Preprocessing

Cut unsatisfiable transition [t₁₁∈g₁₀: f39→1:f39; t₂₁∈g₂₀: f54→1:f54; t₂₃∈g₂₂: f60→1:f60]

Eliminate variables [X₀; X₁; X₅; X₆; X₇; X₈; X₁₀; X₁₂; X₁₇; X₁₈; X₁₉; X₂₀; X₂₁; X₂₂; X₂₃; X₂₄; X₂₅; X₂₆] that do not contribute to the problem

Found invariant 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ for location f44

Found invariant 1 ≤ 0 for location f103

Found invariant 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ X₁₆ ≤ 0 ∧ X₁₆ ≤ X₁₅ ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₅ ≤ 0 ∧ 0 ≤ X₁₅ ∧ X₁₄ ≤ X₁₃ for location f66

Found invariant 1+X₂ ≤ X₉ for location f33

Found invariant 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ for location f91

Found invariant 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ for location f39

Found invariant 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1+X₁₃ ≤ X₁₄ for location f125

Found invariant 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ X₁₆ ≤ 0 ∧ X₁₄ ≤ X₁₃ for location f49

Found invariant 1 ≤ 0 for location f107

Found invariant 1 ≤ 0 for location f99

Found invariant 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ X₁₆ ≤ 0 ∧ X₁₄ ≤ X₁₃ for location f54

Found invariant 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ for location f72

Found invariant 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ for location f87

Found invariant 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ X₁₄ ≤ X₁₃ for location f46

Found invariant 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1+X₁₃ ≤ X₁₄ for location f117

Found invariant 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ X₁₆ ≤ 0 ∧ X₁₄ ≤ X₁₃ for location f60

Cut unsatisfiable transition [t₁₉∈g₁₈: f49→1:f49; t₃₀∈g₂₉: f72→1:f72; t₃₈∈g₃₇: f91→1:f99; t₄₀∈g₃₉: f91→1:f99; t₄₂∈g₄₁: f91→1:f99; t₄₄∈g₄₃: f99→1:f103; t₄₆∈g₄₅: f99→1:f103; t₄₈∈g₄₇: f99→1:f103; t₅₀∈g₄₉: f103→1:f107; t₅₂∈g₅₁: f103→1:f107; t₅₄∈g₅₃: f103→1:f107; t₅₆∈g₅₅: f107→1:f91; t₅₈∈g₅₇: f107→1:f91; t₆₀∈g₅₉: f107→1:f91; t₆₂∈g₆₁: f117→1:f117]

Cut unreachable locations [f103; f107; f99] from the program graph

Eliminate variables [X₀; X₁; X₅; X₆; X₇; X₈; X₁₀; X₁₂; X₁₇; X₁₈; X₁₉; X₂₀; X₂₁; X₂₂; X₂₃; X₂₄; X₂₅; X₂₆] that do not contribute to the problem

Probabilistic Analysis

Probabilistic Program after Preprocessing

Start: f0
Program_Vars: X₂, X₃, X₄, X₉, X₁₁, X₁₃, X₁₄, X₁₅, X₁₆
Temp_Vars: B1, C1, D1
Locations: f0, f117, f125, f23, f33, f39, f44, f46, f49, f54, f60, f66, f72, f87, f91
Transitions:
g₀:f0(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₁:f23(0,0,2⋅X₃,X₃,4⋅X₃,3+4⋅X₃,4+4⋅X₃,X₃,B1,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|:
g₂:f23(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₃:f23(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,1+X₉,1,0,0,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ X₂
g₄:f23(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₅:f23(B1+X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,1+X₉,C1,1-C1,B1,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 2 ≤ C1 ∧ X₉ ≤ X₂
g₆:f23(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₇:f23(B1+X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,1+X₉,C1,1-C1,B1,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: C1 ≤ 0 ∧ X₉ ≤ X₂
g₈:f33(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₉:f33(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,1+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ X₃ ∧ 1+X₂ ≤ X₉
g₁₂:f44(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₁₃:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₁₄ ≤ X₁₃ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉
g₁₄:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₁₅:f49(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₁₅ ≤ 0 ∧ X₁₆ ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃
g₁₆:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₁₇:f49(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1 ≤ X₁₅ ∧ X₁₆ ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃
g₂₄:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₂₅:f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,0,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 0 ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₆ ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃
g₂₆:f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → [1/2]:t₂₇:f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,2+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :+: [1/2]:t₂₈:f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0
g₃₁:f87(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₃₂:f91(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,0,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,0,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 0 ≤ X₁₁ ∧ X₁₁ ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₃₃:f87(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₃₄:f91(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,B1,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₁₁ ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₃₅:f87(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₃₆:f91(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,B1,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1 ≤ X₁₁ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₆₃:f117(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₆₄:f125(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1+X₁₃ ≤ X₁₄
g₆₅:f91(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₆₆:f44(X₀,X₀+X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,1+X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₆₇:f72(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₆₈:f87(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,B1,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,0,X₂₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₆₉:f72(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₇₀:f87(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,B1,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,C1,X₂₆) :|: 1+D1 ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₇₁:f72(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₇₂:f87(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,B1,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,C1,X₂₆) :|: 1 ≤ D1 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₇₃:f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₇₄:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,1+X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₄ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0
g₇₅:f60(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₇₆:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,1+X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ X₁₆ ≤ 0
g₇₇:f54(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₇₈:f60(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂+X₁₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ X₁₆ ≤ 0
g₇₉:f49(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₈₀:f54(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ X₁₆ ≤ 0
g₈₁:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₈₂:f72(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1 ≤ X₁₆ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃
g₈₃:f44(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₈₄:f117(X₀,B1,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₁₃ ≤ X₁₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉
g₈₅:f39(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₈₆:f44(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉
g₈₇:f33(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₈₈:f39(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₁₅ ≤ 0 ∧ 1+X₂ ≤ X₉
g₈₉:f33(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₉₀:f39(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₅ ∧ 1+X₂ ≤ X₉
g₉₁:f33(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₉₂:f44(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,0,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 0 ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ 1+X₂ ≤ X₉
g₉₃:f23(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₉₄:f33(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₂ ≤ X₉

Run classical analysis on SCC: [f0]

Classical Approximation after Lifting Classical Results

All Bounds
Timebounds

Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₆₃: 1 {O(1)}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
g₇₇: inf {Infinity}
g₇₉: inf {Infinity}
g₈₁: inf {Infinity}
g₈₃: 1 {O(1)}
g₈₅: 1 {O(1)}
g₈₇: 1 {O(1)}
g₈₉: 1 {O(1)}
g₉₁: 1 {O(1)}
g₉₃: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
g₇₇: inf {Infinity}
g₇₉: inf {Infinity}
g₈₁: inf {Infinity}
g₈₃: inf {Infinity}
g₈₅: inf {Infinity}
g₈₇: inf {Infinity}
g₈₉: inf {Infinity}
g₉₁: inf {Infinity}
g₉₃: inf {Infinity}

Sizebounds

(g₀,f23), X₂: 2⋅X₃ {O(n)}
(g₀,f23), X₃: X₃ {O(n)}
(g₀,f23), X₄: 4⋅X₃ {O(n)}
(g₀,f23), X₉: X₉ {O(n)}
(g₀,f23), X₁₁: X₁₁ {O(n)}
(g₀,f23), X₁₃: X₁₃ {O(n)}
(g₀,f23), X₁₄: X₁₄ {O(n)}
(g₀,f23), X₁₅: X₁₅ {O(n)}
(g₀,f23), X₁₆: X₁₆ {O(n)}

Run probabilistic analysis on SCC: [f0]

Run classical analysis on SCC: [f23]

MPRF for transition t₃: f23(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f23(X₂,X₃,X₄,1+X₉,Temp_Int₅₆₉,X₁₃,X₁₄,X₁₅,X₁₆) :|: X₉ ≤ X₂ ∧ Temp_Int₅₆₉ ≤ 0 ∧ 0 ≤ Temp_Int₅₆₉ ∧ X₉ ≤ X₂ of depth 1:

new bound:

2⋅X₃+X₉+1 {O(n)}

MPRF:

• f23: [1+X₂-X₉]

MPRF for transition t₅: f23(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f23(X₂,X₃,X₄,1+X₉,1-C1,X₁₃,X₁₄,X₁₅,X₁₆) :|: 2 ≤ C1 ∧ X₉ ≤ X₂ of depth 1:

new bound:

2⋅X₃+X₉+1 {O(n)}

MPRF:

• f23: [1+X₂-X₉]

MPRF for transition t₇: f23(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f23(X₂,X₃,X₄,1+X₉,1-C1,X₁₃,X₁₄,X₁₅,X₁₆) :|: C1 ≤ 0 ∧ X₉ ≤ X₂ of depth 1:

new bound:

2⋅X₃+X₉+1 {O(n)}

MPRF:

• f23: [1+X₂-X₉]

Classical Approximation after Lifting Classical Results

All Bounds
Timebounds

Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 2⋅X₃+X₉+1 {O(n)}
g₄: 2⋅X₃+X₉+1 {O(n)}
g₆: 2⋅X₃+X₉+1 {O(n)}
g₈: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₆₃: 1 {O(1)}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
g₇₇: inf {Infinity}
g₇₉: inf {Infinity}
g₈₁: inf {Infinity}
g₈₃: 1 {O(1)}
g₈₅: 1 {O(1)}
g₈₇: 1 {O(1)}
g₈₉: 1 {O(1)}
g₉₁: 1 {O(1)}
g₉₃: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
g₇₇: inf {Infinity}
g₇₉: inf {Infinity}
g₈₁: inf {Infinity}
g₈₃: inf {Infinity}
g₈₅: inf {Infinity}
g₈₇: inf {Infinity}
g₈₉: inf {Infinity}
g₉₁: inf {Infinity}
g₉₃: inf {Infinity}

Sizebounds

(g₀,f23), X₂: 2⋅X₃ {O(n)}
(g₀,f23), X₃: X₃ {O(n)}
(g₀,f23), X₄: 4⋅X₃ {O(n)}
(g₀,f23), X₉: X₉ {O(n)}
(g₀,f23), X₁₁: X₁₁ {O(n)}
(g₀,f23), X₁₃: X₁₃ {O(n)}
(g₀,f23), X₁₄: X₁₄ {O(n)}
(g₀,f23), X₁₅: X₁₅ {O(n)}
(g₀,f23), X₁₆: X₁₆ {O(n)}
(g₂,f23), X₂: 2⋅X₃ {O(n)}
(g₂,f23), X₃: X₃ {O(n)}
(g₂,f23), X₄: 4⋅X₃ {O(n)}
(g₂,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₂,f23), X₁₁: 0 {O(1)}
(g₂,f23), X₁₃: X₁₃ {O(n)}
(g₂,f23), X₁₄: X₁₄ {O(n)}
(g₂,f23), X₁₅: X₁₅ {O(n)}
(g₂,f23), X₁₆: X₁₆ {O(n)}
(g₄,f23), X₂: 2⋅X₃ {O(n)}
(g₄,f23), X₃: X₃ {O(n)}
(g₄,f23), X₄: 4⋅X₃ {O(n)}
(g₄,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₄,f23), X₁₃: X₁₃ {O(n)}
(g₄,f23), X₁₄: X₁₄ {O(n)}
(g₄,f23), X₁₅: X₁₅ {O(n)}
(g₄,f23), X₁₆: X₁₆ {O(n)}
(g₆,f23), X₂: 2⋅X₃ {O(n)}
(g₆,f23), X₃: X₃ {O(n)}
(g₆,f23), X₄: 4⋅X₃ {O(n)}
(g₆,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₆,f23), X₁₃: X₁₃ {O(n)}
(g₆,f23), X₁₄: X₁₄ {O(n)}
(g₆,f23), X₁₅: X₁₅ {O(n)}
(g₆,f23), X₁₆: X₁₆ {O(n)}
(g₉₃,f33), X₂: 8⋅X₃ {O(n)}
(g₉₃,f33), X₃: 4⋅X₃ {O(n)}
(g₉₃,f33), X₄: 16⋅X₃ {O(n)}
(g₉₃,f33), X₉: 13⋅X₉+18⋅X₃+9 {O(n)}
(g₉₃,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₉₃,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₉₃,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₉₃,f33), X₁₆: 4⋅X₁₆ {O(n)}

Run probabilistic analysis on SCC: [f23]

Run classical analysis on SCC: [f33]

MPRF for transition t₉: f33(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f33(X₂,X₃,X₄,1+X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₂ ≤ X₉ ∧ X₉ ≤ X₃ of depth 1:

new bound:

13⋅X₉+22⋅X₃+10 {O(n)}

MPRF:

• f33: [1+X₃-X₉]

Classical Approximation after Lifting Classical Results

All Bounds
Timebounds

Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 2⋅X₃+X₉+1 {O(n)}
g₄: 2⋅X₃+X₉+1 {O(n)}
g₆: 2⋅X₃+X₉+1 {O(n)}
g₈: 13⋅X₉+22⋅X₃+10 {O(n)}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₆₃: 1 {O(1)}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
g₇₇: inf {Infinity}
g₇₉: inf {Infinity}
g₈₁: inf {Infinity}
g₈₃: 1 {O(1)}
g₈₅: 1 {O(1)}
g₈₇: 1 {O(1)}
g₈₉: 1 {O(1)}
g₉₁: 1 {O(1)}
g₉₃: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
g₇₇: inf {Infinity}
g₇₉: inf {Infinity}
g₈₁: inf {Infinity}
g₈₃: inf {Infinity}
g₈₅: inf {Infinity}
g₈₇: inf {Infinity}
g₈₉: inf {Infinity}
g₉₁: inf {Infinity}
g₉₃: inf {Infinity}

Sizebounds

(g₀,f23), X₂: 2⋅X₃ {O(n)}
(g₀,f23), X₃: X₃ {O(n)}
(g₀,f23), X₄: 4⋅X₃ {O(n)}
(g₀,f23), X₉: X₉ {O(n)}
(g₀,f23), X₁₁: X₁₁ {O(n)}
(g₀,f23), X₁₃: X₁₃ {O(n)}
(g₀,f23), X₁₄: X₁₄ {O(n)}
(g₀,f23), X₁₅: X₁₅ {O(n)}
(g₀,f23), X₁₆: X₁₆ {O(n)}
(g₂,f23), X₂: 2⋅X₃ {O(n)}
(g₂,f23), X₃: X₃ {O(n)}
(g₂,f23), X₄: 4⋅X₃ {O(n)}
(g₂,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₂,f23), X₁₁: 0 {O(1)}
(g₂,f23), X₁₃: X₁₃ {O(n)}
(g₂,f23), X₁₄: X₁₄ {O(n)}
(g₂,f23), X₁₅: X₁₅ {O(n)}
(g₂,f23), X₁₆: X₁₆ {O(n)}
(g₄,f23), X₂: 2⋅X₃ {O(n)}
(g₄,f23), X₃: X₃ {O(n)}
(g₄,f23), X₄: 4⋅X₃ {O(n)}
(g₄,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₄,f23), X₁₃: X₁₃ {O(n)}
(g₄,f23), X₁₄: X₁₄ {O(n)}
(g₄,f23), X₁₅: X₁₅ {O(n)}
(g₄,f23), X₁₆: X₁₆ {O(n)}
(g₆,f23), X₂: 2⋅X₃ {O(n)}
(g₆,f23), X₃: X₃ {O(n)}
(g₆,f23), X₄: 4⋅X₃ {O(n)}
(g₆,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₆,f23), X₁₃: X₁₃ {O(n)}
(g₆,f23), X₁₄: X₁₄ {O(n)}
(g₆,f23), X₁₅: X₁₅ {O(n)}
(g₆,f23), X₁₆: X₁₆ {O(n)}
(g₈,f33), X₂: 8⋅X₃ {O(n)}
(g₈,f33), X₃: 4⋅X₃ {O(n)}
(g₈,f33), X₄: 16⋅X₃ {O(n)}
(g₈,f33), X₉: 26⋅X₉+40⋅X₃+19 {O(n)}
(g₈,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₈,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₈,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₈,f33), X₁₆: 4⋅X₁₆ {O(n)}
(g₈₇,f39), X₂: 16⋅X₃ {O(n)}
(g₈₇,f39), X₃: 8⋅X₃ {O(n)}
(g₈₇,f39), X₄: 32⋅X₃ {O(n)}
(g₈₇,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₇,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₇,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₇,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₇,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₈₉,f39), X₂: 16⋅X₃ {O(n)}
(g₈₉,f39), X₃: 8⋅X₃ {O(n)}
(g₈₉,f39), X₄: 32⋅X₃ {O(n)}
(g₈₉,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₉,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₉,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₉,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₉,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₁,f44), X₂: 16⋅X₃ {O(n)}
(g₉₁,f44), X₃: 8⋅X₃ {O(n)}
(g₉₁,f44), X₄: 32⋅X₃ {O(n)}
(g₉₁,f44), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₉₁,f44), X₁₃: 8⋅X₁₃ {O(n)}
(g₉₁,f44), X₁₄: 8⋅X₁₄ {O(n)}
(g₉₁,f44), X₁₅: 0 {O(1)}
(g₉₁,f44), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₃,f33), X₂: 8⋅X₃ {O(n)}
(g₉₃,f33), X₃: 4⋅X₃ {O(n)}
(g₉₃,f33), X₄: 16⋅X₃ {O(n)}
(g₉₃,f33), X₉: 13⋅X₉+18⋅X₃+9 {O(n)}
(g₉₃,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₉₃,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₉₃,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₉₃,f33), X₁₆: 4⋅X₁₆ {O(n)}

Run probabilistic analysis on SCC: [f33]

Run classical analysis on SCC: [f39]

Classical Approximation after Lifting Classical Results

All Bounds
Timebounds

Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 2⋅X₃+X₉+1 {O(n)}
g₄: 2⋅X₃+X₉+1 {O(n)}
g₆: 2⋅X₃+X₉+1 {O(n)}
g₈: 13⋅X₉+22⋅X₃+10 {O(n)}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₆₃: 1 {O(1)}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
g₇₇: inf {Infinity}
g₇₉: inf {Infinity}
g₈₁: inf {Infinity}
g₈₃: 1 {O(1)}
g₈₅: 1 {O(1)}
g₈₇: 1 {O(1)}
g₈₉: 1 {O(1)}
g₉₁: 1 {O(1)}
g₉₃: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
g₇₇: inf {Infinity}
g₇₉: inf {Infinity}
g₈₁: inf {Infinity}
g₈₃: inf {Infinity}
g₈₅: inf {Infinity}
g₈₇: inf {Infinity}
g₈₉: inf {Infinity}
g₉₁: inf {Infinity}
g₉₃: inf {Infinity}

Sizebounds

(g₀,f23), X₂: 2⋅X₃ {O(n)}
(g₀,f23), X₃: X₃ {O(n)}
(g₀,f23), X₄: 4⋅X₃ {O(n)}
(g₀,f23), X₉: X₉ {O(n)}
(g₀,f23), X₁₁: X₁₁ {O(n)}
(g₀,f23), X₁₃: X₁₃ {O(n)}
(g₀,f23), X₁₄: X₁₄ {O(n)}
(g₀,f23), X₁₅: X₁₅ {O(n)}
(g₀,f23), X₁₆: X₁₆ {O(n)}
(g₂,f23), X₂: 2⋅X₃ {O(n)}
(g₂,f23), X₃: X₃ {O(n)}
(g₂,f23), X₄: 4⋅X₃ {O(n)}
(g₂,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₂,f23), X₁₁: 0 {O(1)}
(g₂,f23), X₁₃: X₁₃ {O(n)}
(g₂,f23), X₁₄: X₁₄ {O(n)}
(g₂,f23), X₁₅: X₁₅ {O(n)}
(g₂,f23), X₁₆: X₁₆ {O(n)}
(g₄,f23), X₂: 2⋅X₃ {O(n)}
(g₄,f23), X₃: X₃ {O(n)}
(g₄,f23), X₄: 4⋅X₃ {O(n)}
(g₄,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₄,f23), X₁₃: X₁₃ {O(n)}
(g₄,f23), X₁₄: X₁₄ {O(n)}
(g₄,f23), X₁₅: X₁₅ {O(n)}
(g₄,f23), X₁₆: X₁₆ {O(n)}
(g₆,f23), X₂: 2⋅X₃ {O(n)}
(g₆,f23), X₃: X₃ {O(n)}
(g₆,f23), X₄: 4⋅X₃ {O(n)}
(g₆,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₆,f23), X₁₃: X₁₃ {O(n)}
(g₆,f23), X₁₄: X₁₄ {O(n)}
(g₆,f23), X₁₅: X₁₅ {O(n)}
(g₆,f23), X₁₆: X₁₆ {O(n)}
(g₈,f33), X₂: 8⋅X₃ {O(n)}
(g₈,f33), X₃: 4⋅X₃ {O(n)}
(g₈,f33), X₄: 16⋅X₃ {O(n)}
(g₈,f33), X₉: 26⋅X₉+40⋅X₃+19 {O(n)}
(g₈,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₈,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₈,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₈,f33), X₁₆: 4⋅X₁₆ {O(n)}
(g₈₅,f44), X₂: 32⋅X₃ {O(n)}
(g₈₅,f44), X₃: 16⋅X₃ {O(n)}
(g₈₅,f44), X₄: 64⋅X₃ {O(n)}
(g₈₅,f44), X₉: 116⋅X₃+78⋅X₉+56 {O(n)}
(g₈₅,f44), X₁₃: 16⋅X₁₃ {O(n)}
(g₈₅,f44), X₁₄: 16⋅X₁₄ {O(n)}
(g₈₅,f44), X₁₅: 16⋅X₁₅ {O(n)}
(g₈₅,f44), X₁₆: 16⋅X₁₆ {O(n)}
(g₈₇,f39), X₂: 16⋅X₃ {O(n)}
(g₈₇,f39), X₃: 8⋅X₃ {O(n)}
(g₈₇,f39), X₄: 32⋅X₃ {O(n)}
(g₈₇,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₇,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₇,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₇,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₇,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₈₉,f39), X₂: 16⋅X₃ {O(n)}
(g₈₉,f39), X₃: 8⋅X₃ {O(n)}
(g₈₉,f39), X₄: 32⋅X₃ {O(n)}
(g₈₉,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₉,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₉,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₉,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₉,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₁,f44), X₂: 16⋅X₃ {O(n)}
(g₉₁,f44), X₃: 8⋅X₃ {O(n)}
(g₉₁,f44), X₄: 32⋅X₃ {O(n)}
(g₉₁,f44), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₉₁,f44), X₁₃: 8⋅X₁₃ {O(n)}
(g₉₁,f44), X₁₄: 8⋅X₁₄ {O(n)}
(g₉₁,f44), X₁₅: 0 {O(1)}
(g₉₁,f44), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₃,f33), X₂: 8⋅X₃ {O(n)}
(g₉₃,f33), X₃: 4⋅X₃ {O(n)}
(g₉₃,f33), X₄: 16⋅X₃ {O(n)}
(g₉₃,f33), X₉: 13⋅X₉+18⋅X₃+9 {O(n)}
(g₉₃,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₉₃,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₉₃,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₉₃,f33), X₁₆: 4⋅X₁₆ {O(n)}

Run probabilistic analysis on SCC: [f39]

Run classical analysis on SCC: [f44; f46; f49; f54; f60; f66; f72; f87; f91]

MPRF for transition t₁₃: f44(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f46(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ of depth 1:

new bound:

24⋅X₁₃+24⋅X₁₄+2 {O(n)}

MPRF:

• f44: [1+X₁₃-X₁₄]
• f46: [X₁₃-X₁₄]
• f49: [X₁₃-X₁₄]
• f54: [X₁₃-X₁₄]
• f60: [X₁₃-X₁₄]
• f66: [X₁₃-X₁₄]
• f72: [X₁₃-X₁₄]
• f87: [X₁₃-X₁₄]
• f91: [X₁₃-X₁₄]

MPRF for transition t₁₅: f46(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f49(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 1+X₁₅ ≤ 0 ∧ X₁₆ ≤ 0 of depth 1:

new bound:

24⋅X₁₆+2 {O(n)}

MPRF:

• f44: [1-X₁₆]
• f46: [1-X₁₆]
• f49: [-X₁₆]
• f54: [-X₁₆]
• f60: [-X₁₆]
• f66: [1-X₁₆]
• f72: [1-X₁₆]
• f87: [1-X₁₆]
• f91: [1-X₁₆]

MPRF for transition t₁₇: f46(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f49(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 1 ≤ X₁₅ ∧ X₁₆ ≤ 0 of depth 1:

new bound:

24⋅X₁₆+2 {O(n)}

MPRF:

• f44: [1-X₁₆]
• f46: [1-X₁₆]
• f49: [-X₁₆]
• f54: [-X₁₆]
• f60: [-X₁₆]
• f66: [1-X₁₆]
• f72: [1-X₁₆]
• f87: [1-X₁₆]
• f91: [1-X₁₆]

MPRF for transition t₂₅: f46(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f66(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,Temp_Int₁₀₆₉,X₁₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ X₁₆ ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ Temp_Int₁₀₆₉ ≤ 0 ∧ 0 ≤ Temp_Int₁₀₆₉ ∧ X₁₅ ≤ 0 ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ 0 ∧ X₁₅ ≤ 0 ∧ 0 ≤ X₁₅ of depth 1:

new bound:

24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)}

MPRF:

• f44: [1+X₁₃-X₁₄-X₁₆]
• f46: [1+X₁₃-X₁₄-X₁₆]
• f49: [X₁₃-X₁₄-X₁₆]
• f54: [X₁₃-X₁₄-X₁₆]
• f60: [X₁₃-X₁₄-X₁₆]
• f66: [X₁₃-X₁₄-X₁₆]
• f72: [X₁₃-X₁₄-X₁₆]
• f87: [X₁₃-X₁₄-X₁₆]
• f91: [X₁₃-X₁₄-X₁₆]

MPRF for transition t₂₇: f66(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f66(X₂,X₃,X₄,2+X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0 ∧ X₉ ≤ X₄ of depth 1:

new bound:

117⋅X₉+390⋅X₃+84 {O(n)}

MPRF:

• f44: [2⋅X₄-X₃-X₉]
• f46: [2⋅X₄-X₃-X₉]
• f49: [2⋅X₄-X₃-X₉]
• f54: [2⋅X₄-X₃-X₉]
• f60: [2⋅X₄-X₃-X₉]
• f66: [2⋅X₄-X₃-X₉]
• f72: [2⋅X₄-X₃-X₉]
• f87: [2⋅X₄-X₃-X₉]
• f91: [2⋅X₄-X₃-X₉]

MPRF for transition t₃₂: f87(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f91(X₂,X₃,X₄,X₉,Temp_Int₁₀₇₀,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ ∧ Temp_Int₁₀₇₀ ≤ 0 ∧ 0 ≤ Temp_Int₁₀₇₀ ∧ X₁₁ ≤ 0 ∧ 0 ≤ X₁₁ of depth 1:

new bound:

24⋅X₁₃+24⋅X₁₄+2 {O(n)}

MPRF:

• f44: [1+X₁₃-X₁₄]
• f46: [1+X₁₃-X₁₄]
• f49: [1+X₁₃-X₁₄]
• f54: [1+X₁₃-X₁₄]
• f60: [1+X₁₃-X₁₄]
• f66: [1+X₁₃-X₁₄]
• f72: [1+X₁₃-X₁₄]
• f87: [1+X₁₃-X₁₄]
• f91: [X₁₃-X₁₄]

MPRF for transition t₃₄: f87(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f91(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ 1+X₁₁ ≤ 0 of depth 1:

new bound:

24⋅X₁₃+24⋅X₁₄+2 {O(n)}

MPRF:

• f44: [1+X₁₃-X₁₄]
• f46: [1+X₁₃-X₁₄]
• f49: [1+X₁₃-X₁₄]
• f54: [1+X₁₃-X₁₄]
• f60: [1+X₁₃-X₁₄]
• f66: [1+X₁₃-X₁₄]
• f72: [1+X₁₃-X₁₄]
• f87: [1+X₁₃-X₁₄]
• f91: [X₁₃-X₁₄]

MPRF for transition t₃₆: f87(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f91(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ 1 ≤ X₁₁ of depth 1:

new bound:

24⋅X₁₃+24⋅X₁₄+2 {O(n)}

MPRF:

• f44: [1+X₁₃-X₁₄]
• f46: [1+X₁₃-X₁₄]
• f49: [1+X₁₃-X₁₄]
• f54: [1+X₁₃-X₁₄]
• f60: [1+X₁₃-X₁₄]
• f66: [1+X₁₃-X₁₄]
• f72: [1+X₁₃-X₁₄]
• f87: [1+X₁₃-X₁₄]
• f91: [X₁₃-X₁₄]

MPRF for transition t₆₆: f91(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f44(X₂,X₃,X₄,X₉,X₁₁,X₁₃,1+X₁₄,X₁₅,X₁₆) :|: 1+X₂ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ 1+X₃ ≤ X₉ of depth 1:

new bound:

24⋅X₁₃+24⋅X₁₄+2 {O(n)}

MPRF:

• f44: [1+X₁₃-X₁₄]
• f46: [1+X₁₃-X₁₄]
• f49: [1+X₁₃-X₁₄]
• f54: [1+X₁₃-X₁₄]
• f60: [1+X₁₃-X₁₄]
• f66: [1+X₁₃-X₁₄]
• f72: [1+X₁₃-X₁₄]
• f87: [1+X₁₃-X₁₄]
• f91: [1+X₁₃-X₁₄]

MPRF for transition t₆₈: f72(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f87(X₂,X₃,X₄,X₉,B1,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ 1+X₂ ≤ X₉ of depth 1:

new bound:

24⋅X₁₃+24⋅X₁₄+2 {O(n)}

MPRF:

• f44: [1+X₁₃-X₁₄]
• f46: [1+X₁₃-X₁₄]
• f49: [1+X₁₃-X₁₄]
• f54: [1+X₁₃-X₁₄]
• f60: [1+X₁₃-X₁₄]
• f66: [1+X₁₃-X₁₄]
• f72: [1+X₁₃-X₁₄]
• f87: [X₁₃-X₁₄]
• f91: [X₁₃-X₁₄]

MPRF for transition t₇₀: f72(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f87(X₂,X₃,X₄,X₉,B1,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ 1+D1 ≤ 0 ∧ 1+X₂ ≤ X₉ of depth 1:

new bound:

24⋅X₁₃+24⋅X₁₄+2 {O(n)}

MPRF:

• f44: [1+X₁₃-X₁₄]
• f46: [1+X₁₃-X₁₄]
• f49: [1+X₁₃-X₁₄]
• f54: [1+X₁₃-X₁₄]
• f60: [1+X₁₃-X₁₄]
• f66: [1+X₁₃-X₁₄]
• f72: [1+X₁₃-X₁₄]
• f87: [X₁₃-X₁₄]
• f91: [X₁₃-X₁₄]

MPRF for transition t₇₂: f72(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f87(X₂,X₃,X₄,X₉,B1,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃ ∧ 1 ≤ D1 ∧ 1+X₂ ≤ X₉ of depth 1:

new bound:

24⋅X₁₃+24⋅X₁₄+2 {O(n)}

MPRF:

• f44: [1+X₁₃-X₁₄]
• f46: [1+X₁₃-X₁₄]
• f49: [1+X₁₃-X₁₄]
• f54: [1+X₁₃-X₁₄]
• f60: [1+X₁₃-X₁₄]
• f66: [1+X₁₃-X₁₄]
• f72: [1+X₁₃-X₁₄]
• f87: [X₁₃-X₁₄]
• f91: [X₁₃-X₁₄]

MPRF for transition t₇₄: f66(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f46(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,1+X₁₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0 ∧ 1+X₄ ≤ X₉ of depth 1:

new bound:

24⋅X₁₆+2 {O(n)}

MPRF:

• f44: [1-X₁₆]
• f46: [1-X₁₆]
• f49: [-X₁₆]
• f54: [-X₁₆]
• f60: [-X₁₆]
• f66: [1-X₁₆]
• f72: [1-X₁₆]
• f87: [1-X₁₆]
• f91: [1-X₁₆]

MPRF for transition t₇₆: f60(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f46(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,1+X₁₆) :|: 1+X₂ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ X₁₆ ≤ 0 ∧ 1+X₃ ≤ X₉ of depth 1:

new bound:

24⋅X₁₆+2 {O(n)}

MPRF:

• f44: [1-X₁₆]
• f46: [1-X₁₆]
• f49: [1-X₁₆]
• f54: [1-X₁₆]
• f60: [1-X₁₆]
• f66: [-X₁₆]
• f72: [1-X₁₆]
• f87: [1-X₁₆]
• f91: [1-X₁₆]

MPRF for transition t₇₈: f54(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f60(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₂ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ X₁₆ ≤ 0 ∧ 1+X₃ ≤ X₉ of depth 1:

new bound:

24⋅X₁₆+2 {O(n)}

MPRF:

• f44: [1-X₁₆]
• f46: [1-X₁₆]
• f49: [1-X₁₆]
• f54: [1-X₁₆]
• f60: [-X₁₆]
• f66: [-X₁₆]
• f72: [1-X₁₆]
• f87: [1-X₁₆]
• f91: [1-X₁₆]

MPRF for transition t₈₀: f49(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f54(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₂ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ X₁₆ ≤ 0 ∧ 1+X₃ ≤ X₉ of depth 1:

new bound:

24⋅X₁₆+2 {O(n)}

MPRF:

• f44: [1-X₁₆]
• f46: [1-X₁₆]
• f49: [1-X₁₆]
• f54: [-X₁₆]
• f60: [-X₁₆]
• f66: [-X₁₆]
• f72: [1-X₁₆]
• f87: [1-X₁₆]
• f91: [1-X₁₆]

MPRF for transition t₈₂: f46(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) → f72(X₂,X₃,X₄,X₉,X₁₁,X₁₃,X₁₄,X₁₅,X₁₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 1 ≤ X₁₆ of depth 1:

new bound:

24⋅X₁₃+24⋅X₁₄+2 {O(n)}

MPRF:

• f44: [1+X₁₃-X₁₄]
• f46: [1+X₁₃-X₁₄]
• f49: [1+X₁₃-X₁₄]
• f54: [1+X₁₃-X₁₄]
• f60: [1+X₁₃-X₁₄]
• f66: [1+X₁₃-X₁₄]
• f72: [X₁₃-X₁₄]
• f87: [X₁₃-X₁₄]
• f91: [X₁₃-X₁₄]

Classical Approximation after Lifting Classical Results

All Bounds
Timebounds

Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 2⋅X₃+X₉+1 {O(n)}
g₄: 2⋅X₃+X₉+1 {O(n)}
g₆: 2⋅X₃+X₉+1 {O(n)}
g₈: 13⋅X₉+22⋅X₃+10 {O(n)}
g₁₂: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₁₄: 24⋅X₁₆+2 {O(n)}
g₁₆: 24⋅X₁₆+2 {O(n)}
g₂₄: 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)}
g₂₆: inf {Infinity}
g₃₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₃₃: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₃₅: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₃: 1 {O(1)}
g₆₅: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₇: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₉: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₇₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₇₃: 24⋅X₁₆+2 {O(n)}
g₇₅: 24⋅X₁₆+2 {O(n)}
g₇₇: 24⋅X₁₆+2 {O(n)}
g₇₉: 24⋅X₁₆+2 {O(n)}
g₈₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₈₃: 1 {O(1)}
g₈₅: 1 {O(1)}
g₈₇: 1 {O(1)}
g₈₉: 1 {O(1)}
g₉₁: 1 {O(1)}
g₉₃: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₂₄: inf {Infinity}
g₂₆: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
g₇₇: inf {Infinity}
g₇₉: inf {Infinity}
g₈₁: inf {Infinity}
g₈₃: inf {Infinity}
g₈₅: inf {Infinity}
g₈₇: inf {Infinity}
g₈₉: inf {Infinity}
g₉₁: inf {Infinity}
g₉₃: inf {Infinity}

Sizebounds

(g₀,f23), X₂: 2⋅X₃ {O(n)}
(g₀,f23), X₃: X₃ {O(n)}
(g₀,f23), X₄: 4⋅X₃ {O(n)}
(g₀,f23), X₉: X₉ {O(n)}
(g₀,f23), X₁₁: X₁₁ {O(n)}
(g₀,f23), X₁₃: X₁₃ {O(n)}
(g₀,f23), X₁₄: X₁₄ {O(n)}
(g₀,f23), X₁₅: X₁₅ {O(n)}
(g₀,f23), X₁₆: X₁₆ {O(n)}
(g₂,f23), X₂: 2⋅X₃ {O(n)}
(g₂,f23), X₃: X₃ {O(n)}
(g₂,f23), X₄: 4⋅X₃ {O(n)}
(g₂,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₂,f23), X₁₁: 0 {O(1)}
(g₂,f23), X₁₃: X₁₃ {O(n)}
(g₂,f23), X₁₄: X₁₄ {O(n)}
(g₂,f23), X₁₅: X₁₅ {O(n)}
(g₂,f23), X₁₆: X₁₆ {O(n)}
(g₄,f23), X₂: 2⋅X₃ {O(n)}
(g₄,f23), X₃: X₃ {O(n)}
(g₄,f23), X₄: 4⋅X₃ {O(n)}
(g₄,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₄,f23), X₁₃: X₁₃ {O(n)}
(g₄,f23), X₁₄: X₁₄ {O(n)}
(g₄,f23), X₁₅: X₁₅ {O(n)}
(g₄,f23), X₁₆: X₁₆ {O(n)}
(g₆,f23), X₂: 2⋅X₃ {O(n)}
(g₆,f23), X₃: X₃ {O(n)}
(g₆,f23), X₄: 4⋅X₃ {O(n)}
(g₆,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₆,f23), X₁₃: X₁₃ {O(n)}
(g₆,f23), X₁₄: X₁₄ {O(n)}
(g₆,f23), X₁₅: X₁₅ {O(n)}
(g₆,f23), X₁₆: X₁₆ {O(n)}
(g₈,f33), X₂: 8⋅X₃ {O(n)}
(g₈,f33), X₃: 4⋅X₃ {O(n)}
(g₈,f33), X₄: 16⋅X₃ {O(n)}
(g₈,f33), X₉: 26⋅X₉+40⋅X₃+19 {O(n)}
(g₈,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₈,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₈,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₈,f33), X₁₆: 4⋅X₁₆ {O(n)}
(g₁₂,f46), X₂: 48⋅X₃ {O(n)}
(g₁₂,f46), X₃: 24⋅X₃ {O(n)}
(g₁₂,f46), X₄: 96⋅X₃ {O(n)}
(g₁₂,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₂,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₂,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₂,f46), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₂,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₄,f49), X₂: 48⋅X₃ {O(n)}
(g₁₄,f49), X₃: 24⋅X₃ {O(n)}
(g₁₄,f49), X₄: 96⋅X₃ {O(n)}
(g₁₄,f49), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₄,f49), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₄,f49), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₄,f49), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₄,f49), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₆,f49), X₂: 48⋅X₃ {O(n)}
(g₁₆,f49), X₃: 24⋅X₃ {O(n)}
(g₁₆,f49), X₄: 96⋅X₃ {O(n)}
(g₁₆,f49), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₆,f49), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₆,f49), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₆,f49), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₆,f49), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₂₄,f66), X₂: 48⋅X₃ {O(n)}
(g₂₄,f66), X₃: 24⋅X₃ {O(n)}
(g₂₄,f66), X₄: 96⋅X₃ {O(n)}
(g₂₄,f66), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₂₄,f66), X₁₃: 24⋅X₁₃ {O(n)}
(g₂₄,f66), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₂₄,f66), X₁₅: 0 {O(1)}
(g₂₄,f66), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₂₆,f66), X₂: 96⋅X₃ {O(n)}
(g₂₆,f66), X₃: 48⋅X₃ {O(n)}
(g₂₆,f66), X₄: 192⋅X₃ {O(n)}
(g₂₆,f66), X₉: 1908⋅X₃+702⋅X₉+504 {O(n)}
(g₂₆,f66), X₁₃: 48⋅X₁₃ {O(n)}
(g₂₆,f66), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₂₆,f66), X₁₅: 0 {O(1)}
(g₂₆,f66), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₃₁,f91), X₂: 48⋅X₃ {O(n)}
(g₃₁,f91), X₃: 24⋅X₃ {O(n)}
(g₃₁,f91), X₄: 96⋅X₃ {O(n)}
(g₃₁,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₁,f91), X₁₁: 0 {O(1)}
(g₃₁,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₁,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₁,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₁,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₃,f91), X₂: 48⋅X₃ {O(n)}
(g₃₃,f91), X₃: 24⋅X₃ {O(n)}
(g₃₃,f91), X₄: 96⋅X₃ {O(n)}
(g₃₃,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₃,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₃,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₃,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₃,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₅,f91), X₂: 48⋅X₃ {O(n)}
(g₃₅,f91), X₃: 24⋅X₃ {O(n)}
(g₃₅,f91), X₄: 96⋅X₃ {O(n)}
(g₃₅,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₅,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₅,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₅,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₅,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₅,f44), X₂: 48⋅X₃ {O(n)}
(g₆₅,f44), X₃: 24⋅X₃ {O(n)}
(g₆₅,f44), X₄: 96⋅X₃ {O(n)}
(g₆₅,f44), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₅,f44), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₅,f44), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₅,f44), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₅,f44), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₇,f87), X₂: 48⋅X₃ {O(n)}
(g₆₇,f87), X₃: 24⋅X₃ {O(n)}
(g₆₇,f87), X₄: 96⋅X₃ {O(n)}
(g₆₇,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₇,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₇,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₇,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₇,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₉,f87), X₂: 48⋅X₃ {O(n)}
(g₆₉,f87), X₃: 24⋅X₃ {O(n)}
(g₆₉,f87), X₄: 96⋅X₃ {O(n)}
(g₆₉,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₉,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₉,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₉,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₉,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₁,f87), X₂: 48⋅X₃ {O(n)}
(g₇₁,f87), X₃: 24⋅X₃ {O(n)}
(g₇₁,f87), X₄: 96⋅X₃ {O(n)}
(g₇₁,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₁,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₁,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₁,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₁,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₃,f46), X₂: 48⋅X₃ {O(n)}
(g₇₃,f46), X₃: 24⋅X₃ {O(n)}
(g₇₃,f46), X₄: 96⋅X₃ {O(n)}
(g₇₃,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₃,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₃,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₃,f46), X₁₅: 0 {O(1)}
(g₇₃,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₅,f46), X₂: 48⋅X₃ {O(n)}
(g₇₅,f46), X₃: 24⋅X₃ {O(n)}
(g₇₅,f46), X₄: 96⋅X₃ {O(n)}
(g₇₅,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₅,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₅,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₅,f46), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₅,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₇,f60), X₂: 48⋅X₃ {O(n)}
(g₇₇,f60), X₃: 24⋅X₃ {O(n)}
(g₇₇,f60), X₄: 96⋅X₃ {O(n)}
(g₇₇,f60), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₇,f60), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₇,f60), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₇,f60), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₇,f60), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₉,f54), X₂: 48⋅X₃ {O(n)}
(g₇₉,f54), X₃: 24⋅X₃ {O(n)}
(g₇₉,f54), X₄: 96⋅X₃ {O(n)}
(g₇₉,f54), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₉,f54), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₉,f54), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₉,f54), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₉,f54), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₈₁,f72), X₂: 48⋅X₃ {O(n)}
(g₈₁,f72), X₃: 24⋅X₃ {O(n)}
(g₈₁,f72), X₄: 96⋅X₃ {O(n)}
(g₈₁,f72), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₈₁,f72), X₁₃: 24⋅X₁₃ {O(n)}
(g₈₁,f72), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₈₁,f72), X₁₅: 16⋅X₁₅ {O(n)}
(g₈₁,f72), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₈₃,f117), X₂: 96⋅X₃ {O(n)}
(g₈₃,f117), X₃: 48⋅X₃ {O(n)}
(g₈₃,f117), X₄: 192⋅X₃ {O(n)}
(g₈₃,f117), X₉: 1128⋅X₃+468⋅X₉+336 {O(n)}
(g₈₃,f117), X₁₃: 48⋅X₁₃ {O(n)}
(g₈₃,f117), X₁₄: 24⋅X₁₃+72⋅X₁₄+2 {O(n)}
(g₈₃,f117), X₁₅: 32⋅X₁₅ {O(n)}
(g₈₃,f117), X₁₆: 48⋅X₁₆+1 {O(n)}
(g₈₅,f44), X₂: 32⋅X₃ {O(n)}
(g₈₅,f44), X₃: 16⋅X₃ {O(n)}
(g₈₅,f44), X₄: 64⋅X₃ {O(n)}
(g₈₅,f44), X₉: 116⋅X₃+78⋅X₉+56 {O(n)}
(g₈₅,f44), X₁₃: 16⋅X₁₃ {O(n)}
(g₈₅,f44), X₁₄: 16⋅X₁₄ {O(n)}
(g₈₅,f44), X₁₅: 16⋅X₁₅ {O(n)}
(g₈₅,f44), X₁₆: 16⋅X₁₆ {O(n)}
(g₈₇,f39), X₂: 16⋅X₃ {O(n)}
(g₈₇,f39), X₃: 8⋅X₃ {O(n)}
(g₈₇,f39), X₄: 32⋅X₃ {O(n)}
(g₈₇,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₇,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₇,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₇,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₇,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₈₉,f39), X₂: 16⋅X₃ {O(n)}
(g₈₉,f39), X₃: 8⋅X₃ {O(n)}
(g₈₉,f39), X₄: 32⋅X₃ {O(n)}
(g₈₉,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₉,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₉,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₉,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₉,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₁,f44), X₂: 16⋅X₃ {O(n)}
(g₉₁,f44), X₃: 8⋅X₃ {O(n)}
(g₉₁,f44), X₄: 32⋅X₃ {O(n)}
(g₉₁,f44), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₉₁,f44), X₁₃: 8⋅X₁₃ {O(n)}
(g₉₁,f44), X₁₄: 8⋅X₁₄ {O(n)}
(g₉₁,f44), X₁₅: 0 {O(1)}
(g₉₁,f44), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₃,f33), X₂: 8⋅X₃ {O(n)}
(g₉₃,f33), X₃: 4⋅X₃ {O(n)}
(g₉₃,f33), X₄: 16⋅X₃ {O(n)}
(g₉₃,f33), X₉: 13⋅X₉+18⋅X₃+9 {O(n)}
(g₉₃,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₉₃,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₉₃,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₉₃,f33), X₁₆: 4⋅X₁₆ {O(n)}

Run probabilistic analysis on SCC: [f44; f46; f49; f54; f60; f66; f72; f87; f91]

Plrf for transition g₂₆:f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → [1/2]:t₂₇:f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,2+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :+: [1/2]:t₂₈:f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0:

new bound:

25200⋅X₁₃⋅X₃+25200⋅X₁₄⋅X₃+25200⋅X₁₆⋅X₃+8424⋅X₁₃⋅X₉+8424⋅X₁₄⋅X₉+8424⋅X₁₆⋅X₉+2100⋅X₃+6096⋅X₁₃+6096⋅X₁₄+6096⋅X₁₆+702⋅X₉+508 {O(n^2)}

PLRF:

• f44: 0
• f46: 0
• f49: 0
• f54: 0
• f60: 0
• f66: 2+X₄-X₉
• f72: 0
• f87: 0
• f91: 0

Use expected size bounds for entry point (g₂₄:f46→[t₂₅:1:f66],f66)
Use expected size bounds for entry point (g₂₄:f46→[t₂₅:1:f66],f66)
Use classical time bound for entry point (g₂₄:f46→[t₂₅:1:f66],f66)
Use classical time bound for entry point (g₇₃:f66→[t₇₄:1:f46],f46)
Use classical time bound for entry point (g₈₅:f39→[t₈₆:1:f44],f44)
Use classical time bound for entry point (g₉₁:f33→[t₉₂:1:f44],f44)

Analysing control-flow refined program

Run classical analysis on SCC: [f44; f46; f49; f54; f60; f66; f66_v1; f66_v2; f66_v3; f72; f87; f91]

knowledge_propagation leads to new time bound 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)} for transition t₉₅: f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,2+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0 ∧ X₉ ≤ X₄

knowledge_propagation leads to new time bound 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)} for transition t₉₆: f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → f66_v2(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0 ∧ X₉ ≤ X₄

knowledge_propagation leads to new time bound 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)} for transition t₉₈: f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,1+X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0 ∧ 1+X₄ ≤ X₉

MPRF for transition t₁₀₀: f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,2+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ 2+X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 3+X₂ ≤ X₉ ∧ 3+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0 ∧ X₉ ≤ X₄ of depth 1:

new bound:

117⋅X₉+270⋅X₃+84 {O(n)}

MPRF:

• f44: [X₄-X₉]
• f46: [X₄-X₉]
• f49: [X₄-X₉]
• f54: [X₄-X₉]
• f60: [X₄-X₉]
• f66: [X₄-X₉]
• f66_v1: [1+X₄-X₉]
• f66_v2: [X₄-X₉]
• f66_v3: [X₄-X₉]
• f72: [X₄-X₉]
• f87: [X₄-X₉]
• f91: [X₄-X₉]

MPRF for transition t₁₀₁: f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → f66_v3(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ 2+X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 3+X₂ ≤ X₉ ∧ 3+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0 ∧ X₉ ≤ X₄ of depth 1:

new bound:

117⋅X₉+270⋅X₃+84 {O(n)}

MPRF:

• f44: [X₄-X₉]
• f46: [X₄-X₉]
• f49: [X₄-X₉]
• f54: [X₄-X₉]
• f60: [X₄-X₉]
• f66: [X₄-X₉]
• f66_v1: [1+X₄-X₉]
• f66_v2: [X₄-X₉]
• f66_v3: [X₄-1-X₉]
• f72: [X₄-X₉]
• f87: [X₄-X₉]
• f91: [X₄-X₉]

MPRF for transition t₁₀₃: f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,1+X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ 2+X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 3+X₂ ≤ X₉ ∧ 3+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0 ∧ 1+X₄ ≤ X₉ of depth 1:

new bound:

117⋅X₉+270⋅X₃+86 {O(n)}

MPRF:

• f44: [1+X₄-X₉]
• f46: [1+X₄-X₉]
• f49: [1+X₄-X₉]
• f54: [1+X₄-X₉]
• f60: [1+X₄-X₉]
• f66: [1+X₄-X₉]
• f66_v1: [3+X₄-X₉]
• f66_v2: [1+X₄-X₉]
• f66_v3: [1+X₄-X₉]
• f72: [1+X₄-X₉]
• f87: [1+X₄-X₉]
• f91: [1+X₄-X₉]

MPRF for transition t₁₀₅: f66_v3(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,2+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ 2+X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 3+X₂ ≤ X₉ ∧ 3+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0 ∧ X₉ ≤ X₄ of depth 1:

new bound:

117⋅X₉+270⋅X₃+84 {O(n)}

MPRF:

• f44: [X₄-X₉]
• f46: [X₄-X₉]
• f49: [X₄-X₉]
• f54: [X₄-X₉]
• f60: [X₄-X₉]
• f66: [X₄-X₉]
• f66_v1: [1+X₄-X₉]
• f66_v2: [X₄-X₉]
• f66_v3: [1+X₄-X₉]
• f72: [X₄-X₉]
• f87: [X₄-X₉]
• f91: [X₄-X₉]

MPRF for transition t₁₀₈: f66_v2(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,2+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ 2+X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0 ∧ X₉ ≤ X₄ of depth 1:

new bound:

117⋅X₉+270⋅X₃+86 {O(n)}

MPRF:

• f44: [1+X₄-X₉]
• f46: [1+X₄-X₉]
• f49: [1+X₄-X₉]
• f54: [1+X₄-X₉]
• f60: [1+X₄-X₉]
• f66: [1+X₄-X₉]
• f66_v1: [1+X₄-X₉]
• f66_v2: [1+X₄-X₉]
• f66_v3: [X₄-X₉]
• f72: [1+X₄-X₉]
• f87: [1+X₄-X₉]
• f91: [1+X₄-X₉]

Classical Approximation after Lifting Classical Results

All Bounds
Timebounds

Overall timebound:inf {Infinity}
g₀: 1 {O(1)}
g₂: 2⋅X₃+X₉+1 {O(n)}
g₄: 2⋅X₃+X₉+1 {O(n)}
g₆: 2⋅X₃+X₉+1 {O(n)}
g₈: 13⋅X₉+22⋅X₃+10 {O(n)}
g₁₂: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₁₄: 24⋅X₁₆+2 {O(n)}
g₁₆: 24⋅X₁₆+2 {O(n)}
g₂₄: 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)}
g₃₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₃₃: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₃₅: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₃: 1 {O(1)}
g₆₅: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₇: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₉: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₇₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₇₃: 24⋅X₁₆+2 {O(n)}
g₇₅: 24⋅X₁₆+2 {O(n)}
g₇₇: 24⋅X₁₆+2 {O(n)}
g₇₉: 24⋅X₁₆+2 {O(n)}
g₈₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₈₃: 1 {O(1)}
g₈₅: 1 {O(1)}
g₈₇: 1 {O(1)}
g₈₉: 1 {O(1)}
g₉₁: 1 {O(1)}
g₉₃: 1 {O(1)}
g₉₇: 48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+4 {O(n)}
g₉₉: 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)}
g₁₀₂: 234⋅X₉+540⋅X₃+168 {O(n)}
g₁₀₄: 117⋅X₉+270⋅X₃+86 {O(n)}
g₁₀₇: inf {Infinity}
g₁₁₀: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₂₄: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
g₇₇: inf {Infinity}
g₇₉: inf {Infinity}
g₈₁: inf {Infinity}
g₈₃: inf {Infinity}
g₈₅: inf {Infinity}
g₈₇: inf {Infinity}
g₈₉: inf {Infinity}
g₉₁: inf {Infinity}
g₉₃: inf {Infinity}
g₉₇: inf {Infinity}
g₉₉: inf {Infinity}
g₁₀₂: inf {Infinity}
g₁₀₄: inf {Infinity}
g₁₀₇: inf {Infinity}
g₁₁₀: inf {Infinity}

Sizebounds

(g₀,f23), X₂: 2⋅X₃ {O(n)}
(g₀,f23), X₃: X₃ {O(n)}
(g₀,f23), X₄: 4⋅X₃ {O(n)}
(g₀,f23), X₉: X₉ {O(n)}
(g₀,f23), X₁₁: X₁₁ {O(n)}
(g₀,f23), X₁₃: X₁₃ {O(n)}
(g₀,f23), X₁₄: X₁₄ {O(n)}
(g₀,f23), X₁₅: X₁₅ {O(n)}
(g₀,f23), X₁₆: X₁₆ {O(n)}
(g₂,f23), X₂: 2⋅X₃ {O(n)}
(g₂,f23), X₃: X₃ {O(n)}
(g₂,f23), X₄: 4⋅X₃ {O(n)}
(g₂,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₂,f23), X₁₁: 0 {O(1)}
(g₂,f23), X₁₃: X₁₃ {O(n)}
(g₂,f23), X₁₄: X₁₄ {O(n)}
(g₂,f23), X₁₅: X₁₅ {O(n)}
(g₂,f23), X₁₆: X₁₆ {O(n)}
(g₄,f23), X₂: 2⋅X₃ {O(n)}
(g₄,f23), X₃: X₃ {O(n)}
(g₄,f23), X₄: 4⋅X₃ {O(n)}
(g₄,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₄,f23), X₁₃: X₁₃ {O(n)}
(g₄,f23), X₁₄: X₁₄ {O(n)}
(g₄,f23), X₁₅: X₁₅ {O(n)}
(g₄,f23), X₁₆: X₁₆ {O(n)}
(g₆,f23), X₂: 2⋅X₃ {O(n)}
(g₆,f23), X₃: X₃ {O(n)}
(g₆,f23), X₄: 4⋅X₃ {O(n)}
(g₆,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₆,f23), X₁₃: X₁₃ {O(n)}
(g₆,f23), X₁₄: X₁₄ {O(n)}
(g₆,f23), X₁₅: X₁₅ {O(n)}
(g₆,f23), X₁₆: X₁₆ {O(n)}
(g₈,f33), X₂: 8⋅X₃ {O(n)}
(g₈,f33), X₃: 4⋅X₃ {O(n)}
(g₈,f33), X₄: 16⋅X₃ {O(n)}
(g₈,f33), X₉: 26⋅X₉+40⋅X₃+19 {O(n)}
(g₈,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₈,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₈,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₈,f33), X₁₆: 4⋅X₁₆ {O(n)}
(g₁₂,f46), X₂: 48⋅X₃ {O(n)}
(g₁₂,f46), X₃: 24⋅X₃ {O(n)}
(g₁₂,f46), X₄: 96⋅X₃ {O(n)}
(g₁₂,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₂,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₂,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₂,f46), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₂,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₄,f49), X₂: 48⋅X₃ {O(n)}
(g₁₄,f49), X₃: 24⋅X₃ {O(n)}
(g₁₄,f49), X₄: 96⋅X₃ {O(n)}
(g₁₄,f49), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₄,f49), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₄,f49), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₄,f49), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₄,f49), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₆,f49), X₂: 48⋅X₃ {O(n)}
(g₁₆,f49), X₃: 24⋅X₃ {O(n)}
(g₁₆,f49), X₄: 96⋅X₃ {O(n)}
(g₁₆,f49), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₆,f49), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₆,f49), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₆,f49), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₆,f49), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₂₄,f66), X₂: 48⋅X₃ {O(n)}
(g₂₄,f66), X₃: 24⋅X₃ {O(n)}
(g₂₄,f66), X₄: 96⋅X₃ {O(n)}
(g₂₄,f66), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₂₄,f66), X₁₃: 24⋅X₁₃ {O(n)}
(g₂₄,f66), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₂₄,f66), X₁₅: 0 {O(1)}
(g₂₄,f66), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₁,f91), X₂: 48⋅X₃ {O(n)}
(g₃₁,f91), X₃: 24⋅X₃ {O(n)}
(g₃₁,f91), X₄: 96⋅X₃ {O(n)}
(g₃₁,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₁,f91), X₁₁: 0 {O(1)}
(g₃₁,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₁,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₁,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₁,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₃,f91), X₂: 48⋅X₃ {O(n)}
(g₃₃,f91), X₃: 24⋅X₃ {O(n)}
(g₃₃,f91), X₄: 96⋅X₃ {O(n)}
(g₃₃,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₃,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₃,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₃,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₃,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₅,f91), X₂: 48⋅X₃ {O(n)}
(g₃₅,f91), X₃: 24⋅X₃ {O(n)}
(g₃₅,f91), X₄: 96⋅X₃ {O(n)}
(g₃₅,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₅,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₅,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₅,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₅,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₅,f44), X₂: 48⋅X₃ {O(n)}
(g₆₅,f44), X₃: 24⋅X₃ {O(n)}
(g₆₅,f44), X₄: 96⋅X₃ {O(n)}
(g₆₅,f44), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₅,f44), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₅,f44), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₅,f44), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₅,f44), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₇,f87), X₂: 48⋅X₃ {O(n)}
(g₆₇,f87), X₃: 24⋅X₃ {O(n)}
(g₆₇,f87), X₄: 96⋅X₃ {O(n)}
(g₆₇,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₇,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₇,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₇,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₇,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₉,f87), X₂: 48⋅X₃ {O(n)}
(g₆₉,f87), X₃: 24⋅X₃ {O(n)}
(g₆₉,f87), X₄: 96⋅X₃ {O(n)}
(g₆₉,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₉,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₉,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₉,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₉,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₁,f87), X₂: 48⋅X₃ {O(n)}
(g₇₁,f87), X₃: 24⋅X₃ {O(n)}
(g₇₁,f87), X₄: 96⋅X₃ {O(n)}
(g₇₁,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₁,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₁,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₁,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₁,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₃,f46), X₂: 48⋅X₃ {O(n)}
(g₇₃,f46), X₃: 24⋅X₃ {O(n)}
(g₇₃,f46), X₄: 96⋅X₃ {O(n)}
(g₇₃,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₃,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₃,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₃,f46), X₁₅: 0 {O(1)}
(g₇₃,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₅,f46), X₂: 48⋅X₃ {O(n)}
(g₇₅,f46), X₃: 24⋅X₃ {O(n)}
(g₇₅,f46), X₄: 96⋅X₃ {O(n)}
(g₇₅,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₅,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₅,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₅,f46), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₅,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₇,f60), X₂: 48⋅X₃ {O(n)}
(g₇₇,f60), X₃: 24⋅X₃ {O(n)}
(g₇₇,f60), X₄: 96⋅X₃ {O(n)}
(g₇₇,f60), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₇,f60), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₇,f60), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₇,f60), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₇,f60), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₉,f54), X₂: 48⋅X₃ {O(n)}
(g₇₉,f54), X₃: 24⋅X₃ {O(n)}
(g₇₉,f54), X₄: 96⋅X₃ {O(n)}
(g₇₉,f54), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₉,f54), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₉,f54), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₉,f54), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₉,f54), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₈₁,f72), X₂: 48⋅X₃ {O(n)}
(g₈₁,f72), X₃: 24⋅X₃ {O(n)}
(g₈₁,f72), X₄: 96⋅X₃ {O(n)}
(g₈₁,f72), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₈₁,f72), X₁₃: 24⋅X₁₃ {O(n)}
(g₈₁,f72), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₈₁,f72), X₁₅: 16⋅X₁₅ {O(n)}
(g₈₁,f72), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₈₃,f117), X₂: 96⋅X₃ {O(n)}
(g₈₃,f117), X₃: 48⋅X₃ {O(n)}
(g₈₃,f117), X₄: 192⋅X₃ {O(n)}
(g₈₃,f117), X₉: 1128⋅X₃+468⋅X₉+336 {O(n)}
(g₈₃,f117), X₁₃: 48⋅X₁₃ {O(n)}
(g₈₃,f117), X₁₄: 24⋅X₁₃+72⋅X₁₄+2 {O(n)}
(g₈₃,f117), X₁₅: 32⋅X₁₅ {O(n)}
(g₈₃,f117), X₁₆: 48⋅X₁₆+1 {O(n)}
(g₈₅,f44), X₂: 32⋅X₃ {O(n)}
(g₈₅,f44), X₃: 16⋅X₃ {O(n)}
(g₈₅,f44), X₄: 64⋅X₃ {O(n)}
(g₈₅,f44), X₉: 116⋅X₃+78⋅X₉+56 {O(n)}
(g₈₅,f44), X₁₃: 16⋅X₁₃ {O(n)}
(g₈₅,f44), X₁₄: 16⋅X₁₄ {O(n)}
(g₈₅,f44), X₁₅: 16⋅X₁₅ {O(n)}
(g₈₅,f44), X₁₆: 16⋅X₁₆ {O(n)}
(g₈₇,f39), X₂: 16⋅X₃ {O(n)}
(g₈₇,f39), X₃: 8⋅X₃ {O(n)}
(g₈₇,f39), X₄: 32⋅X₃ {O(n)}
(g₈₇,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₇,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₇,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₇,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₇,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₈₉,f39), X₂: 16⋅X₃ {O(n)}
(g₈₉,f39), X₃: 8⋅X₃ {O(n)}
(g₈₉,f39), X₄: 32⋅X₃ {O(n)}
(g₈₉,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₉,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₉,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₉,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₉,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₁,f44), X₂: 16⋅X₃ {O(n)}
(g₉₁,f44), X₃: 8⋅X₃ {O(n)}
(g₉₁,f44), X₄: 32⋅X₃ {O(n)}
(g₉₁,f44), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₉₁,f44), X₁₃: 8⋅X₁₃ {O(n)}
(g₉₁,f44), X₁₄: 8⋅X₁₄ {O(n)}
(g₉₁,f44), X₁₅: 0 {O(1)}
(g₉₁,f44), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₃,f33), X₂: 8⋅X₃ {O(n)}
(g₉₃,f33), X₃: 4⋅X₃ {O(n)}
(g₉₃,f33), X₄: 16⋅X₃ {O(n)}
(g₉₃,f33), X₉: 13⋅X₉+18⋅X₃+9 {O(n)}
(g₉₃,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₉₃,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₉₃,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₉₃,f33), X₁₆: 4⋅X₁₆ {O(n)}
(g₉₇,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₉₇,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₉₇,f66_v1), X₄: 192⋅X₃ {O(n)}
(g₉₇,f66_v1), X₉: 1638⋅X₉+3588⋅X₃+96⋅X₁₃+96⋅X₁₄+96⋅X₁₆+1192 {O(n)}
(g₉₇,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₉₇,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₉₇,f66_v1), X₁₅: 0 {O(1)}
(g₉₇,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₉₇,f66_v2), X₂: 96⋅X₃ {O(n)}
(g₉₇,f66_v2), X₃: 48⋅X₃ {O(n)}
(g₉₇,f66_v2), X₄: 192⋅X₃ {O(n)}
(g₉₇,f66_v2), X₉: 1638⋅X₉+3588⋅X₃+96⋅X₁₃+96⋅X₁₄+96⋅X₁₆+1192 {O(n)}
(g₉₇,f66_v2), X₁₃: 48⋅X₁₃ {O(n)}
(g₉₇,f66_v2), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₉₇,f66_v2), X₁₅: 0 {O(1)}
(g₉₇,f66_v2), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₉₉,f46), X₂: 48⋅X₃ {O(n)}
(g₉₉,f46), X₃: 24⋅X₃ {O(n)}
(g₉₉,f46), X₄: 96⋅X₃ {O(n)}
(g₉₉,f46), X₉: 1794⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+819⋅X₉+596 {O(n)}
(g₉₉,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₉₉,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₉₉,f46), X₁₅: 0 {O(1)}
(g₉₉,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₀₂,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₁₀₂,f66_v1), X₄: 192⋅X₃ {O(n)}
(g₁₀₂,f66_v1), X₉: 1638⋅X₉+3588⋅X₃+96⋅X₁₃+96⋅X₁₄+96⋅X₁₆+1192 {O(n)}
(g₁₀₂,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₂,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₂,f66_v1), X₁₅: 0 {O(1)}
(g₁₀₂,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₀₂,f66_v3), X₂: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v3), X₃: 48⋅X₃ {O(n)}
(g₁₀₂,f66_v3), X₄: 192⋅X₃ {O(n)}
(g₁₀₂,f66_v3), X₉: 1638⋅X₉+3588⋅X₃+96⋅X₁₃+96⋅X₁₄+96⋅X₁₆+1192 {O(n)}
(g₁₀₂,f66_v3), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₂,f66_v3), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₂,f66_v3), X₁₅: 0 {O(1)}
(g₁₀₂,f66_v3), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₀₄,f46), X₂: 48⋅X₃ {O(n)}
(g₁₀₄,f46), X₃: 24⋅X₃ {O(n)}
(g₁₀₄,f46), X₄: 96⋅X₃ {O(n)}
(g₁₀₄,f46), X₉: 1794⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+819⋅X₉+596 {O(n)}
(g₁₀₄,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₀₄,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₀₄,f46), X₁₅: 0 {O(1)}
(g₁₀₄,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₀₇,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₁₀₇,f66_v1), X₄: 192⋅X₃ {O(n)}
(g₁₀₇,f66_v1), X₉: 1638⋅X₉+3588⋅X₃+96⋅X₁₃+96⋅X₁₄+96⋅X₁₆+1192 {O(n)}
(g₁₀₇,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₇,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₇,f66_v1), X₁₅: 0 {O(1)}
(g₁₀₇,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₀₇,f66_v3), X₂: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v3), X₃: 48⋅X₃ {O(n)}
(g₁₀₇,f66_v3), X₄: 192⋅X₃ {O(n)}
(g₁₀₇,f66_v3), X₉: 1638⋅X₉+3588⋅X₃+96⋅X₁₃+96⋅X₁₄+96⋅X₁₆+1192 {O(n)}
(g₁₀₇,f66_v3), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₇,f66_v3), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₇,f66_v3), X₁₅: 0 {O(1)}
(g₁₀₇,f66_v3), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₁₀,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₁₁₀,f66_v1), X₄: 192⋅X₃ {O(n)}
(g₁₁₀,f66_v1), X₉: 1638⋅X₉+3588⋅X₃+96⋅X₁₃+96⋅X₁₄+96⋅X₁₆+1192 {O(n)}
(g₁₁₀,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₁₀,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₁₀,f66_v1), X₁₅: 0 {O(1)}
(g₁₁₀,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₁₀,f66_v2), X₂: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v2), X₃: 48⋅X₃ {O(n)}
(g₁₁₀,f66_v2), X₄: 192⋅X₃ {O(n)}
(g₁₁₀,f66_v2), X₉: 1638⋅X₉+3588⋅X₃+96⋅X₁₃+96⋅X₁₄+96⋅X₁₆+1192 {O(n)}
(g₁₁₀,f66_v2), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₁₀,f66_v2), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₁₀,f66_v2), X₁₅: 0 {O(1)}
(g₁₁₀,f66_v2), X₁₆: 48⋅X₁₆+2 {O(n)}

Run probabilistic analysis on SCC: [f44; f46; f49; f54; f60; f66; f66_v1; f66_v2; f66_v3; f72; f87; f91]

Plrf for transition g₁₀₇:f66_v3(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → [1/2]:t₁₀₅:f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,2+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :+: [1/2]:t₁₀₆:f66_v3(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ X₄ ∧ X₉ ≤ 2+X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 3+X₂ ≤ X₉ ∧ 3+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0:

new bound:

234⋅X₉+540⋅X₃+168 {O(n)}

PLRF:

• f44: 0
• f46: 0
• f49: 0
• f54: 0
• f60: 0
• f66: 0
• f66_v1: 0
• f66_v2: 0
• f66_v3: 2
• f72: 0
• f87: 0
• f91: 0

Use classical time bound for entry point (g₈₅:f39→[t₈₆:1:f44],f44)
Use classical time bound for entry point (g₉₁:f33→[t₉₂:1:f44],f44)
Use classical time bound for entry point (g₁₀₂:f66_v1→[t₁₀₀:1/2:f66_v1; t₁₀₁:1/2:f66_v3],f66_v1)
Use classical time bound for entry point (g₁₀₂:f66_v1→[t₁₀₀:1/2:f66_v1; t₁₀₁:1/2:f66_v3],f66_v3)

Plrf for transition g₁₁₀:f66_v2(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → [1/2]:t₁₀₈:f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,2+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :+: [1/2]:t₁₀₉:f66_v2(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ X₄ ∧ X₉ ≤ 2+X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0:

new bound:

117⋅X₉+270⋅X₃+88 {O(n)}

PLRF:

• f44: 1
• f46: 1
• f49: 1
• f54: 1
• f60: 1
• f66: 1
• f66_v1: 0
• f66_v2: 2
• f66_v3: 0
• f72: 1
• f87: 1
• f91: 1

Use classical time bound for entry point (g₈₅:f39→[t₈₆:1:f44],f44)
Use classical time bound for entry point (g₉₁:f33→[t₉₂:1:f44],f44)
Use classical time bound for entry point (g₁₀₄:f66_v1→[t₁₀₃:1:f46],f46)

CFR: Improvement to new bound with the following program:

method: PartialEvaluationProbabilistic new bound:

O(n)

cfr-program:

Start: f0
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀, X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆
Temp_Vars: B1, C1, D1
Locations: f0, f117, f125, f23, f33, f39, f44, f46, f49, f54, f60, f66, f66_v1, f66_v2, f66_v3, f72, f87, f91
Transitions:
g₀:f0(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₁:f23(0,0,2⋅X₃,X₃,4⋅X₃,3+4⋅X₃,4+4⋅X₃,X₃,B1,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|:
g₂:f23(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₃:f23(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,1+X₉,1,0,0,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ X₂
g₄:f23(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₅:f23(B1+X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,1+X₉,C1,1-C1,B1,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 2 ≤ C1 ∧ X₉ ≤ X₂
g₆:f23(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₇:f23(B1+X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,1+X₉,C1,1-C1,B1,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: C1 ≤ 0 ∧ X₉ ≤ X₂
g₈:f33(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₉:f33(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,1+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ X₃ ∧ 1+X₂ ≤ X₉
g₁₂:f44(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₁₃:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₁₄ ≤ X₁₃ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉
g₁₄:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₁₅:f49(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₁₅ ≤ 0 ∧ X₁₆ ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃
g₁₆:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₁₇:f49(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1 ≤ X₁₅ ∧ X₁₆ ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃
g₂₄:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₂₅:f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,0,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 0 ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₆ ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃
g₃₁:f87(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₃₂:f91(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,0,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,0,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 0 ≤ X₁₁ ∧ X₁₁ ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₃₃:f87(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₃₄:f91(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,B1,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₁₁ ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₃₅:f87(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₃₆:f91(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,B1,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1 ≤ X₁₁ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₆₃:f117(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₆₄:f125(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1+X₁₃ ≤ X₁₄
g₆₅:f91(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₆₆:f44(X₀,X₀+X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,1+X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₆₇:f72(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₆₈:f87(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,B1,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,0,X₂₆) :|: 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₆₉:f72(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₇₀:f87(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,B1,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,C1,X₂₆) :|: 1+D1 ≤ 0 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₇₁:f72(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₇₂:f87(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,B1,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,C1,X₂₆) :|: 1 ≤ D1 ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₆ ∧ X₁₄ ≤ X₁₃
g₇₃:f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₇₄:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,1+X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₄ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0
g₇₅:f60(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₇₆:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,1+X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ X₁₆ ≤ 0
g₇₇:f54(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₇₈:f60(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂+X₁₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ X₁₆ ≤ 0
g₇₉:f49(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₈₀:f54(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ X₁₆ ≤ 0
g₈₁:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₈₂:f72(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1 ≤ X₁₆ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃
g₈₃:f44(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₈₄:f117(X₀,B1,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₁₃ ≤ X₁₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉
g₈₅:f39(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₈₆:f44(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₂ ≤ X₉
g₈₇:f33(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₈₈:f39(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1+X₁₅ ≤ 0 ∧ 1+X₂ ≤ X₉
g₈₉:f33(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₉₀:f39(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 1 ≤ X₁₅ ∧ 1+X₂ ≤ X₉
g₉₁:f33(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₉₂:f44(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,0,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₃ ≤ X₉ ∧ 0 ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ 1+X₂ ≤ X₉
g₉₃:f23(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₉₄:f33(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₂ ≤ X₉
g₉₇:f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → [1/2]:t₉₅:f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,2+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :+: [1/2]:t₉₆:f66_v2(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0
g₉₉:f66(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₉₈:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,1+X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₄ ≤ X₉ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0
g₁₀₂:f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → [1/2]:t₁₀₀:f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,2+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :+: [1/2]:t₁₀₁:f66_v3(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ X₄ ∧ X₉ ≤ 2+X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 3+X₂ ≤ X₉ ∧ 3+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0
g₁₀₄:f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → t₁₀₃:f46(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,1+X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: 1+X₄ ≤ X₉ ∧ X₉ ≤ 2+X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 3+X₂ ≤ X₉ ∧ 3+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0
g₁₀₇:f66_v3(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → [1/2]:t₁₀₅:f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,2+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :+: [1/2]:t₁₀₆:f66_v3(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ X₄ ∧ X₉ ≤ 2+X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ 3+X₂ ≤ X₉ ∧ 3+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0
g₁₁₀:f66_v2(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) → [1/2]:t₁₀₈:f66_v1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,2+X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :+: [1/2]:t₁₀₉:f66_v2(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁,X₁₂,X₁₃,X₁₄,X₁₅,X₁₆,X₁₇,X₁₈,X₁₉,X₂₀,X₂₁,X₂₂,X₂₃,X₂₄,X₂₅,X₂₆) :|: X₉ ≤ X₄ ∧ X₉ ≤ 2+X₄ ∧ 1+X₂ ≤ X₉ ∧ 1+X₃ ≤ X₉ ∧ X₁₄ ≤ X₁₃ ∧ 0 ≤ X₁₅ ∧ X₁₆ ≤ X₁₅ ∧ X₁₅ ≤ 0 ∧ X₁₅+X₁₆ ≤ 0 ∧ X₁₆ ≤ 0

Run classical analysis on SCC: [f117]

Classical Approximation after Lifting Classical Results

All Bounds
Timebounds

Overall timebound:1648⋅X₃+240⋅X₁₆+312⋅X₁₃+312⋅X₁₄+718⋅X₉+569 {O(n)}
g₀: 1 {O(1)}
g₂: 2⋅X₃+X₉+1 {O(n)}
g₄: 2⋅X₃+X₉+1 {O(n)}
g₆: 2⋅X₃+X₉+1 {O(n)}
g₈: 13⋅X₉+22⋅X₃+10 {O(n)}
g₁₂: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₁₄: 24⋅X₁₆+2 {O(n)}
g₁₆: 24⋅X₁₆+2 {O(n)}
g₂₄: 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)}
g₃₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₃₃: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₃₅: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₃: 1 {O(1)}
g₆₅: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₇: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₉: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₇₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₇₃: 24⋅X₁₆+2 {O(n)}
g₇₅: 24⋅X₁₆+2 {O(n)}
g₇₇: 24⋅X₁₆+2 {O(n)}
g₇₉: 24⋅X₁₆+2 {O(n)}
g₈₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₈₃: 1 {O(1)}
g₈₅: 1 {O(1)}
g₈₇: 1 {O(1)}
g₈₉: 1 {O(1)}
g₉₁: 1 {O(1)}
g₉₃: 1 {O(1)}
g₉₇: 48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+4 {O(n)}
g₉₉: 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)}
g₁₀₂: 234⋅X₉+540⋅X₃+168 {O(n)}
g₁₀₄: 117⋅X₉+270⋅X₃+86 {O(n)}
g₁₀₇: 234⋅X₉+540⋅X₃+168 {O(n)}
g₁₁₀: 117⋅X₉+270⋅X₃+88 {O(n)}

Costbounds

Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₂₄: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
g₇₇: inf {Infinity}
g₇₉: inf {Infinity}
g₈₁: inf {Infinity}
g₈₃: inf {Infinity}
g₈₅: inf {Infinity}
g₈₇: inf {Infinity}
g₈₉: inf {Infinity}
g₉₁: inf {Infinity}
g₉₃: inf {Infinity}
g₉₇: inf {Infinity}
g₉₉: inf {Infinity}
g₁₀₂: inf {Infinity}
g₁₀₄: inf {Infinity}
g₁₀₇: inf {Infinity}
g₁₁₀: inf {Infinity}

Sizebounds

(g₀,f23), X₂: 2⋅X₃ {O(n)}
(g₀,f23), X₃: X₃ {O(n)}
(g₀,f23), X₄: 4⋅X₃ {O(n)}
(g₀,f23), X₉: X₉ {O(n)}
(g₀,f23), X₁₁: X₁₁ {O(n)}
(g₀,f23), X₁₃: X₁₃ {O(n)}
(g₀,f23), X₁₄: X₁₄ {O(n)}
(g₀,f23), X₁₅: X₁₅ {O(n)}
(g₀,f23), X₁₆: X₁₆ {O(n)}
(g₂,f23), X₂: 2⋅X₃ {O(n)}
(g₂,f23), X₃: X₃ {O(n)}
(g₂,f23), X₄: 4⋅X₃ {O(n)}
(g₂,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₂,f23), X₁₁: 0 {O(1)}
(g₂,f23), X₁₃: X₁₃ {O(n)}
(g₂,f23), X₁₄: X₁₄ {O(n)}
(g₂,f23), X₁₅: X₁₅ {O(n)}
(g₂,f23), X₁₆: X₁₆ {O(n)}
(g₄,f23), X₂: 2⋅X₃ {O(n)}
(g₄,f23), X₃: X₃ {O(n)}
(g₄,f23), X₄: 4⋅X₃ {O(n)}
(g₄,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₄,f23), X₁₃: X₁₃ {O(n)}
(g₄,f23), X₁₄: X₁₄ {O(n)}
(g₄,f23), X₁₅: X₁₅ {O(n)}
(g₄,f23), X₁₆: X₁₆ {O(n)}
(g₆,f23), X₂: 2⋅X₃ {O(n)}
(g₆,f23), X₃: X₃ {O(n)}
(g₆,f23), X₄: 4⋅X₃ {O(n)}
(g₆,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₆,f23), X₁₃: X₁₃ {O(n)}
(g₆,f23), X₁₄: X₁₄ {O(n)}
(g₆,f23), X₁₅: X₁₅ {O(n)}
(g₆,f23), X₁₆: X₁₆ {O(n)}
(g₈,f33), X₂: 8⋅X₃ {O(n)}
(g₈,f33), X₃: 4⋅X₃ {O(n)}
(g₈,f33), X₄: 16⋅X₃ {O(n)}
(g₈,f33), X₉: 26⋅X₉+40⋅X₃+19 {O(n)}
(g₈,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₈,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₈,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₈,f33), X₁₆: 4⋅X₁₆ {O(n)}
(g₁₂,f46), X₂: 48⋅X₃ {O(n)}
(g₁₂,f46), X₃: 24⋅X₃ {O(n)}
(g₁₂,f46), X₄: 96⋅X₃ {O(n)}
(g₁₂,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₂,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₂,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₂,f46), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₂,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₄,f49), X₂: 48⋅X₃ {O(n)}
(g₁₄,f49), X₃: 24⋅X₃ {O(n)}
(g₁₄,f49), X₄: 96⋅X₃ {O(n)}
(g₁₄,f49), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₄,f49), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₄,f49), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₄,f49), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₄,f49), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₆,f49), X₂: 48⋅X₃ {O(n)}
(g₁₆,f49), X₃: 24⋅X₃ {O(n)}
(g₁₆,f49), X₄: 96⋅X₃ {O(n)}
(g₁₆,f49), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₆,f49), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₆,f49), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₆,f49), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₆,f49), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₂₄,f66), X₂: 48⋅X₃ {O(n)}
(g₂₄,f66), X₃: 24⋅X₃ {O(n)}
(g₂₄,f66), X₄: 96⋅X₃ {O(n)}
(g₂₄,f66), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₂₄,f66), X₁₃: 24⋅X₁₃ {O(n)}
(g₂₄,f66), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₂₄,f66), X₁₅: 0 {O(1)}
(g₂₄,f66), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₁,f91), X₂: 48⋅X₃ {O(n)}
(g₃₁,f91), X₃: 24⋅X₃ {O(n)}
(g₃₁,f91), X₄: 96⋅X₃ {O(n)}
(g₃₁,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₁,f91), X₁₁: 0 {O(1)}
(g₃₁,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₁,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₁,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₁,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₃,f91), X₂: 48⋅X₃ {O(n)}
(g₃₃,f91), X₃: 24⋅X₃ {O(n)}
(g₃₃,f91), X₄: 96⋅X₃ {O(n)}
(g₃₃,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₃,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₃,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₃,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₃,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₅,f91), X₂: 48⋅X₃ {O(n)}
(g₃₅,f91), X₃: 24⋅X₃ {O(n)}
(g₃₅,f91), X₄: 96⋅X₃ {O(n)}
(g₃₅,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₅,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₅,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₅,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₅,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₃,f125), X₂: 96⋅X₃ {O(n)}
(g₆₃,f125), X₃: 48⋅X₃ {O(n)}
(g₆₃,f125), X₄: 192⋅X₃ {O(n)}
(g₆₃,f125), X₉: 1128⋅X₃+468⋅X₉+336 {O(n)}
(g₆₃,f125), X₁₃: 48⋅X₁₃ {O(n)}
(g₆₃,f125), X₁₄: 24⋅X₁₃+72⋅X₁₄+2 {O(n)}
(g₆₃,f125), X₁₅: 32⋅X₁₅ {O(n)}
(g₆₃,f125), X₁₆: 48⋅X₁₆+1 {O(n)}
(g₆₅,f44), X₂: 48⋅X₃ {O(n)}
(g₆₅,f44), X₃: 24⋅X₃ {O(n)}
(g₆₅,f44), X₄: 96⋅X₃ {O(n)}
(g₆₅,f44), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₅,f44), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₅,f44), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₅,f44), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₅,f44), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₇,f87), X₂: 48⋅X₃ {O(n)}
(g₆₇,f87), X₃: 24⋅X₃ {O(n)}
(g₆₇,f87), X₄: 96⋅X₃ {O(n)}
(g₆₇,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₇,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₇,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₇,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₇,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₉,f87), X₂: 48⋅X₃ {O(n)}
(g₆₉,f87), X₃: 24⋅X₃ {O(n)}
(g₆₉,f87), X₄: 96⋅X₃ {O(n)}
(g₆₉,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₉,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₉,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₉,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₉,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₁,f87), X₂: 48⋅X₃ {O(n)}
(g₇₁,f87), X₃: 24⋅X₃ {O(n)}
(g₇₁,f87), X₄: 96⋅X₃ {O(n)}
(g₇₁,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₁,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₁,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₁,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₁,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₃,f46), X₂: 48⋅X₃ {O(n)}
(g₇₃,f46), X₃: 24⋅X₃ {O(n)}
(g₇₃,f46), X₄: 96⋅X₃ {O(n)}
(g₇₃,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₃,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₃,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₃,f46), X₁₅: 0 {O(1)}
(g₇₃,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₅,f46), X₂: 48⋅X₃ {O(n)}
(g₇₅,f46), X₃: 24⋅X₃ {O(n)}
(g₇₅,f46), X₄: 96⋅X₃ {O(n)}
(g₇₅,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₅,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₅,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₅,f46), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₅,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₇,f60), X₂: 48⋅X₃ {O(n)}
(g₇₇,f60), X₃: 24⋅X₃ {O(n)}
(g₇₇,f60), X₄: 96⋅X₃ {O(n)}
(g₇₇,f60), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₇,f60), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₇,f60), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₇,f60), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₇,f60), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₉,f54), X₂: 48⋅X₃ {O(n)}
(g₇₉,f54), X₃: 24⋅X₃ {O(n)}
(g₇₉,f54), X₄: 96⋅X₃ {O(n)}
(g₇₉,f54), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₉,f54), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₉,f54), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₉,f54), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₉,f54), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₈₁,f72), X₂: 48⋅X₃ {O(n)}
(g₈₁,f72), X₃: 24⋅X₃ {O(n)}
(g₈₁,f72), X₄: 96⋅X₃ {O(n)}
(g₈₁,f72), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₈₁,f72), X₁₃: 24⋅X₁₃ {O(n)}
(g₈₁,f72), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₈₁,f72), X₁₅: 16⋅X₁₅ {O(n)}
(g₈₁,f72), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₈₃,f117), X₂: 96⋅X₃ {O(n)}
(g₈₃,f117), X₃: 48⋅X₃ {O(n)}
(g₈₃,f117), X₄: 192⋅X₃ {O(n)}
(g₈₃,f117), X₉: 1128⋅X₃+468⋅X₉+336 {O(n)}
(g₈₃,f117), X₁₃: 48⋅X₁₃ {O(n)}
(g₈₃,f117), X₁₄: 24⋅X₁₃+72⋅X₁₄+2 {O(n)}
(g₈₃,f117), X₁₅: 32⋅X₁₅ {O(n)}
(g₈₃,f117), X₁₆: 48⋅X₁₆+1 {O(n)}
(g₈₅,f44), X₂: 32⋅X₃ {O(n)}
(g₈₅,f44), X₃: 16⋅X₃ {O(n)}
(g₈₅,f44), X₄: 64⋅X₃ {O(n)}
(g₈₅,f44), X₉: 116⋅X₃+78⋅X₉+56 {O(n)}
(g₈₅,f44), X₁₃: 16⋅X₁₃ {O(n)}
(g₈₅,f44), X₁₄: 16⋅X₁₄ {O(n)}
(g₈₅,f44), X₁₅: 16⋅X₁₅ {O(n)}
(g₈₅,f44), X₁₆: 16⋅X₁₆ {O(n)}
(g₈₇,f39), X₂: 16⋅X₃ {O(n)}
(g₈₇,f39), X₃: 8⋅X₃ {O(n)}
(g₈₇,f39), X₄: 32⋅X₃ {O(n)}
(g₈₇,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₇,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₇,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₇,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₇,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₈₉,f39), X₂: 16⋅X₃ {O(n)}
(g₈₉,f39), X₃: 8⋅X₃ {O(n)}
(g₈₉,f39), X₄: 32⋅X₃ {O(n)}
(g₈₉,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₉,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₉,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₉,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₉,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₁,f44), X₂: 16⋅X₃ {O(n)}
(g₉₁,f44), X₃: 8⋅X₃ {O(n)}
(g₉₁,f44), X₄: 32⋅X₃ {O(n)}
(g₉₁,f44), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₉₁,f44), X₁₃: 8⋅X₁₃ {O(n)}
(g₉₁,f44), X₁₄: 8⋅X₁₄ {O(n)}
(g₉₁,f44), X₁₅: 0 {O(1)}
(g₉₁,f44), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₃,f33), X₂: 8⋅X₃ {O(n)}
(g₉₃,f33), X₃: 4⋅X₃ {O(n)}
(g₉₃,f33), X₄: 16⋅X₃ {O(n)}
(g₉₃,f33), X₉: 13⋅X₉+18⋅X₃+9 {O(n)}
(g₉₃,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₉₃,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₉₃,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₉₃,f33), X₁₆: 4⋅X₁₆ {O(n)}
(g₉₇,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₉₇,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₉₇,f66_v1), X₄: 96⋅X₃ {O(n)}
(g₉₇,f66_v1), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₉₇,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₉₇,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₉₇,f66_v1), X₁₅: 0 {O(1)}
(g₉₇,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₉₇,f66_v2), X₂: 96⋅X₃ {O(n)}
(g₉₇,f66_v2), X₃: 48⋅X₃ {O(n)}
(g₉₇,f66_v2), X₄: 96⋅X₃ {O(n)}
(g₉₇,f66_v2), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₉₇,f66_v2), X₁₃: 48⋅X₁₃ {O(n)}
(g₉₇,f66_v2), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₉₇,f66_v2), X₁₅: 0 {O(1)}
(g₉₇,f66_v2), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₉₉,f46), X₂: 48⋅X₃ {O(n)}
(g₉₉,f46), X₃: 24⋅X₃ {O(n)}
(g₉₉,f46), X₄: 96⋅X₃ {O(n)}
(g₉₉,f46), X₉: 1794⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+819⋅X₉+596 {O(n)}
(g₉₉,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₉₉,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₉₉,f46), X₁₅: 0 {O(1)}
(g₉₉,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₀₂,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₁₀₂,f66_v1), X₄: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v1), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₀₂,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₂,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₂,f66_v1), X₁₅: 0 {O(1)}
(g₁₀₂,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₀₂,f66_v3), X₂: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v3), X₃: 48⋅X₃ {O(n)}
(g₁₀₂,f66_v3), X₄: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v3), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₀₂,f66_v3), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₂,f66_v3), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₂,f66_v3), X₁₅: 0 {O(1)}
(g₁₀₂,f66_v3), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₀₄,f46), X₂: 48⋅X₃ {O(n)}
(g₁₀₄,f46), X₃: 24⋅X₃ {O(n)}
(g₁₀₄,f46), X₄: 96⋅X₃ {O(n)}
(g₁₀₄,f46), X₉: 1794⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+819⋅X₉+596 {O(n)}
(g₁₀₄,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₀₄,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₀₄,f46), X₁₅: 0 {O(1)}
(g₁₀₄,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₀₇,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₁₀₇,f66_v1), X₄: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v1), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₀₇,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₇,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₇,f66_v1), X₁₅: 0 {O(1)}
(g₁₀₇,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₀₇,f66_v3), X₂: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v3), X₃: 48⋅X₃ {O(n)}
(g₁₀₇,f66_v3), X₄: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v3), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₀₇,f66_v3), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₇,f66_v3), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₇,f66_v3), X₁₅: 0 {O(1)}
(g₁₀₇,f66_v3), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₁₀,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₁₁₀,f66_v1), X₄: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v1), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₁₀,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₁₀,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₁₀,f66_v1), X₁₅: 0 {O(1)}
(g₁₁₀,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₁₀,f66_v2), X₂: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v2), X₃: 48⋅X₃ {O(n)}
(g₁₁₀,f66_v2), X₄: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v2), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₁₀,f66_v2), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₁₀,f66_v2), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₁₀,f66_v2), X₁₅: 0 {O(1)}
(g₁₁₀,f66_v2), X₁₆: 48⋅X₁₆+2 {O(n)}

Run probabilistic analysis on SCC: [f117]

Run classical analysis on SCC: [f125]

Classical Approximation after Lifting Classical Results

All Bounds
Timebounds

Overall timebound:1648⋅X₃+240⋅X₁₆+312⋅X₁₃+312⋅X₁₄+718⋅X₉+569 {O(n)}
g₀: 1 {O(1)}
g₂: 2⋅X₃+X₉+1 {O(n)}
g₄: 2⋅X₃+X₉+1 {O(n)}
g₆: 2⋅X₃+X₉+1 {O(n)}
g₈: 13⋅X₉+22⋅X₃+10 {O(n)}
g₁₂: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₁₄: 24⋅X₁₆+2 {O(n)}
g₁₆: 24⋅X₁₆+2 {O(n)}
g₂₄: 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)}
g₃₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₃₃: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₃₅: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₃: 1 {O(1)}
g₆₅: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₇: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₉: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₇₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₇₃: 24⋅X₁₆+2 {O(n)}
g₇₅: 24⋅X₁₆+2 {O(n)}
g₇₇: 24⋅X₁₆+2 {O(n)}
g₇₉: 24⋅X₁₆+2 {O(n)}
g₈₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₈₃: 1 {O(1)}
g₈₅: 1 {O(1)}
g₈₇: 1 {O(1)}
g₈₉: 1 {O(1)}
g₉₁: 1 {O(1)}
g₉₃: 1 {O(1)}
g₉₇: 48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+4 {O(n)}
g₉₉: 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)}
g₁₀₂: 234⋅X₉+540⋅X₃+168 {O(n)}
g₁₀₄: 117⋅X₉+270⋅X₃+86 {O(n)}
g₁₀₇: 234⋅X₉+540⋅X₃+168 {O(n)}
g₁₁₀: 117⋅X₉+270⋅X₃+88 {O(n)}

Costbounds

Overall costbound: inf {Infinity}
g₀: inf {Infinity}
g₂: inf {Infinity}
g₄: inf {Infinity}
g₆: inf {Infinity}
g₈: inf {Infinity}
g₁₂: inf {Infinity}
g₁₄: inf {Infinity}
g₁₆: inf {Infinity}
g₂₄: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
g₇₇: inf {Infinity}
g₇₉: inf {Infinity}
g₈₁: inf {Infinity}
g₈₃: inf {Infinity}
g₈₅: inf {Infinity}
g₈₇: inf {Infinity}
g₈₉: inf {Infinity}
g₉₁: inf {Infinity}
g₉₃: inf {Infinity}
g₉₇: inf {Infinity}
g₉₉: inf {Infinity}
g₁₀₂: inf {Infinity}
g₁₀₄: inf {Infinity}
g₁₀₇: inf {Infinity}
g₁₁₀: inf {Infinity}

Sizebounds

(g₀,f23), X₂: 2⋅X₃ {O(n)}
(g₀,f23), X₃: X₃ {O(n)}
(g₀,f23), X₄: 4⋅X₃ {O(n)}
(g₀,f23), X₉: X₉ {O(n)}
(g₀,f23), X₁₁: X₁₁ {O(n)}
(g₀,f23), X₁₃: X₁₃ {O(n)}
(g₀,f23), X₁₄: X₁₄ {O(n)}
(g₀,f23), X₁₅: X₁₅ {O(n)}
(g₀,f23), X₁₆: X₁₆ {O(n)}
(g₂,f23), X₂: 2⋅X₃ {O(n)}
(g₂,f23), X₃: X₃ {O(n)}
(g₂,f23), X₄: 4⋅X₃ {O(n)}
(g₂,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₂,f23), X₁₁: 0 {O(1)}
(g₂,f23), X₁₃: X₁₃ {O(n)}
(g₂,f23), X₁₄: X₁₄ {O(n)}
(g₂,f23), X₁₅: X₁₅ {O(n)}
(g₂,f23), X₁₆: X₁₆ {O(n)}
(g₄,f23), X₂: 2⋅X₃ {O(n)}
(g₄,f23), X₃: X₃ {O(n)}
(g₄,f23), X₄: 4⋅X₃ {O(n)}
(g₄,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₄,f23), X₁₃: X₁₃ {O(n)}
(g₄,f23), X₁₄: X₁₄ {O(n)}
(g₄,f23), X₁₅: X₁₅ {O(n)}
(g₄,f23), X₁₆: X₁₆ {O(n)}
(g₆,f23), X₂: 2⋅X₃ {O(n)}
(g₆,f23), X₃: X₃ {O(n)}
(g₆,f23), X₄: 4⋅X₃ {O(n)}
(g₆,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₆,f23), X₁₃: X₁₃ {O(n)}
(g₆,f23), X₁₄: X₁₄ {O(n)}
(g₆,f23), X₁₅: X₁₅ {O(n)}
(g₆,f23), X₁₆: X₁₆ {O(n)}
(g₈,f33), X₂: 8⋅X₃ {O(n)}
(g₈,f33), X₃: 4⋅X₃ {O(n)}
(g₈,f33), X₄: 16⋅X₃ {O(n)}
(g₈,f33), X₉: 26⋅X₉+40⋅X₃+19 {O(n)}
(g₈,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₈,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₈,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₈,f33), X₁₆: 4⋅X₁₆ {O(n)}
(g₁₂,f46), X₂: 48⋅X₃ {O(n)}
(g₁₂,f46), X₃: 24⋅X₃ {O(n)}
(g₁₂,f46), X₄: 96⋅X₃ {O(n)}
(g₁₂,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₂,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₂,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₂,f46), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₂,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₄,f49), X₂: 48⋅X₃ {O(n)}
(g₁₄,f49), X₃: 24⋅X₃ {O(n)}
(g₁₄,f49), X₄: 96⋅X₃ {O(n)}
(g₁₄,f49), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₄,f49), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₄,f49), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₄,f49), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₄,f49), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₆,f49), X₂: 48⋅X₃ {O(n)}
(g₁₆,f49), X₃: 24⋅X₃ {O(n)}
(g₁₆,f49), X₄: 96⋅X₃ {O(n)}
(g₁₆,f49), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₆,f49), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₆,f49), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₆,f49), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₆,f49), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₂₄,f66), X₂: 48⋅X₃ {O(n)}
(g₂₄,f66), X₃: 24⋅X₃ {O(n)}
(g₂₄,f66), X₄: 96⋅X₃ {O(n)}
(g₂₄,f66), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₂₄,f66), X₁₃: 24⋅X₁₃ {O(n)}
(g₂₄,f66), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₂₄,f66), X₁₅: 0 {O(1)}
(g₂₄,f66), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₁,f91), X₂: 48⋅X₃ {O(n)}
(g₃₁,f91), X₃: 24⋅X₃ {O(n)}
(g₃₁,f91), X₄: 96⋅X₃ {O(n)}
(g₃₁,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₁,f91), X₁₁: 0 {O(1)}
(g₃₁,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₁,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₁,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₁,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₃,f91), X₂: 48⋅X₃ {O(n)}
(g₃₃,f91), X₃: 24⋅X₃ {O(n)}
(g₃₃,f91), X₄: 96⋅X₃ {O(n)}
(g₃₃,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₃,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₃,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₃,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₃,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₅,f91), X₂: 48⋅X₃ {O(n)}
(g₃₅,f91), X₃: 24⋅X₃ {O(n)}
(g₃₅,f91), X₄: 96⋅X₃ {O(n)}
(g₃₅,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₅,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₅,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₅,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₅,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₃,f125), X₂: 96⋅X₃ {O(n)}
(g₆₃,f125), X₃: 48⋅X₃ {O(n)}
(g₆₃,f125), X₄: 192⋅X₃ {O(n)}
(g₆₃,f125), X₉: 1128⋅X₃+468⋅X₉+336 {O(n)}
(g₆₃,f125), X₁₃: 48⋅X₁₃ {O(n)}
(g₆₃,f125), X₁₄: 24⋅X₁₃+72⋅X₁₄+2 {O(n)}
(g₆₃,f125), X₁₅: 32⋅X₁₅ {O(n)}
(g₆₃,f125), X₁₆: 48⋅X₁₆+1 {O(n)}
(g₆₅,f44), X₂: 48⋅X₃ {O(n)}
(g₆₅,f44), X₃: 24⋅X₃ {O(n)}
(g₆₅,f44), X₄: 96⋅X₃ {O(n)}
(g₆₅,f44), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₅,f44), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₅,f44), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₅,f44), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₅,f44), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₇,f87), X₂: 48⋅X₃ {O(n)}
(g₆₇,f87), X₃: 24⋅X₃ {O(n)}
(g₆₇,f87), X₄: 96⋅X₃ {O(n)}
(g₆₇,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₇,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₇,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₇,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₇,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₉,f87), X₂: 48⋅X₃ {O(n)}
(g₆₉,f87), X₃: 24⋅X₃ {O(n)}
(g₆₉,f87), X₄: 96⋅X₃ {O(n)}
(g₆₉,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₉,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₉,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₉,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₉,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₁,f87), X₂: 48⋅X₃ {O(n)}
(g₇₁,f87), X₃: 24⋅X₃ {O(n)}
(g₇₁,f87), X₄: 96⋅X₃ {O(n)}
(g₇₁,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₁,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₁,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₁,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₁,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₃,f46), X₂: 48⋅X₃ {O(n)}
(g₇₃,f46), X₃: 24⋅X₃ {O(n)}
(g₇₃,f46), X₄: 96⋅X₃ {O(n)}
(g₇₃,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₃,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₃,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₃,f46), X₁₅: 0 {O(1)}
(g₇₃,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₅,f46), X₂: 48⋅X₃ {O(n)}
(g₇₅,f46), X₃: 24⋅X₃ {O(n)}
(g₇₅,f46), X₄: 96⋅X₃ {O(n)}
(g₇₅,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₅,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₅,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₅,f46), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₅,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₇,f60), X₂: 48⋅X₃ {O(n)}
(g₇₇,f60), X₃: 24⋅X₃ {O(n)}
(g₇₇,f60), X₄: 96⋅X₃ {O(n)}
(g₇₇,f60), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₇,f60), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₇,f60), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₇,f60), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₇,f60), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₉,f54), X₂: 48⋅X₃ {O(n)}
(g₇₉,f54), X₃: 24⋅X₃ {O(n)}
(g₇₉,f54), X₄: 96⋅X₃ {O(n)}
(g₇₉,f54), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₉,f54), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₉,f54), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₉,f54), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₉,f54), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₈₁,f72), X₂: 48⋅X₃ {O(n)}
(g₈₁,f72), X₃: 24⋅X₃ {O(n)}
(g₈₁,f72), X₄: 96⋅X₃ {O(n)}
(g₈₁,f72), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₈₁,f72), X₁₃: 24⋅X₁₃ {O(n)}
(g₈₁,f72), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₈₁,f72), X₁₅: 16⋅X₁₅ {O(n)}
(g₈₁,f72), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₈₃,f117), X₂: 96⋅X₃ {O(n)}
(g₈₃,f117), X₃: 48⋅X₃ {O(n)}
(g₈₃,f117), X₄: 192⋅X₃ {O(n)}
(g₈₃,f117), X₉: 1128⋅X₃+468⋅X₉+336 {O(n)}
(g₈₃,f117), X₁₃: 48⋅X₁₃ {O(n)}
(g₈₃,f117), X₁₄: 24⋅X₁₃+72⋅X₁₄+2 {O(n)}
(g₈₃,f117), X₁₅: 32⋅X₁₅ {O(n)}
(g₈₃,f117), X₁₆: 48⋅X₁₆+1 {O(n)}
(g₈₅,f44), X₂: 32⋅X₃ {O(n)}
(g₈₅,f44), X₃: 16⋅X₃ {O(n)}
(g₈₅,f44), X₄: 64⋅X₃ {O(n)}
(g₈₅,f44), X₉: 116⋅X₃+78⋅X₉+56 {O(n)}
(g₈₅,f44), X₁₃: 16⋅X₁₃ {O(n)}
(g₈₅,f44), X₁₄: 16⋅X₁₄ {O(n)}
(g₈₅,f44), X₁₅: 16⋅X₁₅ {O(n)}
(g₈₅,f44), X₁₆: 16⋅X₁₆ {O(n)}
(g₈₇,f39), X₂: 16⋅X₃ {O(n)}
(g₈₇,f39), X₃: 8⋅X₃ {O(n)}
(g₈₇,f39), X₄: 32⋅X₃ {O(n)}
(g₈₇,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₇,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₇,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₇,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₇,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₈₉,f39), X₂: 16⋅X₃ {O(n)}
(g₈₉,f39), X₃: 8⋅X₃ {O(n)}
(g₈₉,f39), X₄: 32⋅X₃ {O(n)}
(g₈₉,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₉,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₉,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₉,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₉,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₁,f44), X₂: 16⋅X₃ {O(n)}
(g₉₁,f44), X₃: 8⋅X₃ {O(n)}
(g₉₁,f44), X₄: 32⋅X₃ {O(n)}
(g₉₁,f44), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₉₁,f44), X₁₃: 8⋅X₁₃ {O(n)}
(g₉₁,f44), X₁₄: 8⋅X₁₄ {O(n)}
(g₉₁,f44), X₁₅: 0 {O(1)}
(g₉₁,f44), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₃,f33), X₂: 8⋅X₃ {O(n)}
(g₉₃,f33), X₃: 4⋅X₃ {O(n)}
(g₉₃,f33), X₄: 16⋅X₃ {O(n)}
(g₉₃,f33), X₉: 13⋅X₉+18⋅X₃+9 {O(n)}
(g₉₃,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₉₃,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₉₃,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₉₃,f33), X₁₆: 4⋅X₁₆ {O(n)}
(g₉₇,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₉₇,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₉₇,f66_v1), X₄: 96⋅X₃ {O(n)}
(g₉₇,f66_v1), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₉₇,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₉₇,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₉₇,f66_v1), X₁₅: 0 {O(1)}
(g₉₇,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₉₇,f66_v2), X₂: 96⋅X₃ {O(n)}
(g₉₇,f66_v2), X₃: 48⋅X₃ {O(n)}
(g₉₇,f66_v2), X₄: 96⋅X₃ {O(n)}
(g₉₇,f66_v2), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₉₇,f66_v2), X₁₃: 48⋅X₁₃ {O(n)}
(g₉₇,f66_v2), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₉₇,f66_v2), X₁₅: 0 {O(1)}
(g₉₇,f66_v2), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₉₉,f46), X₂: 48⋅X₃ {O(n)}
(g₉₉,f46), X₃: 24⋅X₃ {O(n)}
(g₉₉,f46), X₄: 96⋅X₃ {O(n)}
(g₉₉,f46), X₉: 1794⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+819⋅X₉+596 {O(n)}
(g₉₉,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₉₉,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₉₉,f46), X₁₅: 0 {O(1)}
(g₉₉,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₀₂,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₁₀₂,f66_v1), X₄: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v1), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₀₂,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₂,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₂,f66_v1), X₁₅: 0 {O(1)}
(g₁₀₂,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₀₂,f66_v3), X₂: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v3), X₃: 48⋅X₃ {O(n)}
(g₁₀₂,f66_v3), X₄: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v3), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₀₂,f66_v3), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₂,f66_v3), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₂,f66_v3), X₁₅: 0 {O(1)}
(g₁₀₂,f66_v3), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₀₄,f46), X₂: 48⋅X₃ {O(n)}
(g₁₀₄,f46), X₃: 24⋅X₃ {O(n)}
(g₁₀₄,f46), X₄: 96⋅X₃ {O(n)}
(g₁₀₄,f46), X₉: 1794⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+819⋅X₉+596 {O(n)}
(g₁₀₄,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₀₄,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₀₄,f46), X₁₅: 0 {O(1)}
(g₁₀₄,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₀₇,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₁₀₇,f66_v1), X₄: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v1), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₀₇,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₇,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₇,f66_v1), X₁₅: 0 {O(1)}
(g₁₀₇,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₀₇,f66_v3), X₂: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v3), X₃: 48⋅X₃ {O(n)}
(g₁₀₇,f66_v3), X₄: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v3), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₀₇,f66_v3), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₇,f66_v3), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₇,f66_v3), X₁₅: 0 {O(1)}
(g₁₀₇,f66_v3), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₁₀,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₁₁₀,f66_v1), X₄: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v1), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₁₀,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₁₀,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₁₀,f66_v1), X₁₅: 0 {O(1)}
(g₁₁₀,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₁₀,f66_v2), X₂: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v2), X₃: 48⋅X₃ {O(n)}
(g₁₁₀,f66_v2), X₄: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v2), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₁₀,f66_v2), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₁₀,f66_v2), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₁₀,f66_v2), X₁₅: 0 {O(1)}
(g₁₁₀,f66_v2), X₁₆: 48⋅X₁₆+2 {O(n)}

Run probabilistic analysis on SCC: [f125]

Results of Probabilistic Analysis

All Bounds

Timebounds

Overall timebound:1648⋅X₃+240⋅X₁₆+312⋅X₁₃+312⋅X₁₄+718⋅X₉+569 {O(n)}
g₀: 1 {O(1)}
g₂: 2⋅X₃+X₉+1 {O(n)}
g₄: 2⋅X₃+X₉+1 {O(n)}
g₆: 2⋅X₃+X₉+1 {O(n)}
g₈: 13⋅X₉+22⋅X₃+10 {O(n)}
g₁₂: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₁₄: 24⋅X₁₆+2 {O(n)}
g₁₆: 24⋅X₁₆+2 {O(n)}
g₂₄: 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)}
g₃₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₃₃: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₃₅: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₃: 1 {O(1)}
g₆₅: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₇: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₉: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₇₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₇₃: 24⋅X₁₆+2 {O(n)}
g₇₅: 24⋅X₁₆+2 {O(n)}
g₇₇: 24⋅X₁₆+2 {O(n)}
g₇₉: 24⋅X₁₆+2 {O(n)}
g₈₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₈₃: 1 {O(1)}
g₈₅: 1 {O(1)}
g₈₇: 1 {O(1)}
g₈₉: 1 {O(1)}
g₉₁: 1 {O(1)}
g₉₃: 1 {O(1)}
g₉₇: 48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+4 {O(n)}
g₉₉: 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)}
g₁₀₂: 234⋅X₉+540⋅X₃+168 {O(n)}
g₁₀₄: 117⋅X₉+270⋅X₃+86 {O(n)}
g₁₀₇: 234⋅X₉+540⋅X₃+168 {O(n)}
g₁₁₀: 117⋅X₉+270⋅X₃+88 {O(n)}

Costbounds

Overall costbound: 1303⋅X₉+288⋅X₁₆+2998⋅X₃+360⋅X₁₃+360⋅X₁₄+997 {O(n)}
g₀: 1 {O(1)}
g₂: 2⋅X₃+X₉+1 {O(n)}
g₄: 2⋅X₃+X₉+1 {O(n)}
g₆: 2⋅X₃+X₉+1 {O(n)}
g₈: 13⋅X₉+22⋅X₃+10 {O(n)}
g₁₂: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₁₄: 24⋅X₁₆+2 {O(n)}
g₁₆: 24⋅X₁₆+2 {O(n)}
g₂₄: 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)}
g₃₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₃₃: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₃₅: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₃: 1 {O(1)}
g₆₅: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₇: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₆₉: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₇₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₇₃: 24⋅X₁₆+2 {O(n)}
g₇₅: 24⋅X₁₆+2 {O(n)}
g₇₇: 24⋅X₁₆+2 {O(n)}
g₇₉: 24⋅X₁₆+2 {O(n)}
g₈₁: 24⋅X₁₃+24⋅X₁₄+2 {O(n)}
g₈₃: 1 {O(1)}
g₈₅: 1 {O(1)}
g₈₇: 1 {O(1)}
g₈₉: 1 {O(1)}
g₉₁: 1 {O(1)}
g₉₃: 1 {O(1)}
g₉₇: 96⋅X₁₃+96⋅X₁₄+96⋅X₁₆+8 {O(n)}
g₉₉: 24⋅X₁₃+24⋅X₁₄+24⋅X₁₆+2 {O(n)}
g₁₀₂: 1080⋅X₃+468⋅X₉+336 {O(n)}
g₁₀₄: 117⋅X₉+270⋅X₃+86 {O(n)}
g₁₀₇: 1080⋅X₃+468⋅X₉+336 {O(n)}
g₁₁₀: 234⋅X₉+540⋅X₃+176 {O(n)}

Sizebounds

(g₀,f23), X₂: 2⋅X₃ {O(n)}
(g₀,f23), X₃: X₃ {O(n)}
(g₀,f23), X₄: 4⋅X₃ {O(n)}
(g₀,f23), X₉: X₉ {O(n)}
(g₀,f23), X₁₁: X₁₁ {O(n)}
(g₀,f23), X₁₃: X₁₃ {O(n)}
(g₀,f23), X₁₄: X₁₄ {O(n)}
(g₀,f23), X₁₅: X₁₅ {O(n)}
(g₀,f23), X₁₆: X₁₆ {O(n)}
(g₂,f23), X₂: 2⋅X₃ {O(n)}
(g₂,f23), X₃: X₃ {O(n)}
(g₂,f23), X₄: 4⋅X₃ {O(n)}
(g₂,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₂,f23), X₁₁: 0 {O(1)}
(g₂,f23), X₁₃: X₁₃ {O(n)}
(g₂,f23), X₁₄: X₁₄ {O(n)}
(g₂,f23), X₁₅: X₁₅ {O(n)}
(g₂,f23), X₁₆: X₁₆ {O(n)}
(g₄,f23), X₂: 2⋅X₃ {O(n)}
(g₄,f23), X₃: X₃ {O(n)}
(g₄,f23), X₄: 4⋅X₃ {O(n)}
(g₄,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₄,f23), X₁₃: X₁₃ {O(n)}
(g₄,f23), X₁₄: X₁₄ {O(n)}
(g₄,f23), X₁₅: X₁₅ {O(n)}
(g₄,f23), X₁₆: X₁₆ {O(n)}
(g₆,f23), X₂: 2⋅X₃ {O(n)}
(g₆,f23), X₃: X₃ {O(n)}
(g₆,f23), X₄: 4⋅X₃ {O(n)}
(g₆,f23), X₉: 4⋅X₉+6⋅X₃+3 {O(n)}
(g₆,f23), X₁₃: X₁₃ {O(n)}
(g₆,f23), X₁₄: X₁₄ {O(n)}
(g₆,f23), X₁₅: X₁₅ {O(n)}
(g₆,f23), X₁₆: X₁₆ {O(n)}
(g₈,f33), X₂: 8⋅X₃ {O(n)}
(g₈,f33), X₃: 4⋅X₃ {O(n)}
(g₈,f33), X₄: 16⋅X₃ {O(n)}
(g₈,f33), X₉: 26⋅X₉+40⋅X₃+19 {O(n)}
(g₈,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₈,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₈,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₈,f33), X₁₆: 4⋅X₁₆ {O(n)}
(g₁₂,f46), X₂: 48⋅X₃ {O(n)}
(g₁₂,f46), X₃: 24⋅X₃ {O(n)}
(g₁₂,f46), X₄: 96⋅X₃ {O(n)}
(g₁₂,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₂,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₂,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₂,f46), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₂,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₄,f49), X₂: 48⋅X₃ {O(n)}
(g₁₄,f49), X₃: 24⋅X₃ {O(n)}
(g₁₄,f49), X₄: 96⋅X₃ {O(n)}
(g₁₄,f49), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₄,f49), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₄,f49), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₄,f49), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₄,f49), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₆,f49), X₂: 48⋅X₃ {O(n)}
(g₁₆,f49), X₃: 24⋅X₃ {O(n)}
(g₁₆,f49), X₄: 96⋅X₃ {O(n)}
(g₁₆,f49), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₁₆,f49), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₆,f49), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₆,f49), X₁₅: 16⋅X₁₅ {O(n)}
(g₁₆,f49), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₂₄,f66), X₂: 48⋅X₃ {O(n)}
(g₂₄,f66), X₃: 24⋅X₃ {O(n)}
(g₂₄,f66), X₄: 96⋅X₃ {O(n)}
(g₂₄,f66), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₂₄,f66), X₁₃: 24⋅X₁₃ {O(n)}
(g₂₄,f66), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₂₄,f66), X₁₅: 0 {O(1)}
(g₂₄,f66), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₁,f91), X₂: 48⋅X₃ {O(n)}
(g₃₁,f91), X₃: 24⋅X₃ {O(n)}
(g₃₁,f91), X₄: 96⋅X₃ {O(n)}
(g₃₁,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₁,f91), X₁₁: 0 {O(1)}
(g₃₁,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₁,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₁,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₁,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₃,f91), X₂: 48⋅X₃ {O(n)}
(g₃₃,f91), X₃: 24⋅X₃ {O(n)}
(g₃₃,f91), X₄: 96⋅X₃ {O(n)}
(g₃₃,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₃,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₃,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₃,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₃,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₃₅,f91), X₂: 48⋅X₃ {O(n)}
(g₃₅,f91), X₃: 24⋅X₃ {O(n)}
(g₃₅,f91), X₄: 96⋅X₃ {O(n)}
(g₃₅,f91), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₃₅,f91), X₁₃: 24⋅X₁₃ {O(n)}
(g₃₅,f91), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₃₅,f91), X₁₅: 16⋅X₁₅ {O(n)}
(g₃₅,f91), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₃,f125), X₂: 96⋅X₃ {O(n)}
(g₆₃,f125), X₃: 48⋅X₃ {O(n)}
(g₆₃,f125), X₄: 192⋅X₃ {O(n)}
(g₆₃,f125), X₉: 1128⋅X₃+468⋅X₉+336 {O(n)}
(g₆₃,f125), X₁₃: 48⋅X₁₃ {O(n)}
(g₆₃,f125), X₁₄: 24⋅X₁₃+72⋅X₁₄+2 {O(n)}
(g₆₃,f125), X₁₅: 32⋅X₁₅ {O(n)}
(g₆₃,f125), X₁₆: 48⋅X₁₆+1 {O(n)}
(g₆₅,f44), X₂: 48⋅X₃ {O(n)}
(g₆₅,f44), X₃: 24⋅X₃ {O(n)}
(g₆₅,f44), X₄: 96⋅X₃ {O(n)}
(g₆₅,f44), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₅,f44), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₅,f44), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₅,f44), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₅,f44), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₇,f87), X₂: 48⋅X₃ {O(n)}
(g₆₇,f87), X₃: 24⋅X₃ {O(n)}
(g₆₇,f87), X₄: 96⋅X₃ {O(n)}
(g₆₇,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₇,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₇,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₇,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₇,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₆₉,f87), X₂: 48⋅X₃ {O(n)}
(g₆₉,f87), X₃: 24⋅X₃ {O(n)}
(g₆₉,f87), X₄: 96⋅X₃ {O(n)}
(g₆₉,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₆₉,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₆₉,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₆₉,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₆₉,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₁,f87), X₂: 48⋅X₃ {O(n)}
(g₇₁,f87), X₃: 24⋅X₃ {O(n)}
(g₇₁,f87), X₄: 96⋅X₃ {O(n)}
(g₇₁,f87), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₁,f87), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₁,f87), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₁,f87), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₁,f87), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₃,f46), X₂: 48⋅X₃ {O(n)}
(g₇₃,f46), X₃: 24⋅X₃ {O(n)}
(g₇₃,f46), X₄: 96⋅X₃ {O(n)}
(g₇₃,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₃,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₃,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₃,f46), X₁₅: 0 {O(1)}
(g₇₃,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₅,f46), X₂: 48⋅X₃ {O(n)}
(g₇₅,f46), X₃: 24⋅X₃ {O(n)}
(g₇₅,f46), X₄: 96⋅X₃ {O(n)}
(g₇₅,f46), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₅,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₅,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₅,f46), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₅,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₇,f60), X₂: 48⋅X₃ {O(n)}
(g₇₇,f60), X₃: 24⋅X₃ {O(n)}
(g₇₇,f60), X₄: 96⋅X₃ {O(n)}
(g₇₇,f60), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₇,f60), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₇,f60), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₇,f60), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₇,f60), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₇₉,f54), X₂: 48⋅X₃ {O(n)}
(g₇₉,f54), X₃: 24⋅X₃ {O(n)}
(g₇₉,f54), X₄: 96⋅X₃ {O(n)}
(g₇₉,f54), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₇₉,f54), X₁₃: 24⋅X₁₃ {O(n)}
(g₇₉,f54), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₇₉,f54), X₁₅: 16⋅X₁₅ {O(n)}
(g₇₉,f54), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₈₁,f72), X₂: 48⋅X₃ {O(n)}
(g₈₁,f72), X₃: 24⋅X₃ {O(n)}
(g₈₁,f72), X₄: 96⋅X₃ {O(n)}
(g₈₁,f72), X₉: 351⋅X₉+954⋅X₃+252 {O(n)}
(g₈₁,f72), X₁₃: 24⋅X₁₃ {O(n)}
(g₈₁,f72), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₈₁,f72), X₁₅: 16⋅X₁₅ {O(n)}
(g₈₁,f72), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₈₃,f117), X₂: 96⋅X₃ {O(n)}
(g₈₃,f117), X₃: 48⋅X₃ {O(n)}
(g₈₃,f117), X₄: 192⋅X₃ {O(n)}
(g₈₃,f117), X₉: 1128⋅X₃+468⋅X₉+336 {O(n)}
(g₈₃,f117), X₁₃: 48⋅X₁₃ {O(n)}
(g₈₃,f117), X₁₄: 24⋅X₁₃+72⋅X₁₄+2 {O(n)}
(g₈₃,f117), X₁₅: 32⋅X₁₅ {O(n)}
(g₈₃,f117), X₁₆: 48⋅X₁₆+1 {O(n)}
(g₈₅,f44), X₂: 32⋅X₃ {O(n)}
(g₈₅,f44), X₃: 16⋅X₃ {O(n)}
(g₈₅,f44), X₄: 64⋅X₃ {O(n)}
(g₈₅,f44), X₉: 116⋅X₃+78⋅X₉+56 {O(n)}
(g₈₅,f44), X₁₃: 16⋅X₁₃ {O(n)}
(g₈₅,f44), X₁₄: 16⋅X₁₄ {O(n)}
(g₈₅,f44), X₁₅: 16⋅X₁₅ {O(n)}
(g₈₅,f44), X₁₆: 16⋅X₁₆ {O(n)}
(g₈₇,f39), X₂: 16⋅X₃ {O(n)}
(g₈₇,f39), X₃: 8⋅X₃ {O(n)}
(g₈₇,f39), X₄: 32⋅X₃ {O(n)}
(g₈₇,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₇,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₇,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₇,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₇,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₈₉,f39), X₂: 16⋅X₃ {O(n)}
(g₈₉,f39), X₃: 8⋅X₃ {O(n)}
(g₈₉,f39), X₄: 32⋅X₃ {O(n)}
(g₈₉,f39), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₈₉,f39), X₁₃: 8⋅X₁₃ {O(n)}
(g₈₉,f39), X₁₄: 8⋅X₁₄ {O(n)}
(g₈₉,f39), X₁₅: 8⋅X₁₅ {O(n)}
(g₈₉,f39), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₁,f44), X₂: 16⋅X₃ {O(n)}
(g₉₁,f44), X₃: 8⋅X₃ {O(n)}
(g₉₁,f44), X₄: 32⋅X₃ {O(n)}
(g₉₁,f44), X₉: 39⋅X₉+58⋅X₃+28 {O(n)}
(g₉₁,f44), X₁₃: 8⋅X₁₃ {O(n)}
(g₉₁,f44), X₁₄: 8⋅X₁₄ {O(n)}
(g₉₁,f44), X₁₅: 0 {O(1)}
(g₉₁,f44), X₁₆: 8⋅X₁₆ {O(n)}
(g₉₃,f33), X₂: 8⋅X₃ {O(n)}
(g₉₃,f33), X₃: 4⋅X₃ {O(n)}
(g₉₃,f33), X₄: 16⋅X₃ {O(n)}
(g₉₃,f33), X₉: 13⋅X₉+18⋅X₃+9 {O(n)}
(g₉₃,f33), X₁₃: 4⋅X₁₃ {O(n)}
(g₉₃,f33), X₁₄: 4⋅X₁₄ {O(n)}
(g₉₃,f33), X₁₅: 4⋅X₁₅ {O(n)}
(g₉₃,f33), X₁₆: 4⋅X₁₆ {O(n)}
(g₉₇,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₉₇,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₉₇,f66_v1), X₄: 96⋅X₃ {O(n)}
(g₉₇,f66_v1), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₉₇,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₉₇,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₉₇,f66_v1), X₁₅: 0 {O(1)}
(g₉₇,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₉₇,f66_v2), X₂: 96⋅X₃ {O(n)}
(g₉₇,f66_v2), X₃: 48⋅X₃ {O(n)}
(g₉₇,f66_v2), X₄: 96⋅X₃ {O(n)}
(g₉₇,f66_v2), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₉₇,f66_v2), X₁₃: 48⋅X₁₃ {O(n)}
(g₉₇,f66_v2), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₉₇,f66_v2), X₁₅: 0 {O(1)}
(g₉₇,f66_v2), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₉₉,f46), X₂: 48⋅X₃ {O(n)}
(g₉₉,f46), X₃: 24⋅X₃ {O(n)}
(g₉₉,f46), X₄: 96⋅X₃ {O(n)}
(g₉₉,f46), X₉: 1794⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+819⋅X₉+596 {O(n)}
(g₉₉,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₉₉,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₉₉,f46), X₁₅: 0 {O(1)}
(g₉₉,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₀₂,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₁₀₂,f66_v1), X₄: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v1), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₀₂,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₂,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₂,f66_v1), X₁₅: 0 {O(1)}
(g₁₀₂,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₀₂,f66_v3), X₂: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v3), X₃: 48⋅X₃ {O(n)}
(g₁₀₂,f66_v3), X₄: 96⋅X₃ {O(n)}
(g₁₀₂,f66_v3), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₀₂,f66_v3), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₂,f66_v3), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₂,f66_v3), X₁₅: 0 {O(1)}
(g₁₀₂,f66_v3), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₀₄,f46), X₂: 48⋅X₃ {O(n)}
(g₁₀₄,f46), X₃: 24⋅X₃ {O(n)}
(g₁₀₄,f46), X₄: 96⋅X₃ {O(n)}
(g₁₀₄,f46), X₉: 1794⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+819⋅X₉+596 {O(n)}
(g₁₀₄,f46), X₁₃: 24⋅X₁₃ {O(n)}
(g₁₀₄,f46), X₁₄: 24⋅X₁₃+48⋅X₁₄+2 {O(n)}
(g₁₀₄,f46), X₁₅: 0 {O(1)}
(g₁₀₄,f46), X₁₆: 24⋅X₁₆+1 {O(n)}
(g₁₀₇,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₁₀₇,f66_v1), X₄: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v1), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₀₇,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₇,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₇,f66_v1), X₁₅: 0 {O(1)}
(g₁₀₇,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₀₇,f66_v3), X₂: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v3), X₃: 48⋅X₃ {O(n)}
(g₁₀₇,f66_v3), X₄: 96⋅X₃ {O(n)}
(g₁₀₇,f66_v3), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₀₇,f66_v3), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₀₇,f66_v3), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₀₇,f66_v3), X₁₅: 0 {O(1)}
(g₁₀₇,f66_v3), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₁₀,f66_v1), X₂: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v1), X₃: 48⋅X₃ {O(n)}
(g₁₁₀,f66_v1), X₄: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v1), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₁₀,f66_v1), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₁₀,f66_v1), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₁₀,f66_v1), X₁₅: 0 {O(1)}
(g₁₁₀,f66_v1), X₁₆: 48⋅X₁₆+2 {O(n)}
(g₁₁₀,f66_v2), X₂: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v2), X₃: 48⋅X₃ {O(n)}
(g₁₁₀,f66_v2), X₄: 96⋅X₃ {O(n)}
(g₁₁₀,f66_v2), X₉: 1524⋅X₃+48⋅X₁₃+48⋅X₁₄+48⋅X₁₆+702⋅X₉+512 {O(n)}
(g₁₁₀,f66_v2), X₁₃: 48⋅X₁₃ {O(n)}
(g₁₁₀,f66_v2), X₁₄: 48⋅X₁₃+96⋅X₁₄+4 {O(n)}
(g₁₁₀,f66_v2), X₁₅: 0 {O(1)}
(g₁₁₀,f66_v2), X₁₆: 48⋅X₁₆+2 {O(n)}