2 to t₁₉₄: l15→l2

Chain transitions t₁: l15→l14 and t₃: l14→l17 to t₁₉₅: l15→l17

Chain transitions t₂₈: l5→l14 and t₃: l14→l17 to t₁₉₆: l5→l17

Chain transitions t₁₉₃: l5→l2 and t₄: l2→l3 to t₁₉₇: l5→l3

Chain transitions t₁₉₄: l15→l2 and t₄: l2→l3 to t₁₉₈: l15→l3

Chain transitions t₁₉₇: l5→l3 and t₁₅₈: l3→l5 to t₁₉₉: l5→l5

Chain transitions t₁₉₈: l15→l3 and t₁₅₈: l3→l5 to t₂₀₀: l15→l5

Chain transitions t₁₉₈: l15→l3 and t₁₆₀: l3→l4 to t₂₀₁: l15→l4

Chain transitions t₁₉₇: l5→l3 and t₁₆₀: l3→l4 to t₂₀₂: l5→l4

Chain transitions t₁₉₈: l15→l3 and t₁₅₉: l3→l4 to t₂₀₃: l15→l4

Chain transitions t₁₉₇: l5→l3 and t₁₅₉: l3→l4 to t₂₀₄: l5→l4

Chain transitions t₁₉₈: l15→l3 and t₆: l3→l1 to t₂₀₅: l15→l1

Chain transitions t₁₉₇: l5→l3 and t₆: l3→l1 to t₂₀₆: l5→l1

Chain transitions t₁₈: l9→l4 and t₁₀: l4→l7 to t₂₀₇: l9→l7

Chain transitions t₂₀₄: l5→l4 and t₁₀: l4→l7 to t₂₀₈: l5→l7

Chain transitions t₂₀₄: l5→l4 and t₁₉₀: l4→l5 to t₂₀₉: l5→l5

Chain transitions t₁₈: l9→l4 and t₁₉₀: l4→l5 to t₂₁₀: l9→l5

Chain transitions t₂₀₂: l5→l4 and t₁₉₀: l4→l5 to t₂₁₁: l5→l5

Chain transitions t₂₀₂: l5→l4 and t₁₀: l4→l7 to t₂₁₂: l5→l7

Chain transitions t₂₀₂: l5→l4 and t₁₈₈: l4→l5 to t₂₁₃: l5→l5

Chain transitions t₂₀₄: l5→l4 and t₁₈₈: l4→l5 to t₂₁₄: l5→l5

Chain transitions t₁₈: l9→l4 and t₁₈₈: l4→l5 to t₂₁₅: l9→l5

Chain transitions t₂₀₃: l15→l4 and t₁₈₈: l4→l5 to t₂₁₆: l15→l5

Chain transitions t₂₀₃: l15→l4 and t₁₉₀: l4→l5 to t₂₁₇: l15→l5

Chain transitions t₂₀₃: l15→l4 and t₁₀: l4→l7 to t₂₁₈: l15→l7

Chain transitions t₂₀₃: l15→l4 and t₁₇₂: l4→l5 to t₂₁₉: l15→l5

Chain transitions t₂₀₂: l5→l4 and t₁₇₂: l4→l5 to t₂₂₀: l5→l5

Chain transitions t₂₀₄: l5→l4 and t₁₇₂: l4→l5 to t₂₂₁: l5→l5

Chain transitions t₁₈: l9→l4 and t₁₇₂: l4→l5 to t₂₂₂: l9→l5

Chain transitions t₂₀₁: l15→l4 and t₁₇₂: l4→l5 to t₂₂₃: l15→l5

Chain transitions t₂₀₁: l15→l4 and t₁₈₈: l4→l5 to t₂₂₄: l15→l5

Chain transitions t₂₀₁: l15→l4 and t₁₉₀: l4→l5 to t₂₂₅: l15→l5

Chain transitions t₂₀₁: l15→l4 and t₁₀: l4→l7 to t₂₂₆: l15→l7

Chain transitions t₂₀₁: l15→l4 and t₁₈₉: l4→l18 to t₂₂₇: l15→l18

Chain transitions t₂₀₃: l15→l4 and t₁₈₉: l4→l18 to t₂₂₈: l15→l18

Chain transitions t₂₀₂: l5→l4 and t₁₈₉: l4→l18 to t₂₂₉: l5→l18

Chain transitions t₂₀₄: l5→l4 and t₁₈₉: l4→l18 to t₂₃₀: l5→l18

Chain transitions t₁₈: l9→l4 and t₁₈₉: l4→l18 to t₂₃₁: l9→l18

Chain transitions t₂₀₁: l15→l4 and t₁₈₇: l4→l18 to t₂₃₂: l15→l18

Chain transitions t₂₀₃: l15→l4 and t₁₈₇: l4→l18 to t₂₃₃: l15→l18

Chain transitions t₂₀₂: l5→l4 and t₁₈₇: l4→l18 to t₂₃₄: l5→l18

Chain transitions t₂₀₄: l5→l4 and t₁₈₇: l4→l18 to t₂₃₅: l5→l18

Chain transitions t₁₈: l9→l4 and t₁₈₇: l4→l18 to t₂₃₆: l9→l18

Chain transitions t₂₀₁: l15→l4 and t₁₇₃: l4→l13 to t₂₃₇: l15→l13

Chain transitions t₂₀₃: l15→l4 and t₁₇₃: l4→l13 to t₂₃₈: l15→l13

Chain transitions t₂₀₂: l5→l4 and t₁₇₃: l4→l13 to t₂₃₉: l5→l13

Chain transitions t₂₀₄: l5→l4 and t₁₇₃: l4→l13 to t₂₄₀: l5→l13

Chain transitions t₁₈: l9→l4 and t₁₇₃: l4→l13 to t₂₄₁: l9→l13

Chain transitions t₂₀₁: l15→l4 and t₁₇₁: l4→l13 to t₂₄₂: l15→l13

Chain transitions t₂₀₃: l15→l4 and t₁₇₁: l4→l13 to t₂₄₃: l15→l13

Chain transitions t₂₀₂: l5→l4 and t₁₇₁: l4→l13 to t₂₄₄: l5→l13

Chain transitions t₂₀₄: l5→l4 and t₁₇₁: l4→l13 to t₂₄₅: l5→l13

Chain transitions t₁₈: l9→l4 and t₁₇₁: l4→l13 to t₂₄₆: l9→l13

Chain transitions t₂₀₁: l15→l4 and t₁₆₃: l4→l12 to t₂₄₇: l15→l12

Chain transitions t₂₀₃: l15→l4 and t₁₆₃: l4→l12 to t₂₄₈: l15→l12

Chain transitions t₂₀₂: l5→l4 and t₁₆₃: l4→l12 to t₂₄₉: l5→l12

Chain transitions t₂₀₄: l5→l4 and t₁₆₃: l4→l12 to t₂₅₀: l5→l12

Chain transitions t₁₈: l9→l4 and t₁₆₃: l4→l12 to t₂₅₁: l9→l12

Chain transitions t₂₀₁: l15→l4 and t₁₇₆: l4→l11 to t₂₅₂: l15→l11

Chain transitions t₂₀₃: l15→l4 and t₁₇₆: l4→l11 to t₂₅₃: l15→l11

Chain transitions t₂₀₂: l5→l4 and t₁₇₆: l4→l11 to t₂₅₄: l5→l11

Chain transitions t₂₀₄: l5→l4 and t₁₇₆: l4→l11 to t₂₅₅: l5→l11

Chain transitions t₁₈: l9→l4 and t₁₇₆: l4→l11 to t₂₅₆: l9→l11

Chain transitions t₂₀₁: l15→l4 and t₁₁: l4→l10 to t₂₅₇: l15→l10

Chain transitions t₂₀₃: l15→l4 and t₁₁: l4→l10 to t₂₅₈: l15→l10

Chain transitions t₂₀₂: l5→l4 and t₁₁: l4→l10 to t₂₅₉: l5→l10

Chain transitions t₂₀₄: l5→l4 and t₁₁: l4→l10 to t₂₆₀: l5→l10

Chain transitions t₁₈: l9→l4 and t₁₁: l4→l10 to t₂₆₁: l9→l10

Chain transitions t₁₄: l8→l6 and t₁₇: l6→l9 to t₂₆₂: l8→l9

Chain transitions t₁₄: l8→l6 and t₁₈₆: l6→l5 to t₂₆₃: l8→l5

Chain transitions t₁₄: l8→l6 and t₁₈₄: l6→l5 to t₂₆₄: l8→l5

Chain transitions t₁₄: l8→l6 and t₁₈₀: l6→l5 to t₂₆₅: l8→l5

Chain transitions t₁₄: l8→l6 and t₁₇₉: l6→l5 to t₂₆₆: l8→l5

Chain transitions t₁₄: l8→l6 and t₁₆₈: l6→l5 to t₂₆₇: l8→l5

Chain transitions t₁₄: l8→l6 and t₁₆₇: l6→l5 to t₂₆₈: l8→l5

Chain transitions t₁₄: l8→l6 and t₁₈₅: l6→l18 to t₂₆₉: l8→l18

Chain transitions t₁₄: l8→l6 and t₁₈₃: l6→l18 to t₂₇₀: l8→l18

Chain transitions t₁₄: l8→l6 and t₁₈₂: l6→l18 to t₂₇₁: l8→l18

Chain transitions t₁₄: l8→l6 and t₁₈₁: l6→l18 to t₂₇₂: l8→l18

Chain transitions t₁₄: l8→l6 and t₁₇₅: l6→l13 to t₂₇₃: l8→l13

Chain transitions t₁₄: l8→l6 and t₁₇₄: l6→l13 to t₂₇₄: l8→l13

Chain transitions t₁₄: l8→l6 and t₁₇₀: l6→l13 to t₂₇₅: l8→l13

Chain transitions t₁₄: l8→l6 and t₁₆₉: l6→l13 to t₂₇₆: l8→l13

Chain transitions t₁₄: l8→l6 and t₁₆₂: l6→l12 to t₂₇₇: l8→l12

Chain transitions t₁₄: l8→l6 and t₁₆₁: l6→l12 to t₂₇₈: l8→l12

Chain transitions t₁₄: l8→l6 and t₁₇₈: l6→l11 to t₂₇₉: l8→l11

Chain transitions t₁₄: l8→l6 and t₁₇₇: l6→l11 to t₂₈₀: l8→l11

Chain transitions t₁₄: l8→l6 and t₁₆: l6→l10 to t₂₈₁: l8→l10

Chain transitions t₁₄: l8→l6 and t₁₅: l6→l10 to t₂₈₂: l8→l10

Chain transitions t₂₀₇: l9→l7 and t₁₂: l7→l8 to t₂₈₃: l9→l8

Chain transitions t₂₁₂: l5→l7 and t₁₂: l7→l8 to t₂₈₄: l5→l8

Chain transitions t₂₀₈: l5→l7 and t₁₂: l7→l8 to t₂₈₅: l5→l8

Chain transitions t₂₂₆: l15→l7 and t₁₂: l7→l8 to t₂₈₆: l15→l8

Chain transitions t₂₁₈: l15→l7 and t₁₂: l7→l8 to t₂₈₇: l15→l8

Chain transitions t₂₈₃: l9→l8 and t₂₆₂: l8→l9 to t₂₈₈: l9→l9

Chain transitions t₂₈₅: l5→l8 and t₂₆₂: l8→l9 to t₂₈₉: l5→l9

Chain transitions t₂₈₅: l5→l8 and t₁₄: l8→l6 to t₂₉₀: l5→l6

Chain transitions t₂₈₃: l9→l8 and t₁₄: l8→l6 to t₂₉₁: l9→l6

Chain transitions t₂₈₄: l5→l8 and t₁₄: l8→l6 to t₂₉₂: l5→l6

Chain transitions t₂₈₄: l5→l8 and t₂₆₂: l8→l9 to t₂₉₃: l5→l9

Chain transitions t₂₈₄: l5→l8 and t₂₆₈: l8→l5 to t₂₉₄: l5→l5

Chain transitions t₂₈₅: l5→l8 and t₂₆₈: l8→l5 to t₂₉₅: l5→l5

Chain transitions t₂₈₃: l9→l8 and t₂₆₈: l8→l5 to t₂₉₆: l9→l5

Chain transitions t₂₈₇: l15→l8 and t₂₆₈: l8→l5 to t₂₉₇: l15→l5

Chain transitions t₂₈₇: l15→l8 and t₁₄: l8→l6 to t₂₉₈: l15→l6

Chain transitions t₂₈₇: l15→l8 and t₂₆₂: l8→l9 to t₂₉₉: l15→l9

Chain transitions t₂₈₇: l15→l8 and t₂₆₇: l8→l5 to t₃₀₀: l15→l5

Chain transitions t₂₈₄: l5→l8 and t₂₆₇: l8→l5 to t₃₀₁: l5→l5

Chain transitions t₂₈₅: l5→l8 and t₂₆₇: l8→l5 to t₃₀₂: l5→l5

Chain transitions t₂₈₃: l9→l8 and t₂₆₇: l8→l5 to t₃₀₃: l9→l5

Chain transitions t₂₈₆: l15→l8 and t₂₆₇: l8→l5 to t₃₀₄: l15→l5

Chain transitions t₂₈₆: l15→l8 and t₂₆₈: l8→l5 to t₃₀₅: l15→l5

Chain transitions t₂₈₆: l15→l8 and t₁₄: l8→l6 to t₃₀₆: l15→l6

Chain transitions t₂₈₆: l15→l8 and t₂₆₂: l8→l9 to t₃₀₇: l15→l9

Chain transitions t₂₈₆: l15→l8 and t₂₆₆: l8→l5 to t₃₀₈: l15→l5

Chain transitions t₂₈₇: l15→l8 and t₂₆₆: l8→l5 to t₃₀₉: l15→l5

Chain transitions t₂₈₄: l5→l8 and t₂₆₆: l8→l5 to t₃₁₀: l5→l5

Chain transitions t₂₈₅: l5→l8 and t₂₆₆: l8→l5 to t₃₁₁: l5→l5

Chain transitions t₂₈₃: l9→l8 and t₂₆₆: l8→l5 to t₃₁₂: l9→l5

Chain transitions t₂₈₆: l15→l8 and t₂₆₅: l8→l5 to t₃₁₃: l15→l5

Chain transitions t₂₈₇: l15→l8 and t₂₆₅: l8→l5 to t₃₁₄: l15→l5

Chain transitions t₂₈₄: l5→l8 and t₂₆₅: l8→l5 to t₃₁₅: l5→l5

Chain transitions t₂₈₅: l5→l8 and t₂₆₅: l8→l5 to t₃₁₆: l5→l5

Chain transitions t₂₈₃: l9→l8 and t₂₆₅: l8→l5 to t₃₁₇: l9→l5

Chain transitions t₂₈₆: l15→l8 and t₂₆₄: l8→l5 to t₃₁₈: l15→l5

Chain transitions t₂₈₇: l15→l8 and t₂₆₄: l8→l5 to t₃₁₉: l15→l5

Chain transitions t₂₈₄: l5→l8 and t₂₆₄: l8→l5 to t₃₂₀: l5→l5

Chain transitions t₂₈₅: l5→l8 and t₂₆₄: l8→l5 to t₃₂₁: l5→l5

Chain transitions t₂₈₃: l9→l8 and t₂₆₄: l8→l5 to t₃₂₂: l9→l5

Chain transitions t₂₈₆: l15→l8 and t₂₆₃: l8→l5 to t₃₂₃: l15→l5

Chain transitions t₂₈₇: l15→l8 and t₂₆₃: l8→l5 to t₃₂₄: l15→l5

Chain transitions t₂₈₄: l5→l8 and t₂₆₃: l8→l5 to t₃₂₅: l5→l5

Chain transitions t₂₈₅: l5→l8 and t₂₆₃: l8→l5 to t₃₂₆: l5→l5

Chain transitions t₂₈₃: l9→l8 and t₂₆₃: l8→l5 to t₃₂₇: l9→l5

Chain transitions t₂₈₆: l15→l8 and t₂₇₂: l8→l18 to t₃₂₈: l15→l18

Chain transitions t₂₈₇: l15→l8 and t₂₇₂: l8→l18 to t₃₂₉: l15→l18

Chain transitions t₂₈₄: l5→l8 and t₂₇₂: l8→l18 to t₃₃₀: l5→l18

Chain transitions t₂₈₅: l5→l8 and t₂₇₂: l8→l18 to t₃₃₁: l5→l18

Chain transitions t₂₈₃: l9→l8 and t₂₇₂: l8→l18 to t₃₃₂: l9→l18

Chain transitions t₂₈₆: l15→l8 and t₂₇₁: l8→l18 to t₃₃₃: l15→l18

Chain transitions t₂₈₇: l15→l8 and t₂₇₁: l8→l18 to t₃₃₄: l15→l18

Chain transitions t₂₈₄: l5→l8 and t₂₇₁: l8→l18 to t₃₃₅: l5→l18

Chain transitions t₂₈₅: l5→l8 and t₂₇₁: l8→l18 to t₃₃₆: l5→l18

Chain transitions t₂₈₃: l9→l8 and t₂₇₁: l8→l18 to t₃₃₇: l9→l18

Chain transitions t₂₈₆: l15→l8 and t₂₇₀: l8→l18 to t₃₃₈: l15→l18

Chain transitions t₂₈₇: l15→l8 and t₂₇₀: l8→l18 to t₃₃₉: l15→l18

Chain transitions t₂₈₄: l5→l8 and t₂₇₀: l8→l18 to t₃₄₀: l5→l18

Chain transitions t₂₈₅: l5→l8 and t₂₇₀: l8→l18 to t₃₄₁: l5→l18

Chain transitions t₂₈₃: l9→l8 and t₂₇₀: l8→l18 to t₃₄₂: l9→l18

Chain transitions t₂₈₆: l15→l8 and t₂₆₉: l8→l18 to t₃₄₃: l15→l18

Chain transitions t₂₈₇: l15→l8 and t₂₆₉: l8→l18 to t₃₄₄: l15→l18

Chain transitions t₂₈₄: l5→l8 and t₂₆₉: l8→l18 to t₃₄₅: l5→l18

Chain transitions t₂₈₅: l5→l8 and t₂₆₉: l8→l18 to t₃₄₆: l5→l18

Chain transitions t₂₈₃: l9→l8 and t₂₆₉: l8→l18 to t₃₄₇: l9→l18

Chain transitions t₂₈₆: l15→l8 and t₂₇₆: l8→l13 to t₃₄₈: l15→l13

Chain transitions t₂₈₇: l15→l8 and t₂₇₆: l8→l13 to t₃₄₉: l15→l13

Chain transitions t₂₈₄: l5→l8 and t₂₇₆: l8→l13 to t₃₅₀: l5→l13

Chain transitions t₂₈₅: l5→l8 and t₂₇₆: l8→l13 to t₃₅₁: l5→l13

Chain transitions t₂₈₃: l9→l8 and t₂₇₆: l8→l13 to t₃₅₂: l9→l13

Chain transitions t₂₈₆: l15→l8 and t₂₇₅: l8→l13 to t₃₅₃: l15→l13

Chain transitions t₂₈₇: l15→l8 and t₂₇₅: l8→l13 to t₃₅₄: l15→l13

Chain transitions t₂₈₄: l5→l8 and t₂₇₅: l8→l13 to t₃₅₅: l5→l13

Chain transitions t₂₈₅: l5→l8 and t₂₇₅: l8→l13 to t₃₅₆: l5→l13

Chain transitions t₂₈₃: l9→l8 and t₂₇₅: l8→l13 to t₃₅₇: l9→l13

Chain transitions t₂₈₆: l15→l8 and t₂₇₄: l8→l13 to t₃₅₈: l15→l13

Chain transitions t₂₈₇: l15→l8 and t₂₇₄: l8→l13 to t₃₅₉: l15→l13

Chain transitions t₂₈₄: l5→l8 and t₂₇₄: l8→l13 to t₃₆₀: l5→l13

Chain transitions t₂₈₅: l5→l8 and t₂₇₄: l8→l13 to t₃₆₁: l5→l13

Chain transitions t₂₈₃: l9→l8 and t₂₇₄: l8→l13 to t₃₆₂: l9→l13

Chain transitions t₂₈₆: l15→l8 and t₂₇₃: l8→l13 to t₃₆₃: l15→l13

Chain transitions t₂₈₇: l15→l8 and t₂₇₃: l8→l13 to t₃₆₄: l15→l13

Chain transitions t₂₈₄: l5→l8 and t₂₇₃: l8→l13 to t₃₆₅: l5→l13

Chain transitions t₂₈₅: l5→l8 and t₂₇₃: l8→l13 to t₃₆₆: l5→l13

Chain transitions t₂₈₃: l9→l8 and t₂₇₃: l8→l13 to t₃₆₇: l9→l13

Chain transitions t₂₈₆: l15→l8 and t₂₇₈: l8→l12 to t₃₆₈: l15→l12

Chain transitions t₂₈₇: l15→l8 and t₂₇₈: l8→l12 to t₃₆₉: l15→l12

Chain transitions t₂₈₄: l5→l8 and t₂₇₈: l8→l12 to t₃₇₀: l5→l12

Chain transitions t₂₈₅: l5→l8 and t₂₇₈: l8→l12 to t₃₇₁: l5→l12

Chain transitions t₂₈₃: l9→l8 and t₂₇₈: l8→l12 to t₃₇₂: l9→l12

Chain transitions t₂₈₆: l15→l8 and t₂₇₇: l8→l12 to t₃₇₃: l15→l12

Chain transitions t₂₈₇: l15→l8 and t₂₇₇: l8→l12 to t₃₇₄: l15→l12

Chain transitions t₂₈₄: l5→l8 and t₂₇₇: l8→l12 to t₃₇₅: l5→l12

Chain transitions t₂₈₅: l5→l8 and t₂₇₇: l8→l12 to t₃₇₆: l5→l12

Chain transitions t₂₈₃: l9→l8 and t₂₇₇: l8→l12 to t₃₇₇: l9→l12

Chain transitions t₂₈₆: l15→l8 and t₂₈₀: l8→l11 to t₃₇₈: l15→l11

Chain transitions t₂₈₇: l15→l8 and t₂₈₀: l8→l11 to t₃₇₉: l15→l11

Chain transitions t₂₈₄: l5→l8 and t₂₈₀: l8→l11 to t₃₈₀: l5→l11

Chain transitions t₂₈₅: l5→l8 and t₂₈₀: l8→l11 to t₃₈₁: l5→l11

Chain transitions t₂₈₃: l9→l8 and t₂₈₀: l8→l11 to t₃₈₂: l9→l11

Chain transitions t₂₈₆: l15→l8 and t₂₇₉: l8→l11 to t₃₈₃: l15→l11

Chain transitions t₂₈₇: l15→l8 and t₂₇₉: l8→l11 to t₃₈₄: l15→l11

Chain transitions t₂₈₄: l5→l8 and t₂₇₉: l8→l11 to t₃₈₅: l5→l11

Chain transitions t₂₈₅: l5→l8 and t₂₇₉: l8→l11 to t₃₈₆: l5→l11

Chain transitions t₂₈₃: l9→l8 and t₂₇₉: l8→l11 to t₃₈₇: l9→l11

Chain transitions t₂₈₆: l15→l8 and t₂₈₂: l8→l10 to t₃₈₈: l15→l10

Chain transitions t₂₈₇: l15→l8 and t₂₈₂: l8→l10 to t₃₈₉: l15→l10

Chain transitions t₂₈₄: l5→l8 and t₂₈₂: l8→l10 to t₃₉₀: l5→l10

Chain transitions t₂₈₅: l5→l8 and t₂₈₂: l8→l10 to t₃₉₁: l5→l10

Chain transitions t₂₈₃: l9→l8 and t₂₈₂: l8→l10 to t₃₉₂: l9→l10

Chain transitions t₂₈₆: l15→l8 and t₂₈₁: l8→l10 to t₃₉₃: l15→l10

Chain transitions t₂₈₇: l15→l8 and t₂₈₁: l8→l10 to t₃₉₄: l15→l10

Chain transitions t₂₈₄: l5→l8 and t₂₈₁: l8→l10 to t₃₉₅: l5→l10

Chain transitions t₂₈₅: l5→l8 and t₂₈₁: l8→l10 to t₃₉₆: l5→l10

Chain transitions t₂₈₃: l9→l8 and t₂₈₁: l8→l10 to t₃₉₇: l9→l10

Analysing control-flow refined program

Analysing control-flow refined program

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l11

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ for location l2

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l6

Found invariant X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ for location n_l13___2

Found invariant 1+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 0 ≤ X₃ for location n_l18___1

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l12

Found invariant 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ for location n_l18___3

Found invariant X₆ ≤ X₃ ∧ 0 ≤ X₃ for location l17

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l7

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₅+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₃ for location l5

Found invariant 1+X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l13

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l8

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ for location l1

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l10

Found invariant X₆ ≤ X₃ ∧ 0 ≤ X₃ for location l16

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ for location l4

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1+X₄ ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₁+X₆ ∧ 1+X₁ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₁+X₄ ∧ X₁ ≤ X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₁+X₃ ∧ X₁ ≤ X₃ ∧ X₁ ≤ 0 ∧ 0 ≤ X₁ for location l9

Found invariant 1 ≤ X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ for location l3

Found invariant 0 ≤ X₃ for location l14

knowledge_propagation leads to new time bound 2⋅X₆ {O(n)} for transition t₁₅₇₉: l13(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: X₇ < X₄ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ 1+X₇ ≤ X₆ ∧ X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃

knowledge_propagation leads to new time bound 2⋅X₆ {O(n)} for transition t₁₅₈₁: n_l18___3(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: X₇ < X₄ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₃ ∧ 1+X₇ ≤ X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ 1+X₇ ≤ X₆ ∧ 1+X₇ ≤ X₄ ∧ X₇ ≤ X₃ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃

MPRF for transition t₁₅₇₈: n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l18___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) :|: 1+X₃ ≤ X₇ ∧ X₇ < X₄ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃ ∧ X₇ ≤ X₄ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

52⋅X₆⋅X₆+2⋅X₆ {O(n^2)}

MPRF for transition t₁₅₈₀: n_l18___1(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇+1) :|: X₇ < X₄ ∧ 1+X₃ ≤ X₇ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₃ ∧ 1+X₇ ≤ X₄ ∧ 0 ≤ X₃ ∧ 1+X₃ ≤ X₆ ∧ X₃ ≤ X₇ ∧ 1+X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 3 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 2 ≤ X₄ ∧ 2 ≤ X₃+X₄ ∧ 2+X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

52⋅X₆⋅X₆+6⋅X₆ {O(n^2)}

MPRF for transition t₁₅₈₅: n_l13___2(X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇) → l5(X₀, X₁, X₂, X₃, X₄, X₄, X₆, X₇) :|: X₄ ≤ X₇ ∧ X₇ ≤ X₄ ∧ 0 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 0 ≤ X₄+X₇ ∧ 0 ≤ X₃+X₇ ∧ X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ X₃ ≤ X₄ ∧ 0 ≤ X₃ ∧ X₇ ≤ X₄ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆+X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1+X₃ ≤ X₇ ∧ 1 ≤ X₆ ∧ 2 ≤ X₄+X₆ ∧ 1 ≤ X₃+X₆ ∧ 1+X₃ ≤ X₆ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 1+X₃ ≤ X₄ ∧ 0 ≤ X₃ of depth 1:

new bound:

X₆ {O(n)}

CFR did not improve the program. Rolling back

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:3⋅X₆⋅X₆+25⋅X₆+13 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₆+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₆+1 {O(n)}
t₆: X₆+1 {O(n)}
t₇: X₆+1 {O(n)}
t₈: X₆+1 {O(n)}
t₉: X₆ {O(n)}
t₁₀: X₆+1 {O(n)}
t₁₁: X₆+1 {O(n)}
t₁₂: X₆ {O(n)}
t₁₄: 2⋅X₆ {O(n)}
t₁₅: X₆ {O(n)}
t₁₆: X₆ {O(n)}
t₁₇: X₆ {O(n)}
t₁₈: X₆ {O(n)}
t₁₉: X₆ {O(n)}
t₂₁: X₆+1 {O(n)}
t₂₂: X₆ {O(n)}
t₂₃: X₆ {O(n)}
t₂₄: X₆ {O(n)}
t₂₅: 2⋅X₆⋅X₆+2⋅X₆ {O(n^2)}
t₂₆: X₆+1 {O(n)}
t₂₇: X₆⋅X₆+X₆ {O(n^2)}
t₂₈: X₆ {O(n)}
t₂₉: 1 {O(1)}

Costbounds

Overall costbound: 3⋅X₆⋅X₆+25⋅X₆+13 {O(n^2)}
t₀: 1 {O(1)}
t₁: 1 {O(1)}
t₂: X₆+1 {O(n)}
t₃: 1 {O(1)}
t₄: X₆+1 {O(n)}
t₆: X₆+1 {O(n)}
t₇: X₆+1 {O(n)}
t₈: X₆+1 {O(n)}
t₉: X₆ {O(n)}
t₁₀: X₆+1 {O(n)}
t₁₁: X₆+1 {O(n)}
t₁₂: X₆ {O(n)}
t₁₄: 2⋅X₆ {O(n)}
t₁₅: X₆ {O(n)}
t₁₆: X₆ {O(n)}
t₁₇: X₆ {O(n)}
t₁₈: X₆ {O(n)}
t₁₉: X₆ {O(n)}
t₂₁: X₆+1 {O(n)}
t₂₂: X₆ {O(n)}
t₂₃: X₆ {O(n)}
t₂₄: X₆ {O(n)}
t₂₅: 2⋅X₆⋅X₆+2⋅X₆ {O(n^2)}
t₂₆: X₆+1 {O(n)}
t₂₇: X₆⋅X₆+X₆ {O(n^2)}
t₂₈: X₆ {O(n)}
t₂₉: 1 {O(1)}

Sizebounds

t₀, X₀: X₀ {O(n)}
t₀, X₁: X₁ {O(n)}
t₀, X₂: X₂ {O(n)}
t₀, X₃: X₃ {O(n)}
t₀, X₄: X₄ {O(n)}
t₀, X₅: X₅ {O(n)}
t₀, X₆: X₆ {O(n)}
t₀, X₇: X₇ {O(n)}
t₁, X₀: X₀ {O(n)}
t₁, X₁: X₁ {O(n)}
t₁, X₂: X₂ {O(n)}
t₁, X₃: 0 {O(1)}
t₁, X₄: X₄ {O(n)}
t₁, X₅: X₅ {O(n)}
t₁, X₆: X₆ {O(n)}
t₁, X₇: X₇ {O(n)}
t₂, X₃: 2⋅X₆ {O(n)}
t₂, X₄: 8⋅X₆+X₄ {O(n)}
t₂, X₅: 6⋅X₆+X₅ {O(n)}
t₂, X₆: X₆ {O(n)}
t₂, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₃, X₃: 2⋅X₆ {O(n)}
t₃, X₄: 2⋅X₄+8⋅X₆ {O(n)}
t₃, X₅: 6⋅X₆+X₅ {O(n)}
t₃, X₆: 2⋅X₆ {O(n)}
t₃, X₇: X₆⋅X₆+2⋅X₇+49⋅X₆ {O(n^2)}
t₄, X₃: 2⋅X₆ {O(n)}
t₄, X₄: 8⋅X₆+X₄ {O(n)}
t₄, X₅: 6⋅X₆+X₅ {O(n)}
t₄, X₆: X₆ {O(n)}
t₄, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₆, X₃: 2⋅X₆ {O(n)}
t₆, X₄: 8⋅X₆+X₄ {O(n)}
t₆, X₅: 6⋅X₆+X₅ {O(n)}
t₆, X₆: X₆ {O(n)}
t₆, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₇, X₃: 2⋅X₆ {O(n)}
t₇, X₄: 2⋅X₆ {O(n)}
t₇, X₅: 6⋅X₆+X₅ {O(n)}
t₇, X₆: X₆ {O(n)}
t₇, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₈, X₃: 2⋅X₆ {O(n)}
t₈, X₄: 2⋅X₆ {O(n)}
t₈, X₅: 6⋅X₆+X₅ {O(n)}
t₈, X₆: X₆ {O(n)}
t₈, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₉, X₀: 0 {O(1)}
t₉, X₃: 2⋅X₆ {O(n)}
t₉, X₄: 8⋅X₆+X₄ {O(n)}
t₉, X₅: 2⋅X₆ {O(n)}
t₉, X₆: X₆ {O(n)}
t₉, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₀, X₃: 4⋅X₆ {O(n)}
t₁₀, X₄: 2⋅X₆ {O(n)}
t₁₀, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₀, X₆: X₆ {O(n)}
t₁₀, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₁, X₁: 0 {O(1)}
t₁₁, X₃: 4⋅X₆ {O(n)}
t₁₁, X₄: 2⋅X₆ {O(n)}
t₁₁, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₁, X₆: X₆ {O(n)}
t₁₁, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₂, X₃: 4⋅X₆ {O(n)}
t₁₂, X₄: 2⋅X₆ {O(n)}
t₁₂, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₂, X₆: X₆ {O(n)}
t₁₂, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₄, X₃: 4⋅X₆ {O(n)}
t₁₄, X₄: 2⋅X₆ {O(n)}
t₁₄, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₄, X₆: X₆ {O(n)}
t₁₄, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₅, X₃: 4⋅X₆ {O(n)}
t₁₅, X₄: 2⋅X₆ {O(n)}
t₁₅, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₅, X₆: X₆ {O(n)}
t₁₅, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₆, X₃: 4⋅X₆ {O(n)}
t₁₆, X₄: 2⋅X₆ {O(n)}
t₁₆, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₆, X₆: X₆ {O(n)}
t₁₆, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₇, X₁: 0 {O(1)}
t₁₇, X₃: 4⋅X₆ {O(n)}
t₁₇, X₄: 2⋅X₆ {O(n)}
t₁₇, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₇, X₆: X₆ {O(n)}
t₁₇, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₈, X₁: 0 {O(1)}
t₁₈, X₃: 4⋅X₆ {O(n)}
t₁₈, X₄: 2⋅X₆ {O(n)}
t₁₈, X₅: 12⋅X₆+2⋅X₅ {O(n)}
t₁₈, X₆: X₆ {O(n)}
t₁₈, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₁₉, X₃: 12⋅X₆ {O(n)}
t₁₉, X₄: 2⋅X₆ {O(n)}
t₁₉, X₅: 36⋅X₆+6⋅X₅ {O(n)}
t₁₉, X₆: X₆ {O(n)}
t₁₉, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₂₁, X₃: 12⋅X₆ {O(n)}
t₂₁, X₄: 2⋅X₆ {O(n)}
t₂₁, X₅: 36⋅X₆+6⋅X₅ {O(n)}
t₂₁, X₆: X₆ {O(n)}
t₂₁, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₂₂, X₃: 12⋅X₆ {O(n)}
t₂₂, X₄: 2⋅X₆ {O(n)}
t₂₂, X₅: 36⋅X₆+6⋅X₅ {O(n)}
t₂₂, X₆: X₆ {O(n)}
t₂₂, X₇: 12⋅X₆ {O(n)}
t₂₃, X₃: 12⋅X₆ {O(n)}
t₂₃, X₄: 2⋅X₆ {O(n)}
t₂₃, X₅: 36⋅X₆+6⋅X₅ {O(n)}
t₂₃, X₆: X₆ {O(n)}
t₂₃, X₇: 12⋅X₆ {O(n)}
t₂₄, X₂: 0 {O(1)}
t₂₄, X₃: 12⋅X₆ {O(n)}
t₂₄, X₄: 2⋅X₆ {O(n)}
t₂₄, X₅: 2⋅X₆ {O(n)}
t₂₄, X₆: X₆ {O(n)}
t₂₄, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₂₅, X₃: 24⋅X₆ {O(n)}
t₂₅, X₄: 2⋅X₆ {O(n)}
t₂₅, X₅: 12⋅X₅+72⋅X₆ {O(n)}
t₂₅, X₆: X₆ {O(n)}
t₂₅, X₇: X₆⋅X₆+25⋅X₆ {O(n^2)}
t₂₆, X₃: 48⋅X₆ {O(n)}
t₂₆, X₄: 6⋅X₆ {O(n)}
t₂₆, X₅: 2⋅X₆ {O(n)}
t₂₆, X₆: X₆ {O(n)}
t₂₆, X₇: X₆⋅X₆+49⋅X₆ {O(n^2)}
t₂₇, X₃: 24⋅X₆ {O(n)}
t₂₇, X₄: 2⋅X₆ {O(n)}
t₂₇, X₅: 12⋅X₅+72⋅X₆ {O(n)}
t₂₇, X₆: X₆ {O(n)}
t₂₇, X₇: X₆⋅X₆+25⋅X₆ {O(n^2)}
t₂₈, X₃: 2⋅X₆ {O(n)}
t₂₈, X₄: 8⋅X₆+X₄ {O(n)}
t₂₈, X₅: 6⋅X₆ {O(n)}
t₂₈, X₆: X₆ {O(n)}
t₂₈, X₇: X₆⋅X₆+49⋅X₆+X₇ {O(n^2)}
t₂₉, X₃: 2⋅X₆ {O(n)}
t₂₉, X₄: 2⋅X₄+8⋅X₆ {O(n)}
t₂₉, X₅: 6⋅X₆+X₅ {O(n)}
t₂₉, X₆: 2⋅X₆ {O(n)}
t₂₉, X₇: X₆⋅X₆+2⋅X₇+49⋅X₆ {O(n^2)}