Initial Problem
Start: l0
Program_Vars: X₀, X₁, X₂, X₃, X₄
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₀: l0(X₀, X₁, X₂, X₃, X₄) → l3(X₀, X₁, X₂, X₃, X₄)
t₄: l1(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₀ < 0
t₃: l1(X₀, X₁, X₂, X₃, X₄) → l4(X₀, X₁, X₂, X₃, X₄) :|: 0 ≤ X₀
t₁₁: l2(X₀, X₁, X₂, X₃, X₄) → l8(X₀, X₁, X₂, X₃, X₄)
t₁: l3(X₀, X₁, X₂, X₃, X₄) → l1(X₂, X₁, X₂, X₃, X₄) :|: 0 ≤ X₂
t₂: l3(X₀, X₁, X₂, X₃, X₄) → l2(X₀, X₁, X₂, X₃, X₄) :|: X₂ < 0
t₆: l4(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ 1
t₅: l4(X₀, X₁, X₂, X₃, X₄) → l6(X₀, 1, X₂, X₃, X₄) :|: 1 < X₀
t₁₀: l5(X₀, X₁, X₂, X₃, X₄) → l1(X₀-1, X₁, X₂, X₃, X₄)
t₈: l6(X₀, X₁, X₂, X₃, X₄) → l5(X₀, X₁, X₂, X₃, X₄) :|: X₀ ≤ X₁
t₇: l6(X₀, X₁, X₂, X₃, X₄) → l7(X₀, X₁, X₂, X₃, X₄) :|: X₁ < X₀
t₉: l7(X₀, X₁, X₂, X₃, X₄) → l6(X₀, 2⋅X₁, X₂, X₃, X₄)
Preprocessing
Eliminate variables {X₃,X₄} that do not contribute to the problem
Found invariant 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6
Found invariant 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₀ for location l1
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ for location l4
Problem after Preprocessing
Start: l0
Program_Vars: X₀, X₁, X₂
Temp_Vars:
Locations: l0, l1, l2, l3, l4, l5, l6, l7, l8
Transitions:
t₂₃: l0(X₀, X₁, X₂) → l3(X₀, X₁, X₂)
t₂₄: l1(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₀ < 0 ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₀
t₂₅: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₀
t₂₆: l2(X₀, X₁, X₂) → l8(X₀, X₁, X₂)
t₂₇: l3(X₀, X₁, X₂) → l1(X₂, X₁, X₂) :|: 0 ≤ X₂
t₂₈: l3(X₀, X₁, X₂) → l2(X₀, X₁, X₂) :|: X₂ < 0
t₂₉: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₀ ≤ 1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀
t₃₀: l4(X₀, X₁, X₂) → l6(X₀, 1, X₂) :|: 1 < X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀
t₃₁: l5(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀
t₃₂: l6(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₀ ≤ X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₃: l6(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: X₁ < X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
t₃₄: l7(X₀, X₁, X₂) → l6(X₀, 2⋅X₁, X₂) :|: 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₂₅: l1(X₀, X₁, X₂) → l4(X₀, X₁, X₂) :|: 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₂₉: l4(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₀ ≤ 1 ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₃₀: l4(X₀, X₁, X₂) → l6(X₀, 1, X₂) :|: 1 < X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₃₁: l5(X₀, X₁, X₂) → l1(X₀-1, X₁, X₂) :|: 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
MPRF for transition t₃₂: l6(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₀ ≤ X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂ {O(n)}
MPRF for transition t₃₃: l6(X₀, X₁, X₂) → l7(X₀, X₁, X₂) :|: X₁ < X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂⋅X₂+X₂ {O(n^2)}
MPRF for transition t₃₄: l7(X₀, X₁, X₂) → l6(X₀, 2⋅X₁, X₂) :|: 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂⋅X₂+X₂ {O(n^2)}
Chain transitions t₃₁: l5→l1 and t₂₅: l1→l4 to t₇₀: l5→l4
Chain transitions t₂₇: l3→l1 and t₂₅: l1→l4 to t₇₁: l3→l4
Chain transitions t₂₇: l3→l1 and t₂₄: l1→l2 to t₇₂: l3→l2
Chain transitions t₃₁: l5→l1 and t₂₄: l1→l2 to t₇₃: l5→l2
Chain transitions t₇₀: l5→l4 and t₃₀: l4→l6 to t₇₄: l5→l6
Chain transitions t₇₁: l3→l4 and t₃₀: l4→l6 to t₇₅: l3→l6
Chain transitions t₇₁: l3→l4 and t₂₉: l4→l5 to t₇₆: l3→l5
Chain transitions t₇₀: l5→l4 and t₂₉: l4→l5 to t₇₇: l5→l5
Chain transitions t₃₄: l7→l6 and t₃₃: l6→l7 to t₇₈: l7→l7
Chain transitions t₇₄: l5→l6 and t₃₃: l6→l7 to t₇₉: l5→l7
Chain transitions t₇₄: l5→l6 and t₃₂: l6→l5 to t₈₀: l5→l5
Chain transitions t₃₄: l7→l6 and t₃₂: l6→l5 to t₈₁: l7→l5
Chain transitions t₇₅: l3→l6 and t₃₂: l6→l5 to t₈₂: l3→l5
Chain transitions t₇₅: l3→l6 and t₃₃: l6→l7 to t₈₃: l3→l7
Analysing control-flow refined program
Cut unsatisfiable transition t₇₂: l3→l2
Cut unsatisfiable transition t₈₀: l5→l5
Cut unsatisfiable transition t₈₂: l3→l5
Found invariant 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6
Found invariant 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l7
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₀ for location l1
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ for location l4
MPRF for transition t₇₇: l5(X₀, X₁, X₂) -{3}> l5(X₀-1, X₁, X₂) :|: 1 ≤ X₀ ∧ X₀ ≤ 2 ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂+3 {O(n)}
MPRF for transition t₇₉: l5(X₀, X₁, X₂) -{4}> l7(X₀-1, 1, X₂) :|: 1 ≤ X₀ ∧ 2 < X₀ ∧ 2 < X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ X₀ ∧ 0 ≤ X₂ ∧ 1 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 1 ≤ X₀ ∧ 2 ≤ X₂ ∧ 2 ≤ X₂ ∧ 5 ≤ X₀+X₂ ∧ X₀ ≤ 1+X₂ ∧ 0 ≤ 0 ∧ 3 ≤ X₀ ∧ 3 ≤ X₀ ∧ 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ of depth 1:
new bound:
X₂+3 {O(n)}
MPRF for transition t₈₁: l7(X₀, X₁, X₂) -{2}> l5(X₀, 2⋅X₁, X₂) :|: X₀ ≤ 2⋅X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ 2⋅X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ 2⋅X₁ ∧ 3 ≤ X₀+2⋅X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂+4 {O(n)}
MPRF for transition t₇₈: l7(X₀, X₁, X₂) -{2}> l7(X₀, 2⋅X₁, X₂) :|: 2⋅X₁ < X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ 2⋅X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ 2⋅X₁ ∧ 3 ≤ X₀+2⋅X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+10⋅X₂+3 {O(n^2)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
Analysing control-flow refined program
Cut unsatisfiable transition t₃₂: l6→l5
Found invariant 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l6___2
Found invariant 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location l6
Found invariant 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ for location n_l7___3
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ for location l5
Found invariant 0 ≤ X₂ ∧ 0 ≤ 1+X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ 1+X₀ for location l1
Found invariant 0 ≤ X₂ ∧ 0 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 0 ≤ X₀ for location l4
Found invariant 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ for location n_l7___1
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₈₅: l6(X₀, X₁, X₂) → n_l7___3(X₀, X₁, X₂) :|: X₁ < X₀ ∧ X₁ < X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
knowledge_propagation leads to new time bound X₂+1 {O(n)} for transition t₁₈₇: n_l7___3(X₀, X₁, X₂) → n_l6___2(X₀, 2⋅X₁, X₂) :|: X₁ < X₀ ∧ 2 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ X₁ ≤ 1 ∧ 1+X₁ ≤ X₀ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀
MPRF for transition t₁₈₄: n_l6___2(X₀, X₁, X₂) → n_l7___1(X₀, X₁, X₂) :|: 2 ≤ X₁ ∧ 2+X₁ ≤ 2⋅X₀ ∧ X₁ < X₀ ∧ 2 ≤ X₀ ∧ 1 ≤ X₁ ∧ X₀ ≤ X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 2 ≤ X₀ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
2⋅X₂⋅X₂+8⋅X₂+4 {O(n^2)}
MPRF for transition t₁₈₆: n_l7___1(X₀, X₁, X₂) → n_l6___2(X₀, 2⋅X₁, X₂) :|: X₁ < X₀ ∧ 2 ≤ X₁ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 1+X₁ ≤ X₀ ∧ X₀ ≤ X₂ ∧ 3 ≤ X₂ ∧ 5 ≤ X₁+X₂ ∧ 1+X₁ ≤ X₂ ∧ 6 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1+X₁ ≤ X₀ ∧ 2 ≤ X₁ ∧ 5 ≤ X₀+X₁ ∧ 3 ≤ X₀ of depth 1:
new bound:
X₂⋅X₂+2⋅X₂ {O(n^2)}
MPRF for transition t₁₉₁: n_l6___2(X₀, X₁, X₂) → l5(X₀, X₁, X₂) :|: X₀ ≤ X₁ ∧ 2 ≤ X₂ ∧ 3 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 1 ≤ X₁ ∧ 3 ≤ X₀+X₁ ∧ 2 ≤ X₀ ∧ 2 ≤ X₂ ∧ 4 ≤ X₁+X₂ ∧ 4 ≤ X₀+X₂ ∧ X₀ ≤ X₂ ∧ 2 ≤ X₁ ∧ 4 ≤ X₀+X₁ ∧ 2 ≤ X₀ of depth 1:
new bound:
X₂+1 {O(n)}
CFR did not improve the program. Rolling back
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:2⋅X₂⋅X₂+7⋅X₂+9 {O(n^2)}
t₂₃: 1 {O(1)}
t₂₄: 1 {O(1)}
t₂₅: X₂+1 {O(n)}
t₂₆: 1 {O(1)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: X₂+1 {O(n)}
t₃₀: X₂+1 {O(n)}
t₃₁: X₂+1 {O(n)}
t₃₂: X₂ {O(n)}
t₃₃: X₂⋅X₂+X₂ {O(n^2)}
t₃₄: X₂⋅X₂+X₂ {O(n^2)}
Costbounds
Overall costbound: 2⋅X₂⋅X₂+7⋅X₂+9 {O(n^2)}
t₂₃: 1 {O(1)}
t₂₄: 1 {O(1)}
t₂₅: X₂+1 {O(n)}
t₂₆: 1 {O(1)}
t₂₇: 1 {O(1)}
t₂₈: 1 {O(1)}
t₂₉: X₂+1 {O(n)}
t₃₀: X₂+1 {O(n)}
t₃₁: X₂+1 {O(n)}
t₃₂: X₂ {O(n)}
t₃₃: X₂⋅X₂+X₂ {O(n^2)}
t₃₄: X₂⋅X₂+X₂ {O(n^2)}
Sizebounds
t₂₃, X₀: X₀ {O(n)}
t₂₃, X₁: X₁ {O(n)}
t₂₃, X₂: X₂ {O(n)}
t₂₄, X₀: 1 {O(1)}
t₂₄, X₁: 2^(X₂⋅X₂+X₂)+X₁ {O(EXP)}
t₂₄, X₂: X₂ {O(n)}
t₂₅, X₀: X₂+2 {O(n)}
t₂₅, X₁: 2^(X₂⋅X₂+X₂)+X₁ {O(EXP)}
t₂₅, X₂: X₂ {O(n)}
t₂₆, X₀: X₀+1 {O(n)}
t₂₆, X₁: 2^(X₂⋅X₂+X₂)+2⋅X₁ {O(EXP)}
t₂₆, X₂: 2⋅X₂ {O(n)}
t₂₇, X₀: X₂ {O(n)}
t₂₇, X₁: X₁ {O(n)}
t₂₇, X₂: X₂ {O(n)}
t₂₈, X₀: X₀ {O(n)}
t₂₈, X₁: X₁ {O(n)}
t₂₈, X₂: X₂ {O(n)}
t₂₉, X₀: 1 {O(1)}
t₂₉, X₁: 2^(X₂⋅X₂+X₂)+X₁ {O(EXP)}
t₂₉, X₂: X₂ {O(n)}
t₃₀, X₀: X₂+2 {O(n)}
t₃₀, X₁: 1 {O(1)}
t₃₀, X₂: X₂ {O(n)}
t₃₁, X₀: X₂+2 {O(n)}
t₃₁, X₁: 2^(X₂⋅X₂+X₂)+X₁ {O(EXP)}
t₃₁, X₂: X₂ {O(n)}
t₃₂, X₀: X₂+2 {O(n)}
t₃₂, X₁: 2^(X₂⋅X₂+X₂) {O(EXP)}
t₃₂, X₂: X₂ {O(n)}
t₃₃, X₀: X₂+2 {O(n)}
t₃₃, X₁: 2^(X₂⋅X₂+X₂) {O(EXP)}
t₃₃, X₂: X₂ {O(n)}
t₃₄, X₀: X₂+2 {O(n)}
t₃₄, X₁: 2^(X₂⋅X₂+X₂) {O(EXP)}
t₃₄, X₂: X₂ {O(n)}