Preprocessing
Found invariant 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₉+X₁₀ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₇+X₁₁ ∧ 1 ≤ X₇+X₁₀ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₆+X₁₀ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₄+X₁₀ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₃+X₁₀ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₂+X₁₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁+X₁₁ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location eval_alain_bb4_in
Found invariant 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₉+X₁₀ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₇+X₁₁ ∧ 1 ≤ X₇+X₁₀ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₆+X₁₀ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁₁ ∧ X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₄+X₁₀ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₃+X₁₀ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₂+X₁₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁+X₁₁ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location eval_alain_bb6_in
Found invariant 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 1 ≤ X₄+X₉ ∧ 0 ≤ X₃+X₉ ∧ 1 ≤ X₂+X₉ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₉+X₁₀ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 2 ≤ X₄+X₇ ∧ 1 ≤ X₃+X₇ ∧ 2 ≤ X₂+X₇ ∧ 1 ≤ X₇+X₁₁ ∧ 1 ≤ X₇+X₁₀ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 1 ≤ X₄+X₆ ∧ 0 ≤ X₃+X₆ ∧ 1 ≤ X₂+X₆ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₆+X₁₀ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 0 ≤ X₀+X₆ ∧ X₄ ≤ X₂ ∧ 1 ≤ X₄ ∧ 1 ≤ X₃+X₄ ∧ 2 ≤ X₂+X₄ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₄+X₁₀ ∧ 2 ≤ X₁+X₄ ∧ 1 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 1 ≤ X₂+X₃ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₃+X₁₀ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₂+X₁₀ ∧ 2 ≤ X₁+X₂ ∧ 1 ≤ X₀+X₂ ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁+X₁₁ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location eval_alain_bb5_in
Found invariant 0 ≤ X₉ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₇ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁+X₁₁ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₁ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location eval_alain_bb2_in
Found invariant 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₉+X₁₀ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₇+X₁₁ ∧ 1 ≤ X₇+X₁₀ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₆+X₁₀ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₂+X₁₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁+X₁₁ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location eval_alain_bb3_in
Found invariant 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₉+X₁₀ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₇+X₁₁ ∧ 1 ≤ X₇+X₁₀ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₆+X₁₀ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁₁ ∧ X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₄+X₁₀ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₃+X₁₀ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₂+X₁₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁+X₁₁ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location eval_alain_17
Found invariant 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₉+X₁₀ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₇+X₁₁ ∧ 1 ≤ X₇+X₁₀ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₆+X₁₀ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁₁ ∧ X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₄+X₁₀ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₃+X₁₀ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₂+X₁₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁+X₁₁ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location eval_alain_19
Found invariant 0 ≤ X₉ ∧ 1 ≤ X₇+X₉ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₄+X₉ ∧ X₄ ≤ X₉ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₉+X₁₀ ∧ 1 ≤ X₁+X₉ ∧ 0 ≤ X₀+X₉ ∧ 1 ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₇+X₁₁ ∧ 1 ≤ X₇+X₁₀ ∧ 2 ≤ X₁+X₇ ∧ X₁ ≤ X₇ ∧ 1 ≤ X₀+X₇ ∧ 1+X₆ ≤ X₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₄+X₆ ∧ X₄ ≤ X₆ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₆+X₁₀ ∧ 1 ≤ X₁+X₆ ∧ X₁ ≤ 1+X₆ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₅ ∧ 0 ≤ X₄+X₅ ∧ X₄ ≤ X₅ ∧ 0 ≤ X₃+X₅ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 1 ≤ X₁+X₅ ∧ 0 ≤ X₀+X₅ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₃ ∧ X₄ ≤ X₂ ∧ X₄ ≤ X₁₁ ∧ X₄ ≤ X₁₀ ∧ 1+X₄ ≤ X₁ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₄ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₂+X₄ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₄+X₁₀ ∧ 1 ≤ X₁+X₄ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₃ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₃+X₁₀ ∧ 1 ≤ X₁+X₃ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₂+X₁₀ ∧ 1 ≤ X₁+X₂ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₁₁ ∧ 0 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁+X₁₁ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁₀ ∧ 1 ≤ X₁+X₁₀ ∧ 0 ≤ X₀+X₁₀ ∧ 1 ≤ X₁ ∧ 1 ≤ X₀+X₁ ∧ 0 ≤ X₀ for location eval_alain_18
Probabilistic Analysis
Probabilistic Program after Preprocessing
Start: eval_alain_start
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars:
Locations: eval_alain_0, eval_alain_1, eval_alain_17, eval_alain_18, eval_alain_19, eval_alain_2, eval_alain_3, eval_alain_4, eval_alain_5, eval_alain_6, eval_alain_bb0_in, eval_alain_bb1_in, eval_alain_bb2_in, eval_alain_bb3_in, eval_alain_bb4_in, eval_alain_bb5_in, eval_alain_bb6_in, eval_alain_bb7_in, eval_alain_start, eval_alain_stop
Transitions:
g₀:eval_alain_start(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₁:eval_alain_bb0_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₂:eval_alain_bb0_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₃:eval_alain_0(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₄:eval_alain_0(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₅:eval_alain_1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₆:eval_alain_1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₇:eval_alain_2(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₈:eval_alain_2(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₉:eval_alain_3(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₁₀:eval_alain_3(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₁₁:eval_alain_4(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₁₂:eval_alain_4(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₁₃:eval_alain_5(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₁₄:eval_alain_5(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₁₅:eval_alain_6(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₁₆:eval_alain_6(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₁₇:eval_alain_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₈ ≤ 2⋅X₁₀
g₁₈:eval_alain_6(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₁₉:eval_alain_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₈ ≤ X₁₀+X₁₁
g₂₀:eval_alain_6(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₂₁:eval_alain_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1+X₁₀+X₁₁ ≤ X₈ ∧ 1+2⋅X₁₀ ≤ X₈
g₂₂:eval_alain_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₂₃:eval_alain_bb2_in(X₁₁,X₇,X₈,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 0 ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₁
g₂₄:eval_alain_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₂₅:eval_alain_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1+X₁₁ ≤ 0
g₂₆:eval_alain_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₂₇:eval_alain_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1+X₉ ≤ 0
g₂₈:eval_alain_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₂₉:eval_alain_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1+X₁₀ ≤ 0
g₃₀:eval_alain_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₃₁:eval_alain_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1+X₇ ≤ 0
g₃₂:eval_alain_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₃₃:eval_alain_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1+X₈ ≤ 0
g₃₄:eval_alain_bb2_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₃₅:eval_alain_bb3_in(X₀,X₁,X₂,X₃,X₄,X₅,X₁-1,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1 ≤ X₁ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
g₃₆:eval_alain_bb2_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₃₇:eval_alain_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 0 ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
g₃₈:eval_alain_bb3_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₃₉:eval_alain_bb4_in(X₀,X₁,X₂,X₀,X₂,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
g₄₀:eval_alain_bb4_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₄₁:eval_alain_bb5_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1 ≤ X₄ ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
g₄₂:eval_alain_bb4_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₄₃:eval_alain_bb6_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₄ ≤ 0 ∧ X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
g₄₄:eval_alain_bb5_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → [1/2]:t₄₅:eval_alain_bb4_in(X₀,X₁,X₂,X₁₀,X₄-1,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :+: [1/2]:t₄₆:eval_alain_bb5_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
g₄₇:eval_alain_bb6_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₄₈:eval_alain_17(X₀,X₁,X₂,X₃,X₄,X₃+X₁₀,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
g₄₉:eval_alain_17(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₅₀:eval_alain_18(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
g₅₁:eval_alain_18(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₅₂:eval_alain_19(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
g₅₃:eval_alain_19(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₅₄:eval_alain_bb2_in(X₅,X₆,X₅,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
g₅₅:eval_alain_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₅₆:eval_alain_stop(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
Show Graph
G
eval_alain_0
eval_alain_0
eval_alain_1
eval_alain_1
eval_alain_0->eval_alain_1
p = 1
t₅ ∈ g₄
eval_alain_2
eval_alain_2
eval_alain_1->eval_alain_2
p = 1
t₇ ∈ g₆
eval_alain_17
eval_alain_17
eval_alain_18
eval_alain_18
eval_alain_17->eval_alain_18
p = 1
t₅₀ ∈ g₄₉
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_19
eval_alain_19
eval_alain_18->eval_alain_19
p = 1
t₅₂ ∈ g₅₁
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb2_in
eval_alain_bb2_in
eval_alain_19->eval_alain_bb2_in
p = 1
t₅₄ ∈ g₅₃
η (X₀) = X₅
η (X₁) = X₆
η (X₂) = X₅
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_3
eval_alain_3
eval_alain_2->eval_alain_3
p = 1
t₉ ∈ g₈
eval_alain_4
eval_alain_4
eval_alain_3->eval_alain_4
p = 1
t₁₁ ∈ g₁₀
eval_alain_5
eval_alain_5
eval_alain_4->eval_alain_5
p = 1
t₁₃ ∈ g₁₂
eval_alain_6
eval_alain_6
eval_alain_5->eval_alain_6
p = 1
t₁₅ ∈ g₁₄
eval_alain_bb1_in
eval_alain_bb1_in
eval_alain_6->eval_alain_bb1_in
p = 1
t₂₁ ∈ g₂₀
τ = 1+X₁₀+X₁₁ ≤ X₈ ∧ 1+2⋅X₁₀ ≤ X₈
eval_alain_bb7_in
eval_alain_bb7_in
eval_alain_6->eval_alain_bb7_in
p = 1
t₁₇ ∈ g₁₆
τ = X₈ ≤ 2⋅X₁₀
eval_alain_6->eval_alain_bb7_in
p = 1
t₁₉ ∈ g₁₈
τ = X₈ ≤ X₁₀+X₁₁
eval_alain_bb0_in
eval_alain_bb0_in
eval_alain_bb0_in->eval_alain_0
p = 1
t₃ ∈ g₂
eval_alain_bb1_in->eval_alain_bb2_in
p = 1
t₂₃ ∈ g₂₂
η (X₀) = X₁₁
η (X₁) = X₇
η (X₂) = X₈
τ = 0 ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₁
eval_alain_bb1_in->eval_alain_bb7_in
p = 1
t₂₅ ∈ g₂₄
τ = 1+X₁₁ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
p = 1
t₂₇ ∈ g₂₆
τ = 1+X₉ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
p = 1
t₂₉ ∈ g₂₈
τ = 1+X₁₀ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
p = 1
t₃₁ ∈ g₃₀
τ = 1+X₇ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
p = 1
t₃₃ ∈ g₃₂
τ = 1+X₈ ≤ 0
eval_alain_bb3_in
eval_alain_bb3_in
eval_alain_bb2_in->eval_alain_bb3_in
p = 1
t₃₅ ∈ g₃₄
η (X₆) = X₁-1
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁
eval_alain_bb2_in->eval_alain_bb7_in
p = 1
t₃₇ ∈ g₃₆
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₁ ≤ 0
eval_alain_bb4_in
eval_alain_bb4_in
eval_alain_bb3_in->eval_alain_bb4_in
p = 1
t₃₉ ∈ g₃₈
η (X₃) = X₀
η (X₄) = X₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in
eval_alain_bb5_in
eval_alain_bb4_in->eval_alain_bb5_in
p = 1
t₄₁ ∈ g₄₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₄
eval_alain_bb6_in
eval_alain_bb6_in
eval_alain_bb4_in->eval_alain_bb6_in
p = 1
t₄₃ ∈ g₄₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₄ ≤ 0
eval_alain_bb5_in->eval_alain_bb4_in
p = 1/2
t₄₅ ∈ g₄₄
η (X₃) = X₁₀
η (X₄) = X₄-1
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in->eval_alain_bb5_in
p = 1/2
t₄₆ ∈ g₄₄
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb6_in->eval_alain_17
p = 1
t₄₈ ∈ g₄₇
η (X₅) = X₃+X₁₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_stop
eval_alain_stop
eval_alain_bb7_in->eval_alain_stop
p = 1
t₅₆ ∈ g₅₅
eval_alain_start
eval_alain_start
eval_alain_start->eval_alain_bb0_in
p = 1
t₁ ∈ g₀
Run classical analysis on SCC: [eval_alain_start]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: inf {Infinity}
g₃₆: 1 {O(1)}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_start]
Run classical analysis on SCC: [eval_alain_bb0_in]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: inf {Infinity}
g₃₆: 1 {O(1)}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_bb0_in]
Run classical analysis on SCC: [eval_alain_0]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: inf {Infinity}
g₃₆: 1 {O(1)}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
(g₄,eval_alain_1), X₀: X₀ {O(n)}
(g₄,eval_alain_1), X₁: X₁ {O(n)}
(g₄,eval_alain_1), X₂: X₂ {O(n)}
(g₄,eval_alain_1), X₃: X₃ {O(n)}
(g₄,eval_alain_1), X₄: X₄ {O(n)}
(g₄,eval_alain_1), X₅: X₅ {O(n)}
(g₄,eval_alain_1), X₆: X₆ {O(n)}
(g₄,eval_alain_1), X₇: X₇ {O(n)}
(g₄,eval_alain_1), X₈: X₈ {O(n)}
(g₄,eval_alain_1), X₉: X₉ {O(n)}
(g₄,eval_alain_1), X₁₀: X₁₀ {O(n)}
(g₄,eval_alain_1), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_0]
Run classical analysis on SCC: [eval_alain_1]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: inf {Infinity}
g₃₆: 1 {O(1)}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
(g₄,eval_alain_1), X₀: X₀ {O(n)}
(g₄,eval_alain_1), X₁: X₁ {O(n)}
(g₄,eval_alain_1), X₂: X₂ {O(n)}
(g₄,eval_alain_1), X₃: X₃ {O(n)}
(g₄,eval_alain_1), X₄: X₄ {O(n)}
(g₄,eval_alain_1), X₅: X₅ {O(n)}
(g₄,eval_alain_1), X₆: X₆ {O(n)}
(g₄,eval_alain_1), X₇: X₇ {O(n)}
(g₄,eval_alain_1), X₈: X₈ {O(n)}
(g₄,eval_alain_1), X₉: X₉ {O(n)}
(g₄,eval_alain_1), X₁₀: X₁₀ {O(n)}
(g₄,eval_alain_1), X₁₁: X₁₁ {O(n)}
(g₆,eval_alain_2), X₀: X₀ {O(n)}
(g₆,eval_alain_2), X₁: X₁ {O(n)}
(g₆,eval_alain_2), X₂: X₂ {O(n)}
(g₆,eval_alain_2), X₃: X₃ {O(n)}
(g₆,eval_alain_2), X₄: X₄ {O(n)}
(g₆,eval_alain_2), X₅: X₅ {O(n)}
(g₆,eval_alain_2), X₆: X₆ {O(n)}
(g₆,eval_alain_2), X₇: X₇ {O(n)}
(g₆,eval_alain_2), X₈: X₈ {O(n)}
(g₆,eval_alain_2), X₉: X₉ {O(n)}
(g₆,eval_alain_2), X₁₀: X₁₀ {O(n)}
(g₆,eval_alain_2), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_1]
Run classical analysis on SCC: [eval_alain_2]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: inf {Infinity}
g₃₆: 1 {O(1)}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
(g₄,eval_alain_1), X₀: X₀ {O(n)}
(g₄,eval_alain_1), X₁: X₁ {O(n)}
(g₄,eval_alain_1), X₂: X₂ {O(n)}
(g₄,eval_alain_1), X₃: X₃ {O(n)}
(g₄,eval_alain_1), X₄: X₄ {O(n)}
(g₄,eval_alain_1), X₅: X₅ {O(n)}
(g₄,eval_alain_1), X₆: X₆ {O(n)}
(g₄,eval_alain_1), X₇: X₇ {O(n)}
(g₄,eval_alain_1), X₈: X₈ {O(n)}
(g₄,eval_alain_1), X₉: X₉ {O(n)}
(g₄,eval_alain_1), X₁₀: X₁₀ {O(n)}
(g₄,eval_alain_1), X₁₁: X₁₁ {O(n)}
(g₆,eval_alain_2), X₀: X₀ {O(n)}
(g₆,eval_alain_2), X₁: X₁ {O(n)}
(g₆,eval_alain_2), X₂: X₂ {O(n)}
(g₆,eval_alain_2), X₃: X₃ {O(n)}
(g₆,eval_alain_2), X₄: X₄ {O(n)}
(g₆,eval_alain_2), X₅: X₅ {O(n)}
(g₆,eval_alain_2), X₆: X₆ {O(n)}
(g₆,eval_alain_2), X₇: X₇ {O(n)}
(g₆,eval_alain_2), X₈: X₈ {O(n)}
(g₆,eval_alain_2), X₉: X₉ {O(n)}
(g₆,eval_alain_2), X₁₀: X₁₀ {O(n)}
(g₆,eval_alain_2), X₁₁: X₁₁ {O(n)}
(g₈,eval_alain_3), X₀: X₀ {O(n)}
(g₈,eval_alain_3), X₁: X₁ {O(n)}
(g₈,eval_alain_3), X₂: X₂ {O(n)}
(g₈,eval_alain_3), X₃: X₃ {O(n)}
(g₈,eval_alain_3), X₄: X₄ {O(n)}
(g₈,eval_alain_3), X₅: X₅ {O(n)}
(g₈,eval_alain_3), X₆: X₆ {O(n)}
(g₈,eval_alain_3), X₇: X₇ {O(n)}
(g₈,eval_alain_3), X₈: X₈ {O(n)}
(g₈,eval_alain_3), X₉: X₉ {O(n)}
(g₈,eval_alain_3), X₁₀: X₁₀ {O(n)}
(g₈,eval_alain_3), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_2]
Run classical analysis on SCC: [eval_alain_3]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: inf {Infinity}
g₃₆: 1 {O(1)}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
(g₄,eval_alain_1), X₀: X₀ {O(n)}
(g₄,eval_alain_1), X₁: X₁ {O(n)}
(g₄,eval_alain_1), X₂: X₂ {O(n)}
(g₄,eval_alain_1), X₃: X₃ {O(n)}
(g₄,eval_alain_1), X₄: X₄ {O(n)}
(g₄,eval_alain_1), X₅: X₅ {O(n)}
(g₄,eval_alain_1), X₆: X₆ {O(n)}
(g₄,eval_alain_1), X₇: X₇ {O(n)}
(g₄,eval_alain_1), X₈: X₈ {O(n)}
(g₄,eval_alain_1), X₉: X₉ {O(n)}
(g₄,eval_alain_1), X₁₀: X₁₀ {O(n)}
(g₄,eval_alain_1), X₁₁: X₁₁ {O(n)}
(g₆,eval_alain_2), X₀: X₀ {O(n)}
(g₆,eval_alain_2), X₁: X₁ {O(n)}
(g₆,eval_alain_2), X₂: X₂ {O(n)}
(g₆,eval_alain_2), X₃: X₃ {O(n)}
(g₆,eval_alain_2), X₄: X₄ {O(n)}
(g₆,eval_alain_2), X₅: X₅ {O(n)}
(g₆,eval_alain_2), X₆: X₆ {O(n)}
(g₆,eval_alain_2), X₇: X₇ {O(n)}
(g₆,eval_alain_2), X₈: X₈ {O(n)}
(g₆,eval_alain_2), X₉: X₉ {O(n)}
(g₆,eval_alain_2), X₁₀: X₁₀ {O(n)}
(g₆,eval_alain_2), X₁₁: X₁₁ {O(n)}
(g₈,eval_alain_3), X₀: X₀ {O(n)}
(g₈,eval_alain_3), X₁: X₁ {O(n)}
(g₈,eval_alain_3), X₂: X₂ {O(n)}
(g₈,eval_alain_3), X₃: X₃ {O(n)}
(g₈,eval_alain_3), X₄: X₄ {O(n)}
(g₈,eval_alain_3), X₅: X₅ {O(n)}
(g₈,eval_alain_3), X₆: X₆ {O(n)}
(g₈,eval_alain_3), X₇: X₇ {O(n)}
(g₈,eval_alain_3), X₈: X₈ {O(n)}
(g₈,eval_alain_3), X₉: X₉ {O(n)}
(g₈,eval_alain_3), X₁₀: X₁₀ {O(n)}
(g₈,eval_alain_3), X₁₁: X₁₁ {O(n)}
(g₁₀,eval_alain_4), X₀: X₀ {O(n)}
(g₁₀,eval_alain_4), X₁: X₁ {O(n)}
(g₁₀,eval_alain_4), X₂: X₂ {O(n)}
(g₁₀,eval_alain_4), X₃: X₃ {O(n)}
(g₁₀,eval_alain_4), X₄: X₄ {O(n)}
(g₁₀,eval_alain_4), X₅: X₅ {O(n)}
(g₁₀,eval_alain_4), X₆: X₆ {O(n)}
(g₁₀,eval_alain_4), X₇: X₇ {O(n)}
(g₁₀,eval_alain_4), X₈: X₈ {O(n)}
(g₁₀,eval_alain_4), X₉: X₉ {O(n)}
(g₁₀,eval_alain_4), X₁₀: X₁₀ {O(n)}
(g₁₀,eval_alain_4), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_3]
Run classical analysis on SCC: [eval_alain_4]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: inf {Infinity}
g₃₆: 1 {O(1)}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
(g₄,eval_alain_1), X₀: X₀ {O(n)}
(g₄,eval_alain_1), X₁: X₁ {O(n)}
(g₄,eval_alain_1), X₂: X₂ {O(n)}
(g₄,eval_alain_1), X₃: X₃ {O(n)}
(g₄,eval_alain_1), X₄: X₄ {O(n)}
(g₄,eval_alain_1), X₅: X₅ {O(n)}
(g₄,eval_alain_1), X₆: X₆ {O(n)}
(g₄,eval_alain_1), X₇: X₇ {O(n)}
(g₄,eval_alain_1), X₈: X₈ {O(n)}
(g₄,eval_alain_1), X₉: X₉ {O(n)}
(g₄,eval_alain_1), X₁₀: X₁₀ {O(n)}
(g₄,eval_alain_1), X₁₁: X₁₁ {O(n)}
(g₆,eval_alain_2), X₀: X₀ {O(n)}
(g₆,eval_alain_2), X₁: X₁ {O(n)}
(g₆,eval_alain_2), X₂: X₂ {O(n)}
(g₆,eval_alain_2), X₃: X₃ {O(n)}
(g₆,eval_alain_2), X₄: X₄ {O(n)}
(g₆,eval_alain_2), X₅: X₅ {O(n)}
(g₆,eval_alain_2), X₆: X₆ {O(n)}
(g₆,eval_alain_2), X₇: X₇ {O(n)}
(g₆,eval_alain_2), X₈: X₈ {O(n)}
(g₆,eval_alain_2), X₉: X₉ {O(n)}
(g₆,eval_alain_2), X₁₀: X₁₀ {O(n)}
(g₆,eval_alain_2), X₁₁: X₁₁ {O(n)}
(g₈,eval_alain_3), X₀: X₀ {O(n)}
(g₈,eval_alain_3), X₁: X₁ {O(n)}
(g₈,eval_alain_3), X₂: X₂ {O(n)}
(g₈,eval_alain_3), X₃: X₃ {O(n)}
(g₈,eval_alain_3), X₄: X₄ {O(n)}
(g₈,eval_alain_3), X₅: X₅ {O(n)}
(g₈,eval_alain_3), X₆: X₆ {O(n)}
(g₈,eval_alain_3), X₇: X₇ {O(n)}
(g₈,eval_alain_3), X₈: X₈ {O(n)}
(g₈,eval_alain_3), X₉: X₉ {O(n)}
(g₈,eval_alain_3), X₁₀: X₁₀ {O(n)}
(g₈,eval_alain_3), X₁₁: X₁₁ {O(n)}
(g₁₀,eval_alain_4), X₀: X₀ {O(n)}
(g₁₀,eval_alain_4), X₁: X₁ {O(n)}
(g₁₀,eval_alain_4), X₂: X₂ {O(n)}
(g₁₀,eval_alain_4), X₃: X₃ {O(n)}
(g₁₀,eval_alain_4), X₄: X₄ {O(n)}
(g₁₀,eval_alain_4), X₅: X₅ {O(n)}
(g₁₀,eval_alain_4), X₆: X₆ {O(n)}
(g₁₀,eval_alain_4), X₇: X₇ {O(n)}
(g₁₀,eval_alain_4), X₈: X₈ {O(n)}
(g₁₀,eval_alain_4), X₉: X₉ {O(n)}
(g₁₀,eval_alain_4), X₁₀: X₁₀ {O(n)}
(g₁₀,eval_alain_4), X₁₁: X₁₁ {O(n)}
(g₁₂,eval_alain_5), X₀: X₀ {O(n)}
(g₁₂,eval_alain_5), X₁: X₁ {O(n)}
(g₁₂,eval_alain_5), X₂: X₂ {O(n)}
(g₁₂,eval_alain_5), X₃: X₃ {O(n)}
(g₁₂,eval_alain_5), X₄: X₄ {O(n)}
(g₁₂,eval_alain_5), X₅: X₅ {O(n)}
(g₁₂,eval_alain_5), X₆: X₆ {O(n)}
(g₁₂,eval_alain_5), X₇: X₇ {O(n)}
(g₁₂,eval_alain_5), X₈: X₈ {O(n)}
(g₁₂,eval_alain_5), X₉: X₉ {O(n)}
(g₁₂,eval_alain_5), X₁₀: X₁₀ {O(n)}
(g₁₂,eval_alain_5), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_4]
Run classical analysis on SCC: [eval_alain_5]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: inf {Infinity}
g₃₆: 1 {O(1)}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
(g₄,eval_alain_1), X₀: X₀ {O(n)}
(g₄,eval_alain_1), X₁: X₁ {O(n)}
(g₄,eval_alain_1), X₂: X₂ {O(n)}
(g₄,eval_alain_1), X₃: X₃ {O(n)}
(g₄,eval_alain_1), X₄: X₄ {O(n)}
(g₄,eval_alain_1), X₅: X₅ {O(n)}
(g₄,eval_alain_1), X₆: X₆ {O(n)}
(g₄,eval_alain_1), X₇: X₇ {O(n)}
(g₄,eval_alain_1), X₈: X₈ {O(n)}
(g₄,eval_alain_1), X₉: X₉ {O(n)}
(g₄,eval_alain_1), X₁₀: X₁₀ {O(n)}
(g₄,eval_alain_1), X₁₁: X₁₁ {O(n)}
(g₆,eval_alain_2), X₀: X₀ {O(n)}
(g₆,eval_alain_2), X₁: X₁ {O(n)}
(g₆,eval_alain_2), X₂: X₂ {O(n)}
(g₆,eval_alain_2), X₃: X₃ {O(n)}
(g₆,eval_alain_2), X₄: X₄ {O(n)}
(g₆,eval_alain_2), X₅: X₅ {O(n)}
(g₆,eval_alain_2), X₆: X₆ {O(n)}
(g₆,eval_alain_2), X₇: X₇ {O(n)}
(g₆,eval_alain_2), X₈: X₈ {O(n)}
(g₆,eval_alain_2), X₉: X₉ {O(n)}
(g₆,eval_alain_2), X₁₀: X₁₀ {O(n)}
(g₆,eval_alain_2), X₁₁: X₁₁ {O(n)}
(g₈,eval_alain_3), X₀: X₀ {O(n)}
(g₈,eval_alain_3), X₁: X₁ {O(n)}
(g₈,eval_alain_3), X₂: X₂ {O(n)}
(g₈,eval_alain_3), X₃: X₃ {O(n)}
(g₈,eval_alain_3), X₄: X₄ {O(n)}
(g₈,eval_alain_3), X₅: X₅ {O(n)}
(g₈,eval_alain_3), X₆: X₆ {O(n)}
(g₈,eval_alain_3), X₇: X₇ {O(n)}
(g₈,eval_alain_3), X₈: X₈ {O(n)}
(g₈,eval_alain_3), X₉: X₉ {O(n)}
(g₈,eval_alain_3), X₁₀: X₁₀ {O(n)}
(g₈,eval_alain_3), X₁₁: X₁₁ {O(n)}
(g₁₀,eval_alain_4), X₀: X₀ {O(n)}
(g₁₀,eval_alain_4), X₁: X₁ {O(n)}
(g₁₀,eval_alain_4), X₂: X₂ {O(n)}
(g₁₀,eval_alain_4), X₃: X₃ {O(n)}
(g₁₀,eval_alain_4), X₄: X₄ {O(n)}
(g₁₀,eval_alain_4), X₅: X₅ {O(n)}
(g₁₀,eval_alain_4), X₆: X₆ {O(n)}
(g₁₀,eval_alain_4), X₇: X₇ {O(n)}
(g₁₀,eval_alain_4), X₈: X₈ {O(n)}
(g₁₀,eval_alain_4), X₉: X₉ {O(n)}
(g₁₀,eval_alain_4), X₁₀: X₁₀ {O(n)}
(g₁₀,eval_alain_4), X₁₁: X₁₁ {O(n)}
(g₁₂,eval_alain_5), X₀: X₀ {O(n)}
(g₁₂,eval_alain_5), X₁: X₁ {O(n)}
(g₁₂,eval_alain_5), X₂: X₂ {O(n)}
(g₁₂,eval_alain_5), X₃: X₃ {O(n)}
(g₁₂,eval_alain_5), X₄: X₄ {O(n)}
(g₁₂,eval_alain_5), X₅: X₅ {O(n)}
(g₁₂,eval_alain_5), X₆: X₆ {O(n)}
(g₁₂,eval_alain_5), X₇: X₇ {O(n)}
(g₁₂,eval_alain_5), X₈: X₈ {O(n)}
(g₁₂,eval_alain_5), X₉: X₉ {O(n)}
(g₁₂,eval_alain_5), X₁₀: X₁₀ {O(n)}
(g₁₂,eval_alain_5), X₁₁: X₁₁ {O(n)}
(g₁₄,eval_alain_6), X₀: X₀ {O(n)}
(g₁₄,eval_alain_6), X₁: X₁ {O(n)}
(g₁₄,eval_alain_6), X₂: X₂ {O(n)}
(g₁₄,eval_alain_6), X₃: X₃ {O(n)}
(g₁₄,eval_alain_6), X₄: X₄ {O(n)}
(g₁₄,eval_alain_6), X₅: X₅ {O(n)}
(g₁₄,eval_alain_6), X₆: X₆ {O(n)}
(g₁₄,eval_alain_6), X₇: X₇ {O(n)}
(g₁₄,eval_alain_6), X₈: X₈ {O(n)}
(g₁₄,eval_alain_6), X₉: X₉ {O(n)}
(g₁₄,eval_alain_6), X₁₀: X₁₀ {O(n)}
(g₁₄,eval_alain_6), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_5]
Run classical analysis on SCC: [eval_alain_6]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: inf {Infinity}
g₃₆: 1 {O(1)}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
(g₄,eval_alain_1), X₀: X₀ {O(n)}
(g₄,eval_alain_1), X₁: X₁ {O(n)}
(g₄,eval_alain_1), X₂: X₂ {O(n)}
(g₄,eval_alain_1), X₃: X₃ {O(n)}
(g₄,eval_alain_1), X₄: X₄ {O(n)}
(g₄,eval_alain_1), X₅: X₅ {O(n)}
(g₄,eval_alain_1), X₆: X₆ {O(n)}
(g₄,eval_alain_1), X₇: X₇ {O(n)}
(g₄,eval_alain_1), X₈: X₈ {O(n)}
(g₄,eval_alain_1), X₉: X₉ {O(n)}
(g₄,eval_alain_1), X₁₀: X₁₀ {O(n)}
(g₄,eval_alain_1), X₁₁: X₁₁ {O(n)}
(g₆,eval_alain_2), X₀: X₀ {O(n)}
(g₆,eval_alain_2), X₁: X₁ {O(n)}
(g₆,eval_alain_2), X₂: X₂ {O(n)}
(g₆,eval_alain_2), X₃: X₃ {O(n)}
(g₆,eval_alain_2), X₄: X₄ {O(n)}
(g₆,eval_alain_2), X₅: X₅ {O(n)}
(g₆,eval_alain_2), X₆: X₆ {O(n)}
(g₆,eval_alain_2), X₇: X₇ {O(n)}
(g₆,eval_alain_2), X₈: X₈ {O(n)}
(g₆,eval_alain_2), X₉: X₉ {O(n)}
(g₆,eval_alain_2), X₁₀: X₁₀ {O(n)}
(g₆,eval_alain_2), X₁₁: X₁₁ {O(n)}
(g₈,eval_alain_3), X₀: X₀ {O(n)}
(g₈,eval_alain_3), X₁: X₁ {O(n)}
(g₈,eval_alain_3), X₂: X₂ {O(n)}
(g₈,eval_alain_3), X₃: X₃ {O(n)}
(g₈,eval_alain_3), X₄: X₄ {O(n)}
(g₈,eval_alain_3), X₅: X₅ {O(n)}
(g₈,eval_alain_3), X₆: X₆ {O(n)}
(g₈,eval_alain_3), X₇: X₇ {O(n)}
(g₈,eval_alain_3), X₈: X₈ {O(n)}
(g₈,eval_alain_3), X₉: X₉ {O(n)}
(g₈,eval_alain_3), X₁₀: X₁₀ {O(n)}
(g₈,eval_alain_3), X₁₁: X₁₁ {O(n)}
(g₁₀,eval_alain_4), X₀: X₀ {O(n)}
(g₁₀,eval_alain_4), X₁: X₁ {O(n)}
(g₁₀,eval_alain_4), X₂: X₂ {O(n)}
(g₁₀,eval_alain_4), X₃: X₃ {O(n)}
(g₁₀,eval_alain_4), X₄: X₄ {O(n)}
(g₁₀,eval_alain_4), X₅: X₅ {O(n)}
(g₁₀,eval_alain_4), X₆: X₆ {O(n)}
(g₁₀,eval_alain_4), X₇: X₇ {O(n)}
(g₁₀,eval_alain_4), X₈: X₈ {O(n)}
(g₁₀,eval_alain_4), X₉: X₉ {O(n)}
(g₁₀,eval_alain_4), X₁₀: X₁₀ {O(n)}
(g₁₀,eval_alain_4), X₁₁: X₁₁ {O(n)}
(g₁₂,eval_alain_5), X₀: X₀ {O(n)}
(g₁₂,eval_alain_5), X₁: X₁ {O(n)}
(g₁₂,eval_alain_5), X₂: X₂ {O(n)}
(g₁₂,eval_alain_5), X₃: X₃ {O(n)}
(g₁₂,eval_alain_5), X₄: X₄ {O(n)}
(g₁₂,eval_alain_5), X₅: X₅ {O(n)}
(g₁₂,eval_alain_5), X₆: X₆ {O(n)}
(g₁₂,eval_alain_5), X₇: X₇ {O(n)}
(g₁₂,eval_alain_5), X₈: X₈ {O(n)}
(g₁₂,eval_alain_5), X₉: X₉ {O(n)}
(g₁₂,eval_alain_5), X₁₀: X₁₀ {O(n)}
(g₁₂,eval_alain_5), X₁₁: X₁₁ {O(n)}
(g₁₄,eval_alain_6), X₀: X₀ {O(n)}
(g₁₄,eval_alain_6), X₁: X₁ {O(n)}
(g₁₄,eval_alain_6), X₂: X₂ {O(n)}
(g₁₄,eval_alain_6), X₃: X₃ {O(n)}
(g₁₄,eval_alain_6), X₄: X₄ {O(n)}
(g₁₄,eval_alain_6), X₅: X₅ {O(n)}
(g₁₄,eval_alain_6), X₆: X₆ {O(n)}
(g₁₄,eval_alain_6), X₇: X₇ {O(n)}
(g₁₄,eval_alain_6), X₈: X₈ {O(n)}
(g₁₄,eval_alain_6), X₉: X₉ {O(n)}
(g₁₄,eval_alain_6), X₁₀: X₁₀ {O(n)}
(g₁₄,eval_alain_6), X₁₁: X₁₁ {O(n)}
(g₁₆,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₁₆,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₁₆,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₁₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₁₆,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₁₆,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₁₆,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₁₆,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₁₆,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₁₈,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₁₈,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₁₈,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₁₈,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₁₈,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₁₈,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₁₈,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₁₈,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₁₈,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₀,eval_alain_bb1_in), X₀: X₀ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁: X₁ {O(n)}
(g₂₀,eval_alain_bb1_in), X₂: X₂ {O(n)}
(g₂₀,eval_alain_bb1_in), X₃: X₃ {O(n)}
(g₂₀,eval_alain_bb1_in), X₄: X₄ {O(n)}
(g₂₀,eval_alain_bb1_in), X₅: X₅ {O(n)}
(g₂₀,eval_alain_bb1_in), X₆: X₆ {O(n)}
(g₂₀,eval_alain_bb1_in), X₇: X₇ {O(n)}
(g₂₀,eval_alain_bb1_in), X₈: X₈ {O(n)}
(g₂₀,eval_alain_bb1_in), X₉: X₉ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁₀: X₁₀ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_6]
Run classical analysis on SCC: [eval_alain_bb1_in]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: inf {Infinity}
g₃₆: 1 {O(1)}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
(g₄,eval_alain_1), X₀: X₀ {O(n)}
(g₄,eval_alain_1), X₁: X₁ {O(n)}
(g₄,eval_alain_1), X₂: X₂ {O(n)}
(g₄,eval_alain_1), X₃: X₃ {O(n)}
(g₄,eval_alain_1), X₄: X₄ {O(n)}
(g₄,eval_alain_1), X₅: X₅ {O(n)}
(g₄,eval_alain_1), X₆: X₆ {O(n)}
(g₄,eval_alain_1), X₇: X₇ {O(n)}
(g₄,eval_alain_1), X₈: X₈ {O(n)}
(g₄,eval_alain_1), X₉: X₉ {O(n)}
(g₄,eval_alain_1), X₁₀: X₁₀ {O(n)}
(g₄,eval_alain_1), X₁₁: X₁₁ {O(n)}
(g₆,eval_alain_2), X₀: X₀ {O(n)}
(g₆,eval_alain_2), X₁: X₁ {O(n)}
(g₆,eval_alain_2), X₂: X₂ {O(n)}
(g₆,eval_alain_2), X₃: X₃ {O(n)}
(g₆,eval_alain_2), X₄: X₄ {O(n)}
(g₆,eval_alain_2), X₅: X₅ {O(n)}
(g₆,eval_alain_2), X₆: X₆ {O(n)}
(g₆,eval_alain_2), X₇: X₇ {O(n)}
(g₆,eval_alain_2), X₈: X₈ {O(n)}
(g₆,eval_alain_2), X₉: X₉ {O(n)}
(g₆,eval_alain_2), X₁₀: X₁₀ {O(n)}
(g₆,eval_alain_2), X₁₁: X₁₁ {O(n)}
(g₈,eval_alain_3), X₀: X₀ {O(n)}
(g₈,eval_alain_3), X₁: X₁ {O(n)}
(g₈,eval_alain_3), X₂: X₂ {O(n)}
(g₈,eval_alain_3), X₃: X₃ {O(n)}
(g₈,eval_alain_3), X₄: X₄ {O(n)}
(g₈,eval_alain_3), X₅: X₅ {O(n)}
(g₈,eval_alain_3), X₆: X₆ {O(n)}
(g₈,eval_alain_3), X₇: X₇ {O(n)}
(g₈,eval_alain_3), X₈: X₈ {O(n)}
(g₈,eval_alain_3), X₉: X₉ {O(n)}
(g₈,eval_alain_3), X₁₀: X₁₀ {O(n)}
(g₈,eval_alain_3), X₁₁: X₁₁ {O(n)}
(g₁₀,eval_alain_4), X₀: X₀ {O(n)}
(g₁₀,eval_alain_4), X₁: X₁ {O(n)}
(g₁₀,eval_alain_4), X₂: X₂ {O(n)}
(g₁₀,eval_alain_4), X₃: X₃ {O(n)}
(g₁₀,eval_alain_4), X₄: X₄ {O(n)}
(g₁₀,eval_alain_4), X₅: X₅ {O(n)}
(g₁₀,eval_alain_4), X₆: X₆ {O(n)}
(g₁₀,eval_alain_4), X₇: X₇ {O(n)}
(g₁₀,eval_alain_4), X₈: X₈ {O(n)}
(g₁₀,eval_alain_4), X₉: X₉ {O(n)}
(g₁₀,eval_alain_4), X₁₀: X₁₀ {O(n)}
(g₁₀,eval_alain_4), X₁₁: X₁₁ {O(n)}
(g₁₂,eval_alain_5), X₀: X₀ {O(n)}
(g₁₂,eval_alain_5), X₁: X₁ {O(n)}
(g₁₂,eval_alain_5), X₂: X₂ {O(n)}
(g₁₂,eval_alain_5), X₃: X₃ {O(n)}
(g₁₂,eval_alain_5), X₄: X₄ {O(n)}
(g₁₂,eval_alain_5), X₅: X₅ {O(n)}
(g₁₂,eval_alain_5), X₆: X₆ {O(n)}
(g₁₂,eval_alain_5), X₇: X₇ {O(n)}
(g₁₂,eval_alain_5), X₈: X₈ {O(n)}
(g₁₂,eval_alain_5), X₉: X₉ {O(n)}
(g₁₂,eval_alain_5), X₁₀: X₁₀ {O(n)}
(g₁₂,eval_alain_5), X₁₁: X₁₁ {O(n)}
(g₁₄,eval_alain_6), X₀: X₀ {O(n)}
(g₁₄,eval_alain_6), X₁: X₁ {O(n)}
(g₁₄,eval_alain_6), X₂: X₂ {O(n)}
(g₁₄,eval_alain_6), X₃: X₃ {O(n)}
(g₁₄,eval_alain_6), X₄: X₄ {O(n)}
(g₁₄,eval_alain_6), X₅: X₅ {O(n)}
(g₁₄,eval_alain_6), X₆: X₆ {O(n)}
(g₁₄,eval_alain_6), X₇: X₇ {O(n)}
(g₁₄,eval_alain_6), X₈: X₈ {O(n)}
(g₁₄,eval_alain_6), X₉: X₉ {O(n)}
(g₁₄,eval_alain_6), X₁₀: X₁₀ {O(n)}
(g₁₄,eval_alain_6), X₁₁: X₁₁ {O(n)}
(g₁₆,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₁₆,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₁₆,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₁₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₁₆,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₁₆,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₁₆,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₁₆,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₁₆,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₁₈,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₁₈,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₁₈,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₁₈,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₁₈,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₁₈,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₁₈,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₁₈,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₁₈,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₀,eval_alain_bb1_in), X₀: X₀ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁: X₁ {O(n)}
(g₂₀,eval_alain_bb1_in), X₂: X₂ {O(n)}
(g₂₀,eval_alain_bb1_in), X₃: X₃ {O(n)}
(g₂₀,eval_alain_bb1_in), X₄: X₄ {O(n)}
(g₂₀,eval_alain_bb1_in), X₅: X₅ {O(n)}
(g₂₀,eval_alain_bb1_in), X₆: X₆ {O(n)}
(g₂₀,eval_alain_bb1_in), X₇: X₇ {O(n)}
(g₂₀,eval_alain_bb1_in), X₈: X₈ {O(n)}
(g₂₀,eval_alain_bb1_in), X₉: X₉ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁₀: X₁₀ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁₁: X₁₁ {O(n)}
(g₂₂,eval_alain_bb2_in), X₀: X₁₁ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁: X₇ {O(n)}
(g₂₂,eval_alain_bb2_in), X₂: X₈ {O(n)}
(g₂₂,eval_alain_bb2_in), X₃: X₃ {O(n)}
(g₂₂,eval_alain_bb2_in), X₄: X₄ {O(n)}
(g₂₂,eval_alain_bb2_in), X₅: X₅ {O(n)}
(g₂₂,eval_alain_bb2_in), X₆: X₆ {O(n)}
(g₂₂,eval_alain_bb2_in), X₇: X₇ {O(n)}
(g₂₂,eval_alain_bb2_in), X₈: X₈ {O(n)}
(g₂₂,eval_alain_bb2_in), X₉: X₉ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁₀: X₁₀ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁₁: X₁₁ {O(n)}
(g₂₄,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₄,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₄,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₄,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₄,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₄,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₄,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₄,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₄,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₆,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₆,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₆,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₆,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₆,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₆,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₆,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₆,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₈,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₈,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₈,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₈,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₈,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₈,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₈,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₈,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₈,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₀,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₃₀,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₃₀,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₃₀,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₀,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₃₀,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₃₀,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₃₀,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₃₀,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₂,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₃₂,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₃₂,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₃₂,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₂,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₃₂,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₃₂,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₃₂,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₃₂,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_bb1_in]
Run classical analysis on SCC: [eval_alain_17; eval_alain_18; eval_alain_19; eval_alain_bb2_in; eval_alain_bb3_in; eval_alain_bb4_in; eval_alain_bb5_in; eval_alain_bb6_in]
MPRF for transition t₃₅: eval_alain_bb2_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_alain_bb3_in(X₀,X₁,X₂,X₃,X₄,X₅,X₁-1,X₇,X₈,X₉,X₁₀,X₁₁) :|: 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁ of depth 1:
new bound:
X₇+1 {O(n)}
MPRF:
• eval_alain_17: [X₁]
• eval_alain_18: [1+X₆]
• eval_alain_19: [1+X₆]
• eval_alain_bb2_in: [1+X₁]
• eval_alain_bb3_in: [X₁]
• eval_alain_bb4_in: [X₁]
• eval_alain_bb5_in: [X₁]
• eval_alain_bb6_in: [X₁]
Show Graph
G
eval_alain_0
eval_alain_0
eval_alain_1
eval_alain_1
eval_alain_0->eval_alain_1
t₅
eval_alain_2
eval_alain_2
eval_alain_1->eval_alain_2
t₇
eval_alain_17
eval_alain_17
eval_alain_18
eval_alain_18
eval_alain_17->eval_alain_18
t₅₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_19
eval_alain_19
eval_alain_18->eval_alain_19
t₅₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb2_in
eval_alain_bb2_in
eval_alain_19->eval_alain_bb2_in
t₅₄
η (X₀) = X₅
η (X₁) = X₆
η (X₂) = X₅
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_3
eval_alain_3
eval_alain_2->eval_alain_3
t₉
eval_alain_4
eval_alain_4
eval_alain_3->eval_alain_4
t₁₁
eval_alain_5
eval_alain_5
eval_alain_4->eval_alain_5
t₁₃
eval_alain_6
eval_alain_6
eval_alain_5->eval_alain_6
t₁₅
eval_alain_bb1_in
eval_alain_bb1_in
eval_alain_6->eval_alain_bb1_in
t₂₁
τ = 1+2⋅X₁₀ ≤ X₈ ∧ 1+X₁₀+X₁₁ ≤ X₈
eval_alain_bb7_in
eval_alain_bb7_in
eval_alain_6->eval_alain_bb7_in
t₁₇
τ = X₈ ≤ 2⋅X₁₀
eval_alain_6->eval_alain_bb7_in
t₁₉
τ = X₈ ≤ X₁₀+X₁₁
eval_alain_bb0_in
eval_alain_bb0_in
eval_alain_bb0_in->eval_alain_0
t₃
eval_alain_bb1_in->eval_alain_bb2_in
t₂₃
η (X₀) = X₁₁
η (X₁) = X₇
η (X₂) = X₈
τ = 0 ≤ X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈
eval_alain_bb1_in->eval_alain_bb7_in
t₂₅
τ = 1+X₁₁ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₇
τ = 1+X₉ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₉
τ = 1+X₁₀ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₁
τ = 1+X₇ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₃
τ = 1+X₈ ≤ 0
eval_alain_bb3_in
eval_alain_bb3_in
eval_alain_bb2_in->eval_alain_bb3_in
t₃₅
η (X₆) = X₁-1
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁
eval_alain_bb2_in->eval_alain_bb7_in
t₃₇
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₁ ≤ 0
eval_alain_bb4_in
eval_alain_bb4_in
eval_alain_bb3_in->eval_alain_bb4_in
t₃₉
η (X₃) = X₀
η (X₄) = X₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in
eval_alain_bb5_in
eval_alain_bb4_in->eval_alain_bb5_in
t₄₁
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₄
eval_alain_bb6_in
eval_alain_bb6_in
eval_alain_bb4_in->eval_alain_bb6_in
t₄₃
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₄ ≤ 0
eval_alain_bb5_in->eval_alain_bb4_in
t₄₅
η (X₃) = X₁₀
η (X₄) = X₄-1
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in->eval_alain_bb5_in
t₄₆
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb6_in->eval_alain_17
t₄₈
η (X₅) = X₃+X₁₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_stop
eval_alain_stop
eval_alain_bb7_in->eval_alain_stop
t₅₆
eval_alain_start
eval_alain_start
eval_alain_start->eval_alain_bb0_in
t₁
MPRF for transition t₃₉: eval_alain_bb3_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_alain_bb4_in(X₀,X₁,X₂,X₀,X₂,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ of depth 1:
new bound:
X₇ {O(n)}
MPRF:
• eval_alain_17: [X₆]
• eval_alain_18: [X₆]
• eval_alain_19: [X₆]
• eval_alain_bb2_in: [X₁]
• eval_alain_bb3_in: [X₁]
• eval_alain_bb4_in: [X₆]
• eval_alain_bb5_in: [X₆]
• eval_alain_bb6_in: [X₆]
Show Graph
G
eval_alain_0
eval_alain_0
eval_alain_1
eval_alain_1
eval_alain_0->eval_alain_1
t₅
eval_alain_2
eval_alain_2
eval_alain_1->eval_alain_2
t₇
eval_alain_17
eval_alain_17
eval_alain_18
eval_alain_18
eval_alain_17->eval_alain_18
t₅₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_19
eval_alain_19
eval_alain_18->eval_alain_19
t₅₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb2_in
eval_alain_bb2_in
eval_alain_19->eval_alain_bb2_in
t₅₄
η (X₀) = X₅
η (X₁) = X₆
η (X₂) = X₅
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_3
eval_alain_3
eval_alain_2->eval_alain_3
t₉
eval_alain_4
eval_alain_4
eval_alain_3->eval_alain_4
t₁₁
eval_alain_5
eval_alain_5
eval_alain_4->eval_alain_5
t₁₃
eval_alain_6
eval_alain_6
eval_alain_5->eval_alain_6
t₁₅
eval_alain_bb1_in
eval_alain_bb1_in
eval_alain_6->eval_alain_bb1_in
t₂₁
τ = 1+2⋅X₁₀ ≤ X₈ ∧ 1+X₁₀+X₁₁ ≤ X₈
eval_alain_bb7_in
eval_alain_bb7_in
eval_alain_6->eval_alain_bb7_in
t₁₇
τ = X₈ ≤ 2⋅X₁₀
eval_alain_6->eval_alain_bb7_in
t₁₉
τ = X₈ ≤ X₁₀+X₁₁
eval_alain_bb0_in
eval_alain_bb0_in
eval_alain_bb0_in->eval_alain_0
t₃
eval_alain_bb1_in->eval_alain_bb2_in
t₂₃
η (X₀) = X₁₁
η (X₁) = X₇
η (X₂) = X₈
τ = 0 ≤ X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈
eval_alain_bb1_in->eval_alain_bb7_in
t₂₅
τ = 1+X₁₁ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₇
τ = 1+X₉ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₉
τ = 1+X₁₀ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₁
τ = 1+X₇ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₃
τ = 1+X₈ ≤ 0
eval_alain_bb3_in
eval_alain_bb3_in
eval_alain_bb2_in->eval_alain_bb3_in
t₃₅
η (X₆) = X₁-1
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁
eval_alain_bb2_in->eval_alain_bb7_in
t₃₇
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₁ ≤ 0
eval_alain_bb4_in
eval_alain_bb4_in
eval_alain_bb3_in->eval_alain_bb4_in
t₃₉
η (X₃) = X₀
η (X₄) = X₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in
eval_alain_bb5_in
eval_alain_bb4_in->eval_alain_bb5_in
t₄₁
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₄
eval_alain_bb6_in
eval_alain_bb6_in
eval_alain_bb4_in->eval_alain_bb6_in
t₄₃
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₄ ≤ 0
eval_alain_bb5_in->eval_alain_bb4_in
t₄₅
η (X₃) = X₁₀
η (X₄) = X₄-1
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in->eval_alain_bb5_in
t₄₆
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb6_in->eval_alain_17
t₄₈
η (X₅) = X₃+X₁₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_stop
eval_alain_stop
eval_alain_bb7_in->eval_alain_stop
t₅₆
eval_alain_start
eval_alain_start
eval_alain_start->eval_alain_bb0_in
t₁
MPRF for transition t₄₃: eval_alain_bb4_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_alain_bb6_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₄ ≤ 0 of depth 1:
new bound:
X₇ {O(n)}
MPRF:
• eval_alain_17: [X₆]
• eval_alain_18: [X₆]
• eval_alain_19: [X₆]
• eval_alain_bb2_in: [X₁]
• eval_alain_bb3_in: [X₁]
• eval_alain_bb4_in: [X₁]
• eval_alain_bb5_in: [X₁]
• eval_alain_bb6_in: [X₁-1]
Show Graph
G
eval_alain_0
eval_alain_0
eval_alain_1
eval_alain_1
eval_alain_0->eval_alain_1
t₅
eval_alain_2
eval_alain_2
eval_alain_1->eval_alain_2
t₇
eval_alain_17
eval_alain_17
eval_alain_18
eval_alain_18
eval_alain_17->eval_alain_18
t₅₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_19
eval_alain_19
eval_alain_18->eval_alain_19
t₅₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb2_in
eval_alain_bb2_in
eval_alain_19->eval_alain_bb2_in
t₅₄
η (X₀) = X₅
η (X₁) = X₆
η (X₂) = X₅
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_3
eval_alain_3
eval_alain_2->eval_alain_3
t₉
eval_alain_4
eval_alain_4
eval_alain_3->eval_alain_4
t₁₁
eval_alain_5
eval_alain_5
eval_alain_4->eval_alain_5
t₁₃
eval_alain_6
eval_alain_6
eval_alain_5->eval_alain_6
t₁₅
eval_alain_bb1_in
eval_alain_bb1_in
eval_alain_6->eval_alain_bb1_in
t₂₁
τ = 1+2⋅X₁₀ ≤ X₈ ∧ 1+X₁₀+X₁₁ ≤ X₈
eval_alain_bb7_in
eval_alain_bb7_in
eval_alain_6->eval_alain_bb7_in
t₁₇
τ = X₈ ≤ 2⋅X₁₀
eval_alain_6->eval_alain_bb7_in
t₁₉
τ = X₈ ≤ X₁₀+X₁₁
eval_alain_bb0_in
eval_alain_bb0_in
eval_alain_bb0_in->eval_alain_0
t₃
eval_alain_bb1_in->eval_alain_bb2_in
t₂₃
η (X₀) = X₁₁
η (X₁) = X₇
η (X₂) = X₈
τ = 0 ≤ X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈
eval_alain_bb1_in->eval_alain_bb7_in
t₂₅
τ = 1+X₁₁ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₇
τ = 1+X₉ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₉
τ = 1+X₁₀ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₁
τ = 1+X₇ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₃
τ = 1+X₈ ≤ 0
eval_alain_bb3_in
eval_alain_bb3_in
eval_alain_bb2_in->eval_alain_bb3_in
t₃₅
η (X₆) = X₁-1
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁
eval_alain_bb2_in->eval_alain_bb7_in
t₃₇
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₁ ≤ 0
eval_alain_bb4_in
eval_alain_bb4_in
eval_alain_bb3_in->eval_alain_bb4_in
t₃₉
η (X₃) = X₀
η (X₄) = X₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in
eval_alain_bb5_in
eval_alain_bb4_in->eval_alain_bb5_in
t₄₁
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₄
eval_alain_bb6_in
eval_alain_bb6_in
eval_alain_bb4_in->eval_alain_bb6_in
t₄₃
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₄ ≤ 0
eval_alain_bb5_in->eval_alain_bb4_in
t₄₅
η (X₃) = X₁₀
η (X₄) = X₄-1
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in->eval_alain_bb5_in
t₄₆
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb6_in->eval_alain_17
t₄₈
η (X₅) = X₃+X₁₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_stop
eval_alain_stop
eval_alain_bb7_in->eval_alain_stop
t₅₆
eval_alain_start
eval_alain_start
eval_alain_start->eval_alain_bb0_in
t₁
MPRF for transition t₄₈: eval_alain_bb6_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_alain_17(X₀,X₁,X₂,X₃,X₄,X₃+X₁₀,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ of depth 1:
new bound:
2⋅X₇ {O(n)}
MPRF:
• eval_alain_17: [X₆+X₇]
• eval_alain_18: [X₆+X₇]
• eval_alain_19: [X₆+X₇]
• eval_alain_bb2_in: [X₁+X₇]
• eval_alain_bb3_in: [X₁+X₇]
• eval_alain_bb4_in: [X₁+X₇]
• eval_alain_bb5_in: [X₁+X₇]
• eval_alain_bb6_in: [X₁+X₇]
Show Graph
G
eval_alain_0
eval_alain_0
eval_alain_1
eval_alain_1
eval_alain_0->eval_alain_1
t₅
eval_alain_2
eval_alain_2
eval_alain_1->eval_alain_2
t₇
eval_alain_17
eval_alain_17
eval_alain_18
eval_alain_18
eval_alain_17->eval_alain_18
t₅₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_19
eval_alain_19
eval_alain_18->eval_alain_19
t₅₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb2_in
eval_alain_bb2_in
eval_alain_19->eval_alain_bb2_in
t₅₄
η (X₀) = X₅
η (X₁) = X₆
η (X₂) = X₅
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_3
eval_alain_3
eval_alain_2->eval_alain_3
t₉
eval_alain_4
eval_alain_4
eval_alain_3->eval_alain_4
t₁₁
eval_alain_5
eval_alain_5
eval_alain_4->eval_alain_5
t₁₃
eval_alain_6
eval_alain_6
eval_alain_5->eval_alain_6
t₁₅
eval_alain_bb1_in
eval_alain_bb1_in
eval_alain_6->eval_alain_bb1_in
t₂₁
τ = 1+2⋅X₁₀ ≤ X₈ ∧ 1+X₁₀+X₁₁ ≤ X₈
eval_alain_bb7_in
eval_alain_bb7_in
eval_alain_6->eval_alain_bb7_in
t₁₇
τ = X₈ ≤ 2⋅X₁₀
eval_alain_6->eval_alain_bb7_in
t₁₉
τ = X₈ ≤ X₁₀+X₁₁
eval_alain_bb0_in
eval_alain_bb0_in
eval_alain_bb0_in->eval_alain_0
t₃
eval_alain_bb1_in->eval_alain_bb2_in
t₂₃
η (X₀) = X₁₁
η (X₁) = X₇
η (X₂) = X₈
τ = 0 ≤ X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈
eval_alain_bb1_in->eval_alain_bb7_in
t₂₅
τ = 1+X₁₁ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₇
τ = 1+X₉ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₉
τ = 1+X₁₀ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₁
τ = 1+X₇ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₃
τ = 1+X₈ ≤ 0
eval_alain_bb3_in
eval_alain_bb3_in
eval_alain_bb2_in->eval_alain_bb3_in
t₃₅
η (X₆) = X₁-1
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁
eval_alain_bb2_in->eval_alain_bb7_in
t₃₇
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₁ ≤ 0
eval_alain_bb4_in
eval_alain_bb4_in
eval_alain_bb3_in->eval_alain_bb4_in
t₃₉
η (X₃) = X₀
η (X₄) = X₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in
eval_alain_bb5_in
eval_alain_bb4_in->eval_alain_bb5_in
t₄₁
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₄
eval_alain_bb6_in
eval_alain_bb6_in
eval_alain_bb4_in->eval_alain_bb6_in
t₄₃
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₄ ≤ 0
eval_alain_bb5_in->eval_alain_bb4_in
t₄₅
η (X₃) = X₁₀
η (X₄) = X₄-1
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in->eval_alain_bb5_in
t₄₆
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb6_in->eval_alain_17
t₄₈
η (X₅) = X₃+X₁₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_stop
eval_alain_stop
eval_alain_bb7_in->eval_alain_stop
t₅₆
eval_alain_start
eval_alain_start
eval_alain_start->eval_alain_bb0_in
t₁
MPRF for transition t₅₀: eval_alain_17(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_alain_18(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ of depth 1:
new bound:
X₇ {O(n)}
MPRF:
• eval_alain_17: [X₁]
• eval_alain_18: [X₆]
• eval_alain_19: [X₆]
• eval_alain_bb2_in: [X₁]
• eval_alain_bb3_in: [X₁]
• eval_alain_bb4_in: [X₁]
• eval_alain_bb5_in: [1+X₆]
• eval_alain_bb6_in: [1+X₆]
Show Graph
G
eval_alain_0
eval_alain_0
eval_alain_1
eval_alain_1
eval_alain_0->eval_alain_1
t₅
eval_alain_2
eval_alain_2
eval_alain_1->eval_alain_2
t₇
eval_alain_17
eval_alain_17
eval_alain_18
eval_alain_18
eval_alain_17->eval_alain_18
t₅₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_19
eval_alain_19
eval_alain_18->eval_alain_19
t₅₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb2_in
eval_alain_bb2_in
eval_alain_19->eval_alain_bb2_in
t₅₄
η (X₀) = X₅
η (X₁) = X₆
η (X₂) = X₅
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_3
eval_alain_3
eval_alain_2->eval_alain_3
t₉
eval_alain_4
eval_alain_4
eval_alain_3->eval_alain_4
t₁₁
eval_alain_5
eval_alain_5
eval_alain_4->eval_alain_5
t₁₃
eval_alain_6
eval_alain_6
eval_alain_5->eval_alain_6
t₁₅
eval_alain_bb1_in
eval_alain_bb1_in
eval_alain_6->eval_alain_bb1_in
t₂₁
τ = 1+2⋅X₁₀ ≤ X₈ ∧ 1+X₁₀+X₁₁ ≤ X₈
eval_alain_bb7_in
eval_alain_bb7_in
eval_alain_6->eval_alain_bb7_in
t₁₇
τ = X₈ ≤ 2⋅X₁₀
eval_alain_6->eval_alain_bb7_in
t₁₉
τ = X₈ ≤ X₁₀+X₁₁
eval_alain_bb0_in
eval_alain_bb0_in
eval_alain_bb0_in->eval_alain_0
t₃
eval_alain_bb1_in->eval_alain_bb2_in
t₂₃
η (X₀) = X₁₁
η (X₁) = X₇
η (X₂) = X₈
τ = 0 ≤ X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈
eval_alain_bb1_in->eval_alain_bb7_in
t₂₅
τ = 1+X₁₁ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₇
τ = 1+X₉ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₉
τ = 1+X₁₀ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₁
τ = 1+X₇ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₃
τ = 1+X₈ ≤ 0
eval_alain_bb3_in
eval_alain_bb3_in
eval_alain_bb2_in->eval_alain_bb3_in
t₃₅
η (X₆) = X₁-1
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁
eval_alain_bb2_in->eval_alain_bb7_in
t₃₇
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₁ ≤ 0
eval_alain_bb4_in
eval_alain_bb4_in
eval_alain_bb3_in->eval_alain_bb4_in
t₃₉
η (X₃) = X₀
η (X₄) = X₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in
eval_alain_bb5_in
eval_alain_bb4_in->eval_alain_bb5_in
t₄₁
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₄
eval_alain_bb6_in
eval_alain_bb6_in
eval_alain_bb4_in->eval_alain_bb6_in
t₄₃
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₄ ≤ 0
eval_alain_bb5_in->eval_alain_bb4_in
t₄₅
η (X₃) = X₁₀
η (X₄) = X₄-1
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in->eval_alain_bb5_in
t₄₆
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb6_in->eval_alain_17
t₄₈
η (X₅) = X₃+X₁₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_stop
eval_alain_stop
eval_alain_bb7_in->eval_alain_stop
t₅₆
eval_alain_start
eval_alain_start
eval_alain_start->eval_alain_bb0_in
t₁
MPRF for transition t₅₂: eval_alain_18(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_alain_19(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ of depth 1:
new bound:
X₇ {O(n)}
MPRF:
• eval_alain_17: [X₁]
• eval_alain_18: [X₁]
• eval_alain_19: [X₁-1]
• eval_alain_bb2_in: [X₁]
• eval_alain_bb3_in: [X₁]
• eval_alain_bb4_in: [1+X₆]
• eval_alain_bb5_in: [1+X₆]
• eval_alain_bb6_in: [X₁]
Show Graph
G
eval_alain_0
eval_alain_0
eval_alain_1
eval_alain_1
eval_alain_0->eval_alain_1
t₅
eval_alain_2
eval_alain_2
eval_alain_1->eval_alain_2
t₇
eval_alain_17
eval_alain_17
eval_alain_18
eval_alain_18
eval_alain_17->eval_alain_18
t₅₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_19
eval_alain_19
eval_alain_18->eval_alain_19
t₅₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb2_in
eval_alain_bb2_in
eval_alain_19->eval_alain_bb2_in
t₅₄
η (X₀) = X₅
η (X₁) = X₆
η (X₂) = X₅
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_3
eval_alain_3
eval_alain_2->eval_alain_3
t₉
eval_alain_4
eval_alain_4
eval_alain_3->eval_alain_4
t₁₁
eval_alain_5
eval_alain_5
eval_alain_4->eval_alain_5
t₁₃
eval_alain_6
eval_alain_6
eval_alain_5->eval_alain_6
t₁₅
eval_alain_bb1_in
eval_alain_bb1_in
eval_alain_6->eval_alain_bb1_in
t₂₁
τ = 1+2⋅X₁₀ ≤ X₈ ∧ 1+X₁₀+X₁₁ ≤ X₈
eval_alain_bb7_in
eval_alain_bb7_in
eval_alain_6->eval_alain_bb7_in
t₁₇
τ = X₈ ≤ 2⋅X₁₀
eval_alain_6->eval_alain_bb7_in
t₁₉
τ = X₈ ≤ X₁₀+X₁₁
eval_alain_bb0_in
eval_alain_bb0_in
eval_alain_bb0_in->eval_alain_0
t₃
eval_alain_bb1_in->eval_alain_bb2_in
t₂₃
η (X₀) = X₁₁
η (X₁) = X₇
η (X₂) = X₈
τ = 0 ≤ X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈
eval_alain_bb1_in->eval_alain_bb7_in
t₂₅
τ = 1+X₁₁ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₇
τ = 1+X₉ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₉
τ = 1+X₁₀ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₁
τ = 1+X₇ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₃
τ = 1+X₈ ≤ 0
eval_alain_bb3_in
eval_alain_bb3_in
eval_alain_bb2_in->eval_alain_bb3_in
t₃₅
η (X₆) = X₁-1
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁
eval_alain_bb2_in->eval_alain_bb7_in
t₃₇
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₁ ≤ 0
eval_alain_bb4_in
eval_alain_bb4_in
eval_alain_bb3_in->eval_alain_bb4_in
t₃₉
η (X₃) = X₀
η (X₄) = X₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in
eval_alain_bb5_in
eval_alain_bb4_in->eval_alain_bb5_in
t₄₁
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₄
eval_alain_bb6_in
eval_alain_bb6_in
eval_alain_bb4_in->eval_alain_bb6_in
t₄₃
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₄ ≤ 0
eval_alain_bb5_in->eval_alain_bb4_in
t₄₅
η (X₃) = X₁₀
η (X₄) = X₄-1
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in->eval_alain_bb5_in
t₄₆
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb6_in->eval_alain_17
t₄₈
η (X₅) = X₃+X₁₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_stop
eval_alain_stop
eval_alain_bb7_in->eval_alain_stop
t₅₆
eval_alain_start
eval_alain_start
eval_alain_start->eval_alain_bb0_in
t₁
MPRF for transition t₅₄: eval_alain_19(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_alain_bb2_in(X₅,X₆,X₅,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ of depth 1:
new bound:
X₇ {O(n)}
MPRF:
• eval_alain_17: [1+X₆]
• eval_alain_18: [1+X₆]
• eval_alain_19: [1+X₆]
• eval_alain_bb2_in: [X₁]
• eval_alain_bb3_in: [X₁]
• eval_alain_bb4_in: [1+X₆]
• eval_alain_bb5_in: [X₁]
• eval_alain_bb6_in: [X₁]
Show Graph
G
eval_alain_0
eval_alain_0
eval_alain_1
eval_alain_1
eval_alain_0->eval_alain_1
t₅
eval_alain_2
eval_alain_2
eval_alain_1->eval_alain_2
t₇
eval_alain_17
eval_alain_17
eval_alain_18
eval_alain_18
eval_alain_17->eval_alain_18
t₅₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_19
eval_alain_19
eval_alain_18->eval_alain_19
t₅₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb2_in
eval_alain_bb2_in
eval_alain_19->eval_alain_bb2_in
t₅₄
η (X₀) = X₅
η (X₁) = X₆
η (X₂) = X₅
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_3
eval_alain_3
eval_alain_2->eval_alain_3
t₉
eval_alain_4
eval_alain_4
eval_alain_3->eval_alain_4
t₁₁
eval_alain_5
eval_alain_5
eval_alain_4->eval_alain_5
t₁₃
eval_alain_6
eval_alain_6
eval_alain_5->eval_alain_6
t₁₅
eval_alain_bb1_in
eval_alain_bb1_in
eval_alain_6->eval_alain_bb1_in
t₂₁
τ = 1+2⋅X₁₀ ≤ X₈ ∧ 1+X₁₀+X₁₁ ≤ X₈
eval_alain_bb7_in
eval_alain_bb7_in
eval_alain_6->eval_alain_bb7_in
t₁₇
τ = X₈ ≤ 2⋅X₁₀
eval_alain_6->eval_alain_bb7_in
t₁₉
τ = X₈ ≤ X₁₀+X₁₁
eval_alain_bb0_in
eval_alain_bb0_in
eval_alain_bb0_in->eval_alain_0
t₃
eval_alain_bb1_in->eval_alain_bb2_in
t₂₃
η (X₀) = X₁₁
η (X₁) = X₇
η (X₂) = X₈
τ = 0 ≤ X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈
eval_alain_bb1_in->eval_alain_bb7_in
t₂₅
τ = 1+X₁₁ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₇
τ = 1+X₉ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₉
τ = 1+X₁₀ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₁
τ = 1+X₇ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₃
τ = 1+X₈ ≤ 0
eval_alain_bb3_in
eval_alain_bb3_in
eval_alain_bb2_in->eval_alain_bb3_in
t₃₅
η (X₆) = X₁-1
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁
eval_alain_bb2_in->eval_alain_bb7_in
t₃₇
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₁ ≤ 0
eval_alain_bb4_in
eval_alain_bb4_in
eval_alain_bb3_in->eval_alain_bb4_in
t₃₉
η (X₃) = X₀
η (X₄) = X₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in
eval_alain_bb5_in
eval_alain_bb4_in->eval_alain_bb5_in
t₄₁
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₄
eval_alain_bb6_in
eval_alain_bb6_in
eval_alain_bb4_in->eval_alain_bb6_in
t₄₃
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₄ ≤ 0
eval_alain_bb5_in->eval_alain_bb4_in
t₄₅
η (X₃) = X₁₀
η (X₄) = X₄-1
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in->eval_alain_bb5_in
t₄₆
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb6_in->eval_alain_17
t₄₈
η (X₅) = X₃+X₁₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_stop
eval_alain_stop
eval_alain_bb7_in->eval_alain_stop
t₅₆
eval_alain_start
eval_alain_start
eval_alain_start->eval_alain_bb0_in
t₁
MPRF for transition t₄₁: eval_alain_bb4_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_alain_bb5_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₄ of depth 1:
new bound:
2⋅X₁₀⋅X₇⋅X₇+3⋅X₁₀⋅X₇+X₁₁⋅X₇+X₈ {O(n^3)}
MPRF:
• eval_alain_17: [X₅-X₃-X₁₀]
• eval_alain_18: [X₅-X₃-X₁₀]
• eval_alain_19: [X₅-X₃-X₁₀]
• eval_alain_bb2_in: [X₂]
• eval_alain_bb3_in: [X₂]
• eval_alain_bb4_in: [X₄]
• eval_alain_bb5_in: [X₄-1]
• eval_alain_bb6_in: [0]
Show Graph
G
eval_alain_0
eval_alain_0
eval_alain_1
eval_alain_1
eval_alain_0->eval_alain_1
t₅
eval_alain_2
eval_alain_2
eval_alain_1->eval_alain_2
t₇
eval_alain_17
eval_alain_17
eval_alain_18
eval_alain_18
eval_alain_17->eval_alain_18
t₅₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_19
eval_alain_19
eval_alain_18->eval_alain_19
t₅₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb2_in
eval_alain_bb2_in
eval_alain_19->eval_alain_bb2_in
t₅₄
η (X₀) = X₅
η (X₁) = X₆
η (X₂) = X₅
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_3
eval_alain_3
eval_alain_2->eval_alain_3
t₉
eval_alain_4
eval_alain_4
eval_alain_3->eval_alain_4
t₁₁
eval_alain_5
eval_alain_5
eval_alain_4->eval_alain_5
t₁₃
eval_alain_6
eval_alain_6
eval_alain_5->eval_alain_6
t₁₅
eval_alain_bb1_in
eval_alain_bb1_in
eval_alain_6->eval_alain_bb1_in
t₂₁
τ = 1+2⋅X₁₀ ≤ X₈ ∧ 1+X₁₀+X₁₁ ≤ X₈
eval_alain_bb7_in
eval_alain_bb7_in
eval_alain_6->eval_alain_bb7_in
t₁₇
τ = X₈ ≤ 2⋅X₁₀
eval_alain_6->eval_alain_bb7_in
t₁₉
τ = X₈ ≤ X₁₀+X₁₁
eval_alain_bb0_in
eval_alain_bb0_in
eval_alain_bb0_in->eval_alain_0
t₃
eval_alain_bb1_in->eval_alain_bb2_in
t₂₃
η (X₀) = X₁₁
η (X₁) = X₇
η (X₂) = X₈
τ = 0 ≤ X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈
eval_alain_bb1_in->eval_alain_bb7_in
t₂₅
τ = 1+X₁₁ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₇
τ = 1+X₉ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₉
τ = 1+X₁₀ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₁
τ = 1+X₇ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₃
τ = 1+X₈ ≤ 0
eval_alain_bb3_in
eval_alain_bb3_in
eval_alain_bb2_in->eval_alain_bb3_in
t₃₅
η (X₆) = X₁-1
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁
eval_alain_bb2_in->eval_alain_bb7_in
t₃₇
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₁ ≤ 0
eval_alain_bb4_in
eval_alain_bb4_in
eval_alain_bb3_in->eval_alain_bb4_in
t₃₉
η (X₃) = X₀
η (X₄) = X₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in
eval_alain_bb5_in
eval_alain_bb4_in->eval_alain_bb5_in
t₄₁
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₄
eval_alain_bb6_in
eval_alain_bb6_in
eval_alain_bb4_in->eval_alain_bb6_in
t₄₃
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₄ ≤ 0
eval_alain_bb5_in->eval_alain_bb4_in
t₄₅
η (X₃) = X₁₀
η (X₄) = X₄-1
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in->eval_alain_bb5_in
t₄₆
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb6_in->eval_alain_17
t₄₈
η (X₅) = X₃+X₁₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_stop
eval_alain_stop
eval_alain_bb7_in->eval_alain_stop
t₅₆
eval_alain_start
eval_alain_start
eval_alain_start->eval_alain_bb0_in
t₁
MPRF for transition t₄₅: eval_alain_bb5_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_alain_bb4_in(X₀,X₁,X₂,X₁₀,X₄-1,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ of depth 1:
new bound:
2⋅X₁₀⋅X₇⋅X₇+3⋅X₁₀⋅X₇+X₁₁⋅X₇+X₇⋅X₇+X₇+X₈ {O(n^3)}
MPRF:
• eval_alain_17: [X₅-X₃-X₁₀]
• eval_alain_18: [X₅-X₃-X₁₀]
• eval_alain_19: [X₅-X₃-X₁₀]
• eval_alain_bb2_in: [X₂+X₇]
• eval_alain_bb3_in: [X₂+X₇]
• eval_alain_bb4_in: [1+X₄]
• eval_alain_bb5_in: [1+X₄]
• eval_alain_bb6_in: [0]
Show Graph
G
eval_alain_0
eval_alain_0
eval_alain_1
eval_alain_1
eval_alain_0->eval_alain_1
t₅
eval_alain_2
eval_alain_2
eval_alain_1->eval_alain_2
t₇
eval_alain_17
eval_alain_17
eval_alain_18
eval_alain_18
eval_alain_17->eval_alain_18
t₅₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_19
eval_alain_19
eval_alain_18->eval_alain_19
t₅₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb2_in
eval_alain_bb2_in
eval_alain_19->eval_alain_bb2_in
t₅₄
η (X₀) = X₅
η (X₁) = X₆
η (X₂) = X₅
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_3
eval_alain_3
eval_alain_2->eval_alain_3
t₉
eval_alain_4
eval_alain_4
eval_alain_3->eval_alain_4
t₁₁
eval_alain_5
eval_alain_5
eval_alain_4->eval_alain_5
t₁₃
eval_alain_6
eval_alain_6
eval_alain_5->eval_alain_6
t₁₅
eval_alain_bb1_in
eval_alain_bb1_in
eval_alain_6->eval_alain_bb1_in
t₂₁
τ = 1+2⋅X₁₀ ≤ X₈ ∧ 1+X₁₀+X₁₁ ≤ X₈
eval_alain_bb7_in
eval_alain_bb7_in
eval_alain_6->eval_alain_bb7_in
t₁₇
τ = X₈ ≤ 2⋅X₁₀
eval_alain_6->eval_alain_bb7_in
t₁₉
τ = X₈ ≤ X₁₀+X₁₁
eval_alain_bb0_in
eval_alain_bb0_in
eval_alain_bb0_in->eval_alain_0
t₃
eval_alain_bb1_in->eval_alain_bb2_in
t₂₃
η (X₀) = X₁₁
η (X₁) = X₇
η (X₂) = X₈
τ = 0 ≤ X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₇ ∧ 0 ≤ X₈
eval_alain_bb1_in->eval_alain_bb7_in
t₂₅
τ = 1+X₁₁ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₇
τ = 1+X₉ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₂₉
τ = 1+X₁₀ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₁
τ = 1+X₇ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
t₃₃
τ = 1+X₈ ≤ 0
eval_alain_bb3_in
eval_alain_bb3_in
eval_alain_bb2_in->eval_alain_bb3_in
t₃₅
η (X₆) = X₁-1
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁
eval_alain_bb2_in->eval_alain_bb7_in
t₃₇
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₁ ≤ 0
eval_alain_bb4_in
eval_alain_bb4_in
eval_alain_bb3_in->eval_alain_bb4_in
t₃₉
η (X₃) = X₀
η (X₄) = X₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in
eval_alain_bb5_in
eval_alain_bb4_in->eval_alain_bb5_in
t₄₁
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₄
eval_alain_bb6_in
eval_alain_bb6_in
eval_alain_bb4_in->eval_alain_bb6_in
t₄₃
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₄ ≤ 0
eval_alain_bb5_in->eval_alain_bb4_in
t₄₅
η (X₃) = X₁₀
η (X₄) = X₄-1
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in->eval_alain_bb5_in
t₄₆
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb6_in->eval_alain_17
t₄₈
η (X₅) = X₃+X₁₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_stop
eval_alain_stop
eval_alain_bb7_in->eval_alain_stop
t₅₆
eval_alain_start
eval_alain_start
eval_alain_start->eval_alain_bb0_in
t₁
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: X₇+1 {O(n)}
g₃₆: 1 {O(1)}
g₃₈: X₇ {O(n)}
g₄₀: 2⋅X₁₀⋅X₇⋅X₇+3⋅X₁₀⋅X₇+X₁₁⋅X₇+X₈ {O(n^3)}
g₄₂: X₇ {O(n)}
g₄₄: inf {Infinity}
g₄₇: 2⋅X₇ {O(n)}
g₄₉: X₇ {O(n)}
g₅₁: X₇ {O(n)}
g₅₃: X₇ {O(n)}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
(g₄,eval_alain_1), X₀: X₀ {O(n)}
(g₄,eval_alain_1), X₁: X₁ {O(n)}
(g₄,eval_alain_1), X₂: X₂ {O(n)}
(g₄,eval_alain_1), X₃: X₃ {O(n)}
(g₄,eval_alain_1), X₄: X₄ {O(n)}
(g₄,eval_alain_1), X₅: X₅ {O(n)}
(g₄,eval_alain_1), X₆: X₆ {O(n)}
(g₄,eval_alain_1), X₇: X₇ {O(n)}
(g₄,eval_alain_1), X₈: X₈ {O(n)}
(g₄,eval_alain_1), X₉: X₉ {O(n)}
(g₄,eval_alain_1), X₁₀: X₁₀ {O(n)}
(g₄,eval_alain_1), X₁₁: X₁₁ {O(n)}
(g₆,eval_alain_2), X₀: X₀ {O(n)}
(g₆,eval_alain_2), X₁: X₁ {O(n)}
(g₆,eval_alain_2), X₂: X₂ {O(n)}
(g₆,eval_alain_2), X₃: X₃ {O(n)}
(g₆,eval_alain_2), X₄: X₄ {O(n)}
(g₆,eval_alain_2), X₅: X₅ {O(n)}
(g₆,eval_alain_2), X₆: X₆ {O(n)}
(g₆,eval_alain_2), X₇: X₇ {O(n)}
(g₆,eval_alain_2), X₈: X₈ {O(n)}
(g₆,eval_alain_2), X₉: X₉ {O(n)}
(g₆,eval_alain_2), X₁₀: X₁₀ {O(n)}
(g₆,eval_alain_2), X₁₁: X₁₁ {O(n)}
(g₈,eval_alain_3), X₀: X₀ {O(n)}
(g₈,eval_alain_3), X₁: X₁ {O(n)}
(g₈,eval_alain_3), X₂: X₂ {O(n)}
(g₈,eval_alain_3), X₃: X₃ {O(n)}
(g₈,eval_alain_3), X₄: X₄ {O(n)}
(g₈,eval_alain_3), X₅: X₅ {O(n)}
(g₈,eval_alain_3), X₆: X₆ {O(n)}
(g₈,eval_alain_3), X₇: X₇ {O(n)}
(g₈,eval_alain_3), X₈: X₈ {O(n)}
(g₈,eval_alain_3), X₉: X₉ {O(n)}
(g₈,eval_alain_3), X₁₀: X₁₀ {O(n)}
(g₈,eval_alain_3), X₁₁: X₁₁ {O(n)}
(g₁₀,eval_alain_4), X₀: X₀ {O(n)}
(g₁₀,eval_alain_4), X₁: X₁ {O(n)}
(g₁₀,eval_alain_4), X₂: X₂ {O(n)}
(g₁₀,eval_alain_4), X₃: X₃ {O(n)}
(g₁₀,eval_alain_4), X₄: X₄ {O(n)}
(g₁₀,eval_alain_4), X₅: X₅ {O(n)}
(g₁₀,eval_alain_4), X₆: X₆ {O(n)}
(g₁₀,eval_alain_4), X₇: X₇ {O(n)}
(g₁₀,eval_alain_4), X₈: X₈ {O(n)}
(g₁₀,eval_alain_4), X₉: X₉ {O(n)}
(g₁₀,eval_alain_4), X₁₀: X₁₀ {O(n)}
(g₁₀,eval_alain_4), X₁₁: X₁₁ {O(n)}
(g₁₂,eval_alain_5), X₀: X₀ {O(n)}
(g₁₂,eval_alain_5), X₁: X₁ {O(n)}
(g₁₂,eval_alain_5), X₂: X₂ {O(n)}
(g₁₂,eval_alain_5), X₃: X₃ {O(n)}
(g₁₂,eval_alain_5), X₄: X₄ {O(n)}
(g₁₂,eval_alain_5), X₅: X₅ {O(n)}
(g₁₂,eval_alain_5), X₆: X₆ {O(n)}
(g₁₂,eval_alain_5), X₇: X₇ {O(n)}
(g₁₂,eval_alain_5), X₈: X₈ {O(n)}
(g₁₂,eval_alain_5), X₉: X₉ {O(n)}
(g₁₂,eval_alain_5), X₁₀: X₁₀ {O(n)}
(g₁₂,eval_alain_5), X₁₁: X₁₁ {O(n)}
(g₁₄,eval_alain_6), X₀: X₀ {O(n)}
(g₁₄,eval_alain_6), X₁: X₁ {O(n)}
(g₁₄,eval_alain_6), X₂: X₂ {O(n)}
(g₁₄,eval_alain_6), X₃: X₃ {O(n)}
(g₁₄,eval_alain_6), X₄: X₄ {O(n)}
(g₁₄,eval_alain_6), X₅: X₅ {O(n)}
(g₁₄,eval_alain_6), X₆: X₆ {O(n)}
(g₁₄,eval_alain_6), X₇: X₇ {O(n)}
(g₁₄,eval_alain_6), X₈: X₈ {O(n)}
(g₁₄,eval_alain_6), X₉: X₉ {O(n)}
(g₁₄,eval_alain_6), X₁₀: X₁₀ {O(n)}
(g₁₄,eval_alain_6), X₁₁: X₁₁ {O(n)}
(g₁₆,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₁₆,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₁₆,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₁₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₁₆,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₁₆,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₁₆,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₁₆,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₁₆,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₁₈,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₁₈,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₁₈,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₁₈,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₁₈,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₁₈,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₁₈,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₁₈,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₁₈,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₀,eval_alain_bb1_in), X₀: X₀ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁: X₁ {O(n)}
(g₂₀,eval_alain_bb1_in), X₂: X₂ {O(n)}
(g₂₀,eval_alain_bb1_in), X₃: X₃ {O(n)}
(g₂₀,eval_alain_bb1_in), X₄: X₄ {O(n)}
(g₂₀,eval_alain_bb1_in), X₅: X₅ {O(n)}
(g₂₀,eval_alain_bb1_in), X₆: X₆ {O(n)}
(g₂₀,eval_alain_bb1_in), X₇: X₇ {O(n)}
(g₂₀,eval_alain_bb1_in), X₈: X₈ {O(n)}
(g₂₀,eval_alain_bb1_in), X₉: X₉ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁₀: X₁₀ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁₁: X₁₁ {O(n)}
(g₂₂,eval_alain_bb2_in), X₀: X₁₁ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁: X₇ {O(n)}
(g₂₂,eval_alain_bb2_in), X₂: X₈ {O(n)}
(g₂₂,eval_alain_bb2_in), X₃: X₃ {O(n)}
(g₂₂,eval_alain_bb2_in), X₄: X₄ {O(n)}
(g₂₂,eval_alain_bb2_in), X₅: X₅ {O(n)}
(g₂₂,eval_alain_bb2_in), X₆: X₆ {O(n)}
(g₂₂,eval_alain_bb2_in), X₇: X₇ {O(n)}
(g₂₂,eval_alain_bb2_in), X₈: X₈ {O(n)}
(g₂₂,eval_alain_bb2_in), X₉: X₉ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁₀: X₁₀ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁₁: X₁₁ {O(n)}
(g₂₄,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₄,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₄,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₄,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₄,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₄,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₄,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₄,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₄,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₆,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₆,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₆,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₆,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₆,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₆,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₆,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₆,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₈,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₈,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₈,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₈,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₈,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₈,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₈,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₈,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₈,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₀,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₃₀,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₃₀,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₃₀,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₀,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₃₀,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₃₀,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₃₀,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₃₀,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₂,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₃₂,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₃₂,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₃₂,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₂,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₃₂,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₃₂,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₃₂,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₃₂,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₄,eval_alain_bb3_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₁: X₇ {O(n)}
(g₃₄,eval_alain_bb3_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₃ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₄: X₄ {O(n)}
(g₃₄,eval_alain_bb3_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₆: 2⋅X₇ {O(n)}
(g₃₄,eval_alain_bb3_in), X₇: X₇ {O(n)}
(g₃₄,eval_alain_bb3_in), X₈: X₈ {O(n)}
(g₃₄,eval_alain_bb3_in), X₉: X₉ {O(n)}
(g₃₄,eval_alain_bb3_in), X₁₀: X₁₀ {O(n)}
(g₃₄,eval_alain_bb3_in), X₁₁: X₁₁ {O(n)}
(g₃₆,eval_alain_bb7_in), X₀: 2⋅X₁₀⋅X₇+2⋅X₁₁+3⋅X₁₀ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₁: 0 {O(1)}
(g₃₆,eval_alain_bb7_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₃ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₆,eval_alain_bb7_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₆: 4⋅X₇+X₆ {O(n)}
(g₃₆,eval_alain_bb7_in), X₇: 2⋅X₇ {O(n)}
(g₃₆,eval_alain_bb7_in), X₈: 2⋅X₈ {O(n)}
(g₃₆,eval_alain_bb7_in), X₉: 2⋅X₉ {O(n)}
(g₃₆,eval_alain_bb7_in), X₁₀: 2⋅X₁₀ {O(n)}
(g₃₆,eval_alain_bb7_in), X₁₁: 2⋅X₁₁ {O(n)}
(g₃₈,eval_alain_bb4_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₁: X₇ {O(n)}
(g₃₈,eval_alain_bb4_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₄: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₆: 2⋅X₇ {O(n)}
(g₃₈,eval_alain_bb4_in), X₇: X₇ {O(n)}
(g₃₈,eval_alain_bb4_in), X₈: X₈ {O(n)}
(g₃₈,eval_alain_bb4_in), X₉: X₉ {O(n)}
(g₃₈,eval_alain_bb4_in), X₁₀: X₁₀ {O(n)}
(g₃₈,eval_alain_bb4_in), X₁₁: X₁₁ {O(n)}
(g₄₀,eval_alain_bb5_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₁: X₇ {O(n)}
(g₄₀,eval_alain_bb5_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₃: 2⋅X₁₀⋅X₇+5⋅X₁₀+X₁₁ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₄: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₆: 2⋅X₇ {O(n)}
(g₄₀,eval_alain_bb5_in), X₇: X₇ {O(n)}
(g₄₀,eval_alain_bb5_in), X₈: X₈ {O(n)}
(g₄₀,eval_alain_bb5_in), X₉: X₉ {O(n)}
(g₄₀,eval_alain_bb5_in), X₁₀: X₁₀ {O(n)}
(g₄₀,eval_alain_bb5_in), X₁₁: X₁₁ {O(n)}
(g₄₂,eval_alain_bb6_in), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₁: X₇ {O(n)}
(g₄₂,eval_alain_bb6_in), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₄: 0 {O(1)}
(g₄₂,eval_alain_bb6_in), X₅: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₅+6⋅X₁₀ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₆: 4⋅X₇ {O(n)}
(g₄₂,eval_alain_bb6_in), X₇: X₇ {O(n)}
(g₄₂,eval_alain_bb6_in), X₈: X₈ {O(n)}
(g₄₂,eval_alain_bb6_in), X₉: X₉ {O(n)}
(g₄₂,eval_alain_bb6_in), X₁₀: X₁₀ {O(n)}
(g₄₂,eval_alain_bb6_in), X₁₁: X₁₁ {O(n)}
(g₄₄,eval_alain_bb4_in), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₁: 2⋅X₇ {O(n)}
(g₄₄,eval_alain_bb4_in), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₃: 2⋅X₁₀⋅X₇+7⋅X₁₀+X₁₁ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₄: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₅: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₅+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₆: 4⋅X₇ {O(n)}
(g₄₄,eval_alain_bb4_in), X₇: 2⋅X₇ {O(n)}
(g₄₄,eval_alain_bb4_in), X₈: 2⋅X₈ {O(n)}
(g₄₄,eval_alain_bb4_in), X₉: 2⋅X₉ {O(n)}
(g₄₄,eval_alain_bb4_in), X₁₀: 2⋅X₁₀ {O(n)}
(g₄₄,eval_alain_bb4_in), X₁₁: 2⋅X₁₁ {O(n)}
(g₄₄,eval_alain_bb5_in), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₁: 2⋅X₇ {O(n)}
(g₄₄,eval_alain_bb5_in), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₃: 2⋅X₁₀⋅X₇+7⋅X₁₀+X₁₁ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₄: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₅: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₅+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₆: 4⋅X₇ {O(n)}
(g₄₄,eval_alain_bb5_in), X₇: 2⋅X₇ {O(n)}
(g₄₄,eval_alain_bb5_in), X₈: 2⋅X₈ {O(n)}
(g₄₄,eval_alain_bb5_in), X₉: 2⋅X₉ {O(n)}
(g₄₄,eval_alain_bb5_in), X₁₀: 2⋅X₁₀ {O(n)}
(g₄₄,eval_alain_bb5_in), X₁₁: 2⋅X₁₁ {O(n)}
(g₄₇,eval_alain_17), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₇,eval_alain_17), X₁: X₇ {O(n)}
(g₄₇,eval_alain_17), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₇,eval_alain_17), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₇,eval_alain_17), X₄: 0 {O(1)}
(g₄₇,eval_alain_17), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₇,eval_alain_17), X₆: 4⋅X₇ {O(n)}
(g₄₇,eval_alain_17), X₇: X₇ {O(n)}
(g₄₇,eval_alain_17), X₈: X₈ {O(n)}
(g₄₇,eval_alain_17), X₉: X₉ {O(n)}
(g₄₇,eval_alain_17), X₁₀: X₁₀ {O(n)}
(g₄₇,eval_alain_17), X₁₁: X₁₁ {O(n)}
(g₄₉,eval_alain_18), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₉,eval_alain_18), X₁: X₇ {O(n)}
(g₄₉,eval_alain_18), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₉,eval_alain_18), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₉,eval_alain_18), X₄: 0 {O(1)}
(g₄₉,eval_alain_18), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₉,eval_alain_18), X₆: 4⋅X₇ {O(n)}
(g₄₉,eval_alain_18), X₇: X₇ {O(n)}
(g₄₉,eval_alain_18), X₈: X₈ {O(n)}
(g₄₉,eval_alain_18), X₉: X₉ {O(n)}
(g₄₉,eval_alain_18), X₁₀: X₁₀ {O(n)}
(g₄₉,eval_alain_18), X₁₁: X₁₁ {O(n)}
(g₅₁,eval_alain_19), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₅₁,eval_alain_19), X₁: X₇ {O(n)}
(g₅₁,eval_alain_19), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₅₁,eval_alain_19), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₁,eval_alain_19), X₄: 0 {O(1)}
(g₅₁,eval_alain_19), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₁,eval_alain_19), X₆: 4⋅X₇ {O(n)}
(g₅₁,eval_alain_19), X₇: X₇ {O(n)}
(g₅₁,eval_alain_19), X₈: X₈ {O(n)}
(g₅₁,eval_alain_19), X₉: X₉ {O(n)}
(g₅₁,eval_alain_19), X₁₀: X₁₀ {O(n)}
(g₅₁,eval_alain_19), X₁₁: X₁₁ {O(n)}
(g₅₃,eval_alain_bb2_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₁: X₇ {O(n)}
(g₅₃,eval_alain_bb2_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₄: 0 {O(1)}
(g₅₃,eval_alain_bb2_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₆: 4⋅X₇ {O(n)}
(g₅₃,eval_alain_bb2_in), X₇: X₇ {O(n)}
(g₅₃,eval_alain_bb2_in), X₈: X₈ {O(n)}
(g₅₃,eval_alain_bb2_in), X₉: X₉ {O(n)}
(g₅₃,eval_alain_bb2_in), X₁₀: X₁₀ {O(n)}
(g₅₃,eval_alain_bb2_in), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_17; eval_alain_18; eval_alain_19; eval_alain_bb2_in; eval_alain_bb3_in; eval_alain_bb4_in; eval_alain_bb5_in; eval_alain_bb6_in]
Plrf for transition g₄₄:eval_alain_bb5_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → [1/2]:t₄₅:eval_alain_bb4_in(X₀,X₁,X₂,X₁₀,X₄-1,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :+: [1/2]:t₄₆:eval_alain_bb5_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁:
new bound:
4⋅X₁₀⋅X₇⋅X₇+2⋅X₁₁⋅X₇+8⋅X₁₀⋅X₇+2⋅X₁₀+2⋅X₈ {O(n^3)}
PLRF:
• eval_alain_17: 2⋅X₅-2⋅X₃
• eval_alain_18: 2⋅X₅-2⋅X₃
• eval_alain_19: 2⋅X₅-2⋅X₃
• eval_alain_bb2_in: 2⋅X₂+2⋅X₁₀
• eval_alain_bb3_in: 2⋅X₂+2⋅X₁₀
• eval_alain_bb4_in: 2⋅X₄+2⋅X₁₀
• eval_alain_bb5_in: 2⋅X₄+2⋅X₁₀
• eval_alain_bb6_in: 2⋅X₁₀
Show Graph
G
eval_alain_0
eval_alain_0
eval_alain_1
eval_alain_1
eval_alain_0->eval_alain_1
p = 1
t₅ ∈ g₄
eval_alain_2
eval_alain_2
eval_alain_1->eval_alain_2
p = 1
t₇ ∈ g₆
eval_alain_17
eval_alain_17
eval_alain_18
eval_alain_18
eval_alain_17->eval_alain_18
p = 1
t₅₀ ∈ g₄₉
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_19
eval_alain_19
eval_alain_18->eval_alain_19
p = 1
t₅₂ ∈ g₅₁
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb2_in
eval_alain_bb2_in
eval_alain_19->eval_alain_bb2_in
p = 1
t₅₄ ∈ g₅₃
η (X₀) = X₅
η (X₁) = X₆
η (X₂) = X₅
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₅ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₅+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₅ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₅ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₅ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ X₃ ≤ X₅ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₅ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₅ ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₅ ∧ 0 ≤ X₅+X₆ ∧ 0 ≤ X₅+X₉ ∧ 0 ≤ X₅+X₁₀ ∧ X₁₀ ≤ X₅ ∧ 0 ≤ X₅+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_3
eval_alain_3
eval_alain_2->eval_alain_3
p = 1
t₉ ∈ g₈
eval_alain_4
eval_alain_4
eval_alain_3->eval_alain_4
p = 1
t₁₁ ∈ g₁₀
eval_alain_5
eval_alain_5
eval_alain_4->eval_alain_5
p = 1
t₁₃ ∈ g₁₂
eval_alain_6
eval_alain_6
eval_alain_5->eval_alain_6
p = 1
t₁₅ ∈ g₁₄
eval_alain_bb1_in
eval_alain_bb1_in
eval_alain_6->eval_alain_bb1_in
p = 1
t₂₁ ∈ g₂₀
τ = 1+X₁₀+X₁₁ ≤ X₈ ∧ 1+2⋅X₁₀ ≤ X₈
eval_alain_bb7_in
eval_alain_bb7_in
eval_alain_6->eval_alain_bb7_in
p = 1
t₁₇ ∈ g₁₆
τ = X₈ ≤ 2⋅X₁₀
eval_alain_6->eval_alain_bb7_in
p = 1
t₁₉ ∈ g₁₈
τ = X₈ ≤ X₁₀+X₁₁
eval_alain_bb0_in
eval_alain_bb0_in
eval_alain_bb0_in->eval_alain_0
p = 1
t₃ ∈ g₂
eval_alain_bb1_in->eval_alain_bb2_in
p = 1
t₂₃ ∈ g₂₂
η (X₀) = X₁₁
η (X₁) = X₇
η (X₂) = X₈
τ = 0 ≤ X₇ ∧ 0 ≤ X₈ ∧ 0 ≤ X₉ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₁
eval_alain_bb1_in->eval_alain_bb7_in
p = 1
t₂₅ ∈ g₂₄
τ = 1+X₁₁ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
p = 1
t₂₇ ∈ g₂₆
τ = 1+X₉ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
p = 1
t₂₉ ∈ g₂₈
τ = 1+X₁₀ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
p = 1
t₃₁ ∈ g₃₀
τ = 1+X₇ ≤ 0
eval_alain_bb1_in->eval_alain_bb7_in
p = 1
t₃₃ ∈ g₃₂
τ = 1+X₈ ≤ 0
eval_alain_bb3_in
eval_alain_bb3_in
eval_alain_bb2_in->eval_alain_bb3_in
p = 1
t₃₅ ∈ g₃₄
η (X₆) = X₁-1
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₁
eval_alain_bb2_in->eval_alain_bb7_in
p = 1
t₃₇ ∈ g₃₆
τ = 0 ≤ X₀ ∧ 0 ≤ X₀+X₁ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₇ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ 0 ≤ X₁ ∧ 0 ≤ X₁+X₂ ∧ 0 ≤ X₁+X₇ ∧ 0 ≤ X₁+X₉ ∧ 0 ≤ X₁+X₁₀ ∧ 0 ≤ X₁+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₇ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₇ ∧ 0 ≤ X₇+X₉ ∧ 0 ≤ X₇+X₁₀ ∧ 0 ≤ X₇+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₁ ≤ 0
eval_alain_bb4_in
eval_alain_bb4_in
eval_alain_bb3_in->eval_alain_bb4_in
p = 1
t₃₉ ∈ g₃₈
η (X₃) = X₀
η (X₄) = X₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in
eval_alain_bb5_in
eval_alain_bb4_in->eval_alain_bb5_in
p = 1
t₄₁ ∈ g₄₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ 1 ≤ X₄
eval_alain_bb6_in
eval_alain_bb6_in
eval_alain_bb4_in->eval_alain_bb6_in
p = 1
t₄₃ ∈ g₄₂
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁ ∧ X₄ ≤ 0
eval_alain_bb5_in->eval_alain_bb4_in
p = 1/2
t₄₅ ∈ g₄₄
η (X₃) = X₁₀
η (X₄) = X₄-1
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb5_in->eval_alain_bb5_in
p = 1/2
t₄₆ ∈ g₄₄
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₂ ∧ 1 ≤ X₀+X₄ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂ ∧ 1 ≤ X₂+X₃ ∧ 1 ≤ X₂+X₆ ∧ 1 ≤ X₂+X₉ ∧ 1 ≤ X₂+X₁₀ ∧ 1 ≤ X₂+X₁₁ ∧ 1 ≤ X₃+X₄ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₄+X₆ ∧ 1 ≤ X₄+X₉ ∧ 1 ≤ X₄+X₁₀ ∧ 1 ≤ X₄+X₁₁ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₂ ∧ 2 ≤ X₁+X₄ ∧ 2 ≤ X₁+X₇ ∧ 2 ≤ X₂+X₄ ∧ 2 ≤ X₂+X₇ ∧ 2 ≤ X₄+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_bb6_in->eval_alain_17
p = 1
t₄₈ ∈ g₄₇
η (X₅) = X₃+X₁₀
τ = X₁ ≤ 1+X₆ ∧ 1 ≤ X₀+X₁ ∧ 1 ≤ X₀+X₇ ∧ 1 ≤ X₁ ∧ 1 ≤ X₁+X₂ ∧ 1 ≤ X₁+X₃ ∧ 1 ≤ X₁+X₄ ∧ 1+X₄ ≤ X₁ ∧ 1 ≤ X₁+X₆ ∧ 1+X₆ ≤ X₁ ∧ 1 ≤ X₁+X₉ ∧ 1 ≤ X₁+X₁₀ ∧ 1 ≤ X₁+X₁₁ ∧ 1 ≤ X₂+X₇ ∧ 1 ≤ X₃+X₇ ∧ 1 ≤ X₄+X₇ ∧ 1+X₄ ≤ X₇ ∧ 1 ≤ X₆+X₇ ∧ 1+X₆ ≤ X₇ ∧ 1 ≤ X₇ ∧ 1 ≤ X₇+X₉ ∧ 1 ≤ X₇+X₁₀ ∧ 1 ≤ X₇+X₁₁ ∧ 2 ≤ X₁+X₇ ∧ 0 ≤ X₀ ∧ 0 ≤ X₀+X₂ ∧ 0 ≤ X₀+X₃ ∧ 0 ≤ X₀+X₄ ∧ X₄ ≤ X₀ ∧ 0 ≤ X₀+X₆ ∧ 0 ≤ X₀+X₉ ∧ 0 ≤ X₀+X₁₀ ∧ 0 ≤ X₀+X₁₁ ∧ X₁ ≤ X₇ ∧ 0 ≤ X₂ ∧ 0 ≤ X₂+X₃ ∧ 0 ≤ X₂+X₄ ∧ X₄ ≤ X₂ ∧ 0 ≤ X₂+X₆ ∧ 0 ≤ X₂+X₉ ∧ 0 ≤ X₂+X₁₀ ∧ 0 ≤ X₂+X₁₁ ∧ 0 ≤ X₃ ∧ 0 ≤ X₃+X₄ ∧ X₄ ≤ X₃ ∧ 0 ≤ X₃+X₆ ∧ 0 ≤ X₃+X₉ ∧ 0 ≤ X₃+X₁₀ ∧ 0 ≤ X₃+X₁₁ ∧ 0 ≤ X₄ ∧ 0 ≤ X₄+X₆ ∧ 0 ≤ X₄+X₉ ∧ 0 ≤ X₄+X₁₀ ∧ 0 ≤ X₄+X₁₁ ∧ X₄ ≤ 0 ∧ X₄ ≤ X₆ ∧ X₄ ≤ X₉ ∧ X₄ ≤ X₁₀ ∧ X₄ ≤ X₁₁ ∧ 0 ≤ X₆ ∧ 0 ≤ X₆+X₉ ∧ 0 ≤ X₆+X₁₀ ∧ 0 ≤ X₆+X₁₁ ∧ 0 ≤ X₉ ∧ 0 ≤ X₉+X₁₀ ∧ 0 ≤ X₉+X₁₁ ∧ 0 ≤ X₁₀ ∧ 0 ≤ X₁₀+X₁₁ ∧ 0 ≤ X₁₁
eval_alain_stop
eval_alain_stop
eval_alain_bb7_in->eval_alain_stop
p = 1
t₅₆ ∈ g₅₅
eval_alain_start
eval_alain_start
eval_alain_start->eval_alain_bb0_in
p = 1
t₁ ∈ g₀
Use expected size bounds for entry point (g₂₂:eval_alain_bb1_in→[t₂₃:1:eval_alain_bb2_in],eval_alain_bb2_in)
Use expected size bounds for entry point (g₂₂:eval_alain_bb1_in→[t₂₃:1:eval_alain_bb2_in],eval_alain_bb2_in)
Use classical time bound for entry point (g₂₂:eval_alain_bb1_in→[t₂₃:1:eval_alain_bb2_in],eval_alain_bb2_in)
Use expected size bounds for entry point (g₅₃:eval_alain_19→[t₅₄:1:eval_alain_bb2_in],eval_alain_bb2_in)
Use expected size bounds for entry point (g₅₃:eval_alain_19→[t₅₄:1:eval_alain_bb2_in],eval_alain_bb2_in)
Use classical time bound for entry point (g₅₃:eval_alain_19→[t₅₄:1:eval_alain_bb2_in],eval_alain_bb2_in)
Run classical analysis on SCC: [eval_alain_bb7_in]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:6⋅X₁₀⋅X₇⋅X₇+11⋅X₁₀⋅X₇+3⋅X₁₁⋅X₇+2⋅X₁₀+3⋅X₈+8⋅X₇+20 {O(n^3)}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: X₇+1 {O(n)}
g₃₆: 1 {O(1)}
g₃₈: X₇ {O(n)}
g₄₀: 2⋅X₁₀⋅X₇⋅X₇+3⋅X₁₀⋅X₇+X₁₁⋅X₇+X₈ {O(n^3)}
g₄₂: X₇ {O(n)}
g₄₄: 4⋅X₁₀⋅X₇⋅X₇+2⋅X₁₁⋅X₇+8⋅X₁₀⋅X₇+2⋅X₁₀+2⋅X₈ {O(n^3)}
g₄₇: 2⋅X₇ {O(n)}
g₄₉: X₇ {O(n)}
g₅₁: X₇ {O(n)}
g₅₃: X₇ {O(n)}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
(g₄,eval_alain_1), X₀: X₀ {O(n)}
(g₄,eval_alain_1), X₁: X₁ {O(n)}
(g₄,eval_alain_1), X₂: X₂ {O(n)}
(g₄,eval_alain_1), X₃: X₃ {O(n)}
(g₄,eval_alain_1), X₄: X₄ {O(n)}
(g₄,eval_alain_1), X₅: X₅ {O(n)}
(g₄,eval_alain_1), X₆: X₆ {O(n)}
(g₄,eval_alain_1), X₇: X₇ {O(n)}
(g₄,eval_alain_1), X₈: X₈ {O(n)}
(g₄,eval_alain_1), X₉: X₉ {O(n)}
(g₄,eval_alain_1), X₁₀: X₁₀ {O(n)}
(g₄,eval_alain_1), X₁₁: X₁₁ {O(n)}
(g₆,eval_alain_2), X₀: X₀ {O(n)}
(g₆,eval_alain_2), X₁: X₁ {O(n)}
(g₆,eval_alain_2), X₂: X₂ {O(n)}
(g₆,eval_alain_2), X₃: X₃ {O(n)}
(g₆,eval_alain_2), X₄: X₄ {O(n)}
(g₆,eval_alain_2), X₅: X₅ {O(n)}
(g₆,eval_alain_2), X₆: X₆ {O(n)}
(g₆,eval_alain_2), X₇: X₇ {O(n)}
(g₆,eval_alain_2), X₈: X₈ {O(n)}
(g₆,eval_alain_2), X₉: X₉ {O(n)}
(g₆,eval_alain_2), X₁₀: X₁₀ {O(n)}
(g₆,eval_alain_2), X₁₁: X₁₁ {O(n)}
(g₈,eval_alain_3), X₀: X₀ {O(n)}
(g₈,eval_alain_3), X₁: X₁ {O(n)}
(g₈,eval_alain_3), X₂: X₂ {O(n)}
(g₈,eval_alain_3), X₃: X₃ {O(n)}
(g₈,eval_alain_3), X₄: X₄ {O(n)}
(g₈,eval_alain_3), X₅: X₅ {O(n)}
(g₈,eval_alain_3), X₆: X₆ {O(n)}
(g₈,eval_alain_3), X₇: X₇ {O(n)}
(g₈,eval_alain_3), X₈: X₈ {O(n)}
(g₈,eval_alain_3), X₉: X₉ {O(n)}
(g₈,eval_alain_3), X₁₀: X₁₀ {O(n)}
(g₈,eval_alain_3), X₁₁: X₁₁ {O(n)}
(g₁₀,eval_alain_4), X₀: X₀ {O(n)}
(g₁₀,eval_alain_4), X₁: X₁ {O(n)}
(g₁₀,eval_alain_4), X₂: X₂ {O(n)}
(g₁₀,eval_alain_4), X₃: X₃ {O(n)}
(g₁₀,eval_alain_4), X₄: X₄ {O(n)}
(g₁₀,eval_alain_4), X₅: X₅ {O(n)}
(g₁₀,eval_alain_4), X₆: X₆ {O(n)}
(g₁₀,eval_alain_4), X₇: X₇ {O(n)}
(g₁₀,eval_alain_4), X₈: X₈ {O(n)}
(g₁₀,eval_alain_4), X₉: X₉ {O(n)}
(g₁₀,eval_alain_4), X₁₀: X₁₀ {O(n)}
(g₁₀,eval_alain_4), X₁₁: X₁₁ {O(n)}
(g₁₂,eval_alain_5), X₀: X₀ {O(n)}
(g₁₂,eval_alain_5), X₁: X₁ {O(n)}
(g₁₂,eval_alain_5), X₂: X₂ {O(n)}
(g₁₂,eval_alain_5), X₃: X₃ {O(n)}
(g₁₂,eval_alain_5), X₄: X₄ {O(n)}
(g₁₂,eval_alain_5), X₅: X₅ {O(n)}
(g₁₂,eval_alain_5), X₆: X₆ {O(n)}
(g₁₂,eval_alain_5), X₇: X₇ {O(n)}
(g₁₂,eval_alain_5), X₈: X₈ {O(n)}
(g₁₂,eval_alain_5), X₉: X₉ {O(n)}
(g₁₂,eval_alain_5), X₁₀: X₁₀ {O(n)}
(g₁₂,eval_alain_5), X₁₁: X₁₁ {O(n)}
(g₁₄,eval_alain_6), X₀: X₀ {O(n)}
(g₁₄,eval_alain_6), X₁: X₁ {O(n)}
(g₁₄,eval_alain_6), X₂: X₂ {O(n)}
(g₁₄,eval_alain_6), X₃: X₃ {O(n)}
(g₁₄,eval_alain_6), X₄: X₄ {O(n)}
(g₁₄,eval_alain_6), X₅: X₅ {O(n)}
(g₁₄,eval_alain_6), X₆: X₆ {O(n)}
(g₁₄,eval_alain_6), X₇: X₇ {O(n)}
(g₁₄,eval_alain_6), X₈: X₈ {O(n)}
(g₁₄,eval_alain_6), X₉: X₉ {O(n)}
(g₁₄,eval_alain_6), X₁₀: X₁₀ {O(n)}
(g₁₄,eval_alain_6), X₁₁: X₁₁ {O(n)}
(g₁₆,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₁₆,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₁₆,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₁₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₁₆,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₁₆,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₁₆,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₁₆,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₁₆,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₁₈,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₁₈,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₁₈,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₁₈,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₁₈,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₁₈,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₁₈,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₁₈,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₁₈,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₀,eval_alain_bb1_in), X₀: X₀ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁: X₁ {O(n)}
(g₂₀,eval_alain_bb1_in), X₂: X₂ {O(n)}
(g₂₀,eval_alain_bb1_in), X₃: X₃ {O(n)}
(g₂₀,eval_alain_bb1_in), X₄: X₄ {O(n)}
(g₂₀,eval_alain_bb1_in), X₅: X₅ {O(n)}
(g₂₀,eval_alain_bb1_in), X₆: X₆ {O(n)}
(g₂₀,eval_alain_bb1_in), X₇: X₇ {O(n)}
(g₂₀,eval_alain_bb1_in), X₈: X₈ {O(n)}
(g₂₀,eval_alain_bb1_in), X₉: X₉ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁₀: X₁₀ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁₁: X₁₁ {O(n)}
(g₂₂,eval_alain_bb2_in), X₀: X₁₁ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁: X₇ {O(n)}
(g₂₂,eval_alain_bb2_in), X₂: X₈ {O(n)}
(g₂₂,eval_alain_bb2_in), X₃: X₃ {O(n)}
(g₂₂,eval_alain_bb2_in), X₄: X₄ {O(n)}
(g₂₂,eval_alain_bb2_in), X₅: X₅ {O(n)}
(g₂₂,eval_alain_bb2_in), X₆: X₆ {O(n)}
(g₂₂,eval_alain_bb2_in), X₇: X₇ {O(n)}
(g₂₂,eval_alain_bb2_in), X₈: X₈ {O(n)}
(g₂₂,eval_alain_bb2_in), X₉: X₉ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁₀: X₁₀ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁₁: X₁₁ {O(n)}
(g₂₄,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₄,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₄,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₄,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₄,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₄,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₄,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₄,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₄,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₆,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₆,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₆,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₆,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₆,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₆,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₆,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₆,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₈,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₈,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₈,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₈,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₈,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₈,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₈,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₈,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₈,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₀,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₃₀,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₃₀,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₃₀,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₀,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₃₀,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₃₀,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₃₀,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₃₀,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₂,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₃₂,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₃₂,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₃₂,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₂,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₃₂,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₃₂,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₃₂,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₃₂,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₄,eval_alain_bb3_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₁: X₇ {O(n)}
(g₃₄,eval_alain_bb3_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₃ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₄: X₄ {O(n)}
(g₃₄,eval_alain_bb3_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₆: 2⋅X₇ {O(n)}
(g₃₄,eval_alain_bb3_in), X₇: X₇ {O(n)}
(g₃₄,eval_alain_bb3_in), X₈: X₈ {O(n)}
(g₃₄,eval_alain_bb3_in), X₉: X₉ {O(n)}
(g₃₄,eval_alain_bb3_in), X₁₀: X₁₀ {O(n)}
(g₃₄,eval_alain_bb3_in), X₁₁: X₁₁ {O(n)}
(g₃₆,eval_alain_bb7_in), X₀: 2⋅X₁₀⋅X₇+2⋅X₁₁+3⋅X₁₀ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₁: 0 {O(1)}
(g₃₆,eval_alain_bb7_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₃ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₆,eval_alain_bb7_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₆: 4⋅X₇+X₆ {O(n)}
(g₃₆,eval_alain_bb7_in), X₇: 2⋅X₇ {O(n)}
(g₃₆,eval_alain_bb7_in), X₈: 2⋅X₈ {O(n)}
(g₃₆,eval_alain_bb7_in), X₉: 2⋅X₉ {O(n)}
(g₃₆,eval_alain_bb7_in), X₁₀: 2⋅X₁₀ {O(n)}
(g₃₆,eval_alain_bb7_in), X₁₁: 2⋅X₁₁ {O(n)}
(g₃₈,eval_alain_bb4_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₁: X₇ {O(n)}
(g₃₈,eval_alain_bb4_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₄: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₆: 2⋅X₇ {O(n)}
(g₃₈,eval_alain_bb4_in), X₇: X₇ {O(n)}
(g₃₈,eval_alain_bb4_in), X₈: X₈ {O(n)}
(g₃₈,eval_alain_bb4_in), X₉: X₉ {O(n)}
(g₃₈,eval_alain_bb4_in), X₁₀: X₁₀ {O(n)}
(g₃₈,eval_alain_bb4_in), X₁₁: X₁₁ {O(n)}
(g₄₀,eval_alain_bb5_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₁: X₇ {O(n)}
(g₄₀,eval_alain_bb5_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₃: 2⋅X₁₀⋅X₇+5⋅X₁₀+X₁₁ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₄: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₆: 2⋅X₇ {O(n)}
(g₄₀,eval_alain_bb5_in), X₇: X₇ {O(n)}
(g₄₀,eval_alain_bb5_in), X₈: X₈ {O(n)}
(g₄₀,eval_alain_bb5_in), X₉: X₉ {O(n)}
(g₄₀,eval_alain_bb5_in), X₁₀: X₁₀ {O(n)}
(g₄₀,eval_alain_bb5_in), X₁₁: X₁₁ {O(n)}
(g₄₂,eval_alain_bb6_in), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₁: X₇ {O(n)}
(g₄₂,eval_alain_bb6_in), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₄: 0 {O(1)}
(g₄₂,eval_alain_bb6_in), X₅: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₅+6⋅X₁₀ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₆: 4⋅X₇ {O(n)}
(g₄₂,eval_alain_bb6_in), X₇: X₇ {O(n)}
(g₄₂,eval_alain_bb6_in), X₈: X₈ {O(n)}
(g₄₂,eval_alain_bb6_in), X₉: X₉ {O(n)}
(g₄₂,eval_alain_bb6_in), X₁₀: X₁₀ {O(n)}
(g₄₂,eval_alain_bb6_in), X₁₁: X₁₁ {O(n)}
(g₄₄,eval_alain_bb4_in), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₁: X₇ {O(n)}
(g₄₄,eval_alain_bb4_in), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₃: 2⋅X₁₀ {O(n)}
(g₄₄,eval_alain_bb4_in), X₄: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₅: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₅+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₆: 4⋅X₇ {O(n)}
(g₄₄,eval_alain_bb4_in), X₇: X₇ {O(n)}
(g₄₄,eval_alain_bb4_in), X₈: X₈ {O(n)}
(g₄₄,eval_alain_bb4_in), X₉: X₉ {O(n)}
(g₄₄,eval_alain_bb4_in), X₁₀: X₁₀ {O(n)}
(g₄₄,eval_alain_bb4_in), X₁₁: X₁₁ {O(n)}
(g₄₄,eval_alain_bb5_in), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₁: X₇ {O(n)}
(g₄₄,eval_alain_bb5_in), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₃: 2⋅X₁₀⋅X₇+7⋅X₁₀+X₁₁ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₄: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₅: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₅+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₆: 4⋅X₇ {O(n)}
(g₄₄,eval_alain_bb5_in), X₇: X₇ {O(n)}
(g₄₄,eval_alain_bb5_in), X₈: X₈ {O(n)}
(g₄₄,eval_alain_bb5_in), X₉: X₉ {O(n)}
(g₄₄,eval_alain_bb5_in), X₁₀: X₁₀ {O(n)}
(g₄₄,eval_alain_bb5_in), X₁₁: X₁₁ {O(n)}
(g₄₇,eval_alain_17), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₇,eval_alain_17), X₁: X₇ {O(n)}
(g₄₇,eval_alain_17), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₇,eval_alain_17), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₇,eval_alain_17), X₄: 0 {O(1)}
(g₄₇,eval_alain_17), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₇,eval_alain_17), X₆: 4⋅X₇ {O(n)}
(g₄₇,eval_alain_17), X₇: X₇ {O(n)}
(g₄₇,eval_alain_17), X₈: X₈ {O(n)}
(g₄₇,eval_alain_17), X₉: X₉ {O(n)}
(g₄₇,eval_alain_17), X₁₀: X₁₀ {O(n)}
(g₄₇,eval_alain_17), X₁₁: X₁₁ {O(n)}
(g₄₉,eval_alain_18), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₉,eval_alain_18), X₁: X₇ {O(n)}
(g₄₉,eval_alain_18), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₉,eval_alain_18), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₉,eval_alain_18), X₄: 0 {O(1)}
(g₄₉,eval_alain_18), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₉,eval_alain_18), X₆: 4⋅X₇ {O(n)}
(g₄₉,eval_alain_18), X₇: X₇ {O(n)}
(g₄₉,eval_alain_18), X₈: X₈ {O(n)}
(g₄₉,eval_alain_18), X₉: X₉ {O(n)}
(g₄₉,eval_alain_18), X₁₀: X₁₀ {O(n)}
(g₄₉,eval_alain_18), X₁₁: X₁₁ {O(n)}
(g₅₁,eval_alain_19), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₅₁,eval_alain_19), X₁: X₇ {O(n)}
(g₅₁,eval_alain_19), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₅₁,eval_alain_19), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₁,eval_alain_19), X₄: 0 {O(1)}
(g₅₁,eval_alain_19), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₁,eval_alain_19), X₆: 4⋅X₇ {O(n)}
(g₅₁,eval_alain_19), X₇: X₇ {O(n)}
(g₅₁,eval_alain_19), X₈: X₈ {O(n)}
(g₅₁,eval_alain_19), X₉: X₉ {O(n)}
(g₅₁,eval_alain_19), X₁₀: X₁₀ {O(n)}
(g₅₁,eval_alain_19), X₁₁: X₁₁ {O(n)}
(g₅₃,eval_alain_bb2_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₁: X₇ {O(n)}
(g₅₃,eval_alain_bb2_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₄: 0 {O(1)}
(g₅₃,eval_alain_bb2_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₆: 4⋅X₇ {O(n)}
(g₅₃,eval_alain_bb2_in), X₇: X₇ {O(n)}
(g₅₃,eval_alain_bb2_in), X₈: X₈ {O(n)}
(g₅₃,eval_alain_bb2_in), X₉: X₉ {O(n)}
(g₅₃,eval_alain_bb2_in), X₁₀: X₁₀ {O(n)}
(g₅₃,eval_alain_bb2_in), X₁₁: X₁₁ {O(n)}
(g₅₅,eval_alain_stop), X₀: 2⋅X₁₀⋅X₇+2⋅X₁₁+3⋅X₁₀+7⋅X₀ {O(n^2)}
(g₅₅,eval_alain_stop), X₁: 7⋅X₁ {O(n)}
(g₅₅,eval_alain_stop), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+7⋅X₂+X₁₁+X₈ {O(n^2)}
(g₅₅,eval_alain_stop), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+8⋅X₃+X₁₁ {O(n^2)}
(g₅₅,eval_alain_stop), X₄: 8⋅X₄ {O(n)}
(g₅₅,eval_alain_stop), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+8⋅X₅+X₁₁ {O(n^2)}
(g₅₅,eval_alain_stop), X₆: 4⋅X₇+8⋅X₆ {O(n)}
(g₅₅,eval_alain_stop), X₇: 9⋅X₇ {O(n)}
(g₅₅,eval_alain_stop), X₈: 9⋅X₈ {O(n)}
(g₅₅,eval_alain_stop), X₉: 9⋅X₉ {O(n)}
(g₅₅,eval_alain_stop), X₁₀: 9⋅X₁₀ {O(n)}
(g₅₅,eval_alain_stop), X₁₁: 9⋅X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_bb7_in]
Run classical analysis on SCC: [eval_alain_stop]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:6⋅X₁₀⋅X₇⋅X₇+11⋅X₁₀⋅X₇+3⋅X₁₁⋅X₇+2⋅X₁₀+3⋅X₈+8⋅X₇+20 {O(n^3)}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: X₇+1 {O(n)}
g₃₆: 1 {O(1)}
g₃₈: X₇ {O(n)}
g₄₀: 2⋅X₁₀⋅X₇⋅X₇+3⋅X₁₀⋅X₇+X₁₁⋅X₇+X₈ {O(n^3)}
g₄₂: X₇ {O(n)}
g₄₄: 4⋅X₁₀⋅X₇⋅X₇+2⋅X₁₁⋅X₇+8⋅X₁₀⋅X₇+2⋅X₁₀+2⋅X₈ {O(n^3)}
g₄₇: 2⋅X₇ {O(n)}
g₄₉: X₇ {O(n)}
g₅₁: X₇ {O(n)}
g₅₃: X₇ {O(n)}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₀: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₁₈: inf {Infinity}
g₂₀: inf {Infinity}
g₂₂: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₂₈: inf {Infinity}
g₃₀: inf {Infinity}
g₃₂: inf {Infinity}
g₃₄: inf {Infinity}
g₃₆: inf {Infinity}
g₃₈: inf {Infinity}
g₄₀: inf {Infinity}
g₄₂: inf {Infinity}
g₄₄: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
(g₄,eval_alain_1), X₀: X₀ {O(n)}
(g₄,eval_alain_1), X₁: X₁ {O(n)}
(g₄,eval_alain_1), X₂: X₂ {O(n)}
(g₄,eval_alain_1), X₃: X₃ {O(n)}
(g₄,eval_alain_1), X₄: X₄ {O(n)}
(g₄,eval_alain_1), X₅: X₅ {O(n)}
(g₄,eval_alain_1), X₆: X₆ {O(n)}
(g₄,eval_alain_1), X₇: X₇ {O(n)}
(g₄,eval_alain_1), X₈: X₈ {O(n)}
(g₄,eval_alain_1), X₉: X₉ {O(n)}
(g₄,eval_alain_1), X₁₀: X₁₀ {O(n)}
(g₄,eval_alain_1), X₁₁: X₁₁ {O(n)}
(g₆,eval_alain_2), X₀: X₀ {O(n)}
(g₆,eval_alain_2), X₁: X₁ {O(n)}
(g₆,eval_alain_2), X₂: X₂ {O(n)}
(g₆,eval_alain_2), X₃: X₃ {O(n)}
(g₆,eval_alain_2), X₄: X₄ {O(n)}
(g₆,eval_alain_2), X₅: X₅ {O(n)}
(g₆,eval_alain_2), X₆: X₆ {O(n)}
(g₆,eval_alain_2), X₇: X₇ {O(n)}
(g₆,eval_alain_2), X₈: X₈ {O(n)}
(g₆,eval_alain_2), X₉: X₉ {O(n)}
(g₆,eval_alain_2), X₁₀: X₁₀ {O(n)}
(g₆,eval_alain_2), X₁₁: X₁₁ {O(n)}
(g₈,eval_alain_3), X₀: X₀ {O(n)}
(g₈,eval_alain_3), X₁: X₁ {O(n)}
(g₈,eval_alain_3), X₂: X₂ {O(n)}
(g₈,eval_alain_3), X₃: X₃ {O(n)}
(g₈,eval_alain_3), X₄: X₄ {O(n)}
(g₈,eval_alain_3), X₅: X₅ {O(n)}
(g₈,eval_alain_3), X₆: X₆ {O(n)}
(g₈,eval_alain_3), X₇: X₇ {O(n)}
(g₈,eval_alain_3), X₈: X₈ {O(n)}
(g₈,eval_alain_3), X₉: X₉ {O(n)}
(g₈,eval_alain_3), X₁₀: X₁₀ {O(n)}
(g₈,eval_alain_3), X₁₁: X₁₁ {O(n)}
(g₁₀,eval_alain_4), X₀: X₀ {O(n)}
(g₁₀,eval_alain_4), X₁: X₁ {O(n)}
(g₁₀,eval_alain_4), X₂: X₂ {O(n)}
(g₁₀,eval_alain_4), X₃: X₃ {O(n)}
(g₁₀,eval_alain_4), X₄: X₄ {O(n)}
(g₁₀,eval_alain_4), X₅: X₅ {O(n)}
(g₁₀,eval_alain_4), X₆: X₆ {O(n)}
(g₁₀,eval_alain_4), X₇: X₇ {O(n)}
(g₁₀,eval_alain_4), X₈: X₈ {O(n)}
(g₁₀,eval_alain_4), X₉: X₉ {O(n)}
(g₁₀,eval_alain_4), X₁₀: X₁₀ {O(n)}
(g₁₀,eval_alain_4), X₁₁: X₁₁ {O(n)}
(g₁₂,eval_alain_5), X₀: X₀ {O(n)}
(g₁₂,eval_alain_5), X₁: X₁ {O(n)}
(g₁₂,eval_alain_5), X₂: X₂ {O(n)}
(g₁₂,eval_alain_5), X₃: X₃ {O(n)}
(g₁₂,eval_alain_5), X₄: X₄ {O(n)}
(g₁₂,eval_alain_5), X₅: X₅ {O(n)}
(g₁₂,eval_alain_5), X₆: X₆ {O(n)}
(g₁₂,eval_alain_5), X₇: X₇ {O(n)}
(g₁₂,eval_alain_5), X₈: X₈ {O(n)}
(g₁₂,eval_alain_5), X₉: X₉ {O(n)}
(g₁₂,eval_alain_5), X₁₀: X₁₀ {O(n)}
(g₁₂,eval_alain_5), X₁₁: X₁₁ {O(n)}
(g₁₄,eval_alain_6), X₀: X₀ {O(n)}
(g₁₄,eval_alain_6), X₁: X₁ {O(n)}
(g₁₄,eval_alain_6), X₂: X₂ {O(n)}
(g₁₄,eval_alain_6), X₃: X₃ {O(n)}
(g₁₄,eval_alain_6), X₄: X₄ {O(n)}
(g₁₄,eval_alain_6), X₅: X₅ {O(n)}
(g₁₄,eval_alain_6), X₆: X₆ {O(n)}
(g₁₄,eval_alain_6), X₇: X₇ {O(n)}
(g₁₄,eval_alain_6), X₈: X₈ {O(n)}
(g₁₄,eval_alain_6), X₉: X₉ {O(n)}
(g₁₄,eval_alain_6), X₁₀: X₁₀ {O(n)}
(g₁₄,eval_alain_6), X₁₁: X₁₁ {O(n)}
(g₁₆,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₁₆,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₁₆,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₁₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₁₆,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₁₆,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₁₆,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₁₆,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₁₆,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₁₈,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₁₈,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₁₈,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₁₈,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₁₈,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₁₈,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₁₈,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₁₈,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₁₈,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₀,eval_alain_bb1_in), X₀: X₀ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁: X₁ {O(n)}
(g₂₀,eval_alain_bb1_in), X₂: X₂ {O(n)}
(g₂₀,eval_alain_bb1_in), X₃: X₃ {O(n)}
(g₂₀,eval_alain_bb1_in), X₄: X₄ {O(n)}
(g₂₀,eval_alain_bb1_in), X₅: X₅ {O(n)}
(g₂₀,eval_alain_bb1_in), X₆: X₆ {O(n)}
(g₂₀,eval_alain_bb1_in), X₇: X₇ {O(n)}
(g₂₀,eval_alain_bb1_in), X₈: X₈ {O(n)}
(g₂₀,eval_alain_bb1_in), X₉: X₉ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁₀: X₁₀ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁₁: X₁₁ {O(n)}
(g₂₂,eval_alain_bb2_in), X₀: X₁₁ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁: X₇ {O(n)}
(g₂₂,eval_alain_bb2_in), X₂: X₈ {O(n)}
(g₂₂,eval_alain_bb2_in), X₃: X₃ {O(n)}
(g₂₂,eval_alain_bb2_in), X₄: X₄ {O(n)}
(g₂₂,eval_alain_bb2_in), X₅: X₅ {O(n)}
(g₂₂,eval_alain_bb2_in), X₆: X₆ {O(n)}
(g₂₂,eval_alain_bb2_in), X₇: X₇ {O(n)}
(g₂₂,eval_alain_bb2_in), X₈: X₈ {O(n)}
(g₂₂,eval_alain_bb2_in), X₉: X₉ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁₀: X₁₀ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁₁: X₁₁ {O(n)}
(g₂₄,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₄,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₄,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₄,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₄,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₄,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₄,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₄,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₄,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₆,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₆,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₆,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₆,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₆,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₆,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₆,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₆,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₈,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₈,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₈,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₈,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₈,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₈,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₈,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₈,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₈,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₀,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₃₀,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₃₀,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₃₀,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₀,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₃₀,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₃₀,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₃₀,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₃₀,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₂,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₃₂,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₃₂,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₃₂,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₂,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₃₂,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₃₂,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₃₂,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₃₂,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₄,eval_alain_bb3_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₁: X₇ {O(n)}
(g₃₄,eval_alain_bb3_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₃ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₄: X₄ {O(n)}
(g₃₄,eval_alain_bb3_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₆: 2⋅X₇ {O(n)}
(g₃₄,eval_alain_bb3_in), X₇: X₇ {O(n)}
(g₃₄,eval_alain_bb3_in), X₈: X₈ {O(n)}
(g₃₄,eval_alain_bb3_in), X₉: X₉ {O(n)}
(g₃₄,eval_alain_bb3_in), X₁₀: X₁₀ {O(n)}
(g₃₄,eval_alain_bb3_in), X₁₁: X₁₁ {O(n)}
(g₃₆,eval_alain_bb7_in), X₀: 2⋅X₁₀⋅X₇+2⋅X₁₁+3⋅X₁₀ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₁: 0 {O(1)}
(g₃₆,eval_alain_bb7_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₃ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₆,eval_alain_bb7_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₆: 4⋅X₇+X₆ {O(n)}
(g₃₆,eval_alain_bb7_in), X₇: 2⋅X₇ {O(n)}
(g₃₆,eval_alain_bb7_in), X₈: 2⋅X₈ {O(n)}
(g₃₆,eval_alain_bb7_in), X₉: 2⋅X₉ {O(n)}
(g₃₆,eval_alain_bb7_in), X₁₀: 2⋅X₁₀ {O(n)}
(g₃₆,eval_alain_bb7_in), X₁₁: 2⋅X₁₁ {O(n)}
(g₃₈,eval_alain_bb4_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₁: X₇ {O(n)}
(g₃₈,eval_alain_bb4_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₄: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₆: 2⋅X₇ {O(n)}
(g₃₈,eval_alain_bb4_in), X₇: X₇ {O(n)}
(g₃₈,eval_alain_bb4_in), X₈: X₈ {O(n)}
(g₃₈,eval_alain_bb4_in), X₉: X₉ {O(n)}
(g₃₈,eval_alain_bb4_in), X₁₀: X₁₀ {O(n)}
(g₃₈,eval_alain_bb4_in), X₁₁: X₁₁ {O(n)}
(g₄₀,eval_alain_bb5_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₁: X₇ {O(n)}
(g₄₀,eval_alain_bb5_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₃: 2⋅X₁₀⋅X₇+5⋅X₁₀+X₁₁ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₄: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₆: 2⋅X₇ {O(n)}
(g₄₀,eval_alain_bb5_in), X₇: X₇ {O(n)}
(g₄₀,eval_alain_bb5_in), X₈: X₈ {O(n)}
(g₄₀,eval_alain_bb5_in), X₉: X₉ {O(n)}
(g₄₀,eval_alain_bb5_in), X₁₀: X₁₀ {O(n)}
(g₄₀,eval_alain_bb5_in), X₁₁: X₁₁ {O(n)}
(g₄₂,eval_alain_bb6_in), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₁: X₇ {O(n)}
(g₄₂,eval_alain_bb6_in), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₄: 0 {O(1)}
(g₄₂,eval_alain_bb6_in), X₅: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₅+6⋅X₁₀ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₆: 4⋅X₇ {O(n)}
(g₄₂,eval_alain_bb6_in), X₇: X₇ {O(n)}
(g₄₂,eval_alain_bb6_in), X₈: X₈ {O(n)}
(g₄₂,eval_alain_bb6_in), X₉: X₉ {O(n)}
(g₄₂,eval_alain_bb6_in), X₁₀: X₁₀ {O(n)}
(g₄₂,eval_alain_bb6_in), X₁₁: X₁₁ {O(n)}
(g₄₄,eval_alain_bb4_in), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₁: X₇ {O(n)}
(g₄₄,eval_alain_bb4_in), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₃: 2⋅X₁₀ {O(n)}
(g₄₄,eval_alain_bb4_in), X₄: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₅: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₅+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₆: 4⋅X₇ {O(n)}
(g₄₄,eval_alain_bb4_in), X₇: X₇ {O(n)}
(g₄₄,eval_alain_bb4_in), X₈: X₈ {O(n)}
(g₄₄,eval_alain_bb4_in), X₉: X₉ {O(n)}
(g₄₄,eval_alain_bb4_in), X₁₀: X₁₀ {O(n)}
(g₄₄,eval_alain_bb4_in), X₁₁: X₁₁ {O(n)}
(g₄₄,eval_alain_bb5_in), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₁: X₇ {O(n)}
(g₄₄,eval_alain_bb5_in), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₃: 2⋅X₁₀⋅X₇+7⋅X₁₀+X₁₁ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₄: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₅: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₅+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₆: 4⋅X₇ {O(n)}
(g₄₄,eval_alain_bb5_in), X₇: X₇ {O(n)}
(g₄₄,eval_alain_bb5_in), X₈: X₈ {O(n)}
(g₄₄,eval_alain_bb5_in), X₉: X₉ {O(n)}
(g₄₄,eval_alain_bb5_in), X₁₀: X₁₀ {O(n)}
(g₄₄,eval_alain_bb5_in), X₁₁: X₁₁ {O(n)}
(g₄₇,eval_alain_17), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₇,eval_alain_17), X₁: X₇ {O(n)}
(g₄₇,eval_alain_17), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₇,eval_alain_17), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₇,eval_alain_17), X₄: 0 {O(1)}
(g₄₇,eval_alain_17), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₇,eval_alain_17), X₆: 4⋅X₇ {O(n)}
(g₄₇,eval_alain_17), X₇: X₇ {O(n)}
(g₄₇,eval_alain_17), X₈: X₈ {O(n)}
(g₄₇,eval_alain_17), X₉: X₉ {O(n)}
(g₄₇,eval_alain_17), X₁₀: X₁₀ {O(n)}
(g₄₇,eval_alain_17), X₁₁: X₁₁ {O(n)}
(g₄₉,eval_alain_18), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₉,eval_alain_18), X₁: X₇ {O(n)}
(g₄₉,eval_alain_18), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₉,eval_alain_18), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₉,eval_alain_18), X₄: 0 {O(1)}
(g₄₉,eval_alain_18), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₉,eval_alain_18), X₆: 4⋅X₇ {O(n)}
(g₄₉,eval_alain_18), X₇: X₇ {O(n)}
(g₄₉,eval_alain_18), X₈: X₈ {O(n)}
(g₄₉,eval_alain_18), X₉: X₉ {O(n)}
(g₄₉,eval_alain_18), X₁₀: X₁₀ {O(n)}
(g₄₉,eval_alain_18), X₁₁: X₁₁ {O(n)}
(g₅₁,eval_alain_19), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₅₁,eval_alain_19), X₁: X₇ {O(n)}
(g₅₁,eval_alain_19), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₅₁,eval_alain_19), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₁,eval_alain_19), X₄: 0 {O(1)}
(g₅₁,eval_alain_19), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₁,eval_alain_19), X₆: 4⋅X₇ {O(n)}
(g₅₁,eval_alain_19), X₇: X₇ {O(n)}
(g₅₁,eval_alain_19), X₈: X₈ {O(n)}
(g₅₁,eval_alain_19), X₉: X₉ {O(n)}
(g₅₁,eval_alain_19), X₁₀: X₁₀ {O(n)}
(g₅₁,eval_alain_19), X₁₁: X₁₁ {O(n)}
(g₅₃,eval_alain_bb2_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₁: X₇ {O(n)}
(g₅₃,eval_alain_bb2_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₄: 0 {O(1)}
(g₅₃,eval_alain_bb2_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₆: 4⋅X₇ {O(n)}
(g₅₃,eval_alain_bb2_in), X₇: X₇ {O(n)}
(g₅₃,eval_alain_bb2_in), X₈: X₈ {O(n)}
(g₅₃,eval_alain_bb2_in), X₉: X₉ {O(n)}
(g₅₃,eval_alain_bb2_in), X₁₀: X₁₀ {O(n)}
(g₅₃,eval_alain_bb2_in), X₁₁: X₁₁ {O(n)}
(g₅₅,eval_alain_stop), X₀: 2⋅X₁₀⋅X₇+2⋅X₁₁+3⋅X₁₀+7⋅X₀ {O(n^2)}
(g₅₅,eval_alain_stop), X₁: 7⋅X₁ {O(n)}
(g₅₅,eval_alain_stop), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+7⋅X₂+X₁₁+X₈ {O(n^2)}
(g₅₅,eval_alain_stop), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+8⋅X₃+X₁₁ {O(n^2)}
(g₅₅,eval_alain_stop), X₄: 8⋅X₄ {O(n)}
(g₅₅,eval_alain_stop), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+8⋅X₅+X₁₁ {O(n^2)}
(g₅₅,eval_alain_stop), X₆: 4⋅X₇+8⋅X₆ {O(n)}
(g₅₅,eval_alain_stop), X₇: 9⋅X₇ {O(n)}
(g₅₅,eval_alain_stop), X₈: 9⋅X₈ {O(n)}
(g₅₅,eval_alain_stop), X₉: 9⋅X₉ {O(n)}
(g₅₅,eval_alain_stop), X₁₀: 9⋅X₁₀ {O(n)}
(g₅₅,eval_alain_stop), X₁₁: 9⋅X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_alain_stop]
Results of Probabilistic Analysis
All Bounds
Timebounds
Overall timebound:6⋅X₁₀⋅X₇⋅X₇+11⋅X₁₀⋅X₇+3⋅X₁₁⋅X₇+2⋅X₁₀+3⋅X₈+8⋅X₇+20 {O(n^3)}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: X₇+1 {O(n)}
g₃₆: 1 {O(1)}
g₃₈: X₇ {O(n)}
g₄₀: 2⋅X₁₀⋅X₇⋅X₇+3⋅X₁₀⋅X₇+X₁₁⋅X₇+X₈ {O(n^3)}
g₄₂: X₇ {O(n)}
g₄₄: 4⋅X₁₀⋅X₇⋅X₇+2⋅X₁₁⋅X₇+8⋅X₁₀⋅X₇+2⋅X₁₀+2⋅X₈ {O(n^3)}
g₄₇: 2⋅X₇ {O(n)}
g₄₉: X₇ {O(n)}
g₅₁: X₇ {O(n)}
g₅₃: X₇ {O(n)}
g₅₅: 1 {O(1)}
Costbounds
Overall costbound: 10⋅X₁₀⋅X₇⋅X₇+19⋅X₁₀⋅X₇+5⋅X₁₁⋅X₇+4⋅X₁₀+5⋅X₈+8⋅X₇+20 {O(n^3)}
g₀: 1 {O(1)}
g₂: 1 {O(1)}
g₄: 1 {O(1)}
g₆: 1 {O(1)}
g₈: 1 {O(1)}
g₁₀: 1 {O(1)}
g₁₂: 1 {O(1)}
g₁₄: 1 {O(1)}
g₁₆: 1 {O(1)}
g₁₈: 1 {O(1)}
g₂₀: 1 {O(1)}
g₂₂: 1 {O(1)}
g₂₄: 1 {O(1)}
g₂₆: 1 {O(1)}
g₂₈: 1 {O(1)}
g₃₀: 1 {O(1)}
g₃₂: 1 {O(1)}
g₃₄: X₇+1 {O(n)}
g₃₆: 1 {O(1)}
g₃₈: X₇ {O(n)}
g₄₀: 2⋅X₁₀⋅X₇⋅X₇+3⋅X₁₀⋅X₇+X₁₁⋅X₇+X₈ {O(n^3)}
g₄₂: X₇ {O(n)}
g₄₄: 8⋅X₁₀⋅X₇⋅X₇+16⋅X₁₀⋅X₇+4⋅X₁₁⋅X₇+4⋅X₁₀+4⋅X₈ {O(n^3)}
g₄₇: 2⋅X₇ {O(n)}
g₄₉: X₇ {O(n)}
g₅₁: X₇ {O(n)}
g₅₃: X₇ {O(n)}
g₅₅: 1 {O(1)}
Sizebounds
(g₀,eval_alain_bb0_in), X₀: X₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁: X₁ {O(n)}
(g₀,eval_alain_bb0_in), X₂: X₂ {O(n)}
(g₀,eval_alain_bb0_in), X₃: X₃ {O(n)}
(g₀,eval_alain_bb0_in), X₄: X₄ {O(n)}
(g₀,eval_alain_bb0_in), X₅: X₅ {O(n)}
(g₀,eval_alain_bb0_in), X₆: X₆ {O(n)}
(g₀,eval_alain_bb0_in), X₇: X₇ {O(n)}
(g₀,eval_alain_bb0_in), X₈: X₈ {O(n)}
(g₀,eval_alain_bb0_in), X₉: X₉ {O(n)}
(g₀,eval_alain_bb0_in), X₁₀: X₁₀ {O(n)}
(g₀,eval_alain_bb0_in), X₁₁: X₁₁ {O(n)}
(g₂,eval_alain_0), X₀: X₀ {O(n)}
(g₂,eval_alain_0), X₁: X₁ {O(n)}
(g₂,eval_alain_0), X₂: X₂ {O(n)}
(g₂,eval_alain_0), X₃: X₃ {O(n)}
(g₂,eval_alain_0), X₄: X₄ {O(n)}
(g₂,eval_alain_0), X₅: X₅ {O(n)}
(g₂,eval_alain_0), X₆: X₆ {O(n)}
(g₂,eval_alain_0), X₇: X₇ {O(n)}
(g₂,eval_alain_0), X₈: X₈ {O(n)}
(g₂,eval_alain_0), X₉: X₉ {O(n)}
(g₂,eval_alain_0), X₁₀: X₁₀ {O(n)}
(g₂,eval_alain_0), X₁₁: X₁₁ {O(n)}
(g₄,eval_alain_1), X₀: X₀ {O(n)}
(g₄,eval_alain_1), X₁: X₁ {O(n)}
(g₄,eval_alain_1), X₂: X₂ {O(n)}
(g₄,eval_alain_1), X₃: X₃ {O(n)}
(g₄,eval_alain_1), X₄: X₄ {O(n)}
(g₄,eval_alain_1), X₅: X₅ {O(n)}
(g₄,eval_alain_1), X₆: X₆ {O(n)}
(g₄,eval_alain_1), X₇: X₇ {O(n)}
(g₄,eval_alain_1), X₈: X₈ {O(n)}
(g₄,eval_alain_1), X₉: X₉ {O(n)}
(g₄,eval_alain_1), X₁₀: X₁₀ {O(n)}
(g₄,eval_alain_1), X₁₁: X₁₁ {O(n)}
(g₆,eval_alain_2), X₀: X₀ {O(n)}
(g₆,eval_alain_2), X₁: X₁ {O(n)}
(g₆,eval_alain_2), X₂: X₂ {O(n)}
(g₆,eval_alain_2), X₃: X₃ {O(n)}
(g₆,eval_alain_2), X₄: X₄ {O(n)}
(g₆,eval_alain_2), X₅: X₅ {O(n)}
(g₆,eval_alain_2), X₆: X₆ {O(n)}
(g₆,eval_alain_2), X₇: X₇ {O(n)}
(g₆,eval_alain_2), X₈: X₈ {O(n)}
(g₆,eval_alain_2), X₉: X₉ {O(n)}
(g₆,eval_alain_2), X₁₀: X₁₀ {O(n)}
(g₆,eval_alain_2), X₁₁: X₁₁ {O(n)}
(g₈,eval_alain_3), X₀: X₀ {O(n)}
(g₈,eval_alain_3), X₁: X₁ {O(n)}
(g₈,eval_alain_3), X₂: X₂ {O(n)}
(g₈,eval_alain_3), X₃: X₃ {O(n)}
(g₈,eval_alain_3), X₄: X₄ {O(n)}
(g₈,eval_alain_3), X₅: X₅ {O(n)}
(g₈,eval_alain_3), X₆: X₆ {O(n)}
(g₈,eval_alain_3), X₇: X₇ {O(n)}
(g₈,eval_alain_3), X₈: X₈ {O(n)}
(g₈,eval_alain_3), X₉: X₉ {O(n)}
(g₈,eval_alain_3), X₁₀: X₁₀ {O(n)}
(g₈,eval_alain_3), X₁₁: X₁₁ {O(n)}
(g₁₀,eval_alain_4), X₀: X₀ {O(n)}
(g₁₀,eval_alain_4), X₁: X₁ {O(n)}
(g₁₀,eval_alain_4), X₂: X₂ {O(n)}
(g₁₀,eval_alain_4), X₃: X₃ {O(n)}
(g₁₀,eval_alain_4), X₄: X₄ {O(n)}
(g₁₀,eval_alain_4), X₅: X₅ {O(n)}
(g₁₀,eval_alain_4), X₆: X₆ {O(n)}
(g₁₀,eval_alain_4), X₇: X₇ {O(n)}
(g₁₀,eval_alain_4), X₈: X₈ {O(n)}
(g₁₀,eval_alain_4), X₉: X₉ {O(n)}
(g₁₀,eval_alain_4), X₁₀: X₁₀ {O(n)}
(g₁₀,eval_alain_4), X₁₁: X₁₁ {O(n)}
(g₁₂,eval_alain_5), X₀: X₀ {O(n)}
(g₁₂,eval_alain_5), X₁: X₁ {O(n)}
(g₁₂,eval_alain_5), X₂: X₂ {O(n)}
(g₁₂,eval_alain_5), X₃: X₃ {O(n)}
(g₁₂,eval_alain_5), X₄: X₄ {O(n)}
(g₁₂,eval_alain_5), X₅: X₅ {O(n)}
(g₁₂,eval_alain_5), X₆: X₆ {O(n)}
(g₁₂,eval_alain_5), X₇: X₇ {O(n)}
(g₁₂,eval_alain_5), X₈: X₈ {O(n)}
(g₁₂,eval_alain_5), X₉: X₉ {O(n)}
(g₁₂,eval_alain_5), X₁₀: X₁₀ {O(n)}
(g₁₂,eval_alain_5), X₁₁: X₁₁ {O(n)}
(g₁₄,eval_alain_6), X₀: X₀ {O(n)}
(g₁₄,eval_alain_6), X₁: X₁ {O(n)}
(g₁₄,eval_alain_6), X₂: X₂ {O(n)}
(g₁₄,eval_alain_6), X₃: X₃ {O(n)}
(g₁₄,eval_alain_6), X₄: X₄ {O(n)}
(g₁₄,eval_alain_6), X₅: X₅ {O(n)}
(g₁₄,eval_alain_6), X₆: X₆ {O(n)}
(g₁₄,eval_alain_6), X₇: X₇ {O(n)}
(g₁₄,eval_alain_6), X₈: X₈ {O(n)}
(g₁₄,eval_alain_6), X₉: X₉ {O(n)}
(g₁₄,eval_alain_6), X₁₀: X₁₀ {O(n)}
(g₁₄,eval_alain_6), X₁₁: X₁₁ {O(n)}
(g₁₆,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₁₆,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₁₆,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₁₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₁₆,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₁₆,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₁₆,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₁₆,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₁₆,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₁₆,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₁₈,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₁₈,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₁₈,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₁₈,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₁₈,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₁₈,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₁₈,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₁₈,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₁₈,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₁₈,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₀,eval_alain_bb1_in), X₀: X₀ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁: X₁ {O(n)}
(g₂₀,eval_alain_bb1_in), X₂: X₂ {O(n)}
(g₂₀,eval_alain_bb1_in), X₃: X₃ {O(n)}
(g₂₀,eval_alain_bb1_in), X₄: X₄ {O(n)}
(g₂₀,eval_alain_bb1_in), X₅: X₅ {O(n)}
(g₂₀,eval_alain_bb1_in), X₆: X₆ {O(n)}
(g₂₀,eval_alain_bb1_in), X₇: X₇ {O(n)}
(g₂₀,eval_alain_bb1_in), X₈: X₈ {O(n)}
(g₂₀,eval_alain_bb1_in), X₉: X₉ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁₀: X₁₀ {O(n)}
(g₂₀,eval_alain_bb1_in), X₁₁: X₁₁ {O(n)}
(g₂₂,eval_alain_bb2_in), X₀: X₁₁ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁: X₇ {O(n)}
(g₂₂,eval_alain_bb2_in), X₂: X₈ {O(n)}
(g₂₂,eval_alain_bb2_in), X₃: X₃ {O(n)}
(g₂₂,eval_alain_bb2_in), X₄: X₄ {O(n)}
(g₂₂,eval_alain_bb2_in), X₅: X₅ {O(n)}
(g₂₂,eval_alain_bb2_in), X₆: X₆ {O(n)}
(g₂₂,eval_alain_bb2_in), X₇: X₇ {O(n)}
(g₂₂,eval_alain_bb2_in), X₈: X₈ {O(n)}
(g₂₂,eval_alain_bb2_in), X₉: X₉ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁₀: X₁₀ {O(n)}
(g₂₂,eval_alain_bb2_in), X₁₁: X₁₁ {O(n)}
(g₂₄,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₄,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₄,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₄,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₄,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₄,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₄,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₄,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₄,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₄,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₆,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₆,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₆,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₆,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₆,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₆,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₆,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₆,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₆,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₂₈,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₂₈,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₂₈,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₂₈,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₂₈,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₂₈,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₂₈,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₂₈,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₂₈,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₂₈,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₀,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₃₀,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₃₀,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₃₀,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₀,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₃₀,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₃₀,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₃₀,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₃₀,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₃₀,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₂,eval_alain_bb7_in), X₀: X₀ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁: X₁ {O(n)}
(g₃₂,eval_alain_bb7_in), X₂: X₂ {O(n)}
(g₃₂,eval_alain_bb7_in), X₃: X₃ {O(n)}
(g₃₂,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₂,eval_alain_bb7_in), X₅: X₅ {O(n)}
(g₃₂,eval_alain_bb7_in), X₆: X₆ {O(n)}
(g₃₂,eval_alain_bb7_in), X₇: X₇ {O(n)}
(g₃₂,eval_alain_bb7_in), X₈: X₈ {O(n)}
(g₃₂,eval_alain_bb7_in), X₉: X₉ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁₀: X₁₀ {O(n)}
(g₃₂,eval_alain_bb7_in), X₁₁: X₁₁ {O(n)}
(g₃₄,eval_alain_bb3_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₁: X₇ {O(n)}
(g₃₄,eval_alain_bb3_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₃ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₄: X₄ {O(n)}
(g₃₄,eval_alain_bb3_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₃₄,eval_alain_bb3_in), X₆: 2⋅X₇ {O(n)}
(g₃₄,eval_alain_bb3_in), X₇: X₇ {O(n)}
(g₃₄,eval_alain_bb3_in), X₈: X₈ {O(n)}
(g₃₄,eval_alain_bb3_in), X₉: X₉ {O(n)}
(g₃₄,eval_alain_bb3_in), X₁₀: X₁₀ {O(n)}
(g₃₄,eval_alain_bb3_in), X₁₁: X₁₁ {O(n)}
(g₃₆,eval_alain_bb7_in), X₀: 2⋅X₁₀⋅X₇+2⋅X₁₁+3⋅X₁₀ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₁: 0 {O(1)}
(g₃₆,eval_alain_bb7_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₃ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₄: X₄ {O(n)}
(g₃₆,eval_alain_bb7_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₃₆,eval_alain_bb7_in), X₆: 4⋅X₇+X₆ {O(n)}
(g₃₆,eval_alain_bb7_in), X₇: 2⋅X₇ {O(n)}
(g₃₆,eval_alain_bb7_in), X₈: 2⋅X₈ {O(n)}
(g₃₆,eval_alain_bb7_in), X₉: 2⋅X₉ {O(n)}
(g₃₆,eval_alain_bb7_in), X₁₀: 2⋅X₁₀ {O(n)}
(g₃₆,eval_alain_bb7_in), X₁₁: 2⋅X₁₁ {O(n)}
(g₃₈,eval_alain_bb4_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₁: X₇ {O(n)}
(g₃₈,eval_alain_bb4_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₄: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₃₈,eval_alain_bb4_in), X₆: 2⋅X₇ {O(n)}
(g₃₈,eval_alain_bb4_in), X₇: X₇ {O(n)}
(g₃₈,eval_alain_bb4_in), X₈: X₈ {O(n)}
(g₃₈,eval_alain_bb4_in), X₉: X₉ {O(n)}
(g₃₈,eval_alain_bb4_in), X₁₀: X₁₀ {O(n)}
(g₃₈,eval_alain_bb4_in), X₁₁: X₁₁ {O(n)}
(g₄₀,eval_alain_bb5_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₁: X₇ {O(n)}
(g₄₀,eval_alain_bb5_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₃: 2⋅X₁₀⋅X₇+5⋅X₁₀+X₁₁ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₄: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₈ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁+X₅ {O(n^2)}
(g₄₀,eval_alain_bb5_in), X₆: 2⋅X₇ {O(n)}
(g₄₀,eval_alain_bb5_in), X₇: X₇ {O(n)}
(g₄₀,eval_alain_bb5_in), X₈: X₈ {O(n)}
(g₄₀,eval_alain_bb5_in), X₉: X₉ {O(n)}
(g₄₀,eval_alain_bb5_in), X₁₀: X₁₀ {O(n)}
(g₄₀,eval_alain_bb5_in), X₁₁: X₁₁ {O(n)}
(g₄₂,eval_alain_bb6_in), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₁: X₇ {O(n)}
(g₄₂,eval_alain_bb6_in), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₄: 0 {O(1)}
(g₄₂,eval_alain_bb6_in), X₅: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₅+6⋅X₁₀ {O(n^2)}
(g₄₂,eval_alain_bb6_in), X₆: 4⋅X₇ {O(n)}
(g₄₂,eval_alain_bb6_in), X₇: X₇ {O(n)}
(g₄₂,eval_alain_bb6_in), X₈: X₈ {O(n)}
(g₄₂,eval_alain_bb6_in), X₉: X₉ {O(n)}
(g₄₂,eval_alain_bb6_in), X₁₀: X₁₀ {O(n)}
(g₄₂,eval_alain_bb6_in), X₁₁: X₁₁ {O(n)}
(g₄₄,eval_alain_bb4_in), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₁: X₇ {O(n)}
(g₄₄,eval_alain_bb4_in), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₃: 2⋅X₁₀ {O(n)}
(g₄₄,eval_alain_bb4_in), X₄: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₅: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₅+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb4_in), X₆: 4⋅X₇ {O(n)}
(g₄₄,eval_alain_bb4_in), X₇: X₇ {O(n)}
(g₄₄,eval_alain_bb4_in), X₈: X₈ {O(n)}
(g₄₄,eval_alain_bb4_in), X₉: X₉ {O(n)}
(g₄₄,eval_alain_bb4_in), X₁₀: X₁₀ {O(n)}
(g₄₄,eval_alain_bb4_in), X₁₁: X₁₁ {O(n)}
(g₄₄,eval_alain_bb5_in), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₁: X₇ {O(n)}
(g₄₄,eval_alain_bb5_in), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₃: 2⋅X₁₀⋅X₇+7⋅X₁₀+X₁₁ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₄: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₅: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₅+6⋅X₁₀ {O(n^2)}
(g₄₄,eval_alain_bb5_in), X₆: 4⋅X₇ {O(n)}
(g₄₄,eval_alain_bb5_in), X₇: X₇ {O(n)}
(g₄₄,eval_alain_bb5_in), X₈: X₈ {O(n)}
(g₄₄,eval_alain_bb5_in), X₉: X₉ {O(n)}
(g₄₄,eval_alain_bb5_in), X₁₀: X₁₀ {O(n)}
(g₄₄,eval_alain_bb5_in), X₁₁: X₁₁ {O(n)}
(g₄₇,eval_alain_17), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₇,eval_alain_17), X₁: X₇ {O(n)}
(g₄₇,eval_alain_17), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₇,eval_alain_17), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₇,eval_alain_17), X₄: 0 {O(1)}
(g₄₇,eval_alain_17), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₇,eval_alain_17), X₆: 4⋅X₇ {O(n)}
(g₄₇,eval_alain_17), X₇: X₇ {O(n)}
(g₄₇,eval_alain_17), X₈: X₈ {O(n)}
(g₄₇,eval_alain_17), X₉: X₉ {O(n)}
(g₄₇,eval_alain_17), X₁₀: X₁₀ {O(n)}
(g₄₇,eval_alain_17), X₁₁: X₁₁ {O(n)}
(g₄₉,eval_alain_18), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₄₉,eval_alain_18), X₁: X₇ {O(n)}
(g₄₉,eval_alain_18), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₄₉,eval_alain_18), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₉,eval_alain_18), X₄: 0 {O(1)}
(g₄₉,eval_alain_18), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₄₉,eval_alain_18), X₆: 4⋅X₇ {O(n)}
(g₄₉,eval_alain_18), X₇: X₇ {O(n)}
(g₄₉,eval_alain_18), X₈: X₈ {O(n)}
(g₄₉,eval_alain_18), X₉: X₉ {O(n)}
(g₄₉,eval_alain_18), X₁₀: X₁₀ {O(n)}
(g₄₉,eval_alain_18), X₁₁: X₁₁ {O(n)}
(g₅₁,eval_alain_19), X₀: 4⋅X₁₀⋅X₇+2⋅X₁₁+6⋅X₁₀ {O(n^2)}
(g₅₁,eval_alain_19), X₁: X₇ {O(n)}
(g₅₁,eval_alain_19), X₂: 4⋅X₁₀⋅X₇+2⋅X₁₁+2⋅X₈+6⋅X₁₀ {O(n^2)}
(g₅₁,eval_alain_19), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₁,eval_alain_19), X₄: 0 {O(1)}
(g₅₁,eval_alain_19), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₁,eval_alain_19), X₆: 4⋅X₇ {O(n)}
(g₅₁,eval_alain_19), X₇: X₇ {O(n)}
(g₅₁,eval_alain_19), X₈: X₈ {O(n)}
(g₅₁,eval_alain_19), X₉: X₉ {O(n)}
(g₅₁,eval_alain_19), X₁₀: X₁₀ {O(n)}
(g₅₁,eval_alain_19), X₁₁: X₁₁ {O(n)}
(g₅₃,eval_alain_bb2_in), X₀: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₁: X₇ {O(n)}
(g₅₃,eval_alain_bb2_in), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₄: 0 {O(1)}
(g₅₃,eval_alain_bb2_in), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+X₁₁ {O(n^2)}
(g₅₃,eval_alain_bb2_in), X₆: 4⋅X₇ {O(n)}
(g₅₃,eval_alain_bb2_in), X₇: X₇ {O(n)}
(g₅₃,eval_alain_bb2_in), X₈: X₈ {O(n)}
(g₅₃,eval_alain_bb2_in), X₉: X₉ {O(n)}
(g₅₃,eval_alain_bb2_in), X₁₀: X₁₀ {O(n)}
(g₅₃,eval_alain_bb2_in), X₁₁: X₁₁ {O(n)}
(g₅₅,eval_alain_stop), X₀: 2⋅X₁₀⋅X₇+2⋅X₁₁+3⋅X₁₀+7⋅X₀ {O(n^2)}
(g₅₅,eval_alain_stop), X₁: 7⋅X₁ {O(n)}
(g₅₅,eval_alain_stop), X₂: 2⋅X₁₀⋅X₇+3⋅X₁₀+7⋅X₂+X₁₁+X₈ {O(n^2)}
(g₅₅,eval_alain_stop), X₃: 2⋅X₁₀⋅X₇+3⋅X₁₀+8⋅X₃+X₁₁ {O(n^2)}
(g₅₅,eval_alain_stop), X₄: 8⋅X₄ {O(n)}
(g₅₅,eval_alain_stop), X₅: 2⋅X₁₀⋅X₇+3⋅X₁₀+8⋅X₅+X₁₁ {O(n^2)}
(g₅₅,eval_alain_stop), X₆: 4⋅X₇+8⋅X₆ {O(n)}
(g₅₅,eval_alain_stop), X₇: 9⋅X₇ {O(n)}
(g₅₅,eval_alain_stop), X₈: 9⋅X₈ {O(n)}
(g₅₅,eval_alain_stop), X₉: 9⋅X₉ {O(n)}
(g₅₅,eval_alain_stop), X₁₀: 9⋅X₁₀ {O(n)}
(g₅₅,eval_alain_stop), X₁₁: 9⋅X₁₁ {O(n)}