
Modular Automatic Complexity Analysis of
Recursive Integer Programs

Nils Lommen(B) and Jürgen Giesl

RWTH Aachen University, Aachen, Germany
{lommen,giesl}@cs.rwth-aachen.de

Abstract. In previous work, we developed a modular approach for au-
tomatic complexity analysis of integer programs. However, these integer
program do not allow non-tail recursive calls or subprocedures. In this
work, we consider integer programs with function calls and present a
natural extension of our modular complexity analysis approach to the
recursive setting based on a new form of ranking functions. Hence, our
approach combines already existing powerful techniques on the “imper-
ative” parts of the program and our novel ranking functions on the re-
cursive parts. The strength of this combination is demonstrated by our
implementation in the complexity analysis tool KoAT.

1 Introduction

There exist numerous approaches to analyze complexity of programs automati-
cally, e.g., [1, 2, 4, 6–8, 10, 13, 17, 19, 23, 24], but most of them are essentially
limited to non-recursive programs. There are also several techniques for complex-
ity analysis of term rewrite systems (TRSs) which can handle arbitrary recursion,
e.g., [3, 22]. However, TRSs have the drawback that they do not support built-in
data types like integers. Thus, the goal of this paper is to analyze complexity of
programs with built-in integers and arbitrary (possibly non-tail) recursion.

In previous work, we developed a modular technique for complexity analy-
sis of programs with built-in integers which we implemented in the complexity
analysis tool KoAT. It automatically infers runtime bounds for integer tran-
sition systems (ITSs) possibly consisting of multiple loops by handling some
subprograms as so-called twn-loops (where there exist “complete” techniques
for analyzing termination and complexity [6, 11, 12, 15, 16, 18]) and by using
multiphase-linear ranking functions [4, 5, 10] for other subprograms. By infer-
ring bounds for one subprogram after the other, in the end we obtain a bound
on the runtime of the whole program. In this paper, we extend our approach to
ITSs which allow function calls, including non-tail recursion. In contrast to the
first attempt for such an extension from [6, Sect. 5], our novel approach takes
the results of function calls into account which leads to a much higher precision.

Example 1. The first while-loop of the procedure main in Fig. 1 computes x!+
· · · + 1! by calling the subprocedure fac. We introduce a novel class of ranking
functions for recursive programs to show that this loop has quadratic runtime.

mailto:lommen@cs.rwth-aachen.de
http://orcid.org/0000-0003-3187-9217
http://orcid.org/0000-0003-0283-8520

2 N. Lommen, J. Giesl

main(x, y):

while x > 0 do

y ← y + fac(x); x← x− 1;

x← 1;

while x < y do

x← 3 · x; y ← 2 · y;

fac(a):

if a = 0 then

return 1;

else if a > 0 then

return a · fac(a− 1);

Fig. 1: Recursive Integer Program with two Procedures

Furthermore, y’s value is bounded by y + xx2+1, where x and y refer to
the initial values of the program variables. This observation is crucial for the
runtime of the second loop since it is executed at most log2(size(y)) + 2 =

log2(y+xx2+1)+2 times, where size(y) denotes the value of y before the second
loop. Hence, the overall program has less than cubic runtime. Here, [6, Sect. 5]
fails to infer a finite runtime bound, as it disregards the return value of fac.
The runtime bound for the second loop can be obtained by our technique based
on twn-loops, but not by linear ranking functions. Thus, our novel approach for
recursive integer programs allows us to combine various techniques for automated
complexity analysis and to benefit from their individual strengths.

In this work, we extend our notions of runtime and size bounds [6, 10, 15, 16,
18] to the new setting of ITSs with function calls. On the one hand, as illustrated
by Ex. 1, we need size bounds to compute runtime bounds, and on the other
hand we also need runtime bounds to infer size bounds. Thus, our approach
alternates between the computation of runtime and size bounds.

Structure: In Sect. 2 we introduce our new notion of ITSs with function calls and
define runtime and size bounds for these programs. In Sect. 3, we show how to
compute modular runtime bounds for our new class of programs. Analogously, we
present a technique to infer size bounds in a modular way in Sect. 4. In Sect. 5,
we conclude and discuss our implementation in the tool KoAT. All proofs can be
found in App. A (and they will also be published on arXiv).

2 Recursive Integer Transition Systems

In Sect. 2.1 we extend ITSs by function calls and recursion. Afterwards, in
Sect. 2.2 we define runtime and size bounds which extend the corresponding
notions for ITS without function calls [6, 10, 15, 16, 18] in a natural way.

2.1 Syntax and Semantics of Recursive Integer Transition Systems

For a finite set of variables V, as usual, Z[V] is the polynomial ring over the vari-
ables V with integer coefficients. Constraints are used in the guards of transitions.

Definition 2 (Atoms and Constraints). The set of atoms A(V) consists of
all inequations p1 < p2 for polynomials p1, p2 ∈ Z[V]. The set C(V) of constraints
consists of all formulas built from atoms A(V) and ∧.

Modular Automatic Complexity Analysis of Recursive Integer Programs 3

We also use “≥”, “=”, “ ̸=” in atoms, and negations “¬” which can be simulated
by formulas (e.g., p1 ≥ p2 is equivalent to p2 < p1 +1 for integers). Disjunctions
“∨” are modeled by several transitions with the same start and target location.

Non-recursive ITSs are a widely studied formalism in automatic program
verification. Since ITSs do not allow any non-tail recursion, Def. 3 extends them
to ITSs with function calls (so-called ρ-ITSs). In an ITS, the value of a program
variable v ∈ PV is changed according to the updates η : PV → Z[V] of its
transitions. More precisely, we move from a configuration (ℓ, σ) ∈ L × Σ to
(ℓ′, σ′) by evaluating a transition, where σ, σ′ : V → Z are states, Σ denotes the
set of all states, and L are the locations of the program. We now introduce a
set F of function calls ℓ(v|ζ). Here, ℓ is the start location of the subprogram
that is called, the update ζ : PV → Z[V] sets the program variables of the
subprogram to their initial values, and v ∈ PV contains the “return value” of
the subprogram upon its termination. More precisely, if σ ∈ Σ is the state before
calling the subprogram via ℓ(v|ζ), then the subprogram starts in a configuration
(ℓ, σ̃), where σ̃ results from “applying” the update ζ to the state σ. We also
introduce a subset of return locations Ω ⊆ L. As soon as the called subprogram
reaches a configuration (ℓ′, σ′) with ℓ′ ∈ Ω, the value σ′(v) is returned as the
result of the function call ℓ(v|ζ). (We will define the semantics of ρ-ITSs formally
in Def. 5.) Thus, transitions may now have updates which map program variables
to polynomial combinations of variables and function calls (denoted by Z[V∪F]).
Definition 3 (ρ-ITS). The tuple (PV,L, ℓ0, Ω,F , T) is an ITS with function
calls (ρ-ITS) where

� PV is a finite set of program variables, V \ PV are temporary variables,
� L is a finite set of locations with an initial location ℓ0,
� F is a finite set of function calls ℓ(v|ζ) with ℓ ∈ L \ {ℓ0}, v ∈ PV, and

ζ : PV → Z[V],
� Ω ⊆ L \ {ℓ0} is a finite set of return locations, and
� T is a finite set of transitions: A transition is a 4-tuple (ℓ, φ, η, ℓ′) with start

location ℓ ∈ L \Ω, target location ℓ′ ∈ L \ {ℓ0}, guard φ ∈ C(V), and update
function η : PV → Z[V ∪ F].

We often denote the set of function calls in a polynomial p, an update η, or a tran-
sition t by fun(p), fun(η), or fun(t), respectively. Similarly, for ρ ∈ F , fun−1(ρ)
is the set of all transitions of the ITS in which ρ occurs in an update. Transitions
(ℓ0, , ,) are called initial and T0 denotes the set of all initial transitions.

A ρ-ITSs may contain two kinds of non-determinism: First, non-deterministic
branching is realized by multiple transitions with the same start location. Sec-
ond, non-deterministic sampling is modeled by temporary variables (which can
be restricted in the guard of a transition). Temporary variables are updated
arbitrarily in each evaluation step (and also in function calls), and are only
restricted by the transition’s guard. Intuitively, these variables are set by an
adversary trying to “sabotage” the program in order to obtain long runtimes.

Example 4. The ρ-ITS in Fig. 2 corresponds to the program from Fig. 1. In
Fig. 2, we omitted trivial guards φ = true and identity updates of the form
η(v) = v. The ρ-ITS has the program variables PV = {a, x, y}, five locations

4 N. Lommen, J. Giesl

ℓ0 ℓ1 ℓ2 f1 f2
t0

t1 : φ = (x > 0)
η(x) = x− 1
η(y) = y + f1(a| ζ(a) = x)︸ ︷︷ ︸

= ρ1

t2 : φ = (x ≤ 0)
η(x) = 1

t3 : φ = (x < y)
η(x) = 3 · x
η(y) = 2 · y

t4 : φ = (a = 0)
η(a) = 1

t5 : φ = (a > 0)
η(a) = a · f1(a| ζ(a) = a− 1)︸ ︷︷ ︸

= ρ2

Fig. 2: An Integer Transition System with Function Calls ρ1 and ρ2

L = {ℓ0, ℓ1, ℓ2, f1, f2}, and two function calls ρ1 = f1(a| ζ(a) = x) and ρ2 =
f1(a| ζ(a) = a− 1). The subprogram with the locations f1 and f2 computes the
factorial a! recursively and returns this result in the return location f2 (indicated
by the doubled node). This subprogram is called iteratively in the loop t1 with
the argument x. The factorials x!, (x−1)!, . . . , 1 are summed up in the variable y.
Afterwards, x is set to 1 in t2, and the second loop t3 at location ℓ2 is executed.

In the following, we also allow the application of states σ ∈ Σ to arithmetic
expressions e and constraints c, i.e., the number JeKσ or the Boolean value JcKσ
results from e or c resp. by replacing each variable v by σ(v).

From now on, we fix a ρ-ITS (PV,L, ℓ0, Ω,F , T) over the variables V. Formal-
ly, an evaluation step of a ρ-ITS is a transformation of a tree T whose nodes are
labeled with configurations from L×(Σ∪{⊥}). We distinguish two kinds of evalu-
ation steps: If a leaf of T is labeled with a configuration (ℓ, σ) where a transition
t = (ℓ, φ, η, ℓ′) can be applied, then a t-evaluation step extends T at the position
of this leaf to a new tree T′, denoted T ≺t T′. If the update η does not contain any
function calls, then T′ results from T by adding an edge to a new node labeled
with a configuration (ℓ′, σ′) where σ′(v) = Jη(v)Kσ for all program variables v,
i.e., by (ℓ, σ) →t (ℓ

′, σ′). However, if t contains function calls ρi = ℓi(vi|ζi) for
1 ≤ i ≤ n, then T′ results from T by adding n + 1 children to the former leaf
labeled with (ℓ, σ), i.e., (ℓ, σ)→t (ℓ

′,⊥) and (ℓ, σ)→ρi
(ℓi, σi) for all 1 ≤ i ≤ n,

where σi(v) = Jζi(v)Kσ for all program variables v. Here, ⊥ denotes an undefined
state which will be instantiated later if the function calls reach return locations.

To this end, we use so-called ε-evaluation steps. If for all 1 ≤ i ≤ n, there are
paths from the nodes (ℓi, σi) to configurations (ℓ′i, σ

′
i) where ℓ′i ∈ Ω is a return

location, and these paths only contain edges marked with transitions (and not
with function calls ρ), then the undefined state ⊥ can be replaced by a state σ′

such that σ′(v) = Jη′(v)Kσ for all program variables v. Here, η′(v) results from
η(v) by replacing every function call ℓi(vi|ζi) by the returned value σ′

i(vi) for all
1 ≤ i ≤ n. We denote this by η′(v) = η(v) [ℓi(vi|ζi)/σ′

i(vi)].

Definition 5 (Evaluation of ρ-ITSs). Let T be a tree whose nodes are labeled
with configurations from L×(Σ∪{⊥}). T ≺t T′ is a t-evaluation step with tran-
sition t = (ℓ, φ, η, ℓ′) iff T has a leaf labeled with (ℓ, σ) where σ ∈ Σ, σ |= φ, and

� if fun(η) = ∅, then T′ is the extension of T by an edge (ℓ, σ)→t (ℓ
′, σ′) to a

new node labeled with (ℓ′, σ′) where σ′(v) = Jη(v)Kσ for all v ∈ PV.

Modular Automatic Complexity Analysis of Recursive Integer Programs 5

� if η contains the function calls ρ1 = ℓ1(v1|ζ1), . . . , ρn = ℓn(vn|ζn), then T′

is the extension of T by the edges (ℓ, σ) →t (ℓ
′,⊥) and (ℓ, σ) →ρi

(ℓi, σi) to
n+ 1 new nodes, where σi(v) = Jζi(v)Kσ for all v ∈ PV and all 1 ≤ i ≤ n.

If there is a transition t = (ℓ, φ, η, ℓ′), T contains a node N labeled with (ℓ, σ) with
n+1 children such that (ℓ, σ)→t (ℓ

′,⊥) and (ℓ, σ)→ρi
(ℓi, σi) for all function calls

ρi = ℓi(vi|ζi) ∈ fun(η), and from each child labeled with (ℓi, σi) there is a path
to a node labeled with (, σ′

i) ∈ Ω×Σ whose edges are all marked with transitions,
then T ≺ε T′ is an ε-evaluation step iff T′ results from T by replacing N ’s label
(ℓ′,⊥) by (ℓ′, σ′), where σ′(v) = Jη(v) [ℓi(vi|ζi)/σ′

i(vi)]Kσ for all v ∈ PV.
For an initial state σ0∈Σ, the evaluation always starts with Tσ0

= ({(ℓ0, σ0)} ,∅)
which has the only node (ℓ0, σ0). We write ≺T for

⋃
t∈T ≺t and ≺ for ≺T ∪{ε}.

Moreover, we denote finitely many evaluations steps T ≺ · · · ≺ T′ by T ≺∗ T′.

Example 6. Reconsider the ρ-ITS from Fig. 2 and let us denote states σ ∈ Σ as
tuples (σ(a), σ(x), σ(y)) ∈ Z3. The following tree shows an evaluation starting
in T(0,2,0). Here, a dashed arrow indicates that a state, which was reached via a
function call, was used to replace ⊥ via an ε-evaluation step. So for example, the
value σ2(a) = Jη′(a)Kσ1

= 2 in c2 is obtained from η(a) = a · f1(a| ζ(a) = a− 1)
by replacing the function call f1(a| ζ(a) = a−1) by the returned value σ3(a) = 1
of the function call and by the instantiation σ1(a) = 2.

(ℓ0, (0, 2, 0)) (ℓ1, (0, 2, 0)) (ℓ1,⊥)

c1 = (f1, (2, 2, 0))

(f1, (1, 2, 0))

(f1, (0, 2, 0))

(f2, (2, 2, 0)) = c2

(f2, (1, 2, 0)) = c3

(f2, (1, 2, 0)) = c4

t0 t1

ρ1

ρ2

ρ2

t5

t5

t4

ε

ε

In the next evaluation step, (ℓ1,⊥) can be instantiated by considering c2. Then,
⊥ would be replaced by (2, 1, 2). Note that while in this tree, every node has at
most one child connected by a ρ-edge, in general a node can have several outgoing
ρ-edges if there exist transitions whose updates contain several function calls.

The goal of complexity analysis is to derive an upper bound on the number of
t-evaluation steps starting in Tσ0

. For any tree T and set of transitions T , |T|T
is the number of edges which are marked by a transition from T . The runtime
complexity measures how many transitions are evaluated in the worst case.

Definition 7 (Runtime Complexity). The runtime complexity is rc : Σ →
N with N = N ∪ {ω} and rc(σ0) = sup {|T|T | Tσ0 ≺∗ T} .

2.2 Runtime and Size Bounds for ρ-ITSs

Now we define our notion of bounds. We only consider bounds which are weakly
monotonically increasing in all variables, since they can be composed easily (i.e.,
if f and g increase monotonically, then so does their composition f◦g). As in [18],

6 N. Lommen, J. Giesl

bounds can also be logarithmic. In contrast to our earlier papers, we also consider
exponential bounds with non-constant bases to represent bounds like xx2+1.

Definition 8 (Bounds). The set of bounds B is the smallest set with N ⊆ B,
PV ⊆ B, and {b1+ b2,max(b1, b2), b1 · b2, pb1 , logk(b1)} ⊆ B for all b1, b2 ∈ B, all
polynomials p ∈ N[PV], and all k ∈ R>1.

1

Note that in B we require bounds to only contain program variables since the
values of temporary variables are “set by the adversary”.

A runtime bound RB(t) over-approximates the number of t-evaluations that
can occur in an arbitrary evaluation starting in a state σ0 ∈ Σ, i.e., it is a
bound on the number of t-edges in any evaluation tree resulting from Tσ0

. In
the following, let |σ| denote the state with |σ|(v) = |σ(v)| for all v ∈ V.

Definition 9 (Runtime Bound). RB : T → B is a runtime bound if for all
σ0 ∈ Σ, all t ∈ T , and all trees T with Tσ0 ≺∗ T, we have |T|{t} ≤ JRB(t)K|σ0|.

Cor. 10 shows that to obtain an upper bound on the runtime complexity, one
can compute runtime bounds for each transition separately and add them.

Corollary 10 (Over-Approximating rc). Let RB be a runtime bound. Then
for all states σ0 ∈ Σ, we have rc(σ0) ≤ J

∑
t∈T RB(t)K|σ0|.

Example 11. In Fig. 2, the transitions t0 and t2 executed at most once, i.e.,
RB(t0) = RB(t2) = 1. In Ex. 22, we will infer a runtime bound with RB(t1) =
RB(t4) = x, RB(t3) = log2(y + xx2+1) + 2, and RB(t5) = x2. This results in a
less than cubic bound on the runtime complexity of the ρ-ITS.

Our approach performs a modular analysis, i.e., parts of the program are an-
alyzed as standalone programs and the results are then lifted to contribute to the
overall analysis. So to compute a runtime bound for a transition t, our approach
considers all transitions and function calls τ ∈ T ∪ F that can occur directly
before t in evaluations, and it needs size bounds SB(τ, v) to over-approximate
the absolute values that the variables v ∈ PV may have after these “previous”
transitions and function calls τ . We call RV = (T ∪ F) × PV the set of result
variables. Note that in contrast to runtime bounds (and to our earlier papers),
we now also have to capture the effect of function calls F via size bounds.

Definition 12 (Size Bound). A function SB : RV → B is called a size bound
if for all (τ, v) ∈ RV, all states σ0 ∈ Σ, and all trees T with Tσ0 ≺∗ T containing
a path (ℓ0, σ0)→ · · · →τ (, σ) with σ ̸= ⊥, we have |σ|(v) ≤ JSB(τ, v)K|σ0|.

Example 13. In Fig. 2, SB(t0, x) = x is a size bound, since the value of x after
evaluating t0 is bounded by the initial value of x. (Ex. 27 will show how to com-

pute such bounds.) Similarly, we have SB(t2, x) = 1 and SB(t2, y) = y + xx2+1,
see Ex. 31. The size bound SB(ρ1, a) = x (see Ex. 27) expresses that the value
of a after executing the function call ρ1 is bounded by the initial value of x.

1 More precisely, instead of logk(b1) we use the function ⌈logk(max {1, b1})⌉ to ensure
that bounds are well defined, weakly monotonically increasing, and evaluate to N.

Modular Automatic Complexity Analysis of Recursive Integer Programs 7

3 Modular Computation of Runtime Bounds

Now we introduce our modular approach for the computation of runtime bounds.
To be precise, we infer runtime bounds for subprograms T ′ and then lift them
to runtime bounds for the full program. For any non-empty T ′ ⊆ T \ T0, let
LT ′ = {ℓ ∈ L | (ℓ, , ,) ∈ T ′} contain all start locations of transitions from T ′.

In contrast to global bounds, a local runtime bound RBT
′
>,T ′

loc : LT ′ → B only
takes the subprogram T ′ into account. It considers a subset T ′

> ⊆ T ′ and for ev-

ery t∈T ′
>,RB

T ′
>,T ′

loc (ℓin) over-approximates the number of applications of t in any
run of T ′ starting in ℓin. However, local runtime bounds do not consider how
often such a run is started or how large the variables are before starting a run.

Definition 14 (Local Runtime Bound). Let ∅ ̸= T ′
> ⊆ T ′ ⊆ T \T0. RB

T ′
>,T ′

loc :
LT ′→B is a local runtime bound for T ′

> w.r.t. T ′ if for all σ0∈Σ, all ℓin∈LT ′ ,

and all trees T with ({(ℓin,σ0)} ,∅)≺∗
T ′∪{ε}T, we have |T|T ′

>
≤ JRBT

′
>,T ′

loc (ℓin)K|σ0|.

For readability, Def. 14 considers arbitrary initial states σ0, but it could also be
refined to only consider states σ0 where (ℓin, σ0) is reachable in the full program.

For T ′ ⊆ T , let fun(T ′) denote the set of all function calls ℓ(|) ∈ fun(t) for
transitions t ∈ T ′ such that ℓ ∈ LT ′ . Moreover, fun−1(T ′) denotes the set of all
transitions t ∈ T ′ with function calls ℓ(|) ∈ fun(t) such that ℓ ∈ LT ′ .

The following “function call ranking functions” (ρ-RFs) yield a local runtime
bound for the set of transitions T ′

> w.r.t. T ′, provided that fun−1(T ′) ⊆ T ′
>. A

ρ-RF ⟨rtf , rt, rf⟩ combines three ranking functions rtf , rt, rf : L → Z[PV]. For
any T ′-evaluation tree, rtf(ℓ) is a bound on the number of edges labeled with
transitions from fun−1(T ′) (i.e., transitions with function calls) in any path of
the tree that starts in a configuration of the form (ℓ,). So these paths may
contain both steps with transitions and steps with function calls. Similarly, rt(ℓ)
is a bound on the number of edges with transitions from T ′

> \ fun
−1(T ′) in any

path of a T ′-evaluation tree starting with (ℓ,). Finally, rf(ℓ) is a bound on the
number of ρ-edges (i.e., steps with function calls from fun(T ′)) in any path of a
T ′-evaluation tree starting with (ℓ,). In Ex. 6, these function calls correspond
to vertical edges, whereas steps with transitions correspond to horizontal edges.

To ensure these properties in Def. 15, (a) requires that rtf is decreasing and
bounded for edges labeled with fun−1(T ′), (b) requires this for rt and edges
labeled with T ′

> \ fun
−1(T ′), and (c) requires this for rf and edges labeled with

fun(T ′). In (d), we require that rtf , rt, and rf do not increase for any edge.
In the following definition, we extend the evaluation of arithmetic expression e

to the “undefined” state⊥ by defining JeK⊥ = 0. We also use the relations→t and
→ρ without referring to an actual evaluation tree. Thus, we say that (ℓ, σ) →τ

(ℓ′, σ′) holds for some τ ∈ T ∪ F if there exists an evaluation Tσ0 ≺∗
T ∪{ε} T for

some state σ0 ∈ Σ such that T contains an edge (ℓ, σ)→τ (ℓ′, σ′).

Definition 15 (Function Call Ranking Function). Let ∅ ̸= T ′
> ⊆ T ′ ⊆

T \ T0 with fun−1(T ′) ⊆ T ′
>. Then ⟨rtf , rt, rf⟩ with rtf , rt, rf : L → Z[PV] is a

function call ranking function (ρ-RF) for T ′
> w.r.t. T ′ if for all evaluation steps

(ℓ, σ)→τ (ℓ′, σ′) with τ ∈ T ′ ∪ fun(T ′), we have:

8 N. Lommen, J. Giesl

N

Rn1(n0, n2)

N ′ · · · N ′′

Rn1(n0 − 1, n2)

· · ·

Rn1(n0, n2 − 1) Rn1(n0, n2 − 1)

T ′
> \ fun−1(T ′) T ′

> \ fun−1(T ′)fun−1(T ′)

ρ1 ρnfc(T ′)
d2 steps

Fig. 3: Illustration of Rn1
(n0, n2)

(a) if τ ∈ fun−1(T ′), then Jrtf(ℓ)Kσ > Jrtf(ℓ′)Kσ′ and Jrtf(ℓ)Kσ > 0
(b) if τ ∈ T ′

> \ fun
−1(T ′), then Jrt(ℓ)Kσ > Jrt(ℓ′)Kσ′ and Jrt(ℓ)Kσ > 0

(c) if τ ∈ fun(T ′), then Jrf(ℓ)Kσ > Jrf(ℓ′)Kσ′ and Jrf(ℓ)Kσ > 0
(d) if τ ∈ T ′ ∪ fun(T ′), then Jri(ℓ)Kσ ≥ Jri(ℓ′)Kσ′ for all i ∈ {tf, t, f}

Note that if τ ’s update η contains function calls, then in general it is not
decidable whether (ℓ, σ) →τ (ℓ′, σ′) holds. Thus, to over-approximate →τ in
our automation, we consider a modified update η′ where all function calls are
replaced by fresh variables. In practice, we restrict ourselves to linear polynomial
ranking functions and use the SMT solver Z3 [20] to infer ρ-RFs automatically.

Example 16. For the program from Fig. 2, we first consider T ′ = {t1}. Then
fun(T ′) = ∅ and fun−1(T ′) = ∅, since the location f1 of t1’s function call is not
in LT ′ . A ρ-RF for T ′

> = T ′ is rtf(ℓ1) = rf(ℓ1) = 0 and rt(ℓ1) = x. The ranking
functions can always map all remaining locations outside the subprogram T ′ to
0. For T̃ ′ = {t4, t5} we have fun(T̃ ′) = {ρ2} and fun−1(T̃ ′) = {t5}. A ρ-RF for

T̃ ′
> = {t5} is r̃tf(f1) = 1, r̃tf(f2) = r̃t(f1) = r̃t(f2) = 0, and r̃f(f1) = r̃f(f2) = a.

The following theorem shows that ρ-RFs yield local runtime bounds. For a
local runtime bound, we have to over-approximate how many edges labeled with
T ′
> can occur in a T ′-evaluation tree starting with a configuration of the form

(ℓ,). To this end, for any transition t let nfcT ′(t) denote the number of function
calls ℓ(|) ∈ fun(t) with ℓ ∈ LT ′ , and let nfc(T ′) = max {nfcT ′(t) | t ∈ T ′}. The
ranking functions rtf , rt, and rf influence the local runtime bound in different
ways: If every path has at most n0 edges labeled with transitions from fun−1(T ′),
n1 edges labeled with transitions from T ′

> \ fun
−1(T ′), and n2 edges labeled with

function calls, then Rn1(n0, n2) over-approximates the number of T ′
>-edges in

any T ′-evaluation tree, whereRn1
(n0, n2) is defined via the following recurrence:

Rn1(n0, n2) =

{
n1, if n0 = 0, n2 = 0, or nfc(T ′) = 0
1 + n1 +Rn1(n0 − 1, n2) + nfc(T ′) · Rn1(n0, n2 − 1), otherwise

This can be shown by induction on n0 + n2. If n0 = 0, n2 = 0, or nfc(T ′) = 0,
then there is no function call and thus, there can be at most n1 edges labeled
with transitions from T ′

> \ fun
−1(T ′) = T ′

>. The induction step is illustrated in
Fig. 3. Here, the path from the root node to the first node N where a function is
called uses at most d1 ≤ n1 edges labeled with transitions from T ′

> \ fun
−1(T ′).

The node N has at most nfc(T ′) many outgoing edges labeled with function calls

Modular Automatic Complexity Analysis of Recursive Integer Programs 9

and one outgoing edge to a node N ′ labeled with a transition from fun−1(T ′).
The function calls lead to at most nfc(T ′) many subtrees where each contains
at most Rn1(n0, n2 − 1) many T ′

>-edges by the induction hypothesis. The path
from the node N ′ to the next node N ′′ where a function is called uses at most d2
edges labeled with transitions from T ′

> \ fun
−1(T ′), where we have d1+d2 ≤ n1.

Finally, the subtree starting in node N ′′ has at most Rn1
(n0 − 1, n2) many

T ′
>-edges by the induction hypothesis. Thus, the full tree has at most |T|T ′

>
≤

d1 + 1 + nfc(T ′) · Rn1
(n0, n2 − 1) + d2 +Rn1

(n0 − 1, n2) ≤ 1 + n1 +Rn1
(n0 −

1, n2) + nfc(T ′) · Rn1(n0, n2 − 1) many T ′
>-edges.

As shown in App. A, n1 + n2 · (1 + n1 · (1 + nfc(T ′))) · (nfc(T ′) · n0)
n2 is an

over-approximating closed form solution ofRn1
(n0, n2). Hence, instantiating this

closed form with the ranking functions yields the desired local runtime bound.
Here and subsequently, ⌈⌈·⌉⌉ is used to transform a polynomial into a bound from
B by taking the absolute values of the coefficients, e.g., ⌈⌈x− y⌉⌉ = x+ y.

Theorem 17 (Local Runtime Bounds by ρ-RFs). Let ∅ ̸= T ′
> ⊆ T ′ ⊆

T \T0 with fun−1(T ′) ⊆ T ′
> and let ⟨rtf , rt, rf⟩ be a ρ-RF. Then RBT

′
>,T ′

loc is local

runtime bound for T ′
> w.r.t. T ′, where for all ℓ ∈ LT ′ , we define RBT

′
>,T ′

loc (ℓ) as:

⌈⌈rt(ℓ)⌉⌉ + ⌈⌈rf(ℓ)⌉⌉ · (1 + ⌈⌈rt(ℓ)⌉⌉ · (1 + nfc(T ′))) · (nfc(T ′) · ⌈⌈rtf(ℓ)⌉⌉)
⌈⌈rf (ℓ)⌉⌉

Example 18. With the ρ-RFs of Ex. 16, Thm. 17 yieldsRB{t1},{t1}loc (ℓ1) = ⌈⌈rt(ℓ1)⌉⌉
= x (as rf(ℓ1) = 0) and RB{t5},{t4,t5}loc (f1) = a (as nfc(T̃ ′) = 1).

To lift local to global runtime bounds, we consider those transitions and
function calls which start an evaluation of the subprogram T ′.

Definition 19 (Entry Points). Let ∅ ̸= T ′ ⊆ T \ T0 and let FT ′ = {ℓ(|) ∈
F | ℓ ∈ LT ′} be the set of function calls in the full program T that refer to start
locations of T ′. Then ET T ′ = {r ∈ T \T ′ | ∃ ℓ ∈ LT ′ . r = (, , , ℓ)} is the set of
entry transitions and EFT ′ = {r ∈ T \T ′ | fun(r)∩FT ′ ̸= ∅} is the set of entry
(function) calls for T ′. ET ′ = ET T ′ ∪ EFT ′ is the set of entry points for T ′.

Example 20. For Fig. 2, we get L{t1}={ℓ1}, F{t1}=∅, and E{t1}=ET {t1}={t0}.
Moreover, L{t4,t5} = {f1}, F{t4,t5} = {ρ1, ρ2}, and E{t4,t5} = EF{t4,t5} = {t1}.

To illustrate that RBT
′
>,T ′

loc (ℓin) is a bound on the number of evaluations of
transitions from T ′

> after evaluating a particular entry transition r or a function

call ρ, we also write RBT
′
>

loc(→r T ′) or RBT
′
>

loc(→ρ T ′) instead of RBT
′
>,T ′

loc (ℓin) if
r = (, , , ℓin) ∈ ET T ′ or if ρ = ℓin(|) ∈ fun(r) ∩ FT ′ for some r ∈ EFT ′ .

Thm. 21 allows us to lift arbitrary local runtime bounds of a subprogram (e.g.,
local runtime bounds by ρ-RFs) to global runtime bounds for the full program.
To this end, we considerRB(r) to over-approximate how often a local run of T ′ is
started by an entry point r ∈ ET ′ . In contrast to our previous work [10, 15, 18], we
also have to consider entry calls r. Furthermore, we have to consider the size of
the program variables after entering the subprogram by r or by a function call ρ
in r. Hence, we replace every program variable v ∈ PV by its size bound SB(τ, v)
for τ = r or τ = ρ, respectively. This is denoted by “[v/SB(τ, v) | v ∈ PV]”.

10 N. Lommen, J. Giesl

Theorem 21 (Lifting Local Runtime Bounds). Let RB be a global runtime

bound, SB be a size bound, and ∅ ̸= T ′
> ⊆ T ′ ⊆ T \ T0. Moreover, let RBT

′
>,T ′

loc

be a local runtime bound for T ′
> w.r.t. T ′. Then RB′ is also a global runtime

bound, where RB′(t) = RB(t) for all t ∈ T \ T ′
> and for t ∈ T ′

>, we have:

RB′(t) =
∑

r∈ET T ′ RB(r) · RB
T ′
>

loc(→r T ′) [v/SB(r, v) | v ∈ PV]
+
∑

r∈EFT ′

∑
ρ∈ fun(r)∩FT ′ RB(r) · RB

T ′
>

loc(→ρ T ′) [v/SB(ρ, v) | v ∈ PV]

Example 22. We now compute the remaining global runtime bounds for Fig. 2,

see Ex. 11. For t1 and t5, we had inferred the local runtime bounds RB{t1}loc (→t0

{t1}) = x and RB{t5}loc (→ρ1 {t4, t5}) = a in Ex. 18. Thus, we obtain RB(t1) =
RB(t0) · RB{t1}

loc (→t0 {t1}) [x/SB(t0, x)] = x (with RB(t0) = 1 and SB(t0, x) =
x) and RB(t5) = RB(t1) · RB{t5}loc (→ρ1 {t4, t5}) [a/SB(ρ1, a)] = x2 (with RB(t1)
= x and SB(ρ1, a) = x) by Thm. 21. Similarly, RB{t4}loc (→ρ1 {t4, t5}) = 1 is
a local runtime bound since the subprogram {t4} consists of a single transition

without function calls. Here, we get RB(t4) = RB(t1)·RB{t4}loc (→ρ1
{t4, t5}) = x.

Finally, RB{t3}loc (→t2 {t3}) = log2(y) + 2 is also a local runtime bound, which
cannot be inferred by linear ranking functions but by our technique based on
so-called twn-loops [11, 12, 15, 16, 18] (see App. B for the detailed construc-
tion). Lifting this local bound by Thm. 21 yields the global bound RB(t3) =

RB(t2) · RB{t3}loc (→t2 {t3}) [y/SB(t2, y)] = log2(y+ xx2+1) + 2 (with RB(t2) = 1

and SB(t2, y) = y + xx2+1). Thus, our modular approach allows us to consider
individual subprograms separately, to use different techniques to compute their
local bounds, and to combine these local bounds into a global bound afterwards.

4 Modular Computation of Size Bounds

We now introduce our modular approach to compute size bounds. To this end,
we extend the technique of [6] to handle ITSs with function calls. For every result
variable ⟨τ, v⟩ ∈ RV = (T ∪ F)×PV, we define a local size bound SBloc(τ, v) ∈
N[PV∪F]. So SBloc(τ, v) is a polynomial over the program variables and function
calls (which are treated like variables). When instantiating every function call
ρ = ℓ′ρ(vρ|) in SBloc(τ, v) by the size |σρ|(vρ) of its result, then SBloc(τ, v) must
be a bound on the size of v after a single evaluation step with τ .

Definition 23 (Local Size Bound). SBloc : RV → N[PV ∪ F] is a local size
bound if for all ⟨τ, v⟩ ∈ RV, all evaluations (ℓ′, σ′)→τ (ℓ, σ) with σ ̸= ⊥, and all
evaluations (ℓ′, σ′) →ρ ◦ →∗ (ℓρ, σρ) starting with some ρ = ℓ′ρ(vρ|) ∈ F such
that ℓρ ∈ Ω and σρ ̸= ⊥, we have |σ|(v) ≤ J SBloc(τ, v) [ρ / |σρ|(vρ) | ρ ∈ F] K|σ′|.

For every result variable ⟨t, v⟩ ∈ T × PV with t = (, , η,), in practice we
essentially use SBloc(t, v) = ⌈⌈η(v)⌉⌉, e.g., SBloc(t1, y) = y+ρ1 and SBloc(t1, x) =
⌈⌈x−1⌉⌉ = x+1 for the program from Fig. 2. However, due to the guard x > 0 of t1,
here we can obtain the more precise local size bound SBloc(t1, x) = x. Similarly,

Modular Automatic Complexity Analysis of Recursive Integer Programs 11

⟨t0, x⟩ ⟨t1, x⟩ ⟨ρ1, a⟩

⟨t4, a⟩

⟨t5, a⟩ ⟨t0, y⟩ ⟨t2, y⟩

⟨t3, y⟩⟨t1, y⟩⟨ρ2, a⟩

Fig. 4: Part of the RVG for Fig. 2

we essentially use SBloc(ρ, v) = ⌈⌈ζ(v)⌉⌉ for every result variable (ρ, v) ∈ F ×PV
with ρ = ℓ(|ζ). So for Fig. 2, we would obtain SBloc(ρ2, a) = ⌈⌈a− 1⌉⌉ = a+ 1.
However, due to the guard a > 0 of the transition t5 whose update contains the
function call ρ2, we can again obtain the more precise bound SBloc(ρ2, a) = a.

Next we construct a result variable graph (RVG) which represents the in-
fluence of result variables on each other. For any polynomial p ∈ N[PV ∪ F],
let act(p) ⊆ PV ∪ F denote the set of its active arguments, i.e., x ∈ act(p) iff
x ∈ PV ∪ F occurs in p. Furthermore, let pre(τ) denote transitions or function
calls that directly precede τ , i.e., τ ′ ∈ pre(τ) iff there exists an evaluation which
contains the path →τ ′ ◦ →τ . Then the RVG has the nodes RV and it has an
edge from ⟨τ ′, v′⟩ to ⟨τ, v⟩ whenever τ ′ ∈ pre(τ) and v′ ∈ act(SBloc(τ, v)).

Moreover, we have to consider the values of function calls. We say that t′ is
an Ω-predecessor of (t, ρ) if the transition t′ ends in a return location which is
reachable from a function call ρ = ℓ′ρ(|) ∈ fun(t), i.e., if there is an evaluation

→ρ (ℓ′ρ,)→ · · · →t′ (ℓρ,) for some ℓρ ∈ Ω. Let preΩ(t, ρ) denote the set of all
Ω-predecessors of (t, ρ). Whenever t = (, , η,), ρ = ℓ′ρ(v

′|) ∈ fun(η(v)), and

t′ ∈ preΩ(t, ρ), then there is an Ω-edge from ⟨t′, v′⟩ to ⟨t, v⟩ in the RVG.
So for Fig. 2, we have preΩ(t1, ρ1) = {t4, t5}, since both t4 and t5 end in the

return location f2, t1’s update of y contains the function call ρ1 = f1(a|), and
there are evaluations →ρ1

(f1,) →t4 (f2,) and →ρ1
(f1,) →t5 (f2,). Thus,

there are Ω-edges from both ⟨t4, a⟩ and ⟨t5, a⟩ to ⟨t1, y⟩ in the RVG. In practice,
we use efficiently computable over-approximations for pre(·) and preΩ(·, ·).

Definition 24 (Result Variable Graph). An RVG has the nodes RV, the
RV-edges {(⟨τ ′, v′⟩, ⟨τ, v⟩) | τ ′ ∈ pre(τ), v′ ∈ act(SBloc(τ, v))}, and the Ω-edges
{(⟨t′, v′⟩, ⟨t, v⟩) | t′ ∈ preΩ(t, ρ), t = (, , η,), ρ = ℓ′ρ(v

′|) ∈ fun(η(v))}.

Example 25. Fig. 4 depicts a part of the RVG for the program of Fig. 2. For
instance, there is an edge ⟨t1, x⟩ → ⟨ρ1, a⟩ as the value of x after transition t1
influences the value of a after the function call ρ1. More precisely, t1 ∈ pre(ρ1) =
{t0, t1} and x ∈ act(SBloc(ρ1, a)) = act(x) = {x}. Note that we do not have
an edge from ⟨ρ1, a⟩ to ⟨t4, a⟩ as SBloc(t4, a) = 1. The RVG has four Ω-edges
which are red-dashed in Fig. 4. Moreover, Fig. 4 has the five non-trivial2 SCCs
{⟨t1, x⟩}, {⟨ρ2, a⟩}, {⟨t1, y⟩}, {⟨t3, y⟩}, and {⟨t5, a⟩}, where the latter forms a

2 As usual, a strongly connected component (SCC) is a maximal subgraph with a path
from each node to every other node. An SCC is trivial if it consists of a single node
without an edge to itself.

12 N. Lommen, J. Giesl

cycle with an Ω-edge. While the full RVG has additional non-trivial SCCs, we
omitted them from Fig. 4 as they have no impact on the runtime.

We already developed powerful techniques to lift local to global size bounds
for ITSs without function calls in [6, 16, 18]. We now extend the technique of [6]
to handle function calls.

We start with size bounds for trivial SCCs {⟨τ, x⟩} in the RVG. Thm. 26
considers the case where τ ∈ F or τ ∈ T with an update η such that fun(η(x)) =
∅. The case fun(η(x)) ̸= ∅ is handled in Thm. 28. If τ is an initial transition,
i.e., pre(τ) = ∅, then SBloc(τ, x) is already a (global) size bound. Otherwise,
if pre(τ) ̸= ∅, then Thm. 26 over-approximates the sizes of the variables in
SBloc(τ, x) by the size bounds corresponding to the preceding transitions.

Theorem 26 (Size Bounds for Trivial SCCs Without Function Calls).
Let SB be a size bound and {⟨τ, x⟩} be a trivial SCC of the RVG such that τ ∈ F
or fun(η(x)) = ∅ for the update η of τ ∈ T . Then SB′ is also a size bound where
SB′(α) = SB(α) for all α ̸= ⟨τ, x⟩, and for α = ⟨τ, x⟩ we have

SB′(α) =
{
SBloc(α), if pre(τ) = ∅
maxτ ′ ∈ pre(τ) {SBloc(α) [v/SB(τ ′, v) | v ∈ PV]} , otherwise

Note that due to the requirement on ⟨τ, x⟩ in Thm. 26, w.l.o.g. SBloc(τ, x) only
contains variables from PV, but not from F .

Example 27. Reconsider Fig. 2 and 4. We have SB(t0, x) = SBloc(t0, x) = x by
Thm. 26 as pre(t0) = ∅. Moreover, we obtain SB(t4, a) = 1 since SBloc(t4, a) =
1. In Ex. 31 we will show that SB(t1, x) = x. Since SBloc(ρ1, a) = x and pre(ρ1)
= {t0, t1}, this implies SB(ρ1, a) = max{x[x/SB(t0, x)], x[x/SB(t1, x)]} = x.

The following theorem handles trivial SCCs {⟨t, x⟩} where t contains func-
tion calls ρ. Hence, in contrast to Thm. 26, we have to instantiate these function
calls by the size bounds for the transitions of preΩ(t, ρ), as they reach the cor-
responding return locations. If a function call ρ ∈ fun(t) does not reach a return
location, then we can set the size bound for ⟨t, x⟩ to 0, because then →t only
reaches configurations (,⊥). For any n ∈ N, let [n] denote the set {1, . . . , n}.
Theorem 28 (Size Bounds for Trivial SCCs With Function Calls). Let
SB be a size bound and {⟨t, x⟩} be a trivial SCC of the RVG such that t ∈ T and
fun(η(x)) ̸= ∅. Then SB′ is also a size bound where SB′(α) = SB(α) for α ̸=
⟨t, x⟩, and for α = ⟨t, x⟩ with fun(η(x)) = {ρ1, . . . , ρn} and ρi = ℓi(vi|), we have

SB′(α)=

0, if preΩ(t, ρi) = ∅ for some i ∈ [n]

maxt′i ∈ preΩ(t,ρi) for all i∈[n] {SBloc(α) [ρi/SB(t′i, vi) | i ∈ [n]]} ,
if all preΩ(t, ρi) ̸= ∅ and pre(t) = ∅

max
τ ′ ∈ pre(t)

t′i ∈ preΩ(t,ρi) for all i∈[n]

{SBloc(α) [v/SB(τ ′, v) |v∈PV] [ρi/SB(t′i, vi) | i∈ [n]]} , otherwise

Example 29. Consider a variant of Fig. 2 where we replace the update η(y) of t1
by ρ1 = f1(a| ζ(a) = x). Thus, the self-loop at ⟨t1, y⟩ is removed from the RVG in

Modular Automatic Complexity Analysis of Recursive Integer Programs 13

Fig. 4. Then, we can apply Thm. 28 on the trivial SCC {⟨t1, y⟩}. Assume that we

already computed SB(t4, a) = 1 and SB(t5, a) = xx2+1 (see Ex. 27 and 31). We
have pre(t1) = {t0, t1}, but SBloc(t1, y) = ρ1 does not contain variables from PV.
Hence, we get SB(t1, y) = max {ρ1[ρ1/SB(t4, a)], ρ1[ρ1/SB(t5, a)]} = xx2+1.

Finally, we introduce our approach to handle non-trivial SCCs. Let C ⊆ RV
be the nodes of such an SCC. Our approach can only be applied to SCCs where
for all α ∈ C, there exist eα ∈ N and sα ∈ N[PV] such that

SBloc(α) ≤ sα · (eα +
∑

v∈ act(SBloc(α))\act(sα) v) (1)

where “≤” is interpreted pointwise (i.e., the inequation must hold for all instanti-
ations of the variables by natural numbers). Here, sα captures the scaling behav-
ior of SBloc(α), e.g., it allows us to consider updates of the form η(x) = 2 · x or
η(x) = a ·x for a variable a ∈ PV. Note that in [6], only constant factors sα were
allowed. Similarly, eα captures the additive growth in updates like η(x) = 1+x.

We now also define pre and preΩ for result variables. For α ∈ RV, pre(α)
(preΩ(α)) is the set of all result variables α′ with an RV-edge (Ω-edge) from
α′ to α in the RVG. Furthermore, for any result variable α in the SCC C, let
Vα = {v ∈ PV | ∃τ. (τ, v) ∈ pre(α) ∩ C} be the set of all variables v with an
RV-edge to α in C, and similarly, let Fα =

{
v ∈ PV | ∃t. (t, v) ∈ preΩ(α) ∩ C

}
.

Finally, for any p ∈ N[PV ∪F], let actV(p) = act(p)∩PV be p’s active variables
and actF(p) = act(p) ∩ F be the active function calls of p.

To consider the additive growth, we over-approximate the sizes of variables
on incoming edges from outside the SCC C. Let initα(v) = max{SB(τ, v) | ∃τ ∈
T ∪F . ⟨τ, v⟩ ∈ pre(α)\C} be a bound on the size of v when entering C via an RV-
edge to α. Analogously, initΩα (v) = max{SB(t, v) | ∃t ∈ T . ⟨t, v⟩ ∈ preΩ(α) \ C}
is a bound on the size of v when entering C via an Ω-edge to α. The execution
of α’s transition or function call means that the values of the variables in Vα

or Fα can be increased by adding initα(v) for all v ∈ actV(SBloc(α)) \ Vα (or,
respectively, by adding initΩα (v) for all ℓ(v|) ∈ actF(SBloc(α)) where v ̸∈ Fα)
plus the constant eα. This can be repeated rbα times, where rbα = RB(t) if
α = ⟨t, v⟩ and rbα =

∑
t∈fun−1(ρ)RB(t) if α = ⟨ρ, v⟩, i.e., rbα is a bound on how

often α’s transition or function call is evaluated during a program run. Thus, the
following expression over-approximates the additive size-change resulting from
α (ignoring the growth resulting from Vα, Fα, and actV(sα) for now):

add(α) = rbα · (eα +
∑

v ∈ actV(SBloc(α))
v ̸∈ actV(sα)∪Vα

initα(v) +
∑

ℓ(v|)∈ actF(SBloc(α))
v ̸∈Fα

initΩα (v))

We now take the growth resulting from the variables in Vα or Fα into account.
First, since the expression add(α) only captures the change of the size, for an
overall size bound, one has to take the initial values of the variables in Vα and
Fα before entering the SCC C into account. This leads to

add(α) +
∑

v∈Vα
initα(v) +

∑
v∈Fα

initΩα (v).

Moreover, if |Vα|+ |Fα| > 1, then each execution of α’s transition or function
call may multiply the value of a variable by |Vα| + |Fα|. For example, consider

14 N. Lommen, J. Giesl

the update η(x) = η(y) = x+ y where x, y ∈ Vα. Then, both x and y grow with
a factor of two. A similar effect is obtained for scaling factors sα > 1. As for
the additive growth, this multiplication must be performed rbα times. This is
captured by scale(α) for α = ⟨τ, ⟩:

scale(α) = (maxτ ′ ∈ pre(τ) {1, sα [v/SB(τ ′, v) | v ∈ PV]} · (|Vα|+ |Fα|))rbα

The following theorem shows how to compute size bounds for non-trivial
SCCs C by accumulating scale(α) and add(α) for all α ∈ C. To simplify the
presentation, in contrast to [6], we do not consider transitions individually and
use a single expression instead of defining several classes of local size bounds.

Theorem 30 (Size Bounds for Non-Trivial SCCs). Let SB be a size
bound and C be a non-trivial SCC in a RVG, where for all α ∈ C, SBloc(α)
satisfies (1) for suitable eα and sα. Then SB′ is also a size bound where SB′(α) =
SB(α) for all α ∈ RV \ C, and SB′(α) = SB′(C) for all α ∈ C, where

SB′(C) =
∏

α∈C scale(α) · (
∑

α∈C(add(α)+
∑

v∈Vα
initα(v)+

∑
v∈Fα

initΩα (v)))

Example 31. Reconsider Fig. 2 and 4. We now infer size bounds for the non-
trivial SCCs {⟨t1, x⟩}, {⟨ρ2, a⟩}, {⟨t5, a⟩}, and {⟨t1, y⟩}. For α = ⟨t1, x⟩ with
SBloc(t1, x) = x, we have sα = 1, eα = 0, Vα = {x}, Fα = ∅, actV(SBloc(t1, x))
= {x}, and actF(SBloc(t1, x)) = ∅. This implies scale(α) = 1, add(α) = 0, and
initα(x) = SB(t0, x) = x. Thus, we obtain the size bound SB(t1, x) = x.

Similarly, for α = ⟨ρ2, a⟩ with SBloc(ρ2, a) = a, we obtain sα = 1, eα = 0,
Vα = {a}, Fα = ∅, actV(SBloc(ρ2, a)) = {a}, and actF(SBloc(ρ2, a)) = ∅. Thus,
we have scale(α) = 1, add(α) = 0, and initα(a) = SB(ρ1, a) = x by Ex. 27. This
yields the size bound SB(ρ2, a) = x.

For α = ⟨t5, a⟩ with SBloc(t5, a) = a · ρ2, we have sα = a, eα = 0, Vα = ∅,
Fα = {a}, actV(SBloc(t5, a)) = {a}, and actF(SBloc(t5, a)) = {ρ2}. As pre(t5) =
{ρ1, ρ2}, we have scale(α) = (max{1, a[a/SB(ρ1, a)], a[a/SB(ρ2, a)]})RB(t5) =

xx2

(with RB(t5) = x2 by Ex. 22 and SB(ρ1, a) = SB(ρ2, a) = x when using the
invariant x > 0 and thus, max{1, x} = x), add(α) = x2 · 0 = 0, and initΩα (a) =

SB(t4, a) = 1 by Ex. 27. Hence, we obtain the size bound SB(t5, a) = xx2

.
Finally, for α = ⟨t1, y⟩ with SBloc(t1, y) = y + ρ1, we have sα = 1, eα = 0,

Vα = {y}, Fα = ∅, actV(SBloc(t1, y)) = {y}, and actF(SBloc(t5, a)) = {ρ1}.
Thus, we obtain scale(α) = 1, add(α) = RB(t1) · initΩα (a) = x ·max{SB(t4, a),
SB(t5, a)} = x · xx2

= xx2+1 (with RB(t1) = x by Ex. 22, SB(t4, a) = 1, and

SB(t5, a) = xx2

), and initα(y) = SB(t0, y) = y. Hence, we get the size bound

SB(t1, y) = y + xx2+1. This also implies SB(t2, y) = y + xx2+1.

5 Conclusion, Implementation, and Related Work

In this paper we presented a novel framework for complexity analysis of integer
programs with function calls. To this end, we introduced a new class of ranking
functions and extended our modular approach for inferring runtime and size
bounds [6, 10] such that we can now also handle return values of function calls.

Modular Automatic Complexity Analysis of Recursive Integer Programs 15

Related Work: As mentioned in the introduction, there exist many approaches
to analyze complexity of programs automatically, e.g., [1, 2, 4, 6–8, 10, 13, 17, 19,
23, 24]. However, only few of them focus on programs with recursion or function
calls. While we already discussed an extension to recursive ITSs in [6], here the
return values of function calls were ignored.

Techniques for complexity analysis of term rewrite systems (e.g., based on
dependency pairs [3, 22]) can handle (possibly non-tail) recursion, but standard
TRSs do not support built-in types like integers. However, some works studied
connections between complexity analysis for TRSs and our approach from [6] for
complexity analysis of ITSs. To this end, [21] introduced recursive natural tran-
sition systems with potential non-tail recursion. Here, the idea is to summarize
(and subsequently eliminate) subprocedures by approximating their runtime and
size. Thus, this approach does not benefit from techniques such as our new class
of ranking functions which allows us to handle subprograms with function calls
directly. In [26], dependency pairs for TRSs were extended by the computation
of size bounds from [6] and the inference of runtime bounds via classical ranking
functions and the Master Theorem in order to handle logically constrained TRSs.

Instead of representing integer programs as ITSs, there are also techniques
based on so-called cost equation systems which can express non-tail recursive
integer programs as well, e.g., [8]. This approach analyzes program parts inde-
pendently and uses linear invariants to compose the results, i.e., it differs signifi-
cantly from our approach which can also infer non-linear size bounds. Moreover,
[13] presents an approach for automatic complexity analysis of OCaml programs,
which however has limitations w.r.t. modularity, see [21].

Implementation: We implemented our novel results and integrated them into
our tool KoAT which also features powerful techniques for subprograms without
function calls [6, 10, 15–18].

In the beginning, KoAT preprocesses the program, e.g., by extending the
guards of transitions with invariants inferred by Apron [14]. For all SMT problems
(including the generation of ranking functions), KoAT uses Z3 [20].

To our knowledge, KoAT is currently the only tool which can infer a finite
runtime bound for the recursive ITS from our leading example (Fig. 2). Further-
more, it is also the most powerful tool on “classical” ITSs without function calls
(see the results at the annual Termination and Complexity Competition (term-
COMP) [9] and [10, 15–18] for evaluations). While the Termination Problems
Data Base [25] used at termCOMP contains a large collection of ITSs without
function calls, up to now there does not exist any such standard benchmark set
for ITSs with function calls. To demonstrate KoAT’s power on recursive ρ-ITSs,
we collected 15 typical such integer programs and our evaluation showed that
KoAT infers finite runtime bounds for 14 of them. KoAT’s source code, a binary,
a Docker image, and details on our evaluation are available at:

https://koat.verify.rwth-aachen.de/function-calls

This website also contains details on our input format for ρ-ITSs and a web
interface to run different configurations of KoAT directly online.

https://koat.verify.rwth-aachen.de/function-calls

16 N. Lommen, J. Giesl

References

[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. “Cost
Analysis of Object-Oriented Bytecode Programs”. In: Theoretical Com-
puter Science 413.1 (2012), pp. 142–159. doi: 10.1016/j.tcs.2011.07.009.

[2] E. Albert, M. Bofill, C. Borralleras, E. Mart́ın-Mart́ın, and A. Rubio. “Re-
source Analysis Driven by (Conditional) Termination Proofs”. In: The-
ory and Practice of Logic Programming 19.5-6 (2019), pp. 722–739. doi:
10.1017/S1471068419000152.

[3] M. Avanzini and G. Moser. “A Combination Framework for Complexity”.
In: Information and Computation 248 (2016), pp. 22–55. doi: 10.1016/J.
IC.2015.12.007.

[4] A. M. Ben-Amram and S. Genaim. “On Multiphase-Linear Ranking Func-
tions”. In: Proc. CAV ’17. LNCS 10427. 2017, pp. 601–620. doi: 10.1007/
978-3-319-63390-9 32.

[5] A. M. Ben-Amram, J. J. Doménech, and S. Genaim. “Multiphase-Linear
Ranking Functions and Their Relation to Recurrent Sets”. In: Proc.
SAS ’19. LNCS 11822. 2019, pp. 459–480. doi: 10.1007/978-3-030-32304-
2 22.

[6] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. “Analyzing
Runtime and Size Complexity of Integer Programs”. In: ACM Transactions
on Programming Languages and Systems 38 (2016), pp. 1–50. doi: 10 .
1145/2866575.

[7] Q. Carbonneaux, J. Hoffmann, and Z. Shao. “Compositional Certified Re-
source Bounds”. In: Proc. PLDI ’15. 2015, pp. 467–478. doi: 10 .1145/
2737924.2737955.

[8] A. Flores-Montoya and R. Hähnle. “Resource Analysis of Complex Pro-
grams with Cost Equations”. In: Proc. APLAS ’14. LNCS 8858. 2014,
pp. 275–295. doi: 10.1007/978-3-319-12736-1 15.

[9] J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, and A. Yamada. “The
Termination and Complexity Competition”. In: Proc. TACAS ’19. LNCS
11429. 2019, pp. 156–166. doi: 10.1007/978-3-030-17502-3 10.

[10] J. Giesl, N. Lommen, M. Hark, and F. Meyer. “Improving Automatic
Complexity Analysis of Integer Programs”. In: The Logic of Software. A
Tasting Menu of Formal Methods. LNCS 13360. 2022, pp. 193–228. doi:
10.1007/978-3-031-08166-8 10.

[11] M. Hark, F. Frohn, and J. Giesl. “Polynomial Loops: Beyond Termina-
tion”. In: Proc. LPAR ’20. EPiC 73. 2020, pp. 279–297. doi: 10.29007/
nxv1.

[12] M. Hark, F. Frohn, and J. Giesl. “Termination of Triangular Polynomial
Loops”. In: Formal Methods in System Design (2023). doi: 10 . 1007 /
s10703-023-00440-z.

[13] J. Hoffmann, A. Das, and S.-C. Weng. “Towards Automatic Resource
Bound Analysis for OCaml”. In: Proc. POPL ’17. 2017, pp. 359–373. doi:
10.1145/3009837.3009842.

https://doi.org/10.1016/j.tcs.2011.07.009
https://doi.org/10.1017/S1471068419000152
https://doi.org/10.1016/J.IC.2015.12.007
https://doi.org/10.1016/J.IC.2015.12.007
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.1145/2866575
https://doi.org/10.1145/2866575
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1007/978-3-319-12736-1_15
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-031-08166-8_10
https://doi.org/10.29007/nxv1
https://doi.org/10.29007/nxv1
https://doi.org/10.1007/s10703-023-00440-z
https://doi.org/10.1007/s10703-023-00440-z
https://doi.org/10.1145/3009837.3009842

Modular Automatic Complexity Analysis of Recursive Integer Programs 17

[14] B. Jeannet and A. Miné. “Apron: A Library of Numerical Abstract Do-
mains for Static Analysis”. In: Proc. CAV ’09. LNCS 5643. 2009, pp. 661–
667. doi: 10.1007/978-3-642-02658-4 52.

[15] N. Lommen, F. Meyer, and J. Giesl. “Automatic Complexity Analysis
of Integer Programs via Triangular Weakly Non-Linear Loops”. In: Proc.
IJCAR ’22. LNCS 13385. 2022, pp. 734–754. doi: 10.1007/978- 3- 031-
10769-6 43.

[16] N. Lommen and J. Giesl. “Targeting Completeness: Using Closed Forms
for Size Bounds of Integer Programs”. In: Proc. FroCoS ’23. LNCS 14279.
2023, pp. 3–22. doi: 10.1007/978-3-031-43369-6 1.

[17] N. Lommen, É. Meyer, and J. Giesl. “Control-Flow Refinement for Com-
plexity Analysis of Probabilistic Programs in KoAT (Short Paper)”. In:
Proc. IJCAR ’24. LNCS 14739. 2024, pp. 233–243. doi: 10.1007/978-3-
031-63498-7 14.

[18] N. Lommen, É. Meyer, and J. Giesl. “Targeting Completeness: Automated
Complexity Analysis of Integer Programs”. In: CoRR abs/2412.01832
(2024). doi: 10.48550/arXiv.2412.01832.

[19] P. López-Garćıa, L. Darmawan, M. Klemen, U. Liqat, F. Bueno, and M. V.
Hermenegildo. “Interval-Based Resource Usage Verification by Translation
into Horn Clauses and an Application to Energy Consumption”. In: Theory
and Practice of Logic Programming 18.2 (2018), pp. 167–223. doi: 10.1017/
S1471068418000042.

[20] L. M. de Moura and N. Bjørner. “Z3: An Efficient SMT Solver”. In: Proc.
TACAS ’08. LNCS 4963. 2008, pp. 337–340. doi: 10 .1007/978- 3- 540-
78800-3 24.

[21] M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, and J. Giesl. “Complexity
Analysis for Term Rewriting by Integer Transition Systems”. In: Proc.
FroCoS ’17. LNCS 10483. 2017, pp. 132–150. doi: 10.1007/978-3- 319-
66167-4 8.

[22] L. Noschinski, F. Emmes, and J. Giesl. “Analyzing Innermost Runtime
Complexity of Term Rewriting by Dependency Pairs”. In: Journal of Au-
tomated Reasoning 51.1 (2013), pp. 27–56. doi: 10.1007/S10817-013-9277-
6.

[23] L. Pham, F. A. Saad, and J. Hoffmann. “Robust Resource Bounds with
Static Analysis and Bayesian Inference”. In: Proceedings of the ACM on
Programming Languages 8.PLDI (2024). doi: 10.1145/3656380.

[24] M. Sinn, F. Zuleger, and H. Veith. “Complexity and Resource Bound Anal-
ysis of Imperative Programs Using Difference Constraints”. In: Journal of
Automated Reasoning 59.1 (2017), pp. 3–45. doi: 10.1007/s10817- 016-
9402-4.

[25] Termination Problems Data Base (TPDB). url: https ://github . com/
TermCOMP/TPDB.

[26] S. Winkler and G. Moser. “Runtime Complexity Analysis of Logically Con-
strained Rewriting”. In: Proc. LOPSTR ’20. LNCS 12561. 2020, pp. 37–
55. doi: 10.1007/978-3-030-68446-4 2.

https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-031-10769-6_43
https://doi.org/10.1007/978-3-031-10769-6_43
https://doi.org/10.1007/978-3-031-43369-6_1
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.1007/978-3-031-63498-7_14
https://doi.org/10.48550/arXiv.2412.01832
https://doi.org/10.1017/S1471068418000042
https://doi.org/10.1017/S1471068418000042
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-66167-4_8
https://doi.org/10.1007/978-3-319-66167-4_8
https://doi.org/10.1007/S10817-013-9277-6
https://doi.org/10.1007/S10817-013-9277-6
https://doi.org/10.1145/3656380
https://doi.org/10.1007/s10817-016-9402-4
https://doi.org/10.1007/s10817-016-9402-4
https://github.com/TermCOMP/TPDB
https://github.com/TermCOMP/TPDB
https://doi.org/10.1007/978-3-030-68446-4_2

18 N. Lommen, J. Giesl

A Proofs

Theorem 17 (Local Runtime Bounds by ρ-RFs). Let ∅ ̸= T ′
> ⊆ T ′ ⊆

T \T0 with fun−1(T ′) ⊆ T ′
> and let ⟨rtf , rt, rf⟩ be a ρ-RF. Then RBT

′
>,T ′

loc is local

runtime bound for T ′
> w.r.t. T ′, where for all ℓ ∈ LT ′ , we define RBT

′
>,T ′

loc (ℓ) as:

⌈⌈rt(ℓ)⌉⌉ + ⌈⌈rf(ℓ)⌉⌉ · (1 + ⌈⌈rt(ℓ)⌉⌉ · (1 + nfc(T ′))) · (nfc(T ′) · ⌈⌈rtf(ℓ)⌉⌉)
⌈⌈rf (ℓ)⌉⌉

Proof. Let ({(ℓ, σ)} ,∅) ≺∗
T ′∪{ε} T be an evaluation in the subprogram T ′ with

ℓ ∈ LT ′ and an arbitrary state σ ∈ Σ. We have to prove that

|T|T ′
>
≤ JRBT

′
>,T ′

loc (ℓ)K|σ| (2)

holds. To this end, we consider the following recurrence:

Rn1(n0, n2) =

{
n1, if n0 = 0, n2 = 0, or nfc(T ′) = 0
1 + n1 +Rn1(n0 − 1, n2) + nfc(T ′) · Rn1(n0, n2 − 1), otherwise

As shown in Sect. 3, by induction on n0+n2 one can prove thatRn1
(n0, n2) over-

approximates the number of T ′
>-edges in any T ′-evaluation tree (i.e., |T|T ′

>
≤

Rn1
(n0, n2)), provided that every path has at most n0 edges labeled with tran-

sitions from fun−1(T ′), n1 edges labeled with transitions from T ′
> \ fun

−1(T ′),
and n2 edges labeled with function calls. Now we show that n1 + n2 · (1 + n1 ·
(1 + nfc(T ′))) · (nfc(T ′) · n0)

n2 is an over-approximating closed form solution of
Rn1

(n0, n2). Instantiating this closed form with the ranking functions yields the
desired local runtime bound.

Let us abbreviate c = nfc(T ′) and

f(n0, n1, n2) = n1 + n2 · (1 + n1 · (1 + c)) · (c · n0)
n2 .

We show that for all n0, n1, n2 ∈ N we have Rn1
(n0, n2) ≤ f(n0, n1, n2) by

induction on n2.
If n2 = 0, then we have Rn1(n0, n2) = f(n0, n1, 0) = n1. Otherwise, if n2 > 0

and c · n0 = 0, then we also have Rn1(n0, n2) = f(n0, n1, n2) = n1. Finally, if
n2 > 0, c > 0, and n0 > 0, then we have

Rn1
(n0, n2) = 1 + n1 +Rn1

(n0 − 1, n2) + c · Rn1
(n0, n2 − 1)

≤ 1 + n1 + c · f(n0, n1, n2 − 1) +Rn1
(n0 − 1, n2)

(by the induction hypothesis)

≤
n0−1∑
i=0

(1 + n1 + c · f(n0 − i, n1, n2 − 1)) +Rn1(0, n2) (3)

The last step (3) is clear if n0 = 1. Otherwise if n0 > 1, the reason for (3) is
that we have

1 + n1 + c · f(n0, n1, n2 − 1) +Rn1(n0 − 1, n2)

Modular Automatic Complexity Analysis of Recursive Integer Programs 19

= 1 + n1 + c · f(n0, n1, n2 − 1)+

1 + n1 +Rn1
(n0 − 2, n2) + c · Rn1

(n0 − 1, n2 − 1)
(evaluate Rn1

(n0 − 1, n2))

≤ 1 + n1 + c · f(n0, n1, n2 − 1)+

1 + n1 + c · f(n0 − 1, n1, n2 − 1) +Rn1(n0 − 2, n2)
(by the induction hypothesis)

≤
n0−1∑
i=0

(1 + n1 + c · f(n0 − i, n1, n2 − 1)) +Rn1
(0, n2)

(by performing these steps repeatedly)

So overall, we obtain

Rn1(n0, n2) ≤
n0−1∑
i=0

(1 + n1 + c · f(n0 − i, n1, n2 − 1)) +Rn1(0, n2) (by (3))

= n1 +

n0−1∑
i=0

(1 + n1 + c · f(n0 − i, n1, n2 − 1))

≤ n1 + n0 · (1 + n1 + c · f(n0, n1, n2 − 1))
(as f(n0 − i, n1, n2 − 1) ≤ f(n0, n1, n2 − 1))

= n1 + n0 · (1 + n1 · (1 + c)) + (n2 − 1) · (1 + n1 · (1 + c)) · (c · n0)
n2

≤ f(n0, n1, n2). (4)

Here, (4) holds as n0 · (1 + n1 · (1 + c)) ≤ (1 + n1 · (1 + c)) · (c · n0)
n2 for n2 > 0

and c > 0. ⊓⊔

Theorem 21 (Lifting Local Runtime Bounds). Let RB be a global runtime

bound, SB be a size bound, and ∅ ̸= T ′
> ⊆ T ′ ⊆ T \ T0. Moreover, let RBT

′
>,T ′

loc

be a local runtime bound for T ′
> w.r.t. T ′. Then RB′ is also a global runtime

bound, where RB′(t) = RB(t) for all t ∈ T \ T ′
> and for t ∈ T ′

>, we have:

RB′(t) =
∑

r∈ET T ′ RB(r) · RB
T ′
>

loc(→r T ′) [v/SB(r, v) | v ∈ PV]
+
∑

r∈EFT ′

∑
ρ∈ fun(r)∩FT ′ RB(r) · RB

T ′
>

loc(→ρ T ′) [v/SB(ρ, v) | v ∈ PV]

Proof. We show that for all t ∈ T , all σ0 ∈ Σ, and all trees T with Tσ0
≺∗ T,

we have

JRB′(t)K|σ0| ≥ |T|{t}.

The case t ∈ T \T ′
> is trivial, since RB′(t) = RB(t) and RB is a runtime bound.

For t ∈ T ′
>, we have to show that

JRB′(t)K|σ0| =

t ∑
r∈ET T ′

RB(r) · RBT
′
>

loc(→r T ′)[v/SB(r, v) | v ∈ PV]

20 N. Lommen, J. Giesl

+
∑

r∈EFT ′

∑
ρ∈ fun(r)∩FT ′

RB(r) · RBT ′
>

loc(→ρ T ′)[v/SB(ρ, v) | v ∈ PV]

|

|σ0|

≥ |T|{t}.

Let T1, . . . ,Tm be the maximal subtrees of T where all edges are labeled with
transitions from T ′ or function calls from fun(T ′). So the subtrees T1, . . . ,Tm

are constructed by only using ≺T ′∪{ε}-steps, i.e., if Ti’s root node is labeled with

(ℓ̃i, σ̃i), then we have ({(ℓ̃i, σ̃i)},∅) ≺∗
T ′∪{ε} Ti. Let τi ∈ T ∪F be the transition

or the function call that the edge to (ℓ̃i, σ̃i) is labeled with in T, i.e., τi starts
the evaluation of the subprogram T ′. Let ki be the number of edges labeled with
t in Ti and let T have k edges labeled with t, i.e., |Ti|{t} = ki and |T|{t} = k.
Then we have

∑m
i=1 ki = k.

As SB is a size bound, we have JSB(τi, v)K|σ0| ≥ |σ̃i(v)| for all v ∈ PV.
Hence, by the definition of local runtime bounds and as bounds are weakly
monotonically increasing functions, we can conclude that

JRBT
′
>

loc(→τi T ′) [v/SB(τi, v) | v ∈ PV]K|σ0| ≥ JRBT
′
>

loc(→τi T ′)K|σ̃i| ≥ ki. (5)

Finally, we analyze how many maximal T ′-subtrees can be reached via some
τ ∈ T ∪ F in the full tree T. Every entry transition τi = r ∈ ET T ′ can occur at
most JRB(r)K|σ0| times in the tree T, as RB is a global runtime bound. Similarly,
every function call τi = ρ ∈ fun(r) ∩ FT ′ for an r ∈ EFT ′ can occur at most
JRB(r)K|σ0| times in the tree T. Thus, we have

JRB′(t)K|σ0| =

t ∑
r∈ET T ′

RB(r) · RBT
′
>

loc(→r T ′)[v/SB(r, v) | v ∈ PV]

+
∑

r∈EFT ′

∑
ρ∈ fun(r)∩FT ′

RB(r) · RBT ′
>

loc(→ρ T ′)[v/SB(ρ, v) | v ∈ PV]

|

|σ0|

≥
m∑
i=1

JRBT
′
>

loc(→τi T ′) [v/SB(τi, v) | v ∈ PV]K|σ0|

≥
m∑
i=1

ki (by (5))

= k

= |T|{t}.

⊓⊔

Theorem 26 (Size Bounds for Trivial SCCs Without Function Calls).
Let SB be a size bound and {⟨τ, x⟩} be a trivial SCC of the RVG such that τ ∈ F
or fun(η(x)) = ∅ for the update η of τ ∈ T . Then SB′ is also a size bound where
SB′(α) = SB(α) for all α ̸= ⟨τ, x⟩, and for α = ⟨τ, x⟩ we have

SB′(α) =
{
SBloc(α), if pre(τ) = ∅
maxτ ′ ∈ pre(τ) {SBloc(α) [v/SB(τ ′, v) | v ∈ PV]} , otherwise

Modular Automatic Complexity Analysis of Recursive Integer Programs 21

Proof. Let {⟨τ, x⟩} be a trivial SCC such that τ ∈ F or fun(η(x)) = ∅ for the
update η of τ ∈ T . Moreover, let σ0 ∈ Σ and Tσ0

≺∗ T such that T contains a
path (ℓ0, σ0)→ · · · →τ (, σ) with σ ̸= ⊥. We have to prove that

|σ|(x) ≤ JSB′(τ, x)K|σ0|.

We first consider the case pre(τ) = ∅ (i.e., τ is an initial transition from T0).
Note that by our definition of ρ-ITSs, ℓ0 can neither be the target location of a
transition nor evaluated after a function call. Thus, the path of the tree T has
the form (ℓ0, σ0)→τ (, σ). Hence, we have JSB′(τ, x)K|σ0| = JSBloc(τ, x)K|σ0| ≥
|σ|(x). Note that w.l.o.g., SBloc(τ, x) ∈ Z[PV] by the requirement fun(η(x)) = ∅
for the update η of the transition τ .

Otherwise, if pre(τ) ̸= ∅, then the path in T has the form (ℓ0, σ0)→ · · · →τ̃

(, σ̃) →τ (, σ) for some τ̃ ∈ pre(τ). By the definition of size bounds, we have
JSB(τ̃ , v)K|σ0| ≥ |σ̃|(v) for all v ∈ PV. Thus, we obtain

JSB′(τ, x)K|σ0| = J max
τ ′ ∈ pre(τ)

{SBloc(α) [v/SB(τ ′, v) | v ∈ PV]}K|σ0|

≥ JSBloc(α) [v/SB(τ̃ , v) | v ∈ PV]K|σ0|

≥ JSBloc(α)K|σ̃|
≥ |σ|(x)

⊓⊔

Theorem 28 (Size Bounds for Trivial SCCs With Function Calls). Let
SB be a size bound and {⟨t, x⟩} be a trivial SCC of the RVG such that t ∈ T and
fun(η(x)) ̸= ∅. Then SB′ is also a size bound where SB′(α) = SB(α) for α ̸=
⟨t, x⟩, and for α = ⟨t, x⟩ with fun(η(x)) = {ρ1, . . . , ρn} and ρi = ℓi(vi|), we have

SB′(α)=

0, if preΩ(t, ρi) = ∅ for some i ∈ [n]

maxt′i ∈ preΩ(t,ρi) for all i∈[n] {SBloc(α) [ρi/SB(t′i, vi) | i ∈ [n]]} ,
if all preΩ(t, ρi) ̸= ∅ and pre(t) = ∅

max
τ ′ ∈ pre(t)

t′i ∈ preΩ(t,ρi) for all i∈[n]

{SBloc(α) [v/SB(τ ′, v) |v∈PV] [ρi/SB(t′i, vi) | i∈ [n]]} , otherwise

Proof. Let {⟨t, x⟩} be a trivial SCC of the RVG such that t ∈ T and fun(η(x)) =
{ρ1, . . . , ρn} ≠ ∅ for the update η of t. Moreover, let σ0 ∈ Σ and Tσ0

≺∗ T such
that T contains a path (ℓ0, σ0) → · · · →τ (, σ) with σ ̸= ⊥. We have to prove
that

|σ|(x) ≤ JSB′(τ, x)K|σ0|.

If preΩ(t, ρi) = ∅ for some i ∈ [n], then there are only evaluations (ℓ0, σ0) →
· · · →τ (, σ) where σ = ⊥. Hence, let preΩ(t, ρi) ̸= ∅ for all i ∈ [n].

We first consider the case pre(τ) = ∅ (i.e., τ is an initial transition from
T0). Again, by our definition of ρ-ITSs, ℓ0 can neither be the target location of
a transition nor evaluated after a function call. Thus, the path of the tree T has

22 N. Lommen, J. Giesl

the form (ℓ0, σ0)→t (, σ). At the same time, T also contains paths (ℓ0, σ0)→ρi

(ℓi,) → · · · →t′i
(ℓ′i, σ

′
i) for all i ∈ [n] where ℓ′i ∈ Ω since σ ̸= ⊥. Hence, t′i ∈

preΩ(t, ρi). By the definition of size bounds, we have JSB(t′i, vi)K|σ0| ≥ |σ′
i|(vi).

Hence, we obtain

JSB′(t, x)K|σ0| ≥ JSBloc(t, x) [ρi/SB(t′i, vi) | i ∈ [n]]K|σ0|

≥ JSBloc(t, x) [ρi/|σ′
i|(vi) | i ∈ [n]]K|σ0|

≥ |σ|(x).

Otherwise, if pre(t) ̸= ∅, then the path in T has the form (ℓ0, σ0)→ · · · →τ̃

(ℓ̃, σ̃) →t (, σ) for some τ̃ ∈ pre(t). At the same time, T also contains paths
(ℓ0, σ0)→ · · · →τ̃ (ℓ̃, σ̃)→ρi (ℓi,)→ · · · →t′i

(ℓ′i, σ
′
i) for all i ∈ [n] where ℓ′i ∈ Ω

since σ ̸= ⊥. By the definition of size bounds, we have JSB(τ̃ , v)K|σ0| ≥ |σ̃|(v)
for all v ∈ PV and JSB(t′i, vi)K|σ0| ≥ |σ′

i|(vi) for all i ∈ [n]. Thus, for α = ⟨t, x⟩
we obtain

JSB′(α)K|σ0| ≥ JSBloc(α) [v/SB(τ̃ , v) | v ∈ PV] [ρi/SB(t′i, v) | i ∈ [n]]K|σ0|

= JSBloc(α) [v/SB(τ̃ , v) | v ∈ PV] [ρi/JSB(t′i, v)K|σ0| | i ∈ [n]]K|σ0|

≥ JSBloc(α) [ρi/|σ′
i| | i ∈ [n]]K|σ̃|

≥ |σ|(x).

⊓⊔

Theorem 30 (Size Bounds for Non-Trivial SCCs). Let SB be a size bound
and C be a non-trivial SCC in a RVG, where for all α ∈ C, SBloc(α) satisfies
(1) for suitable eα and sα. Then SB′ is also a size bound where SB′(α) = SB(α)
for all α ∈ RV \ C, and SB′(α) = SB′(C) for all α ∈ C, where

SB′(C) =
∏

α∈C scale(α) · (
∑

α∈C(add(α)+
∑

v∈Vα
initα(v)+

∑
v∈Fα

initΩα (v)))

Proof. Let C be a non-trivial SCC of the RVG, let σ0 ∈ Σ, and Tσ0
≺∗ T such

that T contains a path (ℓ0, σ0) → · · · →τ (, σ) with σ ̸= ⊥. We have to prove
that

|σ|(v) ≤ JSB′(τ, x)K|σ0|.

If ⟨τ, x⟩ ̸∈ C, then SB′(τ, x) = SB(τ, x) is a size bound by definition.
So let us consider α = ⟨τ, x⟩ ∈ C. Note that τ cannot be an initial transition

as there are no transitions or function calls leading back to the initial location ℓ0
(i.e., then C would not be a non-trivial SCC). Hence, there exists a predecessor
τ̃ of τ in the path, i.e., the path has the form

(ℓ0, σ0)→ · · · →τ̃ (ℓ̃, σ̃)→τ (ℓ, σ).

Note that we must have |Vα| + |Fα| > 0 for all α ∈ C as C is a non-trivial
SCC of the RVG. Thus, as Jmaxτ ′ ∈ pre(τ) {1, sα [v/SB(τ ′, v) | v ∈ PV]}K|σ0| ≥ 1
for all σ0 ∈ Σ and α ∈ C, we also have

Jscale(α)K|σ0| ≥ 1 for all σ0 ∈ Σ and α ∈ C. (6)

We prove our claim by induction on the number |T|I where I = {τ | ⟨τ, v⟩ ∈ C}.

Modular Automatic Complexity Analysis of Recursive Integer Programs 23

Induction Base: Here, we have |T|I = 1 and thus ⟨τ̃ , v⟩ ̸∈ C for all v ∈ PV.
Note that we have

Jinitα(v)K|σ0| = Jmax{SB(τ, v) | ∃τ ∈ T ∪ F . ⟨τ, v⟩ ∈ pre(α) \ C}K|σ0|

≥ JSB(τ̃ , v)K|σ0|

≥ |σ(v)| (7)

for all v ∈ actV(SBloc(α)) as ⟨τ̃ , v⟩ ̸∈ C. We extend fun(·) to function calls by
defining fun(ρ) = ∅ for all ρ ∈ F . Then for all function calls ρi ∈ fun(τ), there

is a path (ℓ0, σ0) → · · · → (ℓ̃, σ̃) →ρi · · · →ti (ℓ̃i, σ̃i) in T such that ℓ̃i ∈ Ω. We
have

JinitΩα (vi)K|σ0| = Jmax{SB(t, vi) | ∃t ∈ T . ⟨t, vi⟩ ∈ preΩ(α) \ C}K|σ0|

≥ JSB(ti, vi)K|σ0|

≥ |σ̃i(vi)| (8)

for all ρi = ℓi(vi|) ∈ actF(SBloc(α)) as ⟨ti, vi⟩ ̸∈ C since |T|I = 1. Thus, we
have

JSB′(τ, x)K|σ0| ≥

t

scale(α) ·

(
add(α) +

∑
v∈Vα

initα(v) +
∑
v∈Fα

initΩα (v)

)|

|σ0|

(by (6))

≥ Jsα [v/SB(τ̃ , v) | v ∈ PV]K|σ0| ·

eα +
∑

v ∈ actV(SBloc(α))
v ̸∈ actV(sα)

Jinitα(v)K|σ0|

+
∑

ℓi(vi|·)∈ actF(SBloc(α))

JinitΩα (vi)K|σ0|

≥ JsαK|σ̃| ·

eα +
∑

v ∈ actV(SBloc(α))
v ̸∈ actV(sα)

|σ̃(v)|+
∑

ρi=ℓi(vi|·)∈ actF(SBloc(α))

|σ̃i(vi)|

(by (7), (8), and as JSB(τ̃ , v)K|σ0| ≥ |σ̃|(v) for all v ∈ PV)

≥ JSBloc(τ, x) [ρi/|σ̃i|(vi) | ρi ∈ fun(τ)]K|σ̃| (by (1))

≥ |σ|(x).

Induction Step: We have |T|{t} ≤ JRB(t)K|σ0| for all t ∈ T and |T|{ρ} ≤
J
∑

t∈fun−1(ρ)RB(t)K|σ0| for all ρ ∈ F . Now for any α = ⟨τ , ⟩, we define the

24 N. Lommen, J. Giesl

following expressions:

add(α,T) = |T|{τ} ·

eα +
∑

v ∈ actV(SBloc(α))
v ̸∈ actV(sα)∪Vα

initα(v) +
∑

ℓ(v|·)∈ actF(SBloc(α))
v ̸∈Fα

initΩα (v)

scale(α,T) = (maxτ ′ ∈ pre(τ) {1, sα [v/SB(τ ′, v) | v ∈ PV]} · (|Vα|+ |Fα|))|T|{τ}

So compared to add(α) and scale(α), we have replaced the over-approximation
of the runtime bound rbα by concrete values. Let T′ be the tree which results
from T by removing (ℓ, σ). Then we define

Ψ =
∏

α∈Cτ

scale(α,T′) ·
∏

α∈C\Cτ

scale(α,T) ·

∑
α∈Cτ

add(α,T′) +
∑

α∈C\Cτ

add(α,T)+

∑
α∈C

(∑
v∈Vα

initα(v) +
∑
v∈Fα

initΩα (v)

))

where Cτ = {⟨τ, v⟩ ∈ C | v ∈ PV}, i.e., Cτ contains all result variables of C that
have α’s transition or function call τ . For all v ∈ Vα∪Fα, we have JΨK|σ0| ≥ |σ̃(v)|
by the induction hypothesis. Furthermore, for v ∈ actV(SBloc(α)) \ Vα, we have
⟨τ̃ , v⟩ ̸∈ C and ⟨τ̃ , v⟩ ∈ pre(α), and thus

Jinitα(v)K|σ0| = Jmax{SB(τ, v) | ∃τ ∈ T ∪ F . ⟨τ, v⟩ ∈ pre(α) \ C}K|σ0|

≥ JSB(τ̃ , v)K|σ0|

≥ |σ̃(v)|. (9)

Again, there is a path (ℓ0, σ0) → · · · → (ℓ̃, σ̃) →ρi
· · · →ti (ℓ̃i, σ̃i) in T for each

function call ρi ∈ fun(τ) such that ℓ̃i ∈ Ω. Similarly, for all vi ∈ PV \ Fα with
ℓi(vi|) ∈ actF(SBloc(α)), we have ⟨ti, vi⟩ ̸∈ C and ⟨ti, vi⟩ ∈ preΩ(α). Thus,

JinitΩα (vi)K|σ0| = Jmax{SB(t, vi) | ∃t ∈ T . ⟨t, vi⟩ ∈ preΩ(α) \ C}K|σ0|

≥ JSB(ti, vi)K|σ0|

≥ |σ̃i(vi)|. (10)

Finally, we define the following expression for all α ∈ C:

Φα = eα +
∑

v∈ actV(SBloc(α))
v ̸∈ actV(sα)∪Vα

initα(v) +
∑

ℓ(v|·)∈ actF(SBloc(α))
v ̸∈Fα

initΩα (v).

To simplify the presentation, for α = ⟨τ , ⟩, let

ŝα = max
τ ′ ∈ pre(τ)

{1, sα [v/SB(τ ′, v) | v ∈ PV]} .

Modular Automatic Complexity Analysis of Recursive Integer Programs 25

In particular, the following holds:

JŝαK|σ0| ≥ Jsα [v/SB(τ̃ , v) | v ∈ PV]K|σ0| ≥ JsαK|σ̃|. (11)

Thus, we now have

JSB′(τ, x)K|σ0| =

t∏
α∈C

scale(α) ·

∑
α∈C

add(α) +

initα︷ ︸︸ ︷∑
v∈Vα

initα(v) +
∑
v∈Fα

initΩα (v)

|

|σ0|

≥

t ∏
α∈Cτ̃

ŝα · (|Vα|+ |Fα|) ·
∏

α∈Cτ̃

scale(α,T′) ·
∏

α∈C\Cτ̃

scale(α,T)

·

∑
α∈Cτ̃

add(α,T′) +
∑
α∈Cτ̃

Φα +
∑

α∈C\Cτ̃

add(α,T) +
∑
α∈C

initα

|

|σ0|
(extract last evaluation step)

=

t ∏
α∈Cτ̃

ŝα · (|Vα|+ |Fα|) · Ψ +
∏

α∈Cτ̃

ŝα · (|Vα|+ |Fα|)

·
∏

α∈Cτ̃

scale(α,T′) ·
∏

α∈C\Cτ̃

scale(α,T) ·

(∑
α∈Cτ̃

Φα

)|

|σ0|
(by definition of Ψ)

≥

t ∏
α∈Cτ̃

ŝα · (|Vα|+ |Fα|) ·

(
Ψ +

∑
α∈Cτ̃

Φα

)|

|σ0|

(by (6))

≥ JŝαK|σ0| · (|Vα|+ |Fα|) ·
(
JΦαK|σ0| + JΨK|σ0|

)
(by (6))

≥ JsαK|σ̃| · (|Vα|+ |Fα|) ·
(
JΦαK|σ0| + JΨK|σ0|

)
(by (11))

≥ JsαK|σ̃| ·
(
JΦαK|σ0| + (|Vα|+ |Fα|) · JΨK|σ0|

)
(as |Vα|+ |Fα| ≥ 1)

≥ JsαK|σ̃| ·

JΦαK|σ0| +
∑
v∈Vα

JΨK|σ0| +
∑

ℓ(v|·)∈ actF(SBloc(α))
v ∈Fα

JΨK|σ0|

≥ JsαK|σ̃| ·

JΦαK|σ0| +
∑
v∈Vα

|σ̃(v)|+
∑

ρi=ℓi(vi|·)∈ actF(SBloc(α))
vi ∈Fα

|σ̃i(vi)|

(by the induction hypothesis)

= JsαK|σ̃| ·

eα +
∑
v∈Vα

|σ̃(v)|+
∑

v ∈ actV(SBloc(α))
v ̸∈ actV(sα)∪Vα

Jinitα(v)K|σ0|

26 N. Lommen, J. Giesl

+
∑

ρi=ℓi(vi|·)∈ actF(SBloc(α))
vi ∈Fα

|σ̃i(vi))|+
∑

ρi=ℓi(vi|·)∈ actF(SBloc(α))
vi ̸∈Fα

JinitΩα (vi)K|σ0|

(by definition of Φα)

≥ JsαK|σ̃| ·

eα +
∑

v ∈ actV(SBloc(α))
v ̸∈ actV(sα)

|σ̃(v)|+
∑

ρi=ℓi(vi|·)∈ actF(SBloc(α))

|σ̃i(vi)|

(by (9) and (10))

≥ JSBloc(τ, x) [ρi/|σ̃i|(vi) | ρi ∈ fun(τ)]K|σ̃| (by (1))

≥ |σ|(x).

⊓⊔

B Local Runtime Bounds via TWN-Loops

In this appendix we briefly recapitulate how to infer runtime bounds for so-called
triangular weakly non-linear loops (twn-loops) based on our previous work [11,
12, 15, 16, 18]. This approach can be used to infer the local runtime bound

RB{t3}loc (→t2 {t3}) = log2(y) + 2 for transition t3 in our leading example of
Fig. 2. This local runtime bound is needed in Ex. 22 to compute RB(t3).

An example for a terminating twn-loop is:

while (x2 − x1 > 0 ∧ x1 > 0) do (x1, x2)← (3 · x1, 2 · x2) (12)

Note that this loop corresponds to transition t3 (x ∼= x1 and y ∼= x2) with the ad-
ditional invariant x1 > 0. In practice, we use the tool Apron [14] to automatically
infer such invariants. Formally, a twn-loop (over the variables x⃗ = (x1, . . . , xd)) is
a tuple (φ, η) with the guard φ and the update η : V → Z[V] for V = {x1, . . . , xd}
such that for all 1 ≤ i ≤ d we have η(xi) = ai · xi + pi for some ai ∈ Z and
pi ∈ Z[x1, . . . , xi−1]. Thus, a twn-update is triangular, i.e., the update of a vari-
able does not depend on variables with higher indices. Furthermore, the update is
weakly non-linear, i.e., a variable does not occur non-linearly in its own update.

Our algorithm for the computation of runtime bounds for twn-loops starts
with computing closed forms for the loop update, which describe the values of the
variables after n iterations of the loop. These closed forms can be represented as
so-called poly-exponential expressions. The set of all poly-exponential expressions
is defined as PE = {

∑k
j=1 pj · naj · bnj | k, aj ∈ N, pj ∈ Q[V], bj ∈ Z}.

Example 32. The closed forms for the loop (12) are clx1 = x1 · 3n and clx2 =
x2 · 2n.

The following Thm. 33 presents a construction based on closed forms which
yields polynomial runtime bounds for terminating transitions t = (ℓ, φ, η, ℓ)

Modular Automatic Complexity Analysis of Recursive Integer Programs 27

which correspond to twn-loops. We insert the closed forms of the update η into
every atom α = p > 0 of the guard φ. This results in a poly-exponential expres-
sion peα =

∑kα

j=1 pα,j · naα,j · bnα,j ∈ PE such that the summands are ordered
w.r.t. the growth rate of naα,j · bnα,j . Now, the polynomials pα,j in peα determine
the asymptotic complexity of the resulting local runtime bound.

Theorem 33 (Polynomial Runtime Bounds for TWN-Loops). Let t =
(ℓ, φ, η, ℓ) be a terminating transition and for every atom α in φ, let peα =∑kα

j=1 pα,j · naα,j · bnα,j ∈ PE be a poly-exponential expression with pα,j ̸= 0 for
all 1 ≤ j ≤ kα and (bα,kα , aα,kα) >lex . . . >lex (bα,1, aα,1) such that peα results
from inserting the closed forms of η into α. Then

RB{t},{t}loc (ℓ) = 2 · max
α occurs in φ

{⌈⌈pα,1⌉⌉+ · · ·+ ⌈⌈pα,kα−1⌉⌉}+ c

is a local runtime bound where c ∈ N is some computable constant.

Example 34. The loop (12) is terminating as the value of x1 eventually out-
grows the value of x2. Inserting the closed forms of Ex. 32 into the atoms yields
pex2−x1>0 = −x1 ·3n+x2 ·2n and pex1>0 = x1 ·3n. So, we have px2−x1>0, 1 = x2,
px2−x1>0, 2 = −x1, and px1>0, 1 = x1. Hence, for the transition t and the loca-
tion ℓ corresponding to (12), we obtain the polynomial local runtime bound

RB{t},{t}loc (ℓ) = 2 · ⌈⌈px2−x1>0, 1⌉⌉ + c = 2 · x2 + c where c = 1 (see [18] for the
detailed construction of c).

While Thm. 33 always yields polynomial runtime bounds, we recently im-
proved this to logarithmic runtime bounds if the exponential expressions are
strictly decreasing, i.e., bα,kα

> · · · > bα,1. Intuitively, the reason is that then
the summand pα,j · naα,j · bnα,j grows exponentially faster than all summands
pα,i · naα,i · bnα,i for i < j.

Theorem 35 (Logarithmic Runtime Bounds for TWN-Loops). Let t =
(ℓ, φ, η, ℓ) be a terminating transition and for every atom α in φ, let peα =∑kα

j=1 pα,j · naα,j · bnα,j ∈ PE be a poly-exponential expression with pα,j ̸= 0 for
all 1 ≤ j ≤ kα and bα,kα > . . . > bα,1 such that peα results from inserting the
closed forms of η into α. Then

RB{t},{t}loc (ℓ) = c′ · log2(max
α occurs in φ

{⌈⌈pα,1⌉⌉+ · · ·+ ⌈⌈pα,kα−1⌉⌉}) + c

is a local runtime bound where c, c′ ∈ N are some computable constants.

Example 36. Reconsider Ex. 32 and 34: As the exponential terms in pex2−x1>0 =
−x1 · 3n + x2 · 2n and pex1>0 = x1 · 3n are strictly decreasing (i.e., 3 > 2
for pex2−x1>0), we can apply Thm. 35. So for the transition t and the loca-
tion ℓ corresponding to (12), we obtain the logarithmic local runtime bound

RB{t},{t}loc (ℓ) = c′ · log2(⌈⌈px2−x1>0, 1⌉⌉)+ c = c′ · log2(x2)+ c = log2(x2)+2 where
c = 2 and c′ = 1 (see [18] for the detailed construction of c and c′).

	Modular Automatic Complexity Analysis of Recursive Integer Programs

