Eliminate variables [X₂] that do not contribute to the problem
Found invariant 0 ≤ X₀ for location h
Found invariant 0 ≤ X₀ for location i
Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
(g₀,g), X₀: X₀ {O(n)}
(g₀,g), X₁: X₁ {O(n)}
(g₀,g), X₂: X₂ {O(n)}
new bound:
X₀ {O(n)}
MPRF:
• g: [X₀]
• h: [X₀]
• i: [X₀]
new bound:
X₀ {O(n)}
MPRF:
• g: [X₀]
• h: [1+X₀]
• i: [X₀]
new bound:
X₀ {O(n)}
MPRF:
• g: [X₀]
• h: [1+X₀]
• i: [X₀]
new bound:
X₀+X₁ {O(n)}
MPRF:
• g: [X₀+X₁]
• h: [1+X₀+X₁]
• i: [X₀+X₁]
new bound:
X₀ {O(n)}
MPRF:
• g: [X₀]
• h: [X₀]
• i: [1+X₀]
Overall timebound:5⋅X₀+X₁+1 {O(n)}
g₀: 1 {O(1)}
g₂: 2⋅X₀ {O(n)}
g₅: X₀ {O(n)}
g₇: X₀+X₁ {O(n)}
g₉: X₀ {O(n)}
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
(g₀,g), X₀: X₀ {O(n)}
(g₀,g), X₁: X₁ {O(n)}
(g₀,g), X₂: X₂ {O(n)}
(g₂,h), X₀: 2⋅X₀ {O(n)}
(g₂,h), X₁: 2⋅X₀+2⋅X₁ {O(n)}
(g₂,h), X₂: 2⋅X₂ {O(n)}
(g₂,i), X₀: 2⋅X₀ {O(n)}
(g₂,i), X₁: 2⋅X₀+2⋅X₁ {O(n)}
(g₂,i), X₂: 2⋅X₂ {O(n)}
(g₅,g), X₀: X₀ {O(n)}
(g₅,g), X₁: X₀+X₁ {O(n)}
(g₅,g), X₂: X₂ {O(n)}
(g₇,i), X₀: X₀ {O(n)}
(g₇,i), X₁: X₀+X₁ {O(n)}
(g₇,i), X₂: X₂ {O(n)}
(g₉,g), X₀: X₀ {O(n)}
(g₉,g), X₁: X₀+X₁ {O(n)}
(g₉,g), X₂: X₂ {O(n)}
Overall timebound:5⋅X₀+X₁+1 {O(n)}
g₀: 1 {O(1)}
g₂: 2⋅X₀ {O(n)}
g₅: X₀ {O(n)}
g₇: X₀+X₁ {O(n)}
g₉: X₀ {O(n)}
Overall costbound: 3⋅X₀+X₁ {O(n)}
g₀: 0 {O(1)}
g₂: 0 {O(1)}
g₅: X₀ {O(n)}
g₇: X₀+X₁ {O(n)}
g₉: X₀ {O(n)}
(g₀,g), X₀: X₀ {O(n)}
(g₀,g), X₁: X₁ {O(n)}
(g₀,g), X₂: X₂ {O(n)}
(g₂,h), X₀: X₀ {O(n)}
(g₂,h), X₁: X₀+X₁ {O(n)}
(g₂,h), X₂: X₂ {O(n)}
(g₂,i), X₀: X₀ {O(n)}
(g₂,i), X₁: X₀+X₁ {O(n)}
(g₂,i), X₂: X₂ {O(n)}
(g₅,g), X₀: X₀ {O(n)}
(g₅,g), X₁: X₀+X₁ {O(n)}
(g₅,g), X₂: X₂ {O(n)}
(g₇,i), X₀: X₀ {O(n)}
(g₇,i), X₁: X₀+X₁ {O(n)}
(g₇,i), X₂: X₂ {O(n)}
(g₉,g), X₀: X₀ {O(n)}
(g₉,g), X₁: X₀+X₁ {O(n)}
(g₉,g), X₂: X₂ {O(n)}