Initial Problem

Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10
Temp_Vars: L, M, N
Locations: f0, f11, f40, f43, f48, f54, f59, f63, f69
Transitions:
1:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,10,20,1,20,0,0,Arg_7,Arg_8,Arg_9,Arg_10)
2:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_4<=Arg_3 && Arg_6<=0 && 0<=Arg_6
3:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_4<=Arg_3+1 && 2+Arg_3<=Arg_4 && Arg_6<=0 && 0<=Arg_6
4:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3+1,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_4<=Arg_3+1 && Arg_3+1<=Arg_4 && Arg_6<=0 && 0<=Arg_6
5:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3+1,Arg_5,1,N,Arg_8,Arg_9,Arg_10):|:M+1<=L && Arg_4<=Arg_3+1 && Arg_3+1<=Arg_4 && Arg_6<=0 && 0<=Arg_6
6:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f40(Arg_4,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,N,L,Arg_3+1,M):|:2+Arg_3<=Arg_4 && Arg_6<=0 && 0<=Arg_6
21:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_6+1<=0
22:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_6
9:f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,Arg_6,Arg_7,Arg_8,Arg_9+1,Arg_10):|:Arg_5<=0 && 0<=Arg_5
7:f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_5+1<=0
8:f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_5
10:f43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9+1,Arg_10):|:N+1<=Arg_10
20:f43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f48(Arg_0-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
11:f48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f48(Arg_0-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
18:f48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_0
19:f48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_0+1<=Arg_9
12:f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_5+1<=0
13:f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_5
14:f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,Arg_6,N,Arg_8,Arg_9,Arg_10):|:Arg_5<=0 && 0<=Arg_5
15:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_0+1<=Arg_1
16:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0-1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_1<=Arg_0
0:f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_1<=Arg_0
17:f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_2,Arg_9,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_0<=Arg_1

Preprocessing

Cut unsatisfiable transition 3: f11->f11

Eliminate variables {Arg_2,Arg_7,Arg_8} that do not contribute to the problem

Found invariant 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 for location f48

Found invariant Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 for location f11

Found invariant 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 for location f40

Found invariant 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 for location f54

Found invariant 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 for location f59

Found invariant 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && Arg_3<=9+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 for location f63

Found invariant Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 4<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 3<=Arg_3+Arg_6 && 11<=Arg_1+Arg_6 && Arg_1<=9+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && 1+Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 2<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=18+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 2<=Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && Arg_1<=10 && 10<=Arg_1 for location f69

Found invariant 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 for location f43

Cut unsatisfiable transition 64: f11->f69

Cut unsatisfiable transition 66: f40->f59

Cut unsatisfiable transition 74: f54->f40

Problem after Preprocessing

Start: f0
Program_Vars: Arg_0, Arg_1, Arg_3, Arg_4, Arg_5, Arg_6, Arg_9, Arg_10
Temp_Vars: L, M, N
Locations: f0, f11, f40, f43, f48, f54, f59, f63, f69
Transitions:
59:f0(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,10,1,20,0,0,Arg_9,Arg_10)
60:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,1,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_4<=Arg_3 && Arg_6<=0 && 0<=Arg_6
61:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_3+1,Arg_5,1,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_4<=Arg_3+1 && Arg_3+1<=Arg_4 && Arg_6<=0 && 0<=Arg_6
62:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_3+1,Arg_5,1,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && M+1<=L && Arg_4<=Arg_3+1 && Arg_3+1<=Arg_4 && Arg_6<=0 && 0<=Arg_6
63:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f40(Arg_4,Arg_1,Arg_3,Arg_4,Arg_5,0,Arg_3+1,M):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && 2+Arg_3<=Arg_4 && Arg_6<=0 && 0<=Arg_6
65:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f69(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && 1<=Arg_6
68:f40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f43(Arg_0,Arg_1,Arg_3,Arg_4,0,Arg_6,Arg_9+1,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_5<=0 && 0<=Arg_5
67:f40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f59(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 1<=Arg_5
69:f43(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f43(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9+1,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && N+1<=Arg_10
70:f43(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f48(Arg_0-1,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20
71:f48(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f48(Arg_0-1,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19
72:f48(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f54(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && Arg_9<=Arg_0
73:f48(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f54(Arg_0,Arg_1,Arg_3,Arg_4,1,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && Arg_0+1<=Arg_9
75:f54(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 1<=Arg_5
76:f54(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_3,Arg_4,0,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && Arg_5<=0 && 0<=Arg_5
77:f59(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f63(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_0+1<=Arg_1
78:f59(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f63(Arg_0,Arg_1,Arg_3,Arg_0-1,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_1<=Arg_0
79:f63(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && Arg_3<=9+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 1+Arg_1<=Arg_0
80:f63(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_9,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && Arg_3<=9+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_0<=Arg_1

MPRF for transition 60:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,1,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_4<=Arg_3 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

10 {O(1)}

MPRF:

f43 [Arg_1 ]
f48 [Arg_1 ]
f54 [Arg_1 ]
f40 [Arg_1 ]
f59 [10*Arg_5 ]
f63 [10 ]
f11 [10-Arg_6 ]

MPRF for transition 61:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_3+1,Arg_5,1,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_4<=Arg_3+1 && Arg_3+1<=Arg_4 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

10 {O(1)}

MPRF:

f43 [Arg_1 ]
f48 [Arg_1 ]
f54 [10 ]
f40 [10 ]
f59 [10*Arg_5 ]
f63 [Arg_1 ]
f11 [10-Arg_6 ]

MPRF for transition 62:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_3+1,Arg_5,1,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && M+1<=L && Arg_4<=Arg_3+1 && Arg_3+1<=Arg_4 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

10 {O(1)}

MPRF:

f43 [Arg_1 ]
f48 [Arg_1 ]
f54 [Arg_1 ]
f40 [Arg_1 ]
f59 [10*Arg_5 ]
f63 [10*Arg_5 ]
f11 [10-Arg_6 ]

MPRF for transition 73:f48(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f54(Arg_0,Arg_1,Arg_3,Arg_4,1,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && Arg_0+1<=Arg_9 of depth 1:

new bound:

10 {O(1)}

MPRF:

f43 [Arg_1 ]
f48 [10 ]
f54 [10-Arg_5 ]
f40 [Arg_1-1684*Arg_5 ]
f59 [Arg_1-1684*Arg_5 ]
f63 [Arg_1-1684*Arg_5 ]
f11 [Arg_1-1684*Arg_5 ]

MPRF for transition 75:f54(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 1<=Arg_5 of depth 1:

new bound:

20 {O(1)}

MPRF:

f43 [2*Arg_1 ]
f48 [2*Arg_1 ]
f54 [20 ]
f40 [20-Arg_5 ]
f59 [19*Arg_5 ]
f63 [19*Arg_5 ]
f11 [20-Arg_5 ]

MPRF for transition 78:f59(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f63(Arg_0,Arg_1,Arg_3,Arg_0-1,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_1<=Arg_0 of depth 1:

new bound:

21 {O(1)}

MPRF:

f43 [Arg_4+1 ]
f48 [Arg_4+1 ]
f54 [Arg_4+1 ]
f40 [Arg_4+1 ]
f59 [Arg_4+1 ]
f63 [Arg_4+1 ]
f11 [Arg_4+1 ]

MPRF for transition 80:f63(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_9,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && Arg_3<=9+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_0<=Arg_1 of depth 1:

new bound:

205 {O(1)}

MPRF:

f43 [10*Arg_1-5*Arg_3 ]
f48 [100-5*Arg_3 ]
f54 [10*Arg_1-5*Arg_3 ]
f40 [10*Arg_1-5*Arg_3 ]
f59 [150-5*Arg_1-5*Arg_3 ]
f63 [150-5*Arg_1-5*Arg_3 ]
f11 [150-5*Arg_1-5*Arg_3 ]

knowledge_propagation leads to new time bound 21 {O(1)} for transition 79:f63(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && Arg_3<=9+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 1+Arg_1<=Arg_0

knowledge_propagation leads to new time bound 227 {O(1)} for transition 63:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f40(Arg_4,Arg_1,Arg_3,Arg_4,Arg_5,0,Arg_3+1,M):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && 2+Arg_3<=Arg_4 && Arg_6<=0 && 0<=Arg_6

knowledge_propagation leads to new time bound 247 {O(1)} for transition 67:f40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f59(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 1<=Arg_5

knowledge_propagation leads to new time bound 247 {O(1)} for transition 77:f59(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f63(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_0+1<=Arg_1

MPRF for transition 72:f48(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f54(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && Arg_9<=Arg_0 of depth 1:

new bound:

4692680 {O(1)}

MPRF:

f43 [20*Arg_0+970*Arg_4-298*Arg_1 ]
f48 [20*Arg_0+970*Arg_4-2960 ]
f54 [20*Arg_0+39*Arg_1+970*Arg_4-3370 ]
f40 [20*Arg_0+970*Arg_4-298*Arg_1 ]
f59 [20*Arg_0+970*Arg_4-298*Arg_1 ]
f63 [110*Arg_0+990*Arg_4+1911-388*Arg_1-2221*Arg_5 ]
f11 [990*Arg_4-298*Arg_1 ]

knowledge_propagation leads to new time bound 4692680 {O(1)} for transition 76:f54(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_3,Arg_4,0,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && Arg_5<=0 && 0<=Arg_5

knowledge_propagation leads to new time bound 4692907 {O(1)} for transition 68:f40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f43(Arg_0,Arg_1,Arg_3,Arg_4,0,Arg_6,Arg_9+1,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_5<=0 && 0<=Arg_5

MPRF for transition 70:f43(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f48(Arg_0-1,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 of depth 1:

new bound:

4692681 {O(1)}

MPRF:

f43 [1 ]
f48 [1-Arg_3 ]
f54 [1-Arg_3 ]
f40 [1-18*Arg_5 ]
f59 [-17*Arg_5 ]
f63 [-17*Arg_5 ]
f11 [1-18*Arg_5 ]

Analysing control-flow refined program

Cut unsatisfiable transition 65: f11->f69

Cut unsatisfiable transition 417: n_f11___14->f69

Cut unsatisfiable transition 309: n_f11___15->n_f11___13

Cut unsatisfiable transition 418: n_f11___15->f69

Cut unsatisfiable transition 313: n_f11___20->n_f11___19

Cut unsatisfiable transition 421: n_f11___20->f69

Cut unsatisfiable transition 424: n_f11___27->f69

Cut unsatisfiable transition 427: n_f11___7->f69

Cut unsatisfiable transition 428: n_f11___8->f69

Cut unreachable locations [n_f11___13; n_f11___19] from the program graph

Eliminate variables {NoDet0,Arg_10} that do not contribute to the problem

Found invariant Arg_9<=19 && Arg_9<=19+Arg_6 && Arg_6+Arg_9<=19 && Arg_9<=18+Arg_5 && Arg_5+Arg_9<=20 && Arg_9<=Arg_4 && Arg_4+Arg_9<=38 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=37 && Arg_9<=9+Arg_1 && Arg_1+Arg_9<=29 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=39 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=19 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=18+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=19 && Arg_4<=18+Arg_3 && Arg_3+Arg_4<=37 && Arg_4<=9+Arg_1 && Arg_1+Arg_4<=29 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=39 && 9<=Arg_4 && 10<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=30 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 10<=Arg_0 for location n_f63___21

Found invariant 1<=0 for location n_f11___5

Found invariant 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 1+Arg_0<=Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=9 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 19+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=10 && 1<=Arg_5 && 21<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=8+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=29 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 11+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && Arg_0+Arg_3<=10 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=8+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=19 && 10<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=9 for location n_f63___29

Found invariant Arg_9<=Arg_3 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 6<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 1+Arg_0<=Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 3+Arg_6<=Arg_3 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=9 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 3<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 19+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && 2+Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=10 && 1<=Arg_5 && 21<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 4<=Arg_3+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=8+Arg_5 && Arg_4<=20 && Arg_4<=17+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=29 && 20<=Arg_4 && 23<=Arg_3+Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 11+Arg_0<=Arg_4 && 3<=Arg_3 && 13<=Arg_1+Arg_3 && Arg_1<=7+Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=19 && 10<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=9 for location n_f11___27

Found invariant Arg_9<=8 && Arg_9<=8+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=7+Arg_5 && Arg_5+Arg_9<=9 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=17 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=15 && 2+Arg_9<=Arg_1 && Arg_1+Arg_9<=18 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=17 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 5<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=6+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 2+Arg_6<=Arg_3 && Arg_3+Arg_6<=7 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 9+Arg_6<=Arg_0 && Arg_0+Arg_6<=9 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=7+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 9<=Arg_0+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=8 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 8+Arg_5<=Arg_0 && Arg_0+Arg_5<=10 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=6+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 10<=Arg_0+Arg_5 && Arg_0<=8+Arg_5 && Arg_4<=9 && Arg_4<=7+Arg_3 && Arg_3+Arg_4<=16 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 9<=Arg_4 && 11<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=7 && 3+Arg_3<=Arg_1 && Arg_1+Arg_3<=17 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=16 && 2<=Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=7+Arg_3 && Arg_1<=10 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=19 && 10<=Arg_1 && 19<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=9 && 9<=Arg_0 for location n_f59___16

Found invariant Arg_9<=2 && Arg_9<=2+Arg_6 && Arg_6+Arg_9<=2 && Arg_9<=1+Arg_5 && Arg_5+Arg_9<=3 && 8+Arg_9<=Arg_4 && Arg_4+Arg_9<=20 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && 8+Arg_9<=Arg_1 && Arg_1+Arg_9<=12 && 8+Arg_9<=Arg_0 && Arg_0+Arg_9<=20 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=16+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 10+Arg_6<=Arg_4 && Arg_4+Arg_6<=18 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=18 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=18+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=18+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=19 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=17+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=17+Arg_5 && Arg_4<=18 && Arg_4<=17+Arg_3 && Arg_3+Arg_4<=19 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=28 && Arg_4<=Arg_0 && Arg_0+Arg_4<=36 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 20<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=19 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=28 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=18 && 10<=Arg_0 for location n_f59___3

Found invariant Arg_9<=1+Arg_3 && 8<=Arg_9 && 9<=Arg_6+Arg_9 && 7+Arg_6<=Arg_9 && 9<=Arg_5+Arg_9 && 7+Arg_5<=Arg_9 && 17<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 16<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 18<=Arg_1+Arg_9 && Arg_1<=2+Arg_9 && Arg_0<=2+Arg_9 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_5+Arg_6<=2 && 8+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 7+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && Arg_0+Arg_6<=21 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 9<=Arg_3+Arg_6 && 11<=Arg_1+Arg_6 && Arg_1<=9+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && 7+Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 9<=Arg_3+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=1+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 9<=Arg_4 && 17<=Arg_3+Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && Arg_0<=1+Arg_4 && 8<=Arg_3 && 18<=Arg_1+Arg_3 && Arg_1<=2+Arg_3 && Arg_0<=2+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 for location f69

Found invariant 1<=0 for location n_f11___6

Found invariant 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=15+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=18 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=18+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=18 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=38 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && Arg_0+Arg_3<=19 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=28 && 10<=Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=18 for location n_f48___37

Found invariant 4<=Arg_9 && 4<=Arg_6+Arg_9 && 4+Arg_6<=Arg_9 && 5<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 24<=Arg_4+Arg_9 && Arg_4<=16+Arg_9 && 5<=Arg_3+Arg_9 && 3+Arg_3<=Arg_9 && 14<=Arg_1+Arg_9 && Arg_1<=6+Arg_9 && 6<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 2+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 2<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 19+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 1+Arg_5<=Arg_0 && Arg_0+Arg_5<=20 && 1<=Arg_5 && 21<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=18+Arg_0 && Arg_0+Arg_4<=39 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 22<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 12<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 2<=Arg_0 for location n_f54___35

Found invariant Arg_9<=8 && Arg_9<=8+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=7+Arg_5 && Arg_5+Arg_9<=9 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=17 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=15 && 2+Arg_9<=Arg_1 && Arg_1+Arg_9<=18 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=17 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 5<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=6+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 2+Arg_6<=Arg_3 && Arg_3+Arg_6<=7 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 9+Arg_6<=Arg_0 && Arg_0+Arg_6<=9 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=7+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 9<=Arg_0+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=8 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 8+Arg_5<=Arg_0 && Arg_0+Arg_5<=10 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=6+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 10<=Arg_0+Arg_5 && Arg_0<=8+Arg_5 && Arg_4<=9 && Arg_4<=7+Arg_3 && Arg_3+Arg_4<=16 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 9<=Arg_4 && 11<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=7 && 3+Arg_3<=Arg_1 && Arg_1+Arg_3<=17 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=16 && 2<=Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=7+Arg_3 && Arg_1<=10 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=19 && 10<=Arg_1 && 19<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=9 && 9<=Arg_0 for location n_f63___22

Found invariant Arg_9<=Arg_3 && 11<=Arg_9 && 12<=Arg_6+Arg_9 && 10+Arg_6<=Arg_9 && 12<=Arg_5+Arg_9 && 10+Arg_5<=Arg_9 && 20<=Arg_4+Arg_9 && 2+Arg_4<=Arg_9 && 22<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 21<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 21<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_5+Arg_6<=2 && 8+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 10+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 9+Arg_6<=Arg_0 && Arg_0+Arg_6<=11 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=8+Arg_6 && 12<=Arg_3+Arg_6 && 11<=Arg_1+Arg_6 && Arg_1<=9+Arg_6 && 11<=Arg_0+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 10+Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=11 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 12<=Arg_3+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=9+Arg_5 && Arg_4<=9 && 2+Arg_4<=Arg_3 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=19 && 9<=Arg_4 && 20<=Arg_3+Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 11<=Arg_3 && 21<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 21<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=20 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=10 && 10<=Arg_0 for location n_f11___1

Found invariant Arg_9<=8 && Arg_9<=7+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=7+Arg_5 && Arg_5+Arg_9<=9 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=17 && Arg_9<=Arg_3 && Arg_3+Arg_9<=16 && 2+Arg_9<=Arg_1 && Arg_1+Arg_9<=18 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=18 && 8<=Arg_9 && 9<=Arg_6+Arg_9 && 7+Arg_6<=Arg_9 && 9<=Arg_5+Arg_9 && 7+Arg_5<=Arg_9 && 17<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 16<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 18<=Arg_1+Arg_9 && Arg_1<=2+Arg_9 && 17<=Arg_0+Arg_9 && Arg_0<=2+Arg_9 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_5+Arg_6<=2 && 8+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 7+Arg_6<=Arg_3 && Arg_3+Arg_6<=9 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 8+Arg_6<=Arg_0 && Arg_0+Arg_6<=11 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=8+Arg_6 && 9<=Arg_3+Arg_6 && Arg_3<=7+Arg_6 && 11<=Arg_1+Arg_6 && Arg_1<=9+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 7+Arg_5<=Arg_3 && Arg_3+Arg_5<=9 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 8+Arg_5<=Arg_0 && Arg_0+Arg_5<=11 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 9<=Arg_3+Arg_5 && Arg_3<=7+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 10<=Arg_0+Arg_5 && Arg_0<=9+Arg_5 && Arg_4<=9 && Arg_4<=1+Arg_3 && Arg_3+Arg_4<=17 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && Arg_4<=Arg_0 && Arg_0+Arg_4<=19 && 9<=Arg_4 && 17<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=8 && 2+Arg_3<=Arg_1 && Arg_1+Arg_3<=18 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=18 && 8<=Arg_3 && 18<=Arg_1+Arg_3 && Arg_1<=2+Arg_3 && 17<=Arg_0+Arg_3 && Arg_0<=2+Arg_3 && Arg_1<=10 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=20 && 10<=Arg_1 && 19<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=10 && 9<=Arg_0 for location n_f11___18

Found invariant Arg_9<=3 && Arg_9<=3+Arg_6 && Arg_6+Arg_9<=3 && Arg_9<=3+Arg_5 && Arg_5+Arg_9<=3 && 17+Arg_9<=Arg_4 && Arg_4+Arg_9<=23 && Arg_9<=2+Arg_3 && Arg_3+Arg_9<=4 && 7+Arg_9<=Arg_1 && Arg_1+Arg_9<=13 && 16+Arg_9<=Arg_0 && Arg_0+Arg_9<=22 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 22<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 19+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 19<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 19+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 19<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=39 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 39<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 18+Arg_3<=Arg_0 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 20<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && 9+Arg_1<=Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 29<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 19<=Arg_0 for location n_f48___39

Found invariant Arg_9<=18 && Arg_9<=18+Arg_6 && Arg_6+Arg_9<=18 && Arg_9<=17+Arg_5 && Arg_5+Arg_9<=19 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=37 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=35 && Arg_9<=8+Arg_1 && Arg_1+Arg_9<=28 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=37 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 10+Arg_6<=Arg_4 && Arg_4+Arg_6<=19 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=17 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=17+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=20 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=18+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=16+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=19 && Arg_4<=18+Arg_3 && Arg_3+Arg_4<=36 && Arg_4<=9+Arg_1 && Arg_1+Arg_4<=29 && Arg_4<=Arg_0 && Arg_0+Arg_4<=38 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 20<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=17 && Arg_3<=7+Arg_1 && Arg_1+Arg_3<=27 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=36 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 10<=Arg_0 for location n_f59___10

Found invariant 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=15+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 13<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 10+Arg_6<=Arg_4 && Arg_4+Arg_6<=18 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 11+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=18+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 11<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=19 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 10+Arg_5<=Arg_0 && Arg_0+Arg_5<=20 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=17+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 12<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=18 && Arg_4<=17+Arg_3 && Arg_3+Arg_4<=19 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=28 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=37 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 21<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 10+Arg_3<=Arg_0 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 12<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 21<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 11<=Arg_0 for location n_f11___8

Found invariant Arg_9<=8 && Arg_9<=8+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=7+Arg_5 && Arg_5+Arg_9<=9 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=17 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=15 && 2+Arg_9<=Arg_1 && Arg_1+Arg_9<=18 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=17 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 5<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=6+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 2+Arg_6<=Arg_3 && Arg_3+Arg_6<=7 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 9+Arg_6<=Arg_0 && Arg_0+Arg_6<=9 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=7+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 9<=Arg_0+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=8 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 8+Arg_5<=Arg_0 && Arg_0+Arg_5<=10 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=6+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 10<=Arg_0+Arg_5 && Arg_0<=8+Arg_5 && Arg_4<=9 && Arg_4<=7+Arg_3 && Arg_3+Arg_4<=16 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 9<=Arg_4 && 11<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=7 && 3+Arg_3<=Arg_1 && Arg_1+Arg_3<=17 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=16 && 2<=Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=7+Arg_3 && Arg_1<=10 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=19 && 10<=Arg_1 && 19<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=9 && 9<=Arg_0 for location n_f40___17

Found invariant Arg_9<=2 && Arg_9<=2+Arg_6 && Arg_6+Arg_9<=2 && Arg_9<=1+Arg_5 && Arg_5+Arg_9<=3 && 7+Arg_9<=Arg_4 && Arg_4+Arg_9<=19 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && 8+Arg_9<=Arg_1 && Arg_1+Arg_9<=12 && 8+Arg_9<=Arg_0 && Arg_0+Arg_9<=20 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=15+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=17 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=18 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=17+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=18+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=18 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=16+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=17+Arg_5 && Arg_4<=17 && Arg_4<=16+Arg_3 && Arg_3+Arg_4<=18 && Arg_4<=7+Arg_1 && Arg_1+Arg_4<=27 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=35 && 9<=Arg_4 && 10<=Arg_3+Arg_4 && 8+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=19 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=28 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=18 && 10<=Arg_0 for location n_f63___2

Found invariant Arg_9<=3 && Arg_9<=3+Arg_6 && Arg_6+Arg_9<=3 && Arg_9<=3+Arg_5 && Arg_5+Arg_9<=3 && 17+Arg_9<=Arg_4 && Arg_4+Arg_9<=23 && Arg_9<=2+Arg_3 && Arg_3+Arg_9<=4 && 7+Arg_9<=Arg_1 && Arg_1+Arg_9<=13 && 17+Arg_9<=Arg_0 && Arg_0+Arg_9<=23 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 23<=Arg_0+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 20+Arg_6<=Arg_0 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 20<=Arg_0+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 20+Arg_5<=Arg_0 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 20<=Arg_0+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=Arg_0 && Arg_0+Arg_4<=40 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 40<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 19+Arg_3<=Arg_0 && Arg_0+Arg_3<=21 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 21<=Arg_0+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && 10+Arg_1<=Arg_0 && Arg_0+Arg_1<=30 && 10<=Arg_1 && 30<=Arg_0+Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 20<=Arg_0 for location n_f43___41

Found invariant Arg_9<=19 && Arg_9<=19+Arg_6 && Arg_6+Arg_9<=19 && Arg_9<=18+Arg_5 && Arg_5+Arg_9<=20 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=39 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=37 && Arg_9<=9+Arg_1 && Arg_1+Arg_9<=29 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=39 && 4<=Arg_9 && 4<=Arg_6+Arg_9 && 4+Arg_6<=Arg_9 && 5<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 24<=Arg_4+Arg_9 && Arg_4<=16+Arg_9 && 7<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 14<=Arg_1+Arg_9 && Arg_1<=6+Arg_9 && 24<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 3+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 20+Arg_6<=Arg_0 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 3<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 20<=Arg_0+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 19+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && 2+Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 19+Arg_5<=Arg_0 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 21<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 21<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=17+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=Arg_0 && Arg_0+Arg_4<=40 && 20<=Arg_4 && 23<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 40<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=38 && 3<=Arg_3 && 13<=Arg_1+Arg_3 && Arg_1<=7+Arg_3 && 23<=Arg_0+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && 10+Arg_1<=Arg_0 && Arg_0+Arg_1<=30 && 10<=Arg_1 && 30<=Arg_0+Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 20<=Arg_0 for location n_f40___24

Found invariant 4<=Arg_9 && 4<=Arg_6+Arg_9 && 4+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 4+Arg_5<=Arg_9 && 24<=Arg_4+Arg_9 && Arg_4<=16+Arg_9 && 5<=Arg_3+Arg_9 && 3+Arg_3<=Arg_9 && 14<=Arg_1+Arg_9 && Arg_1<=6+Arg_9 && 6<=Arg_0+Arg_9 && Arg_0<=15+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 2+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 2<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 2+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=18+Arg_0 && Arg_0+Arg_4<=39 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 22<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 12<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 2<=Arg_0 for location n_f48___38

Found invariant Arg_9<=Arg_3 && 11<=Arg_9 && 11<=Arg_6+Arg_9 && 11+Arg_6<=Arg_9 && 12<=Arg_5+Arg_9 && 10+Arg_5<=Arg_9 && 20<=Arg_4+Arg_9 && 2+Arg_4<=Arg_9 && 22<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 21<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 21<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 11+Arg_6<=Arg_3 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=10 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 11<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=10+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 10+Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=11 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 12<=Arg_3+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=9+Arg_5 && Arg_4<=9 && 2+Arg_4<=Arg_3 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=19 && 9<=Arg_4 && 20<=Arg_3+Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 11<=Arg_3 && 21<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 21<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=20 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=10 && 10<=Arg_0 for location n_f11___7

Found invariant Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 for location f11

Found invariant 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 1+Arg_0<=Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 19+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=20 && 1<=Arg_5 && 21<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 for location n_f40___31

Found invariant Arg_9<=19 && Arg_9<=19+Arg_6 && Arg_6+Arg_9<=19 && Arg_9<=19+Arg_5 && Arg_5+Arg_9<=19 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=39 && Arg_9<=18+Arg_3 && Arg_3+Arg_9<=20 && Arg_9<=9+Arg_1 && Arg_1+Arg_9<=29 && Arg_9<=Arg_0 && Arg_0+Arg_9<=38 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 8<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 4+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 4<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 4+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 4<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=16+Arg_0 && Arg_0+Arg_4<=39 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 24<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 3+Arg_3<=Arg_0 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 5<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=6+Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 14<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 4<=Arg_0 for location n_f54___36

Found invariant Arg_9<=19 && Arg_9<=18+Arg_6 && Arg_6+Arg_9<=20 && Arg_9<=18+Arg_5 && Arg_5+Arg_9<=20 && Arg_9<=Arg_4 && Arg_4+Arg_9<=38 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=37 && Arg_9<=9+Arg_1 && Arg_1+Arg_9<=29 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=39 && 10<=Arg_9 && 11<=Arg_6+Arg_9 && 9+Arg_6<=Arg_9 && 11<=Arg_5+Arg_9 && 9+Arg_5<=Arg_9 && 20<=Arg_4+Arg_9 && Arg_4<=Arg_9 && 19<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 20<=Arg_1+Arg_9 && Arg_1<=Arg_9 && 21<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_5+Arg_6<=2 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 8+Arg_6<=Arg_3 && Arg_3+Arg_6<=19 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=21 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 11<=Arg_4+Arg_6 && Arg_4<=18+Arg_6 && 10<=Arg_3+Arg_6 && Arg_3<=17+Arg_6 && 11<=Arg_1+Arg_6 && Arg_1<=9+Arg_6 && 12<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 8+Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 10+Arg_5<=Arg_0 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=18+Arg_5 && 10<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 12<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=19 && Arg_4<=1+Arg_3 && Arg_3+Arg_4<=37 && Arg_4<=9+Arg_1 && Arg_1+Arg_4<=29 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=39 && 10<=Arg_4 && 19<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 21<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=38 && 9<=Arg_3 && 19<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 20<=Arg_0+Arg_3 && Arg_0<=2+Arg_3 && Arg_1<=10 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=30 && 10<=Arg_1 && 21<=Arg_0+Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 11<=Arg_0 for location n_f11___12

Found invariant Arg_9<=19 && Arg_9<=19+Arg_6 && Arg_6+Arg_9<=19 && Arg_9<=18+Arg_5 && Arg_5+Arg_9<=20 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=39 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=37 && Arg_9<=9+Arg_1 && Arg_1+Arg_9<=29 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=39 && 4<=Arg_9 && 4<=Arg_6+Arg_9 && 4+Arg_6<=Arg_9 && 5<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 24<=Arg_4+Arg_9 && Arg_4<=16+Arg_9 && 7<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 14<=Arg_1+Arg_9 && Arg_1<=6+Arg_9 && 24<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 3+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 20+Arg_6<=Arg_0 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 3<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 20<=Arg_0+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 19+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && 2+Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 19+Arg_5<=Arg_0 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 21<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 21<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=17+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=Arg_0 && Arg_0+Arg_4<=40 && 20<=Arg_4 && 23<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 40<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=38 && 3<=Arg_3 && 13<=Arg_1+Arg_3 && Arg_1<=7+Arg_3 && 23<=Arg_0+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && 10+Arg_1<=Arg_0 && Arg_0+Arg_1<=30 && 10<=Arg_1 && 30<=Arg_0+Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 20<=Arg_0 for location n_f59___23

Found invariant Arg_9<=19 && Arg_9<=18+Arg_6 && Arg_6+Arg_9<=20 && Arg_9<=18+Arg_5 && Arg_5+Arg_9<=20 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=39 && Arg_9<=Arg_3 && Arg_3+Arg_9<=38 && Arg_9<=9+Arg_1 && Arg_1+Arg_9<=29 && Arg_0+Arg_9<=28 && 19<=Arg_9 && 20<=Arg_6+Arg_9 && 18+Arg_6<=Arg_9 && 20<=Arg_5+Arg_9 && 18+Arg_5<=Arg_9 && 39<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 38<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 29<=Arg_1+Arg_9 && 9+Arg_1<=Arg_9 && 10+Arg_0<=Arg_9 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_5+Arg_6<=2 && 19+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 18+Arg_6<=Arg_3 && Arg_3+Arg_6<=20 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && Arg_0+Arg_6<=10 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 21<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 20<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 11<=Arg_1+Arg_6 && Arg_1<=9+Arg_6 && Arg_0<=8+Arg_6 && Arg_5<=1 && 19+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && 18+Arg_5<=Arg_3 && Arg_3+Arg_5<=20 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=10 && 1<=Arg_5 && 21<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 20<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=8+Arg_5 && Arg_4<=20 && Arg_4<=1+Arg_3 && Arg_3+Arg_4<=39 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=29 && 20<=Arg_4 && 39<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 11+Arg_0<=Arg_4 && Arg_3<=19 && Arg_3<=9+Arg_1 && Arg_1+Arg_3<=29 && Arg_0+Arg_3<=28 && 19<=Arg_3 && 29<=Arg_1+Arg_3 && 9+Arg_1<=Arg_3 && 10+Arg_0<=Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=19 && 10<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=9 for location n_f11___25

Found invariant Arg_9<=Arg_3 && 20<=Arg_9 && 21<=Arg_6+Arg_9 && 19+Arg_6<=Arg_9 && 21<=Arg_5+Arg_9 && 19+Arg_5<=Arg_9 && 40<=Arg_4+Arg_9 && Arg_4<=Arg_9 && 40<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 30<=Arg_1+Arg_9 && 10+Arg_1<=Arg_9 && 11+Arg_0<=Arg_9 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_5+Arg_6<=2 && 19+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 19+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && Arg_0+Arg_6<=10 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 21<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 21<=Arg_3+Arg_6 && 11<=Arg_1+Arg_6 && Arg_1<=9+Arg_6 && Arg_0<=8+Arg_6 && Arg_5<=1 && 19+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && 19+Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=10 && 1<=Arg_5 && 21<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 21<=Arg_3+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=8+Arg_5 && Arg_4<=20 && Arg_4<=Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=29 && 20<=Arg_4 && 40<=Arg_3+Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 11+Arg_0<=Arg_4 && 20<=Arg_3 && 30<=Arg_1+Arg_3 && 10+Arg_1<=Arg_3 && 11+Arg_0<=Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=19 && 10<=Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=9 for location n_f11___26

Found invariant 4<=Arg_9 && 4<=Arg_6+Arg_9 && 4+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 4+Arg_5<=Arg_9 && 24<=Arg_4+Arg_9 && Arg_4<=16+Arg_9 && 5<=Arg_3+Arg_9 && 3+Arg_3<=Arg_9 && 14<=Arg_1+Arg_9 && Arg_1<=6+Arg_9 && 7<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 3+Arg_6<=Arg_0 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 3<=Arg_0+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 3+Arg_5<=Arg_0 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=17+Arg_0 && Arg_0+Arg_4<=40 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 23<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=21 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=30 && 10<=Arg_1 && 13<=Arg_0+Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 3<=Arg_0 for location n_f43___40

Found invariant 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 1+Arg_0<=Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 19+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=20 && 1<=Arg_5 && 21<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 for location n_f59___30

Found invariant Arg_9<=8 && Arg_9<=8+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=7+Arg_5 && Arg_5+Arg_9<=9 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=17 && Arg_9<=Arg_3 && Arg_3+Arg_9<=16 && 2+Arg_9<=Arg_1 && Arg_1+Arg_9<=18 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=17 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 6<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=6+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 3+Arg_6<=Arg_3 && Arg_3+Arg_6<=8 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 9+Arg_6<=Arg_0 && Arg_0+Arg_6<=9 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 3<=Arg_3+Arg_6 && Arg_3<=8+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 9<=Arg_0+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 2+Arg_5<=Arg_3 && Arg_3+Arg_5<=9 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 8+Arg_5<=Arg_0 && Arg_0+Arg_5<=10 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=7+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 10<=Arg_0+Arg_5 && Arg_0<=8+Arg_5 && Arg_4<=9 && Arg_4<=6+Arg_3 && Arg_3+Arg_4<=17 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 9<=Arg_4 && 12<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=8 && 2+Arg_3<=Arg_1 && Arg_1+Arg_3<=18 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=17 && 3<=Arg_3 && 13<=Arg_1+Arg_3 && Arg_1<=7+Arg_3 && 12<=Arg_0+Arg_3 && Arg_0<=6+Arg_3 && Arg_1<=10 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=19 && 10<=Arg_1 && 19<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=9 && 9<=Arg_0 for location n_f11___20

Found invariant Arg_9<=2 && Arg_9<=2+Arg_6 && Arg_6+Arg_9<=2 && Arg_9<=1+Arg_5 && Arg_5+Arg_9<=3 && 8+Arg_9<=Arg_4 && Arg_4+Arg_9<=20 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && 8+Arg_9<=Arg_1 && Arg_1+Arg_9<=12 && 8+Arg_9<=Arg_0 && Arg_0+Arg_9<=20 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=16+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 10+Arg_6<=Arg_4 && Arg_4+Arg_6<=18 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=18 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=18+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=18+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=19 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=17+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=17+Arg_5 && Arg_4<=18 && Arg_4<=17+Arg_3 && Arg_3+Arg_4<=19 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=28 && Arg_4<=Arg_0 && Arg_0+Arg_4<=36 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 20<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=19 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=28 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=18 && 10<=Arg_0 for location n_f40___4

Found invariant Arg_9<=9 && Arg_9<=9+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=8+Arg_5 && Arg_5+Arg_9<=10 && Arg_9<=Arg_4 && Arg_4+Arg_9<=18 && Arg_9<=Arg_3 && Arg_3+Arg_9<=18 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=19 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=19 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=7+Arg_9 && 4<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=8+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 2+Arg_6<=Arg_3 && Arg_3+Arg_6<=9 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=10 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=9+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=10+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=10 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=11 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=8+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=9+Arg_5 && Arg_4<=9 && Arg_4<=7+Arg_3 && Arg_3+Arg_4<=18 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=19 && 9<=Arg_4 && 11<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=9 && 1+Arg_3<=Arg_1 && Arg_1+Arg_3<=19 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=19 && 2<=Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 12<=Arg_0+Arg_3 && Arg_0<=8+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=20 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=10 && 10<=Arg_0 for location n_f11___14

Found invariant Arg_9<=9 && Arg_9<=8+Arg_6 && Arg_6+Arg_9<=10 && Arg_9<=8+Arg_5 && Arg_5+Arg_9<=10 && Arg_9<=Arg_4 && Arg_4+Arg_9<=18 && Arg_9<=Arg_3 && Arg_3+Arg_9<=18 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=19 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=19 && 9<=Arg_9 && 10<=Arg_6+Arg_9 && 8+Arg_6<=Arg_9 && 10<=Arg_5+Arg_9 && 8+Arg_5<=Arg_9 && 18<=Arg_4+Arg_9 && Arg_4<=Arg_9 && 18<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 19<=Arg_1+Arg_9 && Arg_1<=1+Arg_9 && 19<=Arg_0+Arg_9 && Arg_0<=1+Arg_9 && Arg_6<=1 && Arg_6<=Arg_5 && Arg_5+Arg_6<=2 && 8+Arg_6<=Arg_4 && Arg_4+Arg_6<=10 && 8+Arg_6<=Arg_3 && Arg_3+Arg_6<=10 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 9+Arg_6<=Arg_0 && Arg_0+Arg_6<=11 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=8+Arg_6 && 10<=Arg_3+Arg_6 && Arg_3<=8+Arg_6 && 11<=Arg_1+Arg_6 && Arg_1<=9+Arg_6 && 11<=Arg_0+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 8+Arg_5<=Arg_3 && Arg_3+Arg_5<=10 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=11 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 10<=Arg_3+Arg_5 && Arg_3<=8+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=9+Arg_5 && Arg_4<=9 && Arg_4<=Arg_3 && Arg_3+Arg_4<=18 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=19 && 9<=Arg_4 && 18<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=9 && 1+Arg_3<=Arg_1 && Arg_1+Arg_3<=19 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=19 && 9<=Arg_3 && 19<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 19<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=20 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=10 && 10<=Arg_0 for location n_f11___9

Found invariant Arg_9<=18 && Arg_9<=18+Arg_6 && Arg_6+Arg_9<=18 && Arg_9<=17+Arg_5 && Arg_5+Arg_9<=19 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=37 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=35 && Arg_9<=8+Arg_1 && Arg_1+Arg_9<=28 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=37 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 10+Arg_6<=Arg_4 && Arg_4+Arg_6<=19 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=17 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=17+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=20 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=18+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=16+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=19 && Arg_4<=18+Arg_3 && Arg_3+Arg_4<=36 && Arg_4<=9+Arg_1 && Arg_1+Arg_4<=29 && Arg_4<=Arg_0 && Arg_0+Arg_4<=38 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 20<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=17 && Arg_3<=7+Arg_1 && Arg_1+Arg_3<=27 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=36 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 10<=Arg_0 for location n_f40___11

Found invariant Arg_9<=18 && Arg_9<=18+Arg_6 && Arg_6+Arg_9<=18 && Arg_9<=18+Arg_5 && Arg_5+Arg_9<=18 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=38 && Arg_9<=17+Arg_3 && Arg_3+Arg_9<=19 && Arg_9<=8+Arg_1 && Arg_1+Arg_9<=28 && Arg_9<=Arg_0 && Arg_0+Arg_9<=36 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 6<=Arg_0+Arg_9 && Arg_0<=15+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 3+Arg_6<=Arg_0 && Arg_0+Arg_6<=18 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 3<=Arg_0+Arg_6 && Arg_0<=18+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 3+Arg_5<=Arg_0 && Arg_0+Arg_5<=18 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=17+Arg_0 && Arg_0+Arg_4<=38 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 23<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=19 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=28 && 10<=Arg_1 && 13<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=18 && 3<=Arg_0 for location n_f54___34

Found invariant Arg_9<=19 && Arg_9<=19+Arg_6 && Arg_6+Arg_9<=19 && Arg_9<=18+Arg_5 && Arg_5+Arg_9<=20 && Arg_9<=Arg_4 && Arg_4+Arg_9<=38 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=37 && Arg_9<=9+Arg_1 && Arg_1+Arg_9<=29 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=39 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 13<=Arg_0+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 10+Arg_6<=Arg_4 && Arg_4+Arg_6<=19 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 11+Arg_6<=Arg_0 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 11<=Arg_0+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 10+Arg_5<=Arg_0 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=18+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 12<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=19 && Arg_4<=18+Arg_3 && Arg_3+Arg_4<=37 && Arg_4<=9+Arg_1 && Arg_1+Arg_4<=29 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=39 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 21<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 12<=Arg_0+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=30 && 10<=Arg_1 && 21<=Arg_0+Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 11<=Arg_0 for location n_f11___15

Found invariant Arg_9<=19 && Arg_9<=19+Arg_6 && Arg_6+Arg_9<=19 && Arg_9<=19+Arg_5 && Arg_5+Arg_9<=19 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=39 && Arg_9<=18+Arg_3 && Arg_3+Arg_9<=20 && Arg_9<=9+Arg_1 && Arg_1+Arg_9<=29 && Arg_9<=Arg_0 && Arg_0+Arg_9<=38 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 6<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 3+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 3<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 3+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=17+Arg_0 && Arg_0+Arg_4<=39 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 23<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 13<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 3<=Arg_0 for location n_f40___32

Found invariant Arg_9<=2 && Arg_9<=2+Arg_6 && Arg_6+Arg_9<=2 && Arg_9<=2+Arg_5 && Arg_5+Arg_9<=2 && 18+Arg_9<=Arg_4 && Arg_4+Arg_9<=22 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && 8+Arg_9<=Arg_1 && Arg_1+Arg_9<=12 && 18+Arg_9<=Arg_0 && Arg_0+Arg_9<=22 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 2<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 22<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 22<=Arg_0+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 20+Arg_6<=Arg_0 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 20<=Arg_0+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 20+Arg_5<=Arg_0 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 20<=Arg_0+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=Arg_0 && Arg_0+Arg_4<=40 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 40<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 19+Arg_3<=Arg_0 && Arg_0+Arg_3<=21 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 21<=Arg_0+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && 10+Arg_1<=Arg_0 && Arg_0+Arg_1<=30 && 10<=Arg_1 && 30<=Arg_0+Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 20<=Arg_0 for location n_f40___42

Found invariant 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 1+Arg_0<=Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=18 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=18+Arg_6 && Arg_5<=1 && 19+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=19 && 1<=Arg_5 && 21<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=17+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=38 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && Arg_0+Arg_3<=19 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=28 && 10<=Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=18 for location n_f54___33

Found invariant 11<=Arg_9 && 11<=Arg_6+Arg_9 && 11+Arg_6<=Arg_9 && 12<=Arg_5+Arg_9 && 10+Arg_5<=Arg_9 && 20<=Arg_4+Arg_9 && 2+Arg_4<=Arg_9 && 12<=Arg_3+Arg_9 && 10+Arg_3<=Arg_9 && 21<=Arg_1+Arg_9 && 1+Arg_1<=Arg_9 && 21<=Arg_0+Arg_9 && 1+Arg_0<=Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=18 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=18+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=19 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=20 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=17+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=18 && Arg_4<=17+Arg_3 && Arg_3+Arg_4<=19 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=28 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=37 && 9<=Arg_4 && 10<=Arg_3+Arg_4 && 8+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 10<=Arg_0 for location n_f63___28

Cut unsatisfiable transition 530: n_f11___5->f69

Cut unsatisfiable transition 531: n_f11___6->f69

Cut unsatisfiable transition 533: n_f11___8->n_f11___5

Cut unsatisfiable transition 534: n_f11___8->n_f11___5

Cut unsatisfiable transition 535: n_f11___8->n_f11___6

Cut unsatisfiable transition 564: n_f59___23->n_f63___22

Cut unreachable locations [n_f11___5; n_f11___6] from the program graph

MPRF for transition 542:n_f40___32(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f43___40(Arg_0,10,Arg_3,Arg_4,0,0,Arg_9+1):|:Arg_9<=19 && Arg_9<=19+Arg_6 && Arg_6+Arg_9<=19 && Arg_9<=19+Arg_5 && Arg_5+Arg_9<=19 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=39 && Arg_9<=18+Arg_3 && Arg_3+Arg_9<=20 && Arg_9<=9+Arg_1 && Arg_1+Arg_9<=29 && Arg_9<=Arg_0 && Arg_0+Arg_9<=38 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 6<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 3+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 3<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 3+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=17+Arg_0 && Arg_0+Arg_4<=39 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 23<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 13<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 3<=Arg_0 && 1<=Arg_3 && 4<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_9 && Arg_0<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_3<=17 && 6<=Arg_4+Arg_9 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && 1+Arg_0<=Arg_4 && 2+Arg_3<=Arg_9 && 2+Arg_3<=Arg_4 && 4<=Arg_4 && 1<=Arg_3 && Arg_4<=20 && Arg_3<=17 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && Arg_0<=Arg_4 && 1+Arg_3<=Arg_9 && 4<=Arg_4 && 1<=Arg_3 && Arg_4<=20 && 2+Arg_3<=Arg_4 && Arg_0<=Arg_4 && 2+Arg_3<=Arg_4 && 1<=Arg_3 && Arg_4<=20 && 4<=Arg_4 && 1+Arg_3<=Arg_9 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

11110 {O(1)}

MPRF:

n_f43___40 [18*Arg_1+151*Arg_4-151*Arg_9 ]
n_f48___37 [151*Arg_4+180-151*Arg_9 ]
n_f48___38 [160*Arg_4-151*Arg_9 ]
n_f54___34 [10*Arg_0+151*Arg_4-151*Arg_9 ]
n_f54___36 [160*Arg_4-151*Arg_9 ]
n_f40___32 [151*Arg_4+30-151*Arg_9 ]

MPRF for transition 546:n_f43___40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f48___38(Arg_0-1,10,Arg_3,Arg_4,0,0,Arg_9):|:4<=Arg_9 && 4<=Arg_6+Arg_9 && 4+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 4+Arg_5<=Arg_9 && 24<=Arg_4+Arg_9 && Arg_4<=16+Arg_9 && 5<=Arg_3+Arg_9 && 3+Arg_3<=Arg_9 && 14<=Arg_1+Arg_9 && Arg_1<=6+Arg_9 && 7<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 3+Arg_6<=Arg_0 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 3<=Arg_0+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 3+Arg_5<=Arg_0 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=17+Arg_0 && Arg_0+Arg_4<=40 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 23<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=21 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=30 && 10<=Arg_1 && 13<=Arg_0+Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 3<=Arg_0 && 1<=Arg_3 && Arg_4<=20 && 2+Arg_3<=Arg_4 && 2+Arg_3<=Arg_9 && Arg_0<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && 4<=Arg_4 && Arg_3<=17 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && Arg_0<=Arg_4 && 2+Arg_3<=Arg_9 && 4<=Arg_4 && 1<=Arg_3 && Arg_4<=20 && 2+Arg_3<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && 1<=Arg_3 && 2+Arg_3<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_9 && Arg_0<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && 1<=Arg_3 && 2+Arg_3<=Arg_4 && Arg_4<=20 && 3+Arg_3<=Arg_9 && Arg_0<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && 1<=Arg_3 && 2+Arg_3<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_9 && Arg_0<=Arg_4 && Arg_0<=Arg_4 && 2+Arg_3<=Arg_9 && 1<=Arg_3 && Arg_4<=20 && 2+Arg_3<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

62 {O(1)}

MPRF:

n_f43___40 [Arg_0-2*Arg_3 ]
n_f48___37 [Arg_0-Arg_3 ]
n_f48___38 [Arg_0-2*Arg_3 ]
n_f54___34 [Arg_0-Arg_3 ]
n_f54___36 [Arg_0-2*Arg_3 ]
n_f40___32 [Arg_0-2*Arg_3 ]

MPRF for transition 551:n_f48___37(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f54___34(Arg_0,10,Arg_3,Arg_4,0,0,Arg_9):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=15+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=18 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=18+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=18 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=38 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && Arg_0+Arg_3<=19 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=28 && 10<=Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=18 && 1<=Arg_3 && Arg_4<=20 && 2+Arg_3<=Arg_4 && 2+Arg_3<=Arg_9 && 1+Arg_0<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && 4<=Arg_4 && Arg_3<=17 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && 1<=Arg_3 && 2+Arg_3<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_9 && 1+Arg_0<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && 1<=Arg_3 && 2+Arg_3<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_9 && 1+Arg_0<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && 1<=Arg_3 && 2+Arg_3<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_9 && 2+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_3 && 2+Arg_3<=Arg_9 && Arg_4<=20 && Arg_9<=Arg_0 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

5940 {O(1)}

MPRF:

n_f43___40 [85*Arg_4-6*Arg_1-90*Arg_9 ]
n_f48___37 [1640-90*Arg_9 ]
n_f48___38 [20*Arg_3+81*Arg_4-90*Arg_9 ]
n_f54___34 [85*Arg_4-90*Arg_9-150 ]
n_f54___36 [20*Arg_3+81*Arg_4-90*Arg_9 ]
n_f40___32 [85*Arg_4-90*Arg_9-150 ]

MPRF for transition 552:n_f48___38(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f48___37(Arg_0-1,10,Arg_3,Arg_4,0,0,Arg_9):|:4<=Arg_9 && 4<=Arg_6+Arg_9 && 4+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 4+Arg_5<=Arg_9 && 24<=Arg_4+Arg_9 && Arg_4<=16+Arg_9 && 5<=Arg_3+Arg_9 && 3+Arg_3<=Arg_9 && 14<=Arg_1+Arg_9 && Arg_1<=6+Arg_9 && 6<=Arg_0+Arg_9 && Arg_0<=15+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 2+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 2<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 2+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=18+Arg_0 && Arg_0+Arg_4<=39 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 22<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 12<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 2<=Arg_0 && 1<=Arg_3 && Arg_4<=20 && 2+Arg_3<=Arg_4 && 2+Arg_3<=Arg_9 && 1+Arg_0<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && 4<=Arg_4 && Arg_3<=17 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && 1<=Arg_3 && 2+Arg_3<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_9 && 1+Arg_0<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && 1<=Arg_3 && 2+Arg_3<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_9 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 2+Arg_3<=Arg_9 && 1<=Arg_3 && Arg_4<=20 && 2+Arg_3<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

1200 {O(1)}

MPRF:

n_f43___40 [20*Arg_0-Arg_4 ]
n_f48___37 [20*Arg_0-20 ]
n_f48___38 [20*Arg_0-20 ]
n_f54___34 [20*Arg_0-2*Arg_1 ]
n_f54___36 [20*Arg_0-2*Arg_1 ]
n_f40___32 [20*Arg_0-Arg_4 ]

MPRF for transition 554:n_f48___38(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f54___36(Arg_0,10,Arg_3,Arg_4,0,0,Arg_9):|:4<=Arg_9 && 4<=Arg_6+Arg_9 && 4+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 4+Arg_5<=Arg_9 && 24<=Arg_4+Arg_9 && Arg_4<=16+Arg_9 && 5<=Arg_3+Arg_9 && 3+Arg_3<=Arg_9 && 14<=Arg_1+Arg_9 && Arg_1<=6+Arg_9 && 6<=Arg_0+Arg_9 && Arg_0<=15+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 2+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 2<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 2+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=18+Arg_0 && Arg_0+Arg_4<=39 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 22<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 12<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 2<=Arg_0 && 1<=Arg_3 && Arg_4<=20 && 2+Arg_3<=Arg_4 && 2+Arg_3<=Arg_9 && 1+Arg_0<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && 4<=Arg_4 && Arg_3<=17 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && 1<=Arg_3 && 2+Arg_3<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_9 && 1+Arg_0<=Arg_4 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && 1<=Arg_3 && 2+Arg_3<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_9 && 1+Arg_0<=Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_3 && 2+Arg_3<=Arg_9 && Arg_4<=20 && Arg_9<=Arg_0 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

1420 {O(1)}

MPRF:

n_f43___40 [20*Arg_4-20*Arg_9 ]
n_f48___37 [400*Arg_3-20*Arg_9 ]
n_f48___38 [400-20*Arg_9 ]
n_f54___34 [2*Arg_1+380*Arg_3-20*Arg_9 ]
n_f54___36 [20*Arg_4-20*Arg_9-20 ]
n_f40___32 [20*Arg_4-20*Arg_3-20*Arg_9 ]

MPRF for transition 558:n_f54___34(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f40___32(Arg_0,10,Arg_3,Arg_4,0,0,Arg_9):|:Arg_9<=18 && Arg_9<=18+Arg_6 && Arg_6+Arg_9<=18 && Arg_9<=18+Arg_5 && Arg_5+Arg_9<=18 && 2+Arg_9<=Arg_4 && Arg_4+Arg_9<=38 && Arg_9<=17+Arg_3 && Arg_3+Arg_9<=19 && Arg_9<=8+Arg_1 && Arg_1+Arg_9<=28 && Arg_9<=Arg_0 && Arg_0+Arg_9<=36 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 6<=Arg_0+Arg_9 && Arg_0<=15+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 3+Arg_6<=Arg_0 && Arg_0+Arg_6<=18 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 3<=Arg_0+Arg_6 && Arg_0<=18+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 3+Arg_5<=Arg_0 && Arg_0+Arg_5<=18 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 3<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=17+Arg_0 && Arg_0+Arg_4<=38 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 23<=Arg_0+Arg_4 && 2+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=19 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 4<=Arg_0+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=28 && 10<=Arg_1 && 13<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=18 && 3<=Arg_0 && 1<=Arg_3 && 2+Arg_3<=Arg_9 && Arg_9<=Arg_0 && Arg_4<=20 && 2+Arg_0<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && 1+Arg_0<=Arg_4 && 2+Arg_3<=Arg_9 && 2+Arg_3<=Arg_4 && 1<=Arg_3 && Arg_4<=20 && 4<=Arg_4 && Arg_3<=17 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

15451 {O(1)}

MPRF:

n_f43___40 [14*Arg_0+3801*Arg_3+18*Arg_4-226*Arg_9-134 ]
n_f48___37 [226*Arg_3+3843-226*Arg_9 ]
n_f48___38 [14*Arg_0+3801*Arg_3+18*Arg_4-12*Arg_1-226*Arg_9 ]
n_f54___34 [226*Arg_3+3843-226*Arg_9 ]
n_f54___36 [14*Arg_0+3841*Arg_3+16*Arg_4-226*Arg_9-120 ]
n_f40___32 [14*Arg_0+3801*Arg_3-226*Arg_9 ]

MPRF for transition 560:n_f54___36(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f40___32(Arg_0,10,Arg_3,Arg_4,0,0,Arg_9):|:Arg_9<=19 && Arg_9<=19+Arg_6 && Arg_6+Arg_9<=19 && Arg_9<=19+Arg_5 && Arg_5+Arg_9<=19 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=39 && Arg_9<=18+Arg_3 && Arg_3+Arg_9<=20 && Arg_9<=9+Arg_1 && Arg_1+Arg_9<=29 && Arg_9<=Arg_0 && Arg_0+Arg_9<=38 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 23<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 8<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 20+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 4+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 20<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 4<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 20+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=1 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 4+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 20<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=1+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && 4<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=21 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_4<=16+Arg_0 && Arg_0+Arg_4<=39 && 20<=Arg_4 && 21<=Arg_3+Arg_4 && 19+Arg_3<=Arg_4 && 30<=Arg_1+Arg_4 && 10+Arg_1<=Arg_4 && 24<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 3+Arg_3<=Arg_0 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 5<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=6+Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 14<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 4<=Arg_0 && 1<=Arg_3 && 2+Arg_3<=Arg_9 && Arg_9<=Arg_0 && Arg_4<=20 && 1+Arg_0<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && 1+Arg_0<=Arg_4 && 2+Arg_3<=Arg_9 && 2+Arg_3<=Arg_4 && 1<=Arg_3 && Arg_4<=20 && 4<=Arg_4 && Arg_3<=17 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=0 && 0<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

1036 {O(1)}

MPRF:

n_f43___40 [285*Arg_3+15-15*Arg_9 ]
n_f48___37 [15*Arg_4-15*Arg_9 ]
n_f48___38 [300-15*Arg_9 ]
n_f54___34 [Arg_0+282-15*Arg_9 ]
n_f54___36 [286-15*Arg_9 ]
n_f40___32 [285*Arg_3-15*Arg_9 ]

MPRF for transition 536:n_f11___8(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f40___4(Arg_4,10,Arg3_P,Arg_4,Arg5_P,0,Arg9_P):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=15+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 13<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 10+Arg_6<=Arg_4 && Arg_4+Arg_6<=18 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 11+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=18+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 11<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=19 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 10+Arg_5<=Arg_0 && Arg_0+Arg_5<=20 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=17+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 12<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=18 && Arg_4<=17+Arg_3 && Arg_3+Arg_4<=19 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=28 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=37 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 21<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 10+Arg_3<=Arg_0 && Arg_0+Arg_3<=20 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 12<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 21<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 11<=Arg_0 && 4<=Arg_4+Arg_5 && 0<=Arg_5 && Arg_4<=20 && Arg_5<=1 && Arg_1<=10 && 10<=Arg_1 && Arg_6<=0 && 0<=Arg_6 && Arg_3<=19 && 6<=Arg_3+Arg_4 && 1<=Arg_3 && 4<=Arg_4 && Arg_3<=17 && Arg_5<=1 && 1<=Arg_5 && 10<=Arg_4 && Arg_6<=0 && 0<=Arg_6 && Arg_5<=1 && 1<=Arg_5 && Arg_1<=10 && 10<=Arg_1 && 1+Arg_3<=Arg_9 && Arg_3<=18 && Arg_0<=1+Arg_4 && Arg_0+Arg_4<=39 && 11<=Arg_0 && Arg_4<=20 && 1<=Arg_3 && 0<=Arg5_P && 6<=Arg_4+Arg3_P && 1<=Arg3_P && Arg5_P<=1 && Arg_4<=20 && 2+Arg3_P<=Arg_4 && Arg3_P+1<=Arg9_P && Arg9_P<=1+Arg3_P && Arg_6<=0 && 0<=Arg_6 && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_1<=10 && 10<=Arg_1 of depth 1:

new bound:

26 {O(1)}

MPRF:

n_f40___4 [Arg_4-9 ]
n_f59___3 [Arg_4-9 ]
n_f63___2 [Arg_4-4*Arg_9 ]
n_f11___8 [Arg_4-8 ]

MPRF for transition 543:n_f40___4(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f59___3(Arg_0,10,Arg_3,Arg_4,1,0,Arg_9):|:Arg_9<=2 && Arg_9<=2+Arg_6 && Arg_6+Arg_9<=2 && Arg_9<=1+Arg_5 && Arg_5+Arg_9<=3 && 8+Arg_9<=Arg_4 && Arg_4+Arg_9<=20 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && 8+Arg_9<=Arg_1 && Arg_1+Arg_9<=12 && 8+Arg_9<=Arg_0 && Arg_0+Arg_9<=20 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=16+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 10+Arg_6<=Arg_4 && Arg_4+Arg_6<=18 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=18 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=18+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=18+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=19 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=17+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=17+Arg_5 && Arg_4<=18 && Arg_4<=17+Arg_3 && Arg_3+Arg_4<=19 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=28 && Arg_4<=Arg_0 && Arg_0+Arg_4<=36 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 20<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=19 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=28 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=18 && 10<=Arg_0 && 1<=Arg_3 && 4<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_9 && Arg_0<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_6<=0 && 0<=Arg_6 && Arg_3<=17 && 6<=Arg_4+Arg_9 && Arg_5<=1 && 1<=Arg_5 && 10<=Arg_0 && 10<=Arg_4 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=10 && 10<=Arg_1 && 1+Arg_3<=Arg_9 && Arg_9<=1+Arg_3 && Arg_5<=1 && 1+Arg_9<=Arg_0 && Arg_0<=20 && 7<=Arg_0+Arg_9 && 2<=Arg_9 && 0<=Arg_5 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && Arg_0<=Arg_4 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_9 && 6<=Arg_4+Arg_9 && 1<=Arg_3 && Arg_4<=20 && Arg_0<=Arg_4 && 1+Arg_3<=Arg_9 && 6<=Arg_4+Arg_9 && 1<=Arg_3 && Arg_4<=20 && 2+Arg_3<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

20 {O(1)}

MPRF:

n_f40___4 [Arg_0-2 ]
n_f59___3 [Arg_4-3 ]
n_f63___2 [Arg_4-Arg_9 ]
n_f11___8 [Arg_4-2 ]

MPRF for transition 565:n_f59___3(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f63___2(Arg_0,10,Arg_3,Arg_0-1,1,0,Arg_9):|:Arg_9<=2 && Arg_9<=2+Arg_6 && Arg_6+Arg_9<=2 && Arg_9<=1+Arg_5 && Arg_5+Arg_9<=3 && 8+Arg_9<=Arg_4 && Arg_4+Arg_9<=20 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && 8+Arg_9<=Arg_1 && Arg_1+Arg_9<=12 && 8+Arg_9<=Arg_0 && Arg_0+Arg_9<=20 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=16+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 10+Arg_6<=Arg_4 && Arg_4+Arg_6<=18 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=18 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=18+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=18+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=19 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=17+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=17+Arg_5 && Arg_4<=18 && Arg_4<=17+Arg_3 && Arg_3+Arg_4<=19 && Arg_4<=8+Arg_1 && Arg_1+Arg_4<=28 && Arg_4<=Arg_0 && Arg_0+Arg_4<=36 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 9+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 20<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=19 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=28 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=18 && 10<=Arg_0 && 2<=Arg_9 && 1+Arg_9<=Arg_0 && 10<=Arg_0 && Arg_0<=20 && Arg_9<=18 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_3+1<=Arg_9 && Arg_9<=1+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_4 && 2+Arg_3<=Arg_4 && 1<=Arg_3 && 1+Arg_3<=Arg_9 && Arg_4<=20 && 10<=Arg_0 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

29 {O(1)}

MPRF:

n_f40___4 [Arg_4-9 ]
n_f59___3 [Arg_0-9 ]
n_f63___2 [Arg_0-10*Arg_5 ]
n_f11___8 [Arg_0-10*Arg_3 ]

MPRF for transition 569:n_f63___2(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f11___8(Arg_0,10,Arg_3,Arg_4,1,0,Arg_9):|:Arg_9<=2 && Arg_9<=2+Arg_6 && Arg_6+Arg_9<=2 && Arg_9<=1+Arg_5 && Arg_5+Arg_9<=3 && 7+Arg_9<=Arg_4 && Arg_4+Arg_9<=19 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=3 && 8+Arg_9<=Arg_1 && Arg_1+Arg_9<=12 && 8+Arg_9<=Arg_0 && Arg_0+Arg_9<=20 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=15+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=17 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=1 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=18 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=17+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=1+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=18+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=18 && Arg_5<=Arg_3 && Arg_3+Arg_5<=2 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=19 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=16+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=17+Arg_5 && Arg_4<=17 && Arg_4<=16+Arg_3 && Arg_3+Arg_4<=18 && Arg_4<=7+Arg_1 && Arg_1+Arg_4<=27 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=35 && 9<=Arg_4 && 10<=Arg_3+Arg_4 && 8+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=1 && 9+Arg_3<=Arg_1 && Arg_1+Arg_3<=11 && 9+Arg_3<=Arg_0 && Arg_0+Arg_3<=19 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=17+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=28 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=8+Arg_1 && Arg_0<=18 && 10<=Arg_0 && 2<=Arg_9 && 1+Arg_9<=Arg_0 && 10<=Arg_0 && Arg_0<=20 && Arg_9<=18 && Arg_0<=Arg_4+1 && 1+Arg_4<=Arg_0 && Arg_3+1<=Arg_9 && Arg_9<=1+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=1+Arg_4 && Arg_0+Arg_4<=39 && 1<=Arg_3 && 1+Arg_3<=Arg_9 && Arg_3<=18 && Arg_4<=20 && 11<=Arg_0 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

20 {O(1)}

MPRF:

n_f40___4 [Arg_4-2*Arg_3 ]
n_f59___3 [Arg_4-Arg_9 ]
n_f63___2 [Arg_0-Arg_9 ]
n_f11___8 [Arg_4-2 ]

MPRF for transition 519:n_f11___15(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f40___11(Arg_4,10,Arg3_P,Arg_4,Arg5_P,0,Arg9_P):|:Arg_9<=19 && Arg_9<=19+Arg_6 && Arg_6+Arg_9<=19 && Arg_9<=18+Arg_5 && Arg_5+Arg_9<=20 && Arg_9<=Arg_4 && Arg_4+Arg_9<=38 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=37 && Arg_9<=9+Arg_1 && Arg_1+Arg_9<=29 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=39 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 13<=Arg_0+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 10+Arg_6<=Arg_4 && Arg_4+Arg_6<=19 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 11+Arg_6<=Arg_0 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 11<=Arg_0+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 10+Arg_5<=Arg_0 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=18+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 12<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=19 && Arg_4<=18+Arg_3 && Arg_3+Arg_4<=37 && Arg_4<=9+Arg_1 && Arg_1+Arg_4<=29 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=39 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 21<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 12<=Arg_0+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && 1+Arg_1<=Arg_0 && Arg_0+Arg_1<=30 && 10<=Arg_1 && 21<=Arg_0+Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 11<=Arg_0 && 4<=Arg_4+Arg_5 && 0<=Arg_5 && Arg_4<=20 && Arg_5<=1 && Arg_1<=10 && 10<=Arg_1 && Arg_6<=0 && 0<=Arg_6 && Arg_3<=19 && 6<=Arg_3+Arg_4 && 1<=Arg_3 && 4<=Arg_4 && Arg_5<=1 && 1<=Arg_5 && 10<=Arg_4 && Arg_6<=0 && 0<=Arg_6 && Arg_5<=1 && 1<=Arg_5 && Arg_1<=10 && 10<=Arg_1 && 1+Arg_3<=Arg_9 && Arg_3<=18 && Arg_0<=1+Arg_4 && Arg_0+Arg_4<=39 && 11<=Arg_0 && Arg_4<=20 && 1<=Arg_3 && 0<=Arg5_P && 6<=Arg_4+Arg3_P && 1<=Arg3_P && Arg5_P<=1 && Arg_4<=20 && 2+Arg3_P<=Arg_4 && Arg3_P+1<=Arg9_P && Arg9_P<=1+Arg3_P && Arg_6<=0 && 0<=Arg_6 && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_1<=10 && 10<=Arg_1 of depth 1:

new bound:

28 {O(1)}

MPRF:

n_f40___11 [Arg_4-10 ]
n_f59___10 [Arg_0-10*Arg_5 ]
n_f63___21 [Arg_4-9 ]
n_f11___15 [Arg_4-9 ]

MPRF for transition 538:n_f40___11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f59___10(Arg_0,10,Arg_3,Arg_4,1,0,Arg_9):|:Arg_9<=18 && Arg_9<=18+Arg_6 && Arg_6+Arg_9<=18 && Arg_9<=17+Arg_5 && Arg_5+Arg_9<=19 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=37 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=35 && Arg_9<=8+Arg_1 && Arg_1+Arg_9<=28 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=37 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 10+Arg_6<=Arg_4 && Arg_4+Arg_6<=19 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=17 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=17+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=20 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=18+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=16+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=19 && Arg_4<=18+Arg_3 && Arg_3+Arg_4<=36 && Arg_4<=9+Arg_1 && Arg_1+Arg_4<=29 && Arg_4<=Arg_0 && Arg_0+Arg_4<=38 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 20<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=17 && Arg_3<=7+Arg_1 && Arg_1+Arg_3<=27 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=36 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 10<=Arg_0 && 1<=Arg_3 && 4<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_9 && Arg_0<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_6<=0 && 0<=Arg_6 && 6<=Arg_4+Arg_9 && Arg_5<=1 && 1<=Arg_5 && 10<=Arg_0 && 10<=Arg_4 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=10 && 10<=Arg_1 && 1+Arg_3<=Arg_9 && Arg_9<=1+Arg_3 && Arg_5<=1 && 1+Arg_9<=Arg_0 && Arg_0<=20 && 7<=Arg_0+Arg_9 && 2<=Arg_9 && 0<=Arg_5 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && Arg_0<=Arg_4 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_9 && 6<=Arg_4+Arg_9 && 1<=Arg_3 && Arg_4<=20 && Arg_0<=Arg_4 && 1+Arg_3<=Arg_9 && 6<=Arg_4+Arg_9 && 1<=Arg_3 && Arg_4<=20 && 2+Arg_3<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

28 {O(1)}

MPRF:

n_f40___11 [Arg_0-9 ]
n_f59___10 [Arg_0-10 ]
n_f63___21 [Arg_4-9*Arg_5 ]
n_f11___15 [Arg_4-9 ]

MPRF for transition 561:n_f59___10(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f63___21(Arg_0,10,Arg_3,Arg_0-1,1,0,Arg_9):|:Arg_9<=18 && Arg_9<=18+Arg_6 && Arg_6+Arg_9<=18 && Arg_9<=17+Arg_5 && Arg_5+Arg_9<=19 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=37 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=35 && Arg_9<=8+Arg_1 && Arg_1+Arg_9<=28 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=37 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 10+Arg_6<=Arg_4 && Arg_4+Arg_6<=19 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=17 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 10<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=17+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 9+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=20 && 1<=Arg_5 && 11<=Arg_4+Arg_5 && Arg_4<=18+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=16+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=18+Arg_5 && Arg_4<=19 && Arg_4<=18+Arg_3 && Arg_3+Arg_4<=36 && Arg_4<=9+Arg_1 && Arg_1+Arg_4<=29 && Arg_4<=Arg_0 && Arg_0+Arg_4<=38 && 10<=Arg_4 && 11<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 20<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 20<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=17 && Arg_3<=7+Arg_1 && Arg_1+Arg_3<=27 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=36 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=29 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 10<=Arg_0 && 2<=Arg_9 && 10<=Arg_0 && Arg_0<=20 && 1+Arg_9<=Arg_0 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_3+1<=Arg_9 && Arg_9<=1+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_4 && 2+Arg_3<=Arg_4 && 1<=Arg_3 && 1+Arg_3<=Arg_9 && Arg_4<=20 && 10<=Arg_0 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

19 {O(1)}

MPRF:

n_f40___11 [Arg_0 ]
n_f59___10 [Arg_4 ]
n_f63___21 [Arg_4 ]
n_f11___15 [Arg_4 ]

MPRF for transition 571:n_f63___21(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f11___15(Arg_0,10,Arg_3,Arg_4,1,0,Arg_9):|:Arg_9<=19 && Arg_9<=19+Arg_6 && Arg_6+Arg_9<=19 && Arg_9<=18+Arg_5 && Arg_5+Arg_9<=20 && Arg_9<=Arg_4 && Arg_4+Arg_9<=38 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=37 && Arg_9<=9+Arg_1 && Arg_1+Arg_9<=29 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=39 && 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 11<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=19 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 10+Arg_6<=Arg_0 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 10<=Arg_0+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 9+Arg_5<=Arg_0 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=18+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 11<=Arg_0+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=19 && Arg_4<=18+Arg_3 && Arg_3+Arg_4<=37 && Arg_4<=9+Arg_1 && Arg_1+Arg_4<=29 && 1+Arg_4<=Arg_0 && Arg_0+Arg_4<=39 && 9<=Arg_4 && 10<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 19<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_1<=Arg_0 && Arg_0+Arg_1<=30 && 10<=Arg_1 && 20<=Arg_0+Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 10<=Arg_0 && 2<=Arg_9 && 10<=Arg_0 && Arg_0<=20 && 1+Arg_9<=Arg_0 && Arg_0<=Arg_4+1 && 1+Arg_4<=Arg_0 && Arg_3+1<=Arg_9 && Arg_9<=1+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=1+Arg_4 && Arg_0+Arg_4<=39 && 1<=Arg_3 && 1+Arg_3<=Arg_9 && Arg_3<=18 && Arg_4<=20 && 11<=Arg_0 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

20 {O(1)}

MPRF:

n_f40___11 [Arg_0+8-Arg_1 ]
n_f59___10 [Arg_0-2 ]
n_f63___21 [Arg_4-1 ]
n_f11___15 [Arg_4-2*Arg_5 ]

MPRF for transition 523:n_f11___20(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f40___17(Arg_4,10,Arg3_P,Arg_4,Arg5_P,0,Arg9_P):|:Arg_9<=8 && Arg_9<=8+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=7+Arg_5 && Arg_5+Arg_9<=9 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=17 && Arg_9<=Arg_3 && Arg_3+Arg_9<=16 && 2+Arg_9<=Arg_1 && Arg_1+Arg_9<=18 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=17 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 6<=Arg_3+Arg_9 && Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=6+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 3+Arg_6<=Arg_3 && Arg_3+Arg_6<=8 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 9+Arg_6<=Arg_0 && Arg_0+Arg_6<=9 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 3<=Arg_3+Arg_6 && Arg_3<=8+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 9<=Arg_0+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 2+Arg_5<=Arg_3 && Arg_3+Arg_5<=9 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 8+Arg_5<=Arg_0 && Arg_0+Arg_5<=10 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=7+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 10<=Arg_0+Arg_5 && Arg_0<=8+Arg_5 && Arg_4<=9 && Arg_4<=6+Arg_3 && Arg_3+Arg_4<=17 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 9<=Arg_4 && 12<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=8 && 2+Arg_3<=Arg_1 && Arg_1+Arg_3<=18 && 1+Arg_3<=Arg_0 && Arg_0+Arg_3<=17 && 3<=Arg_3 && 13<=Arg_1+Arg_3 && Arg_1<=7+Arg_3 && 12<=Arg_0+Arg_3 && Arg_0<=6+Arg_3 && Arg_1<=10 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=19 && 10<=Arg_1 && 19<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=9 && 9<=Arg_0 && 4<=Arg_4+Arg_5 && 0<=Arg_5 && Arg_4<=20 && Arg_5<=1 && Arg_1<=10 && 10<=Arg_1 && Arg_6<=0 && 0<=Arg_6 && 3<=Arg_3+Arg_5 && Arg_3<=19 && 6<=Arg_3+Arg_4 && 1<=Arg_3 && 4<=Arg_4 && Arg_3<=17 && Arg_5<=1 && 1<=Arg_5 && Arg_4<=9 && Arg_3<=8 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && Arg_3<=Arg_9 && Arg_9<=Arg_3 && Arg_0<=10 && Arg_4<=20 && 6<=Arg_4+Arg_9 && 2<=Arg_9 && 3<=Arg_4 && Arg_0<=1+Arg_4 && 0<=Arg5_P && 6<=Arg_4+Arg3_P && 1<=Arg3_P && Arg5_P<=1 && Arg_4<=20 && 2+Arg3_P<=Arg_4 && Arg3_P+1<=Arg9_P && Arg9_P<=1+Arg3_P && Arg_6<=0 && 0<=Arg_6 && Arg_5<=Arg5_P && Arg5_P<=Arg_5 && Arg_3<=Arg3_P && Arg3_P<=Arg_3 && Arg_1<=10 && 10<=Arg_1 of depth 1:

new bound:

15 {O(1)}

MPRF:

n_f40___17 [8-Arg_3 ]
n_f59___16 [9-Arg_9 ]
n_f63___22 [9*Arg_5-Arg_9 ]
n_f11___20 [9-Arg_9 ]

MPRF for transition 539:n_f40___17(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f59___16(Arg_0,10,Arg_3,Arg_4,1,0,Arg_9):|:Arg_9<=8 && Arg_9<=8+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=7+Arg_5 && Arg_5+Arg_9<=9 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=17 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=15 && 2+Arg_9<=Arg_1 && Arg_1+Arg_9<=18 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=17 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 5<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=6+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 2+Arg_6<=Arg_3 && Arg_3+Arg_6<=7 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 9+Arg_6<=Arg_0 && Arg_0+Arg_6<=9 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=7+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 9<=Arg_0+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=8 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 8+Arg_5<=Arg_0 && Arg_0+Arg_5<=10 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=6+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 10<=Arg_0+Arg_5 && Arg_0<=8+Arg_5 && Arg_4<=9 && Arg_4<=7+Arg_3 && Arg_3+Arg_4<=16 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 9<=Arg_4 && 11<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=7 && 3+Arg_3<=Arg_1 && Arg_1+Arg_3<=17 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=16 && 2<=Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=7+Arg_3 && Arg_1<=10 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=19 && 10<=Arg_1 && 19<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=9 && 9<=Arg_0 && 1<=Arg_3 && 4<=Arg_4 && Arg_4<=20 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_9 && Arg_0<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_6<=0 && 0<=Arg_6 && Arg_3<=17 && 6<=Arg_4+Arg_9 && Arg_5<=1 && 1<=Arg_5 && Arg_0<=9 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_1<=10 && 10<=Arg_1 && 1+Arg_3<=Arg_9 && Arg_9<=1+Arg_3 && Arg_5<=1 && 1+Arg_9<=Arg_0 && Arg_0<=20 && 7<=Arg_0+Arg_9 && 2<=Arg_9 && 0<=Arg_5 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_1<=10 && 10<=Arg_1 && Arg_0<=Arg_4 && 2+Arg_3<=Arg_4 && 1+Arg_3<=Arg_9 && 6<=Arg_4+Arg_9 && 1<=Arg_3 && Arg_4<=20 && Arg_0<=Arg_4 && 1+Arg_3<=Arg_9 && 6<=Arg_4+Arg_9 && 1<=Arg_3 && Arg_4<=20 && 2+Arg_3<=Arg_4 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

15 {O(1)}

MPRF:

n_f40___17 [8-Arg_3 ]
n_f59___16 [7-Arg_3 ]
n_f63___22 [8*Arg_5-Arg_9 ]
n_f11___20 [8-Arg_9 ]

MPRF for transition 562:n_f59___16(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f63___22(Arg_0,10,Arg_3,Arg_4,1,0,Arg_9):|:Arg_9<=8 && Arg_9<=8+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=7+Arg_5 && Arg_5+Arg_9<=9 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=17 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=15 && 2+Arg_9<=Arg_1 && Arg_1+Arg_9<=18 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=17 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 5<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=6+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 2+Arg_6<=Arg_3 && Arg_3+Arg_6<=7 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 9+Arg_6<=Arg_0 && Arg_0+Arg_6<=9 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=7+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 9<=Arg_0+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=8 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 8+Arg_5<=Arg_0 && Arg_0+Arg_5<=10 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=6+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 10<=Arg_0+Arg_5 && Arg_0<=8+Arg_5 && Arg_4<=9 && Arg_4<=7+Arg_3 && Arg_3+Arg_4<=16 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 9<=Arg_4 && 11<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=7 && 3+Arg_3<=Arg_1 && Arg_1+Arg_3<=17 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=16 && 2<=Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=7+Arg_3 && Arg_1<=10 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=19 && 10<=Arg_1 && 19<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=9 && 9<=Arg_0 && 2<=Arg_9 && 7<=Arg_0+Arg_9 && Arg_0<=9 && 1+Arg_9<=Arg_0 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_3+1<=Arg_9 && Arg_9<=1+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && Arg_0<=Arg_4 && 1+Arg_3<=Arg_9 && 6<=Arg_4+Arg_9 && 1<=Arg_3 && 2+Arg_3<=Arg_4 && Arg_4<=20 && Arg_0<=9 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

1395 {O(1)}

MPRF:

n_f40___17 [78*Arg_0-99*Arg_3 ]
n_f59___16 [801-99*Arg_9 ]
n_f63___22 [790-99*Arg_9 ]
n_f11___20 [78*Arg_4-99*Arg_9 ]

MPRF for transition 572:n_f63___22(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9) -> n_f11___20(Arg_0,10,Arg_9,Arg_4,1,0,Arg_9):|:Arg_9<=8 && Arg_9<=8+Arg_6 && Arg_6+Arg_9<=8 && Arg_9<=7+Arg_5 && Arg_5+Arg_9<=9 && 1+Arg_9<=Arg_4 && Arg_4+Arg_9<=17 && Arg_9<=1+Arg_3 && Arg_3+Arg_9<=15 && 2+Arg_9<=Arg_1 && Arg_1+Arg_9<=18 && 1+Arg_9<=Arg_0 && Arg_0+Arg_9<=17 && 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 4<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 12<=Arg_4+Arg_9 && Arg_4<=6+Arg_9 && 5<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && 12<=Arg_0+Arg_9 && Arg_0<=6+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 9+Arg_6<=Arg_4 && Arg_4+Arg_6<=9 && 2+Arg_6<=Arg_3 && Arg_3+Arg_6<=7 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 9+Arg_6<=Arg_0 && Arg_0+Arg_6<=9 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 9<=Arg_4+Arg_6 && Arg_4<=9+Arg_6 && 2<=Arg_3+Arg_6 && Arg_3<=7+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && 9<=Arg_0+Arg_6 && Arg_0<=9+Arg_6 && Arg_5<=1 && 8+Arg_5<=Arg_4 && Arg_4+Arg_5<=10 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=8 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 8+Arg_5<=Arg_0 && Arg_0+Arg_5<=10 && 1<=Arg_5 && 10<=Arg_4+Arg_5 && Arg_4<=8+Arg_5 && 3<=Arg_3+Arg_5 && Arg_3<=6+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && 10<=Arg_0+Arg_5 && Arg_0<=8+Arg_5 && Arg_4<=9 && Arg_4<=7+Arg_3 && Arg_3+Arg_4<=16 && 1+Arg_4<=Arg_1 && Arg_1+Arg_4<=19 && Arg_4<=Arg_0 && Arg_0+Arg_4<=18 && 9<=Arg_4 && 11<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 19<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=7 && 3+Arg_3<=Arg_1 && Arg_1+Arg_3<=17 && 2+Arg_3<=Arg_0 && Arg_0+Arg_3<=16 && 2<=Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && 11<=Arg_0+Arg_3 && Arg_0<=7+Arg_3 && Arg_1<=10 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=19 && 10<=Arg_1 && 19<=Arg_0+Arg_1 && 1+Arg_0<=Arg_1 && Arg_0<=9 && 9<=Arg_0 && 2<=Arg_9 && 7<=Arg_0+Arg_9 && Arg_0<=9 && 1+Arg_9<=Arg_0 && Arg_0<=Arg_4 && Arg_4<=Arg_0 && Arg_3+1<=Arg_9 && Arg_9<=1+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 && 1+Arg_3<=Arg_9 && Arg_0<=1+Arg_4 && Arg_3<=9+Arg_4 && 6<=Arg_4+Arg_9 && 3<=Arg_4 && 1<=Arg_3 && Arg_3<=18 && Arg_4<=20 && Arg_0<=10 && Arg_1<=10 && 10<=Arg_1 && Arg_5<=1 && 1<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

135 {O(1)}

MPRF:

n_f40___17 [8*Arg_4-9*Arg_3 ]
n_f59___16 [8*Arg_4+72-8*Arg_0-9*Arg_3 ]
n_f63___22 [72-9*Arg_3 ]
n_f11___20 [8*Arg_0-9*Arg_3 ]

CFR did not improve the program. Rolling back

All Bounds

Timebounds

Overall timebound:inf {Infinity}
59: f0->f11: 1 {O(1)}
60: f11->f11: 10 {O(1)}
61: f11->f11: 10 {O(1)}
62: f11->f11: 10 {O(1)}
63: f11->f40: 227 {O(1)}
65: f11->f69: 1 {O(1)}
67: f40->f59: 247 {O(1)}
68: f40->f43: 4692907 {O(1)}
69: f43->f43: inf {Infinity}
70: f43->f48: 4692681 {O(1)}
71: f48->f48: inf {Infinity}
72: f48->f54: 4692680 {O(1)}
73: f48->f54: 10 {O(1)}
75: f54->f40: 20 {O(1)}
76: f54->f40: 4692680 {O(1)}
77: f59->f63: 247 {O(1)}
78: f59->f63: 21 {O(1)}
79: f63->f11: 21 {O(1)}
80: f63->f11: 205 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
59: f0->f11: 1 {O(1)}
60: f11->f11: 10 {O(1)}
61: f11->f11: 10 {O(1)}
62: f11->f11: 10 {O(1)}
63: f11->f40: 227 {O(1)}
65: f11->f69: 1 {O(1)}
67: f40->f59: 247 {O(1)}
68: f40->f43: 4692907 {O(1)}
69: f43->f43: inf {Infinity}
70: f43->f48: 4692681 {O(1)}
71: f48->f48: inf {Infinity}
72: f48->f54: 4692680 {O(1)}
73: f48->f54: 10 {O(1)}
75: f54->f40: 20 {O(1)}
76: f54->f40: 4692680 {O(1)}
77: f59->f63: 247 {O(1)}
78: f59->f63: 21 {O(1)}
79: f63->f11: 21 {O(1)}
80: f63->f11: 205 {O(1)}

Sizebounds

59: f0->f11, Arg_0: Arg_0 {O(n)}
59: f0->f11, Arg_1: 10 {O(1)}
59: f0->f11, Arg_3: 1 {O(1)}
59: f0->f11, Arg_4: 20 {O(1)}
59: f0->f11, Arg_5: 0 {O(1)}
59: f0->f11, Arg_6: 0 {O(1)}
59: f0->f11, Arg_9: Arg_9 {O(n)}
59: f0->f11, Arg_10: Arg_10 {O(n)}
60: f11->f11, Arg_1: 10 {O(1)}
60: f11->f11, Arg_4: 20 {O(1)}
60: f11->f11, Arg_5: 1 {O(1)}
60: f11->f11, Arg_6: 1 {O(1)}
61: f11->f11, Arg_1: 10 {O(1)}
61: f11->f11, Arg_3: 19 {O(1)}
61: f11->f11, Arg_4: 20 {O(1)}
61: f11->f11, Arg_5: 1 {O(1)}
61: f11->f11, Arg_6: 1 {O(1)}
62: f11->f11, Arg_1: 10 {O(1)}
62: f11->f11, Arg_3: 19 {O(1)}
62: f11->f11, Arg_4: 20 {O(1)}
62: f11->f11, Arg_5: 1 {O(1)}
62: f11->f11, Arg_6: 1 {O(1)}
63: f11->f40, Arg_0: 20 {O(1)}
63: f11->f40, Arg_1: 10 {O(1)}
63: f11->f40, Arg_3: 18 {O(1)}
63: f11->f40, Arg_4: 20 {O(1)}
63: f11->f40, Arg_5: 1 {O(1)}
63: f11->f40, Arg_6: 0 {O(1)}
63: f11->f40, Arg_9: 19 {O(1)}
65: f11->f69, Arg_1: 10 {O(1)}
65: f11->f69, Arg_4: 20 {O(1)}
65: f11->f69, Arg_5: 1 {O(1)}
65: f11->f69, Arg_6: 1 {O(1)}
67: f40->f59, Arg_1: 10 {O(1)}
67: f40->f59, Arg_3: 18 {O(1)}
67: f40->f59, Arg_4: 20 {O(1)}
67: f40->f59, Arg_5: 1 {O(1)}
67: f40->f59, Arg_6: 0 {O(1)}
68: f40->f43, Arg_0: 39 {O(1)}
68: f40->f43, Arg_1: 10 {O(1)}
68: f40->f43, Arg_3: 18 {O(1)}
68: f40->f43, Arg_4: 20 {O(1)}
68: f40->f43, Arg_5: 0 {O(1)}
68: f40->f43, Arg_6: 0 {O(1)}
68: f40->f43, Arg_9: 40 {O(1)}
69: f43->f43, Arg_0: 39 {O(1)}
69: f43->f43, Arg_1: 10 {O(1)}
69: f43->f43, Arg_3: 18 {O(1)}
69: f43->f43, Arg_4: 20 {O(1)}
69: f43->f43, Arg_5: 0 {O(1)}
69: f43->f43, Arg_6: 0 {O(1)}
70: f43->f48, Arg_0: 80 {O(1)}
70: f43->f48, Arg_1: 10 {O(1)}
70: f43->f48, Arg_3: 18 {O(1)}
70: f43->f48, Arg_4: 20 {O(1)}
70: f43->f48, Arg_5: 0 {O(1)}
70: f43->f48, Arg_6: 0 {O(1)}
71: f48->f48, Arg_1: 10 {O(1)}
71: f48->f48, Arg_3: 18 {O(1)}
71: f48->f48, Arg_4: 20 {O(1)}
71: f48->f48, Arg_5: 0 {O(1)}
71: f48->f48, Arg_6: 0 {O(1)}
72: f48->f54, Arg_0: 19 {O(1)}
72: f48->f54, Arg_1: 10 {O(1)}
72: f48->f54, Arg_3: 17 {O(1)}
72: f48->f54, Arg_4: 20 {O(1)}
72: f48->f54, Arg_5: 0 {O(1)}
72: f48->f54, Arg_6: 0 {O(1)}
72: f48->f54, Arg_9: 19 {O(1)}
73: f48->f54, Arg_1: 10 {O(1)}
73: f48->f54, Arg_3: 18 {O(1)}
73: f48->f54, Arg_4: 20 {O(1)}
73: f48->f54, Arg_5: 1 {O(1)}
73: f48->f54, Arg_6: 0 {O(1)}
75: f54->f40, Arg_1: 10 {O(1)}
75: f54->f40, Arg_3: 18 {O(1)}
75: f54->f40, Arg_4: 20 {O(1)}
75: f54->f40, Arg_5: 1 {O(1)}
75: f54->f40, Arg_6: 0 {O(1)}
76: f54->f40, Arg_0: 19 {O(1)}
76: f54->f40, Arg_1: 10 {O(1)}
76: f54->f40, Arg_3: 17 {O(1)}
76: f54->f40, Arg_4: 20 {O(1)}
76: f54->f40, Arg_5: 0 {O(1)}
76: f54->f40, Arg_6: 0 {O(1)}
76: f54->f40, Arg_9: 19 {O(1)}
77: f59->f63, Arg_1: 10 {O(1)}
77: f59->f63, Arg_3: 18 {O(1)}
77: f59->f63, Arg_4: 20 {O(1)}
77: f59->f63, Arg_5: 1 {O(1)}
77: f59->f63, Arg_6: 0 {O(1)}
78: f59->f63, Arg_0: 20 {O(1)}
78: f59->f63, Arg_1: 10 {O(1)}
78: f59->f63, Arg_3: 18 {O(1)}
78: f59->f63, Arg_4: 19 {O(1)}
78: f59->f63, Arg_5: 1 {O(1)}
78: f59->f63, Arg_6: 0 {O(1)}
79: f63->f11, Arg_0: 20 {O(1)}
79: f63->f11, Arg_1: 10 {O(1)}
79: f63->f11, Arg_3: 18 {O(1)}
79: f63->f11, Arg_4: 20 {O(1)}
79: f63->f11, Arg_5: 1 {O(1)}
79: f63->f11, Arg_6: 0 {O(1)}
80: f63->f11, Arg_1: 10 {O(1)}
80: f63->f11, Arg_4: 20 {O(1)}
80: f63->f11, Arg_5: 1 {O(1)}
80: f63->f11, Arg_6: 0 {O(1)}