Initial Problem
Start: eval_abc_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8
Temp_Vars:
Locations: eval_abc_0, eval_abc_1, eval_abc_16, eval_abc_17, eval_abc_19, eval_abc_2, eval_abc_20, eval_abc_3, eval_abc_4, eval_abc_5, eval_abc_6, eval_abc_7, eval_abc_8, eval_abc_bb0_in, eval_abc_bb1_in, eval_abc_bb2_in, eval_abc_bb3_in, eval_abc_bb4_in, eval_abc_bb5_in, eval_abc_bb6_in, eval_abc_bb7_in, eval_abc_bb8_in, eval_abc_start, eval_abc_stop
Transitions:
2:eval_abc_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
3:eval_abc_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
20:eval_abc_16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
21:eval_abc_17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_0,Arg_8)
23:eval_abc_19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
4:eval_abc_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
24:eval_abc_20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_1,Arg_7,Arg_8)
5:eval_abc_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
6:eval_abc_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
7:eval_abc_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
8:eval_abc_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
9:eval_abc_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
10:eval_abc_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_2,Arg_7,Arg_8)
1:eval_abc_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
11:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_4,Arg_8):|:Arg_6<=Arg_3
12:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_3<Arg_6
13:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5
14:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_5<Arg_7
15:eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_6-Arg_7)
16:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_8<=Arg_6+Arg_7
17:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_6+Arg_7<Arg_8
18:eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1)
19:eval_abc_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_16(Arg_7+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
22:eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_19(Arg_0,Arg_6+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
25:eval_abc_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
0:eval_abc_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
Preprocessing
Found invariant 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_1 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && Arg_2<=Arg_3 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 for location eval_abc_19
Found invariant Arg_7<=Arg_5 && 1+Arg_7<=Arg_0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 for location eval_abc_16
Found invariant Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_2<=Arg_3 for location eval_abc_bb2_in
Found invariant 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_2<=Arg_3 for location eval_abc_bb7_in
Found invariant Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location eval_abc_bb4_in
Found invariant 1+Arg_3<=Arg_6 && Arg_2<=Arg_6 for location eval_abc_bb8_in
Found invariant Arg_2<=Arg_6 for location eval_abc_bb1_in
Found invariant 1+Arg_3<=Arg_6 && Arg_2<=Arg_6 for location eval_abc_stop
Found invariant Arg_7<=Arg_5 && 1+Arg_7<=Arg_0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 for location eval_abc_17
Found invariant 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_1 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && Arg_2<=Arg_3 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 for location eval_abc_20
Found invariant Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location eval_abc_bb6_in
Found invariant Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location eval_abc_bb3_in
Found invariant Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location eval_abc_bb5_in
Problem after Preprocessing
Start: eval_abc_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8
Temp_Vars:
Locations: eval_abc_0, eval_abc_1, eval_abc_16, eval_abc_17, eval_abc_19, eval_abc_2, eval_abc_20, eval_abc_3, eval_abc_4, eval_abc_5, eval_abc_6, eval_abc_7, eval_abc_8, eval_abc_bb0_in, eval_abc_bb1_in, eval_abc_bb2_in, eval_abc_bb3_in, eval_abc_bb4_in, eval_abc_bb5_in, eval_abc_bb6_in, eval_abc_bb7_in, eval_abc_bb8_in, eval_abc_start, eval_abc_stop
Transitions:
2:eval_abc_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
3:eval_abc_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
20:eval_abc_16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && 1+Arg_7<=Arg_0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3
21:eval_abc_17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_0,Arg_8):|:Arg_7<=Arg_5 && 1+Arg_7<=Arg_0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3
23:eval_abc_19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_1 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && Arg_2<=Arg_3 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
4:eval_abc_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
24:eval_abc_20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_1,Arg_7,Arg_8):|:1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_1 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && Arg_2<=Arg_3 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1
5:eval_abc_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
6:eval_abc_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
7:eval_abc_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
8:eval_abc_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
9:eval_abc_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
10:eval_abc_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_2,Arg_7,Arg_8)
1:eval_abc_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
11:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_4,Arg_8):|:Arg_2<=Arg_6 && Arg_6<=Arg_3
12:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_2<=Arg_6 && Arg_3<Arg_6
13:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_2<=Arg_3 && Arg_7<=Arg_5
14:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_2<=Arg_3 && Arg_5<Arg_7
15:eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_6-Arg_7):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3
16:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_8<=Arg_6+Arg_7
17:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_6+Arg_7<Arg_8
18:eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3
19:eval_abc_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_16(Arg_7+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3
22:eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_19(Arg_0,Arg_6+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_2<=Arg_3
25:eval_abc_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_3<=Arg_6 && Arg_2<=Arg_6
0:eval_abc_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8)
MPRF for transition 23:eval_abc_19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_1 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && Arg_2<=Arg_3 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 of depth 1:
new bound:
Arg_2+Arg_3+1 {O(n)}
MPRF:
eval_abc_17 [Arg_3+1-Arg_6 ]
eval_abc_20 [Arg_3-Arg_6 ]
eval_abc_bb1_in [Arg_3+1-Arg_6 ]
eval_abc_bb2_in [Arg_3+1-Arg_6 ]
eval_abc_bb3_in [Arg_3+1-Arg_6 ]
eval_abc_bb5_in [Arg_3+1-Arg_6 ]
eval_abc_bb4_in [Arg_3+1-Arg_6 ]
eval_abc_bb6_in [Arg_3+1-Arg_6 ]
eval_abc_16 [Arg_3+1-Arg_6 ]
eval_abc_bb7_in [Arg_3+1-Arg_6 ]
eval_abc_19 [Arg_3+1-Arg_6 ]
MPRF for transition 24:eval_abc_20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_1,Arg_7,Arg_8):|:1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_1 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && Arg_2<=Arg_3 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 of depth 1:
new bound:
Arg_2+Arg_3+1 {O(n)}
MPRF:
eval_abc_17 [Arg_3+1-Arg_6 ]
eval_abc_20 [Arg_3+1-Arg_6 ]
eval_abc_bb1_in [Arg_3+1-Arg_6 ]
eval_abc_bb2_in [Arg_3+1-Arg_6 ]
eval_abc_bb3_in [Arg_3+1-Arg_6 ]
eval_abc_bb5_in [Arg_3+1-Arg_6 ]
eval_abc_bb4_in [Arg_3+1-Arg_6 ]
eval_abc_bb6_in [Arg_3+1-Arg_6 ]
eval_abc_16 [Arg_3+1-Arg_6 ]
eval_abc_bb7_in [Arg_3+1-Arg_6 ]
eval_abc_19 [Arg_3+1-Arg_6 ]
MPRF for transition 11:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_4,Arg_8):|:Arg_2<=Arg_6 && Arg_6<=Arg_3 of depth 1:
new bound:
Arg_2+Arg_3+1 {O(n)}
MPRF:
eval_abc_17 [Arg_3-Arg_6 ]
eval_abc_20 [Arg_3-Arg_6 ]
eval_abc_bb1_in [Arg_3+1-Arg_6 ]
eval_abc_bb2_in [Arg_3-Arg_6 ]
eval_abc_bb3_in [Arg_3-Arg_6 ]
eval_abc_bb5_in [Arg_3-Arg_6 ]
eval_abc_bb4_in [Arg_3-Arg_6 ]
eval_abc_bb6_in [Arg_3-Arg_6 ]
eval_abc_16 [Arg_3-Arg_6 ]
eval_abc_bb7_in [Arg_3-Arg_6 ]
eval_abc_19 [Arg_3-Arg_6 ]
MPRF for transition 14:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_2<=Arg_3 && Arg_5<Arg_7 of depth 1:
new bound:
Arg_2+Arg_3+1 {O(n)}
MPRF:
eval_abc_17 [Arg_3+1-Arg_6 ]
eval_abc_20 [Arg_3-Arg_6 ]
eval_abc_bb1_in [Arg_3+1-Arg_6 ]
eval_abc_bb2_in [Arg_3+1-Arg_6 ]
eval_abc_bb3_in [Arg_3+1-Arg_6 ]
eval_abc_bb5_in [Arg_3+1-Arg_6 ]
eval_abc_bb4_in [Arg_3+1-Arg_6 ]
eval_abc_bb6_in [Arg_3+1-Arg_6 ]
eval_abc_16 [Arg_3+1-Arg_6 ]
eval_abc_bb7_in [Arg_3-Arg_6 ]
eval_abc_19 [Arg_3-Arg_6 ]
MPRF for transition 22:eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_19(Arg_0,Arg_6+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_2<=Arg_3 of depth 1:
new bound:
Arg_2+Arg_3+1 {O(n)}
MPRF:
eval_abc_17 [Arg_3+1-Arg_6 ]
eval_abc_20 [Arg_3-Arg_6 ]
eval_abc_bb1_in [Arg_3+1-Arg_6 ]
eval_abc_bb2_in [Arg_3+1-Arg_6 ]
eval_abc_bb3_in [Arg_3+1-Arg_6 ]
eval_abc_bb5_in [Arg_3+1-Arg_6 ]
eval_abc_bb4_in [Arg_3+1-Arg_6 ]
eval_abc_bb6_in [Arg_3+1-Arg_6 ]
eval_abc_16 [Arg_3+1-Arg_6 ]
eval_abc_bb7_in [Arg_3+1-Arg_6 ]
eval_abc_19 [Arg_3-Arg_6 ]
MPRF for transition 20:eval_abc_16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && 1+Arg_7<=Arg_0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 of depth 1:
new bound:
Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
MPRF:
eval_abc_17 [Arg_5+1-Arg_0 ]
eval_abc_19 [Arg_5+1-Arg_4 ]
eval_abc_20 [Arg_5+1-Arg_4 ]
eval_abc_bb1_in [Arg_5+1-Arg_4 ]
eval_abc_bb2_in [Arg_5+1-Arg_7 ]
eval_abc_bb7_in [Arg_5-Arg_7 ]
eval_abc_bb3_in [Arg_5+1-Arg_7 ]
eval_abc_bb5_in [Arg_5+1-Arg_7 ]
eval_abc_bb4_in [Arg_5+1-Arg_7 ]
eval_abc_bb6_in [Arg_5+1-Arg_7 ]
eval_abc_16 [Arg_5+1-Arg_7 ]
MPRF for transition 21:eval_abc_17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_0,Arg_8):|:Arg_7<=Arg_5 && 1+Arg_7<=Arg_0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 of depth 1:
new bound:
Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
MPRF:
eval_abc_17 [Arg_5+1-Arg_7 ]
eval_abc_19 [Arg_5+1-Arg_4 ]
eval_abc_20 [Arg_5+1-Arg_4 ]
eval_abc_bb1_in [Arg_5+1-Arg_4 ]
eval_abc_bb2_in [Arg_5+1-Arg_7 ]
eval_abc_bb7_in [Arg_5-Arg_7 ]
eval_abc_bb3_in [Arg_5+1-Arg_7 ]
eval_abc_bb5_in [Arg_5+1-Arg_7 ]
eval_abc_bb4_in [Arg_5+1-Arg_7 ]
eval_abc_bb6_in [Arg_5+1-Arg_7 ]
eval_abc_16 [Arg_5+1-Arg_7 ]
MPRF for transition 13:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_2<=Arg_3 && Arg_7<=Arg_5 of depth 1:
new bound:
Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
MPRF:
eval_abc_17 [Arg_5-Arg_7 ]
eval_abc_19 [Arg_5+1-Arg_4 ]
eval_abc_20 [Arg_5+1-Arg_4 ]
eval_abc_bb1_in [Arg_5+1-Arg_4 ]
eval_abc_bb2_in [Arg_5+1-Arg_7 ]
eval_abc_bb7_in [Arg_5-Arg_7 ]
eval_abc_bb3_in [Arg_5-Arg_7 ]
eval_abc_bb5_in [Arg_5-Arg_7 ]
eval_abc_bb4_in [Arg_5-Arg_7 ]
eval_abc_bb6_in [Arg_5-Arg_7 ]
eval_abc_16 [Arg_5-Arg_7 ]
MPRF for transition 15:eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_6-Arg_7):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 of depth 1:
new bound:
Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
MPRF:
eval_abc_17 [Arg_5-Arg_7 ]
eval_abc_19 [Arg_5+1-Arg_4 ]
eval_abc_20 [Arg_5+1-Arg_4 ]
eval_abc_bb1_in [Arg_5+1-Arg_4 ]
eval_abc_bb2_in [Arg_5+1-Arg_7 ]
eval_abc_bb7_in [Arg_5-Arg_7 ]
eval_abc_bb3_in [Arg_5+1-Arg_7 ]
eval_abc_bb5_in [Arg_5-Arg_7 ]
eval_abc_bb4_in [Arg_5-Arg_7 ]
eval_abc_bb6_in [Arg_5-Arg_7 ]
eval_abc_16 [Arg_5-Arg_7 ]
MPRF for transition 17:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_6+Arg_7<Arg_8 of depth 1:
new bound:
Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
MPRF:
eval_abc_17 [Arg_5-Arg_7 ]
eval_abc_19 [Arg_5+1-Arg_4 ]
eval_abc_20 [Arg_5+1-Arg_4 ]
eval_abc_bb1_in [Arg_5+1-Arg_4 ]
eval_abc_bb2_in [Arg_5+1-Arg_7 ]
eval_abc_bb7_in [Arg_5-Arg_7 ]
eval_abc_bb3_in [Arg_5+1-Arg_7 ]
eval_abc_bb5_in [Arg_5+1-Arg_7 ]
eval_abc_bb4_in [Arg_5+1-Arg_7 ]
eval_abc_bb6_in [Arg_5-Arg_7 ]
eval_abc_16 [Arg_5-Arg_7 ]
MPRF for transition 19:eval_abc_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_16(Arg_7+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 of depth 1:
new bound:
Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
MPRF:
eval_abc_17 [Arg_5+1-Arg_0 ]
eval_abc_19 [Arg_5+1-Arg_4 ]
eval_abc_20 [Arg_5+1-Arg_4 ]
eval_abc_bb1_in [Arg_5+1-Arg_4 ]
eval_abc_bb2_in [Arg_5+1-Arg_7 ]
eval_abc_bb7_in [Arg_5-Arg_7 ]
eval_abc_bb3_in [Arg_5+1-Arg_7 ]
eval_abc_bb5_in [Arg_5+1-Arg_7 ]
eval_abc_bb4_in [Arg_5+1-Arg_7 ]
eval_abc_bb6_in [Arg_5+1-Arg_7 ]
eval_abc_16 [Arg_5-Arg_7 ]
MPRF for transition 16:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_8<=Arg_6+Arg_7 of depth 1:
new bound:
2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_5+3*Arg_3*Arg_5+4*Arg_4*Arg_5+4*Arg_5*Arg_5+Arg_2*Arg_4+Arg_3*Arg_4+2*Arg_4+8*Arg_5+Arg_2+Arg_3+3 {O(n^3)}
MPRF:
eval_abc_16 [2*Arg_5+1 ]
eval_abc_17 [2*Arg_5+1 ]
eval_abc_20 [2*Arg_5+1 ]
eval_abc_bb1_in [2*Arg_5+1 ]
eval_abc_bb2_in [2*Arg_5+1 ]
eval_abc_bb3_in [2*Arg_5+1 ]
eval_abc_bb6_in [Arg_5+Arg_6+1-Arg_8 ]
eval_abc_bb5_in [Arg_5+Arg_6-Arg_8 ]
eval_abc_bb4_in [Arg_5+Arg_6+1-Arg_8 ]
eval_abc_bb7_in [2*Arg_5+1 ]
eval_abc_19 [2*Arg_5+1 ]
knowledge_propagation leads to new time bound 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_5+3*Arg_3*Arg_5+4*Arg_4*Arg_5+4*Arg_5*Arg_5+Arg_2*Arg_4+Arg_3*Arg_4+2*Arg_4+8*Arg_5+Arg_2+Arg_3+3 {O(n^3)} for transition 18:eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3
Analysing control-flow refined program
Found invariant 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_1 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && Arg_2<=Arg_3 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 for location eval_abc_19
Found invariant Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_abc_bb5_in___8
Found invariant Arg_7<=Arg_4 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_2<=Arg_3 for location eval_abc_bb2_in
Found invariant 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_2<=Arg_3 for location eval_abc_bb7_in
Found invariant Arg_7<=Arg_5 && Arg_7<=Arg_0 && 1+Arg_4<=Arg_7 && Arg_0<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && 1+Arg_4<=Arg_5 && Arg_0<=Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 for location n_eval_abc_bb3_in___3
Found invariant Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_abc_bb6_in___10
Found invariant Arg_7<=Arg_5 && 1+Arg_7<=Arg_0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 for location n_eval_abc_17___5
Found invariant Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_abc_bb6_in___7
Found invariant Arg_7<=1+Arg_5 && Arg_7<=Arg_0 && 1+Arg_4<=Arg_7 && Arg_0<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 for location n_eval_abc_bb2_in___4
Found invariant 1+Arg_3<=Arg_6 && Arg_2<=Arg_6 for location eval_abc_bb8_in
Found invariant 1+Arg_7<=0 && Arg_7<=Arg_5 && 2+Arg_4+Arg_7<=0 && 1+Arg_7<=Arg_0 && 1+Arg_0+Arg_7<=0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=0 && 1+Arg_4<=Arg_0 && 1+Arg_0+Arg_4<=0 && Arg_2<=Arg_3 && Arg_0<=0 for location n_eval_abc_16___2
Found invariant Arg_7<=Arg_5 && 1+Arg_7<=Arg_0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 for location n_eval_abc_16___6
Found invariant Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_abc_bb5_in___11
Found invariant Arg_2<=Arg_6 for location eval_abc_bb1_in
Found invariant 1+Arg_3<=Arg_6 && Arg_2<=Arg_6 for location eval_abc_stop
Found invariant 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && 1+Arg_6<=Arg_1 && Arg_2<=Arg_6 && Arg_1<=1+Arg_6 && Arg_2<=Arg_3 && Arg_1<=1+Arg_3 && 1+Arg_2<=Arg_1 for location eval_abc_20
Found invariant Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_abc_bb4_in___9
Found invariant Arg_7<=Arg_5 && Arg_7<=Arg_4 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_abc_bb3_in___13
Found invariant Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 for location n_eval_abc_bb4_in___12
Found invariant 1+Arg_6<=Arg_8 && 1+Arg_2<=Arg_8 && 1+Arg_7<=0 && Arg_7<=Arg_5 && 2+Arg_4+Arg_7<=0 && 1+Arg_7<=Arg_0 && 1+Arg_0+Arg_7<=0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=0 && 1+Arg_4<=Arg_0 && 1+Arg_0+Arg_4<=0 && Arg_2<=Arg_3 && Arg_0<=0 for location n_eval_abc_17___1
knowledge_propagation leads to new time bound Arg_2+Arg_3+1 {O(n)} for transition 173:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_bb3_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_4 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_2<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_4<=Arg_7 && Arg_7<=Arg_4 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6
knowledge_propagation leads to new time bound Arg_2+Arg_3+1 {O(n)} for transition 175:n_eval_abc_bb3_in___13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_bb4_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_6-Arg_7):|:Arg_7<=Arg_5 && Arg_7<=Arg_4 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_4<=Arg_7 && Arg_7<=Arg_4 && Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6
MPRF for transition 169:n_eval_abc_16___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_17___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_0-1,Arg_8):|:1+Arg_7<=0 && Arg_7<=Arg_5 && 2+Arg_4+Arg_7<=0 && 1+Arg_7<=Arg_0 && 1+Arg_0+Arg_7<=0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=0 && 1+Arg_4<=Arg_0 && 1+Arg_0+Arg_4<=0 && Arg_2<=Arg_3 && Arg_0<=0 && Arg_0<1 && Arg_2<=Arg_6 && 1+Arg_4<=Arg_0 && Arg_0<=1+Arg_5 && Arg_6<=Arg_3 && Arg_0<=Arg_7+1 && 1+Arg_7<=Arg_0 && Arg_0+Arg_8<=Arg_6+1 && 1+Arg_6<=Arg_0+Arg_8 && Arg_6<=Arg_3 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_0<=1+Arg_5 && Arg_0<=Arg_7+1 && 1+Arg_7<=Arg_0 of depth 1:
new bound:
4*Arg_2*Arg_2+4*Arg_3*Arg_3+6*Arg_2*Arg_4+6*Arg_3*Arg_4+8*Arg_2*Arg_3+6*Arg_4+8*Arg_2+8*Arg_3+Arg_5+3 {O(n^2)}
MPRF:
eval_abc_20 [2*Arg_3+1-2*Arg_1-Arg_5 ]
eval_abc_bb1_in [2*Arg_3+1-Arg_5-2*Arg_6 ]
eval_abc_bb2_in [2*Arg_3+1-Arg_5-2*Arg_6 ]
n_eval_abc_bb3_in___13 [2*Arg_3+1-Arg_5-2*Arg_6 ]
eval_abc_19 [2*Arg_3-Arg_5-2*Arg_6-1 ]
n_eval_abc_17___1 [2*Arg_3-Arg_0-2*Arg_6 ]
n_eval_abc_17___5 [2*Arg_3-Arg_0-2*Arg_6 ]
n_eval_abc_bb2_in___4 [2*Arg_3-2*Arg_6-Arg_7 ]
eval_abc_bb7_in [2*Arg_3-Arg_5-2*Arg_6-1 ]
n_eval_abc_bb3_in___3 [2*Arg_3-2*Arg_6-Arg_7 ]
n_eval_abc_bb4_in___12 [2*Arg_3-Arg_6-2*Arg_7-Arg_8 ]
n_eval_abc_bb5_in___11 [2*Arg_3-Arg_6-2*Arg_7-Arg_8 ]
n_eval_abc_bb5_in___8 [2*Arg_3-2*Arg_6-Arg_7 ]
n_eval_abc_bb4_in___9 [2*Arg_3-2*Arg_6-Arg_7 ]
n_eval_abc_bb6_in___10 [2*Arg_3-3*Arg_7-2*Arg_8 ]
n_eval_abc_16___2 [2*Arg_3+1-Arg_0-2*Arg_6 ]
n_eval_abc_bb6_in___7 [2*Arg_3-2*Arg_6-Arg_7 ]
n_eval_abc_16___6 [2*Arg_3-Arg_0-2*Arg_6 ]
MPRF for transition 170:n_eval_abc_16___6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_17___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_0-1,Arg_8):|:Arg_7<=Arg_5 && 1+Arg_7<=Arg_0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 && Arg_0<=1+Arg_5 && Arg_0+Arg_6<1+Arg_8 && Arg_2<=Arg_6 && 1+Arg_4<=Arg_0 && Arg_6<=Arg_3 && Arg_0<=Arg_7+1 && 1+Arg_7<=Arg_0 && Arg_6<=Arg_3 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_0<=1+Arg_5 && Arg_0<=Arg_7+1 && 1+Arg_7<=Arg_0 of depth 1:
new bound:
2*Arg_2*Arg_4+2*Arg_3*Arg_4+Arg_2*Arg_5+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_0+Arg_2+Arg_3+2 {O(n^2)}
MPRF:
eval_abc_20 [Arg_5+1-Arg_0 ]
eval_abc_bb1_in [Arg_5+1-Arg_0 ]
eval_abc_bb2_in [Arg_5+1-Arg_0 ]
n_eval_abc_bb3_in___13 [Arg_5+1-Arg_0 ]
eval_abc_19 [Arg_5+1-Arg_0 ]
n_eval_abc_17___1 [Arg_5-Arg_7 ]
n_eval_abc_17___5 [Arg_5+1-Arg_0 ]
n_eval_abc_bb2_in___4 [Arg_5+1-Arg_0 ]
eval_abc_bb7_in [Arg_5+1-Arg_0 ]
n_eval_abc_bb3_in___3 [Arg_5+1-Arg_0 ]
n_eval_abc_bb4_in___12 [Arg_5+1-Arg_7 ]
n_eval_abc_bb5_in___11 [Arg_5+1-Arg_7 ]
n_eval_abc_bb5_in___8 [Arg_5+1-Arg_7 ]
n_eval_abc_bb4_in___9 [Arg_5+1-Arg_7 ]
n_eval_abc_bb6_in___10 [Arg_5-Arg_7 ]
n_eval_abc_16___2 [Arg_5-Arg_7 ]
n_eval_abc_bb6_in___7 [Arg_5+1-Arg_7 ]
n_eval_abc_16___6 [Arg_5+1-Arg_7 ]
MPRF for transition 171:n_eval_abc_17___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_bb2_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_0,Arg_8):|:1+Arg_6<=Arg_8 && 1+Arg_2<=Arg_8 && 1+Arg_7<=0 && Arg_7<=Arg_5 && 2+Arg_4+Arg_7<=0 && 1+Arg_7<=Arg_0 && 1+Arg_0+Arg_7<=0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=0 && 1+Arg_4<=Arg_0 && 1+Arg_0+Arg_4<=0 && Arg_2<=Arg_3 && Arg_0<=0 && Arg_0<1 && Arg_2<=Arg_6 && 1+Arg_4<=Arg_0 && Arg_0<=1+Arg_5 && Arg_6<=Arg_3 && Arg_0<=Arg_7+1 && 1+Arg_7<=Arg_0 && Arg_0+Arg_8<=Arg_6+1 && 1+Arg_6<=Arg_0+Arg_8 && Arg_6<=Arg_3 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_0<=1+Arg_5 && Arg_0<=Arg_7+1 && 1+Arg_7<=Arg_0 of depth 1:
new bound:
14*Arg_2*Arg_3+3*Arg_2*Arg_4+3*Arg_3*Arg_4+6*Arg_3*Arg_3+8*Arg_2*Arg_2+Arg_2*Arg_5+Arg_3*Arg_5+12*Arg_3+14*Arg_2+4*Arg_4+Arg_5+5 {O(n^2)}
MPRF:
eval_abc_20 [2*Arg_3+1-2*Arg_1-Arg_4 ]
eval_abc_bb1_in [2*Arg_3+1-Arg_4-2*Arg_6 ]
eval_abc_bb2_in [2*Arg_3+1-Arg_4-2*Arg_6 ]
n_eval_abc_bb3_in___13 [2*Arg_3+1-Arg_4-2*Arg_6 ]
eval_abc_19 [2*Arg_3-Arg_4-2*Arg_6-1 ]
n_eval_abc_17___1 [2*Arg_3+Arg_5+1-Arg_0-Arg_4-2*Arg_6 ]
n_eval_abc_17___5 [2*Arg_3+Arg_5-Arg_0-Arg_4-2*Arg_6 ]
n_eval_abc_bb2_in___4 [2*Arg_3+Arg_5-Arg_0-Arg_4-2*Arg_6 ]
eval_abc_bb7_in [2*Arg_3-Arg_4-2*Arg_6-1 ]
n_eval_abc_bb3_in___3 [2*Arg_3+Arg_5-Arg_4-2*Arg_6-Arg_7 ]
n_eval_abc_bb4_in___12 [2*Arg_3+Arg_5+Arg_8-Arg_4-3*Arg_6 ]
n_eval_abc_bb5_in___11 [2*Arg_3+Arg_5+Arg_8-Arg_4-3*Arg_6 ]
n_eval_abc_bb5_in___8 [2*Arg_3+Arg_5-Arg_4-2*Arg_6-Arg_7 ]
n_eval_abc_bb4_in___9 [2*Arg_3+Arg_5-Arg_4-2*Arg_6-Arg_7 ]
n_eval_abc_bb6_in___10 [2*Arg_3+Arg_5+Arg_8-Arg_4-3*Arg_6 ]
n_eval_abc_16___2 [2*Arg_3+Arg_5-Arg_4-2*Arg_6-Arg_7 ]
n_eval_abc_bb6_in___7 [2*Arg_3+Arg_5-Arg_4-2*Arg_6-Arg_7 ]
n_eval_abc_16___6 [2*Arg_3+Arg_5-Arg_0-Arg_4-2*Arg_6 ]
MPRF for transition 172:n_eval_abc_17___5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_bb2_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_0,Arg_8):|:Arg_7<=Arg_5 && 1+Arg_7<=Arg_0 && Arg_4<=Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && 1+Arg_4<=Arg_0 && Arg_0+Arg_6<1+Arg_8 && Arg_0<=1+Arg_5 && Arg_0<=Arg_7+1 && 1+Arg_7<=Arg_0 && Arg_6<=Arg_3 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_0<=1+Arg_5 && Arg_0<=Arg_7+1 && 1+Arg_7<=Arg_0 of depth 1:
new bound:
2*Arg_2*Arg_4+2*Arg_3*Arg_4+Arg_2*Arg_5+Arg_3*Arg_5+2*Arg_2+2*Arg_3+2*Arg_4+Arg_5+3 {O(n^2)}
MPRF:
eval_abc_20 [1 ]
eval_abc_bb1_in [1 ]
eval_abc_bb2_in [1 ]
n_eval_abc_bb3_in___13 [1 ]
eval_abc_19 [1 ]
n_eval_abc_17___1 [Arg_5+2-Arg_0 ]
n_eval_abc_17___5 [Arg_5+2-Arg_7 ]
n_eval_abc_bb2_in___4 [Arg_5+2-Arg_0 ]
eval_abc_bb7_in [1 ]
n_eval_abc_bb3_in___3 [Arg_5+2-Arg_0 ]
n_eval_abc_bb4_in___12 [Arg_5+2-Arg_7 ]
n_eval_abc_bb5_in___11 [Arg_5+2-Arg_7 ]
n_eval_abc_bb5_in___8 [Arg_5+2-Arg_7 ]
n_eval_abc_bb4_in___9 [Arg_5+2-Arg_7 ]
n_eval_abc_bb6_in___10 [Arg_5+1-Arg_7 ]
n_eval_abc_16___2 [Arg_5+1-Arg_7 ]
n_eval_abc_bb6_in___7 [Arg_5+2-Arg_7 ]
n_eval_abc_16___6 [Arg_5+3-Arg_0 ]
MPRF for transition 174:n_eval_abc_bb2_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_bb3_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=1+Arg_5 && Arg_7<=Arg_0 && 1+Arg_4<=Arg_7 && Arg_0<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && Arg_6<=Arg_3 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_6 && Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 of depth 1:
new bound:
2*Arg_2*Arg_4+2*Arg_3*Arg_3+2*Arg_3*Arg_4+4*Arg_2*Arg_2+6*Arg_2*Arg_3+Arg_2*Arg_5+Arg_3*Arg_5+2*Arg_4+5*Arg_3+7*Arg_2+Arg_5+4 {O(n^2)}
MPRF:
eval_abc_20 [1 ]
eval_abc_bb1_in [1 ]
eval_abc_bb2_in [1 ]
n_eval_abc_bb3_in___13 [1 ]
eval_abc_19 [1 ]
n_eval_abc_17___1 [Arg_5+1-Arg_7 ]
n_eval_abc_17___5 [Arg_5+2-Arg_0 ]
n_eval_abc_bb2_in___4 [Arg_5+2-Arg_7 ]
eval_abc_bb7_in [1 ]
n_eval_abc_bb3_in___3 [Arg_5+1-Arg_0 ]
n_eval_abc_bb4_in___12 [Arg_5+Arg_8+1-Arg_6 ]
n_eval_abc_bb5_in___11 [Arg_5+Arg_8+1-Arg_6 ]
n_eval_abc_bb5_in___8 [Arg_5+1-Arg_7 ]
n_eval_abc_bb4_in___9 [Arg_5+1-Arg_7 ]
n_eval_abc_bb6_in___10 [Arg_5+Arg_8+1-Arg_6 ]
n_eval_abc_16___2 [Arg_5+1-Arg_7 ]
n_eval_abc_bb6_in___7 [Arg_5+1-Arg_7 ]
n_eval_abc_16___6 [Arg_5+2-Arg_0 ]
MPRF for transition 197:n_eval_abc_bb2_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=1+Arg_5 && Arg_7<=Arg_0 && 1+Arg_4<=Arg_7 && Arg_0<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_0<=1+Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_2<=Arg_3 && Arg_5<Arg_7 of depth 1:
new bound:
Arg_2+Arg_3+1 {O(n)}
MPRF:
eval_abc_20 [Arg_3+1-Arg_1 ]
eval_abc_bb1_in [Arg_3+1-Arg_6 ]
eval_abc_bb2_in [Arg_3+1-Arg_6 ]
eval_abc_19 [Arg_3+1-Arg_1 ]
n_eval_abc_17___1 [Arg_0+Arg_3-Arg_6-Arg_7 ]
n_eval_abc_17___5 [Arg_3+1-Arg_6 ]
n_eval_abc_bb2_in___4 [Arg_3+1-Arg_6 ]
eval_abc_bb7_in [Arg_3-Arg_6 ]
n_eval_abc_bb3_in___13 [Arg_3+1-Arg_6 ]
n_eval_abc_bb3_in___3 [Arg_3+1-Arg_6 ]
n_eval_abc_bb4_in___12 [Arg_3+1-Arg_6 ]
n_eval_abc_bb5_in___11 [Arg_3+1-Arg_7-Arg_8 ]
n_eval_abc_bb5_in___8 [Arg_3+1-Arg_6 ]
n_eval_abc_bb4_in___9 [Arg_3+1-Arg_6 ]
n_eval_abc_bb6_in___10 [Arg_3+1-Arg_6 ]
n_eval_abc_16___2 [Arg_3+1-Arg_6 ]
n_eval_abc_bb6_in___7 [Arg_3+1-Arg_6 ]
n_eval_abc_16___6 [Arg_3+1-Arg_6 ]
MPRF for transition 176:n_eval_abc_bb3_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_bb4_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_6-Arg_7):|:Arg_7<=Arg_5 && Arg_7<=Arg_0 && 1+Arg_4<=Arg_7 && Arg_0<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && 1+Arg_4<=Arg_5 && Arg_0<=Arg_5 && 1+Arg_4<=Arg_0 && Arg_2<=Arg_3 && Arg_0<=Arg_5 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && 1+Arg_4<=Arg_0 && Arg_0<=Arg_7 && Arg_7<=Arg_0 && Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 of depth 1:
new bound:
2*Arg_2*Arg_4+2*Arg_3*Arg_4+Arg_2*Arg_5+Arg_3*Arg_5+2*Arg_4+Arg_2+Arg_3+Arg_5+2 {O(n^2)}
MPRF:
eval_abc_20 [1 ]
eval_abc_bb1_in [1 ]
eval_abc_bb2_in [1 ]
n_eval_abc_bb3_in___13 [1 ]
eval_abc_19 [1 ]
n_eval_abc_17___1 [Arg_0+Arg_5-2*Arg_7 ]
n_eval_abc_17___5 [Arg_0+Arg_5-2*Arg_7 ]
n_eval_abc_bb2_in___4 [Arg_5+2-Arg_7 ]
eval_abc_bb7_in [1 ]
n_eval_abc_bb3_in___3 [Arg_5+2-Arg_0 ]
n_eval_abc_bb4_in___12 [Arg_5+1-Arg_7 ]
n_eval_abc_bb5_in___11 [Arg_5+1-Arg_7 ]
n_eval_abc_bb5_in___8 [Arg_5+1-Arg_7 ]
n_eval_abc_bb4_in___9 [Arg_5+1-Arg_7 ]
n_eval_abc_bb6_in___10 [Arg_5+1-Arg_7 ]
n_eval_abc_16___2 [Arg_5+1-Arg_7 ]
n_eval_abc_bb6_in___7 [Arg_5+1-Arg_7 ]
n_eval_abc_16___6 [Arg_5+2-Arg_0 ]
MPRF for transition 177:n_eval_abc_bb4_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_bb5_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_7 && Arg_7<=Arg_5 && Arg_6<=Arg_3 && Arg_6<=Arg_7+Arg_8 && Arg_7+Arg_8<=Arg_6 && Arg_6<=Arg_3 && Arg_4+Arg_8<=Arg_6 && Arg_6<=Arg_5+Arg_8 && Arg_2<=Arg_6 && Arg_6<=Arg_3 && Arg_4<=Arg_7 && Arg_7<=Arg_5 && Arg_2<=Arg_6 && Arg_8<=Arg_6+Arg_7 && Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 of depth 1:
new bound:
2*Arg_2*Arg_5+2*Arg_3*Arg_5+3*Arg_2*Arg_4+3*Arg_3*Arg_4+2*Arg_2+2*Arg_3+3*Arg_5+4*Arg_4+3 {O(n^2)}
MPRF:
eval_abc_20 [Arg_5+1-Arg_4 ]
eval_abc_bb1_in [Arg_5+1-Arg_4 ]
eval_abc_bb2_in [Arg_5+1-Arg_7 ]
n_eval_abc_bb3_in___13 [Arg_5+1-Arg_7 ]
eval_abc_19 [Arg_5+1-Arg_4 ]
n_eval_abc_17___1 [2*Arg_5+2-Arg_0-Arg_4 ]
n_eval_abc_17___5 [2*Arg_5+2-Arg_0-Arg_4 ]
n_eval_abc_bb2_in___4 [2*Arg_5+2-Arg_0-Arg_4 ]
eval_abc_bb7_in [Arg_5+1-Arg_4 ]
n_eval_abc_bb3_in___3 [2*Arg_5+2-Arg_0-Arg_4 ]
n_eval_abc_bb4_in___12 [2*Arg_5+2-Arg_4-Arg_7 ]
n_eval_abc_bb5_in___11 [2*Arg_5+1-Arg_4-Arg_7 ]
n_eval_abc_bb5_in___8 [2*Arg_5+1-Arg_4-Arg_7 ]
n_eval_abc_bb4_in___9 [2*Arg_5+1-Arg_4-Arg_7 ]
n_eval_abc_bb6_in___10 [2*Arg_5+1-Arg_4-Arg_7 ]
n_eval_abc_16___2 [2*Arg_5+1-Arg_4-Arg_7 ]
n_eval_abc_bb6_in___7 [2*Arg_5+1-Arg_4-Arg_7 ]
n_eval_abc_16___6 [2*Arg_5+2-Arg_0-Arg_4 ]
MPRF for transition 178:n_eval_abc_bb4_in___12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_bb6_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_7 && Arg_7<=Arg_5 && Arg_6<=Arg_3 && Arg_6<=Arg_7+Arg_8 && Arg_7+Arg_8<=Arg_6 && Arg_6<=Arg_3 && Arg_4+Arg_8<=Arg_6 && Arg_6<=Arg_5+Arg_8 && Arg_2<=Arg_6 && Arg_6<=Arg_3 && Arg_4<=Arg_7 && Arg_7<=Arg_5 && Arg_2<=Arg_6 && Arg_6+Arg_7<Arg_8 && Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 of depth 1:
new bound:
2*Arg_3*Arg_3+4*Arg_2*Arg_2+4*Arg_2*Arg_4+4*Arg_3*Arg_4+6*Arg_2*Arg_3+Arg_2*Arg_5+Arg_3*Arg_5+6*Arg_3+6*Arg_4+8*Arg_2+Arg_5+5 {O(n^2)}
MPRF:
eval_abc_20 [1-2*Arg_4 ]
eval_abc_bb1_in [1-2*Arg_4 ]
eval_abc_bb2_in [1-2*Arg_4 ]
n_eval_abc_bb3_in___13 [1-2*Arg_7 ]
eval_abc_19 [1-2*Arg_4 ]
n_eval_abc_17___1 [Arg_0+Arg_5-2*Arg_4-2*Arg_7 ]
n_eval_abc_17___5 [Arg_5+1-2*Arg_4-Arg_7 ]
n_eval_abc_bb2_in___4 [Arg_5+2-Arg_0-2*Arg_4 ]
eval_abc_bb7_in [1-2*Arg_4 ]
n_eval_abc_bb3_in___3 [Arg_5+2-Arg_0-2*Arg_4 ]
n_eval_abc_bb4_in___12 [Arg_5+Arg_8+2-2*Arg_4-Arg_6 ]
n_eval_abc_bb5_in___11 [Arg_5+Arg_8+1-2*Arg_4-Arg_6 ]
n_eval_abc_bb5_in___8 [Arg_5+1-2*Arg_4-Arg_7 ]
n_eval_abc_bb4_in___9 [Arg_5+1-2*Arg_4-Arg_7 ]
n_eval_abc_bb6_in___10 [Arg_5+1-2*Arg_4-Arg_7 ]
n_eval_abc_16___2 [Arg_5+1-2*Arg_4-Arg_7 ]
n_eval_abc_bb6_in___7 [Arg_5+1-2*Arg_4-Arg_7 ]
n_eval_abc_16___6 [Arg_5+2-Arg_0-2*Arg_4 ]
MPRF for transition 180:n_eval_abc_bb4_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_bb6_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_7 && Arg_7<=Arg_5 && Arg_6<=Arg_3 && Arg_6<=Arg_3 && Arg_4<=Arg_7 && Arg_7<=Arg_5 && Arg_2<=Arg_6 && Arg_6+Arg_7<Arg_8 && Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 of depth 1:
new bound:
2*Arg_2*Arg_2+2*Arg_2*Arg_4+2*Arg_3*Arg_3+2*Arg_3*Arg_4+4*Arg_2*Arg_3+Arg_2*Arg_5+Arg_3*Arg_5+2*Arg_4+2*Arg_5+5*Arg_2+5*Arg_3+Arg_0+3 {O(n^2)}
MPRF:
eval_abc_20 [Arg_3+Arg_5+1-Arg_0-Arg_1 ]
eval_abc_bb1_in [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
eval_abc_bb2_in [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
n_eval_abc_bb3_in___13 [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
eval_abc_19 [Arg_3+Arg_5+1-Arg_0-Arg_1 ]
n_eval_abc_17___1 [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
n_eval_abc_17___5 [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
n_eval_abc_bb2_in___4 [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
eval_abc_bb7_in [Arg_3+Arg_5-Arg_0-Arg_6 ]
n_eval_abc_bb3_in___3 [Arg_3+Arg_5+1-Arg_6-Arg_7 ]
n_eval_abc_bb4_in___12 [Arg_3+Arg_5+1-Arg_6-Arg_7 ]
n_eval_abc_bb5_in___11 [Arg_3+Arg_5+1-Arg_6-Arg_7 ]
n_eval_abc_bb5_in___8 [Arg_3+Arg_5+1-Arg_6-Arg_7 ]
n_eval_abc_bb4_in___9 [Arg_3+Arg_5+1-Arg_6-Arg_7 ]
n_eval_abc_bb6_in___10 [Arg_3+Arg_5+1-Arg_6-Arg_7 ]
n_eval_abc_16___2 [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
n_eval_abc_bb6_in___7 [Arg_3+Arg_5-Arg_6-Arg_7 ]
n_eval_abc_16___6 [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
MPRF for transition 181:n_eval_abc_bb5_in___11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_bb4_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_6 && Arg_4+Arg_8<=Arg_6 && Arg_6<=Arg_5+Arg_8 && Arg_6<=Arg_3 && Arg_8<=Arg_6 && Arg_6<=Arg_7+Arg_8 && Arg_7+Arg_8<=Arg_6 && Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 of depth 1:
new bound:
2*Arg_2*Arg_4+2*Arg_3*Arg_4+Arg_2*Arg_5+Arg_3*Arg_5+2*Arg_2+2*Arg_3+2*Arg_4+Arg_5+3 {O(n^2)}
MPRF:
eval_abc_20 [1 ]
eval_abc_bb1_in [1 ]
eval_abc_bb2_in [1 ]
n_eval_abc_bb3_in___13 [1 ]
eval_abc_19 [1 ]
n_eval_abc_17___1 [Arg_0+Arg_5-2*Arg_7 ]
n_eval_abc_17___5 [Arg_0+Arg_5-2*Arg_7 ]
n_eval_abc_bb2_in___4 [Arg_5+2-Arg_0 ]
eval_abc_bb7_in [1 ]
n_eval_abc_bb3_in___3 [Arg_5+2-Arg_0 ]
n_eval_abc_bb4_in___12 [Arg_5+2-Arg_7 ]
n_eval_abc_bb5_in___11 [Arg_5+Arg_8+2-Arg_6 ]
n_eval_abc_bb5_in___8 [Arg_5+1-Arg_7 ]
n_eval_abc_bb4_in___9 [Arg_5+1-Arg_7 ]
n_eval_abc_bb6_in___10 [Arg_5+1-Arg_7 ]
n_eval_abc_16___2 [Arg_5+2-Arg_0 ]
n_eval_abc_bb6_in___7 [Arg_5+1-Arg_7 ]
n_eval_abc_16___6 [Arg_5+2-Arg_0 ]
MPRF for transition 183:n_eval_abc_bb6_in___10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_16___2(Arg_7+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && 2*Arg_7<0 && Arg_2<=Arg_6 && Arg_4<=Arg_7 && Arg_7<=Arg_5 && Arg_6<=Arg_3 && Arg_6<=Arg_7+Arg_8 && Arg_7+Arg_8<=Arg_6 && Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 of depth 1:
new bound:
4*Arg_2*Arg_4+4*Arg_3*Arg_4+2*Arg_5+3*Arg_2+3*Arg_3+4*Arg_4+4 {O(n^2)}
MPRF:
eval_abc_20 [1-2*Arg_5 ]
eval_abc_bb1_in [1-2*Arg_5 ]
eval_abc_bb2_in [1-2*Arg_5 ]
n_eval_abc_bb3_in___13 [1-2*Arg_5 ]
eval_abc_19 [1-2*Arg_5 ]
n_eval_abc_17___1 [3-2*Arg_0 ]
n_eval_abc_17___5 [3-2*Arg_0 ]
n_eval_abc_bb2_in___4 [3-2*Arg_0 ]
eval_abc_bb7_in [1-2*Arg_5 ]
n_eval_abc_bb3_in___3 [3-2*Arg_7 ]
n_eval_abc_bb4_in___12 [3-2*Arg_7 ]
n_eval_abc_bb5_in___11 [3-2*Arg_7 ]
n_eval_abc_bb5_in___8 [3-2*Arg_7 ]
n_eval_abc_bb4_in___9 [3-2*Arg_7 ]
n_eval_abc_bb6_in___10 [3-2*Arg_7 ]
n_eval_abc_16___2 [1-2*Arg_7 ]
n_eval_abc_bb6_in___7 [3-2*Arg_7 ]
n_eval_abc_16___6 [3-2*Arg_0 ]
MPRF for transition 184:n_eval_abc_bb6_in___7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_16___6(Arg_7+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_3 && Arg_6+Arg_7<Arg_8 && Arg_4<=Arg_7 && Arg_7<=Arg_5 && Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 of depth 1:
new bound:
2*Arg_2*Arg_2+2*Arg_2*Arg_4+2*Arg_3*Arg_3+2*Arg_3*Arg_4+4*Arg_2*Arg_3+Arg_2*Arg_5+Arg_3*Arg_5+2*Arg_4+2*Arg_5+5*Arg_2+5*Arg_3+Arg_0+3 {O(n^2)}
MPRF:
eval_abc_20 [Arg_3+Arg_5+1-Arg_0-Arg_1 ]
eval_abc_bb1_in [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
eval_abc_bb2_in [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
n_eval_abc_bb3_in___13 [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
eval_abc_19 [Arg_3+Arg_5+1-Arg_0-Arg_1 ]
n_eval_abc_17___1 [Arg_3+Arg_5-Arg_6-Arg_7 ]
n_eval_abc_17___5 [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
n_eval_abc_bb2_in___4 [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
eval_abc_bb7_in [Arg_3+Arg_5-Arg_0-Arg_6 ]
n_eval_abc_bb3_in___3 [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
n_eval_abc_bb4_in___12 [Arg_3+Arg_5+1-Arg_6-Arg_7 ]
n_eval_abc_bb5_in___11 [Arg_3+Arg_5+1-Arg_6-Arg_7 ]
n_eval_abc_bb5_in___8 [Arg_3+Arg_5+1-Arg_6-Arg_7 ]
n_eval_abc_bb4_in___9 [Arg_3+Arg_5+1-Arg_6-Arg_7 ]
n_eval_abc_bb6_in___10 [Arg_3+Arg_5-Arg_6-Arg_7 ]
n_eval_abc_16___2 [Arg_3+Arg_5+1-Arg_0-Arg_6 ]
n_eval_abc_bb6_in___7 [Arg_3+Arg_5+1-Arg_6-Arg_7 ]
n_eval_abc_16___6 [Arg_3+Arg_5-Arg_6-Arg_7 ]
MPRF for transition 179:n_eval_abc_bb4_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_bb5_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_7 && Arg_7<=Arg_5 && Arg_6<=Arg_3 && Arg_6<=Arg_3 && Arg_4<=Arg_7 && Arg_7<=Arg_5 && Arg_2<=Arg_6 && Arg_8<=Arg_6+Arg_7 && Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 of depth 1:
new bound:
2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_5*Arg_5+4*Arg_2*Arg_2*Arg_5+4*Arg_2*Arg_4*Arg_5+4*Arg_3*Arg_3*Arg_5+4*Arg_3*Arg_4*Arg_5+8*Arg_2*Arg_3*Arg_5+10*Arg_2*Arg_5+10*Arg_3*Arg_5+2*Arg_0*Arg_5+4*Arg_4*Arg_5+4*Arg_5*Arg_5+8*Arg_5 {O(n^3)}
MPRF:
eval_abc_20 [2*Arg_5 ]
eval_abc_bb1_in [2*Arg_5 ]
eval_abc_bb2_in [2*Arg_5 ]
eval_abc_19 [2*Arg_5 ]
n_eval_abc_16___6 [2*Arg_5 ]
n_eval_abc_17___1 [2*Arg_5 ]
n_eval_abc_17___5 [2*Arg_5 ]
n_eval_abc_bb2_in___4 [2*Arg_5 ]
eval_abc_bb7_in [2*Arg_5 ]
n_eval_abc_bb3_in___13 [2*Arg_5 ]
n_eval_abc_bb3_in___3 [2*Arg_5 ]
n_eval_abc_bb4_in___12 [2*Arg_5 ]
n_eval_abc_bb6_in___7 [2*Arg_5+Arg_6-Arg_7-Arg_8 ]
n_eval_abc_bb5_in___11 [2*Arg_5+Arg_6-Arg_7-Arg_8 ]
n_eval_abc_bb5_in___8 [2*Arg_5+Arg_6-Arg_7-Arg_8 ]
n_eval_abc_bb4_in___9 [2*Arg_5+Arg_6+1-Arg_7-Arg_8 ]
n_eval_abc_bb6_in___10 [2*Arg_5 ]
n_eval_abc_16___2 [2*Arg_5 ]
MPRF for transition 182:n_eval_abc_bb5_in___8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8) -> n_eval_abc_bb4_in___9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1):|:Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 && Arg_4<=Arg_5 && Arg_2<=Arg_3 && Arg_2<=Arg_6 && Arg_6<=Arg_3 && Arg_4<=Arg_7 && Arg_7<=Arg_5 && Arg_8<=Arg_6+Arg_7 && Arg_7<=Arg_5 && Arg_4<=Arg_7 && Arg_6<=Arg_3 && Arg_2<=Arg_6 of depth 1:
new bound:
2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_5*Arg_5+4*Arg_2*Arg_2*Arg_5+4*Arg_2*Arg_4*Arg_5+4*Arg_3*Arg_3*Arg_5+4*Arg_3*Arg_4*Arg_5+8*Arg_2*Arg_3*Arg_5+10*Arg_2*Arg_5+10*Arg_3*Arg_5+2*Arg_0*Arg_5+4*Arg_4*Arg_5+4*Arg_5*Arg_5+8*Arg_5 {O(n^3)}
MPRF:
eval_abc_20 [2*Arg_5 ]
eval_abc_bb1_in [2*Arg_5 ]
eval_abc_bb2_in [2*Arg_5 ]
eval_abc_19 [2*Arg_5 ]
n_eval_abc_16___6 [2*Arg_5 ]
n_eval_abc_17___1 [2*Arg_5 ]
n_eval_abc_17___5 [2*Arg_5 ]
n_eval_abc_bb2_in___4 [2*Arg_5 ]
eval_abc_bb7_in [2*Arg_5 ]
n_eval_abc_bb3_in___13 [2*Arg_5 ]
n_eval_abc_bb3_in___3 [2*Arg_5 ]
n_eval_abc_bb4_in___12 [2*Arg_5 ]
n_eval_abc_bb6_in___7 [2*Arg_5+Arg_6-Arg_7-Arg_8 ]
n_eval_abc_bb5_in___11 [2*Arg_5+Arg_6-Arg_7-Arg_8 ]
n_eval_abc_bb5_in___8 [2*Arg_5+Arg_6+1-Arg_7-Arg_8 ]
n_eval_abc_bb4_in___9 [2*Arg_5+Arg_6+1-Arg_7-Arg_8 ]
n_eval_abc_bb6_in___10 [2*Arg_5 ]
n_eval_abc_16___2 [2*Arg_5 ]
CFR did not improve the program. Rolling back
All Bounds
Timebounds
Overall timebound:4*Arg_2*Arg_4*Arg_5+4*Arg_2*Arg_5*Arg_5+4*Arg_3*Arg_4*Arg_5+4*Arg_3*Arg_5*Arg_5+12*Arg_2*Arg_5+12*Arg_3*Arg_5+8*Arg_2*Arg_4+8*Arg_3*Arg_4+8*Arg_4*Arg_5+8*Arg_5*Arg_5+13*Arg_2+13*Arg_3+16*Arg_4+28*Arg_5+36 {O(n^3)}
2: eval_abc_0->eval_abc_1: 1 {O(1)}
3: eval_abc_1->eval_abc_2: 1 {O(1)}
20: eval_abc_16->eval_abc_17: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
21: eval_abc_17->eval_abc_bb2_in: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
23: eval_abc_19->eval_abc_20: Arg_2+Arg_3+1 {O(n)}
4: eval_abc_2->eval_abc_3: 1 {O(1)}
24: eval_abc_20->eval_abc_bb1_in: Arg_2+Arg_3+1 {O(n)}
5: eval_abc_3->eval_abc_4: 1 {O(1)}
6: eval_abc_4->eval_abc_5: 1 {O(1)}
7: eval_abc_5->eval_abc_6: 1 {O(1)}
8: eval_abc_6->eval_abc_7: 1 {O(1)}
9: eval_abc_7->eval_abc_8: 1 {O(1)}
10: eval_abc_8->eval_abc_bb1_in: 1 {O(1)}
1: eval_abc_bb0_in->eval_abc_0: 1 {O(1)}
11: eval_abc_bb1_in->eval_abc_bb2_in: Arg_2+Arg_3+1 {O(n)}
12: eval_abc_bb1_in->eval_abc_bb8_in: 1 {O(1)}
13: eval_abc_bb2_in->eval_abc_bb3_in: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
14: eval_abc_bb2_in->eval_abc_bb7_in: Arg_2+Arg_3+1 {O(n)}
15: eval_abc_bb3_in->eval_abc_bb4_in: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
16: eval_abc_bb4_in->eval_abc_bb5_in: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_5+3*Arg_3*Arg_5+4*Arg_4*Arg_5+4*Arg_5*Arg_5+Arg_2*Arg_4+Arg_3*Arg_4+2*Arg_4+8*Arg_5+Arg_2+Arg_3+3 {O(n^3)}
17: eval_abc_bb4_in->eval_abc_bb6_in: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
18: eval_abc_bb5_in->eval_abc_bb4_in: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_5+3*Arg_3*Arg_5+4*Arg_4*Arg_5+4*Arg_5*Arg_5+Arg_2*Arg_4+Arg_3*Arg_4+2*Arg_4+8*Arg_5+Arg_2+Arg_3+3 {O(n^3)}
19: eval_abc_bb6_in->eval_abc_16: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
22: eval_abc_bb7_in->eval_abc_19: Arg_2+Arg_3+1 {O(n)}
25: eval_abc_bb8_in->eval_abc_stop: 1 {O(1)}
0: eval_abc_start->eval_abc_bb0_in: 1 {O(1)}
Costbounds
Overall costbound: 4*Arg_2*Arg_4*Arg_5+4*Arg_2*Arg_5*Arg_5+4*Arg_3*Arg_4*Arg_5+4*Arg_3*Arg_5*Arg_5+12*Arg_2*Arg_5+12*Arg_3*Arg_5+8*Arg_2*Arg_4+8*Arg_3*Arg_4+8*Arg_4*Arg_5+8*Arg_5*Arg_5+13*Arg_2+13*Arg_3+16*Arg_4+28*Arg_5+36 {O(n^3)}
2: eval_abc_0->eval_abc_1: 1 {O(1)}
3: eval_abc_1->eval_abc_2: 1 {O(1)}
20: eval_abc_16->eval_abc_17: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
21: eval_abc_17->eval_abc_bb2_in: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
23: eval_abc_19->eval_abc_20: Arg_2+Arg_3+1 {O(n)}
4: eval_abc_2->eval_abc_3: 1 {O(1)}
24: eval_abc_20->eval_abc_bb1_in: Arg_2+Arg_3+1 {O(n)}
5: eval_abc_3->eval_abc_4: 1 {O(1)}
6: eval_abc_4->eval_abc_5: 1 {O(1)}
7: eval_abc_5->eval_abc_6: 1 {O(1)}
8: eval_abc_6->eval_abc_7: 1 {O(1)}
9: eval_abc_7->eval_abc_8: 1 {O(1)}
10: eval_abc_8->eval_abc_bb1_in: 1 {O(1)}
1: eval_abc_bb0_in->eval_abc_0: 1 {O(1)}
11: eval_abc_bb1_in->eval_abc_bb2_in: Arg_2+Arg_3+1 {O(n)}
12: eval_abc_bb1_in->eval_abc_bb8_in: 1 {O(1)}
13: eval_abc_bb2_in->eval_abc_bb3_in: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
14: eval_abc_bb2_in->eval_abc_bb7_in: Arg_2+Arg_3+1 {O(n)}
15: eval_abc_bb3_in->eval_abc_bb4_in: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
16: eval_abc_bb4_in->eval_abc_bb5_in: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_5+3*Arg_3*Arg_5+4*Arg_4*Arg_5+4*Arg_5*Arg_5+Arg_2*Arg_4+Arg_3*Arg_4+2*Arg_4+8*Arg_5+Arg_2+Arg_3+3 {O(n^3)}
17: eval_abc_bb4_in->eval_abc_bb6_in: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
18: eval_abc_bb5_in->eval_abc_bb4_in: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_5+3*Arg_3*Arg_5+4*Arg_4*Arg_5+4*Arg_5*Arg_5+Arg_2*Arg_4+Arg_3*Arg_4+2*Arg_4+8*Arg_5+Arg_2+Arg_3+3 {O(n^3)}
19: eval_abc_bb6_in->eval_abc_16: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_4+2*Arg_5+Arg_2+Arg_3+2 {O(n^2)}
22: eval_abc_bb7_in->eval_abc_19: Arg_2+Arg_3+1 {O(n)}
25: eval_abc_bb8_in->eval_abc_stop: 1 {O(1)}
0: eval_abc_start->eval_abc_bb0_in: 1 {O(1)}
Sizebounds
2: eval_abc_0->eval_abc_1, Arg_0: Arg_0 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_1: Arg_1 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_2: Arg_2 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_3: Arg_3 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_4: Arg_4 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_5: Arg_5 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_6: Arg_6 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_7: Arg_7 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_8: Arg_8 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_0: Arg_0 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_1: Arg_1 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_2: Arg_2 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_3: Arg_3 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_4: Arg_4 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_5: Arg_5 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_6: Arg_6 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_7: Arg_7 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_8: Arg_8 {O(n)}
20: eval_abc_16->eval_abc_17, Arg_0: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
20: eval_abc_16->eval_abc_17, Arg_1: 2*Arg_2+Arg_1+Arg_3+1 {O(n)}
20: eval_abc_16->eval_abc_17, Arg_2: Arg_2 {O(n)}
20: eval_abc_16->eval_abc_17, Arg_3: Arg_3 {O(n)}
20: eval_abc_16->eval_abc_17, Arg_4: Arg_4 {O(n)}
20: eval_abc_16->eval_abc_17, Arg_5: Arg_5 {O(n)}
20: eval_abc_16->eval_abc_17, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
20: eval_abc_16->eval_abc_17, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
20: eval_abc_16->eval_abc_17, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_4+3*Arg_3*Arg_4+4*Arg_4*Arg_5+4*Arg_5*Arg_5+5*Arg_2*Arg_5+5*Arg_3*Arg_5+10*Arg_4+12*Arg_5+5*Arg_3+7*Arg_2+9 {O(n^3)}
21: eval_abc_17->eval_abc_bb2_in, Arg_0: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
21: eval_abc_17->eval_abc_bb2_in, Arg_1: 2*Arg_2+Arg_1+Arg_3+1 {O(n)}
21: eval_abc_17->eval_abc_bb2_in, Arg_2: Arg_2 {O(n)}
21: eval_abc_17->eval_abc_bb2_in, Arg_3: Arg_3 {O(n)}
21: eval_abc_17->eval_abc_bb2_in, Arg_4: Arg_4 {O(n)}
21: eval_abc_17->eval_abc_bb2_in, Arg_5: Arg_5 {O(n)}
21: eval_abc_17->eval_abc_bb2_in, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
21: eval_abc_17->eval_abc_bb2_in, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
21: eval_abc_17->eval_abc_bb2_in, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_4+3*Arg_3*Arg_4+4*Arg_4*Arg_5+4*Arg_5*Arg_5+5*Arg_2*Arg_5+5*Arg_3*Arg_5+10*Arg_4+12*Arg_5+5*Arg_3+7*Arg_2+9 {O(n^3)}
23: eval_abc_19->eval_abc_20, Arg_0: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_0+Arg_2+Arg_3+2 {O(n^2)}
23: eval_abc_19->eval_abc_20, Arg_1: 2*Arg_2+Arg_3+1 {O(n)}
23: eval_abc_19->eval_abc_20, Arg_2: Arg_2 {O(n)}
23: eval_abc_19->eval_abc_20, Arg_3: Arg_3 {O(n)}
23: eval_abc_19->eval_abc_20, Arg_4: Arg_4 {O(n)}
23: eval_abc_19->eval_abc_20, Arg_5: Arg_5 {O(n)}
23: eval_abc_19->eval_abc_20, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
23: eval_abc_19->eval_abc_20, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+6*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
23: eval_abc_19->eval_abc_20, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_4+3*Arg_3*Arg_4+4*Arg_4*Arg_5+4*Arg_5*Arg_5+5*Arg_2*Arg_5+5*Arg_3*Arg_5+10*Arg_4+12*Arg_5+5*Arg_3+7*Arg_2+Arg_8+9 {O(n^3)}
4: eval_abc_2->eval_abc_3, Arg_0: Arg_0 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_1: Arg_1 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_2: Arg_2 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_3: Arg_3 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_4: Arg_4 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_5: Arg_5 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_6: Arg_6 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_7: Arg_7 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_8: Arg_8 {O(n)}
24: eval_abc_20->eval_abc_bb1_in, Arg_0: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_0+Arg_2+Arg_3+2 {O(n^2)}
24: eval_abc_20->eval_abc_bb1_in, Arg_1: 2*Arg_2+Arg_3+1 {O(n)}
24: eval_abc_20->eval_abc_bb1_in, Arg_2: Arg_2 {O(n)}
24: eval_abc_20->eval_abc_bb1_in, Arg_3: Arg_3 {O(n)}
24: eval_abc_20->eval_abc_bb1_in, Arg_4: Arg_4 {O(n)}
24: eval_abc_20->eval_abc_bb1_in, Arg_5: Arg_5 {O(n)}
24: eval_abc_20->eval_abc_bb1_in, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
24: eval_abc_20->eval_abc_bb1_in, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+6*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
24: eval_abc_20->eval_abc_bb1_in, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_4+3*Arg_3*Arg_4+4*Arg_4*Arg_5+4*Arg_5*Arg_5+5*Arg_2*Arg_5+5*Arg_3*Arg_5+10*Arg_4+12*Arg_5+5*Arg_3+7*Arg_2+Arg_8+9 {O(n^3)}
5: eval_abc_3->eval_abc_4, Arg_0: Arg_0 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_1: Arg_1 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_2: Arg_2 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_3: Arg_3 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_4: Arg_4 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_5: Arg_5 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_6: Arg_6 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_7: Arg_7 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_8: Arg_8 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_0: Arg_0 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_1: Arg_1 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_2: Arg_2 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_3: Arg_3 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_4: Arg_4 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_5: Arg_5 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_6: Arg_6 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_7: Arg_7 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_8: Arg_8 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_0: Arg_0 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_1: Arg_1 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_2: Arg_2 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_3: Arg_3 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_4: Arg_4 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_5: Arg_5 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_6: Arg_6 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_7: Arg_7 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_8: Arg_8 {O(n)}
8: eval_abc_6->eval_abc_7, Arg_0: Arg_0 {O(n)}
8: eval_abc_6->eval_abc_7, Arg_1: Arg_1 {O(n)}
8: eval_abc_6->eval_abc_7, Arg_2: Arg_2 {O(n)}
8: eval_abc_6->eval_abc_7, Arg_3: Arg_3 {O(n)}
8: eval_abc_6->eval_abc_7, Arg_4: Arg_4 {O(n)}
8: eval_abc_6->eval_abc_7, Arg_5: Arg_5 {O(n)}
8: eval_abc_6->eval_abc_7, Arg_6: Arg_6 {O(n)}
8: eval_abc_6->eval_abc_7, Arg_7: Arg_7 {O(n)}
8: eval_abc_6->eval_abc_7, Arg_8: Arg_8 {O(n)}
9: eval_abc_7->eval_abc_8, Arg_0: Arg_0 {O(n)}
9: eval_abc_7->eval_abc_8, Arg_1: Arg_1 {O(n)}
9: eval_abc_7->eval_abc_8, Arg_2: Arg_2 {O(n)}
9: eval_abc_7->eval_abc_8, Arg_3: Arg_3 {O(n)}
9: eval_abc_7->eval_abc_8, Arg_4: Arg_4 {O(n)}
9: eval_abc_7->eval_abc_8, Arg_5: Arg_5 {O(n)}
9: eval_abc_7->eval_abc_8, Arg_6: Arg_6 {O(n)}
9: eval_abc_7->eval_abc_8, Arg_7: Arg_7 {O(n)}
9: eval_abc_7->eval_abc_8, Arg_8: Arg_8 {O(n)}
10: eval_abc_8->eval_abc_bb1_in, Arg_0: Arg_0 {O(n)}
10: eval_abc_8->eval_abc_bb1_in, Arg_1: Arg_1 {O(n)}
10: eval_abc_8->eval_abc_bb1_in, Arg_2: Arg_2 {O(n)}
10: eval_abc_8->eval_abc_bb1_in, Arg_3: Arg_3 {O(n)}
10: eval_abc_8->eval_abc_bb1_in, Arg_4: Arg_4 {O(n)}
10: eval_abc_8->eval_abc_bb1_in, Arg_5: Arg_5 {O(n)}
10: eval_abc_8->eval_abc_bb1_in, Arg_6: Arg_2 {O(n)}
10: eval_abc_8->eval_abc_bb1_in, Arg_7: Arg_7 {O(n)}
10: eval_abc_8->eval_abc_bb1_in, Arg_8: Arg_8 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_0: Arg_0 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_1: Arg_1 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_2: Arg_2 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_3: Arg_3 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_4: Arg_4 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_5: Arg_5 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_6: Arg_6 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_7: Arg_7 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_8: Arg_8 {O(n)}
11: eval_abc_bb1_in->eval_abc_bb2_in, Arg_0: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_0+Arg_2+Arg_3+2 {O(n^2)}
11: eval_abc_bb1_in->eval_abc_bb2_in, Arg_1: 2*Arg_2+Arg_1+Arg_3+1 {O(n)}
11: eval_abc_bb1_in->eval_abc_bb2_in, Arg_2: Arg_2 {O(n)}
11: eval_abc_bb1_in->eval_abc_bb2_in, Arg_3: Arg_3 {O(n)}
11: eval_abc_bb1_in->eval_abc_bb2_in, Arg_4: Arg_4 {O(n)}
11: eval_abc_bb1_in->eval_abc_bb2_in, Arg_5: Arg_5 {O(n)}
11: eval_abc_bb1_in->eval_abc_bb2_in, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
11: eval_abc_bb1_in->eval_abc_bb2_in, Arg_7: 2*Arg_4 {O(n)}
11: eval_abc_bb1_in->eval_abc_bb2_in, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_4+3*Arg_3*Arg_4+4*Arg_4*Arg_5+4*Arg_5*Arg_5+5*Arg_2*Arg_5+5*Arg_3*Arg_5+10*Arg_4+12*Arg_5+5*Arg_3+7*Arg_2+Arg_8+9 {O(n^3)}
12: eval_abc_bb1_in->eval_abc_bb8_in, Arg_0: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_0+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
12: eval_abc_bb1_in->eval_abc_bb8_in, Arg_1: 2*Arg_2+Arg_1+Arg_3+1 {O(n)}
12: eval_abc_bb1_in->eval_abc_bb8_in, Arg_2: 2*Arg_2 {O(n)}
12: eval_abc_bb1_in->eval_abc_bb8_in, Arg_3: 2*Arg_3 {O(n)}
12: eval_abc_bb1_in->eval_abc_bb8_in, Arg_4: 2*Arg_4 {O(n)}
12: eval_abc_bb1_in->eval_abc_bb8_in, Arg_5: 2*Arg_5 {O(n)}
12: eval_abc_bb1_in->eval_abc_bb8_in, Arg_6: 3*Arg_2+Arg_3+1 {O(n)}
12: eval_abc_bb1_in->eval_abc_bb8_in, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+6*Arg_4+Arg_2+Arg_3+Arg_7+2 {O(n^2)}
12: eval_abc_bb1_in->eval_abc_bb8_in, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_4+3*Arg_3*Arg_4+4*Arg_4*Arg_5+4*Arg_5*Arg_5+5*Arg_2*Arg_5+5*Arg_3*Arg_5+10*Arg_4+12*Arg_5+2*Arg_8+5*Arg_3+7*Arg_2+9 {O(n^3)}
13: eval_abc_bb2_in->eval_abc_bb3_in, Arg_0: 2*Arg_2*Arg_4+2*Arg_2*Arg_5+2*Arg_3*Arg_4+2*Arg_3*Arg_5+2*Arg_2+2*Arg_3+4*Arg_5+8*Arg_4+Arg_0+4 {O(n^2)}
13: eval_abc_bb2_in->eval_abc_bb3_in, Arg_1: 2*Arg_2+Arg_1+Arg_3+1 {O(n)}
13: eval_abc_bb2_in->eval_abc_bb3_in, Arg_2: Arg_2 {O(n)}
13: eval_abc_bb2_in->eval_abc_bb3_in, Arg_3: Arg_3 {O(n)}
13: eval_abc_bb2_in->eval_abc_bb3_in, Arg_4: Arg_4 {O(n)}
13: eval_abc_bb2_in->eval_abc_bb3_in, Arg_5: Arg_5 {O(n)}
13: eval_abc_bb2_in->eval_abc_bb3_in, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
13: eval_abc_bb2_in->eval_abc_bb3_in, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
13: eval_abc_bb2_in->eval_abc_bb3_in, Arg_8: 4*Arg_2*Arg_4*Arg_5+4*Arg_2*Arg_5*Arg_5+4*Arg_3*Arg_4*Arg_5+4*Arg_3*Arg_5*Arg_5+10*Arg_2*Arg_5+10*Arg_3*Arg_5+6*Arg_2*Arg_4+6*Arg_3*Arg_4+8*Arg_4*Arg_5+8*Arg_5*Arg_5+10*Arg_3+14*Arg_2+20*Arg_4+24*Arg_5+Arg_8+18 {O(n^3)}
14: eval_abc_bb2_in->eval_abc_bb7_in, Arg_0: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_0+Arg_2+Arg_3+2 {O(n^2)}
14: eval_abc_bb2_in->eval_abc_bb7_in, Arg_1: 2*Arg_1+2*Arg_3+4*Arg_2+2 {O(n)}
14: eval_abc_bb2_in->eval_abc_bb7_in, Arg_2: Arg_2 {O(n)}
14: eval_abc_bb2_in->eval_abc_bb7_in, Arg_3: Arg_3 {O(n)}
14: eval_abc_bb2_in->eval_abc_bb7_in, Arg_4: Arg_4 {O(n)}
14: eval_abc_bb2_in->eval_abc_bb7_in, Arg_5: Arg_5 {O(n)}
14: eval_abc_bb2_in->eval_abc_bb7_in, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
14: eval_abc_bb2_in->eval_abc_bb7_in, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+6*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
14: eval_abc_bb2_in->eval_abc_bb7_in, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_4+3*Arg_3*Arg_4+4*Arg_4*Arg_5+4*Arg_5*Arg_5+5*Arg_2*Arg_5+5*Arg_3*Arg_5+10*Arg_4+12*Arg_5+5*Arg_3+7*Arg_2+Arg_8+9 {O(n^3)}
15: eval_abc_bb3_in->eval_abc_bb4_in, Arg_0: 2*Arg_2*Arg_4+2*Arg_2*Arg_5+2*Arg_3*Arg_4+2*Arg_3*Arg_5+2*Arg_2+2*Arg_3+4*Arg_5+8*Arg_4+Arg_0+4 {O(n^2)}
15: eval_abc_bb3_in->eval_abc_bb4_in, Arg_1: 2*Arg_2+Arg_1+Arg_3+1 {O(n)}
15: eval_abc_bb3_in->eval_abc_bb4_in, Arg_2: Arg_2 {O(n)}
15: eval_abc_bb3_in->eval_abc_bb4_in, Arg_3: Arg_3 {O(n)}
15: eval_abc_bb3_in->eval_abc_bb4_in, Arg_4: Arg_4 {O(n)}
15: eval_abc_bb3_in->eval_abc_bb4_in, Arg_5: Arg_5 {O(n)}
15: eval_abc_bb3_in->eval_abc_bb4_in, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
15: eval_abc_bb3_in->eval_abc_bb4_in, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
15: eval_abc_bb3_in->eval_abc_bb4_in, Arg_8: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_3+2*Arg_5+3*Arg_2+4*Arg_4+3 {O(n^2)}
16: eval_abc_bb4_in->eval_abc_bb5_in, Arg_0: 2*Arg_2*Arg_4+2*Arg_2*Arg_5+2*Arg_3*Arg_4+2*Arg_3*Arg_5+2*Arg_2+2*Arg_3+4*Arg_5+8*Arg_4+Arg_0+4 {O(n^2)}
16: eval_abc_bb4_in->eval_abc_bb5_in, Arg_1: 2*Arg_2+Arg_1+Arg_3+1 {O(n)}
16: eval_abc_bb4_in->eval_abc_bb5_in, Arg_2: Arg_2 {O(n)}
16: eval_abc_bb4_in->eval_abc_bb5_in, Arg_3: Arg_3 {O(n)}
16: eval_abc_bb4_in->eval_abc_bb5_in, Arg_4: Arg_4 {O(n)}
16: eval_abc_bb4_in->eval_abc_bb5_in, Arg_5: Arg_5 {O(n)}
16: eval_abc_bb4_in->eval_abc_bb5_in, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
16: eval_abc_bb4_in->eval_abc_bb5_in, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
16: eval_abc_bb4_in->eval_abc_bb5_in, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+2*Arg_2*Arg_4+2*Arg_3*Arg_4+4*Arg_2*Arg_5+4*Arg_3*Arg_5+4*Arg_4*Arg_5+4*Arg_5*Arg_5+10*Arg_5+3*Arg_3+4*Arg_2+6*Arg_4+6 {O(n^3)}
17: eval_abc_bb4_in->eval_abc_bb6_in, Arg_0: 4*Arg_2*Arg_4+4*Arg_2*Arg_5+4*Arg_3*Arg_4+4*Arg_3*Arg_5+16*Arg_4+2*Arg_0+4*Arg_2+4*Arg_3+8*Arg_5+8 {O(n^2)}
17: eval_abc_bb4_in->eval_abc_bb6_in, Arg_1: 2*Arg_2+Arg_1+Arg_3+1 {O(n)}
17: eval_abc_bb4_in->eval_abc_bb6_in, Arg_2: Arg_2 {O(n)}
17: eval_abc_bb4_in->eval_abc_bb6_in, Arg_3: Arg_3 {O(n)}
17: eval_abc_bb4_in->eval_abc_bb6_in, Arg_4: Arg_4 {O(n)}
17: eval_abc_bb4_in->eval_abc_bb6_in, Arg_5: Arg_5 {O(n)}
17: eval_abc_bb4_in->eval_abc_bb6_in, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
17: eval_abc_bb4_in->eval_abc_bb6_in, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
17: eval_abc_bb4_in->eval_abc_bb6_in, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_4+3*Arg_3*Arg_4+4*Arg_4*Arg_5+4*Arg_5*Arg_5+5*Arg_2*Arg_5+5*Arg_3*Arg_5+10*Arg_4+12*Arg_5+5*Arg_3+7*Arg_2+9 {O(n^3)}
18: eval_abc_bb5_in->eval_abc_bb4_in, Arg_0: 2*Arg_2*Arg_4+2*Arg_2*Arg_5+2*Arg_3*Arg_4+2*Arg_3*Arg_5+2*Arg_2+2*Arg_3+4*Arg_5+8*Arg_4+Arg_0+4 {O(n^2)}
18: eval_abc_bb5_in->eval_abc_bb4_in, Arg_1: 2*Arg_2+Arg_1+Arg_3+1 {O(n)}
18: eval_abc_bb5_in->eval_abc_bb4_in, Arg_2: Arg_2 {O(n)}
18: eval_abc_bb5_in->eval_abc_bb4_in, Arg_3: Arg_3 {O(n)}
18: eval_abc_bb5_in->eval_abc_bb4_in, Arg_4: Arg_4 {O(n)}
18: eval_abc_bb5_in->eval_abc_bb4_in, Arg_5: Arg_5 {O(n)}
18: eval_abc_bb5_in->eval_abc_bb4_in, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
18: eval_abc_bb5_in->eval_abc_bb4_in, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
18: eval_abc_bb5_in->eval_abc_bb4_in, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+2*Arg_2*Arg_4+2*Arg_3*Arg_4+4*Arg_2*Arg_5+4*Arg_3*Arg_5+4*Arg_4*Arg_5+4*Arg_5*Arg_5+10*Arg_5+3*Arg_3+4*Arg_2+6*Arg_4+6 {O(n^3)}
19: eval_abc_bb6_in->eval_abc_16, Arg_0: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
19: eval_abc_bb6_in->eval_abc_16, Arg_1: 2*Arg_2+Arg_1+Arg_3+1 {O(n)}
19: eval_abc_bb6_in->eval_abc_16, Arg_2: Arg_2 {O(n)}
19: eval_abc_bb6_in->eval_abc_16, Arg_3: Arg_3 {O(n)}
19: eval_abc_bb6_in->eval_abc_16, Arg_4: Arg_4 {O(n)}
19: eval_abc_bb6_in->eval_abc_16, Arg_5: Arg_5 {O(n)}
19: eval_abc_bb6_in->eval_abc_16, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
19: eval_abc_bb6_in->eval_abc_16, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
19: eval_abc_bb6_in->eval_abc_16, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_4+3*Arg_3*Arg_4+4*Arg_4*Arg_5+4*Arg_5*Arg_5+5*Arg_2*Arg_5+5*Arg_3*Arg_5+10*Arg_4+12*Arg_5+5*Arg_3+7*Arg_2+9 {O(n^3)}
22: eval_abc_bb7_in->eval_abc_19, Arg_0: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+4*Arg_4+Arg_0+Arg_2+Arg_3+2 {O(n^2)}
22: eval_abc_bb7_in->eval_abc_19, Arg_1: 2*Arg_2+Arg_3+1 {O(n)}
22: eval_abc_bb7_in->eval_abc_19, Arg_2: Arg_2 {O(n)}
22: eval_abc_bb7_in->eval_abc_19, Arg_3: Arg_3 {O(n)}
22: eval_abc_bb7_in->eval_abc_19, Arg_4: Arg_4 {O(n)}
22: eval_abc_bb7_in->eval_abc_19, Arg_5: Arg_5 {O(n)}
22: eval_abc_bb7_in->eval_abc_19, Arg_6: 2*Arg_2+Arg_3+1 {O(n)}
22: eval_abc_bb7_in->eval_abc_19, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+6*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
22: eval_abc_bb7_in->eval_abc_19, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_4+3*Arg_3*Arg_4+4*Arg_4*Arg_5+4*Arg_5*Arg_5+5*Arg_2*Arg_5+5*Arg_3*Arg_5+10*Arg_4+12*Arg_5+5*Arg_3+7*Arg_2+Arg_8+9 {O(n^3)}
25: eval_abc_bb8_in->eval_abc_stop, Arg_0: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_0+2*Arg_5+4*Arg_4+Arg_2+Arg_3+2 {O(n^2)}
25: eval_abc_bb8_in->eval_abc_stop, Arg_1: 2*Arg_2+Arg_1+Arg_3+1 {O(n)}
25: eval_abc_bb8_in->eval_abc_stop, Arg_2: 2*Arg_2 {O(n)}
25: eval_abc_bb8_in->eval_abc_stop, Arg_3: 2*Arg_3 {O(n)}
25: eval_abc_bb8_in->eval_abc_stop, Arg_4: 2*Arg_4 {O(n)}
25: eval_abc_bb8_in->eval_abc_stop, Arg_5: 2*Arg_5 {O(n)}
25: eval_abc_bb8_in->eval_abc_stop, Arg_6: 3*Arg_2+Arg_3+1 {O(n)}
25: eval_abc_bb8_in->eval_abc_stop, Arg_7: Arg_2*Arg_4+Arg_2*Arg_5+Arg_3*Arg_4+Arg_3*Arg_5+2*Arg_5+6*Arg_4+Arg_2+Arg_3+Arg_7+2 {O(n^2)}
25: eval_abc_bb8_in->eval_abc_stop, Arg_8: 2*Arg_2*Arg_4*Arg_5+2*Arg_2*Arg_5*Arg_5+2*Arg_3*Arg_4*Arg_5+2*Arg_3*Arg_5*Arg_5+3*Arg_2*Arg_4+3*Arg_3*Arg_4+4*Arg_4*Arg_5+4*Arg_5*Arg_5+5*Arg_2*Arg_5+5*Arg_3*Arg_5+10*Arg_4+12*Arg_5+2*Arg_8+5*Arg_3+7*Arg_2+9 {O(n^3)}
0: eval_abc_start->eval_abc_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_6: Arg_6 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_7: Arg_7 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_8: Arg_8 {O(n)}