Preprocessing
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₆+X₁₀ ∧ 2 ≤ X₁₀ for location eval_rank2_15
Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₈+X₁₁ ∧ 6 ≤ X₈+X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₇+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₆+X₁₁ ∧ 7 ≤ X₆+X₁₀ ∧ 1 ≤ X₄ ∧ 5 ≤ X₄+X₁₁ ∧ 6 ≤ X₄+X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location eval_rank2_20
Found invariant X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ for location eval_rank2_32
Found invariant X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂ for location eval_rank2_29
Found invariant 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ for location eval_rank2_bb3_in
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₆+X₁₀ ∧ 2 ≤ X₁₀ for location eval_rank2_14
Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₈+X₁₁ ∧ 3 ≤ X₈+X₁₀ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₇+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₄+X₁₁ ∧ 3 ≤ X₄+X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ for location eval_rank2__critedge1_in
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 4 ≤ X₆+X₁₀ ∧ 1 ≤ X₄ ∧ 3 ≤ X₄+X₁₀ ∧ 2 ≤ X₁₀ for location eval_rank2_bb5_in
Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₈+X₁₁ ∧ 6 ≤ X₈+X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₇+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₆+X₁₁ ∧ 7 ≤ X₆+X₁₀ ∧ 1 ≤ X₄ ∧ 5 ≤ X₄+X₁₁ ∧ 6 ≤ X₄+X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location eval_rank2_21
Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ X₈ ≤ 1+X₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₈+X₁₁ ∧ 3 ≤ X₈+X₁₀ ∧ 1 ≤ X₁+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ 1+X₁ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₇+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ X₆ ≤ 2+X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₄+X₁₁ ∧ 3 ≤ X₄+X₁₀ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 0 ≤ X₁ for location eval_rank2_26
Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ X₈ ≤ 1+X₁ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₈+X₁₁ ∧ 3 ≤ X₈+X₁₀ ∧ 1 ≤ X₁+X₈ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ X₇ ≤ 1+X₁ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₇+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 1 ≤ X₁+X₇ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ X₆ ≤ 2+X₁ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 2 ≤ X₁+X₆ ∧ 1 ≤ X₄ ∧ 2 ≤ X₄+X₁₁ ∧ 3 ≤ X₄+X₁₀ ∧ 1 ≤ X₁+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ X₁₁ ≤ 1+X₁ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 2 ≤ X₁₀ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 0 ≤ X₁ for location eval_rank2_27
Found invariant X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ 0 ≤ X₂ for location eval_rank2_30
Found invariant 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 4 ≤ X₆+X₁₀ ∧ 2 ≤ X₁₀ for location eval_rank2_bb4_in
Found invariant X₆ ≤ 1 for location eval_rank2_stop
Found invariant X₇ ≤ 1+X₂ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ X₆ ≤ 2+X₂ ∧ 2 ≤ X₆ ∧ 2 ≤ X₂+X₆ ∧ X₃ ≤ X₁₀ ∧ 0 ≤ X₂ for location eval_rank2_31
Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₈+X₁₁ ∧ 6 ≤ X₈+X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₇+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₆+X₁₁ ∧ 7 ≤ X₆+X₁₀ ∧ 1 ≤ X₄ ∧ 5 ≤ X₄+X₁₁ ∧ 6 ≤ X₄+X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₁₀ for location eval_rank2_bb7_in
Found invariant 2 ≤ X₆ for location eval_rank2_bb2_in
Found invariant 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₆ for location eval_rank2__critedge_in
Found invariant 3+X₈ ≤ X₁₁ ∧ 4+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 5 ≤ X₈+X₁₁ ∧ 6 ≤ X₈+X₁₀ ∧ 2 ≤ X₀+X₈ ∧ 3+X₇ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 5 ≤ X₇+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 2 ≤ X₀+X₇ ∧ 2+X₆ ≤ X₁₁ ∧ 3+X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 6 ≤ X₆+X₁₁ ∧ 7 ≤ X₆+X₁₀ ∧ 3 ≤ X₀+X₆ ∧ 1 ≤ X₄ ∧ 5 ≤ X₄+X₁₁ ∧ 6 ≤ X₄+X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 1+X₁₁ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 9 ≤ X₁₀+X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 1 ≤ X₀ for location eval_rank2_bb8_in
Found invariant X₈ ≤ X₁₁ ∧ 1+X₈ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 2 ≤ X₇+X₈ ∧ X₇ ≤ X₈ ∧ 3 ≤ X₆+X₈ ∧ X₆ ≤ 1+X₈ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₈+X₁₁ ∧ 3 ≤ X₈+X₁₀ ∧ X₇ ≤ X₁₁ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₇ ∧ 3 ≤ X₆+X₇ ∧ X₆ ≤ 1+X₇ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₇+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ X₆ ≤ 1+X₁₁ ∧ X₆ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 1 ≤ X₄ ∧ 2 ≤ X₄+X₁₁ ∧ 3 ≤ X₄+X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 3 ≤ X₁₀+X₁₁ ∧ 2 ≤ X₁₀ for location eval_rank2_bb6_in
Found invariant X₆ ≤ 1 for location eval_rank2_bb9_in
Probabilistic Analysis
Probabilistic Program after Preprocessing
Start: eval_rank2_start
Program_Vars: X₀, X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈, X₉, X₁₀, X₁₁
Temp_Vars: nondef_0, nondef_1
Locations: eval_rank2_0, eval_rank2_1, eval_rank2_14, eval_rank2_15, eval_rank2_2, eval_rank2_20, eval_rank2_21, eval_rank2_26, eval_rank2_27, eval_rank2_29, eval_rank2_3, eval_rank2_30, eval_rank2_31, eval_rank2_32, eval_rank2_4, eval_rank2_5, eval_rank2_6, eval_rank2_7, eval_rank2_8, eval_rank2__critedge1_in, eval_rank2__critedge_in, eval_rank2_bb0_in, eval_rank2_bb1_in, eval_rank2_bb2_in, eval_rank2_bb3_in, eval_rank2_bb4_in, eval_rank2_bb5_in, eval_rank2_bb6_in, eval_rank2_bb7_in, eval_rank2_bb8_in, eval_rank2_bb9_in, eval_rank2_start, eval_rank2_stop
Transitions:
g₁:eval_rank2_start(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₂:eval_rank2_bb0_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₃:eval_rank2_bb0_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₄:eval_rank2_0(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₅:eval_rank2_0(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₆:eval_rank2_1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₇:eval_rank2_1(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₈:eval_rank2_2(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₉:eval_rank2_2(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₁₀:eval_rank2_3(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₁₁:eval_rank2_3(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₁₂:eval_rank2_4(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₁₃:eval_rank2_4(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₁₄:eval_rank2_5(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₁₅:eval_rank2_5(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₁₆:eval_rank2_6(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₁₇:eval_rank2_6(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₁₈:eval_rank2_7(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₁₉:eval_rank2_7(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₂₀:eval_rank2_8(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|:
g₂₁:eval_rank2_8(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₂₂:eval_rank2_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₅,X₇,X₈,X₅,X₁₀,X₁₁) :|:
g₂₃:eval_rank2_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₂₄:eval_rank2_bb2_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 2 ≤ X₆
g₂₅:eval_rank2_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₂₆:eval_rank2_bb9_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1
g₂₇:eval_rank2_bb2_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₂₈:eval_rank2_bb3_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₆-1,X₈,X₉,X₆+X₉-1,X₁₁) :|: 2 ≤ X₆
g₂₉:eval_rank2_bb3_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₃₀:eval_rank2_bb4_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1+X₇ ≤ X₁₀ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
g₃₁:eval_rank2_bb3_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₃₂:eval_rank2__critedge_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁₀ ≤ X₇ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
g₃₃:eval_rank2_bb4_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₃₄:eval_rank2_14(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
g₃₅:eval_rank2_14(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₃₆:eval_rank2_15(X₀,X₁,X₂,X₃,nondef_0,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
g₃₇:eval_rank2_15(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₃₈:eval_rank2_bb5_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1 ≤ X₄ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
g₃₉:eval_rank2_15(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₄₀:eval_rank2__critedge_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₄ ≤ 0 ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
g₄₁:eval_rank2_bb5_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₄₂:eval_rank2_bb6_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₇,X₉,X₁₀,X₁₀-1) :|: X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
g₄₃:eval_rank2_bb6_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₄₄:eval_rank2_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 3+X₈ ≤ X₁₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
g₄₅:eval_rank2_bb6_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₄₆:eval_rank2__critedge1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₁₁ ≤ 2+X₈ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
g₄₇:eval_rank2_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₄₈:eval_rank2_20(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
g₄₉:eval_rank2_20(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₅₀:eval_rank2_21(nondef_1,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
g₅₁:eval_rank2_21(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₅₂:eval_rank2_bb8_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1 ≤ X₀ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
g₅₃:eval_rank2_21(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₅₄:eval_rank2__critedge1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₀ ≤ 0 ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
g₅₅:eval_rank2_bb8_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₅₆:eval_rank2_bb6_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,1+X₈,X₉,X₁₀,X₁₁-2) :|: X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
g₅₇:eval_rank2__critedge1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₅₈:eval_rank2_26(X₀,X₁₁-1,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
g₅₉:eval_rank2_26(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₆₀:eval_rank2_27(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
g₆₁:eval_rank2_27(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₆₂:eval_rank2_bb3_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₈,X₈,X₉,X₁,X₁₁) :|: X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
g₆₃:eval_rank2_27(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₆₄:eval_rank2_27(X₀,X₁,X₂,X₃,X₄,X₅+UNIFORM(-1, 0),X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1 ≤ X₅ ∧ X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
g₆₅:eval_rank2__critedge_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₆₆:eval_rank2_29(X₀,X₁,X₇-1,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
g₆₇:eval_rank2_29(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₆₈:eval_rank2_30(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
g₆₉:eval_rank2_30(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₇₀:eval_rank2_31(X₀,X₁,X₂,X₁₀-X₂,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
g₇₁:eval_rank2_31(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₇₂:eval_rank2_32(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
g₇₃:eval_rank2_32(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₇₄:eval_rank2_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₂,X₇,X₈,X₃,X₁₀,X₁₁) :|: X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
g₇₅:eval_rank2_bb9_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₇₆:eval_rank2_stop(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
p = 1
t₆ ∈ g₅
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
p = 1
t₈ ∈ g₇
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
p = 1
t₃₆ ∈ g₃₅
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
p = 1
t₄₀ ∈ g₃₉
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
p = 1
t₃₈ ∈ g₃₇
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
p = 1
t₁₀ ∈ g₉
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
p = 1
t₅₀ ∈ g₄₉
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
p = 1
t₅₄ ∈ g₅₃
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
p = 1
t₅₂ ∈ g₅₁
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
p = 1
t₆₀ ∈ g₅₉
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
p = 1
t₆₄ ∈ g₆₃
η (X₅) = X₅+UNIFORM(-1, 0)
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
p = 1
t₆₂ ∈ g₆₁
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
p = 1
t₆₈ ∈ g₆₇
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
p = 1
t₁₂ ∈ g₁₁
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
p = 1
t₇₀ ∈ g₆₉
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
p = 1
t₇₂ ∈ g₇₁
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
p = 1
t₇₄ ∈ g₇₃
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
p = 1
t₁₄ ∈ g₁₃
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
p = 1
t₁₆ ∈ g₁₅
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
p = 1
t₁₈ ∈ g₁₇
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
p = 1
t₂₀ ∈ g₁₉
eval_rank2_8->eval_rank2_bb1_in
p = 1
t₂₂ ∈ g₂₁
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
p = 1
t₅₈ ∈ g₅₇
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
p = 1
t₆₆ ∈ g₆₅
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
p = 1
t₄ ∈ g₃
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
p = 1
t₂₄ ∈ g₂₃
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
p = 1
t₂₆ ∈ g₂₅
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
p = 1
t₂₈ ∈ g₂₇
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
p = 1
t₃₂ ∈ g₃₁
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
p = 1
t₃₀ ∈ g₂₉
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
p = 1
t₃₄ ∈ g₃₃
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
p = 1
t₄₂ ∈ g₄₁
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
p = 1
t₄₆ ∈ g₄₅
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
p = 1
t₄₄ ∈ g₄₃
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
p = 1
t₄₈ ∈ g₄₇
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
p = 1
t₅₆ ∈ g₅₅
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
p = 1
t₇₆ ∈ g₇₅
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
p = 1
t₂ ∈ g₁
Run classical analysis on SCC: [eval_rank2_start]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: inf {Infinity}
g₂₅: 1 {O(1)}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_rank2_start]
Run classical analysis on SCC: [eval_rank2_bb0_in]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: inf {Infinity}
g₂₅: 1 {O(1)}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_rank2_bb0_in]
Run classical analysis on SCC: [eval_rank2_0]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: inf {Infinity}
g₂₅: 1 {O(1)}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_rank2_0]
Run classical analysis on SCC: [eval_rank2_1]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: inf {Infinity}
g₂₅: 1 {O(1)}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
(g₇,eval_rank2_2), X₀: X₀ {O(n)}
(g₇,eval_rank2_2), X₁: X₁ {O(n)}
(g₇,eval_rank2_2), X₂: X₂ {O(n)}
(g₇,eval_rank2_2), X₃: X₃ {O(n)}
(g₇,eval_rank2_2), X₄: X₄ {O(n)}
(g₇,eval_rank2_2), X₅: X₅ {O(n)}
(g₇,eval_rank2_2), X₆: X₆ {O(n)}
(g₇,eval_rank2_2), X₇: X₇ {O(n)}
(g₇,eval_rank2_2), X₈: X₈ {O(n)}
(g₇,eval_rank2_2), X₉: X₉ {O(n)}
(g₇,eval_rank2_2), X₁₀: X₁₀ {O(n)}
(g₇,eval_rank2_2), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_rank2_1]
Run classical analysis on SCC: [eval_rank2_2]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: inf {Infinity}
g₂₅: 1 {O(1)}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
(g₇,eval_rank2_2), X₀: X₀ {O(n)}
(g₇,eval_rank2_2), X₁: X₁ {O(n)}
(g₇,eval_rank2_2), X₂: X₂ {O(n)}
(g₇,eval_rank2_2), X₃: X₃ {O(n)}
(g₇,eval_rank2_2), X₄: X₄ {O(n)}
(g₇,eval_rank2_2), X₅: X₅ {O(n)}
(g₇,eval_rank2_2), X₆: X₆ {O(n)}
(g₇,eval_rank2_2), X₇: X₇ {O(n)}
(g₇,eval_rank2_2), X₈: X₈ {O(n)}
(g₇,eval_rank2_2), X₉: X₉ {O(n)}
(g₇,eval_rank2_2), X₁₀: X₁₀ {O(n)}
(g₇,eval_rank2_2), X₁₁: X₁₁ {O(n)}
(g₉,eval_rank2_3), X₀: X₀ {O(n)}
(g₉,eval_rank2_3), X₁: X₁ {O(n)}
(g₉,eval_rank2_3), X₂: X₂ {O(n)}
(g₉,eval_rank2_3), X₃: X₃ {O(n)}
(g₉,eval_rank2_3), X₄: X₄ {O(n)}
(g₉,eval_rank2_3), X₅: X₅ {O(n)}
(g₉,eval_rank2_3), X₆: X₆ {O(n)}
(g₉,eval_rank2_3), X₇: X₇ {O(n)}
(g₉,eval_rank2_3), X₈: X₈ {O(n)}
(g₉,eval_rank2_3), X₉: X₉ {O(n)}
(g₉,eval_rank2_3), X₁₀: X₁₀ {O(n)}
(g₉,eval_rank2_3), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_rank2_2]
Run classical analysis on SCC: [eval_rank2_3]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: inf {Infinity}
g₂₅: 1 {O(1)}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
(g₇,eval_rank2_2), X₀: X₀ {O(n)}
(g₇,eval_rank2_2), X₁: X₁ {O(n)}
(g₇,eval_rank2_2), X₂: X₂ {O(n)}
(g₇,eval_rank2_2), X₃: X₃ {O(n)}
(g₇,eval_rank2_2), X₄: X₄ {O(n)}
(g₇,eval_rank2_2), X₅: X₅ {O(n)}
(g₇,eval_rank2_2), X₆: X₆ {O(n)}
(g₇,eval_rank2_2), X₇: X₇ {O(n)}
(g₇,eval_rank2_2), X₈: X₈ {O(n)}
(g₇,eval_rank2_2), X₉: X₉ {O(n)}
(g₇,eval_rank2_2), X₁₀: X₁₀ {O(n)}
(g₇,eval_rank2_2), X₁₁: X₁₁ {O(n)}
(g₉,eval_rank2_3), X₀: X₀ {O(n)}
(g₉,eval_rank2_3), X₁: X₁ {O(n)}
(g₉,eval_rank2_3), X₂: X₂ {O(n)}
(g₉,eval_rank2_3), X₃: X₃ {O(n)}
(g₉,eval_rank2_3), X₄: X₄ {O(n)}
(g₉,eval_rank2_3), X₅: X₅ {O(n)}
(g₉,eval_rank2_3), X₆: X₆ {O(n)}
(g₉,eval_rank2_3), X₇: X₇ {O(n)}
(g₉,eval_rank2_3), X₈: X₈ {O(n)}
(g₉,eval_rank2_3), X₉: X₉ {O(n)}
(g₉,eval_rank2_3), X₁₀: X₁₀ {O(n)}
(g₉,eval_rank2_3), X₁₁: X₁₁ {O(n)}
(g₁₁,eval_rank2_4), X₀: X₀ {O(n)}
(g₁₁,eval_rank2_4), X₁: X₁ {O(n)}
(g₁₁,eval_rank2_4), X₂: X₂ {O(n)}
(g₁₁,eval_rank2_4), X₃: X₃ {O(n)}
(g₁₁,eval_rank2_4), X₄: X₄ {O(n)}
(g₁₁,eval_rank2_4), X₅: X₅ {O(n)}
(g₁₁,eval_rank2_4), X₆: X₆ {O(n)}
(g₁₁,eval_rank2_4), X₇: X₇ {O(n)}
(g₁₁,eval_rank2_4), X₈: X₈ {O(n)}
(g₁₁,eval_rank2_4), X₉: X₉ {O(n)}
(g₁₁,eval_rank2_4), X₁₀: X₁₀ {O(n)}
(g₁₁,eval_rank2_4), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_rank2_3]
Run classical analysis on SCC: [eval_rank2_4]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: inf {Infinity}
g₂₅: 1 {O(1)}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
(g₇,eval_rank2_2), X₀: X₀ {O(n)}
(g₇,eval_rank2_2), X₁: X₁ {O(n)}
(g₇,eval_rank2_2), X₂: X₂ {O(n)}
(g₇,eval_rank2_2), X₃: X₃ {O(n)}
(g₇,eval_rank2_2), X₄: X₄ {O(n)}
(g₇,eval_rank2_2), X₅: X₅ {O(n)}
(g₇,eval_rank2_2), X₆: X₆ {O(n)}
(g₇,eval_rank2_2), X₇: X₇ {O(n)}
(g₇,eval_rank2_2), X₈: X₈ {O(n)}
(g₇,eval_rank2_2), X₉: X₉ {O(n)}
(g₇,eval_rank2_2), X₁₀: X₁₀ {O(n)}
(g₇,eval_rank2_2), X₁₁: X₁₁ {O(n)}
(g₉,eval_rank2_3), X₀: X₀ {O(n)}
(g₉,eval_rank2_3), X₁: X₁ {O(n)}
(g₉,eval_rank2_3), X₂: X₂ {O(n)}
(g₉,eval_rank2_3), X₃: X₃ {O(n)}
(g₉,eval_rank2_3), X₄: X₄ {O(n)}
(g₉,eval_rank2_3), X₅: X₅ {O(n)}
(g₉,eval_rank2_3), X₆: X₆ {O(n)}
(g₉,eval_rank2_3), X₇: X₇ {O(n)}
(g₉,eval_rank2_3), X₈: X₈ {O(n)}
(g₉,eval_rank2_3), X₉: X₉ {O(n)}
(g₉,eval_rank2_3), X₁₀: X₁₀ {O(n)}
(g₉,eval_rank2_3), X₁₁: X₁₁ {O(n)}
(g₁₁,eval_rank2_4), X₀: X₀ {O(n)}
(g₁₁,eval_rank2_4), X₁: X₁ {O(n)}
(g₁₁,eval_rank2_4), X₂: X₂ {O(n)}
(g₁₁,eval_rank2_4), X₃: X₃ {O(n)}
(g₁₁,eval_rank2_4), X₄: X₄ {O(n)}
(g₁₁,eval_rank2_4), X₅: X₅ {O(n)}
(g₁₁,eval_rank2_4), X₆: X₆ {O(n)}
(g₁₁,eval_rank2_4), X₇: X₇ {O(n)}
(g₁₁,eval_rank2_4), X₈: X₈ {O(n)}
(g₁₁,eval_rank2_4), X₉: X₉ {O(n)}
(g₁₁,eval_rank2_4), X₁₀: X₁₀ {O(n)}
(g₁₁,eval_rank2_4), X₁₁: X₁₁ {O(n)}
(g₁₃,eval_rank2_5), X₀: X₀ {O(n)}
(g₁₃,eval_rank2_5), X₁: X₁ {O(n)}
(g₁₃,eval_rank2_5), X₂: X₂ {O(n)}
(g₁₃,eval_rank2_5), X₃: X₃ {O(n)}
(g₁₃,eval_rank2_5), X₄: X₄ {O(n)}
(g₁₃,eval_rank2_5), X₅: X₅ {O(n)}
(g₁₃,eval_rank2_5), X₆: X₆ {O(n)}
(g₁₃,eval_rank2_5), X₇: X₇ {O(n)}
(g₁₃,eval_rank2_5), X₈: X₈ {O(n)}
(g₁₃,eval_rank2_5), X₉: X₉ {O(n)}
(g₁₃,eval_rank2_5), X₁₀: X₁₀ {O(n)}
(g₁₃,eval_rank2_5), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_rank2_4]
Run classical analysis on SCC: [eval_rank2_5]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: inf {Infinity}
g₂₅: 1 {O(1)}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
(g₇,eval_rank2_2), X₀: X₀ {O(n)}
(g₇,eval_rank2_2), X₁: X₁ {O(n)}
(g₇,eval_rank2_2), X₂: X₂ {O(n)}
(g₇,eval_rank2_2), X₃: X₃ {O(n)}
(g₇,eval_rank2_2), X₄: X₄ {O(n)}
(g₇,eval_rank2_2), X₅: X₅ {O(n)}
(g₇,eval_rank2_2), X₆: X₆ {O(n)}
(g₇,eval_rank2_2), X₇: X₇ {O(n)}
(g₇,eval_rank2_2), X₈: X₈ {O(n)}
(g₇,eval_rank2_2), X₉: X₉ {O(n)}
(g₇,eval_rank2_2), X₁₀: X₁₀ {O(n)}
(g₇,eval_rank2_2), X₁₁: X₁₁ {O(n)}
(g₉,eval_rank2_3), X₀: X₀ {O(n)}
(g₉,eval_rank2_3), X₁: X₁ {O(n)}
(g₉,eval_rank2_3), X₂: X₂ {O(n)}
(g₉,eval_rank2_3), X₃: X₃ {O(n)}
(g₉,eval_rank2_3), X₄: X₄ {O(n)}
(g₉,eval_rank2_3), X₅: X₅ {O(n)}
(g₉,eval_rank2_3), X₆: X₆ {O(n)}
(g₉,eval_rank2_3), X₇: X₇ {O(n)}
(g₉,eval_rank2_3), X₈: X₈ {O(n)}
(g₉,eval_rank2_3), X₉: X₉ {O(n)}
(g₉,eval_rank2_3), X₁₀: X₁₀ {O(n)}
(g₉,eval_rank2_3), X₁₁: X₁₁ {O(n)}
(g₁₁,eval_rank2_4), X₀: X₀ {O(n)}
(g₁₁,eval_rank2_4), X₁: X₁ {O(n)}
(g₁₁,eval_rank2_4), X₂: X₂ {O(n)}
(g₁₁,eval_rank2_4), X₃: X₃ {O(n)}
(g₁₁,eval_rank2_4), X₄: X₄ {O(n)}
(g₁₁,eval_rank2_4), X₅: X₅ {O(n)}
(g₁₁,eval_rank2_4), X₆: X₆ {O(n)}
(g₁₁,eval_rank2_4), X₇: X₇ {O(n)}
(g₁₁,eval_rank2_4), X₈: X₈ {O(n)}
(g₁₁,eval_rank2_4), X₉: X₉ {O(n)}
(g₁₁,eval_rank2_4), X₁₀: X₁₀ {O(n)}
(g₁₁,eval_rank2_4), X₁₁: X₁₁ {O(n)}
(g₁₃,eval_rank2_5), X₀: X₀ {O(n)}
(g₁₃,eval_rank2_5), X₁: X₁ {O(n)}
(g₁₃,eval_rank2_5), X₂: X₂ {O(n)}
(g₁₃,eval_rank2_5), X₃: X₃ {O(n)}
(g₁₃,eval_rank2_5), X₄: X₄ {O(n)}
(g₁₃,eval_rank2_5), X₅: X₅ {O(n)}
(g₁₃,eval_rank2_5), X₆: X₆ {O(n)}
(g₁₃,eval_rank2_5), X₇: X₇ {O(n)}
(g₁₃,eval_rank2_5), X₈: X₈ {O(n)}
(g₁₃,eval_rank2_5), X₉: X₉ {O(n)}
(g₁₃,eval_rank2_5), X₁₀: X₁₀ {O(n)}
(g₁₃,eval_rank2_5), X₁₁: X₁₁ {O(n)}
(g₁₅,eval_rank2_6), X₀: X₀ {O(n)}
(g₁₅,eval_rank2_6), X₁: X₁ {O(n)}
(g₁₅,eval_rank2_6), X₂: X₂ {O(n)}
(g₁₅,eval_rank2_6), X₃: X₃ {O(n)}
(g₁₅,eval_rank2_6), X₄: X₄ {O(n)}
(g₁₅,eval_rank2_6), X₅: X₅ {O(n)}
(g₁₅,eval_rank2_6), X₆: X₆ {O(n)}
(g₁₅,eval_rank2_6), X₇: X₇ {O(n)}
(g₁₅,eval_rank2_6), X₈: X₈ {O(n)}
(g₁₅,eval_rank2_6), X₉: X₉ {O(n)}
(g₁₅,eval_rank2_6), X₁₀: X₁₀ {O(n)}
(g₁₅,eval_rank2_6), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_rank2_5]
Run classical analysis on SCC: [eval_rank2_6]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: inf {Infinity}
g₂₅: 1 {O(1)}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
(g₇,eval_rank2_2), X₀: X₀ {O(n)}
(g₇,eval_rank2_2), X₁: X₁ {O(n)}
(g₇,eval_rank2_2), X₂: X₂ {O(n)}
(g₇,eval_rank2_2), X₃: X₃ {O(n)}
(g₇,eval_rank2_2), X₄: X₄ {O(n)}
(g₇,eval_rank2_2), X₅: X₅ {O(n)}
(g₇,eval_rank2_2), X₆: X₆ {O(n)}
(g₇,eval_rank2_2), X₇: X₇ {O(n)}
(g₇,eval_rank2_2), X₈: X₈ {O(n)}
(g₇,eval_rank2_2), X₉: X₉ {O(n)}
(g₇,eval_rank2_2), X₁₀: X₁₀ {O(n)}
(g₇,eval_rank2_2), X₁₁: X₁₁ {O(n)}
(g₉,eval_rank2_3), X₀: X₀ {O(n)}
(g₉,eval_rank2_3), X₁: X₁ {O(n)}
(g₉,eval_rank2_3), X₂: X₂ {O(n)}
(g₉,eval_rank2_3), X₃: X₃ {O(n)}
(g₉,eval_rank2_3), X₄: X₄ {O(n)}
(g₉,eval_rank2_3), X₅: X₅ {O(n)}
(g₉,eval_rank2_3), X₆: X₆ {O(n)}
(g₉,eval_rank2_3), X₇: X₇ {O(n)}
(g₉,eval_rank2_3), X₈: X₈ {O(n)}
(g₉,eval_rank2_3), X₉: X₉ {O(n)}
(g₉,eval_rank2_3), X₁₀: X₁₀ {O(n)}
(g₉,eval_rank2_3), X₁₁: X₁₁ {O(n)}
(g₁₁,eval_rank2_4), X₀: X₀ {O(n)}
(g₁₁,eval_rank2_4), X₁: X₁ {O(n)}
(g₁₁,eval_rank2_4), X₂: X₂ {O(n)}
(g₁₁,eval_rank2_4), X₃: X₃ {O(n)}
(g₁₁,eval_rank2_4), X₄: X₄ {O(n)}
(g₁₁,eval_rank2_4), X₅: X₅ {O(n)}
(g₁₁,eval_rank2_4), X₆: X₆ {O(n)}
(g₁₁,eval_rank2_4), X₇: X₇ {O(n)}
(g₁₁,eval_rank2_4), X₈: X₈ {O(n)}
(g₁₁,eval_rank2_4), X₉: X₉ {O(n)}
(g₁₁,eval_rank2_4), X₁₀: X₁₀ {O(n)}
(g₁₁,eval_rank2_4), X₁₁: X₁₁ {O(n)}
(g₁₃,eval_rank2_5), X₀: X₀ {O(n)}
(g₁₃,eval_rank2_5), X₁: X₁ {O(n)}
(g₁₃,eval_rank2_5), X₂: X₂ {O(n)}
(g₁₃,eval_rank2_5), X₃: X₃ {O(n)}
(g₁₃,eval_rank2_5), X₄: X₄ {O(n)}
(g₁₃,eval_rank2_5), X₅: X₅ {O(n)}
(g₁₃,eval_rank2_5), X₆: X₆ {O(n)}
(g₁₃,eval_rank2_5), X₇: X₇ {O(n)}
(g₁₃,eval_rank2_5), X₈: X₈ {O(n)}
(g₁₃,eval_rank2_5), X₉: X₉ {O(n)}
(g₁₃,eval_rank2_5), X₁₀: X₁₀ {O(n)}
(g₁₃,eval_rank2_5), X₁₁: X₁₁ {O(n)}
(g₁₅,eval_rank2_6), X₀: X₀ {O(n)}
(g₁₅,eval_rank2_6), X₁: X₁ {O(n)}
(g₁₅,eval_rank2_6), X₂: X₂ {O(n)}
(g₁₅,eval_rank2_6), X₃: X₃ {O(n)}
(g₁₅,eval_rank2_6), X₄: X₄ {O(n)}
(g₁₅,eval_rank2_6), X₅: X₅ {O(n)}
(g₁₅,eval_rank2_6), X₆: X₆ {O(n)}
(g₁₅,eval_rank2_6), X₇: X₇ {O(n)}
(g₁₅,eval_rank2_6), X₈: X₈ {O(n)}
(g₁₅,eval_rank2_6), X₉: X₉ {O(n)}
(g₁₅,eval_rank2_6), X₁₀: X₁₀ {O(n)}
(g₁₅,eval_rank2_6), X₁₁: X₁₁ {O(n)}
(g₁₇,eval_rank2_7), X₀: X₀ {O(n)}
(g₁₇,eval_rank2_7), X₁: X₁ {O(n)}
(g₁₇,eval_rank2_7), X₂: X₂ {O(n)}
(g₁₇,eval_rank2_7), X₃: X₃ {O(n)}
(g₁₇,eval_rank2_7), X₄: X₄ {O(n)}
(g₁₇,eval_rank2_7), X₅: X₅ {O(n)}
(g₁₇,eval_rank2_7), X₆: X₆ {O(n)}
(g₁₇,eval_rank2_7), X₇: X₇ {O(n)}
(g₁₇,eval_rank2_7), X₈: X₈ {O(n)}
(g₁₇,eval_rank2_7), X₉: X₉ {O(n)}
(g₁₇,eval_rank2_7), X₁₀: X₁₀ {O(n)}
(g₁₇,eval_rank2_7), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_rank2_6]
Run classical analysis on SCC: [eval_rank2_7]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: inf {Infinity}
g₂₅: 1 {O(1)}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
(g₇,eval_rank2_2), X₀: X₀ {O(n)}
(g₇,eval_rank2_2), X₁: X₁ {O(n)}
(g₇,eval_rank2_2), X₂: X₂ {O(n)}
(g₇,eval_rank2_2), X₃: X₃ {O(n)}
(g₇,eval_rank2_2), X₄: X₄ {O(n)}
(g₇,eval_rank2_2), X₅: X₅ {O(n)}
(g₇,eval_rank2_2), X₆: X₆ {O(n)}
(g₇,eval_rank2_2), X₇: X₇ {O(n)}
(g₇,eval_rank2_2), X₈: X₈ {O(n)}
(g₇,eval_rank2_2), X₉: X₉ {O(n)}
(g₇,eval_rank2_2), X₁₀: X₁₀ {O(n)}
(g₇,eval_rank2_2), X₁₁: X₁₁ {O(n)}
(g₉,eval_rank2_3), X₀: X₀ {O(n)}
(g₉,eval_rank2_3), X₁: X₁ {O(n)}
(g₉,eval_rank2_3), X₂: X₂ {O(n)}
(g₉,eval_rank2_3), X₃: X₃ {O(n)}
(g₉,eval_rank2_3), X₄: X₄ {O(n)}
(g₉,eval_rank2_3), X₅: X₅ {O(n)}
(g₉,eval_rank2_3), X₆: X₆ {O(n)}
(g₉,eval_rank2_3), X₇: X₇ {O(n)}
(g₉,eval_rank2_3), X₈: X₈ {O(n)}
(g₉,eval_rank2_3), X₉: X₉ {O(n)}
(g₉,eval_rank2_3), X₁₀: X₁₀ {O(n)}
(g₉,eval_rank2_3), X₁₁: X₁₁ {O(n)}
(g₁₁,eval_rank2_4), X₀: X₀ {O(n)}
(g₁₁,eval_rank2_4), X₁: X₁ {O(n)}
(g₁₁,eval_rank2_4), X₂: X₂ {O(n)}
(g₁₁,eval_rank2_4), X₃: X₃ {O(n)}
(g₁₁,eval_rank2_4), X₄: X₄ {O(n)}
(g₁₁,eval_rank2_4), X₅: X₅ {O(n)}
(g₁₁,eval_rank2_4), X₆: X₆ {O(n)}
(g₁₁,eval_rank2_4), X₇: X₇ {O(n)}
(g₁₁,eval_rank2_4), X₈: X₈ {O(n)}
(g₁₁,eval_rank2_4), X₉: X₉ {O(n)}
(g₁₁,eval_rank2_4), X₁₀: X₁₀ {O(n)}
(g₁₁,eval_rank2_4), X₁₁: X₁₁ {O(n)}
(g₁₃,eval_rank2_5), X₀: X₀ {O(n)}
(g₁₃,eval_rank2_5), X₁: X₁ {O(n)}
(g₁₃,eval_rank2_5), X₂: X₂ {O(n)}
(g₁₃,eval_rank2_5), X₃: X₃ {O(n)}
(g₁₃,eval_rank2_5), X₄: X₄ {O(n)}
(g₁₃,eval_rank2_5), X₅: X₅ {O(n)}
(g₁₃,eval_rank2_5), X₆: X₆ {O(n)}
(g₁₃,eval_rank2_5), X₇: X₇ {O(n)}
(g₁₃,eval_rank2_5), X₈: X₈ {O(n)}
(g₁₃,eval_rank2_5), X₉: X₉ {O(n)}
(g₁₃,eval_rank2_5), X₁₀: X₁₀ {O(n)}
(g₁₃,eval_rank2_5), X₁₁: X₁₁ {O(n)}
(g₁₅,eval_rank2_6), X₀: X₀ {O(n)}
(g₁₅,eval_rank2_6), X₁: X₁ {O(n)}
(g₁₅,eval_rank2_6), X₂: X₂ {O(n)}
(g₁₅,eval_rank2_6), X₃: X₃ {O(n)}
(g₁₅,eval_rank2_6), X₄: X₄ {O(n)}
(g₁₅,eval_rank2_6), X₅: X₅ {O(n)}
(g₁₅,eval_rank2_6), X₆: X₆ {O(n)}
(g₁₅,eval_rank2_6), X₇: X₇ {O(n)}
(g₁₅,eval_rank2_6), X₈: X₈ {O(n)}
(g₁₅,eval_rank2_6), X₉: X₉ {O(n)}
(g₁₅,eval_rank2_6), X₁₀: X₁₀ {O(n)}
(g₁₅,eval_rank2_6), X₁₁: X₁₁ {O(n)}
(g₁₇,eval_rank2_7), X₀: X₀ {O(n)}
(g₁₇,eval_rank2_7), X₁: X₁ {O(n)}
(g₁₇,eval_rank2_7), X₂: X₂ {O(n)}
(g₁₇,eval_rank2_7), X₃: X₃ {O(n)}
(g₁₇,eval_rank2_7), X₄: X₄ {O(n)}
(g₁₇,eval_rank2_7), X₅: X₅ {O(n)}
(g₁₇,eval_rank2_7), X₆: X₆ {O(n)}
(g₁₇,eval_rank2_7), X₇: X₇ {O(n)}
(g₁₇,eval_rank2_7), X₈: X₈ {O(n)}
(g₁₇,eval_rank2_7), X₉: X₉ {O(n)}
(g₁₇,eval_rank2_7), X₁₀: X₁₀ {O(n)}
(g₁₇,eval_rank2_7), X₁₁: X₁₁ {O(n)}
(g₁₉,eval_rank2_8), X₀: X₀ {O(n)}
(g₁₉,eval_rank2_8), X₁: X₁ {O(n)}
(g₁₉,eval_rank2_8), X₂: X₂ {O(n)}
(g₁₉,eval_rank2_8), X₃: X₃ {O(n)}
(g₁₉,eval_rank2_8), X₄: X₄ {O(n)}
(g₁₉,eval_rank2_8), X₅: X₅ {O(n)}
(g₁₉,eval_rank2_8), X₆: X₆ {O(n)}
(g₁₉,eval_rank2_8), X₇: X₇ {O(n)}
(g₁₉,eval_rank2_8), X₈: X₈ {O(n)}
(g₁₉,eval_rank2_8), X₉: X₉ {O(n)}
(g₁₉,eval_rank2_8), X₁₀: X₁₀ {O(n)}
(g₁₉,eval_rank2_8), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_rank2_7]
Run classical analysis on SCC: [eval_rank2_8]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: inf {Infinity}
g₂₅: 1 {O(1)}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
(g₇,eval_rank2_2), X₀: X₀ {O(n)}
(g₇,eval_rank2_2), X₁: X₁ {O(n)}
(g₇,eval_rank2_2), X₂: X₂ {O(n)}
(g₇,eval_rank2_2), X₃: X₃ {O(n)}
(g₇,eval_rank2_2), X₄: X₄ {O(n)}
(g₇,eval_rank2_2), X₅: X₅ {O(n)}
(g₇,eval_rank2_2), X₆: X₆ {O(n)}
(g₇,eval_rank2_2), X₇: X₇ {O(n)}
(g₇,eval_rank2_2), X₈: X₈ {O(n)}
(g₇,eval_rank2_2), X₉: X₉ {O(n)}
(g₇,eval_rank2_2), X₁₀: X₁₀ {O(n)}
(g₇,eval_rank2_2), X₁₁: X₁₁ {O(n)}
(g₉,eval_rank2_3), X₀: X₀ {O(n)}
(g₉,eval_rank2_3), X₁: X₁ {O(n)}
(g₉,eval_rank2_3), X₂: X₂ {O(n)}
(g₉,eval_rank2_3), X₃: X₃ {O(n)}
(g₉,eval_rank2_3), X₄: X₄ {O(n)}
(g₉,eval_rank2_3), X₅: X₅ {O(n)}
(g₉,eval_rank2_3), X₆: X₆ {O(n)}
(g₉,eval_rank2_3), X₇: X₇ {O(n)}
(g₉,eval_rank2_3), X₈: X₈ {O(n)}
(g₉,eval_rank2_3), X₉: X₉ {O(n)}
(g₉,eval_rank2_3), X₁₀: X₁₀ {O(n)}
(g₉,eval_rank2_3), X₁₁: X₁₁ {O(n)}
(g₁₁,eval_rank2_4), X₀: X₀ {O(n)}
(g₁₁,eval_rank2_4), X₁: X₁ {O(n)}
(g₁₁,eval_rank2_4), X₂: X₂ {O(n)}
(g₁₁,eval_rank2_4), X₃: X₃ {O(n)}
(g₁₁,eval_rank2_4), X₄: X₄ {O(n)}
(g₁₁,eval_rank2_4), X₅: X₅ {O(n)}
(g₁₁,eval_rank2_4), X₆: X₆ {O(n)}
(g₁₁,eval_rank2_4), X₇: X₇ {O(n)}
(g₁₁,eval_rank2_4), X₈: X₈ {O(n)}
(g₁₁,eval_rank2_4), X₉: X₉ {O(n)}
(g₁₁,eval_rank2_4), X₁₀: X₁₀ {O(n)}
(g₁₁,eval_rank2_4), X₁₁: X₁₁ {O(n)}
(g₁₃,eval_rank2_5), X₀: X₀ {O(n)}
(g₁₃,eval_rank2_5), X₁: X₁ {O(n)}
(g₁₃,eval_rank2_5), X₂: X₂ {O(n)}
(g₁₃,eval_rank2_5), X₃: X₃ {O(n)}
(g₁₃,eval_rank2_5), X₄: X₄ {O(n)}
(g₁₃,eval_rank2_5), X₅: X₅ {O(n)}
(g₁₃,eval_rank2_5), X₆: X₆ {O(n)}
(g₁₃,eval_rank2_5), X₇: X₇ {O(n)}
(g₁₃,eval_rank2_5), X₈: X₈ {O(n)}
(g₁₃,eval_rank2_5), X₉: X₉ {O(n)}
(g₁₃,eval_rank2_5), X₁₀: X₁₀ {O(n)}
(g₁₃,eval_rank2_5), X₁₁: X₁₁ {O(n)}
(g₁₅,eval_rank2_6), X₀: X₀ {O(n)}
(g₁₅,eval_rank2_6), X₁: X₁ {O(n)}
(g₁₅,eval_rank2_6), X₂: X₂ {O(n)}
(g₁₅,eval_rank2_6), X₃: X₃ {O(n)}
(g₁₅,eval_rank2_6), X₄: X₄ {O(n)}
(g₁₅,eval_rank2_6), X₅: X₅ {O(n)}
(g₁₅,eval_rank2_6), X₆: X₆ {O(n)}
(g₁₅,eval_rank2_6), X₇: X₇ {O(n)}
(g₁₅,eval_rank2_6), X₈: X₈ {O(n)}
(g₁₅,eval_rank2_6), X₉: X₉ {O(n)}
(g₁₅,eval_rank2_6), X₁₀: X₁₀ {O(n)}
(g₁₅,eval_rank2_6), X₁₁: X₁₁ {O(n)}
(g₁₇,eval_rank2_7), X₀: X₀ {O(n)}
(g₁₇,eval_rank2_7), X₁: X₁ {O(n)}
(g₁₇,eval_rank2_7), X₂: X₂ {O(n)}
(g₁₇,eval_rank2_7), X₃: X₃ {O(n)}
(g₁₇,eval_rank2_7), X₄: X₄ {O(n)}
(g₁₇,eval_rank2_7), X₅: X₅ {O(n)}
(g₁₇,eval_rank2_7), X₆: X₆ {O(n)}
(g₁₇,eval_rank2_7), X₇: X₇ {O(n)}
(g₁₇,eval_rank2_7), X₈: X₈ {O(n)}
(g₁₇,eval_rank2_7), X₉: X₉ {O(n)}
(g₁₇,eval_rank2_7), X₁₀: X₁₀ {O(n)}
(g₁₇,eval_rank2_7), X₁₁: X₁₁ {O(n)}
(g₁₉,eval_rank2_8), X₀: X₀ {O(n)}
(g₁₉,eval_rank2_8), X₁: X₁ {O(n)}
(g₁₉,eval_rank2_8), X₂: X₂ {O(n)}
(g₁₉,eval_rank2_8), X₃: X₃ {O(n)}
(g₁₉,eval_rank2_8), X₄: X₄ {O(n)}
(g₁₉,eval_rank2_8), X₅: X₅ {O(n)}
(g₁₉,eval_rank2_8), X₆: X₆ {O(n)}
(g₁₉,eval_rank2_8), X₇: X₇ {O(n)}
(g₁₉,eval_rank2_8), X₈: X₈ {O(n)}
(g₁₉,eval_rank2_8), X₉: X₉ {O(n)}
(g₁₉,eval_rank2_8), X₁₀: X₁₀ {O(n)}
(g₁₉,eval_rank2_8), X₁₁: X₁₁ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₀: X₀ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁: X₁ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₂: X₂ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₃: X₃ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₄: X₄ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₅: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₆: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₇: X₇ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₈: X₈ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₉: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁₀: X₁₀ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁₁: X₁₁ {O(n)}
Run probabilistic analysis on SCC: [eval_rank2_8]
Run classical analysis on SCC: [eval_rank2_14; eval_rank2_15; eval_rank2_20; eval_rank2_21; eval_rank2_26; eval_rank2_27; eval_rank2_29; eval_rank2_30; eval_rank2_31; eval_rank2_32; eval_rank2__critedge1_in; eval_rank2__critedge_in; eval_rank2_bb1_in; eval_rank2_bb2_in; eval_rank2_bb3_in; eval_rank2_bb4_in; eval_rank2_bb5_in; eval_rank2_bb6_in; eval_rank2_bb7_in; eval_rank2_bb8_in]
MPRF for transition t₃₀: eval_rank2_bb3_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_bb4_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF:
• eval_rank2_14: [X₁₀]
• eval_rank2_15: [X₁₀]
• eval_rank2_20: [X₁₀]
• eval_rank2_21: [X₁₀]
• eval_rank2_26: [X₁₀]
• eval_rank2_27: [1+X₁₁]
• eval_rank2_29: [X₁₀]
• eval_rank2_30: [X₁₀]
• eval_rank2_31: [X₂+X₃]
• eval_rank2_32: [X₂+X₃]
• eval_rank2__critedge1_in: [X₁₀]
• eval_rank2__critedge_in: [X₁₀]
• eval_rank2_bb1_in: [X₆+X₉]
• eval_rank2_bb2_in: [X₆+X₉]
• eval_rank2_bb3_in: [1+X₁₀]
• eval_rank2_bb4_in: [X₁₀]
• eval_rank2_bb5_in: [X₁₀]
• eval_rank2_bb6_in: [X₁₀]
• eval_rank2_bb7_in: [X₁₀]
• eval_rank2_bb8_in: [X₁₀]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₃₄: eval_rank2_bb4_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_14(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ of depth 1:
new bound:
2⋅X₅+1 {O(n)}
MPRF:
• eval_rank2_14: [1+X₁₀]
• eval_rank2_15: [1+X₁₀]
• eval_rank2_20: [X₁₀]
• eval_rank2_21: [X₁₀]
• eval_rank2_26: [2⋅X₁₁-X₁]
• eval_rank2_27: [1+X₁₁]
• eval_rank2_29: [1+X₁₀]
• eval_rank2_30: [1+X₁₀]
• eval_rank2_31: [1+X₂+X₃]
• eval_rank2_32: [1+X₂+X₃]
• eval_rank2__critedge1_in: [X₁₀]
• eval_rank2__critedge_in: [1+X₁₀]
• eval_rank2_bb1_in: [1+X₆+X₉]
• eval_rank2_bb2_in: [1+X₆+X₉]
• eval_rank2_bb3_in: [2+X₁₀]
• eval_rank2_bb4_in: [2+X₁₀]
• eval_rank2_bb5_in: [X₁₀]
• eval_rank2_bb6_in: [X₁₀]
• eval_rank2_bb7_in: [X₁₀]
• eval_rank2_bb8_in: [X₁₀]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₃₆: eval_rank2_14(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_15(X₀,X₁,X₂,X₃,nondef_0,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ of depth 1:
new bound:
4⋅X₅ {O(n)}
MPRF:
• eval_rank2_14: [1+2⋅X₇+X₁₀]
• eval_rank2_15: [2⋅X₇+X₁₀-1]
• eval_rank2_20: [2⋅X₈+X₁₁]
• eval_rank2_21: [2⋅X₈+X₁₁]
• eval_rank2_26: [2⋅X₈+X₁₁]
• eval_rank2_27: [2⋅X₈+X₁₁]
• eval_rank2_29: [2⋅X₇+X₁₀-1]
• eval_rank2_30: [2⋅X₂+X₁₀]
• eval_rank2_31: [3⋅X₂+X₃]
• eval_rank2_32: [3⋅X₂+X₃]
• eval_rank2__critedge1_in: [2⋅X₈+X₁₁]
• eval_rank2__critedge_in: [2⋅X₇+X₁₀-1]
• eval_rank2_bb1_in: [3⋅X₆+X₉]
• eval_rank2_bb2_in: [3⋅X₆+X₉]
• eval_rank2_bb3_in: [1+2⋅X₇+X₁₀]
• eval_rank2_bb4_in: [1+2⋅X₇+X₁₀]
• eval_rank2_bb5_in: [2⋅X₇+X₁₀-1]
• eval_rank2_bb6_in: [2⋅X₈+X₁₁]
• eval_rank2_bb7_in: [2⋅X₈+X₁₁]
• eval_rank2_bb8_in: [2⋅X₈+X₁₁]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₃₈: eval_rank2_15(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_bb5_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄ of depth 1:
new bound:
2⋅X₅+1 {O(n)}
MPRF:
• eval_rank2_14: [X₁₀]
• eval_rank2_15: [X₁₀-1]
• eval_rank2_20: [X₁₀-2]
• eval_rank2_21: [X₁₀-2]
• eval_rank2_26: [X₁₁-1]
• eval_rank2_27: [X₁]
• eval_rank2_29: [X₁₀-1]
• eval_rank2_30: [X₁₀-1]
• eval_rank2_31: [X₂+X₃-1]
• eval_rank2_32: [X₂+X₃-1]
• eval_rank2__critedge1_in: [X₁₀-2]
• eval_rank2__critedge_in: [X₁₀-1]
• eval_rank2_bb1_in: [X₆+X₉-1]
• eval_rank2_bb2_in: [X₆+X₉-1]
• eval_rank2_bb3_in: [X₁₀]
• eval_rank2_bb4_in: [X₁₀]
• eval_rank2_bb5_in: [X₁₀-2]
• eval_rank2_bb6_in: [X₁₀-2]
• eval_rank2_bb7_in: [X₁₀-2]
• eval_rank2_bb8_in: [X₁₀-2]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₄₀: eval_rank2_15(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2__critedge_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0 of depth 1:
new bound:
2⋅X₅+1 {O(n)}
MPRF:
• eval_rank2_14: [2+X₁₀]
• eval_rank2_15: [2+X₁₀]
• eval_rank2_20: [2+X₁₀]
• eval_rank2_21: [2+X₁₀]
• eval_rank2_26: [2+X₁₀]
• eval_rank2_27: [2+X₁₀]
• eval_rank2_29: [1+X₁₀]
• eval_rank2_30: [1+X₁₀]
• eval_rank2_31: [1+X₂+X₃]
• eval_rank2_32: [1+X₂+X₃]
• eval_rank2__critedge1_in: [2+X₁₀]
• eval_rank2__critedge_in: [1+X₁₀]
• eval_rank2_bb1_in: [1+X₆+X₉]
• eval_rank2_bb2_in: [1+X₆+X₉]
• eval_rank2_bb3_in: [2+X₁₀]
• eval_rank2_bb4_in: [2+X₁₀]
• eval_rank2_bb5_in: [2+X₁₀]
• eval_rank2_bb6_in: [2+X₁₀]
• eval_rank2_bb7_in: [2+X₁₀]
• eval_rank2_bb8_in: [2+X₁₀]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₄₂: eval_rank2_bb5_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_bb6_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₇,X₉,X₁₀,X₁₀-1) :|: X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF:
• eval_rank2_14: [X₁₀]
• eval_rank2_15: [X₁₀]
• eval_rank2_20: [2⋅X₈+X₁₁-1-2⋅X₇]
• eval_rank2_21: [2⋅X₈+X₁₁-1-2⋅X₇]
• eval_rank2_26: [X₁]
• eval_rank2_27: [X₁₁-1]
• eval_rank2_29: [X₁₀]
• eval_rank2_30: [X₁₀]
• eval_rank2_31: [X₂+X₃]
• eval_rank2_32: [X₂+X₃]
• eval_rank2__critedge1_in: [X₁₁-1]
• eval_rank2__critedge_in: [X₁₀]
• eval_rank2_bb1_in: [X₆+X₉]
• eval_rank2_bb2_in: [X₆+X₉]
• eval_rank2_bb3_in: [X₁₀]
• eval_rank2_bb4_in: [X₁₀]
• eval_rank2_bb5_in: [X₁₀-1]
• eval_rank2_bb6_in: [2⋅X₈+X₁₁-1-2⋅X₇]
• eval_rank2_bb7_in: [2⋅X₈+X₁₁-1-2⋅X₇]
• eval_rank2_bb8_in: [2⋅X₈+X₁₁-1-2⋅X₇]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₄₄: eval_rank2_bb6_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ of depth 1:
new bound:
6⋅X₅ {O(n)}
MPRF:
• eval_rank2_14: [2+4⋅X₁₀-2⋅X₇]
• eval_rank2_15: [2+4⋅X₁₀-2⋅X₇]
• eval_rank2_20: [4⋅X₁₀-2⋅X₈]
• eval_rank2_21: [4⋅X₁₀-2⋅X₈]
• eval_rank2_26: [4⋅X₁₁-2⋅X₈]
• eval_rank2_27: [4⋅X₁₁-2⋅X₈]
• eval_rank2_29: [2+4⋅X₁₀-2⋅X₇]
• eval_rank2_30: [2+4⋅X₁₀-2⋅X₇]
• eval_rank2_31: [2+4⋅X₂+4⋅X₃-2⋅X₇]
• eval_rank2_32: [2+4⋅X₂+4⋅X₃-2⋅X₇]
• eval_rank2__critedge1_in: [4⋅X₁₁-2⋅X₈]
• eval_rank2__critedge_in: [2+4⋅X₁₀-2⋅X₇]
• eval_rank2_bb1_in: [2⋅X₆+4⋅X₉]
• eval_rank2_bb2_in: [2⋅X₆+4⋅X₉]
• eval_rank2_bb3_in: [2+4⋅X₁₀-2⋅X₇]
• eval_rank2_bb4_in: [2+4⋅X₁₀-2⋅X₇]
• eval_rank2_bb5_in: [2+4⋅X₁₀-2⋅X₇]
• eval_rank2_bb6_in: [2+4⋅X₁₀-2⋅X₈]
• eval_rank2_bb7_in: [4⋅X₁₀-2⋅X₈]
• eval_rank2_bb8_in: [4⋅X₁₀-2⋅X₈]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₄₆: eval_rank2_bb6_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2__critedge1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈ of depth 1:
new bound:
12⋅X₅ {O(n)}
MPRF:
• eval_rank2_14: [4+8⋅X₁₀-4⋅X₇]
• eval_rank2_15: [4+8⋅X₁₀-4⋅X₇]
• eval_rank2_20: [2+10⋅X₁₀-4⋅X₈-2⋅X₁₁]
• eval_rank2_21: [2+10⋅X₁₀-4⋅X₈-2⋅X₁₁]
• eval_rank2_26: [4+4⋅X₁+4⋅X₁₀-4⋅X₈]
• eval_rank2_27: [4+4⋅X₁+4⋅X₁₀-4⋅X₈]
• eval_rank2_29: [4+8⋅X₁₀-4⋅X₇]
• eval_rank2_30: [4+8⋅X₁₀-4⋅X₇]
• eval_rank2_31: [4+8⋅X₂+8⋅X₃-4⋅X₇]
• eval_rank2_32: [4⋅X₂+8⋅X₃]
• eval_rank2__critedge1_in: [1+10⋅X₁₀-4⋅X₈-2⋅X₁₁]
• eval_rank2__critedge_in: [4+8⋅X₁₀-4⋅X₇]
• eval_rank2_bb1_in: [4⋅X₆+8⋅X₉]
• eval_rank2_bb2_in: [4⋅X₆+8⋅X₉]
• eval_rank2_bb3_in: [4+8⋅X₁₀-4⋅X₇]
• eval_rank2_bb4_in: [4+8⋅X₁₀-4⋅X₇]
• eval_rank2_bb5_in: [4+8⋅X₁₀-4⋅X₇]
• eval_rank2_bb6_in: [2+10⋅X₁₀-4⋅X₈-2⋅X₁₁]
• eval_rank2_bb7_in: [2+10⋅X₁₀-4⋅X₈-2⋅X₁₁]
• eval_rank2_bb8_in: [2+10⋅X₁₀-4⋅X₈-2⋅X₁₁]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₄₈: eval_rank2_bb7_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_20(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ of depth 1:
new bound:
4⋅X₅ {O(n)}
MPRF:
• eval_rank2_14: [2⋅X₁₀]
• eval_rank2_15: [2⋅X₁₀]
• eval_rank2_20: [2⋅X₁₁-2]
• eval_rank2_21: [2⋅X₁₁-2]
• eval_rank2_26: [2⋅X₁₁-2]
• eval_rank2_27: [2⋅X₁]
• eval_rank2_29: [2⋅X₁₀]
• eval_rank2_30: [2⋅X₁₀]
• eval_rank2_31: [2⋅X₂+2⋅X₃]
• eval_rank2_32: [2⋅X₂+2⋅X₃]
• eval_rank2__critedge1_in: [2⋅X₁₁-2]
• eval_rank2__critedge_in: [2⋅X₁₀]
• eval_rank2_bb1_in: [2⋅X₆+2⋅X₉]
• eval_rank2_bb2_in: [2⋅X₆+2⋅X₉]
• eval_rank2_bb3_in: [2⋅X₁₀]
• eval_rank2_bb4_in: [2⋅X₁₀]
• eval_rank2_bb5_in: [2⋅X₁₀]
• eval_rank2_bb6_in: [2+2⋅X₁₁]
• eval_rank2_bb7_in: [2⋅X₁₁]
• eval_rank2_bb8_in: [2⋅X₁₁-2]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₅₀: eval_rank2_20(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_21(nondef_1,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ of depth 1:
new bound:
2⋅X₅+1 {O(n)}
MPRF:
• eval_rank2_14: [X₁₀-1]
• eval_rank2_15: [X₁₀-1]
• eval_rank2_20: [X₁₁]
• eval_rank2_21: [X₁₁-2]
• eval_rank2_26: [X₁-1]
• eval_rank2_27: [X₁-1]
• eval_rank2_29: [X₁₀-1]
• eval_rank2_30: [X₁₀-1]
• eval_rank2_31: [X₂+X₃-1]
• eval_rank2_32: [X₂+X₃-1]
• eval_rank2__critedge1_in: [X₁₁-2]
• eval_rank2__critedge_in: [X₁₀-1]
• eval_rank2_bb1_in: [X₆+X₉-1]
• eval_rank2_bb2_in: [X₆+X₉-1]
• eval_rank2_bb3_in: [X₁₀-1]
• eval_rank2_bb4_in: [X₁₀-1]
• eval_rank2_bb5_in: [X₁₀-1]
• eval_rank2_bb6_in: [X₁₁]
• eval_rank2_bb7_in: [X₁₁]
• eval_rank2_bb8_in: [X₁₁-2]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₅₂: eval_rank2_21(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_bb8_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF:
• eval_rank2_14: [X₁₀]
• eval_rank2_15: [X₁₀]
• eval_rank2_20: [X₁₁]
• eval_rank2_21: [X₁₁]
• eval_rank2_26: [X₁]
• eval_rank2_27: [X₁]
• eval_rank2_29: [X₁₀]
• eval_rank2_30: [X₁₀]
• eval_rank2_31: [X₂+X₃]
• eval_rank2_32: [X₂+X₃]
• eval_rank2__critedge1_in: [X₁₁]
• eval_rank2__critedge_in: [X₁₀]
• eval_rank2_bb1_in: [X₆+X₉]
• eval_rank2_bb2_in: [X₆+X₉]
• eval_rank2_bb3_in: [X₁₀]
• eval_rank2_bb4_in: [X₁₀]
• eval_rank2_bb5_in: [X₁₀]
• eval_rank2_bb6_in: [X₁₁]
• eval_rank2_bb7_in: [X₁₁]
• eval_rank2_bb8_in: [X₁₁-2]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₅₄: eval_rank2_21(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2__critedge1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0 of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF:
• eval_rank2_14: [X₁₀]
• eval_rank2_15: [X₁₀]
• eval_rank2_20: [1+X₁₁]
• eval_rank2_21: [1+X₁₁]
• eval_rank2_26: [X₁₁-1]
• eval_rank2_27: [X₁₁-1]
• eval_rank2_29: [X₁₀]
• eval_rank2_30: [X₁₀]
• eval_rank2_31: [X₂+X₃]
• eval_rank2_32: [X₂+X₃]
• eval_rank2__critedge1_in: [X₁₁-1]
• eval_rank2__critedge_in: [X₁₀]
• eval_rank2_bb1_in: [X₆+X₉]
• eval_rank2_bb2_in: [X₆+X₉]
• eval_rank2_bb3_in: [X₁₀]
• eval_rank2_bb4_in: [X₁₀]
• eval_rank2_bb5_in: [X₁₀]
• eval_rank2_bb6_in: [1+X₁₁]
• eval_rank2_bb7_in: [1+X₁₁]
• eval_rank2_bb8_in: [X₁₁-1]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₅₆: eval_rank2_bb8_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_bb6_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,1+X₈,X₉,X₁₀,X₁₁-2) :|: X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ of depth 1:
new bound:
3⋅X₅+2 {O(n)}
MPRF:
• eval_rank2_14: [2⋅X₁₀-1-X₇]
• eval_rank2_15: [2⋅X₁₀-1-X₇]
• eval_rank2_20: [2⋅X₁₀-3-X₈]
• eval_rank2_21: [2⋅X₁₀-3-X₈]
• eval_rank2_26: [2⋅X₁₀-3-X₈]
• eval_rank2_27: [2⋅X₁+X₁₀-X₈-X₁₁]
• eval_rank2_29: [2⋅X₁₀-1-X₇]
• eval_rank2_30: [X₂+2⋅X₁₀-2⋅X₇]
• eval_rank2_31: [3⋅X₂+2⋅X₃-2⋅X₇]
• eval_rank2_32: [3⋅X₂+2⋅X₃-2⋅X₇]
• eval_rank2__critedge1_in: [2⋅X₁₀-3-X₈]
• eval_rank2__critedge_in: [2⋅X₁₀-1-X₇]
• eval_rank2_bb1_in: [X₆+2⋅X₉-2]
• eval_rank2_bb2_in: [X₆+2⋅X₉-2]
• eval_rank2_bb3_in: [2⋅X₁₀-1-X₇]
• eval_rank2_bb4_in: [2⋅X₁₀-1-X₇]
• eval_rank2_bb5_in: [2⋅X₁₀-1-X₇]
• eval_rank2_bb6_in: [2⋅X₁₀-3-X₈]
• eval_rank2_bb7_in: [2⋅X₁₀-3-X₈]
• eval_rank2_bb8_in: [2⋅X₁₀-3-X₈]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₅₈: eval_rank2__critedge1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_26(X₀,X₁₁-1,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ of depth 1:
new bound:
4⋅X₅ {O(n)}
MPRF:
• eval_rank2_14: [2+2⋅X₁₀]
• eval_rank2_15: [2+2⋅X₁₀]
• eval_rank2_20: [2+2⋅X₁₀]
• eval_rank2_21: [2+2⋅X₁₀]
• eval_rank2_26: [2⋅X₁₁]
• eval_rank2_27: [2⋅X₁₁]
• eval_rank2_29: [2⋅X₁₀]
• eval_rank2_30: [2⋅X₁₀]
• eval_rank2_31: [2⋅X₂+2⋅X₃]
• eval_rank2_32: [2⋅X₂+2⋅X₃]
• eval_rank2__critedge1_in: [4+2⋅X₁₁]
• eval_rank2__critedge_in: [2⋅X₁₀]
• eval_rank2_bb1_in: [2⋅X₆+2⋅X₉]
• eval_rank2_bb2_in: [2⋅X₆+2⋅X₉]
• eval_rank2_bb3_in: [2+2⋅X₁₀]
• eval_rank2_bb4_in: [2+2⋅X₁₀]
• eval_rank2_bb5_in: [2+2⋅X₁₀]
• eval_rank2_bb6_in: [2+2⋅X₁₀]
• eval_rank2_bb7_in: [2+2⋅X₁₀]
• eval_rank2_bb8_in: [2+2⋅X₁₀]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₆₀: eval_rank2_26(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_27(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF:
• eval_rank2_14: [X₁₀]
• eval_rank2_15: [X₁₀]
• eval_rank2_20: [X₁₀]
• eval_rank2_21: [X₁₀]
• eval_rank2_26: [X₁₀]
• eval_rank2_27: [X₁₀-1]
• eval_rank2_29: [X₁₀]
• eval_rank2_30: [X₁₀]
• eval_rank2_31: [X₂+X₃]
• eval_rank2_32: [X₂+X₃]
• eval_rank2__critedge1_in: [X₁₀]
• eval_rank2__critedge_in: [X₁₀]
• eval_rank2_bb1_in: [X₆+X₉]
• eval_rank2_bb2_in: [X₆+X₉]
• eval_rank2_bb3_in: [X₁₀]
• eval_rank2_bb4_in: [X₁₀]
• eval_rank2_bb5_in: [X₁₀]
• eval_rank2_bb6_in: [X₁₀]
• eval_rank2_bb7_in: [X₁₀]
• eval_rank2_bb8_in: [X₁₀]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₆₂: eval_rank2_27(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_bb3_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₈,X₈,X₉,X₁,X₁₁) :|: X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ of depth 1:
new bound:
2⋅X₅ {O(n)}
MPRF:
• eval_rank2_14: [X₁₀]
• eval_rank2_15: [X₁₀]
• eval_rank2_20: [X₁₀]
• eval_rank2_21: [X₁₀]
• eval_rank2_26: [X₁₀]
• eval_rank2_27: [1+X₁]
• eval_rank2_29: [X₁₀]
• eval_rank2_30: [X₁₀]
• eval_rank2_31: [X₂+X₃]
• eval_rank2_32: [X₂+X₃]
• eval_rank2__critedge1_in: [X₁₀]
• eval_rank2__critedge_in: [X₁₀]
• eval_rank2_bb1_in: [X₆+X₉]
• eval_rank2_bb2_in: [X₆+X₉]
• eval_rank2_bb3_in: [X₁₀]
• eval_rank2_bb4_in: [X₁₀]
• eval_rank2_bb5_in: [X₁₀]
• eval_rank2_bb6_in: [X₁₀]
• eval_rank2_bb7_in: [X₁₀]
• eval_rank2_bb8_in: [X₁₀]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₂₄: eval_rank2_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_bb2_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 2 ≤ X₆ of depth 1:
new bound:
8⋅X₅⋅X₅+7⋅X₅+1 {O(n^2)}
MPRF:
• eval_rank2_14: [X₇-1]
• eval_rank2_15: [X₇-1]
• eval_rank2_20: [0]
• eval_rank2_21: [0]
• eval_rank2_26: [0]
• eval_rank2_27: [0]
• eval_rank2_29: [X₇-1]
• eval_rank2_30: [X₂]
• eval_rank2_31: [X₂]
• eval_rank2_32: [X₂]
• eval_rank2__critedge1_in: [0]
• eval_rank2__critedge_in: [X₇-1]
• eval_rank2_bb1_in: [X₆-1]
• eval_rank2_bb2_in: [X₆-2]
• eval_rank2_bb3_in: [X₇-1]
• eval_rank2_bb4_in: [X₇-1]
• eval_rank2_bb5_in: [X₇-1]
• eval_rank2_bb6_in: [0]
• eval_rank2_bb7_in: [0]
• eval_rank2_bb8_in: [0]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₂₈: eval_rank2_bb2_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_bb3_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₆-1,X₈,X₉,X₆+X₉-1,X₁₁) :|: 2 ≤ X₆ of depth 1:
new bound:
8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
MPRF:
• eval_rank2_14: [X₇-1]
• eval_rank2_15: [X₇-1]
• eval_rank2_20: [X₇-X₆]
• eval_rank2_21: [X₇-X₆]
• eval_rank2_26: [X₇-X₆]
• eval_rank2_27: [X₇-X₆]
• eval_rank2_29: [2⋅X₇-2-X₂]
• eval_rank2_30: [2⋅X₇-2-X₂]
• eval_rank2_31: [X₇-1]
• eval_rank2_32: [X₇-1]
• eval_rank2__critedge1_in: [X₇-X₆]
• eval_rank2__critedge_in: [X₇-1]
• eval_rank2_bb1_in: [X₆]
• eval_rank2_bb2_in: [X₆-1]
• eval_rank2_bb3_in: [X₇-1]
• eval_rank2_bb4_in: [X₇-1]
• eval_rank2_bb5_in: [X₇-1]
• eval_rank2_bb6_in: [X₇-X₆]
• eval_rank2_bb7_in: [X₇-X₆]
• eval_rank2_bb8_in: [X₇-X₆]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₃₂: eval_rank2_bb3_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2__critedge_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇ of depth 1:
new bound:
16⋅X₅⋅X₅+10⋅X₅+2 {O(n^2)}
MPRF:
• eval_rank2_14: [2⋅X₇-4]
• eval_rank2_15: [2⋅X₇-4]
• eval_rank2_20: [2⋅X₇-2⋅X₁₀]
• eval_rank2_21: [2⋅X₇-2⋅X₁₀]
• eval_rank2_26: [2⋅X₇-2⋅X₁₀]
• eval_rank2_27: [2⋅X₇-2⋅X₁₀]
• eval_rank2_29: [2⋅X₇-4]
• eval_rank2_30: [2⋅X₇-4]
• eval_rank2_31: [2⋅X₇-4]
• eval_rank2_32: [2⋅X₂-2]
• eval_rank2__critedge1_in: [2⋅X₇-2⋅X₁₀]
• eval_rank2__critedge_in: [2⋅X₇-4]
• eval_rank2_bb1_in: [2⋅X₆-2]
• eval_rank2_bb2_in: [2⋅X₆-2]
• eval_rank2_bb3_in: [2⋅X₇]
• eval_rank2_bb4_in: [2⋅X₇-4]
• eval_rank2_bb5_in: [2⋅X₇-4]
• eval_rank2_bb6_in: [2⋅X₇-2⋅X₁₀]
• eval_rank2_bb7_in: [2⋅X₇-2⋅X₁₀]
• eval_rank2_bb8_in: [2⋅X₇-2⋅X₁₀]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₆₆: eval_rank2__critedge_in(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_29(X₀,X₁,X₇-1,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ of depth 1:
new bound:
8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
MPRF:
• eval_rank2_14: [1+X₇]
• eval_rank2_15: [1+X₇]
• eval_rank2_20: [X₇]
• eval_rank2_21: [X₇]
• eval_rank2_26: [X₇]
• eval_rank2_27: [X₇]
• eval_rank2_29: [X₇-1]
• eval_rank2_30: [X₂]
• eval_rank2_31: [X₂]
• eval_rank2_32: [X₂]
• eval_rank2__critedge1_in: [X₇]
• eval_rank2__critedge_in: [1+X₇]
• eval_rank2_bb1_in: [X₆]
• eval_rank2_bb2_in: [X₆]
• eval_rank2_bb3_in: [1+X₇]
• eval_rank2_bb4_in: [1+X₇]
• eval_rank2_bb5_in: [X₇]
• eval_rank2_bb6_in: [X₇]
• eval_rank2_bb7_in: [X₇]
• eval_rank2_bb8_in: [X₇]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₆₈: eval_rank2_29(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_30(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ of depth 1:
new bound:
8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
MPRF:
• eval_rank2_14: [1+X₇]
• eval_rank2_15: [1+X₇]
• eval_rank2_20: [0]
• eval_rank2_21: [0]
• eval_rank2_26: [0]
• eval_rank2_27: [0]
• eval_rank2_29: [1+X₇]
• eval_rank2_30: [X₇-1]
• eval_rank2_31: [X₇-1]
• eval_rank2_32: [X₇-1]
• eval_rank2__critedge1_in: [0]
• eval_rank2__critedge_in: [1+X₇]
• eval_rank2_bb1_in: [X₆]
• eval_rank2_bb2_in: [X₆]
• eval_rank2_bb3_in: [1+X₇]
• eval_rank2_bb4_in: [1+X₇]
• eval_rank2_bb5_in: [X₇]
• eval_rank2_bb6_in: [0]
• eval_rank2_bb7_in: [0]
• eval_rank2_bb8_in: [0]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₇₀: eval_rank2_30(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_31(X₀,X₁,X₂,X₁₀-X₂,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ of depth 1:
new bound:
8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
MPRF:
• eval_rank2_14: [X₇]
• eval_rank2_15: [X₇]
• eval_rank2_20: [X₇]
• eval_rank2_21: [X₇]
• eval_rank2_26: [X₇]
• eval_rank2_27: [X₇]
• eval_rank2_29: [X₇]
• eval_rank2_30: [1+X₂]
• eval_rank2_31: [X₂-1]
• eval_rank2_32: [X₂-1]
• eval_rank2__critedge1_in: [X₇]
• eval_rank2__critedge_in: [X₇]
• eval_rank2_bb1_in: [X₆-1]
• eval_rank2_bb2_in: [X₆-1]
• eval_rank2_bb3_in: [X₇]
• eval_rank2_bb4_in: [X₇]
• eval_rank2_bb5_in: [X₇]
• eval_rank2_bb6_in: [X₇]
• eval_rank2_bb7_in: [X₇]
• eval_rank2_bb8_in: [X₇]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₇₂: eval_rank2_31(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_32(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀ of depth 1:
new bound:
8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
MPRF:
• eval_rank2_14: [X₇]
• eval_rank2_15: [X₇]
• eval_rank2_20: [X₇]
• eval_rank2_21: [X₇]
• eval_rank2_26: [X₇]
• eval_rank2_27: [X₇]
• eval_rank2_29: [X₇]
• eval_rank2_30: [1+X₂]
• eval_rank2_31: [1+X₂]
• eval_rank2_32: [X₂-1]
• eval_rank2__critedge1_in: [X₇]
• eval_rank2__critedge_in: [X₇]
• eval_rank2_bb1_in: [X₆-1]
• eval_rank2_bb2_in: [X₆-1]
• eval_rank2_bb3_in: [X₇]
• eval_rank2_bb4_in: [X₇]
• eval_rank2_bb5_in: [X₇]
• eval_rank2_bb6_in: [X₇]
• eval_rank2_bb7_in: [X₇]
• eval_rank2_bb8_in: [X₇]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
MPRF for transition t₇₄: eval_rank2_32(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → eval_rank2_bb1_in(X₀,X₁,X₂,X₃,X₄,X₅,X₂,X₇,X₈,X₃,X₁₀,X₁₁) :|: X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀ of depth 1:
new bound:
8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
MPRF:
• eval_rank2_14: [X₇]
• eval_rank2_15: [X₇]
• eval_rank2_20: [X₇]
• eval_rank2_21: [X₇]
• eval_rank2_26: [X₇]
• eval_rank2_27: [X₇]
• eval_rank2_29: [X₇]
• eval_rank2_30: [X₇]
• eval_rank2_31: [X₇]
• eval_rank2_32: [X₇]
• eval_rank2__critedge1_in: [X₇]
• eval_rank2__critedge_in: [X₇]
• eval_rank2_bb1_in: [X₆-1]
• eval_rank2_bb2_in: [X₆-1]
• eval_rank2_bb3_in: [X₇]
• eval_rank2_bb4_in: [X₇]
• eval_rank2_bb5_in: [X₇]
• eval_rank2_bb6_in: [X₇]
• eval_rank2_bb7_in: [X₇]
• eval_rank2_bb8_in: [X₇]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₆
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₈
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₃₆
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₄₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₃₈
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₁₀
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₅₀
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₅₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₅₂
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₆₀
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
t₆₄
η (X₅) = Temp_Int₁
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ Temp_Int₁ ≤ Temp_Int₂+X₅ ∧ Temp_Int₂+X₅ ≤ Temp_Int₁ ∧ 0 ≤ 1+Temp_Int₂ ∧ Temp_Int₂ ≤ 0 ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₆₂
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₆₈
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₁₂
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₇₀
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₇₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₇₄
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₁₄
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₁₆
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₁₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₂₀
eval_rank2_8->eval_rank2_bb1_in
t₂₂
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
t₅₈
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
t₆₆
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₄
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₂₄
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₂₆
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
t₂₈
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
t₃₂
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₃₀
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
t₃₄
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₄₂
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₄₆
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₄₄
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
t₄₈
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
t₅₆
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₇₆
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₂
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:inf {Infinity}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: 8⋅X₅⋅X₅+7⋅X₅+1 {O(n^2)}
g₂₅: 1 {O(1)}
g₂₇: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₂₉: 2⋅X₅ {O(n)}
g₃₁: 16⋅X₅⋅X₅+10⋅X₅+2 {O(n^2)}
g₃₃: 2⋅X₅+1 {O(n)}
g₃₅: 4⋅X₅ {O(n)}
g₃₇: 2⋅X₅+1 {O(n)}
g₃₉: 2⋅X₅+1 {O(n)}
g₄₁: 2⋅X₅ {O(n)}
g₄₃: 6⋅X₅ {O(n)}
g₄₅: 12⋅X₅ {O(n)}
g₄₇: 4⋅X₅ {O(n)}
g₄₉: 2⋅X₅+1 {O(n)}
g₅₁: 2⋅X₅ {O(n)}
g₅₃: 2⋅X₅ {O(n)}
g₅₅: 3⋅X₅+2 {O(n)}
g₅₇: 4⋅X₅ {O(n)}
g₅₉: 2⋅X₅ {O(n)}
g₆₁: 2⋅X₅ {O(n)}
g₆₃: inf {Infinity}
g₆₅: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₆₇: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₆₉: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₁: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₃: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
(g₇,eval_rank2_2), X₀: X₀ {O(n)}
(g₇,eval_rank2_2), X₁: X₁ {O(n)}
(g₇,eval_rank2_2), X₂: X₂ {O(n)}
(g₇,eval_rank2_2), X₃: X₃ {O(n)}
(g₇,eval_rank2_2), X₄: X₄ {O(n)}
(g₇,eval_rank2_2), X₅: X₅ {O(n)}
(g₇,eval_rank2_2), X₆: X₆ {O(n)}
(g₇,eval_rank2_2), X₇: X₇ {O(n)}
(g₇,eval_rank2_2), X₈: X₈ {O(n)}
(g₇,eval_rank2_2), X₉: X₉ {O(n)}
(g₇,eval_rank2_2), X₁₀: X₁₀ {O(n)}
(g₇,eval_rank2_2), X₁₁: X₁₁ {O(n)}
(g₉,eval_rank2_3), X₀: X₀ {O(n)}
(g₉,eval_rank2_3), X₁: X₁ {O(n)}
(g₉,eval_rank2_3), X₂: X₂ {O(n)}
(g₉,eval_rank2_3), X₃: X₃ {O(n)}
(g₉,eval_rank2_3), X₄: X₄ {O(n)}
(g₉,eval_rank2_3), X₅: X₅ {O(n)}
(g₉,eval_rank2_3), X₆: X₆ {O(n)}
(g₉,eval_rank2_3), X₇: X₇ {O(n)}
(g₉,eval_rank2_3), X₈: X₈ {O(n)}
(g₉,eval_rank2_3), X₉: X₉ {O(n)}
(g₉,eval_rank2_3), X₁₀: X₁₀ {O(n)}
(g₉,eval_rank2_3), X₁₁: X₁₁ {O(n)}
(g₁₁,eval_rank2_4), X₀: X₀ {O(n)}
(g₁₁,eval_rank2_4), X₁: X₁ {O(n)}
(g₁₁,eval_rank2_4), X₂: X₂ {O(n)}
(g₁₁,eval_rank2_4), X₃: X₃ {O(n)}
(g₁₁,eval_rank2_4), X₄: X₄ {O(n)}
(g₁₁,eval_rank2_4), X₅: X₅ {O(n)}
(g₁₁,eval_rank2_4), X₆: X₆ {O(n)}
(g₁₁,eval_rank2_4), X₇: X₇ {O(n)}
(g₁₁,eval_rank2_4), X₈: X₈ {O(n)}
(g₁₁,eval_rank2_4), X₉: X₉ {O(n)}
(g₁₁,eval_rank2_4), X₁₀: X₁₀ {O(n)}
(g₁₁,eval_rank2_4), X₁₁: X₁₁ {O(n)}
(g₁₃,eval_rank2_5), X₀: X₀ {O(n)}
(g₁₃,eval_rank2_5), X₁: X₁ {O(n)}
(g₁₃,eval_rank2_5), X₂: X₂ {O(n)}
(g₁₃,eval_rank2_5), X₃: X₃ {O(n)}
(g₁₃,eval_rank2_5), X₄: X₄ {O(n)}
(g₁₃,eval_rank2_5), X₅: X₅ {O(n)}
(g₁₃,eval_rank2_5), X₆: X₆ {O(n)}
(g₁₃,eval_rank2_5), X₇: X₇ {O(n)}
(g₁₃,eval_rank2_5), X₈: X₈ {O(n)}
(g₁₃,eval_rank2_5), X₉: X₉ {O(n)}
(g₁₃,eval_rank2_5), X₁₀: X₁₀ {O(n)}
(g₁₃,eval_rank2_5), X₁₁: X₁₁ {O(n)}
(g₁₅,eval_rank2_6), X₀: X₀ {O(n)}
(g₁₅,eval_rank2_6), X₁: X₁ {O(n)}
(g₁₅,eval_rank2_6), X₂: X₂ {O(n)}
(g₁₅,eval_rank2_6), X₃: X₃ {O(n)}
(g₁₅,eval_rank2_6), X₄: X₄ {O(n)}
(g₁₅,eval_rank2_6), X₅: X₅ {O(n)}
(g₁₅,eval_rank2_6), X₆: X₆ {O(n)}
(g₁₅,eval_rank2_6), X₇: X₇ {O(n)}
(g₁₅,eval_rank2_6), X₈: X₈ {O(n)}
(g₁₅,eval_rank2_6), X₉: X₉ {O(n)}
(g₁₅,eval_rank2_6), X₁₀: X₁₀ {O(n)}
(g₁₅,eval_rank2_6), X₁₁: X₁₁ {O(n)}
(g₁₇,eval_rank2_7), X₀: X₀ {O(n)}
(g₁₇,eval_rank2_7), X₁: X₁ {O(n)}
(g₁₇,eval_rank2_7), X₂: X₂ {O(n)}
(g₁₇,eval_rank2_7), X₃: X₃ {O(n)}
(g₁₇,eval_rank2_7), X₄: X₄ {O(n)}
(g₁₇,eval_rank2_7), X₅: X₅ {O(n)}
(g₁₇,eval_rank2_7), X₆: X₆ {O(n)}
(g₁₇,eval_rank2_7), X₇: X₇ {O(n)}
(g₁₇,eval_rank2_7), X₈: X₈ {O(n)}
(g₁₇,eval_rank2_7), X₉: X₉ {O(n)}
(g₁₇,eval_rank2_7), X₁₀: X₁₀ {O(n)}
(g₁₇,eval_rank2_7), X₁₁: X₁₁ {O(n)}
(g₁₉,eval_rank2_8), X₀: X₀ {O(n)}
(g₁₉,eval_rank2_8), X₁: X₁ {O(n)}
(g₁₉,eval_rank2_8), X₂: X₂ {O(n)}
(g₁₉,eval_rank2_8), X₃: X₃ {O(n)}
(g₁₉,eval_rank2_8), X₄: X₄ {O(n)}
(g₁₉,eval_rank2_8), X₅: X₅ {O(n)}
(g₁₉,eval_rank2_8), X₆: X₆ {O(n)}
(g₁₉,eval_rank2_8), X₇: X₇ {O(n)}
(g₁₉,eval_rank2_8), X₈: X₈ {O(n)}
(g₁₉,eval_rank2_8), X₉: X₉ {O(n)}
(g₁₉,eval_rank2_8), X₁₀: X₁₀ {O(n)}
(g₁₉,eval_rank2_8), X₁₁: X₁₁ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₀: X₀ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁: X₁ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₂: X₂ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₃: X₃ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₄: X₄ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₅: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₆: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₇: X₇ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₈: X₈ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₉: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁₀: X₁₀ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁₁: X₁₁ {O(n)}
(g₂₃,eval_rank2_bb2_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₅: X₅ {O(n)}
(g₂₃,eval_rank2_bb2_in), X₆: 4⋅X₅+2 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₇: 8⋅X₅+X₇+4 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₁₀+6 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+2⋅X₁+74⋅X₅+12 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₅: 2⋅X₅ {O(n)}
(g₂₅,eval_rank2_bb9_in), X₆: 5⋅X₅+2 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₇: 8⋅X₅+X₇+4 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₈: 2⋅X₈+8⋅X₅+4 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+38⋅X₅+6 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₁₀+6 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+2⋅X₁₁+24 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₅: X₅ {O(n)}
(g₂₇,eval_rank2_bb3_in), X₆: 4⋅X₅+2 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₇: 4⋅X₅+2 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₅: X₅ {O(n)}
(g₂₉,eval_rank2_bb4_in), X₆: 4⋅X₅+2 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₇: 4⋅X₅+2 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₂: 2⋅X₂+8⋅X₅+4 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₃: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+2⋅X₃+74⋅X₅+12 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₅: X₅ {O(n)}
(g₃₁,eval_rank2__critedge_in), X₆: 8⋅X₅+4 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₇: 4⋅X₅+2 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₉: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₃,eval_rank2_14), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₃,eval_rank2_14), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₃,eval_rank2_14), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₃,eval_rank2_14), X₅: X₅ {O(n)}
(g₃₃,eval_rank2_14), X₆: 4⋅X₅+2 {O(n)}
(g₃₃,eval_rank2_14), X₇: 4⋅X₅+2 {O(n)}
(g₃₃,eval_rank2_14), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₃,eval_rank2_14), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₃,eval_rank2_14), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₃,eval_rank2_14), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₅,eval_rank2_15), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₅,eval_rank2_15), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₅,eval_rank2_15), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₅,eval_rank2_15), X₅: X₅ {O(n)}
(g₃₅,eval_rank2_15), X₆: 4⋅X₅+2 {O(n)}
(g₃₅,eval_rank2_15), X₇: 4⋅X₅+2 {O(n)}
(g₃₅,eval_rank2_15), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₅,eval_rank2_15), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₅,eval_rank2_15), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₅,eval_rank2_15), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₅: X₅ {O(n)}
(g₃₇,eval_rank2_bb5_in), X₆: 4⋅X₅+2 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₇: 4⋅X₅+2 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₅: X₅ {O(n)}
(g₃₉,eval_rank2__critedge_in), X₆: 4⋅X₅+2 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₇: 4⋅X₅+2 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₅: X₅ {O(n)}
(g₄₁,eval_rank2_bb6_in), X₆: 4⋅X₅+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₇: 4⋅X₅+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₈: 4⋅X₅+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₅: X₅ {O(n)}
(g₄₃,eval_rank2_bb7_in), X₆: 4⋅X₅+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₇: 4⋅X₅+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₈: 4⋅X₅+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+2⋅X₁+24 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₅: X₅ {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₆: 4⋅X₅+2 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₇: 8⋅X₅+4 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₈: 4⋅X₅+2 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₁₀: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₇,eval_rank2_20), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₇,eval_rank2_20), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₅: X₅ {O(n)}
(g₄₇,eval_rank2_20), X₆: 4⋅X₅+2 {O(n)}
(g₄₇,eval_rank2_20), X₇: 4⋅X₅+2 {O(n)}
(g₄₇,eval_rank2_20), X₈: 4⋅X₅+2 {O(n)}
(g₄₇,eval_rank2_20), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₉,eval_rank2_21), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₉,eval_rank2_21), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₅: X₅ {O(n)}
(g₄₉,eval_rank2_21), X₆: 4⋅X₅+2 {O(n)}
(g₄₉,eval_rank2_21), X₇: 4⋅X₅+2 {O(n)}
(g₄₉,eval_rank2_21), X₈: 4⋅X₅+2 {O(n)}
(g₄₉,eval_rank2_21), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₅: X₅ {O(n)}
(g₅₁,eval_rank2_bb8_in), X₆: 4⋅X₅+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₇: 4⋅X₅+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₈: 4⋅X₅+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₅: X₅ {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₆: 4⋅X₅+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₇: 4⋅X₅+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₈: 4⋅X₅+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₅: X₅ {O(n)}
(g₅₅,eval_rank2_bb6_in), X₆: 4⋅X₅+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₇: 4⋅X₅+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₈: 4⋅X₅+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₇,eval_rank2_26), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₅: X₅ {O(n)}
(g₅₇,eval_rank2_26), X₆: 4⋅X₅+2 {O(n)}
(g₅₇,eval_rank2_26), X₇: 12⋅X₅+6 {O(n)}
(g₅₇,eval_rank2_26), X₈: 4⋅X₅+2 {O(n)}
(g₅₇,eval_rank2_26), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₁₀: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₅₇,eval_rank2_26), X₁₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₅₉,eval_rank2_27), X₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₉,eval_rank2_27), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₉,eval_rank2_27), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₉,eval_rank2_27), X₅: X₅ {O(n)}
(g₅₉,eval_rank2_27), X₆: 4⋅X₅+2 {O(n)}
(g₅₉,eval_rank2_27), X₇: 12⋅X₅+6 {O(n)}
(g₅₉,eval_rank2_27), X₈: 4⋅X₅+2 {O(n)}
(g₅₉,eval_rank2_27), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₉,eval_rank2_27), X₁₀: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₅₉,eval_rank2_27), X₁₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₅: X₅ {O(n)}
(g₆₁,eval_rank2_bb3_in), X₆: 4⋅X₅+2 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₇: 4⋅X₅+2 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₈: 8⋅X₅+4 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+24 {O(n^3)}
(g₆₃,eval_rank2_27), X₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₃,eval_rank2_27), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₆₃,eval_rank2_27), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₆₃,eval_rank2_27), X₅: X₅ {O(n)}
(g₆₃,eval_rank2_27), X₆: 4⋅X₅+2 {O(n)}
(g₆₃,eval_rank2_27), X₇: 12⋅X₅+6 {O(n)}
(g₆₃,eval_rank2_27), X₈: 4⋅X₅+2 {O(n)}
(g₆₃,eval_rank2_27), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₃,eval_rank2_27), X₁₀: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₃,eval_rank2_27), X₁₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₆₅,eval_rank2_29), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₆₅,eval_rank2_29), X₂: 4⋅X₅+2 {O(n)}
(g₆₅,eval_rank2_29), X₃: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+3⋅X₃+18 {O(n^3)}
(g₆₅,eval_rank2_29), X₅: X₅ {O(n)}
(g₆₅,eval_rank2_29), X₆: 12⋅X₅+6 {O(n)}
(g₆₅,eval_rank2_29), X₇: 8⋅X₅+4 {O(n)}
(g₆₅,eval_rank2_29), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₆₅,eval_rank2_29), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₅,eval_rank2_29), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₅,eval_rank2_29), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₆₇,eval_rank2_30), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₆₇,eval_rank2_30), X₂: 4⋅X₅+2 {O(n)}
(g₆₇,eval_rank2_30), X₃: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+3⋅X₃+18 {O(n^3)}
(g₆₇,eval_rank2_30), X₅: X₅ {O(n)}
(g₆₇,eval_rank2_30), X₆: 12⋅X₅+6 {O(n)}
(g₆₇,eval_rank2_30), X₇: 8⋅X₅+4 {O(n)}
(g₆₇,eval_rank2_30), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₆₇,eval_rank2_30), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₇,eval_rank2_30), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₇,eval_rank2_30), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₆₉,eval_rank2_31), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₆₉,eval_rank2_31), X₂: 4⋅X₅+2 {O(n)}
(g₆₉,eval_rank2_31), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₉,eval_rank2_31), X₅: X₅ {O(n)}
(g₆₉,eval_rank2_31), X₆: 12⋅X₅+6 {O(n)}
(g₆₉,eval_rank2_31), X₇: 8⋅X₅+4 {O(n)}
(g₆₉,eval_rank2_31), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₆₉,eval_rank2_31), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₉,eval_rank2_31), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₉,eval_rank2_31), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₇₁,eval_rank2_32), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₇₁,eval_rank2_32), X₂: 4⋅X₅+2 {O(n)}
(g₇₁,eval_rank2_32), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₁,eval_rank2_32), X₅: X₅ {O(n)}
(g₇₁,eval_rank2_32), X₆: 12⋅X₅+6 {O(n)}
(g₇₁,eval_rank2_32), X₇: 8⋅X₅+4 {O(n)}
(g₇₁,eval_rank2_32), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₇₁,eval_rank2_32), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₇₁,eval_rank2_32), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₁,eval_rank2_32), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₂: 4⋅X₅+2 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₅: X₅ {O(n)}
(g₇₃,eval_rank2_bb1_in), X₆: 4⋅X₅+2 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₇: 8⋅X₅+4 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
Run probabilistic analysis on SCC: [eval_rank2_14; eval_rank2_15; eval_rank2_20; eval_rank2_21; eval_rank2_26; eval_rank2_27; eval_rank2_29; eval_rank2_30; eval_rank2_31; eval_rank2_32; eval_rank2__critedge1_in; eval_rank2__critedge_in; eval_rank2_bb1_in; eval_rank2_bb2_in; eval_rank2_bb3_in; eval_rank2_bb4_in; eval_rank2_bb5_in; eval_rank2_bb6_in; eval_rank2_bb7_in; eval_rank2_bb8_in]
Plrf for transition g₆₃:eval_rank2_27(X₀,X₁,X₂,X₃,X₄,X₅,X₆,X₇,X₈,X₉,X₁₀,X₁₁) → t₆₄:eval_rank2_27(X₀,X₁,X₂,X₃,X₄,X₅+UNIFORM(-1, 0),X₆,X₇,X₈,X₉,X₁₀,X₁₁) :|: 1 ≤ X₅ ∧ X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁:
new bound:
4⋅X₅⋅X₅ {O(n^2)}
PLRF:
• eval_rank2_14: 0
• eval_rank2_15: 0
• eval_rank2_20: 0
• eval_rank2_21: 0
• eval_rank2_26: 0
• eval_rank2_27: 2⋅X₅
• eval_rank2_29: 0
• eval_rank2_30: 0
• eval_rank2_31: 0
• eval_rank2_32: 0
• eval_rank2__critedge1_in: 0
• eval_rank2__critedge_in: 0
• eval_rank2_bb1_in: 0
• eval_rank2_bb2_in: 0
• eval_rank2_bb3_in: 0
• eval_rank2_bb4_in: 0
• eval_rank2_bb5_in: 0
• eval_rank2_bb6_in: 0
• eval_rank2_bb7_in: 0
• eval_rank2_bb8_in: 0
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
p = 1
t₆ ∈ g₅
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
p = 1
t₈ ∈ g₇
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
p = 1
t₃₆ ∈ g₃₅
η (X₄) = nondef_0
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
p = 1
t₄₀ ∈ g₃₉
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₄ ≤ 0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
p = 1
t₃₈ ∈ g₃₇
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ 1 ≤ X₄
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
p = 1
t₁₀ ∈ g₉
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
p = 1
t₅₀ ∈ g₄₉
η (X₀) = nondef_1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
p = 1
t₅₄ ∈ g₅₃
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ X₀ ≤ 0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
p = 1
t₅₂ ∈ g₅₁
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈ ∧ 1 ≤ X₀
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
p = 1
t₆₀ ∈ g₅₉
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_27->eval_rank2_27
p = 1
t₆₄ ∈ g₆₃
η (X₅) = X₅+UNIFORM(-1, 0)
τ = X₆ ≤ 2+X₁ ∧ 0 ≤ 1 ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 1 ≤ X₅
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
p = 1
t₆₂ ∈ g₆₁
η (X₇) = X₈
η (X₁₀) = X₁
τ = X₆ ≤ 2+X₁ ∧ X₇ ≤ 1+X₁ ∧ X₈ ≤ 1+X₁ ∧ X₁₁ ≤ 1+X₁ ∧ X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₁+X₄ ∧ 1 ≤ X₁+X₇ ∧ 1 ≤ X₁+X₈ ∧ 1 ≤ X₁+X₁₁ ∧ 1+X₁ ≤ X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₁+X₆ ∧ 2 ≤ X₁+X₁₀ ∧ 2+X₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ 0 ≤ X₁ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
p = 1
t₆₈ ∈ g₆₇
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
p = 1
t₁₂ ∈ g₁₁
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
p = 1
t₇₀ ∈ g₆₉
η (X₃) = X₁₀-X₂
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
p = 1
t₇₂ ∈ g₇₁
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
p = 1
t₇₄ ∈ g₇₃
η (X₆) = X₂
η (X₉) = X₃
τ = X₆ ≤ 2+X₂ ∧ X₇ ≤ 1+X₂ ∧ X₆ ≤ 1+X₇ ∧ 1 ≤ X₂+X₇ ∧ 1+X₂ ≤ X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₂+X₆ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 0 ≤ X₂ ∧ X₃ ≤ X₁₀
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
p = 1
t₁₄ ∈ g₁₃
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
p = 1
t₁₆ ∈ g₁₅
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
p = 1
t₁₈ ∈ g₁₇
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
p = 1
t₂₀ ∈ g₁₉
eval_rank2_8->eval_rank2_bb1_in
p = 1
t₂₂ ∈ g₂₁
η (X₆) = X₅
η (X₉) = X₅
eval_rank2__critedge1_in->eval_rank2_26
p = 1
t₅₈ ∈ g₅₇
η (X₁) = X₁₁-1
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁
eval_rank2__critedge_in->eval_rank2_29
p = 1
t₆₆ ∈ g₆₅
η (X₂) = X₇-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
p = 1
t₄ ∈ g₃
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
p = 1
t₂₄ ∈ g₂₃
τ = 2 ≤ X₆
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
p = 1
t₂₆ ∈ g₂₅
τ = X₆ ≤ 1
eval_rank2_bb2_in->eval_rank2_bb3_in
p = 1
t₂₈ ∈ g₂₇
η (X₇) = X₆-1
η (X₁₀) = X₆+X₉-1
τ = 2 ≤ X₆
eval_rank2_bb3_in->eval_rank2__critedge_in
p = 1
t₃₂ ∈ g₃₁
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ X₁₀ ≤ X₇
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
p = 1
t₃₀ ∈ g₂₉
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 2 ≤ X₆ ∧ 3 ≤ X₆+X₇ ∧ 1+X₇ ≤ X₁₀
eval_rank2_bb4_in->eval_rank2_14
p = 1
t₃₄ ∈ g₃₃
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
p = 1
t₄₂ ∈ g₄₁
η (X₈) = X₇
η (X₁₁) = X₁₀-1
τ = X₆ ≤ 1+X₇ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₆ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₇+X₁₀ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀
eval_rank2_bb6_in->eval_rank2__critedge1_in
p = 1
t₄₆ ∈ g₄₅
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ X₁₁ ≤ 2+X₈
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
p = 1
t₄₄ ∈ g₄₃
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ X₆ ≤ 1+X₁₁ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1+X₇ ≤ X₁₀ ∧ 1 ≤ X₈ ∧ 1+X₈ ≤ X₁₀ ∧ 1+X₁₁ ≤ X₁₀ ∧ 1 ≤ X₁₁ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₄+X₁₁ ∧ 2 ≤ X₆ ∧ 2 ≤ X₇+X₈ ∧ 2 ≤ X₇+X₁₁ ∧ 2 ≤ X₈+X₁₁ ∧ 2 ≤ X₁₀ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₄+X₁₀ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3 ≤ X₆+X₁₁ ∧ 3 ≤ X₇+X₁₀ ∧ 3 ≤ X₈+X₁₀ ∧ 3 ≤ X₁₀+X₁₁ ∧ 4 ≤ X₆+X₁₀ ∧ X₆ ≤ X₁₀ ∧ X₇ ≤ X₈ ∧ X₇ ≤ X₁₁ ∧ X₈ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁
eval_rank2_bb7_in->eval_rank2_20
p = 1
t₄₈ ∈ g₄₇
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_bb8_in->eval_rank2_bb6_in
p = 1
t₅₆ ∈ g₅₅
η (X₈) = 1+X₈
η (X₁₁) = X₁₁-2
τ = X₆ ≤ 1+X₇ ∧ X₆ ≤ 1+X₈ ∧ 1 ≤ X₀ ∧ 1 ≤ X₄ ∧ 1 ≤ X₇ ∧ 1 ≤ X₈ ∧ 1+X₁₁ ≤ X₁₀ ∧ 2 ≤ X₀+X₄ ∧ 2 ≤ X₀+X₇ ∧ 2 ≤ X₀+X₈ ∧ 2 ≤ X₄+X₇ ∧ 2 ≤ X₄+X₈ ∧ 2 ≤ X₆ ∧ 2+X₆ ≤ X₁₁ ∧ 2 ≤ X₇+X₈ ∧ 3 ≤ X₀+X₆ ∧ 3 ≤ X₄+X₆ ∧ 3 ≤ X₆+X₇ ∧ 3 ≤ X₆+X₈ ∧ 3+X₆ ≤ X₁₀ ∧ 3+X₇ ≤ X₁₁ ∧ 3+X₈ ≤ X₁₁ ∧ 4+X₇ ≤ X₁₀ ∧ 4+X₈ ≤ X₁₀ ∧ 4 ≤ X₁₁ ∧ 5 ≤ X₀+X₁₁ ∧ 5 ≤ X₄+X₁₁ ∧ 5 ≤ X₇+X₁₁ ∧ 5 ≤ X₈+X₁₁ ∧ 5 ≤ X₁₀ ∧ 6 ≤ X₀+X₁₀ ∧ 6 ≤ X₄+X₁₀ ∧ 6 ≤ X₆+X₁₁ ∧ 6 ≤ X₇+X₁₀ ∧ 6 ≤ X₈+X₁₀ ∧ 7 ≤ X₆+X₁₀ ∧ 9 ≤ X₁₀+X₁₁ ∧ X₇ ≤ X₈
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
p = 1
t₇₆ ∈ g₇₅
τ = X₆ ≤ 1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
p = 1
t₂ ∈ g₁
Use classical time bound for entry point (g₂₁:eval_rank2_8→[t₂₂:1:eval_rank2_bb1_in],eval_rank2_bb1_in)
Use expected size bounds for entry point (g₅₉:eval_rank2_26→[t₆₀:1:eval_rank2_27],eval_rank2_27)
Use classical time bound for entry point (g₅₉:eval_rank2_26→[t₆₀:1:eval_rank2_27],eval_rank2_27)
Use classical time bound for entry point (g₆₁:eval_rank2_27→[t₆₂:1:eval_rank2_bb3_in],eval_rank2_bb3_in)
Run classical analysis on SCC: [eval_rank2_bb9_in]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:76⋅X₅⋅X₅+106⋅X₅+25 {O(n^2)}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: 8⋅X₅⋅X₅+7⋅X₅+1 {O(n^2)}
g₂₅: 1 {O(1)}
g₂₇: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₂₉: 2⋅X₅ {O(n)}
g₃₁: 16⋅X₅⋅X₅+10⋅X₅+2 {O(n^2)}
g₃₃: 2⋅X₅+1 {O(n)}
g₃₅: 4⋅X₅ {O(n)}
g₃₇: 2⋅X₅+1 {O(n)}
g₃₉: 2⋅X₅+1 {O(n)}
g₄₁: 2⋅X₅ {O(n)}
g₄₃: 6⋅X₅ {O(n)}
g₄₅: 12⋅X₅ {O(n)}
g₄₇: 4⋅X₅ {O(n)}
g₄₉: 2⋅X₅+1 {O(n)}
g₅₁: 2⋅X₅ {O(n)}
g₅₃: 2⋅X₅ {O(n)}
g₅₅: 3⋅X₅+2 {O(n)}
g₅₇: 4⋅X₅ {O(n)}
g₅₉: 2⋅X₅ {O(n)}
g₆₁: 2⋅X₅ {O(n)}
g₆₃: 4⋅X₅⋅X₅ {O(n^2)}
g₆₅: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₆₇: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₆₉: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₁: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₃: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
(g₇,eval_rank2_2), X₀: X₀ {O(n)}
(g₇,eval_rank2_2), X₁: X₁ {O(n)}
(g₇,eval_rank2_2), X₂: X₂ {O(n)}
(g₇,eval_rank2_2), X₃: X₃ {O(n)}
(g₇,eval_rank2_2), X₄: X₄ {O(n)}
(g₇,eval_rank2_2), X₅: X₅ {O(n)}
(g₇,eval_rank2_2), X₆: X₆ {O(n)}
(g₇,eval_rank2_2), X₇: X₇ {O(n)}
(g₇,eval_rank2_2), X₈: X₈ {O(n)}
(g₇,eval_rank2_2), X₉: X₉ {O(n)}
(g₇,eval_rank2_2), X₁₀: X₁₀ {O(n)}
(g₇,eval_rank2_2), X₁₁: X₁₁ {O(n)}
(g₉,eval_rank2_3), X₀: X₀ {O(n)}
(g₉,eval_rank2_3), X₁: X₁ {O(n)}
(g₉,eval_rank2_3), X₂: X₂ {O(n)}
(g₉,eval_rank2_3), X₃: X₃ {O(n)}
(g₉,eval_rank2_3), X₄: X₄ {O(n)}
(g₉,eval_rank2_3), X₅: X₅ {O(n)}
(g₉,eval_rank2_3), X₆: X₆ {O(n)}
(g₉,eval_rank2_3), X₇: X₇ {O(n)}
(g₉,eval_rank2_3), X₈: X₈ {O(n)}
(g₉,eval_rank2_3), X₉: X₉ {O(n)}
(g₉,eval_rank2_3), X₁₀: X₁₀ {O(n)}
(g₉,eval_rank2_3), X₁₁: X₁₁ {O(n)}
(g₁₁,eval_rank2_4), X₀: X₀ {O(n)}
(g₁₁,eval_rank2_4), X₁: X₁ {O(n)}
(g₁₁,eval_rank2_4), X₂: X₂ {O(n)}
(g₁₁,eval_rank2_4), X₃: X₃ {O(n)}
(g₁₁,eval_rank2_4), X₄: X₄ {O(n)}
(g₁₁,eval_rank2_4), X₅: X₅ {O(n)}
(g₁₁,eval_rank2_4), X₆: X₆ {O(n)}
(g₁₁,eval_rank2_4), X₇: X₇ {O(n)}
(g₁₁,eval_rank2_4), X₈: X₈ {O(n)}
(g₁₁,eval_rank2_4), X₉: X₉ {O(n)}
(g₁₁,eval_rank2_4), X₁₀: X₁₀ {O(n)}
(g₁₁,eval_rank2_4), X₁₁: X₁₁ {O(n)}
(g₁₃,eval_rank2_5), X₀: X₀ {O(n)}
(g₁₃,eval_rank2_5), X₁: X₁ {O(n)}
(g₁₃,eval_rank2_5), X₂: X₂ {O(n)}
(g₁₃,eval_rank2_5), X₃: X₃ {O(n)}
(g₁₃,eval_rank2_5), X₄: X₄ {O(n)}
(g₁₃,eval_rank2_5), X₅: X₅ {O(n)}
(g₁₃,eval_rank2_5), X₆: X₆ {O(n)}
(g₁₃,eval_rank2_5), X₇: X₇ {O(n)}
(g₁₃,eval_rank2_5), X₈: X₈ {O(n)}
(g₁₃,eval_rank2_5), X₉: X₉ {O(n)}
(g₁₃,eval_rank2_5), X₁₀: X₁₀ {O(n)}
(g₁₃,eval_rank2_5), X₁₁: X₁₁ {O(n)}
(g₁₅,eval_rank2_6), X₀: X₀ {O(n)}
(g₁₅,eval_rank2_6), X₁: X₁ {O(n)}
(g₁₅,eval_rank2_6), X₂: X₂ {O(n)}
(g₁₅,eval_rank2_6), X₃: X₃ {O(n)}
(g₁₅,eval_rank2_6), X₄: X₄ {O(n)}
(g₁₅,eval_rank2_6), X₅: X₅ {O(n)}
(g₁₅,eval_rank2_6), X₆: X₆ {O(n)}
(g₁₅,eval_rank2_6), X₇: X₇ {O(n)}
(g₁₅,eval_rank2_6), X₈: X₈ {O(n)}
(g₁₅,eval_rank2_6), X₉: X₉ {O(n)}
(g₁₅,eval_rank2_6), X₁₀: X₁₀ {O(n)}
(g₁₅,eval_rank2_6), X₁₁: X₁₁ {O(n)}
(g₁₇,eval_rank2_7), X₀: X₀ {O(n)}
(g₁₇,eval_rank2_7), X₁: X₁ {O(n)}
(g₁₇,eval_rank2_7), X₂: X₂ {O(n)}
(g₁₇,eval_rank2_7), X₃: X₃ {O(n)}
(g₁₇,eval_rank2_7), X₄: X₄ {O(n)}
(g₁₇,eval_rank2_7), X₅: X₅ {O(n)}
(g₁₇,eval_rank2_7), X₆: X₆ {O(n)}
(g₁₇,eval_rank2_7), X₇: X₇ {O(n)}
(g₁₇,eval_rank2_7), X₈: X₈ {O(n)}
(g₁₇,eval_rank2_7), X₉: X₉ {O(n)}
(g₁₇,eval_rank2_7), X₁₀: X₁₀ {O(n)}
(g₁₇,eval_rank2_7), X₁₁: X₁₁ {O(n)}
(g₁₉,eval_rank2_8), X₀: X₀ {O(n)}
(g₁₉,eval_rank2_8), X₁: X₁ {O(n)}
(g₁₉,eval_rank2_8), X₂: X₂ {O(n)}
(g₁₉,eval_rank2_8), X₃: X₃ {O(n)}
(g₁₉,eval_rank2_8), X₄: X₄ {O(n)}
(g₁₉,eval_rank2_8), X₅: X₅ {O(n)}
(g₁₉,eval_rank2_8), X₆: X₆ {O(n)}
(g₁₉,eval_rank2_8), X₇: X₇ {O(n)}
(g₁₉,eval_rank2_8), X₈: X₈ {O(n)}
(g₁₉,eval_rank2_8), X₉: X₉ {O(n)}
(g₁₉,eval_rank2_8), X₁₀: X₁₀ {O(n)}
(g₁₉,eval_rank2_8), X₁₁: X₁₁ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₀: X₀ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁: X₁ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₂: X₂ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₃: X₃ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₄: X₄ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₅: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₆: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₇: X₇ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₈: X₈ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₉: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁₀: X₁₀ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁₁: X₁₁ {O(n)}
(g₂₃,eval_rank2_bb2_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₅: X₅ {O(n)}
(g₂₃,eval_rank2_bb2_in), X₆: 4⋅X₅+2 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₇: 8⋅X₅+X₇+4 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₁₀+6 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+2⋅X₁+74⋅X₅+12 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₅: 2⋅X₅ {O(n)}
(g₂₅,eval_rank2_bb9_in), X₆: 5⋅X₅+2 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₇: 8⋅X₅+X₇+4 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₈: 2⋅X₈+8⋅X₅+4 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+38⋅X₅+6 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₁₀+6 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+2⋅X₁₁+24 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₅: X₅ {O(n)}
(g₂₇,eval_rank2_bb3_in), X₆: 4⋅X₅+2 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₇: 4⋅X₅+2 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₅: X₅ {O(n)}
(g₂₉,eval_rank2_bb4_in), X₆: 4⋅X₅+2 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₇: 4⋅X₅+2 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₂: 2⋅X₂+8⋅X₅+4 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₃: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+2⋅X₃+74⋅X₅+12 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₅: X₅ {O(n)}
(g₃₁,eval_rank2__critedge_in), X₆: 8⋅X₅+4 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₇: 4⋅X₅+2 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₉: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₃,eval_rank2_14), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₃,eval_rank2_14), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₃,eval_rank2_14), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₃,eval_rank2_14), X₅: X₅ {O(n)}
(g₃₃,eval_rank2_14), X₆: 4⋅X₅+2 {O(n)}
(g₃₃,eval_rank2_14), X₇: 4⋅X₅+2 {O(n)}
(g₃₃,eval_rank2_14), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₃,eval_rank2_14), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₃,eval_rank2_14), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₃,eval_rank2_14), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₅,eval_rank2_15), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₅,eval_rank2_15), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₅,eval_rank2_15), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₅,eval_rank2_15), X₅: X₅ {O(n)}
(g₃₅,eval_rank2_15), X₆: 4⋅X₅+2 {O(n)}
(g₃₅,eval_rank2_15), X₇: 4⋅X₅+2 {O(n)}
(g₃₅,eval_rank2_15), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₅,eval_rank2_15), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₅,eval_rank2_15), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₅,eval_rank2_15), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₅: X₅ {O(n)}
(g₃₇,eval_rank2_bb5_in), X₆: 4⋅X₅+2 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₇: 4⋅X₅+2 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₅: X₅ {O(n)}
(g₃₉,eval_rank2__critedge_in), X₆: 4⋅X₅+2 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₇: 4⋅X₅+2 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₅: X₅ {O(n)}
(g₄₁,eval_rank2_bb6_in), X₆: 4⋅X₅+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₇: 4⋅X₅+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₈: 4⋅X₅+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₅: X₅ {O(n)}
(g₄₃,eval_rank2_bb7_in), X₆: 4⋅X₅+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₇: 4⋅X₅+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₈: 4⋅X₅+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+2⋅X₁+24 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₅: X₅ {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₆: 4⋅X₅+2 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₇: 8⋅X₅+4 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₈: 4⋅X₅+2 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₁₀: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₇,eval_rank2_20), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₇,eval_rank2_20), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₅: X₅ {O(n)}
(g₄₇,eval_rank2_20), X₆: 4⋅X₅+2 {O(n)}
(g₄₇,eval_rank2_20), X₇: 4⋅X₅+2 {O(n)}
(g₄₇,eval_rank2_20), X₈: 4⋅X₅+2 {O(n)}
(g₄₇,eval_rank2_20), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₉,eval_rank2_21), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₉,eval_rank2_21), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₅: X₅ {O(n)}
(g₄₉,eval_rank2_21), X₆: 4⋅X₅+2 {O(n)}
(g₄₉,eval_rank2_21), X₇: 4⋅X₅+2 {O(n)}
(g₄₉,eval_rank2_21), X₈: 4⋅X₅+2 {O(n)}
(g₄₉,eval_rank2_21), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₅: X₅ {O(n)}
(g₅₁,eval_rank2_bb8_in), X₆: 4⋅X₅+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₇: 4⋅X₅+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₈: 4⋅X₅+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₅: X₅ {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₆: 4⋅X₅+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₇: 4⋅X₅+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₈: 4⋅X₅+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₅: X₅ {O(n)}
(g₅₅,eval_rank2_bb6_in), X₆: 4⋅X₅+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₇: 4⋅X₅+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₈: 4⋅X₅+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₇,eval_rank2_26), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₅: X₅ {O(n)}
(g₅₇,eval_rank2_26), X₆: 4⋅X₅+2 {O(n)}
(g₅₇,eval_rank2_26), X₇: 12⋅X₅+6 {O(n)}
(g₅₇,eval_rank2_26), X₈: 4⋅X₅+2 {O(n)}
(g₅₇,eval_rank2_26), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₁₀: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₅₇,eval_rank2_26), X₁₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₅₉,eval_rank2_27), X₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₉,eval_rank2_27), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₉,eval_rank2_27), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₉,eval_rank2_27), X₅: X₅ {O(n)}
(g₅₉,eval_rank2_27), X₆: 4⋅X₅+2 {O(n)}
(g₅₉,eval_rank2_27), X₇: 12⋅X₅+6 {O(n)}
(g₅₉,eval_rank2_27), X₈: 4⋅X₅+2 {O(n)}
(g₅₉,eval_rank2_27), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₉,eval_rank2_27), X₁₀: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₅₉,eval_rank2_27), X₁₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₅: X₅ {O(n)}
(g₆₁,eval_rank2_bb3_in), X₆: 4⋅X₅+2 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₇: 4⋅X₅+2 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₈: 8⋅X₅+4 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+24 {O(n^3)}
(g₆₃,eval_rank2_27), X₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₃,eval_rank2_27), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₆₃,eval_rank2_27), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₆₃,eval_rank2_27), X₅: X₅ {O(n)}
(g₆₃,eval_rank2_27), X₆: 4⋅X₅+2 {O(n)}
(g₆₃,eval_rank2_27), X₇: 12⋅X₅+6 {O(n)}
(g₆₃,eval_rank2_27), X₈: 4⋅X₅+2 {O(n)}
(g₆₃,eval_rank2_27), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₃,eval_rank2_27), X₁₀: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₃,eval_rank2_27), X₁₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₆₅,eval_rank2_29), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₆₅,eval_rank2_29), X₂: 4⋅X₅+2 {O(n)}
(g₆₅,eval_rank2_29), X₃: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+3⋅X₃+18 {O(n^3)}
(g₆₅,eval_rank2_29), X₅: X₅ {O(n)}
(g₆₅,eval_rank2_29), X₆: 12⋅X₅+6 {O(n)}
(g₆₅,eval_rank2_29), X₇: 8⋅X₅+4 {O(n)}
(g₆₅,eval_rank2_29), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₆₅,eval_rank2_29), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₅,eval_rank2_29), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₅,eval_rank2_29), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₆₇,eval_rank2_30), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₆₇,eval_rank2_30), X₂: 4⋅X₅+2 {O(n)}
(g₆₇,eval_rank2_30), X₃: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+3⋅X₃+18 {O(n^3)}
(g₆₇,eval_rank2_30), X₅: X₅ {O(n)}
(g₆₇,eval_rank2_30), X₆: 12⋅X₅+6 {O(n)}
(g₆₇,eval_rank2_30), X₇: 8⋅X₅+4 {O(n)}
(g₆₇,eval_rank2_30), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₆₇,eval_rank2_30), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₇,eval_rank2_30), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₇,eval_rank2_30), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₆₉,eval_rank2_31), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₆₉,eval_rank2_31), X₂: 4⋅X₅+2 {O(n)}
(g₆₉,eval_rank2_31), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₉,eval_rank2_31), X₅: X₅ {O(n)}
(g₆₉,eval_rank2_31), X₆: 12⋅X₅+6 {O(n)}
(g₆₉,eval_rank2_31), X₇: 8⋅X₅+4 {O(n)}
(g₆₉,eval_rank2_31), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₆₉,eval_rank2_31), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₉,eval_rank2_31), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₉,eval_rank2_31), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₇₁,eval_rank2_32), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₇₁,eval_rank2_32), X₂: 4⋅X₅+2 {O(n)}
(g₇₁,eval_rank2_32), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₁,eval_rank2_32), X₅: X₅ {O(n)}
(g₇₁,eval_rank2_32), X₆: 12⋅X₅+6 {O(n)}
(g₇₁,eval_rank2_32), X₇: 8⋅X₅+4 {O(n)}
(g₇₁,eval_rank2_32), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₇₁,eval_rank2_32), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₇₁,eval_rank2_32), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₁,eval_rank2_32), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₂: 4⋅X₅+2 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₅: X₅ {O(n)}
(g₇₃,eval_rank2_bb1_in), X₆: 4⋅X₅+2 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₇: 8⋅X₅+4 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₇₅,eval_rank2_stop), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+2⋅X₁+74⋅X₅+12 {O(n^3)}
(g₇₅,eval_rank2_stop), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₇₅,eval_rank2_stop), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₇₅,eval_rank2_stop), X₅: 2⋅X₅ {O(n)}
(g₇₅,eval_rank2_stop), X₆: 5⋅X₅+2 {O(n)}
(g₇₅,eval_rank2_stop), X₇: 8⋅X₅+X₇+4 {O(n)}
(g₇₅,eval_rank2_stop), X₈: 2⋅X₈+8⋅X₅+4 {O(n)}
(g₇₅,eval_rank2_stop), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+38⋅X₅+6 {O(n^3)}
(g₇₅,eval_rank2_stop), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₁₀+6 {O(n^3)}
(g₇₅,eval_rank2_stop), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+2⋅X₁₁+24 {O(n^3)}
Run probabilistic analysis on SCC: [eval_rank2_bb9_in]
Run classical analysis on SCC: [eval_rank2_stop]
Classical Approximation after Lifting Classical Results
All Bounds
Timebounds
Overall timebound:76⋅X₅⋅X₅+106⋅X₅+25 {O(n^2)}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: 8⋅X₅⋅X₅+7⋅X₅+1 {O(n^2)}
g₂₅: 1 {O(1)}
g₂₇: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₂₉: 2⋅X₅ {O(n)}
g₃₁: 16⋅X₅⋅X₅+10⋅X₅+2 {O(n^2)}
g₃₃: 2⋅X₅+1 {O(n)}
g₃₅: 4⋅X₅ {O(n)}
g₃₇: 2⋅X₅+1 {O(n)}
g₃₉: 2⋅X₅+1 {O(n)}
g₄₁: 2⋅X₅ {O(n)}
g₄₃: 6⋅X₅ {O(n)}
g₄₅: 12⋅X₅ {O(n)}
g₄₇: 4⋅X₅ {O(n)}
g₄₉: 2⋅X₅+1 {O(n)}
g₅₁: 2⋅X₅ {O(n)}
g₅₃: 2⋅X₅ {O(n)}
g₅₅: 3⋅X₅+2 {O(n)}
g₅₇: 4⋅X₅ {O(n)}
g₅₉: 2⋅X₅ {O(n)}
g₆₁: 2⋅X₅ {O(n)}
g₆₃: 4⋅X₅⋅X₅ {O(n^2)}
g₆₅: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₆₇: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₆₉: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₁: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₃: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
g₁: inf {Infinity}
g₃: inf {Infinity}
g₅: inf {Infinity}
g₇: inf {Infinity}
g₉: inf {Infinity}
g₁₁: inf {Infinity}
g₁₃: inf {Infinity}
g₁₅: inf {Infinity}
g₁₇: inf {Infinity}
g₁₉: inf {Infinity}
g₂₁: inf {Infinity}
g₂₃: inf {Infinity}
g₂₅: inf {Infinity}
g₂₇: inf {Infinity}
g₂₉: inf {Infinity}
g₃₁: inf {Infinity}
g₃₃: inf {Infinity}
g₃₅: inf {Infinity}
g₃₇: inf {Infinity}
g₃₉: inf {Infinity}
g₄₁: inf {Infinity}
g₄₃: inf {Infinity}
g₄₅: inf {Infinity}
g₄₇: inf {Infinity}
g₄₉: inf {Infinity}
g₅₁: inf {Infinity}
g₅₃: inf {Infinity}
g₅₅: inf {Infinity}
g₅₇: inf {Infinity}
g₅₉: inf {Infinity}
g₆₁: inf {Infinity}
g₆₃: inf {Infinity}
g₆₅: inf {Infinity}
g₆₇: inf {Infinity}
g₆₉: inf {Infinity}
g₇₁: inf {Infinity}
g₇₃: inf {Infinity}
g₇₅: inf {Infinity}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
(g₇,eval_rank2_2), X₀: X₀ {O(n)}
(g₇,eval_rank2_2), X₁: X₁ {O(n)}
(g₇,eval_rank2_2), X₂: X₂ {O(n)}
(g₇,eval_rank2_2), X₃: X₃ {O(n)}
(g₇,eval_rank2_2), X₄: X₄ {O(n)}
(g₇,eval_rank2_2), X₅: X₅ {O(n)}
(g₇,eval_rank2_2), X₆: X₆ {O(n)}
(g₇,eval_rank2_2), X₇: X₇ {O(n)}
(g₇,eval_rank2_2), X₈: X₈ {O(n)}
(g₇,eval_rank2_2), X₉: X₉ {O(n)}
(g₇,eval_rank2_2), X₁₀: X₁₀ {O(n)}
(g₇,eval_rank2_2), X₁₁: X₁₁ {O(n)}
(g₉,eval_rank2_3), X₀: X₀ {O(n)}
(g₉,eval_rank2_3), X₁: X₁ {O(n)}
(g₉,eval_rank2_3), X₂: X₂ {O(n)}
(g₉,eval_rank2_3), X₃: X₃ {O(n)}
(g₉,eval_rank2_3), X₄: X₄ {O(n)}
(g₉,eval_rank2_3), X₅: X₅ {O(n)}
(g₉,eval_rank2_3), X₆: X₆ {O(n)}
(g₉,eval_rank2_3), X₇: X₇ {O(n)}
(g₉,eval_rank2_3), X₈: X₈ {O(n)}
(g₉,eval_rank2_3), X₉: X₉ {O(n)}
(g₉,eval_rank2_3), X₁₀: X₁₀ {O(n)}
(g₉,eval_rank2_3), X₁₁: X₁₁ {O(n)}
(g₁₁,eval_rank2_4), X₀: X₀ {O(n)}
(g₁₁,eval_rank2_4), X₁: X₁ {O(n)}
(g₁₁,eval_rank2_4), X₂: X₂ {O(n)}
(g₁₁,eval_rank2_4), X₃: X₃ {O(n)}
(g₁₁,eval_rank2_4), X₄: X₄ {O(n)}
(g₁₁,eval_rank2_4), X₅: X₅ {O(n)}
(g₁₁,eval_rank2_4), X₆: X₆ {O(n)}
(g₁₁,eval_rank2_4), X₇: X₇ {O(n)}
(g₁₁,eval_rank2_4), X₈: X₈ {O(n)}
(g₁₁,eval_rank2_4), X₉: X₉ {O(n)}
(g₁₁,eval_rank2_4), X₁₀: X₁₀ {O(n)}
(g₁₁,eval_rank2_4), X₁₁: X₁₁ {O(n)}
(g₁₃,eval_rank2_5), X₀: X₀ {O(n)}
(g₁₃,eval_rank2_5), X₁: X₁ {O(n)}
(g₁₃,eval_rank2_5), X₂: X₂ {O(n)}
(g₁₃,eval_rank2_5), X₃: X₃ {O(n)}
(g₁₃,eval_rank2_5), X₄: X₄ {O(n)}
(g₁₃,eval_rank2_5), X₅: X₅ {O(n)}
(g₁₃,eval_rank2_5), X₆: X₆ {O(n)}
(g₁₃,eval_rank2_5), X₇: X₇ {O(n)}
(g₁₃,eval_rank2_5), X₈: X₈ {O(n)}
(g₁₃,eval_rank2_5), X₉: X₉ {O(n)}
(g₁₃,eval_rank2_5), X₁₀: X₁₀ {O(n)}
(g₁₃,eval_rank2_5), X₁₁: X₁₁ {O(n)}
(g₁₅,eval_rank2_6), X₀: X₀ {O(n)}
(g₁₅,eval_rank2_6), X₁: X₁ {O(n)}
(g₁₅,eval_rank2_6), X₂: X₂ {O(n)}
(g₁₅,eval_rank2_6), X₃: X₃ {O(n)}
(g₁₅,eval_rank2_6), X₄: X₄ {O(n)}
(g₁₅,eval_rank2_6), X₅: X₅ {O(n)}
(g₁₅,eval_rank2_6), X₆: X₆ {O(n)}
(g₁₅,eval_rank2_6), X₇: X₇ {O(n)}
(g₁₅,eval_rank2_6), X₈: X₈ {O(n)}
(g₁₅,eval_rank2_6), X₉: X₉ {O(n)}
(g₁₅,eval_rank2_6), X₁₀: X₁₀ {O(n)}
(g₁₅,eval_rank2_6), X₁₁: X₁₁ {O(n)}
(g₁₇,eval_rank2_7), X₀: X₀ {O(n)}
(g₁₇,eval_rank2_7), X₁: X₁ {O(n)}
(g₁₇,eval_rank2_7), X₂: X₂ {O(n)}
(g₁₇,eval_rank2_7), X₃: X₃ {O(n)}
(g₁₇,eval_rank2_7), X₄: X₄ {O(n)}
(g₁₇,eval_rank2_7), X₅: X₅ {O(n)}
(g₁₇,eval_rank2_7), X₆: X₆ {O(n)}
(g₁₇,eval_rank2_7), X₇: X₇ {O(n)}
(g₁₇,eval_rank2_7), X₈: X₈ {O(n)}
(g₁₇,eval_rank2_7), X₉: X₉ {O(n)}
(g₁₇,eval_rank2_7), X₁₀: X₁₀ {O(n)}
(g₁₇,eval_rank2_7), X₁₁: X₁₁ {O(n)}
(g₁₉,eval_rank2_8), X₀: X₀ {O(n)}
(g₁₉,eval_rank2_8), X₁: X₁ {O(n)}
(g₁₉,eval_rank2_8), X₂: X₂ {O(n)}
(g₁₉,eval_rank2_8), X₃: X₃ {O(n)}
(g₁₉,eval_rank2_8), X₄: X₄ {O(n)}
(g₁₉,eval_rank2_8), X₅: X₅ {O(n)}
(g₁₉,eval_rank2_8), X₆: X₆ {O(n)}
(g₁₉,eval_rank2_8), X₇: X₇ {O(n)}
(g₁₉,eval_rank2_8), X₈: X₈ {O(n)}
(g₁₉,eval_rank2_8), X₉: X₉ {O(n)}
(g₁₉,eval_rank2_8), X₁₀: X₁₀ {O(n)}
(g₁₉,eval_rank2_8), X₁₁: X₁₁ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₀: X₀ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁: X₁ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₂: X₂ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₃: X₃ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₄: X₄ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₅: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₆: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₇: X₇ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₈: X₈ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₉: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁₀: X₁₀ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁₁: X₁₁ {O(n)}
(g₂₃,eval_rank2_bb2_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₅: X₅ {O(n)}
(g₂₃,eval_rank2_bb2_in), X₆: 4⋅X₅+2 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₇: 8⋅X₅+X₇+4 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₁₀+6 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+2⋅X₁+74⋅X₅+12 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₅: 2⋅X₅ {O(n)}
(g₂₅,eval_rank2_bb9_in), X₆: 5⋅X₅+2 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₇: 8⋅X₅+X₇+4 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₈: 2⋅X₈+8⋅X₅+4 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+38⋅X₅+6 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₁₀+6 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+2⋅X₁₁+24 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₅: X₅ {O(n)}
(g₂₇,eval_rank2_bb3_in), X₆: 4⋅X₅+2 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₇: 4⋅X₅+2 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₅: X₅ {O(n)}
(g₂₉,eval_rank2_bb4_in), X₆: 4⋅X₅+2 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₇: 4⋅X₅+2 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₂: 2⋅X₂+8⋅X₅+4 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₃: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+2⋅X₃+74⋅X₅+12 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₅: X₅ {O(n)}
(g₃₁,eval_rank2__critedge_in), X₆: 8⋅X₅+4 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₇: 4⋅X₅+2 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₉: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₃,eval_rank2_14), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₃,eval_rank2_14), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₃,eval_rank2_14), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₃,eval_rank2_14), X₅: X₅ {O(n)}
(g₃₃,eval_rank2_14), X₆: 4⋅X₅+2 {O(n)}
(g₃₃,eval_rank2_14), X₇: 4⋅X₅+2 {O(n)}
(g₃₃,eval_rank2_14), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₃,eval_rank2_14), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₃,eval_rank2_14), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₃,eval_rank2_14), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₅,eval_rank2_15), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₅,eval_rank2_15), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₅,eval_rank2_15), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₅,eval_rank2_15), X₅: X₅ {O(n)}
(g₃₅,eval_rank2_15), X₆: 4⋅X₅+2 {O(n)}
(g₃₅,eval_rank2_15), X₇: 4⋅X₅+2 {O(n)}
(g₃₅,eval_rank2_15), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₅,eval_rank2_15), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₅,eval_rank2_15), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₅,eval_rank2_15), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₅: X₅ {O(n)}
(g₃₇,eval_rank2_bb5_in), X₆: 4⋅X₅+2 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₇: 4⋅X₅+2 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₅: X₅ {O(n)}
(g₃₉,eval_rank2__critedge_in), X₆: 4⋅X₅+2 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₇: 4⋅X₅+2 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₅: X₅ {O(n)}
(g₄₁,eval_rank2_bb6_in), X₆: 4⋅X₅+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₇: 4⋅X₅+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₈: 4⋅X₅+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₅: X₅ {O(n)}
(g₄₃,eval_rank2_bb7_in), X₆: 4⋅X₅+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₇: 4⋅X₅+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₈: 4⋅X₅+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+2⋅X₁+24 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₅: X₅ {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₆: 4⋅X₅+2 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₇: 8⋅X₅+4 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₈: 4⋅X₅+2 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₁₀: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₇,eval_rank2_20), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₇,eval_rank2_20), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₅: X₅ {O(n)}
(g₄₇,eval_rank2_20), X₆: 4⋅X₅+2 {O(n)}
(g₄₇,eval_rank2_20), X₇: 4⋅X₅+2 {O(n)}
(g₄₇,eval_rank2_20), X₈: 4⋅X₅+2 {O(n)}
(g₄₇,eval_rank2_20), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₉,eval_rank2_21), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₉,eval_rank2_21), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₅: X₅ {O(n)}
(g₄₉,eval_rank2_21), X₆: 4⋅X₅+2 {O(n)}
(g₄₉,eval_rank2_21), X₇: 4⋅X₅+2 {O(n)}
(g₄₉,eval_rank2_21), X₈: 4⋅X₅+2 {O(n)}
(g₄₉,eval_rank2_21), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₅: X₅ {O(n)}
(g₅₁,eval_rank2_bb8_in), X₆: 4⋅X₅+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₇: 4⋅X₅+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₈: 4⋅X₅+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₅: X₅ {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₆: 4⋅X₅+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₇: 4⋅X₅+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₈: 4⋅X₅+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₅: X₅ {O(n)}
(g₅₅,eval_rank2_bb6_in), X₆: 4⋅X₅+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₇: 4⋅X₅+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₈: 4⋅X₅+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₇,eval_rank2_26), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₅: X₅ {O(n)}
(g₅₇,eval_rank2_26), X₆: 4⋅X₅+2 {O(n)}
(g₅₇,eval_rank2_26), X₇: 12⋅X₅+6 {O(n)}
(g₅₇,eval_rank2_26), X₈: 4⋅X₅+2 {O(n)}
(g₅₇,eval_rank2_26), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₁₀: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₅₇,eval_rank2_26), X₁₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₅₉,eval_rank2_27), X₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₉,eval_rank2_27), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₉,eval_rank2_27), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₉,eval_rank2_27), X₅: X₅ {O(n)}
(g₅₉,eval_rank2_27), X₆: 4⋅X₅+2 {O(n)}
(g₅₉,eval_rank2_27), X₇: 12⋅X₅+6 {O(n)}
(g₅₉,eval_rank2_27), X₈: 4⋅X₅+2 {O(n)}
(g₅₉,eval_rank2_27), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₉,eval_rank2_27), X₁₀: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₅₉,eval_rank2_27), X₁₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₅: X₅ {O(n)}
(g₆₁,eval_rank2_bb3_in), X₆: 4⋅X₅+2 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₇: 4⋅X₅+2 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₈: 8⋅X₅+4 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+24 {O(n^3)}
(g₆₃,eval_rank2_27), X₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₃,eval_rank2_27), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₆₃,eval_rank2_27), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₆₃,eval_rank2_27), X₅: X₅ {O(n)}
(g₆₃,eval_rank2_27), X₆: 4⋅X₅+2 {O(n)}
(g₆₃,eval_rank2_27), X₇: 12⋅X₅+6 {O(n)}
(g₆₃,eval_rank2_27), X₈: 4⋅X₅+2 {O(n)}
(g₆₃,eval_rank2_27), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₃,eval_rank2_27), X₁₀: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₃,eval_rank2_27), X₁₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₆₅,eval_rank2_29), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₆₅,eval_rank2_29), X₂: 4⋅X₅+2 {O(n)}
(g₆₅,eval_rank2_29), X₃: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+3⋅X₃+18 {O(n^3)}
(g₆₅,eval_rank2_29), X₅: X₅ {O(n)}
(g₆₅,eval_rank2_29), X₆: 12⋅X₅+6 {O(n)}
(g₆₅,eval_rank2_29), X₇: 8⋅X₅+4 {O(n)}
(g₆₅,eval_rank2_29), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₆₅,eval_rank2_29), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₅,eval_rank2_29), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₅,eval_rank2_29), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₆₇,eval_rank2_30), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₆₇,eval_rank2_30), X₂: 4⋅X₅+2 {O(n)}
(g₆₇,eval_rank2_30), X₃: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+3⋅X₃+18 {O(n^3)}
(g₆₇,eval_rank2_30), X₅: X₅ {O(n)}
(g₆₇,eval_rank2_30), X₆: 12⋅X₅+6 {O(n)}
(g₆₇,eval_rank2_30), X₇: 8⋅X₅+4 {O(n)}
(g₆₇,eval_rank2_30), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₆₇,eval_rank2_30), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₇,eval_rank2_30), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₇,eval_rank2_30), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₆₉,eval_rank2_31), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₆₉,eval_rank2_31), X₂: 4⋅X₅+2 {O(n)}
(g₆₉,eval_rank2_31), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₉,eval_rank2_31), X₅: X₅ {O(n)}
(g₆₉,eval_rank2_31), X₆: 12⋅X₅+6 {O(n)}
(g₆₉,eval_rank2_31), X₇: 8⋅X₅+4 {O(n)}
(g₆₉,eval_rank2_31), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₆₉,eval_rank2_31), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₉,eval_rank2_31), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₉,eval_rank2_31), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₇₁,eval_rank2_32), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₇₁,eval_rank2_32), X₂: 4⋅X₅+2 {O(n)}
(g₇₁,eval_rank2_32), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₁,eval_rank2_32), X₅: X₅ {O(n)}
(g₇₁,eval_rank2_32), X₆: 12⋅X₅+6 {O(n)}
(g₇₁,eval_rank2_32), X₇: 8⋅X₅+4 {O(n)}
(g₇₁,eval_rank2_32), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₇₁,eval_rank2_32), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₇₁,eval_rank2_32), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₁,eval_rank2_32), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₂: 4⋅X₅+2 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₅: X₅ {O(n)}
(g₇₃,eval_rank2_bb1_in), X₆: 4⋅X₅+2 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₇: 8⋅X₅+4 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₇₅,eval_rank2_stop), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+2⋅X₁+74⋅X₅+12 {O(n^3)}
(g₇₅,eval_rank2_stop), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₇₅,eval_rank2_stop), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₇₅,eval_rank2_stop), X₅: 2⋅X₅ {O(n)}
(g₇₅,eval_rank2_stop), X₆: 5⋅X₅+2 {O(n)}
(g₇₅,eval_rank2_stop), X₇: 8⋅X₅+X₇+4 {O(n)}
(g₇₅,eval_rank2_stop), X₈: 2⋅X₈+8⋅X₅+4 {O(n)}
(g₇₅,eval_rank2_stop), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+38⋅X₅+6 {O(n^3)}
(g₇₅,eval_rank2_stop), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₁₀+6 {O(n^3)}
(g₇₅,eval_rank2_stop), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+2⋅X₁₁+24 {O(n^3)}
Run probabilistic analysis on SCC: [eval_rank2_stop]
Results of Probabilistic Analysis
All Bounds
Timebounds
Overall timebound:76⋅X₅⋅X₅+106⋅X₅+25 {O(n^2)}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: 8⋅X₅⋅X₅+7⋅X₅+1 {O(n^2)}
g₂₅: 1 {O(1)}
g₂₇: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₂₉: 2⋅X₅ {O(n)}
g₃₁: 16⋅X₅⋅X₅+10⋅X₅+2 {O(n^2)}
g₃₃: 2⋅X₅+1 {O(n)}
g₃₅: 4⋅X₅ {O(n)}
g₃₇: 2⋅X₅+1 {O(n)}
g₃₉: 2⋅X₅+1 {O(n)}
g₄₁: 2⋅X₅ {O(n)}
g₄₃: 6⋅X₅ {O(n)}
g₄₅: 12⋅X₅ {O(n)}
g₄₇: 4⋅X₅ {O(n)}
g₄₉: 2⋅X₅+1 {O(n)}
g₅₁: 2⋅X₅ {O(n)}
g₅₃: 2⋅X₅ {O(n)}
g₅₅: 3⋅X₅+2 {O(n)}
g₅₇: 4⋅X₅ {O(n)}
g₅₉: 2⋅X₅ {O(n)}
g₆₁: 2⋅X₅ {O(n)}
g₆₃: 4⋅X₅⋅X₅ {O(n^2)}
g₆₅: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₆₇: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₆₉: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₁: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₃: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₅: 1 {O(1)}
Costbounds
Overall costbound: 76⋅X₅⋅X₅+106⋅X₅+25 {O(n^2)}
g₁: 1 {O(1)}
g₃: 1 {O(1)}
g₅: 1 {O(1)}
g₇: 1 {O(1)}
g₉: 1 {O(1)}
g₁₁: 1 {O(1)}
g₁₃: 1 {O(1)}
g₁₅: 1 {O(1)}
g₁₇: 1 {O(1)}
g₁₉: 1 {O(1)}
g₂₁: 1 {O(1)}
g₂₃: 8⋅X₅⋅X₅+7⋅X₅+1 {O(n^2)}
g₂₅: 1 {O(1)}
g₂₇: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₂₉: 2⋅X₅ {O(n)}
g₃₁: 16⋅X₅⋅X₅+10⋅X₅+2 {O(n^2)}
g₃₃: 2⋅X₅+1 {O(n)}
g₃₅: 4⋅X₅ {O(n)}
g₃₇: 2⋅X₅+1 {O(n)}
g₃₉: 2⋅X₅+1 {O(n)}
g₄₁: 2⋅X₅ {O(n)}
g₄₃: 6⋅X₅ {O(n)}
g₄₅: 12⋅X₅ {O(n)}
g₄₇: 4⋅X₅ {O(n)}
g₄₉: 2⋅X₅+1 {O(n)}
g₅₁: 2⋅X₅ {O(n)}
g₅₃: 2⋅X₅ {O(n)}
g₅₅: 3⋅X₅+2 {O(n)}
g₅₇: 4⋅X₅ {O(n)}
g₅₉: 2⋅X₅ {O(n)}
g₆₁: 2⋅X₅ {O(n)}
g₆₃: 4⋅X₅⋅X₅ {O(n^2)}
g₆₅: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₆₇: 8⋅X₅⋅X₅+7⋅X₅ {O(n^2)}
g₆₉: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₁: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₃: 8⋅X₅⋅X₅+5⋅X₅+1 {O(n^2)}
g₇₅: 1 {O(1)}
Sizebounds
(g₁,eval_rank2_bb0_in), X₀: X₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁: X₁ {O(n)}
(g₁,eval_rank2_bb0_in), X₂: X₂ {O(n)}
(g₁,eval_rank2_bb0_in), X₃: X₃ {O(n)}
(g₁,eval_rank2_bb0_in), X₄: X₄ {O(n)}
(g₁,eval_rank2_bb0_in), X₅: X₅ {O(n)}
(g₁,eval_rank2_bb0_in), X₆: X₆ {O(n)}
(g₁,eval_rank2_bb0_in), X₇: X₇ {O(n)}
(g₁,eval_rank2_bb0_in), X₈: X₈ {O(n)}
(g₁,eval_rank2_bb0_in), X₉: X₉ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₀: X₁₀ {O(n)}
(g₁,eval_rank2_bb0_in), X₁₁: X₁₁ {O(n)}
(g₃,eval_rank2_0), X₀: X₀ {O(n)}
(g₃,eval_rank2_0), X₁: X₁ {O(n)}
(g₃,eval_rank2_0), X₂: X₂ {O(n)}
(g₃,eval_rank2_0), X₃: X₃ {O(n)}
(g₃,eval_rank2_0), X₄: X₄ {O(n)}
(g₃,eval_rank2_0), X₅: X₅ {O(n)}
(g₃,eval_rank2_0), X₆: X₆ {O(n)}
(g₃,eval_rank2_0), X₇: X₇ {O(n)}
(g₃,eval_rank2_0), X₈: X₈ {O(n)}
(g₃,eval_rank2_0), X₉: X₉ {O(n)}
(g₃,eval_rank2_0), X₁₀: X₁₀ {O(n)}
(g₃,eval_rank2_0), X₁₁: X₁₁ {O(n)}
(g₅,eval_rank2_1), X₀: X₀ {O(n)}
(g₅,eval_rank2_1), X₁: X₁ {O(n)}
(g₅,eval_rank2_1), X₂: X₂ {O(n)}
(g₅,eval_rank2_1), X₃: X₃ {O(n)}
(g₅,eval_rank2_1), X₄: X₄ {O(n)}
(g₅,eval_rank2_1), X₅: X₅ {O(n)}
(g₅,eval_rank2_1), X₆: X₆ {O(n)}
(g₅,eval_rank2_1), X₇: X₇ {O(n)}
(g₅,eval_rank2_1), X₈: X₈ {O(n)}
(g₅,eval_rank2_1), X₉: X₉ {O(n)}
(g₅,eval_rank2_1), X₁₀: X₁₀ {O(n)}
(g₅,eval_rank2_1), X₁₁: X₁₁ {O(n)}
(g₇,eval_rank2_2), X₀: X₀ {O(n)}
(g₇,eval_rank2_2), X₁: X₁ {O(n)}
(g₇,eval_rank2_2), X₂: X₂ {O(n)}
(g₇,eval_rank2_2), X₃: X₃ {O(n)}
(g₇,eval_rank2_2), X₄: X₄ {O(n)}
(g₇,eval_rank2_2), X₅: X₅ {O(n)}
(g₇,eval_rank2_2), X₆: X₆ {O(n)}
(g₇,eval_rank2_2), X₇: X₇ {O(n)}
(g₇,eval_rank2_2), X₈: X₈ {O(n)}
(g₇,eval_rank2_2), X₉: X₉ {O(n)}
(g₇,eval_rank2_2), X₁₀: X₁₀ {O(n)}
(g₇,eval_rank2_2), X₁₁: X₁₁ {O(n)}
(g₉,eval_rank2_3), X₀: X₀ {O(n)}
(g₉,eval_rank2_3), X₁: X₁ {O(n)}
(g₉,eval_rank2_3), X₂: X₂ {O(n)}
(g₉,eval_rank2_3), X₃: X₃ {O(n)}
(g₉,eval_rank2_3), X₄: X₄ {O(n)}
(g₉,eval_rank2_3), X₅: X₅ {O(n)}
(g₉,eval_rank2_3), X₆: X₆ {O(n)}
(g₉,eval_rank2_3), X₇: X₇ {O(n)}
(g₉,eval_rank2_3), X₈: X₈ {O(n)}
(g₉,eval_rank2_3), X₉: X₉ {O(n)}
(g₉,eval_rank2_3), X₁₀: X₁₀ {O(n)}
(g₉,eval_rank2_3), X₁₁: X₁₁ {O(n)}
(g₁₁,eval_rank2_4), X₀: X₀ {O(n)}
(g₁₁,eval_rank2_4), X₁: X₁ {O(n)}
(g₁₁,eval_rank2_4), X₂: X₂ {O(n)}
(g₁₁,eval_rank2_4), X₃: X₃ {O(n)}
(g₁₁,eval_rank2_4), X₄: X₄ {O(n)}
(g₁₁,eval_rank2_4), X₅: X₅ {O(n)}
(g₁₁,eval_rank2_4), X₆: X₆ {O(n)}
(g₁₁,eval_rank2_4), X₇: X₇ {O(n)}
(g₁₁,eval_rank2_4), X₈: X₈ {O(n)}
(g₁₁,eval_rank2_4), X₉: X₉ {O(n)}
(g₁₁,eval_rank2_4), X₁₀: X₁₀ {O(n)}
(g₁₁,eval_rank2_4), X₁₁: X₁₁ {O(n)}
(g₁₃,eval_rank2_5), X₀: X₀ {O(n)}
(g₁₃,eval_rank2_5), X₁: X₁ {O(n)}
(g₁₃,eval_rank2_5), X₂: X₂ {O(n)}
(g₁₃,eval_rank2_5), X₃: X₃ {O(n)}
(g₁₃,eval_rank2_5), X₄: X₄ {O(n)}
(g₁₃,eval_rank2_5), X₅: X₅ {O(n)}
(g₁₃,eval_rank2_5), X₆: X₆ {O(n)}
(g₁₃,eval_rank2_5), X₇: X₇ {O(n)}
(g₁₃,eval_rank2_5), X₈: X₈ {O(n)}
(g₁₃,eval_rank2_5), X₉: X₉ {O(n)}
(g₁₃,eval_rank2_5), X₁₀: X₁₀ {O(n)}
(g₁₃,eval_rank2_5), X₁₁: X₁₁ {O(n)}
(g₁₅,eval_rank2_6), X₀: X₀ {O(n)}
(g₁₅,eval_rank2_6), X₁: X₁ {O(n)}
(g₁₅,eval_rank2_6), X₂: X₂ {O(n)}
(g₁₅,eval_rank2_6), X₃: X₃ {O(n)}
(g₁₅,eval_rank2_6), X₄: X₄ {O(n)}
(g₁₅,eval_rank2_6), X₅: X₅ {O(n)}
(g₁₅,eval_rank2_6), X₆: X₆ {O(n)}
(g₁₅,eval_rank2_6), X₇: X₇ {O(n)}
(g₁₅,eval_rank2_6), X₈: X₈ {O(n)}
(g₁₅,eval_rank2_6), X₉: X₉ {O(n)}
(g₁₅,eval_rank2_6), X₁₀: X₁₀ {O(n)}
(g₁₅,eval_rank2_6), X₁₁: X₁₁ {O(n)}
(g₁₇,eval_rank2_7), X₀: X₀ {O(n)}
(g₁₇,eval_rank2_7), X₁: X₁ {O(n)}
(g₁₇,eval_rank2_7), X₂: X₂ {O(n)}
(g₁₇,eval_rank2_7), X₃: X₃ {O(n)}
(g₁₇,eval_rank2_7), X₄: X₄ {O(n)}
(g₁₇,eval_rank2_7), X₅: X₅ {O(n)}
(g₁₇,eval_rank2_7), X₆: X₆ {O(n)}
(g₁₇,eval_rank2_7), X₇: X₇ {O(n)}
(g₁₇,eval_rank2_7), X₈: X₈ {O(n)}
(g₁₇,eval_rank2_7), X₉: X₉ {O(n)}
(g₁₇,eval_rank2_7), X₁₀: X₁₀ {O(n)}
(g₁₇,eval_rank2_7), X₁₁: X₁₁ {O(n)}
(g₁₉,eval_rank2_8), X₀: X₀ {O(n)}
(g₁₉,eval_rank2_8), X₁: X₁ {O(n)}
(g₁₉,eval_rank2_8), X₂: X₂ {O(n)}
(g₁₉,eval_rank2_8), X₃: X₃ {O(n)}
(g₁₉,eval_rank2_8), X₄: X₄ {O(n)}
(g₁₉,eval_rank2_8), X₅: X₅ {O(n)}
(g₁₉,eval_rank2_8), X₆: X₆ {O(n)}
(g₁₉,eval_rank2_8), X₇: X₇ {O(n)}
(g₁₉,eval_rank2_8), X₈: X₈ {O(n)}
(g₁₉,eval_rank2_8), X₉: X₉ {O(n)}
(g₁₉,eval_rank2_8), X₁₀: X₁₀ {O(n)}
(g₁₉,eval_rank2_8), X₁₁: X₁₁ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₀: X₀ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁: X₁ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₂: X₂ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₃: X₃ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₄: X₄ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₅: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₆: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₇: X₇ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₈: X₈ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₉: X₅ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁₀: X₁₀ {O(n)}
(g₂₁,eval_rank2_bb1_in), X₁₁: X₁₁ {O(n)}
(g₂₃,eval_rank2_bb2_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₅: X₅ {O(n)}
(g₂₃,eval_rank2_bb2_in), X₆: 4⋅X₅+2 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₇: 8⋅X₅+X₇+4 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₂₃,eval_rank2_bb2_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₁₀+6 {O(n^3)}
(g₂₃,eval_rank2_bb2_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+2⋅X₁+74⋅X₅+12 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₅: 2⋅X₅ {O(n)}
(g₂₅,eval_rank2_bb9_in), X₆: 5⋅X₅+2 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₇: 8⋅X₅+X₇+4 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₈: 2⋅X₈+8⋅X₅+4 {O(n)}
(g₂₅,eval_rank2_bb9_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+38⋅X₅+6 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₁₀+6 {O(n^3)}
(g₂₅,eval_rank2_bb9_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+2⋅X₁₁+24 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₅: X₅ {O(n)}
(g₂₇,eval_rank2_bb3_in), X₆: 4⋅X₅+2 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₇: 4⋅X₅+2 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₂₇,eval_rank2_bb3_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₇,eval_rank2_bb3_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₅: X₅ {O(n)}
(g₂₉,eval_rank2_bb4_in), X₆: 4⋅X₅+2 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₇: 4⋅X₅+2 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₂₉,eval_rank2_bb4_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₂₉,eval_rank2_bb4_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₂: 2⋅X₂+8⋅X₅+4 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₃: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+2⋅X₃+74⋅X₅+12 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₅: X₅ {O(n)}
(g₃₁,eval_rank2__critedge_in), X₆: 8⋅X₅+4 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₇: 4⋅X₅+2 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₁,eval_rank2__critedge_in), X₉: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₁,eval_rank2__critedge_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₃,eval_rank2_14), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₃,eval_rank2_14), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₃,eval_rank2_14), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₃,eval_rank2_14), X₅: X₅ {O(n)}
(g₃₃,eval_rank2_14), X₆: 4⋅X₅+2 {O(n)}
(g₃₃,eval_rank2_14), X₇: 4⋅X₅+2 {O(n)}
(g₃₃,eval_rank2_14), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₃,eval_rank2_14), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₃,eval_rank2_14), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₃,eval_rank2_14), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₅,eval_rank2_15), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₅,eval_rank2_15), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₅,eval_rank2_15), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₅,eval_rank2_15), X₅: X₅ {O(n)}
(g₃₅,eval_rank2_15), X₆: 4⋅X₅+2 {O(n)}
(g₃₅,eval_rank2_15), X₇: 4⋅X₅+2 {O(n)}
(g₃₅,eval_rank2_15), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₅,eval_rank2_15), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₅,eval_rank2_15), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₅,eval_rank2_15), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₅: X₅ {O(n)}
(g₃₇,eval_rank2_bb5_in), X₆: 4⋅X₅+2 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₇: 4⋅X₅+2 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₇,eval_rank2_bb5_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₇,eval_rank2_bb5_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₅: X₅ {O(n)}
(g₃₉,eval_rank2__critedge_in), X₆: 4⋅X₅+2 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₇: 4⋅X₅+2 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₃₉,eval_rank2__critedge_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₃₉,eval_rank2__critedge_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₅: X₅ {O(n)}
(g₄₁,eval_rank2_bb6_in), X₆: 4⋅X₅+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₇: 4⋅X₅+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₈: 4⋅X₅+2 {O(n)}
(g₄₁,eval_rank2_bb6_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₁,eval_rank2_bb6_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₅: X₅ {O(n)}
(g₄₃,eval_rank2_bb7_in), X₆: 4⋅X₅+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₇: 4⋅X₅+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₈: 4⋅X₅+2 {O(n)}
(g₄₃,eval_rank2_bb7_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₃,eval_rank2_bb7_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+2⋅X₁+24 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₅: X₅ {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₆: 4⋅X₅+2 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₇: 8⋅X₅+4 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₈: 4⋅X₅+2 {O(n)}
(g₄₅,eval_rank2__critedge1_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₁₀: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₄₅,eval_rank2__critedge1_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₇,eval_rank2_20), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₇,eval_rank2_20), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₅: X₅ {O(n)}
(g₄₇,eval_rank2_20), X₆: 4⋅X₅+2 {O(n)}
(g₄₇,eval_rank2_20), X₇: 4⋅X₅+2 {O(n)}
(g₄₇,eval_rank2_20), X₈: 4⋅X₅+2 {O(n)}
(g₄₇,eval_rank2_20), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₇,eval_rank2_20), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₄₉,eval_rank2_21), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₄₉,eval_rank2_21), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₅: X₅ {O(n)}
(g₄₉,eval_rank2_21), X₆: 4⋅X₅+2 {O(n)}
(g₄₉,eval_rank2_21), X₇: 4⋅X₅+2 {O(n)}
(g₄₉,eval_rank2_21), X₈: 4⋅X₅+2 {O(n)}
(g₄₉,eval_rank2_21), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₄₉,eval_rank2_21), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₅: X₅ {O(n)}
(g₅₁,eval_rank2_bb8_in), X₆: 4⋅X₅+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₇: 4⋅X₅+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₈: 4⋅X₅+2 {O(n)}
(g₅₁,eval_rank2_bb8_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₁,eval_rank2_bb8_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₅: X₅ {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₆: 4⋅X₅+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₇: 4⋅X₅+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₈: 4⋅X₅+2 {O(n)}
(g₅₃,eval_rank2__critedge1_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₃,eval_rank2__critedge1_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₅: X₅ {O(n)}
(g₅₅,eval_rank2_bb6_in), X₆: 4⋅X₅+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₇: 4⋅X₅+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₈: 4⋅X₅+2 {O(n)}
(g₅₅,eval_rank2_bb6_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₅,eval_rank2_bb6_in), X₁₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₇,eval_rank2_26), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₅: X₅ {O(n)}
(g₅₇,eval_rank2_26), X₆: 4⋅X₅+2 {O(n)}
(g₅₇,eval_rank2_26), X₇: 12⋅X₅+6 {O(n)}
(g₅₇,eval_rank2_26), X₈: 4⋅X₅+2 {O(n)}
(g₅₇,eval_rank2_26), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₇,eval_rank2_26), X₁₀: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₅₇,eval_rank2_26), X₁₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₅₉,eval_rank2_27), X₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₉,eval_rank2_27), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₅₉,eval_rank2_27), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₅₉,eval_rank2_27), X₅: X₅ {O(n)}
(g₅₉,eval_rank2_27), X₆: 4⋅X₅+2 {O(n)}
(g₅₉,eval_rank2_27), X₇: 12⋅X₅+6 {O(n)}
(g₅₉,eval_rank2_27), X₈: 4⋅X₅+2 {O(n)}
(g₅₉,eval_rank2_27), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₅₉,eval_rank2_27), X₁₀: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₅₉,eval_rank2_27), X₁₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₅: X₅ {O(n)}
(g₆₁,eval_rank2_bb3_in), X₆: 4⋅X₅+2 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₇: 4⋅X₅+2 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₈: 8⋅X₅+4 {O(n)}
(g₆₁,eval_rank2_bb3_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₁,eval_rank2_bb3_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+24 {O(n^3)}
(g₆₃,eval_rank2_27), X₁: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₃,eval_rank2_27), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₆₃,eval_rank2_27), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₆₃,eval_rank2_27), X₅: X₅ {O(n)}
(g₆₃,eval_rank2_27), X₆: 4⋅X₅+2 {O(n)}
(g₆₃,eval_rank2_27), X₇: 12⋅X₅+6 {O(n)}
(g₆₃,eval_rank2_27), X₈: 4⋅X₅+2 {O(n)}
(g₆₃,eval_rank2_27), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₃,eval_rank2_27), X₁₀: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₃,eval_rank2_27), X₁₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+12 {O(n^3)}
(g₆₅,eval_rank2_29), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₆₅,eval_rank2_29), X₂: 4⋅X₅+2 {O(n)}
(g₆₅,eval_rank2_29), X₃: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+3⋅X₃+18 {O(n^3)}
(g₆₅,eval_rank2_29), X₅: X₅ {O(n)}
(g₆₅,eval_rank2_29), X₆: 12⋅X₅+6 {O(n)}
(g₆₅,eval_rank2_29), X₇: 8⋅X₅+4 {O(n)}
(g₆₅,eval_rank2_29), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₆₅,eval_rank2_29), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₅,eval_rank2_29), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₅,eval_rank2_29), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₆₇,eval_rank2_30), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₆₇,eval_rank2_30), X₂: 4⋅X₅+2 {O(n)}
(g₆₇,eval_rank2_30), X₃: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+3⋅X₃+18 {O(n^3)}
(g₆₇,eval_rank2_30), X₅: X₅ {O(n)}
(g₆₇,eval_rank2_30), X₆: 12⋅X₅+6 {O(n)}
(g₆₇,eval_rank2_30), X₇: 8⋅X₅+4 {O(n)}
(g₆₇,eval_rank2_30), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₆₇,eval_rank2_30), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₇,eval_rank2_30), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₇,eval_rank2_30), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₆₉,eval_rank2_31), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₆₉,eval_rank2_31), X₂: 4⋅X₅+2 {O(n)}
(g₆₉,eval_rank2_31), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₉,eval_rank2_31), X₅: X₅ {O(n)}
(g₆₉,eval_rank2_31), X₆: 12⋅X₅+6 {O(n)}
(g₆₉,eval_rank2_31), X₇: 8⋅X₅+4 {O(n)}
(g₆₉,eval_rank2_31), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₆₉,eval_rank2_31), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₆₉,eval_rank2_31), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₆₉,eval_rank2_31), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₇₁,eval_rank2_32), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₇₁,eval_rank2_32), X₂: 4⋅X₅+2 {O(n)}
(g₇₁,eval_rank2_32), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₁,eval_rank2_32), X₅: X₅ {O(n)}
(g₇₁,eval_rank2_32), X₆: 12⋅X₅+6 {O(n)}
(g₇₁,eval_rank2_32), X₇: 8⋅X₅+4 {O(n)}
(g₇₁,eval_rank2_32), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₇₁,eval_rank2_32), X₉: 192⋅X₅⋅X₅⋅X₅+240⋅X₅⋅X₅+111⋅X₅+18 {O(n^3)}
(g₇₁,eval_rank2_32), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₁,eval_rank2_32), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+74⋅X₅+X₁+12 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₂: 4⋅X₅+2 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₅: X₅ {O(n)}
(g₇₃,eval_rank2_bb1_in), X₆: 4⋅X₅+2 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₇: 8⋅X₅+4 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₈: 8⋅X₅+X₈+4 {O(n)}
(g₇₃,eval_rank2_bb1_in), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+6 {O(n^3)}
(g₇₃,eval_rank2_bb1_in), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+X₁₁+24 {O(n^3)}
(g₇₅,eval_rank2_stop), X₁: 128⋅X₅⋅X₅⋅X₅+160⋅X₅⋅X₅+2⋅X₁+74⋅X₅+12 {O(n^3)}
(g₇₅,eval_rank2_stop), X₂: 4⋅X₅+X₂+2 {O(n)}
(g₇₅,eval_rank2_stop), X₃: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₃+6 {O(n^3)}
(g₇₅,eval_rank2_stop), X₅: 2⋅X₅ {O(n)}
(g₇₅,eval_rank2_stop), X₆: 5⋅X₅+2 {O(n)}
(g₇₅,eval_rank2_stop), X₇: 8⋅X₅+X₇+4 {O(n)}
(g₇₅,eval_rank2_stop), X₈: 2⋅X₈+8⋅X₅+4 {O(n)}
(g₇₅,eval_rank2_stop), X₉: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+38⋅X₅+6 {O(n^3)}
(g₇₅,eval_rank2_stop), X₁₀: 64⋅X₅⋅X₅⋅X₅+80⋅X₅⋅X₅+37⋅X₅+X₁₀+6 {O(n^3)}
(g₇₅,eval_rank2_stop), X₁₁: 256⋅X₅⋅X₅⋅X₅+320⋅X₅⋅X₅+148⋅X₅+2⋅X₁₁+24 {O(n^3)}