Initial Problem
Start: eval_realheapsort_step1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars: nondef_0, nondef_1, nondef_2, nondef_3
Locations: eval_realheapsort_step1_0, eval_realheapsort_step1_1, eval_realheapsort_step1_2, eval_realheapsort_step1_28, eval_realheapsort_step1_29, eval_realheapsort_step1__critedge_in, eval_realheapsort_step1_bb0_in, eval_realheapsort_step1_bb1_in, eval_realheapsort_step1_bb2_in, eval_realheapsort_step1_bb3_in, eval_realheapsort_step1_bb4_in, eval_realheapsort_step1_bb5_in, eval_realheapsort_step1_start, eval_realheapsort_step1_stop
Transitions:
2:eval_realheapsort_step1_0(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_1(Arg_0,Arg_1,Arg_2,Arg_3)
3:eval_realheapsort_step1_1(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_2(Arg_0,Arg_1,Arg_2,Arg_3)
4:eval_realheapsort_step1_2(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb1_in(Arg_0,Arg_1,Arg_2,1):|:2<Arg_1
5:eval_realheapsort_step1_2(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=2
44:eval_realheapsort_step1_28(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_29(Arg_0,Arg_1,Arg_2,Arg_3)
45:eval_realheapsort_step1_29(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_0)
43:eval_realheapsort_step1__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_28(Arg_3+1,Arg_1,Arg_2,Arg_3)
1:eval_realheapsort_step1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_0(Arg_0,Arg_1,Arg_2,Arg_3)
6:eval_realheapsort_step1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,Arg_3,Arg_3):|:Arg_3+1<=Arg_1
7:eval_realheapsort_step1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<1+Arg_3
9:eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=0
8:eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3):|:0<Arg_2
13:eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2+1<=0 && 0<=1+Arg_2 && nondef_0<=0 && 0<=nondef_0
14:eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3):|:0<1+Arg_2 && 0<=nondef_0 && 2*nondef_0<=1+Arg_2 && Arg_2<2*nondef_0+1
15:eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2+1<0 && nondef_0<=0 && 1+Arg_2<=2*nondef_0 && 2*nondef_0<Arg_2+3
10:eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2+1<=0 && 0<=1+Arg_2 && nondef_0<=0 && 0<=nondef_0
11:eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3):|:0<1+Arg_2 && 0<=nondef_0 && 2*nondef_0<=1+Arg_2 && Arg_2<2*nondef_0+1
12:eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2+1<0 && nondef_0<=0 && 1+Arg_2<=2*nondef_0 && 2*nondef_0<Arg_2+3
16:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<=0 && 0<=1+Arg_2 && nondef_1<=0 && 0<=nondef_1 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_2<=0 && 0<=nondef_2 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_3<=0 && 0<=nondef_3
17:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<=0 && 0<=1+Arg_2 && nondef_1<=0 && 0<=nondef_1 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_2<=0 && 0<=nondef_2 && 0<1+Arg_2 && 0<=nondef_3 && 2*nondef_3<=1+Arg_2 && Arg_2<2*nondef_3+1
18:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<=0 && 0<=1+Arg_2 && nondef_1<=0 && 0<=nondef_1 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_2<=0 && 0<=nondef_2 && Arg_2+1<0 && nondef_3<=0 && 1+Arg_2<=2*nondef_3 && 2*nondef_3<Arg_2+3
19:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<=0 && 0<=1+Arg_2 && nondef_1<=0 && 0<=nondef_1 && 0<1+Arg_2 && 0<=nondef_2 && 2*nondef_2<=1+Arg_2 && Arg_2<2*nondef_2+1 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_3<=0 && 0<=nondef_3
20:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<=0 && 0<=1+Arg_2 && nondef_1<=0 && 0<=nondef_1 && 0<1+Arg_2 && 0<=nondef_2 && 2*nondef_2<=1+Arg_2 && Arg_2<2*nondef_2+1 && 0<1+Arg_2 && 0<=nondef_3 && 2*nondef_3<=1+Arg_2 && Arg_2<2*nondef_3+1
21:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<=0 && 0<=1+Arg_2 && nondef_1<=0 && 0<=nondef_1 && 0<1+Arg_2 && 0<=nondef_2 && 2*nondef_2<=1+Arg_2 && Arg_2<2*nondef_2+1 && Arg_2+1<0 && nondef_3<=0 && 1+Arg_2<=2*nondef_3 && 2*nondef_3<Arg_2+3
22:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<=0 && 0<=1+Arg_2 && nondef_1<=0 && 0<=nondef_1 && Arg_2+1<0 && nondef_2<=0 && 1+Arg_2<=2*nondef_2 && 2*nondef_2<Arg_2+3 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_3<=0 && 0<=nondef_3
23:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<=0 && 0<=1+Arg_2 && nondef_1<=0 && 0<=nondef_1 && Arg_2+1<0 && nondef_2<=0 && 1+Arg_2<=2*nondef_2 && 2*nondef_2<Arg_2+3 && 0<1+Arg_2 && 0<=nondef_3 && 2*nondef_3<=1+Arg_2 && Arg_2<2*nondef_3+1
24:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<=0 && 0<=1+Arg_2 && nondef_1<=0 && 0<=nondef_1 && Arg_2+1<0 && nondef_2<=0 && 1+Arg_2<=2*nondef_2 && 2*nondef_2<Arg_2+3 && Arg_2+1<0 && nondef_3<=0 && 1+Arg_2<=2*nondef_3 && 2*nondef_3<Arg_2+3
25:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:0<1+Arg_2 && 0<=nondef_1 && 2*nondef_1<=1+Arg_2 && Arg_2<2*nondef_1+1 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_2<=0 && 0<=nondef_2 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_3<=0 && 0<=nondef_3
26:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:0<1+Arg_2 && 0<=nondef_1 && 2*nondef_1<=1+Arg_2 && Arg_2<2*nondef_1+1 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_2<=0 && 0<=nondef_2 && 0<1+Arg_2 && 0<=nondef_3 && 2*nondef_3<=1+Arg_2 && Arg_2<2*nondef_3+1
27:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:0<1+Arg_2 && 0<=nondef_1 && 2*nondef_1<=1+Arg_2 && Arg_2<2*nondef_1+1 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_2<=0 && 0<=nondef_2 && Arg_2+1<0 && nondef_3<=0 && 1+Arg_2<=2*nondef_3 && 2*nondef_3<Arg_2+3
28:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:0<1+Arg_2 && 0<=nondef_1 && 2*nondef_1<=1+Arg_2 && Arg_2<2*nondef_1+1 && 0<1+Arg_2 && 0<=nondef_2 && 2*nondef_2<=1+Arg_2 && Arg_2<2*nondef_2+1 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_3<=0 && 0<=nondef_3
29:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:0<1+Arg_2 && 0<=nondef_1 && 2*nondef_1<=1+Arg_2 && Arg_2<2*nondef_1+1 && 0<1+Arg_2 && 0<=nondef_2 && 2*nondef_2<=1+Arg_2 && Arg_2<2*nondef_2+1 && 0<1+Arg_2 && 0<=nondef_3 && 2*nondef_3<=1+Arg_2 && Arg_2<2*nondef_3+1
30:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:0<1+Arg_2 && 0<=nondef_1 && 2*nondef_1<=1+Arg_2 && Arg_2<2*nondef_1+1 && 0<1+Arg_2 && 0<=nondef_2 && 2*nondef_2<=1+Arg_2 && Arg_2<2*nondef_2+1 && Arg_2+1<0 && nondef_3<=0 && 1+Arg_2<=2*nondef_3 && 2*nondef_3<Arg_2+3
31:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:0<1+Arg_2 && 0<=nondef_1 && 2*nondef_1<=1+Arg_2 && Arg_2<2*nondef_1+1 && Arg_2+1<0 && nondef_2<=0 && 1+Arg_2<=2*nondef_2 && 2*nondef_2<Arg_2+3 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_3<=0 && 0<=nondef_3
32:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:0<1+Arg_2 && 0<=nondef_1 && 2*nondef_1<=1+Arg_2 && Arg_2<2*nondef_1+1 && Arg_2+1<0 && nondef_2<=0 && 1+Arg_2<=2*nondef_2 && 2*nondef_2<Arg_2+3 && 0<1+Arg_2 && 0<=nondef_3 && 2*nondef_3<=1+Arg_2 && Arg_2<2*nondef_3+1
33:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:0<1+Arg_2 && 0<=nondef_1 && 2*nondef_1<=1+Arg_2 && Arg_2<2*nondef_1+1 && Arg_2+1<0 && nondef_2<=0 && 1+Arg_2<=2*nondef_2 && 2*nondef_2<Arg_2+3 && Arg_2+1<0 && nondef_3<=0 && 1+Arg_2<=2*nondef_3 && 2*nondef_3<Arg_2+3
34:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<0 && nondef_1<=0 && 1+Arg_2<=2*nondef_1 && 2*nondef_1<Arg_2+3 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_2<=0 && 0<=nondef_2 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_3<=0 && 0<=nondef_3
35:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<0 && nondef_1<=0 && 1+Arg_2<=2*nondef_1 && 2*nondef_1<Arg_2+3 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_2<=0 && 0<=nondef_2 && 0<1+Arg_2 && 0<=nondef_3 && 2*nondef_3<=1+Arg_2 && Arg_2<2*nondef_3+1
36:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<0 && nondef_1<=0 && 1+Arg_2<=2*nondef_1 && 2*nondef_1<Arg_2+3 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_2<=0 && 0<=nondef_2 && Arg_2+1<0 && nondef_3<=0 && 1+Arg_2<=2*nondef_3 && 2*nondef_3<Arg_2+3
37:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<0 && nondef_1<=0 && 1+Arg_2<=2*nondef_1 && 2*nondef_1<Arg_2+3 && 0<1+Arg_2 && 0<=nondef_2 && 2*nondef_2<=1+Arg_2 && Arg_2<2*nondef_2+1 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_3<=0 && 0<=nondef_3
38:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<0 && nondef_1<=0 && 1+Arg_2<=2*nondef_1 && 2*nondef_1<Arg_2+3 && 0<1+Arg_2 && 0<=nondef_2 && 2*nondef_2<=1+Arg_2 && Arg_2<2*nondef_2+1 && 0<1+Arg_2 && 0<=nondef_3 && 2*nondef_3<=1+Arg_2 && Arg_2<2*nondef_3+1
39:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<0 && nondef_1<=0 && 1+Arg_2<=2*nondef_1 && 2*nondef_1<Arg_2+3 && 0<1+Arg_2 && 0<=nondef_2 && 2*nondef_2<=1+Arg_2 && Arg_2<2*nondef_2+1 && Arg_2+1<0 && nondef_3<=0 && 1+Arg_2<=2*nondef_3 && 2*nondef_3<Arg_2+3
40:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<0 && nondef_1<=0 && 1+Arg_2<=2*nondef_1 && 2*nondef_1<Arg_2+3 && Arg_2+1<0 && nondef_2<=0 && 1+Arg_2<=2*nondef_2 && 2*nondef_2<Arg_2+3 && Arg_2+1<=0 && 0<=1+Arg_2 && nondef_3<=0 && 0<=nondef_3
41:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<0 && nondef_1<=0 && 1+Arg_2<=2*nondef_1 && 2*nondef_1<Arg_2+3 && Arg_2+1<0 && nondef_2<=0 && 1+Arg_2<=2*nondef_2 && 2*nondef_2<Arg_2+3 && 0<1+Arg_2 && 0<=nondef_3 && 2*nondef_3<=1+Arg_2 && Arg_2<2*nondef_3+1
42:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:Arg_2+1<0 && nondef_1<=0 && 1+Arg_2<=2*nondef_1 && 2*nondef_1<Arg_2+3 && Arg_2+1<0 && nondef_2<=0 && 1+Arg_2<=2*nondef_2 && 2*nondef_2<Arg_2+3 && Arg_2+1<0 && nondef_3<=0 && 1+Arg_2<=2*nondef_3 && 2*nondef_3<Arg_2+3
46:eval_realheapsort_step1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_stop(Arg_0,Arg_1,Arg_2,Arg_3)
0:eval_realheapsort_step1_start(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3)
Preprocessing
Cut unsatisfiable transition 10: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1_bb4_in
Cut unsatisfiable transition 12: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1_bb4_in
Cut unsatisfiable transition 13: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1__critedge_in
Cut unsatisfiable transition 15: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1__critedge_in
Cut unsatisfiable transition 17: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 18: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 19: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 20: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 21: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 22: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 23: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 24: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 25: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 26: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 27: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 28: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 30: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 31: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 32: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 33: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 34: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 35: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 36: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 37: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 38: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 39: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 40: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 41: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location eval_realheapsort_step1_bb4_in
Found invariant 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location eval_realheapsort_step1_29
Found invariant Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 for location eval_realheapsort_step1_bb1_in
Found invariant 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location eval_realheapsort_step1_28
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 for location eval_realheapsort_step1_bb2_in
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location eval_realheapsort_step1_bb3_in
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 for location eval_realheapsort_step1__critedge_in
Cut unsatisfiable transition 16: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Cut unsatisfiable transition 42: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in
Problem after Preprocessing
Start: eval_realheapsort_step1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars: nondef_0, nondef_1, nondef_2, nondef_3
Locations: eval_realheapsort_step1_0, eval_realheapsort_step1_1, eval_realheapsort_step1_2, eval_realheapsort_step1_28, eval_realheapsort_step1_29, eval_realheapsort_step1__critedge_in, eval_realheapsort_step1_bb0_in, eval_realheapsort_step1_bb1_in, eval_realheapsort_step1_bb2_in, eval_realheapsort_step1_bb3_in, eval_realheapsort_step1_bb4_in, eval_realheapsort_step1_bb5_in, eval_realheapsort_step1_start, eval_realheapsort_step1_stop
Transitions:
2:eval_realheapsort_step1_0(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_1(Arg_0,Arg_1,Arg_2,Arg_3)
3:eval_realheapsort_step1_1(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_2(Arg_0,Arg_1,Arg_2,Arg_3)
4:eval_realheapsort_step1_2(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb1_in(Arg_0,Arg_1,Arg_2,1):|:2<Arg_1
5:eval_realheapsort_step1_2(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<=2
44:eval_realheapsort_step1_28(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_29(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0
45:eval_realheapsort_step1_29(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_0):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0
43:eval_realheapsort_step1__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_28(Arg_3+1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1
1:eval_realheapsort_step1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_0(Arg_0,Arg_1,Arg_2,Arg_3)
6:eval_realheapsort_step1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,Arg_3,Arg_3):|:Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && Arg_3+1<=Arg_1
7:eval_realheapsort_step1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && Arg_1<1+Arg_3
9:eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0
8:eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2
14:eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<1+Arg_2 && 0<=nondef_0 && 2*nondef_0<=1+Arg_2 && Arg_2<2*nondef_0+1
11:eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<1+Arg_2 && 0<=nondef_0 && 2*nondef_0<=1+Arg_2 && Arg_2<2*nondef_0+1
29:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<1+Arg_2 && 0<=nondef_1 && 2*nondef_1<=1+Arg_2 && Arg_2<2*nondef_1+1 && 0<1+Arg_2 && 0<=nondef_2 && 2*nondef_2<=1+Arg_2 && Arg_2<2*nondef_2+1 && 0<1+Arg_2 && 0<=nondef_3 && 2*nondef_3<=1+Arg_2 && Arg_2<2*nondef_3+1
46:eval_realheapsort_step1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_stop(Arg_0,Arg_1,Arg_2,Arg_3)
0:eval_realheapsort_step1_start(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3)
MPRF for transition 44:eval_realheapsort_step1_28(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_29(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step1_29 [Arg_1-Arg_0 ]
eval_realheapsort_step1_28 [Arg_1+1-Arg_0 ]
eval_realheapsort_step1_bb1_in [Arg_1-Arg_3 ]
eval_realheapsort_step1_bb3_in [Arg_1-Arg_3 ]
eval_realheapsort_step1__critedge_in [Arg_1-Arg_3 ]
eval_realheapsort_step1_bb4_in [Arg_1-Arg_3 ]
eval_realheapsort_step1_bb2_in [Arg_1-Arg_3 ]
MPRF for transition 45:eval_realheapsort_step1_29(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_0):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step1_29 [Arg_1+1-Arg_0 ]
eval_realheapsort_step1_28 [Arg_1+1-Arg_0 ]
eval_realheapsort_step1_bb1_in [Arg_1-Arg_3 ]
eval_realheapsort_step1_bb3_in [Arg_1-Arg_3 ]
eval_realheapsort_step1__critedge_in [Arg_1-Arg_3 ]
eval_realheapsort_step1_bb4_in [Arg_1-Arg_3 ]
eval_realheapsort_step1_bb2_in [Arg_1-Arg_3 ]
MPRF for transition 43:eval_realheapsort_step1__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_28(Arg_3+1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step1_29 [Arg_1-Arg_3-1 ]
eval_realheapsort_step1_28 [Arg_1-Arg_3-1 ]
eval_realheapsort_step1_bb1_in [Arg_1-Arg_3 ]
eval_realheapsort_step1_bb3_in [Arg_1-Arg_3 ]
eval_realheapsort_step1__critedge_in [Arg_1-Arg_3 ]
eval_realheapsort_step1_bb4_in [Arg_1-Arg_3 ]
eval_realheapsort_step1_bb2_in [Arg_1-Arg_3 ]
MPRF for transition 6:eval_realheapsort_step1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,Arg_3,Arg_3):|:Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 && Arg_3+1<=Arg_1 of depth 1:
new bound:
Arg_1+3 {O(n)}
MPRF:
eval_realheapsort_step1_29 [Arg_0+Arg_1-2*Arg_3 ]
eval_realheapsort_step1_28 [Arg_1+1-Arg_3 ]
eval_realheapsort_step1_bb1_in [Arg_1+2-Arg_3 ]
eval_realheapsort_step1_bb3_in [Arg_1+1-Arg_3 ]
eval_realheapsort_step1__critedge_in [Arg_1+1-Arg_3 ]
eval_realheapsort_step1_bb4_in [Arg_1+1-Arg_3 ]
eval_realheapsort_step1_bb2_in [Arg_1+1-Arg_3 ]
MPRF for transition 9:eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && Arg_2<=0 of depth 1:
new bound:
2*Arg_1+2 {O(n)}
MPRF:
eval_realheapsort_step1_29 [2*Arg_1-Arg_0-1 ]
eval_realheapsort_step1_28 [2*Arg_1-Arg_0-1 ]
eval_realheapsort_step1_bb1_in [2*Arg_1-Arg_3-1 ]
eval_realheapsort_step1_bb3_in [2*Arg_1-Arg_3-1 ]
eval_realheapsort_step1__critedge_in [2*Arg_1-Arg_3-2 ]
eval_realheapsort_step1_bb4_in [2*Arg_1-Arg_3-1 ]
eval_realheapsort_step1_bb2_in [2*Arg_1-Arg_3-1 ]
MPRF for transition 14:eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<1+Arg_2 && 0<=nondef_0 && 2*nondef_0<=1+Arg_2 && Arg_2<2*nondef_0+1 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step1_29 [Arg_1-Arg_0 ]
eval_realheapsort_step1_28 [Arg_1-Arg_0 ]
eval_realheapsort_step1_bb1_in [Arg_1-Arg_3 ]
eval_realheapsort_step1_bb3_in [Arg_1-Arg_3 ]
eval_realheapsort_step1__critedge_in [Arg_1-Arg_3-1 ]
eval_realheapsort_step1_bb4_in [Arg_1-Arg_3 ]
eval_realheapsort_step1_bb2_in [Arg_1-Arg_3 ]
MPRF for transition 8:eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 0<Arg_2 of depth 1:
new bound:
6*Arg_1*Arg_1+27*Arg_1+24 {O(n^2)}
MPRF:
eval_realheapsort_step1_29 [2*Arg_0+1 ]
eval_realheapsort_step1__critedge_in [2*Arg_3+3 ]
eval_realheapsort_step1_28 [2*Arg_3+3 ]
eval_realheapsort_step1_bb1_in [2*Arg_3+1 ]
eval_realheapsort_step1_bb3_in [Arg_2 ]
eval_realheapsort_step1_bb4_in [Arg_2 ]
eval_realheapsort_step1_bb2_in [2*Arg_2+1 ]
MPRF for transition 11:eval_realheapsort_step1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<1+Arg_2 && 0<=nondef_0 && 2*nondef_0<=1+Arg_2 && Arg_2<2*nondef_0+1 of depth 1:
new bound:
6*Arg_1*Arg_1+33*Arg_1+32 {O(n^2)}
MPRF:
eval_realheapsort_step1_29 [2*Arg_0+3 ]
eval_realheapsort_step1__critedge_in [2*Arg_3+5 ]
eval_realheapsort_step1_28 [2*Arg_0+3 ]
eval_realheapsort_step1_bb1_in [2*Arg_3+3 ]
eval_realheapsort_step1_bb3_in [2*Arg_2+3 ]
eval_realheapsort_step1_bb4_in [2*Arg_2+1 ]
eval_realheapsort_step1_bb2_in [2*Arg_2+3 ]
MPRF for transition 29:eval_realheapsort_step1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_realheapsort_step1_bb2_in(Arg_0,Arg_1,nondef_3-1,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<1+Arg_2 && 0<=nondef_1 && 2*nondef_1<=1+Arg_2 && Arg_2<2*nondef_1+1 && 0<1+Arg_2 && 0<=nondef_2 && 2*nondef_2<=1+Arg_2 && Arg_2<2*nondef_2+1 && 0<1+Arg_2 && 0<=nondef_3 && 2*nondef_3<=1+Arg_2 && Arg_2<2*nondef_3+1 of depth 1:
new bound:
6*Arg_1*Arg_1+13*Arg_1+8 {O(n^2)}
MPRF:
eval_realheapsort_step1_29 [Arg_0+Arg_1-1 ]
eval_realheapsort_step1__critedge_in [Arg_1+Arg_3 ]
eval_realheapsort_step1_28 [Arg_0+Arg_1-1 ]
eval_realheapsort_step1_bb1_in [Arg_1+Arg_3-1 ]
eval_realheapsort_step1_bb3_in [2*Arg_2-1 ]
eval_realheapsort_step1_bb4_in [Arg_2 ]
eval_realheapsort_step1_bb2_in [2*Arg_2 ]
Analysing control-flow refined program
Cut unsatisfiable transition 7: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb5_in
Found invariant 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_28___2
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb3_in___7
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb4_in___13
Found invariant Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_bb1_in___10
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb4_in___3
Found invariant 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_28___6
Found invariant 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_29___1
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb3_in___15
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1__critedge_in___14
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1__critedge_in___4
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb2_in___16
Found invariant Arg_3<=1 && 2+Arg_3<=Arg_1 && 1<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_1 for location eval_realheapsort_step1_bb1_in
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1__critedge_in___8
Found invariant 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_29___5
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_29___11
Found invariant Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location n_eval_realheapsort_step1_28___12
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 4<=Arg_1+Arg_3 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step1_bb2_in___9
MPRF for transition 272:n_eval_realheapsort_step1_28___12(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___11(Arg_0,Arg_1,Arg_2,Arg_0-1):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_1 && 2<=Arg_0 && 3<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0<=Arg_2+1 && 1+Arg_2<=Arg_0 && 3<=Arg_1 && 2<=Arg_0 && 1+Arg_2<=Arg_0 && Arg_0<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___12 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___6 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3 ]
MPRF for transition 273:n_eval_realheapsort_step1_28___2(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___1(Arg_0,Arg_1,Arg_2,Arg_0-1):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_0<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && 3<=Arg_1 && 2<=Arg_0 && 1+Arg_2<=Arg_0 && Arg_0<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___12 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___2 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_28___6 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3 ]
MPRF for transition 274:n_eval_realheapsort_step1_28___6(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_29___5(Arg_0,Arg_1,Arg_2,Arg_0-1):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_1 && 2<=Arg_0 && 3<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 3<=Arg_1 && 2<=Arg_0 && 1+Arg_2<=Arg_0 && Arg_0<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___12 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___6 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3 ]
MPRF for transition 275:n_eval_realheapsort_step1_29___1(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___10(Arg_0,Arg_1,Arg_2,Arg_0):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1<=Arg_2 && 3<=Arg_1 && 1+Arg_2<=Arg_0 && Arg_0<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && 3<=Arg_1 && 2<=Arg_0 && 1+Arg_2<=Arg_0 && Arg_0<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___12 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___6 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3 ]
MPRF for transition 276:n_eval_realheapsort_step1_29___11(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___10(Arg_0,Arg_1,Arg_2,Arg_0):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_1 && 2<=Arg_0 && 3<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_0<=Arg_2+1 && 1+Arg_2<=Arg_0 && 3<=Arg_1 && 2<=Arg_0 && 1+Arg_2<=Arg_0 && Arg_0<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___12 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___6 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3 ]
MPRF for transition 277:n_eval_realheapsort_step1_29___5(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb1_in___10(Arg_0,Arg_1,Arg_2,Arg_0):|:1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 2+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && Arg_0<=Arg_1 && 2<=Arg_0 && 3<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 && Arg_2<=0 && 0<=Arg_2 && 3<=Arg_1 && 2<=Arg_0 && 1+Arg_2<=Arg_0 && Arg_0<=Arg_1 && Arg_0<=Arg_3+1 && 1+Arg_3<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___12 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___6 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3 ]
MPRF for transition 278:n_eval_realheapsort_step1__critedge_in___14(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___12(Arg_3+1,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 3<=Arg_1 && 0<=Arg_2 && 1<=Arg_3 && Arg_2<=Arg_3 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___12 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___6 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3 ]
MPRF for transition 279:n_eval_realheapsort_step1__critedge_in___4(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___2(Arg_3+1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1<=Arg_2 && 3<=Arg_1 && Arg_2<=Arg_3 && 1+Arg_3<=Arg_1 && 1+Arg_3<=Arg_1 && 3<=Arg_1 && 0<=Arg_2 && 1<=Arg_3 && Arg_2<=Arg_3 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___6 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3 ]
MPRF for transition 280:n_eval_realheapsort_step1__critedge_in___8(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_28___6(Arg_3+1,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 1+Arg_3<=Arg_1 && 3<=Arg_1 && 0<=Arg_2 && 1<=Arg_3 && Arg_2<=Arg_3 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___12 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___6 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3 ]
MPRF for transition 281:n_eval_realheapsort_step1_bb1_in___10(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___16(Arg_0,Arg_1,Arg_3,Arg_3):|:Arg_3<=Arg_1 && Arg_3<=Arg_0 && 2<=Arg_3 && 2<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 5<=Arg_1+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1+Arg_2<=Arg_1 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 2<=Arg_0+Arg_2 && 3<=Arg_1 && 5<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 && 1<=Arg_3 && 3<=Arg_1 && Arg_0<=Arg_3 && Arg_3<=Arg_0 && 1+Arg_2<=Arg_0 && 2<=Arg_0 && Arg_0<=Arg_1 && 3<=Arg_1 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 of depth 1:
new bound:
Arg_1+2 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1_29___11 [Arg_1+1-Arg_2 ]
n_eval_realheapsort_step1_29___5 [Arg_1+2-Arg_0 ]
n_eval_realheapsort_step1_28___12 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1_28___2 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1_28___6 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1+2-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1+1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1+1-Arg_3 ]
MPRF for transition 283:n_eval_realheapsort_step1_bb2_in___16(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_1 && 1<=Arg_2 && Arg_2<=Arg_3 && 0<Arg_2 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1<=Arg_3 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && Arg_2<=Arg_3 && 1+Arg_3<=Arg_1 && 1<=Arg_2 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 3<=Arg_1 && 0<Arg_2 && 1<=Arg_3 && Arg_2<=Arg_3 of depth 1:
new bound:
Arg_1+4 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [2*Arg_0+Arg_1-3*Arg_3 ]
n_eval_realheapsort_step1_29___11 [Arg_1+3-Arg_0 ]
n_eval_realheapsort_step1_29___5 [Arg_1+3-Arg_0 ]
n_eval_realheapsort_step1_28___12 [Arg_1+2-Arg_3 ]
n_eval_realheapsort_step1_28___2 [Arg_1+3-Arg_0 ]
n_eval_realheapsort_step1_28___6 [Arg_1+2-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1+3-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1+3-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1+2-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1+2-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1+2-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1+2-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1+2-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1+2-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1+2-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1+2-Arg_3 ]
MPRF for transition 284:n_eval_realheapsort_step1_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___8(Arg_0,Arg_1,0,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 4<=Arg_1+Arg_3 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_1 && Arg_2<=Arg_3 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___6 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3 ]
MPRF for transition 286:n_eval_realheapsort_step1_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___14(Arg_0,Arg_1,Arg2_P,Arg3_P):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1<=Arg2_P && 3<=Arg_1 && Arg2_P<=Arg3_P && 1+Arg3_P<=Arg_1 && Arg_2<=Arg2_P && Arg2_P<=Arg_2 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___5 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_28___12 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___6 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3 ]
MPRF for transition 287:n_eval_realheapsort_step1_bb3_in___15(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb4_in___13(Arg_0,Arg_1,Arg2_P,Arg3_P):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && 1<=Arg2_P && 3<=Arg_1 && Arg2_P<=Arg3_P && 1+Arg3_P<=Arg_1 && Arg_2<=Arg2_P && Arg2_P<=Arg_2 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 of depth 1:
new bound:
3*Arg_1+3 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [3*Arg_1-3*Arg_0 ]
n_eval_realheapsort_step1_29___11 [3*Arg_1-3*Arg_0 ]
n_eval_realheapsort_step1_29___5 [3*Arg_1-3*Arg_0 ]
n_eval_realheapsort_step1_28___12 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step1_28___2 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step1_28___6 [3*Arg_1-3*Arg_0 ]
n_eval_realheapsort_step1_bb1_in___10 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step1_bb2_in___16 [3*Arg_1-3*Arg_3 ]
n_eval_realheapsort_step1__critedge_in___8 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step1__critedge_in___14 [3*Arg_1-3*Arg_2-3 ]
n_eval_realheapsort_step1_bb3_in___15 [3*Arg_1-3*Arg_2 ]
n_eval_realheapsort_step1__critedge_in___4 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step1_bb3_in___7 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step1_bb4_in___13 [3*Arg_1-3*Arg_2-3 ]
n_eval_realheapsort_step1_bb4_in___3 [3*Arg_1-3*Arg_3-3 ]
n_eval_realheapsort_step1_bb2_in___9 [3*Arg_1-3*Arg_3-3 ]
MPRF for transition 288:n_eval_realheapsort_step1_bb3_in___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1__critedge_in___4(Arg_0,Arg_1,Arg2_P,Arg3_P):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1<=Arg_3 && 0<Arg_2 && 1+Arg_3<=Arg_1 && Arg_2<=Arg_3 && 3<=Arg_1 && 1<=Arg2_P && 3<=Arg_1 && Arg2_P<=Arg3_P && 1+Arg3_P<=Arg_1 && Arg_2<=Arg2_P && Arg2_P<=Arg_2 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___12 [Arg_1+1-Arg_0 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___6 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3 ]
MPRF for transition 290:n_eval_realheapsort_step1_bb4_in___13(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___9(Arg_0,Arg_1,Arg2_P,Arg3_P):|:Arg_3<=Arg_2 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_1 && Arg_2<=Arg_3 && Arg_3<=Arg_2 && Arg_2<3+2*Arg2_P && 1<=Arg_2 && 1+2*Arg2_P<=Arg_2 && Arg_2<=Arg3_P && 1+Arg3_P<=Arg_1 && 3<=Arg_1 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_29___11 [Arg_1+Arg_3-Arg_0-Arg_2 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___12 [Arg_1-Arg_2-1 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_28___6 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1-Arg_3-1 ]
MPRF for transition 285:n_eval_realheapsort_step1_bb2_in___9(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb3_in___7(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 1<=Arg_2+Arg_3 && 4<=Arg_1+Arg_3 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 1+Arg_3<=Arg_1 && 1<=Arg_3 && 3<=Arg_1 && Arg_2<=Arg_3 && 1+Arg_3<=Arg_1 && 3<=Arg_1 && 0<Arg_2 && 1<=Arg_3 && Arg_2<=Arg_3 of depth 1:
new bound:
18*Arg_1*Arg_1+45*Arg_1+27 {O(n^2)}
MPRF:
n_eval_realheapsort_step1_29___1 [0 ]
n_eval_realheapsort_step1_29___11 [0 ]
n_eval_realheapsort_step1_29___5 [0 ]
n_eval_realheapsort_step1_28___12 [0 ]
n_eval_realheapsort_step1_28___2 [0 ]
n_eval_realheapsort_step1_28___6 [0 ]
n_eval_realheapsort_step1_bb1_in___10 [0 ]
n_eval_realheapsort_step1_bb2_in___16 [0 ]
n_eval_realheapsort_step1__critedge_in___8 [0 ]
n_eval_realheapsort_step1__critedge_in___14 [0 ]
n_eval_realheapsort_step1_bb3_in___15 [0 ]
n_eval_realheapsort_step1_bb4_in___13 [0 ]
n_eval_realheapsort_step1__critedge_in___4 [0 ]
n_eval_realheapsort_step1_bb3_in___7 [2*Arg_2 ]
n_eval_realheapsort_step1_bb4_in___3 [2*Arg_2 ]
n_eval_realheapsort_step1_bb2_in___9 [2*Arg_2+1 ]
MPRF for transition 289:n_eval_realheapsort_step1_bb3_in___7(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb4_in___3(Arg_0,Arg_1,Arg2_P,Arg3_P):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1<=Arg_3 && 0<Arg_2 && 1+Arg_3<=Arg_1 && Arg_2<=Arg_3 && 3<=Arg_1 && 1<=Arg2_P && 3<=Arg_1 && Arg2_P<=Arg3_P && 1+Arg3_P<=Arg_1 && Arg_2<=Arg2_P && Arg2_P<=Arg_2 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 of depth 1:
new bound:
19*Arg_1*Arg_1+47*Arg_1+28 {O(n^2)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1 ]
n_eval_realheapsort_step1_29___11 [Arg_1-1 ]
n_eval_realheapsort_step1_29___5 [Arg_1-1 ]
n_eval_realheapsort_step1_28___12 [Arg_1-1 ]
n_eval_realheapsort_step1_28___2 [Arg_1 ]
n_eval_realheapsort_step1_28___6 [Arg_1-1 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-1 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-1 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-1 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-1 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-1 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-1 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1+Arg_2-1 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1+Arg_2-2 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1+2*Arg_2-1 ]
MPRF for transition 291:n_eval_realheapsort_step1_bb4_in___3(Arg_0,Arg_1,Arg_2,Arg_3) -> n_eval_realheapsort_step1_bb2_in___9(Arg_0,Arg_1,Arg2_P,Arg3_P):|:1+Arg_3<=Arg_1 && 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && 1+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 1<=Arg_2 && 3<=Arg_1 && Arg_2<=Arg_3 && 1+Arg_3<=Arg_1 && Arg_2<3+2*Arg2_P && 1<=Arg_2 && 1+2*Arg2_P<=Arg_2 && Arg_2<=Arg3_P && 1+Arg3_P<=Arg_1 && 3<=Arg_1 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 of depth 1:
new bound:
22*Arg_1*Arg_1+54*Arg_1+32 {O(n^2)}
MPRF:
n_eval_realheapsort_step1_29___1 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_29___11 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_29___5 [Arg_1-Arg_0 ]
n_eval_realheapsort_step1_28___12 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1_28___2 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_28___6 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1_bb1_in___10 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb2_in___16 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___8 [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step1__critedge_in___14 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___15 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb4_in___13 [Arg_1-Arg_2 ]
n_eval_realheapsort_step1__critedge_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step1_bb3_in___7 [Arg_1+Arg_2-Arg_3-1 ]
n_eval_realheapsort_step1_bb4_in___3 [Arg_1+Arg_2-Arg_3-1 ]
n_eval_realheapsort_step1_bb2_in___9 [Arg_1+2*Arg_2-Arg_3-1 ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:18*Arg_1*Arg_1+80*Arg_1+81 {O(n^2)}
2: eval_realheapsort_step1_0->eval_realheapsort_step1_1: 1 {O(1)}
3: eval_realheapsort_step1_1->eval_realheapsort_step1_2: 1 {O(1)}
4: eval_realheapsort_step1_2->eval_realheapsort_step1_bb1_in: 1 {O(1)}
5: eval_realheapsort_step1_2->eval_realheapsort_step1_bb5_in: 1 {O(1)}
44: eval_realheapsort_step1_28->eval_realheapsort_step1_29: Arg_1+1 {O(n)}
45: eval_realheapsort_step1_29->eval_realheapsort_step1_bb1_in: Arg_1+1 {O(n)}
43: eval_realheapsort_step1__critedge_in->eval_realheapsort_step1_28: Arg_1+1 {O(n)}
1: eval_realheapsort_step1_bb0_in->eval_realheapsort_step1_0: 1 {O(1)}
6: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb2_in: Arg_1+3 {O(n)}
7: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb5_in: 1 {O(1)}
8: eval_realheapsort_step1_bb2_in->eval_realheapsort_step1_bb3_in: 6*Arg_1*Arg_1+27*Arg_1+24 {O(n^2)}
9: eval_realheapsort_step1_bb2_in->eval_realheapsort_step1__critedge_in: 2*Arg_1+2 {O(n)}
11: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1_bb4_in: 6*Arg_1*Arg_1+33*Arg_1+32 {O(n^2)}
14: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1__critedge_in: Arg_1+1 {O(n)}
29: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in: 6*Arg_1*Arg_1+13*Arg_1+8 {O(n^2)}
46: eval_realheapsort_step1_bb5_in->eval_realheapsort_step1_stop: 1 {O(1)}
0: eval_realheapsort_step1_start->eval_realheapsort_step1_bb0_in: 1 {O(1)}
Costbounds
Overall costbound: 18*Arg_1*Arg_1+80*Arg_1+81 {O(n^2)}
2: eval_realheapsort_step1_0->eval_realheapsort_step1_1: 1 {O(1)}
3: eval_realheapsort_step1_1->eval_realheapsort_step1_2: 1 {O(1)}
4: eval_realheapsort_step1_2->eval_realheapsort_step1_bb1_in: 1 {O(1)}
5: eval_realheapsort_step1_2->eval_realheapsort_step1_bb5_in: 1 {O(1)}
44: eval_realheapsort_step1_28->eval_realheapsort_step1_29: Arg_1+1 {O(n)}
45: eval_realheapsort_step1_29->eval_realheapsort_step1_bb1_in: Arg_1+1 {O(n)}
43: eval_realheapsort_step1__critedge_in->eval_realheapsort_step1_28: Arg_1+1 {O(n)}
1: eval_realheapsort_step1_bb0_in->eval_realheapsort_step1_0: 1 {O(1)}
6: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb2_in: Arg_1+3 {O(n)}
7: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb5_in: 1 {O(1)}
8: eval_realheapsort_step1_bb2_in->eval_realheapsort_step1_bb3_in: 6*Arg_1*Arg_1+27*Arg_1+24 {O(n^2)}
9: eval_realheapsort_step1_bb2_in->eval_realheapsort_step1__critedge_in: 2*Arg_1+2 {O(n)}
11: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1_bb4_in: 6*Arg_1*Arg_1+33*Arg_1+32 {O(n^2)}
14: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1__critedge_in: Arg_1+1 {O(n)}
29: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in: 6*Arg_1*Arg_1+13*Arg_1+8 {O(n^2)}
46: eval_realheapsort_step1_bb5_in->eval_realheapsort_step1_stop: 1 {O(1)}
0: eval_realheapsort_step1_start->eval_realheapsort_step1_bb0_in: 1 {O(1)}
Sizebounds
2: eval_realheapsort_step1_0->eval_realheapsort_step1_1, Arg_0: Arg_0 {O(n)}
2: eval_realheapsort_step1_0->eval_realheapsort_step1_1, Arg_1: Arg_1 {O(n)}
2: eval_realheapsort_step1_0->eval_realheapsort_step1_1, Arg_2: Arg_2 {O(n)}
2: eval_realheapsort_step1_0->eval_realheapsort_step1_1, Arg_3: Arg_3 {O(n)}
3: eval_realheapsort_step1_1->eval_realheapsort_step1_2, Arg_0: Arg_0 {O(n)}
3: eval_realheapsort_step1_1->eval_realheapsort_step1_2, Arg_1: Arg_1 {O(n)}
3: eval_realheapsort_step1_1->eval_realheapsort_step1_2, Arg_2: Arg_2 {O(n)}
3: eval_realheapsort_step1_1->eval_realheapsort_step1_2, Arg_3: Arg_3 {O(n)}
4: eval_realheapsort_step1_2->eval_realheapsort_step1_bb1_in, Arg_0: Arg_0 {O(n)}
4: eval_realheapsort_step1_2->eval_realheapsort_step1_bb1_in, Arg_1: Arg_1 {O(n)}
4: eval_realheapsort_step1_2->eval_realheapsort_step1_bb1_in, Arg_2: Arg_2 {O(n)}
4: eval_realheapsort_step1_2->eval_realheapsort_step1_bb1_in, Arg_3: 1 {O(1)}
5: eval_realheapsort_step1_2->eval_realheapsort_step1_bb5_in, Arg_0: Arg_0 {O(n)}
5: eval_realheapsort_step1_2->eval_realheapsort_step1_bb5_in, Arg_1: Arg_1 {O(n)}
5: eval_realheapsort_step1_2->eval_realheapsort_step1_bb5_in, Arg_2: Arg_2 {O(n)}
5: eval_realheapsort_step1_2->eval_realheapsort_step1_bb5_in, Arg_3: Arg_3 {O(n)}
44: eval_realheapsort_step1_28->eval_realheapsort_step1_29, Arg_0: Arg_1+2 {O(n)}
44: eval_realheapsort_step1_28->eval_realheapsort_step1_29, Arg_1: Arg_1 {O(n)}
44: eval_realheapsort_step1_28->eval_realheapsort_step1_29, Arg_2: Arg_1+3 {O(n)}
44: eval_realheapsort_step1_28->eval_realheapsort_step1_29, Arg_3: 2*Arg_1+4 {O(n)}
45: eval_realheapsort_step1_29->eval_realheapsort_step1_bb1_in, Arg_0: Arg_1+2 {O(n)}
45: eval_realheapsort_step1_29->eval_realheapsort_step1_bb1_in, Arg_1: Arg_1 {O(n)}
45: eval_realheapsort_step1_29->eval_realheapsort_step1_bb1_in, Arg_2: Arg_1+3 {O(n)}
45: eval_realheapsort_step1_29->eval_realheapsort_step1_bb1_in, Arg_3: Arg_1+2 {O(n)}
43: eval_realheapsort_step1__critedge_in->eval_realheapsort_step1_28, Arg_0: Arg_1+2 {O(n)}
43: eval_realheapsort_step1__critedge_in->eval_realheapsort_step1_28, Arg_1: Arg_1 {O(n)}
43: eval_realheapsort_step1__critedge_in->eval_realheapsort_step1_28, Arg_2: Arg_1+3 {O(n)}
43: eval_realheapsort_step1__critedge_in->eval_realheapsort_step1_28, Arg_3: 2*Arg_1+4 {O(n)}
1: eval_realheapsort_step1_bb0_in->eval_realheapsort_step1_0, Arg_0: Arg_0 {O(n)}
1: eval_realheapsort_step1_bb0_in->eval_realheapsort_step1_0, Arg_1: Arg_1 {O(n)}
1: eval_realheapsort_step1_bb0_in->eval_realheapsort_step1_0, Arg_2: Arg_2 {O(n)}
1: eval_realheapsort_step1_bb0_in->eval_realheapsort_step1_0, Arg_3: Arg_3 {O(n)}
6: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb2_in, Arg_0: Arg_0+Arg_1+2 {O(n)}
6: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb2_in, Arg_1: Arg_1 {O(n)}
6: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb2_in, Arg_2: Arg_1+3 {O(n)}
6: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb2_in, Arg_3: Arg_1+2 {O(n)}
7: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb5_in, Arg_0: Arg_1+2 {O(n)}
7: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb5_in, Arg_1: Arg_1 {O(n)}
7: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb5_in, Arg_2: Arg_1+3 {O(n)}
7: eval_realheapsort_step1_bb1_in->eval_realheapsort_step1_bb5_in, Arg_3: Arg_1+2 {O(n)}
8: eval_realheapsort_step1_bb2_in->eval_realheapsort_step1_bb3_in, Arg_0: Arg_0+Arg_1+2 {O(n)}
8: eval_realheapsort_step1_bb2_in->eval_realheapsort_step1_bb3_in, Arg_1: Arg_1 {O(n)}
8: eval_realheapsort_step1_bb2_in->eval_realheapsort_step1_bb3_in, Arg_2: Arg_1+3 {O(n)}
8: eval_realheapsort_step1_bb2_in->eval_realheapsort_step1_bb3_in, Arg_3: Arg_1+2 {O(n)}
9: eval_realheapsort_step1_bb2_in->eval_realheapsort_step1__critedge_in, Arg_0: Arg_0+Arg_1+2 {O(n)}
9: eval_realheapsort_step1_bb2_in->eval_realheapsort_step1__critedge_in, Arg_1: Arg_1 {O(n)}
9: eval_realheapsort_step1_bb2_in->eval_realheapsort_step1__critedge_in, Arg_2: 0 {O(1)}
9: eval_realheapsort_step1_bb2_in->eval_realheapsort_step1__critedge_in, Arg_3: Arg_1+2 {O(n)}
11: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1_bb4_in, Arg_0: Arg_0+Arg_1+2 {O(n)}
11: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1_bb4_in, Arg_1: Arg_1 {O(n)}
11: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1_bb4_in, Arg_2: Arg_1+3 {O(n)}
11: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1_bb4_in, Arg_3: Arg_1+2 {O(n)}
14: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1__critedge_in, Arg_0: Arg_0+Arg_1+2 {O(n)}
14: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1__critedge_in, Arg_1: Arg_1 {O(n)}
14: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1__critedge_in, Arg_2: Arg_1+3 {O(n)}
14: eval_realheapsort_step1_bb3_in->eval_realheapsort_step1__critedge_in, Arg_3: Arg_1+2 {O(n)}
29: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in, Arg_0: Arg_0+Arg_1+2 {O(n)}
29: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in, Arg_1: Arg_1 {O(n)}
29: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in, Arg_2: Arg_1+3 {O(n)}
29: eval_realheapsort_step1_bb4_in->eval_realheapsort_step1_bb2_in, Arg_3: Arg_1+2 {O(n)}
46: eval_realheapsort_step1_bb5_in->eval_realheapsort_step1_stop, Arg_0: Arg_0+Arg_1+2 {O(n)}
46: eval_realheapsort_step1_bb5_in->eval_realheapsort_step1_stop, Arg_1: 2*Arg_1 {O(n)}
46: eval_realheapsort_step1_bb5_in->eval_realheapsort_step1_stop, Arg_2: Arg_1+Arg_2+3 {O(n)}
46: eval_realheapsort_step1_bb5_in->eval_realheapsort_step1_stop, Arg_3: Arg_1+Arg_3+2 {O(n)}
0: eval_realheapsort_step1_start->eval_realheapsort_step1_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_realheapsort_step1_start->eval_realheapsort_step1_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_realheapsort_step1_start->eval_realheapsort_step1_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_realheapsort_step1_start->eval_realheapsort_step1_bb0_in, Arg_3: Arg_3 {O(n)}