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Abstract. In earlier work, we developed a modular approach for auto-
matic complexity analysis of integer programs. However, these integer
programs do not allow non-tail recursive calls or subprocedures. In this
paper, we consider integer programs with function calls and present a
natural extension of our modular complexity analysis approach to the
recursive setting based on a new form of ranking functions. Hence, our
approach combines already existing powerful techniques on the “imper-
ative” parts of the program and our novel ranking functions on the re-
cursive parts. The strength of this combination is demonstrated by our
implementation in the complexity analysis tool KoAT.

1 Introduction

There exist numerous approaches to analyze complexity of programs automati-
cally, e.g., [3–5, 7, 10, 11, 18, 22, 23, 28, 29, 37, 41, 44, 47], but most of them are
essentially limited to non-recursive programs. There are also several techniques
for complexity analysis of term rewrite systems (TRSs) [6] which can handle ar-
bitrary recursion. However, TRSs have the drawback that they do not support
built-in data types like integers. Thus, the goal of this paper is to automati-
cally analyze the complexity of programs with built-in integers and arbitrary
(possibly non-tail) recursion.

In previous work, we developed a modular technique for complexity analy-
sis of programs with built-in integers which we implemented in the complexity
analysis tool KoAT [10, 22, 35, 36, 38]. It automatically infers runtime bounds
for integer transition systems (ITSs) possibly consisting of multiple loops by
handling some subprograms as twn-loops (where there exist “complete” tech-
niques for analyzing termination and complexity [24, 25, 35, 36, 38]) and by
using multiphase-linear ranking functions [7, 8, 22] for other subprograms. By
inferring bounds for one subprogram after the other, in the end we obtain a
bound on the runtime of the whole program. In this paper, we extend our ap-
proach to ITSs which allow function calls, including non-tail recursion. In the
first attempt for such an extension from [10, Sect. 5], the results of function calls
were simply disregarded. In contrast, our novel approach can take the results of
function calls into account which leads to a much higher precision.
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main(x, y):

while x > 0 do

y ← y + fac(x); x← x− 1;

x← 1;

while x < y do

x← 3 · x; y ← 2 · y;

fac(a):

if a = 0 then

return 1;

else if a > 0 then

return a · fac(a− 1);

Fig. 1: Recursive Integer Program with two Procedures

Example 1. The first while-loop of the procedure main in Fig. 1 computes x!+
· · · + 1! by calling the subprocedure fac. We introduce a novel class of ranking
functions for recursive programs to show that this loop has quadratic runtime
(when every assignment has the “cost” 1). Note that y’s value is bounded by
y+x ·xx, where x and y refer to the initial values of the program variables. The
reason is that x! + · · · + 1! can be over-approximated by x · xx since 1!, . . . , x!
are all bounded by xx. This observation is crucial for the runtime of the second
loop since it is executed at most log2(size(y)) + 2 = log2(y + x · xx) + 2 times,
where “size(y)” denotes such an over-approximation of the (absolute) value of
y before the second loop. Hence, as the runtime of the first loop is quadratric
and the runtime of the second loop is less than quadratic, the overall program
has quadratic runtime. Here, [10, Sect. 5] fails to infer a finite runtime bound,
as it disregards the return value of fac. The runtime bound log2(y) + 2 for the
second loop can be obtained by our technique based on twn-loops, but not by
linear ranking functions. Thus, our novel approach for recursive integer programs
allows us, e.g., to apply ranking functions on some (possibly recursive) parts
of the program and techniques for twn-loops on other parts, i.e., it allows for
modular proofs that use different techniques for automated complexity analysis
on different subprograms in order to benefit from their individual strengths.

In this work, we extend our notions of runtime and size bounds [10, 22, 35, 36,
38] to the new setting of ITSs with function calls. On the one hand, as illustrated
by Ex. 1, we need size bounds to compute runtime bounds. On the other hand,
we also need runtime bounds to infer size bounds, because to this end we have
to over-approximate how often loops with variable updates are iterated. Thus,
our approach alternates between the computation of runtime and size bounds.
All our contributions are implemented in our complexity analysis tool KoAT.

Structure: In Sect. 2 we introduce our new notion of ITSs with function calls and
define runtime and size bounds for these programs. In Sect. 3, we show how to
compute modular runtime bounds for our new class of programs. Analogously,
we present a technique to infer size bounds in a modular way in Sect. 4. Finally,
in Sect. 5 we discuss related work and our implementation in the tool KoAT, and
provide an experimental evaluation demonstrating the strengths of our approach.
All proofs can be found in App. A.
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2 Recursive Integer Transition Systems

In Sect. 2.1 we extend ITSs by function calls and recursion. Afterwards, in
Sect. 2.2 we define runtime and size bounds which extend the corresponding
notions for ITSs without function calls [10, 22, 35, 36, 38] in a natural way.

2.1 Syntax and Semantics of Recursive Integer Transition Systems

We fix a finite set of program variables V. As usual, Z[V] is the polynomial
ring over the variables V with integer coefficients. We use polynomials for the
constraints in the guards of transitions.

Definition 2 (Atoms and Constraints). The set of atoms A consists of
all inequations p1 < p2 for polynomials p1, p2 ∈ Z[V]. The set C of constraints
consists of all formulas built from atoms A and ∧.

We also use “≥”, “=”, “ ̸=”, and negations “¬”, since they can be simulated by
atoms and constraints (e.g., p1 ≥ p2 is equivalent to p2 < p1 + 1 for integers).
Disjunctions “∨” are modeled by several transitions with the same start and
target location.

ITSs are a widely studied formalism in automatic program verification (see,
e.g., [1, 10, 12, 14, 27, 34]). An ITS consists of a set L of locations and a set
T of transitions, where a transition connects two locations. Moreover, every
transition has a polynomial update function η : V → Z[V]. The values of the
variables are “stored” in a state σ : V → Z, where Σ denotes the set of all states.
When evaluating a transition, the values of the variables are changed according
to its update function, and we move from a configuration (ℓ, σ) ∈ L × Σ to
another configuration (ℓ′, σ′). Since ITSs do not allow any non-tail recursion,
Def. 3 extends them to ITSs with function calls (called ρ-ITSs). To this end, we
introduce a set F of function calls ℓ(ζ) which can now occur in the updates of
variables as well. Here, ℓ is the start location of the subprogram that is called
and the update ζ : V → Z[V] sets the program variables of the subprogram
to their initial values. More precisely, if σ ∈ Σ is the state before calling the
subprogram via ℓ(ζ), then the subprogram starts in a configuration (ℓ, σ̃), where
σ̃ results from “applying” the update ζ to the state σ. For example, if ζ1(a) = x,
then f1(ζ1) represents the function call that sets a to the current value of x and
jumps to the location f1.

In addition, we also introduce a set of return locations Ω ⊆ L, and for every
return location ℓ′ ∈ Ω, we let vℓ′ ∈ V denote its return variable. As soon as a
called subprogram reaches a configuration (ℓ′, σ′) with ℓ′ ∈ Ω, the value σ′(vℓ′)
is returned as the result of the function call ℓ(ζ). (We will define the semantics of
ρ-ITSs formally in Def. 5 and 6.) Thus, transitions may now have updates which
map variables to polynomial combinations of variables and function calls. This
is denoted by Z[V ∪F ]. In this way, the results of function calls can be combined
polynomially, and they can be used by transitions when updating variables.
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ℓ0 ℓ1 ℓ2 f1
f2

vf2 = a

t0

t1 : φ = (x > 0)
η(x) = x− 1
η(y) = y + f1(x, x, y)︸ ︷︷ ︸

= ρ1

t2 : φ = (x ≤ 0)
η(x) = 1

t3 : φ = (x < y)
η(x) = 3 · x
η(y) = 2 · y

t4 : φ = (a = 0)
η(a) = 1

t5 : φ = (a > 0)
η(a) = a · f1(a− 1, x, y)︸ ︷︷ ︸

= ρ2

Fig. 2: An Integer Transition System with Function Calls ρ1 and ρ2

Definition 3 (ρ-ITS). The tuple (L, ℓ0, Ω,F , T ) is an ITS with function calls
(ρ-ITS) where

• L is a finite set of locations with an initial location ℓ0 ∈ L,
• F is a finite set of function calls ℓ(ζ) with ℓ ∈ L \ {ℓ0} and ζ : V → Z[V],
• Ω ⊆ L is a set of return locations and for every ℓ ∈ Ω, vℓ ∈ V denotes its

return variable, and
• T is a finite set of transitions: A transition is a 4-tuple (ℓ, φ, η, ℓ′) with start

location ℓ ∈ L, target location ℓ′ ∈ L\{ℓ0}, guard φ ∈ C, and update function
η : V → Z[V ∪ F ].

We denote the set of function calls in a polynomial p, an update η, or a transition
t by fun(p), fun(η), or fun(t), respectively. Similarly, for a function call ρ ∈ F ,
trans(ρ) is the set of all transitions of the ITS in which ρ occurs in an update.

Note that our definition of ρ-ITSs allows non-deterministic branching since
several transitions can have the same start location. Moreover, to model non-
deterministic sampling, our approach can easily be extended by additional “tem-
porary” variables which are updated arbitrarily in each evaluation step. Intu-
itively, these variables are set non-deterministically by an adversary trying to
“sabotage” the program in order to obtain long runtimes. However, we omitted
such temporary variables from the paper to simplify the presentation.

Example 4. The ρ-ITS in Fig. 2 corresponds to the program from Fig. 1. In
Fig. 2, we omitted trivial guards φ = true and identity updates of the form
η(v) = v. The ρ-ITS has the program variables V = {a, x, y}, five locations
L = {ℓ0, ℓ1, ℓ2, f1, f2}, and two function calls ρ1 = f1(ζ1) and ρ2 = f1(ζ2), where
ζ1(a) = x and ζ2(a) = a−1, and both ζ1 and ζ2 keep x and y unchanged. To ease
readability, we wrote f1(x, x, y) and f1(a − 1, x, y) instead of f1(ζ1) and f1(ζ2)
in Fig. 2. The subprogram with the locations f1 and f2 computes the factorial
a! recursively and returns this result in the return variable a when reaching the
return location f2 (indicated by the doubled node). This subprogram is called
iteratively in the loop t1 with the argument x (i.e., with ζ1 where ζ1(a) = x).
The factorials x!, (x− 1)!, . . . , 1 are summed up in the variable y. Afterwards, x
is set to 1 in t2, and the second loop t3 at location ℓ2 is executed.



Modular Automatic Complexity Analysis of Recursive Integer Programs 5

Let JeKσ denote the evaluation of an expression e in the state σ ∈ Σ, where
JeKσ results from replacing every variable v in e by its value σ(v). So, for example,
evaluating J3 · xKσ and Jx > 0Kσ at σ(x) = 2 results in 6 and true, respectively.

From now on, we fix a ρ-ITS (L, ℓ0, Ω,F , T ) over the variables V. Formally,
an evaluation step of a ρ-ITS is a transformation of an evaluation tree T whose
nodes are labeled with configurations from L × (Σ ∪ {⊥}) and whose edges are
labeled with transitions or function calls. We distinguish two kinds of evaluation
steps: t-evaluation steps (for transitions t ∈ T ) and ε-evaluation steps.

If a leaf of T is labeled with a configuration (ℓ, σ) where a transition t =
(ℓ, φ, η, ℓ′) can be applied, then a t-evaluation step extends T at the position of
this leaf to a new tree T′, denoted T ≺t T′. If the update η does not contain any
function calls, then T′ results from T by adding an edge from the node labeled
with (ℓ, σ) to a new node labeled with a configuration (ℓ′, σ′) where σ′(v) =
Jη(v)Kσ for all program variables v. This new edge is labeled with t, i.e., (ℓ, σ)→t

(ℓ′, σ′). This corresponds to ordinary evaluations of ITSs as in [22, 36, 38].
However, if t’s update contains function calls ρi = ℓi(ζi) for 1 ≤ i ≤ n,

then T′ results from T by adding n+ 1 children to the former leaf labeled with
(ℓ, σ): The child (ℓ′,⊥) is connected by an edge labeled with t, i.e., (ℓ, σ) →t

(ℓ′,⊥). Here, ⊥ denotes an undefined state which will be instantiated later if the
function calls ρ1, . . . , ρn reach return locations. Moreover, the children (ℓi, σi)
are connected by edges labeled with ρi for all 1 ≤ i ≤ n, i.e., (ℓ, σ)→ρi (ℓi, σi),
where σi(v) = Jζi(v)Kσ for all program variables v.

When modeling the semantics in an alternative stack-based way, the ρi-edges
would correspond to a push-operation where the function call ρi is pushed on
top of the call stack. Our evaluation trees are an explicit representation of such
stacks. They lift the semantics of ITSs to ρ-ITSs in a natural way by moving from
evaluation paths to trees. An evaluation tree keeps track of every state that was
reached during the evaluation. While our operational semantics via evaluation
trees are equivalent to the stack-based semantics of recursion, the advantage over
the stack representation is that evaluation trees are particularly suitable for our
novel ρ-ranking functions for transitions with function calls in Sect. 3.1.

For an initial state σ0 ∈ Σ, the evaluation always starts with the initial
evaluation tree Tσ0

= ({(ℓ0, σ0)} ,∅) which consists of the single node (ℓ0, σ0)
and does not have any edges. We now define how to extend such trees using t-
and ε-steps. Then the set of evaluation trees is the smallest set of trees that can
be obtained from such initial trees by repeated application of t- and ε-steps.

Definition 5 (Evaluation of ρ-ITSs (t-Evaluation Step)). Let T be an
evaluation tree. T ≺t T′ is a t-evaluation step with the transition t = (ℓ, φ, η, ℓ′)
iff T has a leaf labeled with (ℓ, σ) where σ ∈ Σ, JφKσ = true, and

• if fun(η) = ∅, then T′ is the extension of T by an edge (ℓ, σ)→t (ℓ
′, σ′) to a

new node labeled with (ℓ′, σ′) where σ′(v) = Jη(v)Kσ for all v ∈ V.
• if η contains the function calls ρ1 = ℓ1(ζ1), . . . , ρn = ℓn(ζn), then T′ is the

extension of T by the edges (ℓ, σ) →t (ℓ′,⊥) and (ℓ, σ) →ρi
(ℓi, σi), where

σi(v) = Jζi(v)Kσ for all v ∈ V and all 1 ≤ i ≤ n.
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(ℓ0, (0, 2, 0)) (ℓ1, (0, 2, 0)) (ℓ1,⊥)

c1 = (f1, (2, 2, 0))

c3 = (f1, (1, 2, 0))

(f1, (0, 2, 0))

(f2, (2, 2, 0)) = c2

(f2, (1, 2, 0)) = c4

(f2, (1, 2, 0)) = c5

t0 t1

ρ1 “push (f1, (2, 2, 0))”

ρ2 “push (f1, (1, 2, 0))”

ρ3 “push (f1, (0, 2, 0))”

t5

t5

t4

ε “pop”

ε “pop”

Fig. 3: Exemplary Evaluation of a ρ-ITS

To instantiate the undefined state ⊥, we use ε-evaluation steps. An ε-evalua-
tion step corresponds to a pop-operation in the stack-based semantics, i.e., it is
used to return the value of a function call after it has been fully evaluated. If the
tree contains (ℓ, σ)→t (ℓ

′,⊥) and (ℓ, σ)→ρi
(ℓi, σi) for 1 ≤ i ≤ n, and there are

paths from the nodes (ℓi, σi) to configurations (ℓ′i, σ
′
i) where ℓ′i ∈ Ω is a return

location, then the undefined state ⊥ can be replaced by a state σ′ such that
σ′(v) = Jη(v)Kσ for all program variables v. If η is the update of the transition
t, then η(v) results from η(v) by replacing every function call ℓi(ζi) occurring
in η by the corresponding returned value σ′

i(vℓ′i) for all 1 ≤ i ≤ n. We denote
this by η(v) = η(v) [ℓi(ζi)/σ

′
i(vℓ′i)]. Thus, an ε-evaluation step does not add new

edges to an evaluation tree; it merely replaces ⊥ by a state with concrete values
obtained from the evaluated function calls.

Definition 6 (Evaluation of ρ-ITSs (ε-Evaluation Step)). Let T be an
evaluation tree. Furthermore, let there be a transition t = (ℓ, φ, η, ℓ′) such that
T contains a node labeled with (ℓ, σ), with edges and children nodes of the form
(ℓ, σ)→t (ℓ

′,⊥) and (ℓ, σ)→ρi
(ℓi, σi) for function calls ρi = ℓi(ζi) ∈ fun(η).

If T contains paths from each child labeled with (ℓi, σi) to a node labeled with
(ℓ′i, σ

′
i) ∈ Ω × Σ, then T ≺ε T′ is an ε-evaluation step iff T′ results from T by

replacing the label (ℓ′,⊥) by (ℓ′, σ′), where σ′(v) = Jη(v) [ℓi(ζi)/σ′
i(vℓ′i)]Kσ for all

variables v ∈ V.

We write ≺T for
⋃

t∈T ≺t and ≺ for ≺T ∪{ε}. Moreover, we denote finitely
many evaluations steps T ≺ · · · ≺ T′ by T ≺∗ T′.

Example 7. Reconsider the ρ-ITS from Fig. 2 and let us denote states σ ∈ Σ as
tuples (σ(a), σ(x), σ(y)) ∈ Z3. The tree in Fig. 3 shows an evaluation starting
in T(0,2,0). Here, a dashed arrow indicates that a state which was reached via
a function call was used to replace ⊥ via an ε-evaluation step. Note that these
dashed arrows are not part of the actual evaluation tree but they are just depicted
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to illustrate the construction of the tree.1 So for example, if σi always denotes the
state of the configuration ci, then for the configuration c2 = (f2, σ2), the value
σ2(a) = 2 is obtained from t5’s update η(a) = a·f1(ζ2) and the value of the return
variable in the configuration c4, i.e., Jη(a) [f1(ζ1)/σ4(a)]Kσ1 = Ja · σ4(a)Kσ1 =
σ1(a) · σ4(a) = 2 · 1 = 2.

In the next evaluation step, (ℓ1,⊥) can be instantiated by considering the
return variable in the configuration c2. Then, ⊥ would be replaced by (0, 1, 2).
Note that while in this tree, every node has at most one child connected by a ρ-
edge, in general a node can have several outgoing ρ-edges if there exist transitions
whose updates contain several function calls (e.g., the naive implementation of
the Fibonacci numbers).

The goal of complexity analysis is to derive an upper bound on the number
of t-evaluation steps starting in the initial tree Tσ0

with the single node (ℓ0, σ0).
For any tree T and set of transitions T , |T|T is the number of edges which are
marked by a transition from T . The runtime complexity measures how many
transitions are evaluated in the worst case in any evaluation tree that results
from Tσ0

. In the following, let N = N ∪ {ω}.

Definition 8 (Runtime Complexity). The runtime complexity is rc : Σ →
N and rc(σ0) = sup {|T|T | Tσ0

≺∗ T} .

Here, we count only t-edges labeled by transitions (and no ρ-edges labeled by
function calls) to obtain a natural extension of our previous approach without
function calls. Note that an upper bound on the number of ρ-edges can be easily
derived from an upper bound on the number of t-evaluation steps by multiplying
with the branching factor (i.e., by the maximal number of function calls occurring
in the update of any transition).

2.2 Runtime and Size Bounds for ρ-ITSs

Now we define our notion of bounds. We only consider bounds which correspond
to functions f that are weakly monotonically increasing in all arguments, i.e.,
where x ≤ y implies f(. . . x . . .) ≤ f(. . . y . . .). In this way, if f and g are both
upper bounds, then f ◦g is also an upper bound, i.e., bounds can be “composed”
easily. For example, we used this in the introductory Ex. 1 where we inserted
the size bound “size(y)” into the runtime bound log2(y) + 2 of the second loop.

In principle, every weakly monotonically increasing function could be used as
a bound in our framework. However, here we restrict ourselves to bounds which
are easy to represent and to compute with, and which cover the most prominent
complexity classes. As in [38], bounds can also be logarithmic. In contrast to our

1 This is crucial, because the edges of the evaluation trees correspond to those steps
were our ρ-ranking functions must be (strictly or weakly) decreasing. So they have
to decrease for steps with transitions like t1 or t5 (where variable values are changed
according to the result of a function call), but not for ε- (or “pop”)-steps. This is the
reason for defining the evaluation of ρ-ITSs via evaluation trees instead of stacks.
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earlier papers, we also consider exponential bounds with non-constant bases to
represent bounds like xx.

Definition 9 (Bounds). The set of bounds B is the smallest set with N ⊆ B,
V ⊆ B, and {b1 + b2,max(b1, b2), b1 · b2, pb1 , logk(b1)} ⊆ B for all b1, b2 ∈ B, all
polynomials p ∈ N[V], and all k ∈ R>1.

2

A runtime bound RB(t) over-approximates the number of t-evaluations that
can occur in an arbitrary evaluation starting in a state σ0 ∈ Σ, i.e., it is a
bound on the number of t-edges in any evaluation tree resulting from Tσ0 . In
the following, let |σ| denote the state with |σ|(v) = |σ(v)| for all v ∈ V.

Definition 10 (Runtime Bound). RB : T → B is a runtime bound if for all
σ0 ∈ Σ, all t ∈ T , and all trees T with Tσ0

≺∗ T, we have |T|{t} ≤ JRB(t)K|σ0|.

Cor. 11 shows that to obtain an upper bound on the runtime complexity, one
can compute runtime bounds for each transition separately and add them.

Corollary 11 (Over-Approximating rc). Let RB be a runtime bound. Then
for all states σ0 ∈ Σ, we have rc(σ0) ≤ J

∑
t∈T RB(t)K|σ0|.

Example 12. In Fig. 2, the transitions t0 and t2 executed at most once, i.e.,
RB(t0) = RB(t2) = 1. In Ex. 27, we will infer a runtime bound with RB(t1) =
RB(t4) = x, RB(t3) = log2(y + x · xx) + 2, and RB(t5) = x2. This results in a
quadratic bound on the runtime complexity of the ρ-ITS.

Our approach performs a modular analysis, i.e., parts of the program are
analyzed as standalone programs and the results are then lifted to contribute
to the overall analysis. So to compute a runtime bound for a transition t, our
approach considers all transitions and function calls ϑ ∈ T ∪ F that can occur
before t in evaluations, and it needs size bounds SB(ϑ, v) to over-approximate
the absolute values that the variables v ∈ V may have after these “previous”
transitions and function calls ϑ. We call RV = (T ∪ F) × V the set of result
variables. Note that in contrast to runtime bounds (and to our earlier papers),
we now also have to capture the effect of function calls F via size bounds.

Definition 13 (Size Bound). A function SB : RV → B is called a size bound
if for all (ϑ, v) ∈ RV, all states σ0 ∈ Σ, and all trees T with Tσ0

≺∗ T containing
a path (ℓ0, σ0)→ · · · →ϑ ( , σ) with σ ̸= ⊥, we have |σ|(v) ≤ JSB(ϑ, v)K|σ0|.

Example 14. In Fig. 2, SB(t0, x) = x is a size bound, since the value of x after
evaluating t0 is bounded by the initial value of x. (Ex. 34 will show how to com-
pute such size bounds.) Similarly, we have SB(t2, x) = 1 and SB(t2, y) = y+x·xx,
see Ex. 40. The size bound SB(ρ1, a) = x (see Ex. 34) expresses that the value
of a after executing the function call ρ1 is bounded by the initial value of x.

2 More precisely, instead of logk(b1) we use the function ⌈logk(max {1, b1})⌉ to en-
sure that bounds are well defined, weakly monotonically increasing, and evaluate to
natural numbers.
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3 Modular Computation of Runtime Bounds

Now we introduce our modular approach for the computation of runtime bounds.
To be precise, we infer runtime bounds for subprograms T ′ and then lift them
to runtime bounds for the full program. For any non-empty T ′ ⊆ T , let LT ′ =
{ℓ ∈ L | (ℓ, , , ) ∈ T ′} contain all start locations of transitions from T ′.

Recall that a global runtime boundRB(t) over-approximates how many times
the transition t ∈ T may be evaluated when starting an evaluation of T from the
initial location ℓ0 ∈ L. To make this explicit, instead ofRB(t) we could also write
RBt,T (ℓ0). Now we are also interested in local runtime bounds, where one takes

a subprogram T ′ ⊆ T and a location ℓ from LT ′ into account. Then RBt,T
′
(ℓ)

over-approximates the number of applications of the transition t ∈ T ′ in any run
of T ′ starting in the location ℓ ∈ LT ′ . To highlight that these runtime bounds
may be “local” (i.e., that they can regard arbitrary subprograms T ′), we add the

subscript “loc”. So a local runtime bound is a functionRB t,T ′

loc : LT ′ → B. If T ′ =

T , then RB t,T
loc (ℓ0) corresponds to a global runtime bound RB(t) of t. We define

local runtime bounds as functions from locations to bounds (rather than from
transitions, as with global runtime bounds) in order to simplify the presentation
later on when inferring local runtime bounds from ranking functions, because
ranking functions are also functions from locations to bounds, see Lemma 18.

So for any state σ0 ∈ Σ, JRB t,T ′

loc (ℓ)K|σ0| is an upper bound on the number
of t-edges that can occur in any evaluation tree resulting from the initial single-
node tree (ℓ, σ0), if only transitions from T ′ and ε-steps are used, i.e., one only
executes the subprogram T ′. However, local runtime bounds do not consider
how often such a local evaluation of the subprogram T ′ is started or how large
the variables are before starting such a local evaluation. If t and T ′ are clear

from the context, we just write RBloc instead of RB t,T ′

loc .

Definition 15 (Local Runtime Bound). Let ∅ ̸= T ′ ⊆ T be a set of transi-
tions and let t ∈ T ′. Then RBloc : LT ′ → B is a local runtime bound for t w.r.t.
T ′ if for all σ0 ∈ Σ, all ℓ ∈ LT ′ , and all trees T with ({(ℓ, σ0)} ,∅) ≺∗

T ′∪{ε} T,
we have |T|{t} ≤ JRBloc(ℓ)K|σ0|. To make this explicit, we also write RB t,T ′

loc .

For readability, in contrast to our previous work [35, 36, 38], Def. 15 considers
arbitrary initial states σ0 ∈ Σ, but it could also be refined to only consider states
σ0 ∈ Σ where (ℓ, σ0) is reachable in the full program with all transitions T . Note
that the actual evaluation relation is considered both for local runtime bounds
and also for local size bounds in Sect. 4, i.e., here of course one also takes the
guards of transitions into account.

In Sect. 3.1 we introduce a novel form of ρ-ranking functions to derive local
runtime bounds for ρ-ITSs with function calls automatically. Then, we show in
Sect. 3.2 how global runtime bounds can be inferred from local runtime bounds.

3.1 Ranking Functions

Ranking functions are widely used to analyze termination or runtime complexity
of programs (e.g., [7–9, 22, 26, 45]). The idea of ranking functions is to construct
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a well-founded relation by mapping program configurations to numbers. Typi-
cally, SMT solvers are used to find such a suitable mapping automatically. We
first consider programs without recursive function calls and recapitulate classical
ranking functions in our setting of ρ-ITSs. Afterwards, we extend ranking func-
tions to a novel form of function call ranking functions, which allow us to derive
local runtime bounds for ρ-ITSs with arbitrary (possibly recursive) function calls.

Recall that fun(t) denotes the set of function calls in the transition t and
trans(ρ) is the set of all transitions with the function call ρ. For T ′ ⊆ T , let
fun(T ′) =

⋃
t∈T ′ fun(t) denote the set of all function calls ρ ∈ fun(t) for transi-

tions t ∈ T ′. Moreover, fun(LT ′) is the set of all function calls ℓ( ) with ℓ ∈ LT ′ ,
i.e., all function calls that lead into the subprogram T ′. We also refer to fun(T ′)∩
fun(LT ′) as the set of recursive function calls of the subprogram T ′ and to
T ′ ∩ trans(fun(LT ′)) as the set of recursive transitions of the subprogram T ′.

Classical Ranking Function: Before we introduce our novel class of ranking func-
tions for ρ-ITSs, we recapitulate classical ranking functions and adapt them to
the setting of ρ-ITSs. As mentioned, we first consider subprograms T ′ which do
not contain recursive function calls for jumps “within” T ′, i.e., where fun(T ′)∩
fun(LT ′) = ∅. A function rd : L → Z[V] is a classical ranking function for the
decreasing transition t w.r.t. the subprogram T ′, if every evaluation step with
t decreases the value of rd, where rd’s value is positive, and evaluation steps
with the (other) transitions of T ′ do not increase the value of rd. Then for any
T ′-evaluation tree, rd(ℓ) is a bound on the number of edges labeled with the
decreasing transition t.

We also use the relations→t and→ρ without referring to an actual evaluation
tree. Thus, we say that (ℓ, σ)→ϑ (ℓ′, σ′) holds for some ϑ ∈ T ∪F if there exists
an evaluation Tσ0 ≺∗

T ∪{ε} T for some initial state σ0 ∈ Σ such that T contains

an edge (ℓ, σ) →ϑ (ℓ′, σ′). In the following definition, we extend the evaluation
of an arithmetic expression e to the “undefined” state ⊥ by defining JeK⊥ = 0.

Definition 16 (Ranking Function). Let ∅ ̸= T ′⊆ T with fun(T ′)∩ fun(LT ′)
= ∅, and let t ∈ T ′. Then rd : L → Z[V] is a ranking function (RF) for the
transition t w.r.t. T ′ if for all evaluation steps (ℓ, σ)→t′ (ℓ

′, σ′), we have:

(a) if t′ ∈ T ′, then Jrd(ℓ)Kσ ≥ Jrd(ℓ′)Kσ′

(b) if t′ = t, then Jrd(ℓ)Kσ > Jrd(ℓ′)Kσ′ and Jrd(ℓ)Kσ > 0

So Def. 16 does not impose any requirements on how the value of rd changes
when following edges labeled with function calls. The reason is that due to
the requirement fun(T ′) ∩ fun(LT ′) = ∅, all function calls of T ′ lead outside
this subprogram and thus, they are irrelevant for local runtime bounds w.r.t.
T ′. Note that if t′’s update η contains function calls, then in general it is not
decidable whether (ℓ, σ) →t′ (ℓ′, σ′) holds. Thus, to over-approximate →t′ in
our automation, we consider a modified update η′ where all function calls are
replaced by fresh “non-deterministic” values. To ease the automation of our
approach, in practice we restrict ourselves to linear polynomial ranking functions
and use the SMT solver Z3 [42] to infer ranking functions automatically. Our
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modular approach allows us to consider program parts separately, such that
using linear ranking functions usually suffices even if the overall program has
non-linear runtime. Note that when lifting local to global runtime bounds (in
Sect. 3.2), we use size bounds that indeed take the results of “previous” function
calls into account (see Sect. 4 for the computation of size bounds).

Example 17. We compute a (classical) ranking function for the transition t1
w.r.t. the subprogram T ′ = {t1} from Fig. 2: We have fun(T ′) = {ρ1}, but the
location f1 of ρ1 is not in LT ′ = {ℓ1}. Thus, fun(T ′)∩ fun(LT ′) = {ρ1}∩∅ = ∅,
i.e., T ′ does not have any recursive function calls, but all function calls of T ′

leave the subprogram T ′. An RF for t1 w.r.t. T ′ = {t1} is rd(ℓ1) = x. The RF
can always map all remaining locations outside the subprogram T ′ to 0.

Lemma 18 shows how to obtain a local runtime bound from a (classical) rank-
ing function. We use ⌈⌈·⌉⌉ to transform a polynomial into a (weakly monotonically
increasing) bound from B by taking the absolute values of the coefficients, e.g.,
for the polynomial x− y we obtain the bound ⌈⌈x− y⌉⌉ = x+ y.

Lemma 18 (Local Runtime Bounds by RFs). Let ∅ ̸= T ′ ⊆ T where
fun(T ′) ∩ fun(LT ′) = ∅, and let t ∈ T ′. Moreover, let rd be an RF for t w.r.t.
T ′. Then RBloc : LT ′ → B is local runtime bound for t w.r.t. T ′, where for all
ℓ ∈ LT ′ , we define RBloc(ℓ) = ⌈⌈rd(ℓ)⌉⌉.

Example 19. With the ranking function of Ex. 17, Lemma 18 yields the local

runtime bound RB t1,{t1}
loc (ℓ1) = ⌈⌈rd(ℓ1)⌉⌉ = x.

Function Call Ranking Functions: Now we consider arbitrary ρ-ITSs with pos-
sibly recursive function calls. To obtain local runtime bounds for such ρ-ITSs,
we introduce the novel concept of “function call ranking functions” (ρ-RFs). In
contrast to classical ranking functions, ρ-RFs also contain an explicit bound on
the number of function calls. More precisely, a ρ-RF ⟨rd, rtf , rf⟩ combines a clas-
sical ranking function rd with two additional ranking functions rtf : L → Z[V]
and rf : L → Z[V]. While rd yields a bound for a decreasing transition t w.r.t.
T ′, rtf yields a bound for the transitions from T ′ with recursive function calls
and rf yields a bound on these recursive function calls themselves. We distin-
guish these three ranking functions because they have different influences on the
overall bound for the possible number of applications of t in the subprogram T ′.
For example, rf has an exponential influence on the runtime while the other two
ranking functions only have a polynomial impact, see Thm. 22.

More precisely, for a set of function calls F ′, let trans(F ′) =
⋃

ρ∈F ′ trans(ρ)
be the set of all transitions t ∈ trans(ρ) for function calls ρ ∈ F ′. Recall that
fun(LT ′) is the set of all function calls ℓ( ) with a location ℓ ∈ LT ′ . Thus,
trans(fun(LT ′)) is the set of all transitions which contain a function call ℓ( ) with
ℓ ∈ LT ′ . Then for any location ℓ ∈ L and any T ′-evaluation tree, rtf(ℓ) yields a
bound on the number of edges labeled with transitions from T ′∩trans(fun(LT ′))
on paths starting with (ℓ, ), where these paths may contain both steps with
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transitions and steps with function calls. So T ′ ∩ trans(fun(LT ′)) are recursive
transitions from T ′ whose function call jumps into T ′ again.

Furthermore, for any location ℓ ∈ L and any T ′-evaluation tree, rf(ℓ) is a
bound on the number of ρ-edges with function calls that jump into T ′ again on
paths starting with (ℓ, ). So there are recursive function calls from fun(T ′) ∩
fun(LT ′). In Ex. 7, these function calls correspond to vertical edges, whereas
steps with transitions correspond to horizontal edges.

As for classical RFs, Def. 20(a) requires that rd, rtf , and rf do not increase for
edges of a T ′-evaluation tree. Furthermore, to ensure the previously mentioned
properties, as for classical RFs, (b) requires that rd is decreasing and positive for
edges labeled with t (if the decreasing transition t is not recursive, i.e., it does not
contain any recursive function calls). Condition (c) imposes these requirements
for rtf and edges labeled with recursive transitions from T ′ ∩ trans(fun(LT ′)).
In particular, this is also required for t if t is a recursive transition and thus, it
was not already handled in (b). Finally, (d) requires these properties for rf and
edges labeled with recursive function calls from fun(T ′) ∩ fun(LT ′).

Definition 20 (Function Call Ranking Function). Let ∅ ̸= T ′ ⊆ T and
let t ∈ T ′. Then ⟨rd, rtf , rf⟩ with rd, rtf , rf : L → Z[V] is a function call ranking
function (ρ-RF) for t w.r.t. T ′ if for all evaluation steps (ℓ, σ) →ϑ (ℓ′, σ′) with
ϑ ∈ T ′ or ϑ ∈ fun(T ′) ∩ fun(LT ′), we have:

(a) for all i ∈ {d, tf, f} Jri(ℓ)Kσ ≥ Jri(ℓ′)Kσ′

(b) if ϑ = t and t ̸∈ trans(fun(LT ′)), then

Jrd(ℓ)Kσ > Jrd(ℓ′)Kσ′ and Jrd(ℓ)Kσ > 0

(c) if ϑ ∈ T ′ ∩ trans(fun(LT ′)), then Jrtf(ℓ)Kσ> Jrtf(ℓ′)Kσ′ and Jrtf(ℓ)Kσ> 0

(d) if ϑ ∈ fun(T ′) ∩ fun(LT ′), then Jrf(ℓ)Kσ > Jrf(ℓ′)Kσ′ and Jrf(ℓ)Kσ > 0

Note that rd can be set to 0 for all locations if t ∈ trans(fun(LT ′)).

Example 21. We now compute ρ-RFs for t1 w.r.t. {t1} and for t5 w.r.t. {t4, t5}
in the program from Fig. 2.

• First, we consider T ′ = {t1}. As in Ex. 17, we have fun(T ′) ∩ fun(LT ′) = ∅
and T ′ ∩ trans(fun(LT ′)) = ∅, since there is no function call with the
location LT ′ = {ℓ1}, i.e., fun(LT ′) = ∅. A ρ-RF for t1 is rtf(ℓ1) = rf(ℓ1) = 0
and rd(ℓ1) = x. Again, locations outside T ′ can always be mapped to 0. So,
here the ρ-RF corresponds to the classical ranking function from Ex. 17.

• For the subprogram T ′ = {t4, t5} we have fun(T ′) ∩ fun(LT ′) = {ρ2} and
T ′ ∩ trans(fun(LT ′)) = {t5}. Thus, a ρ-RF for t5 is rd(f1) = rd(f2) = 0 (as
t5 ∈ trans(fun(LT ′))), rtf(f1) = 1 and rtf(f2) = 0 (since t5 was not already
handled by rd, t5 must be decreasing for rtf), and rf(f1) = a, rf(f2) = 0
(to make ρ2 decreasing, since (f1, σ)→ρ2 (f1, σ

′) implies Jrf(f1)Kσ = σ(a) >
σ(a− 1) = σ′(a) = Jrf(f1)Kσ′).

Now we show how to construct a local runtime bound from a ρ-RF. To
simplify the presentation, here we restrict ourselves to transitions which have at
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N0 · · · N1

Rn0(n1, n2)

N2 · · · N3

Rn0(n1 − 1, n2)

Rn0(n1, n2 − 1)

t t t tT ′ ∩ trans(fun(LT ′ ))

ρ d2 stepsd1 steps

Fig. 4: Illustration of Rn0(n1, n2)

most one function call in their update and refer to App. B for the general case
which handles transitions with arbitrary many function calls.

For a local runtime bound, we have to over-approximate how many edges
labeled with t can occur in a T ′-evaluation tree starting with a configuration of
the form (ℓ, ). As mentioned, the ranking functions rd, rtf , and rf influence the
local runtime bound in different ways: If every path has at most n0 edges labeled
with the transition t (if t is not a recursive transition from trans(fun(LT ′))), n1

edges labeled with the recursive transitions from T ′ ∩ trans(fun(LT ′)), and n2

edges labeled with recursive function calls, then Rn0(n1, n2) over-approximates
the number of t-edges in any T ′-evaluation tree, where Rn0(n1, n2) is defined
via the following recurrence:

Rn0(n1, n2) =

{
n0, if n1 = 0 or n2 = 0
1 + n0 +Rn0(n1 − 1, n2) +Rn0(n1, n2 − 1), otherwise

This is shown by induction on n1 + n2: If n1 = 0 or n2 = 0, then there is no
recursive function call and thus, there can be at most n0 edges labeled with the
decreasing transition t. The induction step is illustrated in Fig. 4. First consider
the case where t is not a recursive transition. Then the path from the root to the
first node N1 where a function is called recursively uses at most d1 ≤ n0 edges
labeled with t. Due to our restriction on the number of function calls in the
update, N1 has at most one outgoing edge labeled with a recursive function call
ρ and one outgoing edge to a node N2 labeled with the corresponding recursive
transition from T ′ ∩ trans(fun(LT ′)) whose update contains ρ. The function call
ρ leads to a subtree with at most Rn0

(n1, n2−1) many t-edges by the induction
hypothesis. The path from N2 to the next node N3 where a function might be
called uses at most d2 edges labeled with t, where d1 + d2 ≤ n0. Finally, the
subtree starting in the node N3 has at most Rn0(n1 − 1, n2) many t-edges by
the induction hypothesis. Thus, the number of t-edges in the full tree is at most

|T|{t} ≤ d1 +Rn0
(n1, n2 − 1) + d2 +Rn0

(n1 − 1, n2)

≤ n0 +Rn0
(n1 − 1, n2) +Rn0

(n1, n2 − 1).

If t is recursive, we have d1 = d2 = n0 = 0. However, the step from N1 to N2

might be done with t. Thus, we obtain |T|{t} ≤ 1 +Rn0
(n1, n2 − 1) +Rn0

(n1 −
1, n2). So in both cases, we have |T|{t} ≤ 1+n0+Rn0(n1−1, n2)+Rn0(n1, n2−1).
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As shown in App. A, n0 + n2 · (1 + 2 · n0) · nn2
1 is an over-approximating

closed form solution of Rn0
(n1, n2). Hence, instantiating this closed form with

the ranking functions yields the desired local runtime bound. As mentioned, a
generalized version of this theorem for transitions with arbitrary many function
calls in their updates can be found in App. B.3

Theorem 22 (Local Runtime Bounds by ρ-RFs). Let ∅ ̸= T ′ ⊆ T such
that | fun(η)| ≤ 1 holds for every update η of the transitions in T ′. Moreover, let
t ∈ T ′ and ⟨rd, rtf , rf⟩ be a ρ-RF for t w.r.t. T ′. Then RBloc : LT ′ → B is local
runtime bound for t w.r.t. T ′, where for all ℓ ∈ LT ′ , we define RBloc(ℓ) as:

⌈⌈rd(ℓ)⌉⌉ + ⌈⌈rf(ℓ)⌉⌉ · (1 + 2 · ⌈⌈rd(ℓ)⌉⌉) · ⌈⌈rtf(ℓ)⌉⌉⌈⌈rf (ℓ)⌉⌉

Example 23. With the first ρ-RF of Ex. 21, Thm. 22 yields the local runtime

bound RB t1,{t1}
loc (ℓ1) = ⌈⌈rd(ℓ1)⌉⌉ = x (since rf(ℓ1) = 0). With the second ρ-RF

of Ex. 21, we obtain RB t5,{t4,t5}
loc (f1) = ⌈⌈rf(f1)⌉⌉ · ⌈⌈rtf(f1)⌉⌉⌈⌈rf (f1)⌉⌉ = a, since

rd(f1) = 0, rtf(f1) = 1, and rf(f1) = a.

3.2 Lifting Local Runtime Bounds to Global Runtime Bounds

To lift local to global runtime bounds, we consider those transitions and function
calls which start an evaluation of the subprogram T ′. Remember that fun(LT ′)
denotes the set of all function calls ℓ( ) ∈ F with ℓ ∈ LT ′ , where LT ′ are the
start locations of the transitions in the subprogram T ′.

Definition 24 (Entry Transitions and Function Calls). Let ∅ ̸= T ′ ⊆ T
be a non-empty set of transitions. Then ET T ′ = {r ∈ T \ T ′ | ∃ ℓ ∈ LT ′ . r =
( , , , ℓ)} is the set of direct entry transitions and EFT ′ = {r ∈ T \ T ′ |
fun(r) ∩ fun(LT ′) ̸= ∅} is the set of entry (function) calling transitions for T ′.

Example 25. For Fig. 2 and the subprogram T ′ = {t1} with the locations L{t1} =
{ℓ1}, we have the entry transitions ET {t1} = {t0}. Moreover, considering T ′ =
{t4, t5} yields L{t4,t5} = {f1} and EF{t4,t5} = {t1}.

Thm. 26 allows us to lift arbitrary local runtime bounds of a subprogram
T ′ (e.g., local runtime bounds by ρ-RFs) to global runtime bounds for the full
program with all transitions T . To this end, for every entry transition r ∈ ET T ′∪
EFT ′ , we consider RB(r) to over-approximate how often a local run of T ′ is
started. In contrast to our previous work [22, 35, 38], we also have to consider
entry calling transitions r ∈ EFT ′ . Furthermore, we have to consider the size of
the program variables after entering the subprogram by r or by a function call ρ
in r. Hence, we replace every program variable v ∈ V by its size bound SB(ϑ, v)
3 An alternative approach would be to add suitable transitions in order to transform
any program into a program with at most one function call per transition. When
using a ρ-RF on the transformed program, Thm. 22 would result in a similar local
runtime bound as when using the ρ-RF on the original program and computing the
local runtime bound via the generalized version of Thm. 22 in App. B.
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for ϑ = r or ϑ = ρ, respectively. This is denoted by “[v/SB(ϑ, v) | v ∈ V]”. In
Sect. 4, we show how to infer size bounds automatically. In the following, let
ℓr ∈ L denote the target location of a transition r and let ℓρ ∈ L denote the
location of a function call ρ, i.e., if ρ = ℓ(ζ) then ℓρ = ℓ. Here, it is important to
restrict ourselves to subprograms T ′ without initial transitions (ℓ0, , , ) that
start in the initial location ℓ0. Let T0 denote the set of all initial transitions. The
reason is that initial transitions do not have predecessor (entry) transitions. In
fact, initial transitions always have the global runtime bound 1 by construction
since according to our definition of ρ-ITSs in Def. 3, the initial location ℓ0 cannot
be reached by any transition.

Theorem 26 (Lifting Local Runtime Bounds). Let RB be a (global)
runtime bound, SB be a size bound, ∅ ̸= T ′ ⊆ T \ T0, and t ∈ T ′. Moreover, let

RB t,T ′

loc be a local runtime bound for the transition t w.r.t. T ′. Then RB′ is also
a global runtime bound, where RB′(t′) = RB(t′) for all t′ ̸= t and

RB′(t) =
∑

r∈ET T ′ RB(r) · RB
t,T ′

loc (ℓr) [v/SB(r, v) | v ∈ V]

+
∑

r∈EFT ′

∑
ρ∈ fun(r)∩ fun(LT ′ ) RB(r) · RB

t,T ′

loc (ℓρ) [v/SB(ρ, v) | v ∈ V].

Example 27. We now compute the remaining global runtime bounds for the ρ-
ITS of Fig. 2, see Ex. 12. For the transitions t1 and t5, we had inferred the local

runtime bounds RB t1,{t1}
loc (ℓ1) = x and RB t5,{t4,t5}

loc (f1) = a in Ex. 23.

• Thus, we obtain RB(t1) = RB(t0) · RB t1,{t1}
loc (ℓ1) [x/SB(t0, x)] = x (with

RB(t0) = 1 and SB(t0, x) = x) by Thm. 26.

• Furthermore, we have RB(t5) = RB(t1) · RB t5,{t4,t5}
loc (f1) [a/SB(ρ1, a)] = x2

(with RB(t1) = x and SB(ρ1, a) = x) by Thm. 26.

• Moreover, RB t4,{t4,t5}
loc (f1) = 1 is a local runtime bound since t4 can only be

executed once in the subprogram {t4, t5}. Here, we get RB(t4) = RB(t1) ·
RB t4,{t4,t5}

loc (f1) = x.

• Finally, RB t3,{t3}
loc (ℓ2) = log2(y) + 2 is also a local runtime bound, which

cannot be inferred by linear ranking functions but by our technique based
on twn-loops [24, 25, 35, 36, 38] (see App. C for the detailed construc-
tion). Lifting this local bound by Thm. 26 yields the global bound RB(t3) =
RB(t2) · RB t3,{t3}

loc (ℓ2) [y/SB(t2, y)] = log2(y + x · xx) + 2 (with RB(t2) = 1
and SB(t2, y) = y + x · xx).

Thus, our modular approach allows us to consider individual subprograms sepa-
rately, to use different techniques to compute their local bounds, and to combine
these local bounds into a global bound afterwards.

4 Modular Computation of Size Bounds

We now introduce our modular approach to compute size bounds. To this end, we
extend the technique of [10] to handle ITSs with function calls. For every result
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variable ⟨ϑ, v⟩ ∈ RV = (T ∪ F) × V, we define a local size bound SBloc(ϑ, v) ∈
N[V ∪F ]. So SBloc(ϑ, v) is a polynomial over the program variables and function
calls (which are treated like variables). When instantiating every function call ρ
in SBloc(ϑ, v) by the size of its result, then SBloc(ϑ, v) must be a bound on the
size of v after a single evaluation step with ϑ (where “size” again refers to the
absolute value). Thus, local size bounds are more restrictive than local runtime
bounds, which consider arbitrary runs within the subprogram rather than being
limited to a single evaluation step. Here, the result of a function call ρ can be
obtained as soon as the evaluation of the call ends in a configuration (ℓρ, σρ)
with ℓρ ∈ Ω. Then the result of the call has the size |σρ|(vℓρ).

Definition 28 (Local Size Bound). SBloc : RV → N[V ∪ F ] is a local size
bound if for all ⟨ϑ, v⟩ ∈ RV, all evaluations (ℓ′, σ′) →ϑ (ℓ, σ) with σ ̸= ⊥, and
all evaluations (ℓ′, σ′) →ρ ◦ →∗ (ℓρ, σρ) starting with some ρ ∈ F such that
ℓρ ∈ Ω and σρ ̸= ⊥, we have |σ|(v) ≤ J SBloc(ϑ, v) [ρ / |σρ|(vℓρ) | ρ ∈ F ] K|σ′|.

For every result variable ⟨t, v⟩ ∈ T × V with t = ( , , η, ), in practice we
essentially use SBloc(t, v) = ⌈⌈η(v)⌉⌉, e.g., SBloc(t1, y) = y+ρ1 and SBloc(t1, x) =
⌈⌈x − 1⌉⌉ = x + 1 for the program from Fig. 2. However, due to the guard x >
0 of the transition t1, here we can obtain the more precise local size bound
SBloc(t1, x) = x. Similarly, we essentially use SBloc(ρ, v) = ⌈⌈ζ(v)⌉⌉ for every
result variable ⟨ρ, v⟩ ∈ F × V with ρ = ℓ(ζ). So for Fig. 2, we would obtain
SBloc(ρ2, a) = ⌈⌈a−1⌉⌉ = a+1. However, due to the guard a > 0 of the transition
t5 whose update contains the function call ρ2, we can again obtain the more
precise bound SBloc(ρ2, a) = a.

Next we construct a result variable graph (RVG) which represents the in-
fluence of result variables on each other. Here, a node ⟨t, v⟩ or ⟨ρ, v⟩ represents
the value of v after evaluating the transition t or applying the update ζ for
the function call ρ = ℓ(ζ), respectively. For any polynomial p ∈ N[V ∪ F ],
let act(p) ⊆ V ∪ F denote the set of active arguments of the polynomial p,
i.e., x ∈ act(p) iff x ∈ V ∪ F is a program variable or a function call which
occurs in p. Furthermore, for ϑ ∈ T ∪ F let pre(ϑ) denote transitions or func-
tion calls that directly precede ϑ, i.e., ϑ′ ∈ pre(ϑ) iff there exists an evaluation
tree which contains the path →ϑ′ ◦ →ϑ. Then the RVG has all result vari-
ables RV as its nodes, and it has an RV-edge from ⟨ϑ′, v′⟩ to ⟨ϑ, v⟩ whenever
ϑ′ ∈ pre(ϑ) and v′ ∈ act(SBloc(ϑ, v)). In practice, we use efficiently computable
over-approximations for pre(·).

Definition 29 (Result Variable Graph (RV-Edges)). An RVG has the
nodes RV and the RV-edges {(⟨ϑ′, v′⟩, ⟨ϑ, v⟩) | ϑ′∈pre(ϑ), v′∈act(SBloc(ϑ, v))}.

Example 30. Fig. 5 depicts a part of the RVG for the program of Fig. 2. In
the figure, the black non-dashed edges are RV-edges. For instance, there is an
edge ⟨t1, x⟩ → ⟨ρ1, a⟩ as the value of x after transition t1 influences the value
of a after the function call ρ1. More precisely, t1 ∈ pre(ρ1) = {t0, t1} and x ∈
act(SBloc(ρ1, a)) = act(x) = {x}. Note that we do not have an edge from ⟨ρ1, a⟩



Modular Automatic Complexity Analysis of Recursive Integer Programs 17

⟨t0, x⟩ ⟨t1, x⟩ ⟨ρ1, a⟩

⟨t4, a⟩

⟨t5, a⟩ ⟨t0, y⟩ ⟨t2, y⟩

⟨t3, y⟩⟨t1, y⟩⟨ρ2, a⟩

Fig. 5: Part of the RVG with RV-Edges and Ω-Edges for Fig. 2

to ⟨t4, a⟩ as SBloc(t4, a) = 1. While the full RVG has additional non-trivial
SCCs,4 we omitted them from Fig. 5 as they have no impact on the runtime.

So far, the values of function calls have been disregarded. We now address this
issue by extending the RVG by a second set of edges. To this end, we say that
⟨t′, vℓ′⟩ is an Ω-predecessor of (t, ρ) for a transition t containing a function call
ρ if the transition t′ ends in a return location ℓ′ ∈ Ω which is reachable from
a function call ρ = ℓ( ) ∈ fun(t), i.e., if there is an evaluation →ρ (ℓ, ) →
· · · →t′ (ℓ

′, ). This means that after executing t′, the function call ρ is “finished”
and its result is obtained in the return variable vℓ′ . Thus, the Ω-predecessor
⟨t′, vℓ′⟩ corresponds to the value of the function call ρ which we did not handle
in the RV-edges. Let preΩ(t, ρ) denote the set of all Ω-predecessors of (t, ρ).
Whenever t = ( , , η, ) has the update η with a function call ρ ∈ fun(η(v)) and
⟨t′, vℓ′⟩ ∈ preΩ(t, ρ), then there is an Ω-edge from ⟨t′, vℓ′⟩ to ⟨t, v⟩ in the RVG.
As for pre(·), we use efficiently computable over-approximations for preΩ(·, ·).

Definition 31 (Result Variable Graph (Ω-Edges)). In addition to Def. 29,
an RVG also has the Ω-edges {(⟨t′, vℓ′⟩, ⟨t, v⟩) | ⟨t′, vℓ′⟩ ∈ preΩ(t, ρ), t =
( , , η, ), ρ ∈ fun(η(v))}.

Example 32. Reconsider the RVG in Fig. 5 which depicts a part of the RVG
for the program of Fig. 2. The RVG has four Ω-edges which are red-dashed
in Fig. 5. We have preΩ(t1, ρ1) = {⟨t4, a⟩, ⟨t5, a⟩}, since both t4 and t5 end in
the return location f2 ∈ Ω whose return variable is vf2 = a. Moreover, t1’s
update of y contains the function call ρ1 = f1(ζ1), and there are evaluations
→ρ1

(f1, ) →t4 (f2, ) and →ρ1
(f1, ) →t5 (f2, ). Thus, there are Ω-edges

from both ⟨t4, a⟩ and ⟨t5, a⟩ to ⟨t1, y⟩ in the RVG. So Fig. 5 has the five non-
trivial SCCs {⟨t1, x⟩}, {⟨ρ2, a⟩}, {⟨t1, y⟩}, {⟨t3, y⟩}, and {⟨t5, a⟩}, where the latter
forms a cycle with an Ω-edge.

We already developed powerful techniques to lift local to global size bounds
for ITSs without function calls in [10, 36, 38]. To extend these technique to ITSs
with function calls, we now introduce a corresponding approach to obtain global

4 As usual, a strongly connected component (SCC) is a maximal subgraph with a path
from each node to every other node. An SCC is trivial if it consists of a single node
without an edge to itself.
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size bounds for different types of components of the RVG. More precisely, we
consider the SCCs of the RVG in topological order and lift the local size bounds
for the result variables of each SCC to global size bounds. First, we treat trivial
SCCs of the RVG in Sect. 4.1. Here, local size bounds can be lifted by taking
the global size bounds for its “predecessors” into account. Afterwards, we handle
non-trivial SCCs in Sect. 4.2. To lift local to global size bounds in this case, in
addition to the global size bounds of the “predecessors”, one also has to consider
(global) runtime bounds, since non-trivial SCCs may be traversed repeatedly.

4.1 Size Bounds for Trivial SCCs

We start with computing size bounds for trivial SCCs {⟨ϑ, x⟩} in the RVG. To
this end, we present two techniques (in Thm. 33 and 35). Thm. 33 considers
the case where ϑ ∈ F or ϑ ∈ T with an update η such that fun(η(x)) = ∅.
The case fun(η(x)) ̸= ∅ is handled in Thm. 35. If ϑ is an initial transition,
i.e., pre(ϑ) = ∅, then SBloc(ϑ, x) is already a (global) size bound. Otherwise,
if pre(ϑ) ̸= ∅, then Thm. 33 over-approximates the sizes of the variables in
SBloc(ϑ, x) by the size bounds corresponding to the preceding transitions. To
this end, every program variable v in SBloc(α) for α = ⟨ϑ, x⟩ is replaced by its
size bound SB(ϑ′, v) for a predecessor ϑ′ ∈ pre(ϑ) in the RVG. This is again
denoted by SBloc(α) [v/SB(ϑ′, v) | v ∈ V]. Thus, as mentioned, the SCCs of the
RVG should be handled in topological order such that finite global size bounds
may already be available for the predecessors of ϑ.

Theorem 33 (Size Bounds for Trivial SCCs Without Function Calls).
Let SB be a size bound and {⟨ϑ, x⟩} be a trivial SCC of the RVG such that ϑ ∈ F
or fun(η(x)) = ∅ for the update η of ϑ ∈ T . Then SB′ is also a size bound where
SB′(α) = SB(α) for all α ̸= ⟨ϑ, x⟩, and for α = ⟨ϑ, x⟩ we have

SB′(α) =
{
SBloc(α), if pre(ϑ) = ∅
maxϑ′ ∈ pre(ϑ) {SBloc(α) [v/SB(ϑ′, v) | v ∈ V]} , otherwise.

Note that due to the requirement on ⟨ϑ, x⟩ in Thm. 33, w.l.o.g. SBloc(ϑ, x) ∈
N[V ∪ F ] only contains program variables V, but no variable from F .

Example 34. Reconsider Fig. 2 and 5. We have SB(t0, x) = SBloc(t0, x) = x by
Thm. 33 as pre(t0) = ∅. Moreover, we obtain SB(t4, a) = 1 since SBloc(t4, a) =
1. In Ex. 38 we will show that SB(t1, x) = x is a size bound. As SBloc(ρ1, a) = x
and pre(ρ1) = {t0, t1}, this implies

SB(ρ1, a) = max{x[x/SB(t0, x)], x[x/SB(t1, x)]} = x.

The following theorem handles trivial SCCs {α} for α = ⟨t, x⟩ where t’s up-
date for x contains function calls ρ. Hence, in contrast to Thm. 33, we have to
instantiate the function calls ρ in SBloc(α) by the size bounds for the transitions
of preΩ(t, ρ), as they reach the corresponding return locations. If some of these
function calls ρ do not reach a return location, then we can set the size bound
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for ⟨t, x⟩ to 0, because then→t only reaches configurations of the form ( ,⊥). If
pre(t) = ∅ (i.e., t does not have a RV-predecessor in the RVG) but every func-
tion call ρ1, . . . , ρn ∈ fun(η(x)) has a predecessor (i.e., preΩ(t, ρi) ̸= ∅ for all i),
then we replace every such function call ρi by a size bound for the Ω-predecessor.
More precisely, we replace ρi in SBloc(α) by SB(βi) for βi ∈ preΩ(t, ρi). In the
following, this is denoted by SBloc(α) [ρi/SB(βi) | i ∈ [n]] where [n] is the set
{1, . . . , n}. Otherwise, if t has RV-predecessors in the RVG, then we also have to
instantiate the program variables by the size bounds corresponding to the pre-
ceding transitions, as in Thm. 33. Afterwards, the function calls ρi are handled
as in the previous case. Note that the order of the substitutions is important
here. Replacing a function call ρi with the size bound SB(βi) before substituting
program variables by size bounds from the preceding transitions is unsound in
general, as variables in SB(βi) would then also be substituted incorrectly.

Theorem 35 (Size Bounds for Trivial SCCs With Function Calls).
Let SB be a size bound and {⟨t, x⟩} be a trivial SCC of the RVG such that t ∈ T
and fun(η(x)) ̸= ∅. Then SB′ is also a size bound where SB′(α) = SB(α) for
all α ̸= ⟨t, x⟩, and for α = ⟨t, x⟩ with fun(η(x)) = {ρ1, . . . , ρn}, we have

SB′(α) =



0, if preΩ(t, ρi) = ∅ for some i ∈ [n]

max
βi ∈ preΩ(t,ρi)

{SBloc(α) [ρi/SB(βi) | i ∈ [n]]} ,
if all preΩ(t, ρi) ̸= ∅ and pre(t) = ∅

max
βi ∈ preΩ(t,ρi)

ϑ′ ∈ pre(t)

{SBloc(α) [v/SB(ϑ′, v) | v ∈ V] [ρi/SB(βi) | i ∈ [n]]} ,
if all preΩ(t, ρi) ̸= ∅ and pre(t) ̸= ∅.

Example 36. Consider a variant of Fig. 2 where we replace the update η(y) of
t1 by ρ1 = f1(ζ1). Thus, the self-loop at ⟨t1, y⟩ is removed from the RVG in
Fig. 5. Then, we can apply Thm. 35 on the trivial SCC {⟨t1, y⟩}. Assume that
we already computed SB(t4, a) = 1 and SB(t5, a) = xx (see Ex. 34 and 40). We
have pre(t1) = {t0, t1}, but SBloc(t1, y) = ρ1 does not contain variables from V.
Hence, we get SB(t1, y) = max {ρ1[ρ1/SB(t4, a)], ρ1[ρ1/SB(t5, a)]} = xx as we
have the Ω-predecessors ⟨t4, a⟩ and ⟨t5, a⟩ ∈ preΩ(t1, ρ1).

4.2 Size Bounds for Non-Trivial SCCs

Finally, we introduce our approach to handle non-trivial SCCs. Let C ⊆ RV be
the nodes of such an SCC. Our approach can only be applied to SCCs where for
all α ∈ C, there exist eα ∈ N and sα ∈ N[V] such that

SBloc(α) ≤ sα · ( eα +
∑

v ∈ act(SBloc(α))\act(sα) v ) (1)

where “≤” is interpreted pointwise (i.e., the inequation must hold for all in-
stantiations of the variables by natural numbers). Here, sα captures the scaling
behavior of SBloc(α), e.g., it allows us to consider updates of the form η(x) = 2·x
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or η(x) = a·x for a variable a ∈ V. Note that in [10], only constant factors sα were
allowed. Similarly, eα captures the additive growth in updates like η(x) = 1+x.
For instance, we have sα = a, eα = 0, and act(SBloc(α)) \ act(sα) = {x} for
the update η(x) = a · x. The restriction (1) is essential for our approach, since
it allows us to apply an “accumulation” argument when lifting local to global
size bounds. Note that all linear updates satisfy (1). Thus, our approach is ap-
plicable to a wide range of programs in practice. However, we cannot express all
non-linear updates (e.g., the update xx cannot be handled).

We now also define pre and preΩ for result variables. For α ∈ RV, pre(α)
(preΩ(α)) is the set of all result variables α′ with an RV-edge (Ω-edge) from α′ to
α in the RVG. Furthermore, for any result variable α in the SCC C, let Vα =
{v ∈ V | ∃ϑ. ⟨ϑ, v⟩ ∈ pre(α) ∩ C} consist of all variables v with an RV-edge to α
in C, and similarly, Fα =

{
v ∈ V | ∃t. ⟨t, v⟩ ∈ preΩ(α) ∩ C

}
are all variables with

an Ω-edge to α in C. Recall that act(p) is the set of active arguments of the
polynomial p ∈ N[V ∪F ]. Finally, for any p ∈ N[V ∪F ], let actV(p) = act(p)∩V
be p’s active variables and actF(p) = act(p) ∩ F be p’s active function calls.

We first consider “additive” local size bounds only, and afterwards we gen-
eralize our method to handle “multiplicative” local size bounds as well.

Additive Local Size Bounds: We first consider local size bounds which are addi-
tive, i.e., where sα = 1 and |Vα|+ |Fα| ≤ 1. Note that both of these requirements
are necessary to prevent non-additive, exponential growth.

To consider the additive growth, we over-approximate the sizes of variables
on incoming edges from outside the SCC C. For example, consider the additive
update η(x) = x+y of a simple loop where y is not changed with a runtime bound
rb. In this example, the value of y at the entry of the loop is repeatedly added to x
in each iteration, i.e., we have Vα = {x}. To capture such initial values of
an SCC of the RVG, we introduce the expressions initα for RV-edges and
initΩα for Ω-edges which over-approximate the incoming values. Let initα(v) =
max{SB(ϑ, v) | ∃ϑ ∈ T ∪F . ⟨ϑ, v⟩ ∈ pre(α)\C} be a bound on the size of v when
entering C via an RV-edge to α. Analogously, initΩα (v) = max{SB(t, v) | ∃t ∈
T . ⟨t, v⟩ ∈ preΩ(α) \ C} is a bound on the size of v when entering C via an Ω-
edge to α. To take the effect of function calls ρ into account, we have to consider
the return variables of the return locations reachable from ρ. To ease the presen-
tation, we assume that every function call ρ always returns the same variable vρ,
i.e., that ρ cannot reach two return locations ℓ1, ℓ2 with vℓ1 ̸= vℓ2 .

5 The execu-
tion of α’s transition or function call then means that the values of the variables
in Vα or Fα can be increased by adding initα(v) for all v ∈ actV(SBloc(α)) \ Vα

(or, respectively, by adding initΩα (vρ) for all ρ ∈ actF(SBloc(α)) and vρ ̸∈ Fα,
where vρ is the return variable associated to ρ) plus the constant eα.

Reconsider our example with the update η(x) = x + y where Vα = {x}.
After n iterations of the loop, the value of x is increased by n · initα(y). Using

5 This could be generalized to function calls ρ whose set of return variables retvar(ρ) =
{vℓ′ | ρ reaches ℓ′ ∈ Ω} it not a singleton. Then in (2), instead of considering all
ρ ∈ actF(SBloc(α)) with vρ ̸∈ Fα, one would have to consider all v ∈ retvar(ρ)\Fα.



Modular Automatic Complexity Analysis of Recursive Integer Programs 21

the runtime bound rb of this loop, our approach would over-approximate this
increase by rb · initα(y).

In general, the increase of the variables in Vα or Fα by initα(v) and initΩα (vρ)
is repeated rbα times, where rbα=RB(t) if α=⟨t, v⟩ and rbα =

∑
t∈trans(ρ)RB(t)

if α = ⟨ρ, v⟩, i.e., rbα is a bound on how often α’s transition or function
call is evaluated during a program run. Thus, the following expression over-
approximates the additive size-change resulting from α (ignoring the growth
resulting from Vα and Fα for now):

add(α) = rbα ·( eα+
∑

v ∈ actV(SBloc(α))
v ̸∈Vα

initα(v) +
∑

ρ∈ actF(SBloc(α))
vρ ̸∈Fα

initΩα (vρ) ) (2)

We now take the growth resulting from the variables in Vα or Fα into account.
Here, one has to consider the initial values of the variables in Vα and Fα before
entering the SCC C. This leads to

add(α) +
∑

v∈Vα
initα(v) +

∑
v∈Fα

initΩα (v).

Since we only have to consider the initial values of the variables in Vα and Fα,
they are not multiplied with the runtime bound. So in our example with the
update η(x) = x+ y and Vα = {x}, initα(x) is not multiplied with the runtime
bound rb and we would obtain the size bound initα(x) + rb · initα(y). The
following Thm. 37 summarizes the previous observations and yields size bounds
for additive SCCs. To simplify the presentation, in contrast to [10], we do not
consider transitions individually.

Theorem 37 (Size Bounds for Non-Trivial Additive SCCs). Let SB
be a size bound and C be a non-trivial SCC of the RVG, where for all α ∈ C,
SBloc(α) satisfies (1) for a suitable eα and sα = 1, and moreover |Vα|+|Fα| ≤ 1.
Then SB′ is also a size bound where SB′(α) = SB(α) for all α ∈ RV \ C, and
SB′(α) = SB′(C) for all α ∈ C, where

SB′(C) =
∑

α∈C(add(α) +
∑

v∈Vα
initα(v) +

∑
v∈Fα

initΩα (v))

Example 38. Reconsider Fig. 2 and 5. We now infer size bounds for the non-
trivial SCCs {⟨t1, x⟩} and {⟨ρ2, a⟩}.

• For α = ⟨t1, x⟩ with SBloc(t1, x) = x, we have sα = 1, eα = 0, Vα = {x},
Fα = ∅, actV(SBloc(t1, x)) = {x}, and actF(SBloc(t1, x)) = ∅. This implies
add(α) = 0 and initα(x) = SB(t0, x) = x. Thus, we obtain the size bound
SB(t1, x) = x.

• Similarly, for α = ⟨ρ2, a⟩ with SBloc(ρ2, a) = a, we obtain sα = 1, eα = 0,
Vα = {a}, Fα = ∅, actV(SBloc(ρ2, a)) = {a}, and actF(SBloc(ρ2, a)) = ∅.
Thus, we have add(α) = 0 and initα(a) = SB(ρ1, a) = x by Ex. 34. This
yields the size bound SB(ρ2, a) = x.
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Multiplicative Local Size Bounds: Now, we consider local size bounds where
sα ̸= 1 or |Vα| + |Fα| > 1. Again, let us introduce the essentially ideas for the
size bound computations with a simple loop with the runtime bound rb. In our
example, we consider the update η(x) = η(y) = x + y where x, y ∈ Vα. Then,
both x and y grow with a factor of two. A similar effect would be obtained for
scaling factors sα > 1. If |Vα| + |Fα| > 1, then each execution of α’s transition
or function call may multiply the value of a variable by |Vα| + |Fα|. As for
the additive growth, this multiplication must be performed rbα times. Thus, we
obtain (|Vα| + |Fα|)rbα as the scaling factor caused by Vα and Fα. The scaling
factor sα can be handled similarly. However, here we need to be careful as sα
might contain variables. To this end, we over-approximate every variable in sα
by the size bound of the predecessors and ensure that the scaling factor is at
least 1. This is captured by scale(α) with

scale(α) = (max⟨ϑ, ⟩ ∈ pre(α) {1, sα [v/SB(ϑ, v) | v ∈ V]} · (|Vα|+ |Fα|) )rbα (3)

So for our example η(x) = η(y) = x+y, we infer the scaling factor scale(α) = 2rb.
Since Vα = {x, y}, here we obtain the size bound 2rb · (initα(x) + initα(y)) by
multiplying the scaling factor with the initial values initα(x) + initα(y).

The following theorem shows how to compute size bounds for non-trivial
SCCs C in general, by accumulating scale(α) and add(α) for all α ∈ C. To this
end, we have to multiply scale(α) with the initial size bounds for Vα and Fα as
in the example. (The other initial size bounds are already covered in add(α).)
So, the scaling effect of several result variables in C has to be multiplied whereas
the additive size change for several result variables in C has to be added.

Theorem 39 (Size Bounds for Non-Trivial SCCs). Let SB be a size
bound and C be a non-trivial SCC of the RVG, where for all α ∈ C, SBloc(α)
satisfies (1) for suitable eα and sα. Then SB′ is also a size bound where SB′(α) =
SB(α) for all α ∈ RV \ C, and SB′(α) = SB′(C) for all α ∈ C, where

SB′(C) =
∏

α∈C scale(α) · (
∑

α∈C(add(α)+
∑

v∈Vα
initα(v)+

∑
v∈Fα

initΩα (v)) )

Example 40. We consider Fig. 2 and 5 again and infer size bounds for the missing
SCCs {⟨t5, a⟩} and {⟨t1, y⟩}.

• For α = ⟨t5, a⟩ with SBloc(t5, a) = a · ρ2, we have sα = a, eα = 0, Vα = ∅,
Fα = {a}, actV(SBloc(t5, a)) = {a}, and actF(SBloc(t5, a)) = {ρ2}. As
pre(t5) = {ρ1, ρ2}, we have

scale(α) = (max{1, a[a/SB(ρ1, a)], a[a/SB(ρ2, a)]})RB(t5) = xx2

(with RB(t5) = x2 by Ex. 27 and SB(ρ1, a) = SB(ρ2, a) = x when us-
ing the invariant x > 0 and thus, max{1, x} = x), add(α) = x2 · 0 = 0,
and initΩα (a) = SB(t4, a) = 1 by Ex. 34. Hence, we obtain the size bound

SB(t5, a) = xx2

. Note that (3) could be improved by considering a local run-
time bound instead of the global runtime bound rbα. A similar improvement
is used in [36, Thm. 34]. Thus, to obtain simpler bounds for readability, we
use the size bound SB(t5, a) = xx.
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• Finally, for α = ⟨t1, y⟩ with SBloc(t1, y) = y + ρ1, we have sα = 1, eα = 0,
Vα = {y}, Fα = ∅, actV(SBloc(t1, y)) = {y}, and actF(SBloc(t1, y)) =
{ρ1}. Thus, we obtain scale(α) = 1, add(α) = RB(t1) · initΩα (a) = x ·
max{SB(t4, a),SB(t5, a)} = x·xx (withRB(t1) = x by Ex. 27, SB(t4, a) = 1,
and SB(t5, a) = xx), and initα(y) = SB(t0, y) = y. Hence, we get the size
bound SB(t1, y) = y + x · xx. This also implies SB(t2, y) = y + x · xx.

5 Conclusion, Evaluation, and Related Work

In this paper we presented a novel framework for complexity analysis of inte-
ger programs with (possibly non-tail recursive) function calls. We introduced a
unified approach that alternates between inferring runtime and size bounds.

The approach is modular, since it handles subprograms separately and allows
us to use different techniques to generate bounds for the respective subprograms.
To infer runtime bounds, in addition to techniques based on multiphase-linear
ranking functions [7, 8, 22] and “complete” techniques for twn-loops [10, 24,
25, 35, 36, 38], we introduced the new class of ρ-ranking functions to handle
subprograms with function calls in Sect. 3. To infer size bounds, we showed
in Sect. 4 how to generalize the respective technique from [10] to ITSs with
function calls. So in particular, our novel approach can compute size bounds for
the return values of function calls, i.e., the results of function calls are taken into
account when analyzing complexity. We implemented our new approach in the
open-source tool KoAT such that it can now also analyze ITSs with (possibly
recursive) function calls.

Of course, our approach and its implementation have several limitations.
Currently, KoAT can only successfully analyze programs where the arguments
in recursive calls decrease w.r.t. a linear polynomial ranking function. Moreover,
our approach via ρ-RFs can only infer polynomial or exponential bounds. So
for example, we cannot obtain precise bounds for recursive algorithms with log-
arithmic runtime. (Our implementation only computes logarithmic bounds for
subprograms that are twn-loops [38].) Another restriction is that we can only
lift local size bounds of the form (1) to global size bounds. In addition, KoAT
may fail to infer finite bounds for several other reasons, e.g., some examples
would need stronger invariants to make our approach succeed. A detailed dis-
cussion and a corresponding list of examples to demonstrate the limitations of
our approach and its implementation can be found on our webpage [40].

In the following, we conclude by discussing related work and by providing an
experimental evaluation of our approach using the implementation in KoAT.

5.1 Related Work

As mentioned in the introduction, there exist many approaches to analyze com-
plexity of programs automatically, e.g., [3–5, 7, 10, 11, 18, 22, 23, 28, 29, 37, 41,
44, 47]. However, only few of them focus on programs with recursion or function
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calls. While we already discussed an extension to recursive ITSs in [10], here the
return values of function calls were ignored.

Techniques for complexity analysis of term rewrite systems [6] can handle
(possibly non-tail) recursion, but standard TRSs do not support built-in types
like integers. However in [43], recursive natural transition systems with poten-
tial non-tail recursion were introduced in order to study the connection between
complexity analysis for TRSs and our approach from [10] for complexity analysis
of ITSs. Here, the idea is to summarize (and subsequently eliminate) subproce-
dures by approximating their runtime and size. Thus, this approach does not
benefit from techniques such as our new class of ranking functions which allows
us to handle subprograms with function calls directly.

Instead of representing integer programs as ITSs, there are also techniques
based on cost equation systems which can express non-tail recursive integer pro-
grams as well, e.g., [17, 18], implemented in the tool CoFloCo. This approach
analyzes program parts independently and uses linear invariants to compose the
results, i.e., it differs significantly from our approach which can also infer non-
linear size bounds. Similarly, in the tool PUBS [2, 4], cost relations are analyzed
which are a system of recursive equations that capture the cost of the program.
There are also numerous approaches for automatic resource analysis of func-
tional programs, often based on amortized analysis (see [30] for an overview).
For example, an approach for automatic complexity analysis of OCaml programs
is presented in [28, 29], which however has limitations w.r.t. modularity, see [43],
and is restricted to polynomial bounds. There are also several approaches based
on types, e.g., the resource consumption of Liquid Haskell programs is encoded in
a type system in [23], but here bounds are not inferred automatically. Another
line of work automatically infers bounds from recursive programs by generating
and solving recurrence relations, e.g., [31, 46]. In future work, it might be in-
teresting to integrate such techniques within our framework, as they can infer
bounds that go beyond polynomials and exponentials.

There also exist tools which analyze the runtime complexity of C-code, e.g.,
Loopus [47] or MaxCore [5] with CoFloCo or PUBS in the backend. For KoAT,
we used Clang [13] and llvm2kittel [16] to transform pointer-free C programs
into ITSs, and to handle more general C programs, we developed the framework
AProVE (KoAT + LoAT) [39], which also participates in the annual Software
Verification Competition (SV-COMP) [48]. AProVE can also prove termination
of recursive C programs. But when analyzing complexity, all these approaches are
limited to C programs without recursion. In the future, it would be interesting
to use our novel approach for ρ-ITSs to extend complexity analysis to recursive
C programs, in particular in our framework AProVE (KoAT + LoAT).

5.2 Evaluation and Implementation

We implemented our novel results and integrated them into our open-source tool
KoAT which also features powerful techniques for subprograms without function
calls [10, 22, 35–38]. In the beginning, KoAT preprocesses the program, e.g., by
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O(1) O(log(n)) O(n) O(n2) O(n>2) < ω AVG+(s) AVG(s)

KoAT 128 11 281 (18) 121 (8) 28 (4) 583 (34) 3.45 21.78

KoAT1 132 0 231 (15) 108 (4) 16 (2) 499 (24) 0.64 8.06

CoFloCo 125 0 234 (1) 95 10 (1) 464 (2) 3.19 16.38

Table 1: Evaluation on the Collection of ITSs and ρ-ITSs

extending the guards of transitions with invariants inferred by Apron [32]. For
all SMT problems (including the generation of ρ-RFs), KoAT calls Z3 [42].

For our evaluation, we use the set of 838 ITSs for complexity analysis of inte-
ger programs from the Termination Problems Data Base (TPDB) [49] which is
used in the annual Termination and Complexity Competition (TermComp) [21].
While the TPDB contains a large collection of ITSs without function calls, up to
now there does not exist any such standard benchmark set for ITSs with function
calls. Thus, to obtain a representative collection of typical recursive programs,
we extended our set by 45 new examples. To this end, we transformed 20 recur-
sive C programs of the TPDB and of the collection used at SV-COMP into our
novel formalism of ρ-ITSs. Moreover, we included our leading example (Fig. 2)
along with several variants. Our benchmarks also contain ρ-ITSs with nested
function calls and algorithms with multiple recursive function calls (e.g., the
naive implementation of the Fibonacci numbers). Moreover, our set of examples
includes recursive versions of insertion sort and selection sort (where lists were
abstracted to their lengths), for which we can infer quadratic runtime bounds.
In particular, there are also benchmarks that depend on non-linear size bounds,
e.g., an algorithm which computes the product of two numbers recursively and
then uses this result in a subsequent loop. The average size of our benchmarks
is 26 lines, whereas the largest one has 1615 lines. In contrast, the average size
of those benchmarks where KoAT infers a finite bound is 17 lines and the largest
of them has 246 lines.

Our benchmark collection, a detailed description of every new benchmark,
and also the detailed results of our evaluation can be found on our webpage [40].

To distinguish the original KoAT implementation of [10] from our re-imple-
mentation, we refer to the tool of [10] as KoAT1 in the following. We evaluated
our novel version of KoAT with the approach of the current paper against the
tools KoAT1 and CoFloCo, which can also handle certain forms of recursion. To
this end, we transformed our novel benchmark ρ-ITSs manually into their for-
malism. We do not compare with PUBS, because as stated in [15] by one of the
authors of PUBS, CoFloCo is strictly stronger than PUBS. Table 1 shows the re-
sults of our evaluation, where as in TermComp, we used a timeout of 5 minutes
per example. All tools were run inside an Ubuntu Docker container on a ma-
chine with an AMD Ryzen 7 3700X octa-core CPU and 8GB of RAM. The first
entry in every cell denotes the number of benchmarks for which the tool inferred
the respective bound, where we consider both the ITSs from the TPDB and our
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new ρ-ITS benchmarks. The number in brackets only considers the 45 new ρ-ITS
benchmarks. The runtime bounds inferred by the tools are compared asymptoti-
cally as functions which depend on the largest initial absolute value n of all pro-
gram variables. So for example, KoAT proved an (at most) linear runtime bound
for 128 + 11 + 281 = 420 benchmarks, i.e., for these examples KoAT can show
that rc(σ0) ∈ O(n) for all initial states σ0 ∈ Σ where |σ0(v)| ≤ n for all v ∈ V.
Overall, this configuration succeeds on 583 examples, i.e., “< ω” is the number
of examples where a finite bound on the runtime complexity could be computed
by the tool within the time limit. Moreover, our tool KoAT is able to prove termi-
nation for 626 benchmarks. So the termination proof succeeds for 43 additional
examples since one does not have to construct actual runtime bounds and does
not have to consider size bounds. “AVG+(s)” denotes the average runtime of
successful runs in seconds, whereas “AVG(s)” is the average runtime of all runs.

In our experiments, KoAT was the most powerful tool for runtime complexity
analysis on both classical ITSs and – due to the novel contributions of this pa-
per – also on ITSs with recursive function calls. Note that KoAT1 heuristically
applies loop-unrolling which might eliminate loops with constant runtime. For
this reason, KoAT1 infers constant runtime bounds for slightly more benchmarks
than KoAT. For all other complexity classes in Table 1, KoAT finds more exam-
ples for the respective class than the two other tools. Moreover, KoAT is the only
of the three tools which can also infer logarithmic bounds (due to the integration
of dedicated analysis techniques for subprograms that are twn-loops). Neverthe-
less, the three tools are “orthogonal”, i.e., for each tool there are examples where
the tool provides a finite bound and the other two tools fail.

Note that the tool LoAT [19, 20] is able to prove absence of finite runtime
bounds for 231 of the 883 benchmarks. Thus, KoAT is able to infer finite com-
plexity bounds for 89% of all 883− 231 = 652 benchmarks where this is poten-
tially possible. Our experiments demonstrate that handling return values directly
yields significantly more precise bounds than prior approaches that simply ig-
nore them. In particular, to our knowledge KoAT is currently the only tool which
can infer a finite runtime bound for the recursive ITS from our leading example
(Fig. 2). So the new contributions of the paper are crucial in order to extend
automated complexity analysis to the setting of recursive programs. Moreover,
verification frameworks for other programming languages can now be extended
to analyze complexity of recursive programs by using KoAT as a backend.

KoAT’s source code, a binary, a Docker image, and details on our new bench-
marks and our evaluation are available at our webpage [40]:

https://koat.verify.rwth-aachen.de/function-calls

This website also contains details on our input format for ρ-ITSs and a web
interface to run different configurations of KoAT directly online. In addition, we
also provide an artifact [33] with KoAT’s binary and Docker images in order to
reproduce our experiments.

https://koat.verify.rwth-aachen.de/function-calls
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[41] P. López-Garćıa, L. Darmawan, M. Klemen, U. Liqat, F. Bueno, and M. V.
Hermenegildo. “Interval-Based Resource Usage Verification by Translation
into Horn Clauses and an Application to Energy Consumption”. In: Theory
and Practice of Logic Programming 18.2 (2018), pp. 167–223. doi: 10.101
7/S1471068418000042.

https://doi.org/10.1145/2362389.2362393
https://doi.org/10.1145/3009837.3009842
https://doi.org/10.1017/S0960129521000487
https://doi.org/10.1145/3485515
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.5281/zenodo.15586347
https://doi.org/10.1007/10722167_7
https://doi.org/10.1007/978-3-031-10769-6_43
https://doi.org/10.1007/978-3-031-10769-6_43
https://doi.org/10.1007/978-3-031-43369-6_1
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.48550/arXiv.2412.01832
https://doi.org/10.1007/978-3-031-90660-2_13
https://koat.verify.rwth-aachen.de/function-calls
https://koat.verify.rwth-aachen.de/function-calls
https://doi.org/10.1017/S1471068418000042
https://doi.org/10.1017/S1471068418000042


30 N. Lommen, J. Giesl

[42] L. M. de Moura and N. Bjørner. “Z3: An Efficient SMT Solver”. In: Proc.
TACAS ’08. LNCS 4963. 2008, pp. 337–340. doi: 10.1007/978-3-540-788
00-3 24.

[43] M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, and J. Giesl. “Complexity
Analysis for Term Rewriting by Integer Transition Systems”. In: Proc.
FroCoS ’17. LNCS 10483. 2017, pp. 132–150. doi: 10.1007/978-3-319-661
67-4 8.

[44] L. Pham, F. A. Saad, and J. Hoffmann. “Robust Resource Bounds with
Static Analysis and Bayesian Inference”. In: Proceedings of the ACM on
Programming Languages 8.PLDI (2024). doi: 10.1145/3656380.

[45] A. Podelski and A. Rybalchenko. “A Complete Method for the Synthesis
of Linear Ranking Functions”. In: Proc. VMCAI ’04. LNCS 2937. 2004,
pp. 239–251. doi: 10.1007/978-3-540-24622-0 20.
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A Proofs

A.1 Proof of Lemma 18

Lemma 18 (Local Runtime Bounds by RFs). Let ∅ ̸= T ′ ⊆ T where
fun(T ′) ∩ fun(LT ′) = ∅, and let t ∈ T ′. Moreover, let rd be an RF for t w.r.t.
T ′. Then RBloc : LT ′ → B is local runtime bound for t w.r.t. T ′, where for all
ℓ ∈ LT ′ , we define RBloc(ℓ) = ⌈⌈rd(ℓ)⌉⌉.

Proof. Let ({(ℓ, σ)} ,∅) ≺∗
T ′∪{ε} T be an evaluation in the subprogram T ′ with

ℓ ∈ LT ′ and an arbitrary state σ ∈ Σ. We have to prove that

|T|{t} ≤ Jrd(ℓ)K|σ| = JRB t,T ′

loc (ℓ)K|σ| (4)

holds. To this end, we consider an arbitrary evaluation ({(ℓ, σ)} ,∅) ≺∗
T ′∪{ε} T.

Since we have fun(T ′) ∩ fun(LT ′) = ∅, the transition t can only occur at most
Jrd(ℓ)K|σ| times by Requirements (a) and (b) in Def. 16. To be precise, (a) and
(b) yield a well-founded relation where each chain has length at most Jrd(ℓ)K|σ|.

⊓⊔

A.2 Proof of Thm. 22

Theorem 22 (Local Runtime Bounds by ρ-RFs). Let ∅ ̸= T ′ ⊆ T such
that | fun(η)| ≤ 1 holds for every update η of the transitions in T ′. Moreover, let
t ∈ T ′ and ⟨rd, rtf , rf⟩ be a ρ-RF for t w.r.t. T ′. Then RBloc : LT ′ → B is local
runtime bound for t w.r.t. T ′, where for all ℓ ∈ LT ′ , we define RBloc(ℓ) as:

⌈⌈rd(ℓ)⌉⌉ + ⌈⌈rf(ℓ)⌉⌉ · (1 + 2 · ⌈⌈rd(ℓ)⌉⌉) · ⌈⌈rtf(ℓ)⌉⌉⌈⌈rf (ℓ)⌉⌉

Proof. Let ({(ℓ, σ)} ,∅) ≺∗
T ′∪{ε} T be an evaluation in the subprogram T ′ with

ℓ ∈ LT ′ and an arbitrary state σ ∈ Σ. We have to prove that

|T|{t} ≤ JRB t,T ′

loc (ℓ)K|σ| (5)

holds. To this end, we consider the following recurrence:

Rn0(n1, n2) =

{
n0, if n1 = 0 or n2 = 0
1 + n0 +Rn0(n1 − 1, n2) +Rn0(n1, n2 − 1), otherwise

As shown in Sect. 3, by induction on n1 + n2 one can prove that Rn0
(n1, n2)

over-approximates the number of t-edges in any T ′-evaluation tree (i.e., |T|{t} ≤
Rn0(n1, n2)), provided that every path has at most n0 edges labeled with the
transition t and t ̸∈ T ′ ∩ trans(fun(LT ′)), n1 edges labeled with the recursive
transitions from T ′ ∩ trans(fun(LT ′)), and n2 edges labeled with recursive func-
tion calls. Now we show that n0 + n2 · (1 + 2 · n0) · nn2

1 is an over-approximating
closed form solution of Rn0

(n1, n2). Instantiating this closed form with the rank-
ing functions yields the desired local runtime bound.
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Let us abbreviate f(n0, n1, n2) = n0 +n2 · (1+2 ·n0) ·nn2
1 . We show that for

all n0, n1, n2 ∈ N we have Rn0
(n1, n2) ≤ f(n0, n1, n2) by induction on n2.

If n2 = 0, then we have Rn0
(n1, n2) = f(n0, n1, 0) = n0. Otherwise, if n1 = 0

and n2 > 0, then we also have Rn0(n1, n2) = f(n0, 0, n2) = n0. Finally, if n1 > 0
and n2 > 0, then we have

Rn0
(n1, n2) = 1 + n0 +Rn0

(n1 − 1, n2) +Rn0
(n1, n2 − 1)

≤ 1 + n0 +Rn0
(n1 − 1, n2) + f(n0, n1, n2 − 1)

(by the induction hypothesis)

≤ Rn0(0, n2) +

n1−1∑
i=0

(1 + n0 + f(n0, n0 − i, n2 − 1)) . (6)

The last step (6) is clear if n1 = 1. Otherwise, if n1 > 1, the reason for (6) is
that we have

1 + n0 + f(n0, n1, n2 − 1) +Rn0(n1 − 1, n2)

= 1 + n0 + f(n0, n1, n2 − 1) +

1 + n0 +Rn0(n1 − 2, n2) +Rn0(n1 − 1, n2 − 1)
(evaluate Rn0(n1 − 1, n2))

≤ 1 + n0 + f(n0, n1, n2 − 1) +

1 + n0 + f(n0, n1 − 1, n2 − 1) +Rn0
(n1 − 2, n2)

(by the induction hypothesis)

≤ Rn0
(0, n2) +

n1−1∑
i=0

(1 + n0 + f(n0, n1 − i, n2 − 1)) .

(by performing these steps repeatedly)

So overall, we obtain

Rn0
(n1, n2) ≤ Rn0

(0, n2) +

n1−1∑
i=0

(1 + n0 + f(n0, n1 − i, n2 − 1)) (by (6))

= n0 +

n1−1∑
i=0

(1 + n0 + f(n0, n1 − i, n2 − 1))

≤ n0 + n1 · (1 + n0 + f(n0, n1, n2 − 1))
(as f(n0, n1 − i, n2 − 1) ≤ f(n0, n1, n2 − 1))

= n0 + n1 · (1 + 2 · n0) + (n2 − 1) · (1 + 2 · n0) · nn2
1

≤ f(n0, n1, n2). (7)

Here, (7) holds as n1 · (1 + 2 · n0) ≤ (1 + 2 · n0) · nn2
1 for n2 > 0.

⊓⊔
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A.3 Proof of Thm. 26

Theorem 26 (Lifting Local Runtime Bounds). Let RB be a (global) run-
time bound, SB be a size bound, ∅ ̸= T ′ ⊆ T \ T0, and t ∈ T ′. Moreover, let

RB t,T ′

loc be a local runtime bound for the transition t w.r.t. T ′. Then RB′ is also
a global runtime bound, where RB′(t′) = RB(t′) for all t′ ̸= t and

RB′(t) =
∑

r∈ET T ′ RB(r) · RB
t,T ′

loc (ℓr) [v/SB(r, v) | v ∈ V]

+
∑

r∈EFT ′

∑
ρ∈ fun(r)∩ fun(LT ′ ) RB(r) · RB

t,T ′

loc (ℓρ) [v/SB(ρ, v) | v ∈ V].

Proof. We show that for all t ∈ T , all σ0 ∈ Σ, and all trees T with Tσ0 ≺∗ T,
we have

JRB′(t)K|σ0| ≥ |T|{t}.
The case t′ ̸= t is trivial, since RB′(t′) = RB(t′) and RB is a runtime bound.
For t, we have to show that

JRB′(t)K|σ0| =

t ∑
r∈ET T ′

RB(r) · RB t,T ′

loc (ℓr) [v/SB(r, v) | v ∈ V]

+
∑

r∈EFT ′

∑
ρ∈ fun(r)∩ fun(LT ′ )

RB(r) · RB t,T ′

loc (ℓρ) [v/SB(ρ, v) | v ∈ V]

|

|σ0|

≥ |T|{t}.

Let T1, . . . ,Tm be the maximal subtrees of T where all edges are labeled with
transitions from T ′ or function calls from fun(T ′) ∩ fun(LT ′). So, the subtrees
T1, . . . ,Tm are constructed by only using ≺T ′∪{ε}-steps, i.e., if Ti’s root node is

labeled with (ℓ̃i, σ̃i), then we have ({(ℓ̃i, σ̃i)},∅) ≺∗
T ′∪{ε} Ti. Let ϑi ∈ T ∪ F be

the transition or the function call in the label of the edge to (ℓ̃i, σ̃i) in T, i.e.,
ϑi starts the evaluation of the subprogram T ′. Let ki be the number of edges
labeled with t in Ti and let T have k edges labeled with t, i.e., |Ti|{t} = ki and
|T|{t} = k. Then we have

∑m
i=1 ki = k.

As SB is a size bound, we have JSB(ϑi, v)K|σ0| ≥ |σ̃i(v)| for all v ∈ V.
Hence, by the definition of local runtime bounds and as bounds are weakly
monotonically increasing functions, we can conclude that

JRB t,T ′

loc (ℓϑi) [v/SB(ϑi, v) | v ∈ V]K|σ0| ≥ JRB t,T ′

loc (ℓϑi)K|σ̃i| ≥ ki. (8)

Finally, we analyze how many maximal T ′-subtrees can be reached via some
ϑ ∈ T ∪F in the full tree T. Every entry transition ϑi = r ∈ ET T ′ can occur at
most JRB(r)K|σ0| times in the tree T, as RB is a global runtime bound. Similarly,
every function call ϑi = ρ ∈ fun(r)∩ fun(T ′) for an r ∈ EFT ′ can occur at most
JRB(r)K|σ0| times in the tree T. Thus, we have

JRB′(t)K|σ0| =

t ∑
r∈ET T ′

RB(r) · RB t,T ′

loc (ℓr) [v/SB(r, v) | v ∈ V]
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+
∑

r∈EFT ′

∑
ρ∈ fun(r)∩ fun(LT ′ )

RB(r) · RB t,T ′

loc (ℓρ) [v/SB(ρ, v) | v ∈ V]

|

|σ0|

≥
m∑
i=1

JRB t,T ′

loc (ℓϑi
) [v/SB(ϑi, v) | v ∈ V]K|σ0|

≥
m∑
i=1

ki (by (8))

= k

= |T|{t}.

⊓⊔

A.4 Proof of Thm. 33

Theorem 33 (Size Bounds for Trivial SCCs Without Function Calls).
Let SB be a size bound and {⟨ϑ, x⟩} be a trivial SCC of the RVG such that ϑ ∈ F
or fun(η(x)) = ∅ for the update η of ϑ ∈ T . Then SB′ is also a size bound where
SB′(α) = SB(α) for all α ̸= ⟨ϑ, x⟩, and for α = ⟨ϑ, x⟩ we have

SB′(α) =
{
SBloc(α), if pre(ϑ) = ∅
maxϑ′ ∈ pre(ϑ) {SBloc(α) [v/SB(ϑ′, v) | v ∈ V]} , otherwise.

Proof. Let {⟨ϑ, x⟩} be a trivial SCC such that ϑ ∈ F or fun(η(x)) = ∅ for the
update η of ϑ ∈ T . Moreover, let σ0 ∈ Σ and Tσ0

≺∗ T such that T contains a
path (ℓ0, σ0)→ · · · →ϑ ( , σ) with σ ̸= ⊥. We have to prove that

|σ|(x) ≤ JSB′(ϑ, x)K|σ0|.

We first consider the case pre(ϑ) = ∅ (i.e., ϑ is an initial transition from
T0). Note that by our definition of ρ-ITSs, ℓ0 can neither be the target lo-
cation of a transition nor evaluated after a function call. Thus, the path of
the tree T has the form (ℓ0, σ0) →ϑ ( , σ). Hence, we have JSB′(ϑ, x)K|σ0| =
JSBloc(ϑ, x)K|σ0| ≥ |σ|(x). Note that w.l.o.g., we have SBloc(ϑ, x) ∈ Z[V] by the
requirement fun(η(x)) = ∅ for the update η of the transition ϑ.

Otherwise, if pre(ϑ) ̸= ∅, then the path in T has the form (ℓ0, σ0)→ · · · →ϑ̃

( , σ̃) →ϑ ( , σ) for some ϑ̃ ∈ pre(ϑ). By the definition of size bounds, we have
JSB(ϑ̃, v)K|σ0| ≥ |σ̃|(v) for all v ∈ V. Thus, we obtain

JSB′(ϑ, x)K|σ0| = J max
ϑ′ ∈ pre(ϑ)

{SBloc(α) [v/SB(ϑ′, v) | v ∈ V]}K|σ0|

≥ JSBloc(α) [v/SB(ϑ̃, v) | v ∈ V]K|σ0|

≥ JSBloc(α)K|σ̃|
≥ |σ|(x)

⊓⊔
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A.5 Proof of Thm. 35

Theorem 35 (Size Bounds for Trivial SCCs With Function Calls). Let
SB be a size bound and {⟨t, x⟩} be a trivial SCC of the RVG such that t ∈ T
and fun(η(x)) ̸= ∅. Then SB′ is also a size bound where SB′(α) = SB(α) for
all α ̸= ⟨t, x⟩, and for α = ⟨t, x⟩ with fun(η(x)) = {ρ1, . . . , ρn}, we have

SB′(α) =



0, if preΩ(t, ρi) = ∅ for some i ∈ [n]

max
βi ∈ preΩ(t,ρi)

{SBloc(α) [ρi/SB(βi) | i ∈ [n]]} ,
if all preΩ(t, ρi) ̸= ∅ and pre(t) = ∅

max
βi ∈ preΩ(t,ρi)

ϑ′ ∈ pre(t)

{SBloc(α) [v/SB(ϑ′, v) | v ∈ V] [ρi/SB(βi) | i ∈ [n]]} ,
if all preΩ(t, ρi) ̸= ∅ and pre(t) ̸= ∅.

Proof. Let {⟨t, x⟩} be a trivial SCC of the RVG such that t ∈ T and fun(η(x)) =
{ρ1, . . . , ρn} ≠ ∅ for the update η of t. Moreover, let σ0 ∈ Σ and Tσ0

≺∗ T such
that T contains a path (ℓ0, σ0) → · · · →ϑ ( , σ) with σ ̸= ⊥. We have to prove
that

|σ|(x) ≤ JSB′(ϑ, x)K|σ0|.

If preΩ(t, ρi) = ∅ for some i ∈ [n], then there are only evaluations (ℓ0, σ0) →
· · · →ϑ ( , σ) where σ = ⊥. Hence, let preΩ(t, ρi) ̸= ∅ for all i ∈ [n].

We first consider the case pre(ϑ) = ∅ (i.e., ϑ is an initial transition from
T0). Again, by our definition of ρ-ITSs, ℓ0 can neither be the target location of
a transition nor evaluated after a function call. Thus, the path of the tree T has
the form (ℓ0, σ0)→t ( , σ). At the same time, T also contains paths (ℓ0, σ0)→ρi

(ℓi, )→ · · · →t′i
(ℓ′i, σ

′
i) for all i ∈ [n] where ℓ′i ∈ Ω since σ ̸= ⊥. Hence, ⟨t′i, vℓ′i⟩ ∈

preΩ(t, ρi). By the definition of size bounds, we have JSB(t′i, vℓ′i)K|σ0| ≥ |σ′
i|(vℓ′i).

Hence, we obtain

JSB′(t, x)K|σ0| ≥ JSBloc(t, x) [ρi/SB(t′i, vℓ′i) | i ∈ [n]]K|σ0|

≥ JSBloc(t, x) [ρi/|σ′
i|(vℓ′i) | i ∈ [n]]K|σ0|

≥ |σ|(x).

Otherwise, if pre(t) ̸= ∅, then the path in T has the form (ℓ0, σ0)→ · · · →ϑ̃

(ℓ̃, σ̃) →t ( , σ) for some ϑ̃ ∈ pre(t). At the same time, T also contains paths
(ℓ0, σ0)→ · · · →ϑ̃ (ℓ̃, σ̃)→ρi (ℓi, )→ · · · →t′i

(ℓ′i, σ
′
i) for all i ∈ [n] where ℓ′i ∈ Ω

since σ ̸= ⊥. By the definition of size bounds, we have JSB(ϑ̃, v)K|σ0| ≥ |σ̃|(v)
for all v ∈ V and JSB(t′i, vℓ′i)K|σ0| ≥ |σ′

i|(vℓ′i) for all i ∈ [n]. Thus, for α = ⟨t, x⟩
we obtain

JSB′(α)K|σ0| ≥ JSBloc(α) [v/SB(ϑ̃, v) | v ∈ V] [ρi/SB(t′i, vℓ′i) | i ∈ [n]]K|σ0|

= JSBloc(α) [v/SB(ϑ̃, v) | v ∈ V] [ρi/JSB(t′i, vℓ′i)K|σ0| | i ∈ [n]]K|σ0|

≥ JSBloc(α) [ρi/|σ′
i|(vℓ′i) | i ∈ [n]]K|σ̃|
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≥ |σ|(x).

⊓⊔

A.6 Proof of Thm. 37

Theorem 37 (Size Bounds for Non-Trivial Additive SCCs). Let SB
be a size bound and C be a non-trivial SCC of the RVG, where for all α ∈ C,
SBloc(α) satisfies (1) for a suitable eα and sα = 1, and moreover |Vα|+|Fα| ≤ 1.
Then SB′ is also a size bound where SB′(α) = SB(α) for all α ∈ RV \ C, and
SB′(α) = SB′(C) for all α ∈ C, where

SB′(C) =
∑

α∈C(add(α) +
∑

v∈Vα
initα(v) +

∑
v∈Fα

initΩα (v))

Proof. This claim can be proven analogously to Thm. 39 by setting scale(α) = 1.
⊓⊔

A.7 Proof of Thm. 39

Theorem 39 (Size Bounds for Non-Trivial SCCs). Let SB be a size bound
and C be a non-trivial SCC of the RVG, where for all α ∈ C, SBloc(α) satisfies
(1) for suitable eα and sα. Then SB′ is also a size bound where SB′(α) = SB(α)
for all α ∈ RV \ C, and SB′(α) = SB′(C) for all α ∈ C, where

SB′(C) =
∏

α∈C scale(α) · (
∑

α∈C(add(α)+
∑

v∈Vα
initα(v)+

∑
v∈Fα

initΩα (v)) )

Proof. Let C be a non-trivial SCC of the RVG, let σ0 ∈ Σ, and Tσ0
≺∗ T such

that T contains a path (ℓ0, σ0) → · · · →ϑ ( , σ) with σ ̸= ⊥. We have to prove
that

|σ|(v) ≤ JSB′(ϑ, x)K|σ0|.

If ⟨ϑ, x⟩ ̸∈ C, then SB′(ϑ, x) = SB(ϑ, x) is a size bound by definition.
So let us consider α = ⟨ϑ, x⟩ ∈ C. Note that ϑ cannot be an initial transition

as there are no transitions or function calls leading back to the initial location ℓ0
(i.e., then C would not be a non-trivial SCC). Hence, there exists a predecessor

ϑ̃ of ϑ in the path, i.e., the path has the form

(ℓ0, σ0)→ · · · →ϑ̃ (ℓ̃, σ̃)→ϑ (ℓ, σ).

Note that we must have |Vα| + |Fα| > 0 for all α ∈ C as C is a non-trivial
SCC of the RVG. Thus, as Jmaxϑ′ ∈ pre(ϑ) {1, sα [v/SB(ϑ′, v) | v ∈ V]}K|σ0| ≥ 1
for all σ0 ∈ Σ and α ∈ C, we also have

Jscale(α)K|σ0| ≥ 1 for all σ0 ∈ Σ and α ∈ C. (9)

We prove our claim by induction on the number |T|I where I = {ϑ | ⟨ϑ, v⟩ ∈ C}.
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Induction Base: Here, we have |T|I = 1 and thus ⟨ϑ̃, v⟩ ̸∈ C for all v ∈ V. Note
that we have

Jinitα(v)K|σ0| = Jmax{SB(ϑ, v) | ∃ϑ ∈ T ∪ F . ⟨ϑ, v⟩ ∈ pre(α) \ C}K|σ0|

≥ JSB(ϑ̃, v)K|σ0|

≥ |σ(v)| (10)

for all v ∈ actV(SBloc(α)) as ⟨ϑ̃, v⟩ ̸∈ C. We extend fun(·) to function calls by
defining fun(ρ) = ∅ for all ρ ∈ F . Then for all function calls ρi ∈ fun(ϑ), there

is a path (ℓ0, σ0) → · · · → (ℓ̃, σ̃) →ρi
· · · →ti (ℓ̃i, σ̃i) in T such that ℓ̃i ∈ Ω. For

all ρi ∈ actF(SBloc(α)), we have

JinitΩα (vρi
)K|σ0| = Jmax{SB(t, vρi

) | ∃t ∈ T . ⟨t, vρi
⟩ ∈ preΩ(α) \ C}K|σ0|

≥ JSB(ti, vρi
)K|σ0|

≥ |σ̃i(vρi
)| (11)

as ⟨ti, vρi
⟩ ̸∈ C since |T|I = 1. Thus, we have

JSB′(ϑ, x)K|σ0| ≥

t

scale(α) ·

(
add(α) +

∑
v∈Vα

initα(v) +
∑
v∈Fα

initΩα (v)

)|

|σ0|

(by (9))

≥ Jsα [v/SB(ϑ̃, v) | v ∈ V]K|σ0| ·

eα +
∑

v ∈ actV(SBloc(α))
v ̸∈ actV(sα)

Jinitα(v)K|σ0|

+
∑

ρi ∈ actF(SBloc(α))

JinitΩα (vρi)K|σ0|



≥ JsαK|σ̃| ·

eα +
∑

v ∈ actV(SBloc(α))
v ̸∈ actV(sα)

|σ̃(v)|+
∑

ρi ∈ actF(SBloc(α))

|σ̃i(vρi
)|


(by (10), (11), and as JSB(ϑ̃, v)K|σ0| ≥ |σ̃|(v) for all v ∈ V)

≥ JSBloc(ϑ, x) [ρi/|σ̃i|(vρi
) | ρi ∈ fun(ϑ)]K|σ̃| (by (1))

≥ |σ|(x).

Induction Step: We have |T|{t} ≤ JRB(t)K|σ0| for all t ∈ T and |T|{ρ} ≤
J
∑

t∈trans(ρ)RB(t)K|σ0| for all ρ ∈ F . Now for any α = ⟨ϑ, ⟩, we define the
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following expressions:

add(α,T) = |T|{ϑ} ·

eα +
∑

v ∈ actV(SBloc(α))
v ̸∈ actV(sα)∪Vα

initα(v) +
∑

ρ∈ actF(SBloc(α))
vρ ̸∈Fα

initΩα (vρ)


scale(α,T) = (max⟨ϑ′, ⟩ ∈ pre(α) {1, sα [v/SB(ϑ′, v) | v ∈ V]} · (|Vα|+ |Fα|))

|T|{ϑ}

So compared to add(α) and scale(α), we have replaced the over-approximation
of the runtime bound rbα by concrete values. Let T′ be the tree which results
from T by removing (ℓ, σ). Then we define

Ψ =
∏

α∈Cϑ

scale(α,T′) ·
∏

α∈C\Cϑ

scale(α,T) ·

∑
α∈Cϑ

add(α,T′) +
∑

α∈C\Cϑ

add(α,T)+

∑
α∈C

(∑
v∈Vα

initα(v) +
∑
v∈Fα

initΩα (v)

))

where Cϑ = {⟨ϑ, v⟩ ∈ C | v ∈ V}, i.e., Cϑ contains all result variables of C that
have α’s transition or function call ϑ. For all v ∈ Vα∪Fα, we have JΨK|σ0| ≥ |σ̃(v)|
by the induction hypothesis. Furthermore, for v ∈ actV(SBloc(α)) \ Vα, we have
⟨ϑ̃, v⟩ ̸∈ C and ⟨ϑ̃, v⟩ ∈ pre(α), and thus

Jinitα(v)K|σ0| = Jmax{SB(ϑ, v) | ∃ϑ ∈ T ∪ F . ⟨ϑ, v⟩ ∈ pre(α) \ C}K|σ0|

≥ JSB(ϑ̃, v)K|σ0|

≥ |σ̃(v)|. (12)

Again, there is a path (ℓ0, σ0) → · · · → (ℓ̃, σ̃) →ρi
· · · →ti (ℓ̃i, σ̃i) in T for each

function call ρi ∈ fun(ϑ) such that ℓ̃i ∈ Ω. Similarly, for all vρi
∈ V \ Fα with

ρi ∈ actF(SBloc(α)), we have ⟨ti, vρi⟩ ̸∈ C and ⟨ti, vρi⟩ ∈ preΩ(α). Thus,

JinitΩα (vρi)K|σ0| = Jmax{SB(t, vρi) | ∃t ∈ T . ⟨t, vρi⟩ ∈ preΩ(α) \ C}K|σ0|

≥ JSB(ti, vρi)K|σ0|

≥ |σ̃i(vρi)|. (13)

Finally, we define the following expression for all α ∈ C:

Φα = eα +
∑

v ∈ actV(SBloc(α))
v ̸∈ actV(sα)∪Vα

initα(v) +
∑

ρ∈ actF(SBloc(α))
vρ ̸∈Fα

initΩα (vρ).

To simplify the presentation, for α, let

ŝα = max
⟨ϑ′, ⟩ ∈ pre(α)

{1, sα [v/SB(ϑ′, v) | v ∈ V]} .
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In particular, the following holds:

JŝαK|σ0| ≥ Jsα [v/SB(ϑ̃, v) | v ∈ V]K|σ0| ≥ JsαK|σ̃|. (14)

Thus, we now have

JSB′(ϑ, x)K|σ0| =

t∏
α∈C

scale(α) ·

(∑
α∈C

(add(α)

+
∑
v∈Vα

initα(v) +
∑
v∈Fα

initΩα (v)︸ ︷︷ ︸
initα




|

|σ0|

≥

t ∏
α∈Cϑ̃

ŝα · (|Vα|+ |Fα|) ·
∏

α∈Cϑ̃

scale(α,T′) ·
∏

α∈C\Cϑ̃

scale(α,T)

·

∑
α∈Cϑ̃

add(α,T′) +
∑
α∈Cϑ̃

Φα +
∑

α∈C\Cϑ̃

add(α,T)

+
∑
α∈C

initα

)|

|σ0|

(extract last evaluation step)

=

t ∏
α∈Cϑ̃

ŝα · (|Vα|+ |Fα|) · Ψ +
∏

α∈Cϑ̃

ŝα · (|Vα|+ |Fα|)

·
∏

α∈Cϑ̃

scale(α,T′) ·
∏

α∈C\Cϑ̃

scale(α,T) ·

∑
α∈Cϑ̃

Φα

|

|σ0|

(by definition of Ψ)

≥

t ∏
α∈Cϑ̃

ŝα · (|Vα|+ |Fα|) ·

Ψ +
∑
α∈Cϑ̃

Φα

|

|σ0|

(by (9))

≥ JŝαK|σ0| · (|Vα|+ |Fα|) ·
(
JΦαK|σ0| + JΨK|σ0|

)
(by (9))

≥ JsαK|σ̃| · (|Vα|+ |Fα|) ·
(
JΦαK|σ0| + JΨK|σ0|

)
(by (14))

≥ JsαK|σ̃| ·
(
JΦαK|σ0| + (|Vα|+ |Fα|) · JΨK|σ0|

)
(as |Vα|+ |Fα| ≥ 1)

≥ JsαK|σ̃| ·

JΦαK|σ0| +
∑
v∈Vα

JΨK|σ0| +
∑

ρ∈ actF(SBloc(α))
vρ ∈Fα

JΨK|σ0|


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≥ JsαK|σ̃| ·

JΦαK|σ0| +
∑
v∈Vα

|σ̃(v)|+
∑

ρi ∈ actF(SBloc(α))
vρi ∈Fα

|σ̃i(vρi
)|


(by the induction hypothesis)

= JsαK|σ̃| ·

eα +
∑
v∈Vα

|σ̃(v)|+
∑

v ∈ actV(SBloc(α))
v ̸∈ actV(sα)∪Vα

Jinitα(v)K|σ0|

+
∑

ρi ∈ actF(SBloc(α))
vρi ∈Fα

|σ̃i(vρi
))|+

∑
ρi ∈ actF(SBloc(α))

vρi ̸∈Fα

JinitΩα (vρi
)K|σ0|


(by definition of Φα)

≥ JsαK|σ̃| ·

eα +
∑

v∈ actV(SBloc(α))
v ̸∈ actV(sα)

|σ̃(v)|+
∑

ρi ∈ actF(SBloc(α))

|σ̃i(vρi
)|


(by (12) and (13))

≥ JSBloc(ϑ, x) [ρi/|σ̃i|(vρi
) | ρi ∈ fun(ϑ)]K|σ̃| (by (1))

≥ |σ|(x).

⊓⊔

B Local Runtime Bounds for ρ-RFs with Multiple
Function Calls

In Thm. 22, we showed how to obtain local runtime bounds from ρ-RFs pro-
vided that the update polynomials for variables contain at most one func-
tion call. Now, we present the more general version of Thm. 22 with arbi-
trary many function calls. To this end, for any transition t let nfcT ′(t) denote
the number of function calls ℓ(ζ) ∈ fun(t) with ℓ ∈ LT ′ , and let nfc(T ′) =
max {nfcT ′(t) | t ∈ T ′}. If every path has at most n0 edges labeled with the
transition t and t ̸∈ T ′ ∩ trans(fun(LT ′)), n1 edges labeled with the recursive
transitions from T ′ ∩ trans(fun(LT ′)), and n2 edges labeled with recursive func-
tion calls, then Rn0

(n1, n2) over-approximates the number of t-edges in any
T ′-evaluation tree, where Rn0

(n1, n2) is defined via the following recurrence:

Rn0(n1, n2) =

{
n0, if n1 = 0, n2 = 0, or nfc(T ′) = 0
1 + n0 +Rn0(n1 − 1, n2) + nfc(T ′) · Rn0(n1, n2 − 1), otherwise

This can be shown by induction on n1 + n2 (similar as in Sect. 3): If n1 = 0,
n2 = 0, or nfc(T ′) = 0, then there is no recursive function call and thus, there
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N0 · · · N1

Rn0(n1, n2)

N2 · · · N3

Rn0(n1 − 1, n2)

· · ·

Rn0(n1, n2 − 1) Rn0(n1, n2 − 1)

t t t tT ′ ∩ trans(fun(LT ′ ))

ρ1 ρnfc(T ′)

d2 stepsd1 steps

Fig. 6: Illustration of Rn0
(n1, n2)

can be at most n0 edges labeled with the decreasing transition t. The induction
step is illustrated in Fig. 6.

Let us again first consider the case where t is not a recursive transition.
Here, the path from the root node to the first node N1 where a function is
called recursively uses at most d1 ≤ n0 edges labeled with t. The node N1

has at most nfc(T ′) many outgoing edges labeled with recursive function calls
and one outgoing edge to a node N2 labeled with a recursive transition from
T ′ ∩ trans(fun(LT ′)). The function calls lead to at most nfc(T ′) many subtrees
where each contains at most Rn0(n1, n2 − 1) many t-edges by the induction
hypothesis. The path from the node N2 to the next node N3 where a function
might be called uses at most d2 edges labeled with t, where we have d1+d2 ≤ n0.
Finally, the subtree starting in node N3 has at mostRn0

(n1−1, n2) many t-edges
by the induction hypothesis. Thus, the full tree has at most

|T|{t} ≤ d1 + nfc(T ′) · Rn0
(n1, n2 − 1) + d2 +Rn0

(n1 − 1, n2)

≤ n0 +Rn0
(n1 − 1, n2) + nfc(T ′) · Rn0

(n1, n2 − 1)

many t-edges.
In the case where t is recursive, as in Sect. 3 we obtain |T|{t} ≤ 1+Rn0(n1−

1, n2) + nfc(T ′) · Rn0
(n1, n2 − 1). So in both cases, we have

|T|{t} ≤ 1 + n0 +Rn0(n1 − 1, n2) + nfc(T ′) · Rn0(n1, n2 − 1).

As in App. A, it can be shown that

n0 + n2 · (1 + (1 + nfc(T ′)) · n0) · (nfc(T ′) · n1)
n2

is an over-approximating closed form solution of Rn0
(n1, n2). Hence, instantiat-

ing this closed form with the ranking functions yields the desired local runtime
bound.

Theorem 41 (Local Runtime Bounds by ρ-RFs). Let ∅ ̸= T ′ ⊆ T , let
t ∈ T ′, and let ⟨rd, rtf , rf⟩ be a ρ-RF for t w.r.t. T ′. Then RBloc : LT ′ → B is
local runtime bound for t w.r.t. T ′, where for all ℓ ∈ LT ′ , we define RBloc(ℓ) as:

⌈⌈rd(ℓ)⌉⌉ + ⌈⌈rf(ℓ)⌉⌉ · (1 + (1 + nfc(T ′)) · ⌈⌈rd(ℓ)⌉⌉) · (nfc(T ′) · ⌈⌈rtf(ℓ)⌉⌉)
⌈⌈rf (ℓ)⌉⌉
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C Local Runtime Bounds via twn-Loops

In this appendix we briefly recapitulate how to infer runtime bounds for tri-
angular weakly non-linear loops (twn-loops) based on our previous work [24,
25, 35, 36, 38]. This approach can be used to infer the local runtime bound

RB t3,{t3}
loc (ℓ2) = log2(y) + 2 for transition t3 in our leading example of Fig. 2.

This local runtime bound is needed in Ex. 27 to compute RB(t3).
An example for a terminating twn-loop is:

while (x2 − x1 > 0 ∧ x1 > 0) do (x1, x2)← (3 · x1, 2 · x2) (15)

Note that this loop corresponds to transition t3 (x ∼= x1 and y ∼= x2) with
the additional invariant x1 > 0. In practice, KoAT uses the tool Apron [32]
to automatically infer such invariants. Formally, a twn-loop (over the variables
x⃗ = (x1, . . . , xd)) is a tuple (φ, η) with the guard φ and the update η : V → Z[V]
for V = {x1, . . . , xd} such that for all 1 ≤ i ≤ d we have η(xi) = ai · xi + pi
for some ai ∈ Z and pi ∈ Z[x1, . . . , xi−1]. Thus, a twn-update is triangular,
i.e., the update of a variable does not depend on variables with higher indices.
Furthermore, the update is weakly non-linear, i.e., a variable does not occur
non-linearly in its own update.

Our algorithm for the computation of runtime bounds for twn-loops starts
with computing closed forms for the loop update, which describe the values of the
variables after n iterations of the loop. These closed forms can be represented
as poly-exponential expressions. The set of all poly-exponential expressions is
defined as PE = {

∑k
j=1 pj · naj · bnj | k, aj ∈ N, pj ∈ Q[V], bj ∈ Z}.

Example 42. The closed forms for the loop (15) are clx1
= x1 · 3n and clx2

=
x2 · 2n.

The following Thm. 43 presents a construction based on closed forms which
yields polynomial runtime bounds for terminating transitions t = (ℓ, φ, η, ℓ)
which correspond to twn-loops. We insert the closed forms of the update η into
every atom α = p > 0 of the guard φ. This results in a poly-exponential expres-
sion peα =

∑kα

j=1 pα,j · naα,j · bnα,j ∈ PE such that the summands are ordered
w.r.t. the growth rate of naα,j · bnα,j . Now, the polynomials pα,j in peα determine
the asymptotic complexity of the resulting local runtime bound.

Theorem 43 (Polynomial Runtime Bounds for twn-Loops). Let t =
(ℓ, φ, η, ℓ) be a terminating transition and for every atom α in φ, let peα =∑kα

j=1 pα,j · naα,j · bnα,j ∈ PE be a poly-exponential expression with pα,j ̸= 0 for
all 1 ≤ j ≤ kα and (bα,kα , aα,kα) >lex . . . >lex (bα,1, aα,1) such that peα results
from inserting the closed forms of η into α. Then

RB t,{t}
loc (ℓ) = 2 · max

α occurs in φ
{⌈⌈pα,1⌉⌉+ · · ·+ ⌈⌈pα,kα−1⌉⌉}+ c

is a local runtime bound where c ∈ N is some computable constant.
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Example 44. The loop (15) is terminating as the value of x1 eventually out-
grows the value of x2. Inserting the closed forms of Ex. 42 into the atoms yields
pex2−x1>0 = −x1 ·3n+x2 ·2n and pex1>0 = x1 ·3n. So, we have px2−x1>0, 1 = x2,
px2−x1>0, 2 = −x1, and px1>0, 1 = x1. Hence, for the transition t and the loca-
tion ℓ corresponding to (15), we obtain the polynomial local runtime bound

RB t,{t}
loc (ℓ) = 2 · ⌈⌈px2−x1>0, 1⌉⌉ + c = 2 · x2 + c where c = 1 (see [38] for the

detailed construction of c).

While Thm. 43 always yields polynomial runtime bounds, we recently im-
proved this to logarithmic runtime bounds if the exponential expressions are
strictly decreasing, i.e., bα,kα

> · · · > bα,1. Intuitively, the reason is that then
the summand pα,j · naα,j · bnα,j grows exponentially faster than all summands
pα,i · naα,i · bnα,i for i < j.

Theorem 45 (Logarithmic Runtime Bounds for twn-Loops). Let t =
(ℓ, φ, η, ℓ) be a terminating transition and for every atom α in φ, let peα =∑kα

j=1 pα,j · naα,j · bnα,j ∈ PE be a poly-exponential expression with pα,j ̸= 0 for
all 1 ≤ j ≤ kα and bα,kα

> . . . > bα,1 such that peα results from inserting the
closed forms of η into α. Then

RB t,{t}
loc (ℓ) = c′ · log2( max

αoccurs in φ
{⌈⌈pα,1⌉⌉+ · · ·+ ⌈⌈pα,kα−1⌉⌉}) + c

is a local runtime bound where c, c′ ∈ N are some computable constants.

Example 46. Reconsider Ex. 42 and 44: As the exponential terms in pex2−x1>0 =
−x1 · 3n + x2 · 2n and pex1>0 = x1 · 3n are strictly decreasing (i.e., 3 > 2
for pex2−x1>0), we can apply Thm. 45. So for the transition t and the loca-
tion ℓ corresponding to (15), we obtain the logarithmic local runtime bound

RB t,{t}
loc (ℓ) = c′ · log2(⌈⌈px2−x1>0, 1⌉⌉) + c = c′ · log2(x2) + c = log2(x2) + 2 where

c = 2 and c′ = 1 (see [38] for the detailed construction of c and c′).
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