Initial Problem

Start: start0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: cut, lbl42, lbl72, start, start0, stop
Transitions:
11:cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> cut(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_3 && 0<=1+Arg_3 && Arg_3+1<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
10:cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_3 && 0<=Arg_1 && 0<=1+Arg_3 && Arg_3+1<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
12:cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl72(Arg_0,1+Arg_1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_1<=Arg_7 && 0<=Arg_3 && 0<=1+Arg_3 && Arg_3+1<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
9:cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
7:lbl42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> cut(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=1+Arg_1 && 0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
6:lbl42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_1 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
8:lbl42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl72(Arg_0,1+Arg_1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_1<=Arg_7 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
4:lbl72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3+1<=Arg_0 && 0<=1+Arg_3 && Arg_1<=Arg_7+1 && Arg_4+1<=Arg_1 && Arg_1<=Arg_4+1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
5:lbl72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl72(Arg_0,1+Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_1<=Arg_7 && Arg_3+1<=Arg_0 && 0<=1+Arg_3 && Arg_1<=Arg_7+1 && Arg_4+1<=Arg_1 && Arg_1<=Arg_4+1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
2:start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> cut(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
1:start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<=Arg_0 && 0<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
3:start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl72(Arg_0,1+Arg_1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_2<=Arg_7 && 0<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
0:start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_0+1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
13:start0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> start(Arg_0,Arg_2,Arg_2,Arg_0,Arg_5,Arg_5,Arg_7,Arg_7)

Preprocessing

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 for location lbl72

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location start

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 for location cut

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 for location lbl42

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && 1+Arg_3<=0 && Arg_3<=Arg_0 for location stop

Problem after Preprocessing

Start: start0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: cut, lbl42, lbl72, start, start0, stop
Transitions:
11:cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> cut(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_3 && Arg_3+1<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
10:cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 && 0<=Arg_3 && 0<=Arg_1 && 0<=1+Arg_3 && Arg_3+1<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
12:cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl72(Arg_0,1+Arg_1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 && Arg_1<=Arg_7 && 0<=Arg_3 && 0<=1+Arg_3 && Arg_3+1<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
9:cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 && 0<=Arg_0 && Arg_3+1<=0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6
7:lbl42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> cut(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
6:lbl42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 0<=Arg_1 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
8:lbl42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl72(Arg_0,1+Arg_1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && Arg_1<=Arg_7 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6
4:lbl72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 && Arg_3+1<=Arg_0 && 0<=1+Arg_3 && Arg_1<=Arg_7+1 && Arg_4+1<=Arg_1 && Arg_1<=Arg_4+1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
5:lbl72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl72(Arg_0,1+Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 && Arg_1<=Arg_7 && Arg_3+1<=Arg_0 && 0<=1+Arg_3 && Arg_1<=Arg_7+1 && Arg_4+1<=Arg_1 && Arg_1<=Arg_4+1 && Arg_6<=Arg_7 && Arg_7<=Arg_6
2:start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> cut(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
1:start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=Arg_0 && 0<=Arg_2 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
3:start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl72(Arg_0,1+Arg_1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_2<=Arg_7 && 0<=Arg_0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
0:start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && Arg_0+1<=0 && Arg_1<=Arg_2 && Arg_2<=Arg_1 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_4<=Arg_5 && Arg_5<=Arg_4 && Arg_6<=Arg_7 && Arg_7<=Arg_6
13:start0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> start(Arg_0,Arg_2,Arg_2,Arg_0,Arg_5,Arg_5,Arg_7,Arg_7)

MPRF for transition 10:cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 && 0<=Arg_3 && 0<=Arg_1 && 0<=1+Arg_3 && Arg_3+1<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

3*Arg_0+4 {O(n)}

MPRF:

lbl42 [Arg_3 ]
cut [Arg_3+1 ]
lbl72 [Arg_3+1 ]

MPRF for transition 11:cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> cut(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_3 && Arg_3+1<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

2*Arg_2+3*Arg_0+4 {O(n)}

MPRF:

lbl42 [Arg_3 ]
cut [Arg_3+1 ]
lbl72 [Arg_1+Arg_3-Arg_4 ]

MPRF for transition 12:cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl72(Arg_0,1+Arg_1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 && Arg_1<=Arg_7 && 0<=Arg_3 && 0<=1+Arg_3 && Arg_3+1<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

3*Arg_0+5 {O(n)}

MPRF:

lbl42 [Arg_3+1 ]
cut [Arg_3+1 ]
lbl72 [Arg_3+1 ]

MPRF for transition 7:lbl42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> cut(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

2*Arg_2+3*Arg_0+5 {O(n)}

MPRF:

lbl42 [Arg_3+1 ]
cut [Arg_3+1 ]
lbl72 [Arg_1+Arg_3-Arg_4 ]

MPRF for transition 8:lbl42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl72(Arg_0,1+Arg_1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && Arg_1<=Arg_7 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

3*Arg_0+5 {O(n)}

MPRF:

lbl42 [Arg_3+1 ]
cut [Arg_3+1 ]
lbl72 [Arg_3+1 ]

MPRF for transition 4:lbl72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> cut(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 && Arg_3+1<=Arg_0 && 0<=1+Arg_3 && Arg_1<=Arg_7+1 && Arg_4+1<=Arg_1 && Arg_1<=Arg_4+1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

3*Arg_0+6 {O(n)}

MPRF:

lbl42 [Arg_3+1 ]
cut [Arg_3+1 ]
lbl72 [Arg_3+2 ]

MPRF for transition 6:lbl42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 0<=Arg_1 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

48*Arg_0*Arg_0+48*Arg_0*Arg_7+125*Arg_0+2*Arg_2+81*Arg_7+75 {O(n^2)}

MPRF:

lbl42 [Arg_1+Arg_3+1 ]
cut [Arg_1+Arg_3 ]
lbl72 [Arg_3+Arg_6+1 ]

MPRF for transition 5:lbl72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> lbl72(Arg_0,1+Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && 0<=Arg_0 && Arg_1<=Arg_7 && Arg_3+1<=Arg_0 && 0<=1+Arg_3 && Arg_1<=Arg_7+1 && Arg_4+1<=Arg_1 && Arg_1<=Arg_4+1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

24*Arg_0*Arg_7+2*Arg_2+35*Arg_7+9*Arg_0+19 {O(n^2)}

MPRF:

lbl42 [Arg_7+3 ]
cut [Arg_7+2-Arg_1 ]
lbl72 [Arg_7+2-Arg_4 ]

Analysing control-flow refined program

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 for location n_cut___3

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 for location n_cut___6

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_lbl72___15

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && Arg_4<=Arg_2 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && Arg_1<=1+Arg_2 && 0<=Arg_0 for location lbl72

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 1<=Arg_0 for location n_cut___19

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && Arg_0<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 for location start

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_cut___16

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && 1+Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_0 for location n_lbl72___1

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1<=Arg_0 for location n_lbl72___17

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 0<=Arg_0 for location cut

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_2<=1+Arg_1 && 0<=Arg_2 && 0<=1+Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 0<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 for location lbl42

Found invariant Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_cut___10

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1+Arg_2<=Arg_1 && 0<=Arg_0 for location n_cut___2

Found invariant Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_cut___8

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_cut___12

Found invariant Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && 1+Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && 1+Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_lbl42___11

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 for location n_lbl72___4

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && 1+Arg_3<=0 && Arg_3<=Arg_0 for location stop

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_cut___14

Found invariant Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=2+Arg_1+Arg_7 && Arg_1<=Arg_7 && 0<=Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=2+Arg_1+Arg_6 && Arg_1<=Arg_6 && 0<=Arg_0+Arg_6 && Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=1+Arg_3+Arg_4 && 0<=2+Arg_1+Arg_4 && Arg_1<=Arg_4 && 0<=Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_lbl42___13

Found invariant Arg_7<=Arg_6 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=1+Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 0<=1+Arg_3+Arg_7 && 0<=Arg_1+Arg_7 && Arg_1<=Arg_7 && 1<=Arg_0+Arg_7 && 0<=Arg_6 && 0<=1+Arg_4+Arg_6 && 1+Arg_4<=Arg_6 && 0<=1+Arg_3+Arg_6 && 0<=Arg_1+Arg_6 && Arg_1<=Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=Arg_0+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && 1<=Arg_0 for location n_lbl72___9

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 for location n_lbl42___5

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 for location n_lbl42___18

Found invariant Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1<=Arg_0 for location n_cut___7

MPRF for transition 208:n_lbl72___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___1(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && 1+Arg_2<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && 1+Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && 1+Arg_2<=Arg_4 && Arg_1<=1+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 2+Arg_2<=Arg_1 && 0<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=1+Arg_3 && Arg_1<=Arg_6 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

Arg_2+Arg_7+3 {O(n)}

MPRF:

n_lbl72___1 [Arg_6+1-Arg_1 ]

MPRF for transition 205:n_lbl42___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___5(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 0<=Arg_1+Arg_2 && 2+Arg_1<=Arg_2 && 1<=Arg_0+Arg_2 && 0<=1+Arg_1 && 0<=1+Arg_0+Arg_1 && 0<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_1 && 0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

Arg_2+3 {O(n)}

MPRF:

n_lbl42___5 [Arg_1+1 ]

MPRF for transition 216:n_lbl72___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___4(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && 0<=1+Arg_7 && 0<=2+Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=2+Arg_4+Arg_7 && Arg_4<=Arg_7 && 0<=2+Arg_3+Arg_7 && 0<=1+Arg_2+Arg_7 && 0<=1+Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 0<=1+Arg_0+Arg_7 && 0<=1+Arg_6 && 0<=2+Arg_4+Arg_6 && Arg_4<=Arg_6 && 0<=2+Arg_3+Arg_6 && 0<=1+Arg_2+Arg_6 && 0<=1+Arg_1+Arg_6 && Arg_1<=1+Arg_6 && 0<=1+Arg_0+Arg_6 && 1+Arg_4<=Arg_1 && 0<=1+Arg_4 && 0<=2+Arg_3+Arg_4 && 0<=1+Arg_2+Arg_4 && 0<=1+Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 0<=1+Arg_0+Arg_4 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=1+Arg_2+Arg_3 && 0<=1+Arg_1+Arg_3 && 0<=1+Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 0<=Arg_2 && 0<=Arg_1+Arg_2 && 0<=Arg_0+Arg_2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && 0<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_4 && Arg_4<=Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=1+Arg_3 && Arg_1<=Arg_6 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

3*Arg_2+3*Arg_7+11 {O(n)}

MPRF:

n_lbl72___4 [Arg_6+1-Arg_1 ]

MPRF for transition 171:n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___19(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

Arg_0+3 {O(n)}

MPRF:

n_cut___19 [Arg_3+1 ]

MPRF for transition 168:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

9*Arg_0+15 {O(n)}

MPRF:

n_cut___16 [Arg_3+1 ]
n_lbl42___18 [Arg_3 ]

MPRF for transition 169:n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=2+Arg_1+Arg_3 && 0<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_1 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

9*Arg_2+21 {O(n)}

MPRF:

n_cut___16 [Arg_1+1 ]
n_lbl42___18 [Arg_1+1 ]

MPRF for transition 198:n_lbl42___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___16(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=1+Arg_1 && 0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

9*Arg_0+18 {O(n)}

MPRF:

n_cut___16 [Arg_3+1 ]
n_lbl42___18 [Arg_3+1 ]

MPRF for transition 199:n_lbl42___18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl42___18(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_5<=Arg_4 && Arg_4<=Arg_5 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 0<=1+Arg_1+Arg_3 && 1<=Arg_0+Arg_3 && 0<=1+Arg_1 && 0<=Arg_0+Arg_1 && 1<=Arg_0 && 0<=1+Arg_1 && Arg_3<=Arg_0 && 0<=Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=Arg_3 && Arg_3<=Arg_0 && 0<=1+Arg_1 && 0<=Arg_1 && 0<=Arg_3 && Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

9*Arg_2+20 {O(n)}

MPRF:

n_cut___16 [Arg_1 ]
n_lbl42___18 [Arg_1+1 ]

MPRF for transition 186:n_cut___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___7(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=Arg_3 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

9*Arg_0+23 {O(n)}

MPRF:

n_cut___7 [Arg_3+1 ]
n_lbl72___17 [Arg_3+1 ]

MPRF for transition 188:n_cut___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___17(Arg_0,Arg_1+1,Arg_2,Arg_3-1,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=1+Arg_6 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=Arg_3 && Arg_1<=Arg_6 && 1+Arg_3<=Arg_0 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

11*Arg_2+11*Arg_7+25 {O(n)}

MPRF:

n_cut___7 [Arg_6+1-Arg_1 ]
n_lbl72___17 [Arg_7+1-Arg_1 ]

MPRF for transition 211:n_lbl72___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_cut___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1-1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=1+Arg_3 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

11*Arg_2+11*Arg_7+28 {O(n)}

MPRF:

n_cut___7 [Arg_6+1-Arg_1 ]
n_lbl72___17 [Arg_7+2-Arg_1 ]

MPRF for transition 212:n_lbl72___17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_lbl72___17(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_6):|:Arg_7<=Arg_6 && Arg_6<=Arg_7 && Arg_4<=Arg_7 && Arg_1<=1+Arg_7 && Arg_4<=Arg_6 && Arg_1<=1+Arg_6 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 2+Arg_3<=Arg_0 && 0<=1+Arg_3 && 0<=Arg_0+Arg_3 && 1<=Arg_0 && Arg_1<=1+Arg_6 && 1+Arg_3<=Arg_0 && 0<=1+Arg_3 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 2+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && Arg_1<=1+Arg_4 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 && 0<=1+Arg_3 && 1+Arg_3<=Arg_0 && Arg_1<=1+Arg_7 && 0<=1+Arg_3 && Arg_1<=Arg_6 && 1+Arg_3<=Arg_0 && Arg_1<=Arg_4+1 && 1+Arg_4<=Arg_1 && Arg_6<=Arg_7 && Arg_7<=Arg_6 of depth 1:

new bound:

11*Arg_2+11*Arg_7+24 {O(n)}

MPRF:

n_cut___7 [Arg_6-Arg_1 ]
n_lbl72___17 [Arg_6+1-Arg_1 ]

All Bounds

Timebounds

Overall timebound:48*Arg_0*Arg_0+72*Arg_0*Arg_7+116*Arg_7+152*Arg_0+8*Arg_2+129 {O(n^2)}
9: cut->stop: 1 {O(1)}
10: cut->lbl42: 3*Arg_0+4 {O(n)}
11: cut->cut: 2*Arg_2+3*Arg_0+4 {O(n)}
12: cut->lbl72: 3*Arg_0+5 {O(n)}
6: lbl42->lbl42: 48*Arg_0*Arg_0+48*Arg_0*Arg_7+125*Arg_0+2*Arg_2+81*Arg_7+75 {O(n^2)}
7: lbl42->cut: 2*Arg_2+3*Arg_0+5 {O(n)}
8: lbl42->lbl72: 3*Arg_0+5 {O(n)}
4: lbl72->cut: 3*Arg_0+6 {O(n)}
5: lbl72->lbl72: 24*Arg_0*Arg_7+2*Arg_2+35*Arg_7+9*Arg_0+19 {O(n^2)}
0: start->stop: 1 {O(1)}
1: start->lbl42: 1 {O(1)}
2: start->cut: 1 {O(1)}
3: start->lbl72: 1 {O(1)}
13: start0->start: 1 {O(1)}

Costbounds

Overall costbound: 48*Arg_0*Arg_0+72*Arg_0*Arg_7+116*Arg_7+152*Arg_0+8*Arg_2+129 {O(n^2)}
9: cut->stop: 1 {O(1)}
10: cut->lbl42: 3*Arg_0+4 {O(n)}
11: cut->cut: 2*Arg_2+3*Arg_0+4 {O(n)}
12: cut->lbl72: 3*Arg_0+5 {O(n)}
6: lbl42->lbl42: 48*Arg_0*Arg_0+48*Arg_0*Arg_7+125*Arg_0+2*Arg_2+81*Arg_7+75 {O(n^2)}
7: lbl42->cut: 2*Arg_2+3*Arg_0+5 {O(n)}
8: lbl42->lbl72: 3*Arg_0+5 {O(n)}
4: lbl72->cut: 3*Arg_0+6 {O(n)}
5: lbl72->lbl72: 24*Arg_0*Arg_7+2*Arg_2+35*Arg_7+9*Arg_0+19 {O(n^2)}
0: start->stop: 1 {O(1)}
1: start->lbl42: 1 {O(1)}
2: start->cut: 1 {O(1)}
3: start->lbl72: 1 {O(1)}
13: start0->start: 1 {O(1)}

Sizebounds

9: cut->stop, Arg_0: 25*Arg_0 {O(n)}
9: cut->stop, Arg_1: 72*Arg_0*Arg_7+105*Arg_7+31*Arg_2+45*Arg_0+105 {O(n^2)}
9: cut->stop, Arg_2: 25*Arg_2 {O(n)}
9: cut->stop, Arg_3: 1 {O(1)}
9: cut->stop, Arg_4: 960*Arg_0*Arg_7+1400*Arg_7+420*Arg_2+600*Arg_0+9*Arg_5+1410 {O(n^2)}
9: cut->stop, Arg_5: 25*Arg_5 {O(n)}
9: cut->stop, Arg_6: 25*Arg_7 {O(n)}
9: cut->stop, Arg_7: 25*Arg_7 {O(n)}
10: cut->lbl42, Arg_0: 8*Arg_0 {O(n)}
10: cut->lbl42, Arg_1: 24*Arg_0*Arg_7+10*Arg_2+15*Arg_0+35*Arg_7+35 {O(n^2)}
10: cut->lbl42, Arg_2: 8*Arg_2 {O(n)}
10: cut->lbl42, Arg_3: 8*Arg_0+6 {O(n)}
10: cut->lbl42, Arg_4: 384*Arg_0*Arg_7+168*Arg_2+240*Arg_0+4*Arg_5+560*Arg_7+564 {O(n^2)}
10: cut->lbl42, Arg_5: 8*Arg_5 {O(n)}
10: cut->lbl42, Arg_6: 8*Arg_7 {O(n)}
10: cut->lbl42, Arg_7: 8*Arg_7 {O(n)}
11: cut->cut, Arg_0: 8*Arg_0 {O(n)}
11: cut->cut, Arg_1: 24*Arg_0*Arg_7+10*Arg_2+15*Arg_0+35*Arg_7+35 {O(n^2)}
11: cut->cut, Arg_2: 8*Arg_2 {O(n)}
11: cut->cut, Arg_3: 8*Arg_0+6 {O(n)}
11: cut->cut, Arg_4: 384*Arg_0*Arg_7+168*Arg_2+240*Arg_0+4*Arg_5+560*Arg_7+564 {O(n^2)}
11: cut->cut, Arg_5: 8*Arg_5 {O(n)}
11: cut->cut, Arg_6: 8*Arg_7 {O(n)}
11: cut->cut, Arg_7: 8*Arg_7 {O(n)}
12: cut->lbl72, Arg_0: 8*Arg_0 {O(n)}
12: cut->lbl72, Arg_1: 24*Arg_0*Arg_7+10*Arg_2+15*Arg_0+35*Arg_7+35 {O(n^2)}
12: cut->lbl72, Arg_2: 8*Arg_2 {O(n)}
12: cut->lbl72, Arg_3: 8*Arg_0+6 {O(n)}
12: cut->lbl72, Arg_4: 72*Arg_0*Arg_7+105*Arg_7+31*Arg_2+45*Arg_0+105 {O(n^2)}
12: cut->lbl72, Arg_5: 8*Arg_5 {O(n)}
12: cut->lbl72, Arg_6: 8*Arg_7 {O(n)}
12: cut->lbl72, Arg_7: 8*Arg_7 {O(n)}
6: lbl42->lbl42, Arg_0: 8*Arg_0 {O(n)}
6: lbl42->lbl42, Arg_1: 24*Arg_0*Arg_7+10*Arg_2+15*Arg_0+35*Arg_7+35 {O(n^2)}
6: lbl42->lbl42, Arg_2: 8*Arg_2 {O(n)}
6: lbl42->lbl42, Arg_3: 8*Arg_0+6 {O(n)}
6: lbl42->lbl42, Arg_4: 384*Arg_0*Arg_7+168*Arg_2+240*Arg_0+4*Arg_5+560*Arg_7+564 {O(n^2)}
6: lbl42->lbl42, Arg_5: 8*Arg_5 {O(n)}
6: lbl42->lbl42, Arg_6: 8*Arg_7 {O(n)}
6: lbl42->lbl42, Arg_7: 8*Arg_7 {O(n)}
7: lbl42->cut, Arg_0: 8*Arg_0 {O(n)}
7: lbl42->cut, Arg_1: 24*Arg_0*Arg_7+10*Arg_2+15*Arg_0+35*Arg_7+35 {O(n^2)}
7: lbl42->cut, Arg_2: 8*Arg_2 {O(n)}
7: lbl42->cut, Arg_3: 8*Arg_0+6 {O(n)}
7: lbl42->cut, Arg_4: 384*Arg_0*Arg_7+168*Arg_2+240*Arg_0+4*Arg_5+560*Arg_7+564 {O(n^2)}
7: lbl42->cut, Arg_5: 8*Arg_5 {O(n)}
7: lbl42->cut, Arg_6: 8*Arg_7 {O(n)}
7: lbl42->cut, Arg_7: 8*Arg_7 {O(n)}
8: lbl42->lbl72, Arg_0: 8*Arg_0 {O(n)}
8: lbl42->lbl72, Arg_1: 24*Arg_0*Arg_7+10*Arg_2+15*Arg_0+35*Arg_7+35 {O(n^2)}
8: lbl42->lbl72, Arg_2: 8*Arg_2 {O(n)}
8: lbl42->lbl72, Arg_3: 8*Arg_0+6 {O(n)}
8: lbl42->lbl72, Arg_4: 48*Arg_0*Arg_7+21*Arg_2+30*Arg_0+70*Arg_7+71 {O(n^2)}
8: lbl42->lbl72, Arg_5: 8*Arg_5 {O(n)}
8: lbl42->lbl72, Arg_6: 8*Arg_7 {O(n)}
8: lbl42->lbl72, Arg_7: 8*Arg_7 {O(n)}
4: lbl72->cut, Arg_0: 8*Arg_0 {O(n)}
4: lbl72->cut, Arg_1: 24*Arg_0*Arg_7+10*Arg_2+15*Arg_0+35*Arg_7+35 {O(n^2)}
4: lbl72->cut, Arg_2: 8*Arg_2 {O(n)}
4: lbl72->cut, Arg_3: 8*Arg_0+6 {O(n)}
4: lbl72->cut, Arg_4: 192*Arg_0*Arg_7+120*Arg_0+280*Arg_7+84*Arg_2+282 {O(n^2)}
4: lbl72->cut, Arg_5: 8*Arg_5 {O(n)}
4: lbl72->cut, Arg_6: 8*Arg_7 {O(n)}
4: lbl72->cut, Arg_7: 8*Arg_7 {O(n)}
5: lbl72->lbl72, Arg_0: 8*Arg_0 {O(n)}
5: lbl72->lbl72, Arg_1: 24*Arg_0*Arg_7+10*Arg_2+15*Arg_0+35*Arg_7+35 {O(n^2)}
5: lbl72->lbl72, Arg_2: 8*Arg_2 {O(n)}
5: lbl72->lbl72, Arg_3: 8*Arg_0+6 {O(n)}
5: lbl72->lbl72, Arg_4: 72*Arg_0*Arg_7+105*Arg_7+31*Arg_2+45*Arg_0+106 {O(n^2)}
5: lbl72->lbl72, Arg_5: 8*Arg_5 {O(n)}
5: lbl72->lbl72, Arg_6: 8*Arg_7 {O(n)}
5: lbl72->lbl72, Arg_7: 8*Arg_7 {O(n)}
0: start->stop, Arg_0: Arg_0 {O(n)}
0: start->stop, Arg_1: Arg_2 {O(n)}
0: start->stop, Arg_2: Arg_2 {O(n)}
0: start->stop, Arg_3: Arg_0 {O(n)}
0: start->stop, Arg_4: Arg_5 {O(n)}
0: start->stop, Arg_5: Arg_5 {O(n)}
0: start->stop, Arg_6: Arg_7 {O(n)}
0: start->stop, Arg_7: Arg_7 {O(n)}
1: start->lbl42, Arg_0: Arg_0 {O(n)}
1: start->lbl42, Arg_1: Arg_2+1 {O(n)}
1: start->lbl42, Arg_2: Arg_2 {O(n)}
1: start->lbl42, Arg_3: Arg_0 {O(n)}
1: start->lbl42, Arg_4: Arg_5 {O(n)}
1: start->lbl42, Arg_5: Arg_5 {O(n)}
1: start->lbl42, Arg_6: Arg_7 {O(n)}
1: start->lbl42, Arg_7: Arg_7 {O(n)}
2: start->cut, Arg_0: Arg_0 {O(n)}
2: start->cut, Arg_1: Arg_2 {O(n)}
2: start->cut, Arg_2: Arg_2 {O(n)}
2: start->cut, Arg_3: Arg_0+1 {O(n)}
2: start->cut, Arg_4: Arg_5 {O(n)}
2: start->cut, Arg_5: Arg_5 {O(n)}
2: start->cut, Arg_6: Arg_7 {O(n)}
2: start->cut, Arg_7: Arg_7 {O(n)}
3: start->lbl72, Arg_0: Arg_0 {O(n)}
3: start->lbl72, Arg_1: Arg_2+1 {O(n)}
3: start->lbl72, Arg_2: Arg_2 {O(n)}
3: start->lbl72, Arg_3: Arg_0+1 {O(n)}
3: start->lbl72, Arg_4: Arg_2 {O(n)}
3: start->lbl72, Arg_5: Arg_5 {O(n)}
3: start->lbl72, Arg_6: Arg_7 {O(n)}
3: start->lbl72, Arg_7: Arg_7 {O(n)}
13: start0->start, Arg_0: Arg_0 {O(n)}
13: start0->start, Arg_1: Arg_2 {O(n)}
13: start0->start, Arg_2: Arg_2 {O(n)}
13: start0->start, Arg_3: Arg_0 {O(n)}
13: start0->start, Arg_4: Arg_5 {O(n)}
13: start0->start, Arg_5: Arg_5 {O(n)}
13: start0->start, Arg_6: Arg_7 {O(n)}
13: start0->start, Arg_7: Arg_7 {O(n)}