Initial Problem
Start: eval_perfectg_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: nondef_0
Locations: eval_perfectg_1, eval_perfectg_10, eval_perfectg_2, eval_perfectg_3, eval_perfectg_9, eval_perfectg_bb0_in, eval_perfectg_bb1_in, eval_perfectg_bb2_in, eval_perfectg_bb3_in, eval_perfectg_bb4_in, eval_perfectg_bb5_in, eval_perfectg_start, eval_perfectg_stop
Transitions:
2:eval_perfectg_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
16:eval_perfectg_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_5<0
17:eval_perfectg_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_7):|:0<Arg_5
18:eval_perfectg_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_2,Arg_7):|:Arg_5<=0 && 0<=Arg_5
3:eval_perfectg_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
5:eval_perfectg_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_3,Arg_7):|:1<Arg_3
4:eval_perfectg_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_0):|:Arg_3<=1
15:eval_perfectg_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
1:eval_perfectg_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_1(nondef_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
6:eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_4<=1 && 1<=Arg_4
7:eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb3_in(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6,Arg_7):|:Arg_4<1
8:eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb3_in(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6,Arg_7):|:1<Arg_4
9:eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<0
10:eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_7
11:eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=0 && 0<=Arg_7
12:eval_perfectg_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<Arg_1
13:eval_perfectg_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_1<=Arg_5
14:eval_perfectg_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_9(Arg_0,Arg_1,Arg_6-Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
19:eval_perfectg_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-Arg_1,Arg_6,Arg_7)
0:eval_perfectg_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
Preprocessing
Found invariant Arg_4<=Arg_3 for location eval_perfectg_bb1_in
Found invariant Arg_4<=1+Arg_5 && Arg_1<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3 for location eval_perfectg_bb5_in
Found invariant 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3 for location eval_perfectg_9
Found invariant Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3 for location eval_perfectg_bb3_in
Found invariant 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3 for location eval_perfectg_10
Found invariant 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3 for location eval_perfectg_bb4_in
Problem after Preprocessing
Start: eval_perfectg_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: nondef_0
Locations: eval_perfectg_1, eval_perfectg_10, eval_perfectg_2, eval_perfectg_3, eval_perfectg_9, eval_perfectg_bb0_in, eval_perfectg_bb1_in, eval_perfectg_bb2_in, eval_perfectg_bb3_in, eval_perfectg_bb4_in, eval_perfectg_bb5_in, eval_perfectg_start, eval_perfectg_stop
Transitions:
2:eval_perfectg_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
16:eval_perfectg_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_7):|:2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3 && Arg_5<0
17:eval_perfectg_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_7):|:2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3 && 0<Arg_5
18:eval_perfectg_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_2,Arg_7):|:2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3 && Arg_5<=0 && 0<=Arg_5
3:eval_perfectg_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
5:eval_perfectg_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_3,Arg_7):|:1<Arg_3
4:eval_perfectg_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_0):|:Arg_3<=1
15:eval_perfectg_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3
1:eval_perfectg_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_1(nondef_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
6:eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:Arg_4<=Arg_3 && Arg_4<=1 && 1<=Arg_4
7:eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb3_in(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6,Arg_7):|:Arg_4<=Arg_3 && Arg_4<1
8:eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb3_in(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6,Arg_7):|:Arg_4<=Arg_3 && 1<Arg_4
9:eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<0
10:eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_7
11:eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=0 && 0<=Arg_7
12:eval_perfectg_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3 && Arg_5<Arg_1
13:eval_perfectg_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_5
14:eval_perfectg_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_9(Arg_0,Arg_1,Arg_6-Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3
19:eval_perfectg_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-Arg_1,Arg_6,Arg_7):|:Arg_4<=1+Arg_5 && Arg_1<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3
0:eval_perfectg_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
MPRF for transition 17:eval_perfectg_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_7):|:2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3 && 0<Arg_5 of depth 1:
new bound:
Arg_3 {O(n)}
MPRF:
eval_perfectg_10 [Arg_4 ]
eval_perfectg_bb1_in [Arg_4 ]
eval_perfectg_bb4_in [Arg_1+1 ]
eval_perfectg_9 [Arg_4 ]
eval_perfectg_bb5_in [Arg_4 ]
eval_perfectg_bb3_in [Arg_4 ]
MPRF for transition 18:eval_perfectg_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_2,Arg_7):|:2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_4 && 1+Arg_1<=Arg_3 && Arg_5<=0 && 0<=Arg_5 of depth 1:
new bound:
Arg_3+1 {O(n)}
MPRF:
eval_perfectg_10 [Arg_1 ]
eval_perfectg_bb1_in [Arg_4-1 ]
eval_perfectg_bb4_in [2*Arg_1+1-Arg_4 ]
eval_perfectg_9 [Arg_1 ]
eval_perfectg_bb5_in [Arg_1 ]
eval_perfectg_bb3_in [Arg_1 ]
MPRF for transition 8:eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb3_in(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6,Arg_7):|:Arg_4<=Arg_3 && 1<Arg_4 of depth 1:
new bound:
Arg_3+1 {O(n)}
MPRF:
eval_perfectg_10 [Arg_1-1 ]
eval_perfectg_bb1_in [Arg_4-1 ]
eval_perfectg_bb4_in [Arg_4-2 ]
eval_perfectg_9 [2*Arg_4-Arg_1-3 ]
eval_perfectg_bb5_in [Arg_4-2 ]
eval_perfectg_bb3_in [Arg_4-2 ]
Analysing control-flow refined program
Cut unsatisfiable transition 6: eval_perfectg_bb1_in->eval_perfectg_bb2_in
Found invariant Arg_6<=Arg_3 && Arg_4<=Arg_3 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 2<=Arg_3 for location eval_perfectg_bb1_in
Found invariant Arg_6<=Arg_3 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 for location n_eval_perfectg_10___2
Found invariant Arg_6<=Arg_3 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 for location n_eval_perfectg_bb4_in___4
Found invariant Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_5<=Arg_3 && 2<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 for location n_eval_perfectg_bb3_in___7
Found invariant Arg_6<=Arg_3 && Arg_5<=Arg_3 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 3<=Arg_3+Arg_5 && 2<=Arg_1+Arg_5 && Arg_1<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 for location n_eval_perfectg_bb5_in___6
Found invariant Arg_6<=Arg_3 && 1+Arg_2<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 for location n_eval_perfectg_9___3
Found invariant 1+Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=0 && 1+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 2<=Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 for location n_eval_perfectg_bb1_in___1
Found invariant Arg_6<=Arg_3 && 1+Arg_5<=Arg_3 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 for location n_eval_perfectg_bb3_in___5
MPRF for transition 168:eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb3_in___7(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6,Arg_7):|:Arg_6<=Arg_3 && Arg_4<=Arg_3 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 2<=Arg_3 && Arg_4<=Arg_3 && 0<Arg_3 && 1<Arg_4 && Arg_4<=Arg_3 && 1<Arg_4 of depth 1:
new bound:
Arg_3+1 {O(n)}
MPRF:
eval_perfectg_bb1_in [Arg_4+1 ]
n_eval_perfectg_10___2 [Arg_1+1 ]
n_eval_perfectg_bb1_in___1 [Arg_4 ]
n_eval_perfectg_bb3_in___7 [Arg_4 ]
n_eval_perfectg_bb4_in___4 [Arg_1+1 ]
n_eval_perfectg_9___3 [Arg_1+1 ]
n_eval_perfectg_bb5_in___6 [Arg_1+1 ]
n_eval_perfectg_bb3_in___5 [Arg_4 ]
MPRF for transition 164:n_eval_perfectg_10___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb1_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,0,Arg_2,Arg_7):|:Arg_6<=Arg_3 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && 1+Arg_6<=Arg_2+Arg_3 && 1+Arg_2+Arg_5<=Arg_6 && 0<=Arg_5 && Arg_2+Arg_4<=Arg_6+1 && 1+Arg_6<=Arg_2+Arg_4 && Arg_1+Arg_2<=Arg_6 && Arg_6<=Arg_1+Arg_2 && 1<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_5<=0 && 0<=Arg_5 of depth 1:
new bound:
Arg_3+1 {O(n)}
MPRF:
eval_perfectg_bb1_in [Arg_4-1 ]
n_eval_perfectg_10___2 [Arg_4-1 ]
n_eval_perfectg_bb1_in___1 [Arg_4-1 ]
n_eval_perfectg_bb3_in___7 [Arg_1 ]
n_eval_perfectg_bb4_in___4 [Arg_1 ]
n_eval_perfectg_9___3 [Arg_1 ]
n_eval_perfectg_bb5_in___6 [Arg_1 ]
n_eval_perfectg_bb3_in___5 [Arg_1 ]
MPRF for transition 165:n_eval_perfectg_10___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_3 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && 1+Arg_6<=Arg_2+Arg_3 && 1+Arg_2+Arg_5<=Arg_6 && 0<=Arg_5 && Arg_2+Arg_4<=Arg_6+1 && 1+Arg_6<=Arg_2+Arg_4 && Arg_1+Arg_2<=Arg_6 && Arg_6<=Arg_1+Arg_2 && 1+Arg_5<=Arg_1 && 0<Arg_5 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 of depth 1:
new bound:
2*Arg_3+1 {O(n)}
MPRF:
eval_perfectg_bb1_in [2*Arg_4-1 ]
n_eval_perfectg_10___2 [2*Arg_1 ]
n_eval_perfectg_bb1_in___1 [2*Arg_1 ]
n_eval_perfectg_bb3_in___7 [2*Arg_4-1 ]
n_eval_perfectg_bb4_in___4 [2*Arg_4-2 ]
n_eval_perfectg_9___3 [2*Arg_1 ]
n_eval_perfectg_bb5_in___6 [2*Arg_1 ]
n_eval_perfectg_bb3_in___5 [2*Arg_1 ]
MPRF for transition 166:n_eval_perfectg_9___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_10___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_3 && 1+Arg_2<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && 1+Arg_6<=Arg_2+Arg_3 && 1+Arg_2+Arg_5<=Arg_6 && 0<=Arg_5 && Arg_2+Arg_4<=Arg_6+1 && 1+Arg_6<=Arg_2+Arg_4 && Arg_1+Arg_2<=Arg_6 && Arg_6<=Arg_1+Arg_2 && 1+Arg_5<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 of depth 1:
new bound:
2*Arg_3+3 {O(n)}
MPRF:
eval_perfectg_bb1_in [Arg_3+Arg_4-3 ]
n_eval_perfectg_10___2 [Arg_3+Arg_6-Arg_2-3 ]
n_eval_perfectg_bb1_in___1 [Arg_3+Arg_4-3 ]
n_eval_perfectg_bb3_in___7 [Arg_3+Arg_4-3 ]
n_eval_perfectg_bb4_in___4 [Arg_1+Arg_3-2 ]
n_eval_perfectg_9___3 [Arg_3+Arg_4-3 ]
n_eval_perfectg_bb5_in___6 [3*Arg_1+Arg_3-2*Arg_4 ]
n_eval_perfectg_bb3_in___5 [Arg_1+Arg_3-2 ]
MPRF for transition 167:n_eval_perfectg_bb1_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb3_in___7(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6,Arg_7):|:1+Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=0 && 1+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 2<=Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && Arg_4<=Arg_3 && 0<Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_4 && Arg_4<=Arg_1 && 1<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_4<=Arg_3 && 1<Arg_4 of depth 1:
new bound:
Arg_3 {O(n)}
MPRF:
eval_perfectg_bb1_in [Arg_4 ]
n_eval_perfectg_10___2 [Arg_6-Arg_2 ]
n_eval_perfectg_bb1_in___1 [Arg_1 ]
n_eval_perfectg_bb3_in___7 [Arg_4-1 ]
n_eval_perfectg_bb4_in___4 [Arg_1 ]
n_eval_perfectg_9___3 [Arg_6-Arg_2 ]
n_eval_perfectg_bb5_in___6 [Arg_4-1 ]
n_eval_perfectg_bb3_in___5 [Arg_1 ]
MPRF for transition 169:n_eval_perfectg_bb3_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb4_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_3 && 1+Arg_5<=Arg_3 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_4<=Arg_3 && 1<Arg_4 && 1+Arg_1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_3 && 0<=Arg_5 && 1+Arg_1<=Arg_3 && Arg_5<Arg_1 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 of depth 1:
new bound:
Arg_3 {O(n)}
MPRF:
eval_perfectg_bb1_in [Arg_4 ]
n_eval_perfectg_10___2 [Arg_6-Arg_2 ]
n_eval_perfectg_bb1_in___1 [Arg_1 ]
n_eval_perfectg_bb3_in___7 [Arg_4 ]
n_eval_perfectg_bb4_in___4 [Arg_1 ]
n_eval_perfectg_9___3 [Arg_6-Arg_2 ]
n_eval_perfectg_bb5_in___6 [Arg_1+1 ]
n_eval_perfectg_bb3_in___5 [Arg_4 ]
MPRF for transition 171:n_eval_perfectg_bb3_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb5_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_5<=Arg_3 && 2<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_4<=Arg_3 && 0<Arg_5 && 1<Arg_4 && Arg_1<=Arg_5 && 1+Arg_1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_5 && 1+Arg_1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_3 && 0<=Arg_5 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 of depth 1:
new bound:
2*Arg_3+3 {O(n)}
MPRF:
eval_perfectg_bb1_in [Arg_3+Arg_4-3 ]
n_eval_perfectg_10___2 [Arg_3+Arg_4-4 ]
n_eval_perfectg_bb1_in___1 [Arg_1+Arg_3-3 ]
n_eval_perfectg_bb3_in___7 [Arg_3+Arg_4-3 ]
n_eval_perfectg_bb4_in___4 [Arg_1+Arg_3-3 ]
n_eval_perfectg_9___3 [Arg_1+Arg_3-3 ]
n_eval_perfectg_bb5_in___6 [Arg_1+Arg_3-3 ]
n_eval_perfectg_bb3_in___5 [Arg_1+Arg_3-3 ]
MPRF for transition 172:n_eval_perfectg_bb4_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_9___3(Arg_0,Arg_1,Arg_6-Arg_1,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_3 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && Arg_4<=Arg_3 && 1+Arg_5<Arg_4 && 0<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_5<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 of depth 1:
new bound:
Arg_3 {O(n)}
MPRF:
eval_perfectg_bb1_in [Arg_4 ]
n_eval_perfectg_10___2 [Arg_6-Arg_2 ]
n_eval_perfectg_bb1_in___1 [Arg_4 ]
n_eval_perfectg_bb3_in___7 [Arg_1+1 ]
n_eval_perfectg_bb4_in___4 [Arg_1+1 ]
n_eval_perfectg_9___3 [Arg_1 ]
n_eval_perfectg_bb5_in___6 [Arg_1+1 ]
n_eval_perfectg_bb3_in___5 [Arg_1+1 ]
MPRF for transition 170:n_eval_perfectg_bb3_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb5_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_3 && 1+Arg_5<=Arg_3 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_4<=Arg_3 && 1<Arg_4 && 1+Arg_1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_3 && 0<=Arg_5 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 of depth 1:
new bound:
Arg_3*Arg_3+Arg_3 {O(n^2)}
MPRF:
eval_perfectg_bb1_in [Arg_3 ]
n_eval_perfectg_9___3 [Arg_3 ]
n_eval_perfectg_10___2 [Arg_3 ]
n_eval_perfectg_bb1_in___1 [Arg_3 ]
n_eval_perfectg_bb4_in___4 [Arg_5 ]
n_eval_perfectg_bb3_in___7 [Arg_5 ]
n_eval_perfectg_bb5_in___6 [Arg_5 ]
n_eval_perfectg_bb3_in___5 [Arg_5+1 ]
MPRF for transition 173:n_eval_perfectg_bb5_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb3_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5-Arg_1,Arg_6,Arg_7):|:Arg_6<=Arg_3 && Arg_5<=Arg_3 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 3<=Arg_3+Arg_5 && 2<=Arg_1+Arg_5 && Arg_1<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && Arg_4<=1+Arg_5 && Arg_4<=Arg_3 && 1<Arg_4 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 of depth 1:
new bound:
Arg_3*Arg_3+Arg_3 {O(n^2)}
MPRF:
eval_perfectg_bb1_in [Arg_3 ]
n_eval_perfectg_9___3 [Arg_3 ]
n_eval_perfectg_10___2 [Arg_3 ]
n_eval_perfectg_bb1_in___1 [Arg_3 ]
n_eval_perfectg_bb4_in___4 [Arg_1+Arg_5-1 ]
n_eval_perfectg_bb3_in___7 [Arg_5 ]
n_eval_perfectg_bb5_in___6 [Arg_5 ]
n_eval_perfectg_bb3_in___5 [Arg_1+Arg_5-1 ]
CFR: Improvement to new bound with the following program:
new bound:
2*Arg_3*Arg_3+13*Arg_3+9 {O(n^2)}
cfr-program:
Start: eval_perfectg_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars: nondef_0
Locations: eval_perfectg_1, eval_perfectg_2, eval_perfectg_3, eval_perfectg_bb0_in, eval_perfectg_bb1_in, eval_perfectg_bb2_in, eval_perfectg_start, eval_perfectg_stop, n_eval_perfectg_10___2, n_eval_perfectg_9___3, n_eval_perfectg_bb1_in___1, n_eval_perfectg_bb3_in___5, n_eval_perfectg_bb3_in___7, n_eval_perfectg_bb4_in___4, n_eval_perfectg_bb5_in___6
Transitions:
2:eval_perfectg_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
3:eval_perfectg_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
5:eval_perfectg_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_3,Arg_7):|:1<Arg_3
4:eval_perfectg_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_0):|:Arg_3<=1
1:eval_perfectg_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_1(nondef_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
168:eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb3_in___7(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6,Arg_7):|:Arg_6<=Arg_3 && Arg_4<=Arg_3 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 2<=Arg_3 && Arg_4<=Arg_3 && 0<Arg_3 && 1<Arg_4 && Arg_4<=Arg_3 && 1<Arg_4
9:eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<0
10:eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_7
11:eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=0 && 0<=Arg_7
0:eval_perfectg_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
165:n_eval_perfectg_10___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_3 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && 1+Arg_6<=Arg_2+Arg_3 && 1+Arg_2+Arg_5<=Arg_6 && 0<=Arg_5 && Arg_2+Arg_4<=Arg_6+1 && 1+Arg_6<=Arg_2+Arg_4 && Arg_1+Arg_2<=Arg_6 && Arg_6<=Arg_1+Arg_2 && 1+Arg_5<=Arg_1 && 0<Arg_5 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
164:n_eval_perfectg_10___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb1_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1,0,Arg_2,Arg_7):|:Arg_6<=Arg_3 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && 1+Arg_6<=Arg_2+Arg_3 && 1+Arg_2+Arg_5<=Arg_6 && 0<=Arg_5 && Arg_2+Arg_4<=Arg_6+1 && 1+Arg_6<=Arg_2+Arg_4 && Arg_1+Arg_2<=Arg_6 && Arg_6<=Arg_1+Arg_2 && 1<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_5<=0 && 0<=Arg_5
166:n_eval_perfectg_9___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_10___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_3 && 1+Arg_2<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && 1+Arg_6<=Arg_2+Arg_3 && 1+Arg_2+Arg_5<=Arg_6 && 0<=Arg_5 && Arg_2+Arg_4<=Arg_6+1 && 1+Arg_6<=Arg_2+Arg_4 && Arg_1+Arg_2<=Arg_6 && Arg_6<=Arg_1+Arg_2 && 1+Arg_5<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
196:n_eval_perfectg_bb1_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfectg_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6):|:1+Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=0 && 1+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 2<=Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && Arg_4<=Arg_3 && Arg_4<=1 && 1<=Arg_4
167:n_eval_perfectg_bb1_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb3_in___7(Arg_0,Arg_4-1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6,Arg_7):|:1+Arg_6<=Arg_3 && Arg_6<=Arg_2 && Arg_2<=Arg_6 && Arg_5<=0 && 1+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && 1+Arg_4<=Arg_3 && Arg_4<=Arg_1 && 1<=Arg_4 && 3<=Arg_3+Arg_4 && 2<=Arg_1+Arg_4 && Arg_1<=Arg_4 && 2<=Arg_3 && 1+Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && Arg_4<=Arg_3 && 0<Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_2 && Arg_5<=0 && 0<=Arg_5 && Arg_1<=Arg_4 && Arg_4<=Arg_1 && 1<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_4<=Arg_3 && 1<Arg_4
169:n_eval_perfectg_bb3_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb4_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_3 && 1+Arg_5<=Arg_3 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_4<=Arg_3 && 1<Arg_4 && 1+Arg_1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_3 && 0<=Arg_5 && 1+Arg_1<=Arg_3 && Arg_5<Arg_1 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
170:n_eval_perfectg_bb3_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb5_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_3 && 1+Arg_5<=Arg_3 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_4<=Arg_3 && 1<Arg_4 && 1+Arg_1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_3 && 0<=Arg_5 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
171:n_eval_perfectg_bb3_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb5_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_5 && Arg_6<=Arg_3 && Arg_5<=Arg_3 && 2<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=Arg_5 && 4<=Arg_3+Arg_5 && Arg_3<=Arg_5 && 3<=Arg_1+Arg_5 && 1+Arg_1<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && Arg_4<=Arg_3 && 0<Arg_5 && 1<Arg_4 && Arg_1<=Arg_5 && 1+Arg_1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_5 && 1+Arg_1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_3 && 0<=Arg_5 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
172:n_eval_perfectg_bb4_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_9___3(Arg_0,Arg_1,Arg_6-Arg_1,Arg_3,Arg_1+1,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_3 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_1+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && Arg_4<=Arg_3 && 1+Arg_5<Arg_4 && 0<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_5<=Arg_1 && 1+Arg_1<=Arg_3 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
173:n_eval_perfectg_bb5_in___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> n_eval_perfectg_bb3_in___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_1+1,Arg_5-Arg_1,Arg_6,Arg_7):|:Arg_6<=Arg_3 && Arg_5<=Arg_3 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 3<=Arg_3+Arg_5 && 2<=Arg_1+Arg_5 && Arg_1<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_1 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_1+Arg_4 && 1+Arg_1<=Arg_4 && 2<=Arg_3 && 3<=Arg_1+Arg_3 && 1+Arg_1<=Arg_3 && 1<=Arg_1 && Arg_4<=1+Arg_5 && Arg_4<=Arg_3 && 1<Arg_4 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1 && 1+Arg_1<=Arg_3 && Arg_1<=Arg_5 && Arg_1+1<=Arg_4 && Arg_4<=1+Arg_1
All Bounds
Timebounds
Overall timebound:2*Arg_3*Arg_3+13*Arg_3+19 {O(n^2)}
2: eval_perfectg_1->eval_perfectg_2: 1 {O(1)}
3: eval_perfectg_2->eval_perfectg_3: 1 {O(1)}
4: eval_perfectg_3->eval_perfectg_bb2_in: 1 {O(1)}
5: eval_perfectg_3->eval_perfectg_bb1_in: 1 {O(1)}
1: eval_perfectg_bb0_in->eval_perfectg_1: 1 {O(1)}
168: eval_perfectg_bb1_in->n_eval_perfectg_bb3_in___7: Arg_3+1 {O(n)}
9: eval_perfectg_bb2_in->eval_perfectg_stop: 1 {O(1)}
10: eval_perfectg_bb2_in->eval_perfectg_stop: 1 {O(1)}
11: eval_perfectg_bb2_in->eval_perfectg_stop: 1 {O(1)}
0: eval_perfectg_start->eval_perfectg_bb0_in: 1 {O(1)}
164: n_eval_perfectg_10___2->n_eval_perfectg_bb1_in___1: Arg_3+1 {O(n)}
165: n_eval_perfectg_10___2->eval_perfectg_bb1_in: 2*Arg_3+1 {O(n)}
166: n_eval_perfectg_9___3->n_eval_perfectg_10___2: 2*Arg_3+3 {O(n)}
167: n_eval_perfectg_bb1_in___1->n_eval_perfectg_bb3_in___7: Arg_3 {O(n)}
196: n_eval_perfectg_bb1_in___1->eval_perfectg_bb2_in: 1 {O(1)}
169: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb4_in___4: Arg_3 {O(n)}
170: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb5_in___6: Arg_3*Arg_3+Arg_3 {O(n^2)}
171: n_eval_perfectg_bb3_in___7->n_eval_perfectg_bb5_in___6: 2*Arg_3+3 {O(n)}
172: n_eval_perfectg_bb4_in___4->n_eval_perfectg_9___3: Arg_3 {O(n)}
173: n_eval_perfectg_bb5_in___6->n_eval_perfectg_bb3_in___5: Arg_3*Arg_3+Arg_3 {O(n^2)}
Costbounds
Overall costbound: 2*Arg_3*Arg_3+13*Arg_3+19 {O(n^2)}
2: eval_perfectg_1->eval_perfectg_2: 1 {O(1)}
3: eval_perfectg_2->eval_perfectg_3: 1 {O(1)}
4: eval_perfectg_3->eval_perfectg_bb2_in: 1 {O(1)}
5: eval_perfectg_3->eval_perfectg_bb1_in: 1 {O(1)}
1: eval_perfectg_bb0_in->eval_perfectg_1: 1 {O(1)}
168: eval_perfectg_bb1_in->n_eval_perfectg_bb3_in___7: Arg_3+1 {O(n)}
9: eval_perfectg_bb2_in->eval_perfectg_stop: 1 {O(1)}
10: eval_perfectg_bb2_in->eval_perfectg_stop: 1 {O(1)}
11: eval_perfectg_bb2_in->eval_perfectg_stop: 1 {O(1)}
0: eval_perfectg_start->eval_perfectg_bb0_in: 1 {O(1)}
164: n_eval_perfectg_10___2->n_eval_perfectg_bb1_in___1: Arg_3+1 {O(n)}
165: n_eval_perfectg_10___2->eval_perfectg_bb1_in: 2*Arg_3+1 {O(n)}
166: n_eval_perfectg_9___3->n_eval_perfectg_10___2: 2*Arg_3+3 {O(n)}
167: n_eval_perfectg_bb1_in___1->n_eval_perfectg_bb3_in___7: Arg_3 {O(n)}
196: n_eval_perfectg_bb1_in___1->eval_perfectg_bb2_in: 1 {O(1)}
169: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb4_in___4: Arg_3 {O(n)}
170: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb5_in___6: Arg_3*Arg_3+Arg_3 {O(n^2)}
171: n_eval_perfectg_bb3_in___7->n_eval_perfectg_bb5_in___6: 2*Arg_3+3 {O(n)}
172: n_eval_perfectg_bb4_in___4->n_eval_perfectg_9___3: Arg_3 {O(n)}
173: n_eval_perfectg_bb5_in___6->n_eval_perfectg_bb3_in___5: Arg_3*Arg_3+Arg_3 {O(n^2)}
Sizebounds
2: eval_perfectg_1->eval_perfectg_2, Arg_1: Arg_1 {O(n)}
2: eval_perfectg_1->eval_perfectg_2, Arg_2: Arg_2 {O(n)}
2: eval_perfectg_1->eval_perfectg_2, Arg_3: Arg_3 {O(n)}
2: eval_perfectg_1->eval_perfectg_2, Arg_4: Arg_4 {O(n)}
2: eval_perfectg_1->eval_perfectg_2, Arg_5: Arg_5 {O(n)}
2: eval_perfectg_1->eval_perfectg_2, Arg_6: Arg_6 {O(n)}
2: eval_perfectg_1->eval_perfectg_2, Arg_7: Arg_7 {O(n)}
3: eval_perfectg_2->eval_perfectg_3, Arg_1: Arg_1 {O(n)}
3: eval_perfectg_2->eval_perfectg_3, Arg_2: Arg_2 {O(n)}
3: eval_perfectg_2->eval_perfectg_3, Arg_3: Arg_3 {O(n)}
3: eval_perfectg_2->eval_perfectg_3, Arg_4: Arg_4 {O(n)}
3: eval_perfectg_2->eval_perfectg_3, Arg_5: Arg_5 {O(n)}
3: eval_perfectg_2->eval_perfectg_3, Arg_6: Arg_6 {O(n)}
3: eval_perfectg_2->eval_perfectg_3, Arg_7: Arg_7 {O(n)}
4: eval_perfectg_3->eval_perfectg_bb2_in, Arg_1: Arg_1 {O(n)}
4: eval_perfectg_3->eval_perfectg_bb2_in, Arg_2: Arg_2 {O(n)}
4: eval_perfectg_3->eval_perfectg_bb2_in, Arg_3: Arg_3 {O(n)}
4: eval_perfectg_3->eval_perfectg_bb2_in, Arg_4: Arg_4 {O(n)}
4: eval_perfectg_3->eval_perfectg_bb2_in, Arg_5: Arg_5 {O(n)}
4: eval_perfectg_3->eval_perfectg_bb2_in, Arg_6: Arg_6 {O(n)}
5: eval_perfectg_3->eval_perfectg_bb1_in, Arg_1: Arg_1 {O(n)}
5: eval_perfectg_3->eval_perfectg_bb1_in, Arg_2: Arg_2 {O(n)}
5: eval_perfectg_3->eval_perfectg_bb1_in, Arg_3: Arg_3 {O(n)}
5: eval_perfectg_3->eval_perfectg_bb1_in, Arg_4: Arg_3 {O(n)}
5: eval_perfectg_3->eval_perfectg_bb1_in, Arg_5: Arg_5 {O(n)}
5: eval_perfectg_3->eval_perfectg_bb1_in, Arg_6: Arg_3 {O(n)}
5: eval_perfectg_3->eval_perfectg_bb1_in, Arg_7: Arg_7 {O(n)}
1: eval_perfectg_bb0_in->eval_perfectg_1, Arg_1: Arg_1 {O(n)}
1: eval_perfectg_bb0_in->eval_perfectg_1, Arg_2: Arg_2 {O(n)}
1: eval_perfectg_bb0_in->eval_perfectg_1, Arg_3: Arg_3 {O(n)}
1: eval_perfectg_bb0_in->eval_perfectg_1, Arg_4: Arg_4 {O(n)}
1: eval_perfectg_bb0_in->eval_perfectg_1, Arg_5: Arg_5 {O(n)}
1: eval_perfectg_bb0_in->eval_perfectg_1, Arg_6: Arg_6 {O(n)}
1: eval_perfectg_bb0_in->eval_perfectg_1, Arg_7: Arg_7 {O(n)}
6: eval_perfectg_bb1_in->eval_perfectg_bb2_in, Arg_3: 2*Arg_3 {O(n)}
6: eval_perfectg_bb1_in->eval_perfectg_bb2_in, Arg_4: 1 {O(1)}
168: eval_perfectg_bb1_in->n_eval_perfectg_bb3_in___7, Arg_1: Arg_3 {O(n)}
168: eval_perfectg_bb1_in->n_eval_perfectg_bb3_in___7, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
168: eval_perfectg_bb1_in->n_eval_perfectg_bb3_in___7, Arg_3: Arg_3 {O(n)}
168: eval_perfectg_bb1_in->n_eval_perfectg_bb3_in___7, Arg_4: 2*Arg_3 {O(n)}
168: eval_perfectg_bb1_in->n_eval_perfectg_bb3_in___7, Arg_5: 2*Arg_3 {O(n)}
168: eval_perfectg_bb1_in->n_eval_perfectg_bb3_in___7, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
168: eval_perfectg_bb1_in->n_eval_perfectg_bb3_in___7, Arg_7: Arg_7 {O(n)}
9: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_1: Arg_1+1 {O(n)}
9: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
9: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_3: 2*Arg_3 {O(n)}
9: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_4: Arg_4+1 {O(n)}
9: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_5: Arg_5 {O(n)}
9: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_6: Arg_3*Arg_3+2*Arg_3+Arg_6 {O(n^2)}
10: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_1: Arg_1+1 {O(n)}
10: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
10: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_3: 2*Arg_3 {O(n)}
10: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_4: Arg_4+1 {O(n)}
10: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_5: Arg_5 {O(n)}
10: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_6: Arg_3*Arg_3+2*Arg_3+Arg_6 {O(n^2)}
11: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_1: Arg_1+1 {O(n)}
11: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
11: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_3: 2*Arg_3 {O(n)}
11: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_4: Arg_4+1 {O(n)}
11: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_5: Arg_5 {O(n)}
11: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_6: Arg_3*Arg_3+2*Arg_3+Arg_6 {O(n^2)}
11: eval_perfectg_bb2_in->eval_perfectg_stop, Arg_7: 0 {O(1)}
0: eval_perfectg_start->eval_perfectg_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_perfectg_start->eval_perfectg_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_perfectg_start->eval_perfectg_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_perfectg_start->eval_perfectg_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_perfectg_start->eval_perfectg_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_perfectg_start->eval_perfectg_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_perfectg_start->eval_perfectg_bb0_in, Arg_6: Arg_6 {O(n)}
0: eval_perfectg_start->eval_perfectg_bb0_in, Arg_7: Arg_7 {O(n)}
164: n_eval_perfectg_10___2->n_eval_perfectg_bb1_in___1, Arg_1: Arg_3 {O(n)}
164: n_eval_perfectg_10___2->n_eval_perfectg_bb1_in___1, Arg_2: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
164: n_eval_perfectg_10___2->n_eval_perfectg_bb1_in___1, Arg_3: Arg_3 {O(n)}
164: n_eval_perfectg_10___2->n_eval_perfectg_bb1_in___1, Arg_4: Arg_3 {O(n)}
164: n_eval_perfectg_10___2->n_eval_perfectg_bb1_in___1, Arg_5: 0 {O(1)}
164: n_eval_perfectg_10___2->n_eval_perfectg_bb1_in___1, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
164: n_eval_perfectg_10___2->n_eval_perfectg_bb1_in___1, Arg_7: Arg_7 {O(n)}
165: n_eval_perfectg_10___2->eval_perfectg_bb1_in, Arg_1: Arg_3 {O(n)}
165: n_eval_perfectg_10___2->eval_perfectg_bb1_in, Arg_2: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
165: n_eval_perfectg_10___2->eval_perfectg_bb1_in, Arg_3: Arg_3 {O(n)}
165: n_eval_perfectg_10___2->eval_perfectg_bb1_in, Arg_4: Arg_3 {O(n)}
165: n_eval_perfectg_10___2->eval_perfectg_bb1_in, Arg_5: 3*Arg_3 {O(n)}
165: n_eval_perfectg_10___2->eval_perfectg_bb1_in, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
165: n_eval_perfectg_10___2->eval_perfectg_bb1_in, Arg_7: Arg_7 {O(n)}
166: n_eval_perfectg_9___3->n_eval_perfectg_10___2, Arg_1: Arg_3 {O(n)}
166: n_eval_perfectg_9___3->n_eval_perfectg_10___2, Arg_2: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
166: n_eval_perfectg_9___3->n_eval_perfectg_10___2, Arg_3: Arg_3 {O(n)}
166: n_eval_perfectg_9___3->n_eval_perfectg_10___2, Arg_4: Arg_3+1 {O(n)}
166: n_eval_perfectg_9___3->n_eval_perfectg_10___2, Arg_5: 3*Arg_3 {O(n)}
166: n_eval_perfectg_9___3->n_eval_perfectg_10___2, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
166: n_eval_perfectg_9___3->n_eval_perfectg_10___2, Arg_7: Arg_7 {O(n)}
167: n_eval_perfectg_bb1_in___1->n_eval_perfectg_bb3_in___7, Arg_1: Arg_3 {O(n)}
167: n_eval_perfectg_bb1_in___1->n_eval_perfectg_bb3_in___7, Arg_2: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
167: n_eval_perfectg_bb1_in___1->n_eval_perfectg_bb3_in___7, Arg_3: Arg_3 {O(n)}
167: n_eval_perfectg_bb1_in___1->n_eval_perfectg_bb3_in___7, Arg_4: Arg_3 {O(n)}
167: n_eval_perfectg_bb1_in___1->n_eval_perfectg_bb3_in___7, Arg_5: Arg_3 {O(n)}
167: n_eval_perfectg_bb1_in___1->n_eval_perfectg_bb3_in___7, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
167: n_eval_perfectg_bb1_in___1->n_eval_perfectg_bb3_in___7, Arg_7: Arg_7 {O(n)}
196: n_eval_perfectg_bb1_in___1->eval_perfectg_bb2_in, Arg_1: 1 {O(1)}
196: n_eval_perfectg_bb1_in___1->eval_perfectg_bb2_in, Arg_2: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
196: n_eval_perfectg_bb1_in___1->eval_perfectg_bb2_in, Arg_3: Arg_3 {O(n)}
196: n_eval_perfectg_bb1_in___1->eval_perfectg_bb2_in, Arg_4: 1 {O(1)}
196: n_eval_perfectg_bb1_in___1->eval_perfectg_bb2_in, Arg_5: 0 {O(1)}
196: n_eval_perfectg_bb1_in___1->eval_perfectg_bb2_in, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
196: n_eval_perfectg_bb1_in___1->eval_perfectg_bb2_in, Arg_7: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
169: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb4_in___4, Arg_1: Arg_3 {O(n)}
169: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb4_in___4, Arg_2: 2*Arg_3*Arg_3+4*Arg_3+Arg_2 {O(n^2)}
169: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb4_in___4, Arg_3: Arg_3 {O(n)}
169: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb4_in___4, Arg_4: Arg_3+1 {O(n)}
169: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb4_in___4, Arg_5: 3*Arg_3 {O(n)}
169: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb4_in___4, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
169: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb4_in___4, Arg_7: Arg_7 {O(n)}
170: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb5_in___6, Arg_1: Arg_3 {O(n)}
170: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb5_in___6, Arg_2: 2*Arg_3*Arg_3+4*Arg_3+Arg_2 {O(n^2)}
170: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb5_in___6, Arg_3: Arg_3 {O(n)}
170: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb5_in___6, Arg_4: Arg_3+1 {O(n)}
170: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb5_in___6, Arg_5: 3*Arg_3 {O(n)}
170: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb5_in___6, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
170: n_eval_perfectg_bb3_in___5->n_eval_perfectg_bb5_in___6, Arg_7: Arg_7 {O(n)}
171: n_eval_perfectg_bb3_in___7->n_eval_perfectg_bb5_in___6, Arg_1: Arg_3 {O(n)}
171: n_eval_perfectg_bb3_in___7->n_eval_perfectg_bb5_in___6, Arg_2: 2*Arg_3*Arg_3+4*Arg_3+Arg_2 {O(n^2)}
171: n_eval_perfectg_bb3_in___7->n_eval_perfectg_bb5_in___6, Arg_3: Arg_3 {O(n)}
171: n_eval_perfectg_bb3_in___7->n_eval_perfectg_bb5_in___6, Arg_4: 2*Arg_3+2 {O(n)}
171: n_eval_perfectg_bb3_in___7->n_eval_perfectg_bb5_in___6, Arg_5: 3*Arg_3 {O(n)}
171: n_eval_perfectg_bb3_in___7->n_eval_perfectg_bb5_in___6, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
171: n_eval_perfectg_bb3_in___7->n_eval_perfectg_bb5_in___6, Arg_7: Arg_7 {O(n)}
172: n_eval_perfectg_bb4_in___4->n_eval_perfectg_9___3, Arg_1: Arg_3 {O(n)}
172: n_eval_perfectg_bb4_in___4->n_eval_perfectg_9___3, Arg_2: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
172: n_eval_perfectg_bb4_in___4->n_eval_perfectg_9___3, Arg_3: Arg_3 {O(n)}
172: n_eval_perfectg_bb4_in___4->n_eval_perfectg_9___3, Arg_4: Arg_3+1 {O(n)}
172: n_eval_perfectg_bb4_in___4->n_eval_perfectg_9___3, Arg_5: 3*Arg_3 {O(n)}
172: n_eval_perfectg_bb4_in___4->n_eval_perfectg_9___3, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
172: n_eval_perfectg_bb4_in___4->n_eval_perfectg_9___3, Arg_7: Arg_7 {O(n)}
173: n_eval_perfectg_bb5_in___6->n_eval_perfectg_bb3_in___5, Arg_1: Arg_3 {O(n)}
173: n_eval_perfectg_bb5_in___6->n_eval_perfectg_bb3_in___5, Arg_2: 2*Arg_3*Arg_3+4*Arg_3+Arg_2 {O(n^2)}
173: n_eval_perfectg_bb5_in___6->n_eval_perfectg_bb3_in___5, Arg_3: Arg_3 {O(n)}
173: n_eval_perfectg_bb5_in___6->n_eval_perfectg_bb3_in___5, Arg_4: 2*Arg_3+2 {O(n)}
173: n_eval_perfectg_bb5_in___6->n_eval_perfectg_bb3_in___5, Arg_5: 3*Arg_3 {O(n)}
173: n_eval_perfectg_bb5_in___6->n_eval_perfectg_bb3_in___5, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
173: n_eval_perfectg_bb5_in___6->n_eval_perfectg_bb3_in___5, Arg_7: Arg_7 {O(n)}