Initial Problem
Start: eval_realheapsort_step2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars:
Locations: eval_realheapsort_step2_0, eval_realheapsort_step2_1, eval_realheapsort_step2_10, eval_realheapsort_step2_11, eval_realheapsort_step2_12, eval_realheapsort_step2_2, eval_realheapsort_step2_3, eval_realheapsort_step2_4, eval_realheapsort_step2_5, eval_realheapsort_step2_58, eval_realheapsort_step2_59, eval_realheapsort_step2_6, eval_realheapsort_step2_7, eval_realheapsort_step2_8, eval_realheapsort_step2_9, eval_realheapsort_step2_bb0_in, eval_realheapsort_step2_bb10_in, eval_realheapsort_step2_bb11_in, eval_realheapsort_step2_bb12_in, eval_realheapsort_step2_bb1_in, eval_realheapsort_step2_bb2_in, eval_realheapsort_step2_bb3_in, eval_realheapsort_step2_bb4_in, eval_realheapsort_step2_bb5_in, eval_realheapsort_step2_bb6_in, eval_realheapsort_step2_bb7_in, eval_realheapsort_step2_bb8_in, eval_realheapsort_step2_bb9_in, eval_realheapsort_step2_start, eval_realheapsort_step2_stop
Transitions:
2:eval_realheapsort_step2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
3:eval_realheapsort_step2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
14:eval_realheapsort_step2_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
15:eval_realheapsort_step2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
16:eval_realheapsort_step2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,0,Arg_4)
5:eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=2
4:eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
7:eval_realheapsort_step2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
8:eval_realheapsort_step2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
9:eval_realheapsort_step2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
33:eval_realheapsort_step2_58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
34:eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4)
10:eval_realheapsort_step2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
11:eval_realheapsort_step2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
12:eval_realheapsort_step2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
13:eval_realheapsort_step2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
1:eval_realheapsort_step2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
31:eval_realheapsort_step2_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4)
32:eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_58(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4)
35:eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
6:eval_realheapsort_step2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
18:eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<2+Arg_3
17:eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3+2<=Arg_1
19:eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,0,Arg_3,Arg_4)
21:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<Arg_3+3+2*Arg_2
20:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2*Arg_2+3+Arg_3<=Arg_1
23:eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2*Arg_2+3+Arg_3<Arg_1
24:eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<Arg_3+3+2*Arg_2
22:eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
25:eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
26:eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
27:eval_realheapsort_step2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1)
28:eval_realheapsort_step2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2)
29:eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
30:eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4)
0:eval_realheapsort_step2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₄
τ = Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
Preprocessing
Cut unsatisfiable transition 24: eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_12
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_5
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_6
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb6_in
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb9_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_10
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_3
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_8
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb4_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_4
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb10_in
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb11_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_9
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_bb1_in
Found invariant 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 for location eval_realheapsort_step2_58
Found invariant 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 for location eval_realheapsort_step2_59
Found invariant 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 for location eval_realheapsort_step2_bb3_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_11
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb5_in
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb7_in
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb8_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_7
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb2_in
Problem after Preprocessing
Start: eval_realheapsort_step2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars:
Locations: eval_realheapsort_step2_0, eval_realheapsort_step2_1, eval_realheapsort_step2_10, eval_realheapsort_step2_11, eval_realheapsort_step2_12, eval_realheapsort_step2_2, eval_realheapsort_step2_3, eval_realheapsort_step2_4, eval_realheapsort_step2_5, eval_realheapsort_step2_58, eval_realheapsort_step2_59, eval_realheapsort_step2_6, eval_realheapsort_step2_7, eval_realheapsort_step2_8, eval_realheapsort_step2_9, eval_realheapsort_step2_bb0_in, eval_realheapsort_step2_bb10_in, eval_realheapsort_step2_bb11_in, eval_realheapsort_step2_bb12_in, eval_realheapsort_step2_bb1_in, eval_realheapsort_step2_bb2_in, eval_realheapsort_step2_bb3_in, eval_realheapsort_step2_bb4_in, eval_realheapsort_step2_bb5_in, eval_realheapsort_step2_bb6_in, eval_realheapsort_step2_bb7_in, eval_realheapsort_step2_bb8_in, eval_realheapsort_step2_bb9_in, eval_realheapsort_step2_start, eval_realheapsort_step2_stop
Transitions:
2:eval_realheapsort_step2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
3:eval_realheapsort_step2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
14:eval_realheapsort_step2_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
15:eval_realheapsort_step2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
16:eval_realheapsort_step2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,0,Arg_4):|:3<=Arg_1
5:eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=2
4:eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
7:eval_realheapsort_step2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
8:eval_realheapsort_step2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
9:eval_realheapsort_step2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
33:eval_realheapsort_step2_58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
34:eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
10:eval_realheapsort_step2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
11:eval_realheapsort_step2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
12:eval_realheapsort_step2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
13:eval_realheapsort_step2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
1:eval_realheapsort_step2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
31:eval_realheapsort_step2_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:0<=Arg_3
32:eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_58(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3
35:eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
6:eval_realheapsort_step2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
18:eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && Arg_1<2+Arg_3
17:eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && Arg_3+2<=Arg_1
19:eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,0,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
21:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
20:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
23:eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
22:eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
25:eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3
26:eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3
27:eval_realheapsort_step2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:0<=Arg_3
28:eval_realheapsort_step2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:0<=Arg_3
29:eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3
30:eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:0<=Arg_3
0:eval_realheapsort_step2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
MPRF for transition 17:eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && Arg_3+2<=Arg_1 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step2_59 [Arg_1-Arg_3 ]
eval_realheapsort_step2_58 [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb2_in [Arg_1+1-Arg_3 ]
eval_realheapsort_step2_bb3_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb11_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb5_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb6_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb7_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb8_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb10_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb9_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb4_in [Arg_1-Arg_3 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
MPRF for transition 19:eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,0,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step2_59 [Arg_0+Arg_1-2*Arg_3-3 ]
eval_realheapsort_step2_58 [Arg_0+Arg_1-2*Arg_3-3 ]
eval_realheapsort_step2_bb2_in [Arg_1-Arg_3-1 ]
eval_realheapsort_step2_bb3_in [Arg_1-Arg_3-1 ]
eval_realheapsort_step2_bb11_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb5_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb6_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb7_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb8_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb10_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb9_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb4_in [Arg_1-Arg_3-2 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
MPRF for transition 33:eval_realheapsort_step2_58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step2_59 [0 ]
eval_realheapsort_step2_58 [1 ]
eval_realheapsort_step2_bb2_in [0 ]
eval_realheapsort_step2_bb3_in [0 ]
eval_realheapsort_step2_bb11_in [1 ]
eval_realheapsort_step2_bb5_in [1 ]
eval_realheapsort_step2_bb6_in [1 ]
eval_realheapsort_step2_bb7_in [1 ]
eval_realheapsort_step2_bb8_in [1 ]
eval_realheapsort_step2_bb10_in [1 ]
eval_realheapsort_step2_bb9_in [1 ]
eval_realheapsort_step2_bb4_in [1 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
MPRF for transition 34:eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step2_59 [1 ]
eval_realheapsort_step2_58 [1 ]
eval_realheapsort_step2_bb2_in [0 ]
eval_realheapsort_step2_bb3_in [0 ]
eval_realheapsort_step2_bb11_in [1 ]
eval_realheapsort_step2_bb5_in [1 ]
eval_realheapsort_step2_bb6_in [1 ]
eval_realheapsort_step2_bb7_in [1 ]
eval_realheapsort_step2_bb8_in [1 ]
eval_realheapsort_step2_bb10_in [1 ]
eval_realheapsort_step2_bb9_in [1 ]
eval_realheapsort_step2_bb4_in [1 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
MPRF for transition 32:eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_58(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step2_59 [0 ]
eval_realheapsort_step2_58 [0 ]
eval_realheapsort_step2_bb2_in [0 ]
eval_realheapsort_step2_bb3_in [0 ]
eval_realheapsort_step2_bb11_in [1 ]
eval_realheapsort_step2_bb5_in [1 ]
eval_realheapsort_step2_bb6_in [1 ]
eval_realheapsort_step2_bb7_in [1 ]
eval_realheapsort_step2_bb8_in [1 ]
eval_realheapsort_step2_bb10_in [1 ]
eval_realheapsort_step2_bb9_in [1 ]
eval_realheapsort_step2_bb4_in [1 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
MPRF for transition 21:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2 of depth 1:
new bound:
Arg_1+3 {O(n)}
MPRF:
eval_realheapsort_step2_59 [2-2*Arg_0 ]
eval_realheapsort_step2_58 [0 ]
eval_realheapsort_step2_bb2_in [2-2*Arg_3 ]
eval_realheapsort_step2_bb3_in [2-2*Arg_3 ]
eval_realheapsort_step2_bb11_in [0 ]
eval_realheapsort_step2_bb5_in [1 ]
eval_realheapsort_step2_bb6_in [1 ]
eval_realheapsort_step2_bb7_in [1 ]
eval_realheapsort_step2_bb8_in [1 ]
eval_realheapsort_step2_bb10_in [1 ]
eval_realheapsort_step2_bb9_in [1 ]
eval_realheapsort_step2_bb4_in [1 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
Analysing control-flow refined program
Cut unsatisfiable transition 296: n_eval_realheapsort_step2_bb4_in___13->eval_realheapsort_step2_bb11_in
Cut unsatisfiable transition 297: n_eval_realheapsort_step2_bb4_in___14->eval_realheapsort_step2_bb11_in
Cut unsatisfiable transition 300: n_eval_realheapsort_step2_bb4_in___6->eval_realheapsort_step2_bb11_in
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb4_in___14
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_12
Found invariant 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 for location n_eval_realheapsort_step2_bb9_in___27
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_6
Found invariant Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 for location n_eval_realheapsort_step2_bb10_in___35
Found invariant Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 for location n_eval_realheapsort_step2_bb9_in___4
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb5_in___11
Found invariant 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 for location n_eval_realheapsort_step2_bb7_in___38
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb10_in___9
Found invariant 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 for location n_eval_realheapsort_step2_bb10_in___22
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb10_in___15
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_8
Found invariant 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 for location eval_realheapsort_step2_bb4_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_10
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_3
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_4
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb5_in___12
Found invariant 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step2_bb4_in___34
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_bb1_in
Found invariant 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 for location eval_realheapsort_step2_59
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb7_in___18
Found invariant 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 for location n_eval_realheapsort_step2_bb8_in___37
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb4_in___13
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb9_in___8
Found invariant Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step2_bb10_in___1
Found invariant Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 for location n_eval_realheapsort_step2_bb7_in___30
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_11
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb4_in___6
Found invariant Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step2_bb4_in___33
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb8_in___17
Found invariant Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 for location n_eval_realheapsort_step2_bb5_in___32
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_7
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb2_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_5
Found invariant 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 for location n_eval_realheapsort_step2_bb6_in___40
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb5_in___21
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb9_in___16
Found invariant 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step2_bb5_in___41
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb7_in___19
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb5_in___5
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb9_in___10
Found invariant 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 for location n_eval_realheapsort_step2_bb9_in___25
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb6_in___20
Found invariant Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step2_bb9_in___2
Found invariant 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 for location eval_realheapsort_step2_bb11_in
Found invariant 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 for location n_eval_realheapsort_step2_bb10_in___24
Found invariant Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 for location n_eval_realheapsort_step2_bb9_in___36
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_9
Found invariant 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 for location n_eval_realheapsort_step2_bb7_in___39
Found invariant 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 for location eval_realheapsort_step2_bb3_in
Found invariant 1<=0 for location n_eval_realheapsort_step2_bb10_in___7
Found invariant 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 for location eval_realheapsort_step2_58
Found invariant Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 for location n_eval_realheapsort_step2_bb10_in___3
Found invariant Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 for location n_eval_realheapsort_step2_bb6_in___31
Found invariant 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 for location n_eval_realheapsort_step2_bb9_in___23
Found invariant 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 for location n_eval_realheapsort_step2_bb10_in___26
Found invariant Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 for location n_eval_realheapsort_step2_bb8_in___28
Found invariant Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 for location n_eval_realheapsort_step2_bb7_in___29
Cut unsatisfiable transition 223: n_eval_realheapsort_step2_bb10_in___15->n_eval_realheapsort_step2_bb4_in___13
Cut unsatisfiable transition 229: n_eval_realheapsort_step2_bb10_in___7->n_eval_realheapsort_step2_bb4_in___13
Cut unsatisfiable transition 230: n_eval_realheapsort_step2_bb10_in___9->n_eval_realheapsort_step2_bb4_in___13
Cut unsatisfiable transition 231: n_eval_realheapsort_step2_bb4_in___13->n_eval_realheapsort_step2_bb5_in___12
Cut unsatisfiable transition 232: n_eval_realheapsort_step2_bb4_in___14->n_eval_realheapsort_step2_bb5_in___11
Cut unsatisfiable transition 234: n_eval_realheapsort_step2_bb4_in___34->n_eval_realheapsort_step2_bb5_in___21
Cut unsatisfiable transition 236: n_eval_realheapsort_step2_bb4_in___6->n_eval_realheapsort_step2_bb5_in___5
Cut unsatisfiable transition 237: n_eval_realheapsort_step2_bb5_in___11->n_eval_realheapsort_step2_bb6_in___20
Cut unsatisfiable transition 238: n_eval_realheapsort_step2_bb5_in___12->n_eval_realheapsort_step2_bb6_in___31
Cut unsatisfiable transition 239: n_eval_realheapsort_step2_bb5_in___21->n_eval_realheapsort_step2_bb6_in___20
Cut unsatisfiable transition 240: n_eval_realheapsort_step2_bb5_in___21->n_eval_realheapsort_step2_bb7_in___19
Cut unsatisfiable transition 245: n_eval_realheapsort_step2_bb5_in___5->n_eval_realheapsort_step2_bb7_in___19
Cut unsatisfiable transition 246: n_eval_realheapsort_step2_bb6_in___20->n_eval_realheapsort_step2_bb7_in___18
Cut unsatisfiable transition 247: n_eval_realheapsort_step2_bb6_in___20->n_eval_realheapsort_step2_bb8_in___17
Cut unsatisfiable transition 252: n_eval_realheapsort_step2_bb7_in___18->n_eval_realheapsort_step2_bb9_in___16
Cut unsatisfiable transition 253: n_eval_realheapsort_step2_bb7_in___19->n_eval_realheapsort_step2_bb9_in___8
Cut unsatisfiable transition 258: n_eval_realheapsort_step2_bb8_in___17->n_eval_realheapsort_step2_bb9_in___10
Cut unsatisfiable transition 261: n_eval_realheapsort_step2_bb9_in___10->n_eval_realheapsort_step2_bb10_in___9
Cut unsatisfiable transition 262: n_eval_realheapsort_step2_bb9_in___10->n_eval_realheapsort_step2_bb4_in___14
Cut unsatisfiable transition 263: n_eval_realheapsort_step2_bb9_in___16->n_eval_realheapsort_step2_bb10_in___15
Cut unsatisfiable transition 264: n_eval_realheapsort_step2_bb9_in___16->n_eval_realheapsort_step2_bb4_in___14
Cut unsatisfiable transition 277: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb10_in___7
Cut unsatisfiable transition 278: n_eval_realheapsort_step2_bb9_in___8->n_eval_realheapsort_step2_bb4_in___6
Cut unreachable locations [n_eval_realheapsort_step2_bb10_in___15; n_eval_realheapsort_step2_bb10_in___7; n_eval_realheapsort_step2_bb10_in___9; n_eval_realheapsort_step2_bb4_in___13; n_eval_realheapsort_step2_bb4_in___14; n_eval_realheapsort_step2_bb4_in___6; n_eval_realheapsort_step2_bb5_in___11; n_eval_realheapsort_step2_bb5_in___12; n_eval_realheapsort_step2_bb5_in___21; n_eval_realheapsort_step2_bb5_in___5; n_eval_realheapsort_step2_bb6_in___20; n_eval_realheapsort_step2_bb7_in___18; n_eval_realheapsort_step2_bb7_in___19; n_eval_realheapsort_step2_bb8_in___17; n_eval_realheapsort_step2_bb9_in___10; n_eval_realheapsort_step2_bb9_in___16; n_eval_realheapsort_step2_bb9_in___8] from the program graph
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 235:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 243:n_eval_realheapsort_step2_bb5_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 244:n_eval_realheapsort_step2_bb5_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___39(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 250:n_eval_realheapsort_step2_bb6_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 251:n_eval_realheapsort_step2_bb6_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb8_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 256:n_eval_realheapsort_step2_bb7_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___36(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 257:n_eval_realheapsort_step2_bb7_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___2(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 260:n_eval_realheapsort_step2_bb8_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___4(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 265:n_eval_realheapsort_step2_bb9_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 266:n_eval_realheapsort_step2_bb9_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 273:n_eval_realheapsort_step2_bb9_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 274:n_eval_realheapsort_step2_bb9_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 275:n_eval_realheapsort_step2_bb9_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 276:n_eval_realheapsort_step2_bb9_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 222:n_eval_realheapsort_step2_bb10_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 227:n_eval_realheapsort_step2_bb10_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
knowledge_propagation leads to new time bound Arg_1+1 {O(n)} for transition 228:n_eval_realheapsort_step2_bb10_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 224:n_eval_realheapsort_step2_bb10_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3 of depth 1:
new bound:
5*Arg_1*Arg_1+18*Arg_1+19 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [6 ]
eval_realheapsort_step2_58 [6 ]
eval_realheapsort_step2_bb2_in [6 ]
eval_realheapsort_step2_bb3_in [6 ]
eval_realheapsort_step2_bb4_in [6 ]
n_eval_realheapsort_step2_bb10_in___1 [3*Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___3 [Arg_1+5-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [Arg_1+4-Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [Arg_1+4-Arg_2 ]
eval_realheapsort_step2_bb11_in [6 ]
n_eval_realheapsort_step2_bb5_in___32 [Arg_1+3-Arg_2 ]
n_eval_realheapsort_step2_bb5_in___41 [6 ]
n_eval_realheapsort_step2_bb6_in___31 [Arg_1+3-Arg_4 ]
n_eval_realheapsort_step2_bb6_in___40 [6 ]
n_eval_realheapsort_step2_bb7_in___29 [Arg_1+3-Arg_2 ]
n_eval_realheapsort_step2_bb7_in___30 [Arg_1+2*Arg_2+4-4*Arg_4 ]
n_eval_realheapsort_step2_bb7_in___38 [6 ]
n_eval_realheapsort_step2_bb7_in___39 [6 ]
n_eval_realheapsort_step2_bb8_in___28 [Arg_1+3-Arg_2 ]
n_eval_realheapsort_step2_bb8_in___37 [6 ]
n_eval_realheapsort_step2_bb9_in___2 [6 ]
n_eval_realheapsort_step2_bb10_in___22 [Arg_3+7 ]
n_eval_realheapsort_step2_bb9_in___23 [2*Arg_2+2*Arg_3+10-Arg_1 ]
n_eval_realheapsort_step2_bb10_in___24 [Arg_1+Arg_2+5-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___25 [Arg_1+3-Arg_2 ]
n_eval_realheapsort_step2_bb10_in___26 [Arg_1+5-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___27 [Arg_1+3-Arg_2 ]
n_eval_realheapsort_step2_bb9_in___36 [6 ]
n_eval_realheapsort_step2_bb9_in___4 [3*Arg_4 ]
n_eval_realheapsort_step2_bb4_in___34 [6 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 225:n_eval_realheapsort_step2_bb10_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3 of depth 1:
new bound:
17*Arg_1*Arg_1+27*Arg_1+10 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [Arg_1+1 ]
eval_realheapsort_step2_58 [Arg_1+1 ]
eval_realheapsort_step2_bb2_in [Arg_1+1 ]
eval_realheapsort_step2_bb3_in [Arg_1+1 ]
eval_realheapsort_step2_bb4_in [Arg_1+1 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_1+Arg_3-Arg_4-1 ]
n_eval_realheapsort_step2_bb10_in___3 [2*Arg_1+Arg_3-Arg_4-1 ]
n_eval_realheapsort_step2_bb10_in___35 [2*Arg_1+Arg_3-Arg_4-1 ]
n_eval_realheapsort_step2_bb4_in___33 [2*Arg_1+Arg_3-Arg_4-1 ]
eval_realheapsort_step2_bb11_in [Arg_1+1 ]
n_eval_realheapsort_step2_bb5_in___32 [2*Arg_1+Arg_3-Arg_4-1 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1+1 ]
n_eval_realheapsort_step2_bb6_in___31 [2*Arg_1+Arg_3-Arg_2-3 ]
n_eval_realheapsort_step2_bb6_in___40 [Arg_1+1 ]
n_eval_realheapsort_step2_bb7_in___29 [2*Arg_1+Arg_3-Arg_2-3 ]
n_eval_realheapsort_step2_bb7_in___30 [3*Arg_1-2*Arg_2-Arg_4-4 ]
n_eval_realheapsort_step2_bb7_in___38 [Arg_1+1 ]
n_eval_realheapsort_step2_bb7_in___39 [Arg_1+1 ]
n_eval_realheapsort_step2_bb8_in___28 [2*Arg_1+Arg_3-Arg_2-3 ]
n_eval_realheapsort_step2_bb8_in___37 [Arg_1+1 ]
n_eval_realheapsort_step2_bb9_in___2 [Arg_1+1 ]
n_eval_realheapsort_step2_bb10_in___22 [2*Arg_1+Arg_3+1-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___23 [2*Arg_1+Arg_3+1-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___24 [2*Arg_1+Arg_2+Arg_3-Arg_4-1 ]
n_eval_realheapsort_step2_bb9_in___25 [2*Arg_1+3*Arg_2+Arg_3+1-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___26 [2*Arg_1+Arg_3-Arg_4-1 ]
n_eval_realheapsort_step2_bb9_in___27 [2*Arg_1+7*Arg_2+Arg_3+1-4*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___36 [Arg_1+1 ]
n_eval_realheapsort_step2_bb9_in___4 [Arg_1+1 ]
n_eval_realheapsort_step2_bb4_in___34 [Arg_1+1 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 226:n_eval_realheapsort_step2_bb10_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3 of depth 1:
new bound:
6*Arg_1*Arg_1+14*Arg_1+8 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [0 ]
eval_realheapsort_step2_58 [0 ]
eval_realheapsort_step2_bb2_in [0 ]
eval_realheapsort_step2_bb3_in [0 ]
eval_realheapsort_step2_bb4_in [0 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___3 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [2*Arg_1-Arg_2-Arg_4 ]
eval_realheapsort_step2_bb11_in [0 ]
n_eval_realheapsort_step2_bb5_in___32 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb5_in___41 [0 ]
n_eval_realheapsort_step2_bb6_in___31 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb6_in___40 [0 ]
n_eval_realheapsort_step2_bb7_in___29 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb7_in___30 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb7_in___38 [0 ]
n_eval_realheapsort_step2_bb7_in___39 [0 ]
n_eval_realheapsort_step2_bb8_in___28 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb8_in___37 [0 ]
n_eval_realheapsort_step2_bb9_in___2 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___22 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___23 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb10_in___24 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___25 [2*Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___26 [2*Arg_1+1-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___27 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb9_in___36 [0 ]
n_eval_realheapsort_step2_bb9_in___4 [0 ]
n_eval_realheapsort_step2_bb4_in___34 [0 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 233:n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3 of depth 1:
new bound:
6*Arg_1*Arg_1+14*Arg_1+8 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [0 ]
eval_realheapsort_step2_58 [0 ]
eval_realheapsort_step2_bb2_in [0 ]
eval_realheapsort_step2_bb3_in [0 ]
eval_realheapsort_step2_bb4_in [0 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___3 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [2*Arg_1-2*Arg_2-3 ]
eval_realheapsort_step2_bb11_in [0 ]
n_eval_realheapsort_step2_bb5_in___32 [2*Arg_1-2*Arg_2-7 ]
n_eval_realheapsort_step2_bb5_in___41 [0 ]
n_eval_realheapsort_step2_bb6_in___31 [2*Arg_1-2*Arg_4-7 ]
n_eval_realheapsort_step2_bb6_in___40 [0 ]
n_eval_realheapsort_step2_bb7_in___29 [2*Arg_1-2*Arg_4-7 ]
n_eval_realheapsort_step2_bb7_in___30 [2*Arg_1-2*Arg_2-7 ]
n_eval_realheapsort_step2_bb7_in___38 [0 ]
n_eval_realheapsort_step2_bb7_in___39 [0 ]
n_eval_realheapsort_step2_bb8_in___28 [2*Arg_1-2*Arg_2-7 ]
n_eval_realheapsort_step2_bb8_in___37 [0 ]
n_eval_realheapsort_step2_bb9_in___2 [0 ]
n_eval_realheapsort_step2_bb10_in___22 [2*Arg_1-Arg_4-6 ]
n_eval_realheapsort_step2_bb9_in___23 [2*Arg_1-Arg_4-6 ]
n_eval_realheapsort_step2_bb10_in___24 [2*Arg_1-2*Arg_4-3 ]
n_eval_realheapsort_step2_bb9_in___25 [2*Arg_1-2*Arg_2-7 ]
n_eval_realheapsort_step2_bb10_in___26 [2*Arg_1-2*Arg_2-7 ]
n_eval_realheapsort_step2_bb9_in___27 [2*Arg_1-2*Arg_2-7 ]
n_eval_realheapsort_step2_bb9_in___36 [0 ]
n_eval_realheapsort_step2_bb9_in___4 [0 ]
n_eval_realheapsort_step2_bb4_in___34 [0 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 298:n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2 of depth 1:
new bound:
Arg_1+2 {O(n)}
MPRF:
eval_realheapsort_step2_59 [Arg_1-Arg_0-2 ]
eval_realheapsort_step2_58 [Arg_1-Arg_3-3 ]
eval_realheapsort_step2_bb2_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb3_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb4_in [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb4_in___33 [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb11_in [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___32 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb6_in___31 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb6_in___40 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___29 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___30 [2*Arg_2+1 ]
n_eval_realheapsort_step2_bb7_in___38 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___39 [1 ]
n_eval_realheapsort_step2_bb8_in___28 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb8_in___37 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb9_in___2 [1 ]
n_eval_realheapsort_step2_bb10_in___22 [Arg_1+2*Arg_2-Arg_3-Arg_4-1 ]
n_eval_realheapsort_step2_bb9_in___23 [2*Arg_2+1 ]
n_eval_realheapsort_step2_bb10_in___24 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb9_in___25 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___26 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb9_in___27 [Arg_1+6*Arg_2+1-Arg_3-3*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb9_in___36 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___3 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb9_in___4 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb4_in___34 [Arg_1-Arg_3-3 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 299:n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2 of depth 1:
new bound:
Arg_1+2 {O(n)}
MPRF:
eval_realheapsort_step2_59 [Arg_1-Arg_3-3 ]
eval_realheapsort_step2_58 [Arg_1-Arg_3-3 ]
eval_realheapsort_step2_bb2_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb3_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb4_in [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb4_in___33 [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb11_in [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb5_in___32 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb6_in___31 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb6_in___40 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___29 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___30 [2*Arg_4+1 ]
n_eval_realheapsort_step2_bb7_in___38 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb7_in___39 [1 ]
n_eval_realheapsort_step2_bb8_in___28 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb8_in___37 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_1-Arg_3-2*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___2 [1 ]
n_eval_realheapsort_step2_bb10_in___22 [Arg_1+2*Arg_2-Arg_3-Arg_4-1 ]
n_eval_realheapsort_step2_bb9_in___23 [2*Arg_2+1 ]
n_eval_realheapsort_step2_bb10_in___24 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb9_in___25 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___26 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb9_in___27 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___35 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb9_in___36 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb10_in___3 [Arg_1-Arg_3-2 ]
n_eval_realheapsort_step2_bb9_in___4 [Arg_1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb4_in___34 [Arg_2-Arg_3-2 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 241:n_eval_realheapsort_step2_bb5_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3 of depth 1:
new bound:
42*Arg_1*Arg_1+62*Arg_1+68 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [12*Arg_1-60 ]
eval_realheapsort_step2_58 [12*Arg_1-60 ]
eval_realheapsort_step2_bb2_in [12*Arg_1-60 ]
eval_realheapsort_step2_bb3_in [12*Arg_1-60 ]
eval_realheapsort_step2_bb4_in [12*Arg_1-60 ]
n_eval_realheapsort_step2_bb10_in___1 [14*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___3 [14*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [14*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [14*Arg_1+Arg_2-3*Arg_4-64 ]
eval_realheapsort_step2_bb11_in [12*Arg_1-60 ]
n_eval_realheapsort_step2_bb5_in___32 [14*Arg_1-2*Arg_4-64 ]
n_eval_realheapsort_step2_bb5_in___41 [12*Arg_1-60 ]
n_eval_realheapsort_step2_bb6_in___31 [14*Arg_1-2*Arg_4-68 ]
n_eval_realheapsort_step2_bb6_in___40 [12*Arg_1-60 ]
n_eval_realheapsort_step2_bb7_in___29 [14*Arg_1-2*Arg_4-68 ]
n_eval_realheapsort_step2_bb7_in___30 [14*Arg_1-2*Arg_4-64 ]
n_eval_realheapsort_step2_bb7_in___38 [12*Arg_1-60 ]
n_eval_realheapsort_step2_bb7_in___39 [12*Arg_1-60 ]
n_eval_realheapsort_step2_bb8_in___28 [14*Arg_1-2*Arg_4-68 ]
n_eval_realheapsort_step2_bb8_in___37 [12*Arg_1-60 ]
n_eval_realheapsort_step2_bb9_in___2 [12*Arg_1-60 ]
n_eval_realheapsort_step2_bb10_in___22 [14*Arg_1-2*Arg_4-64 ]
n_eval_realheapsort_step2_bb9_in___23 [14*Arg_1+Arg_4-4*Arg_2-65 ]
n_eval_realheapsort_step2_bb10_in___24 [14*Arg_1+2*Arg_2-2*Arg_4-64 ]
n_eval_realheapsort_step2_bb9_in___25 [14*Arg_1-2*Arg_2-68 ]
n_eval_realheapsort_step2_bb10_in___26 [14*Arg_1-2*Arg_4-64 ]
n_eval_realheapsort_step2_bb9_in___27 [14*Arg_1-2*Arg_2-68 ]
n_eval_realheapsort_step2_bb9_in___36 [12*Arg_1-60 ]
n_eval_realheapsort_step2_bb9_in___4 [12*Arg_1-60 ]
n_eval_realheapsort_step2_bb4_in___34 [12*Arg_1-60 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 242:n_eval_realheapsort_step2_bb5_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___30(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1 of depth 1:
new bound:
84*Arg_1*Arg_1+136*Arg_1+60 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [4*Arg_1+6-6*Arg_3 ]
eval_realheapsort_step2_58 [4*Arg_1+6-6*Arg_3 ]
eval_realheapsort_step2_bb2_in [4*Arg_1+12-6*Arg_3 ]
eval_realheapsort_step2_bb3_in [4*Arg_1+12-6*Arg_3 ]
eval_realheapsort_step2_bb4_in [4*Arg_1+12-6*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___1 [6*Arg_1+12-6*Arg_3-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___3 [6*Arg_1+8-6*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___35 [6*Arg_1+12-6*Arg_3-2*Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [6*Arg_1+12-6*Arg_3-2*Arg_4 ]
eval_realheapsort_step2_bb11_in [4*Arg_1+6-6*Arg_3 ]
n_eval_realheapsort_step2_bb5_in___32 [6*Arg_1+12-6*Arg_3-2*Arg_4 ]
n_eval_realheapsort_step2_bb5_in___41 [4*Arg_1+12-6*Arg_3 ]
n_eval_realheapsort_step2_bb6_in___31 [6*Arg_1+12-2*Arg_2-6*Arg_3 ]
n_eval_realheapsort_step2_bb6_in___40 [4*Arg_1+12-6*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___29 [6*Arg_1+12-6*Arg_3-2*Arg_4 ]
n_eval_realheapsort_step2_bb7_in___30 [16*Arg_2+2*Arg_3+32-2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb7_in___38 [4*Arg_1+12-6*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___39 [8*Arg_1-10*Arg_3 ]
n_eval_realheapsort_step2_bb8_in___28 [6*Arg_1+12-6*Arg_3-2*Arg_4 ]
n_eval_realheapsort_step2_bb8_in___37 [4*Arg_1+12-6*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___2 [8*Arg_1-10*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___22 [4*Arg_1+16-4*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___23 [16*Arg_2+3*Arg_3+35-3*Arg_1 ]
n_eval_realheapsort_step2_bb10_in___24 [6*Arg_1+Arg_4+6-6*Arg_2-6*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___25 [6*Arg_1+3*Arg_4+6-8*Arg_2-6*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___26 [6*Arg_1+14-4*Arg_2-6*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___27 [6*Arg_1+13-6*Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___36 [4*Arg_1+12-6*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___4 [4*Arg_1+12-6*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___34 [4*Arg_1+6-6*Arg_3 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 248:n_eval_realheapsort_step2_bb6_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 of depth 1:
new bound:
18*Arg_1*Arg_1+46*Arg_1+42 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [4*Arg_1-18 ]
eval_realheapsort_step2_58 [4*Arg_1-18 ]
eval_realheapsort_step2_bb2_in [4*Arg_1-18 ]
eval_realheapsort_step2_bb3_in [4*Arg_1-18 ]
eval_realheapsort_step2_bb4_in [4*Arg_1-18 ]
n_eval_realheapsort_step2_bb10_in___1 [4*Arg_1+2*Arg_3-2*Arg_4-16 ]
n_eval_realheapsort_step2_bb10_in___3 [6*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [6*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [6*Arg_1-2*Arg_4-22 ]
eval_realheapsort_step2_bb11_in [4*Arg_1-18 ]
n_eval_realheapsort_step2_bb5_in___32 [6*Arg_1+Arg_2-5*Arg_4-20 ]
n_eval_realheapsort_step2_bb5_in___41 [4*Arg_1-18 ]
n_eval_realheapsort_step2_bb6_in___31 [6*Arg_1-4*Arg_4-20 ]
n_eval_realheapsort_step2_bb6_in___40 [4*Arg_1-18 ]
n_eval_realheapsort_step2_bb7_in___29 [6*Arg_1-4*Arg_2-24 ]
n_eval_realheapsort_step2_bb7_in___30 [6*Arg_1+Arg_2-5*Arg_4-20 ]
n_eval_realheapsort_step2_bb7_in___38 [4*Arg_1-18 ]
n_eval_realheapsort_step2_bb7_in___39 [4*Arg_1-18 ]
n_eval_realheapsort_step2_bb8_in___28 [6*Arg_1-4*Arg_4-20 ]
n_eval_realheapsort_step2_bb8_in___37 [4*Arg_1-18 ]
n_eval_realheapsort_step2_bb9_in___2 [4*Arg_1-18 ]
n_eval_realheapsort_step2_bb10_in___22 [6*Arg_1-2*Arg_4-18 ]
n_eval_realheapsort_step2_bb9_in___23 [6*Arg_1+18*Arg_2-11*Arg_4-9 ]
n_eval_realheapsort_step2_bb10_in___24 [6*Arg_1-2*Arg_4-22 ]
n_eval_realheapsort_step2_bb9_in___25 [6*Arg_1-4*Arg_2-20 ]
n_eval_realheapsort_step2_bb10_in___26 [6*Arg_1-2*Arg_4-22 ]
n_eval_realheapsort_step2_bb9_in___27 [6*Arg_1+20*Arg_2-12*Arg_4-12 ]
n_eval_realheapsort_step2_bb9_in___36 [4*Arg_1-18 ]
n_eval_realheapsort_step2_bb9_in___4 [4*Arg_1-18 ]
n_eval_realheapsort_step2_bb4_in___34 [4*Arg_1-18 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 249:n_eval_realheapsort_step2_bb6_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb8_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 of depth 1:
new bound:
10*Arg_1*Arg_1+16*Arg_1+4 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [2*Arg_1-Arg_3-1 ]
eval_realheapsort_step2_58 [2*Arg_1-Arg_3 ]
eval_realheapsort_step2_bb2_in [2*Arg_1-Arg_3 ]
eval_realheapsort_step2_bb3_in [2*Arg_1-Arg_3 ]
eval_realheapsort_step2_bb4_in [2*Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___1 [3*Arg_1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___3 [3*Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [3*Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [3*Arg_1+Arg_2-Arg_3-2*Arg_4 ]
eval_realheapsort_step2_bb11_in [2*Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___32 [3*Arg_1+Arg_2-Arg_3-2*Arg_4 ]
n_eval_realheapsort_step2_bb5_in___41 [2*Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___31 [3*Arg_1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb6_in___40 [2*Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___29 [3*Arg_1-Arg_2-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___30 [2*Arg_1+3*Arg_2+1-2*Arg_4 ]
n_eval_realheapsort_step2_bb7_in___38 [2*Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___39 [Arg_1+3 ]
n_eval_realheapsort_step2_bb8_in___28 [3*Arg_1-2*Arg_2-Arg_3-2 ]
n_eval_realheapsort_step2_bb8_in___37 [2*Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___2 [2*Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___22 [3*Arg_1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___23 [2*Arg_1+2 ]
n_eval_realheapsort_step2_bb10_in___24 [3*Arg_1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___25 [3*Arg_1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___26 [3*Arg_1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___27 [3*Arg_1+Arg_4-3*Arg_2-Arg_3-1 ]
n_eval_realheapsort_step2_bb9_in___36 [2*Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___4 [2*Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___34 [2*Arg_1-Arg_3 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 254:n_eval_realheapsort_step2_bb7_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___27(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 of depth 1:
new bound:
12*Arg_1*Arg_1+19*Arg_1+4 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [3*Arg_1 ]
eval_realheapsort_step2_58 [3*Arg_1 ]
eval_realheapsort_step2_bb2_in [3*Arg_1 ]
eval_realheapsort_step2_bb3_in [3*Arg_1 ]
eval_realheapsort_step2_bb4_in [3*Arg_1 ]
n_eval_realheapsort_step2_bb10_in___1 [4*Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___3 [4*Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [4*Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [4*Arg_1-Arg_2 ]
eval_realheapsort_step2_bb11_in [3*Arg_1 ]
n_eval_realheapsort_step2_bb5_in___32 [4*Arg_1+Arg_2-2*Arg_4 ]
n_eval_realheapsort_step2_bb5_in___41 [3*Arg_1 ]
n_eval_realheapsort_step2_bb6_in___31 [4*Arg_1+Arg_2-2*Arg_4 ]
n_eval_realheapsort_step2_bb6_in___40 [3*Arg_1 ]
n_eval_realheapsort_step2_bb7_in___29 [4*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb7_in___30 [4*Arg_1+Arg_2-2*Arg_4 ]
n_eval_realheapsort_step2_bb7_in___38 [3*Arg_1 ]
n_eval_realheapsort_step2_bb7_in___39 [3*Arg_1 ]
n_eval_realheapsort_step2_bb8_in___28 [4*Arg_1+Arg_2-2*Arg_4 ]
n_eval_realheapsort_step2_bb8_in___37 [3*Arg_1 ]
n_eval_realheapsort_step2_bb9_in___2 [3*Arg_1 ]
n_eval_realheapsort_step2_bb10_in___22 [4*Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___23 [4*Arg_1-Arg_2 ]
n_eval_realheapsort_step2_bb10_in___24 [4*Arg_1-Arg_2 ]
n_eval_realheapsort_step2_bb9_in___25 [4*Arg_1-Arg_2 ]
n_eval_realheapsort_step2_bb10_in___26 [4*Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___27 [4*Arg_1-2*Arg_2-1 ]
n_eval_realheapsort_step2_bb9_in___36 [3*Arg_1 ]
n_eval_realheapsort_step2_bb9_in___4 [3*Arg_1 ]
n_eval_realheapsort_step2_bb4_in___34 [3*Arg_1 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 255:n_eval_realheapsort_step2_bb7_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___23(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 of depth 1:
new bound:
59*Arg_1*Arg_1+75*Arg_1+12 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [4*Arg_1-4*Arg_3-4 ]
eval_realheapsort_step2_58 [4*Arg_1-4*Arg_3-4 ]
eval_realheapsort_step2_bb2_in [4*Arg_1-4*Arg_3 ]
eval_realheapsort_step2_bb3_in [4*Arg_1-4*Arg_3 ]
eval_realheapsort_step2_bb4_in [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___1 [5*Arg_1-4*Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___3 [5*Arg_1-4*Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [5*Arg_1-4*Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [5*Arg_1-4*Arg_3-Arg_4 ]
eval_realheapsort_step2_bb11_in [4*Arg_1-4*Arg_3-4 ]
n_eval_realheapsort_step2_bb5_in___32 [5*Arg_1+7*Arg_2-4*Arg_3-8*Arg_4 ]
n_eval_realheapsort_step2_bb5_in___41 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb6_in___31 [5*Arg_1+7*Arg_2-4*Arg_3-8*Arg_4 ]
n_eval_realheapsort_step2_bb6_in___40 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___29 [5*Arg_1-Arg_2-4*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___30 [5*Arg_1-Arg_2-4*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___38 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb7_in___39 [12 ]
n_eval_realheapsort_step2_bb8_in___28 [5*Arg_1+7*Arg_2-4*Arg_3-8*Arg_4 ]
n_eval_realheapsort_step2_bb8_in___37 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___2 [12 ]
n_eval_realheapsort_step2_bb10_in___22 [5*Arg_1-4*Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___23 [5*Arg_1+Arg_2-4*Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___24 [5*Arg_1-4*Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___25 [5*Arg_1-Arg_2-4*Arg_3 ]
n_eval_realheapsort_step2_bb10_in___26 [5*Arg_1-4*Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___27 [5*Arg_1+Arg_2+1-4*Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___36 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb9_in___4 [4*Arg_1-4*Arg_3 ]
n_eval_realheapsort_step2_bb4_in___34 [4*Arg_1-4*Arg_3-4 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 259:n_eval_realheapsort_step2_bb8_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___25(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 of depth 1:
new bound:
8*Arg_1*Arg_1+20*Arg_1+12 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [0 ]
eval_realheapsort_step2_58 [0 ]
eval_realheapsort_step2_bb2_in [0 ]
eval_realheapsort_step2_bb3_in [0 ]
eval_realheapsort_step2_bb4_in [0 ]
n_eval_realheapsort_step2_bb10_in___1 [4*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___3 [2*Arg_1+Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [2*Arg_1+6-2*Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [2*Arg_1+6-2*Arg_4 ]
eval_realheapsort_step2_bb11_in [0 ]
n_eval_realheapsort_step2_bb5_in___32 [2*Arg_1+6-2*Arg_2 ]
n_eval_realheapsort_step2_bb5_in___41 [0 ]
n_eval_realheapsort_step2_bb6_in___31 [2*Arg_1+Arg_4+6-3*Arg_2 ]
n_eval_realheapsort_step2_bb6_in___40 [0 ]
n_eval_realheapsort_step2_bb7_in___29 [2*Arg_1+Arg_4+6-3*Arg_2 ]
n_eval_realheapsort_step2_bb7_in___30 [2*Arg_1+6-2*Arg_2 ]
n_eval_realheapsort_step2_bb7_in___38 [0 ]
n_eval_realheapsort_step2_bb7_in___39 [0 ]
n_eval_realheapsort_step2_bb8_in___28 [2*Arg_1+6-2*Arg_2 ]
n_eval_realheapsort_step2_bb8_in___37 [0 ]
n_eval_realheapsort_step2_bb9_in___2 [0 ]
n_eval_realheapsort_step2_bb10_in___22 [2*Arg_1+6-2*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___23 [2*Arg_1+6-2*Arg_2 ]
n_eval_realheapsort_step2_bb10_in___24 [2*Arg_1+6-2*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___25 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb10_in___26 [2*Arg_1+6-2*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___27 [2*Arg_1+6-2*Arg_2 ]
n_eval_realheapsort_step2_bb9_in___36 [0 ]
n_eval_realheapsort_step2_bb9_in___4 [0 ]
n_eval_realheapsort_step2_bb4_in___34 [0 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 267:n_eval_realheapsort_step2_bb9_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3 of depth 1:
new bound:
3*Arg_1*Arg_1+7*Arg_1+4 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [0 ]
eval_realheapsort_step2_58 [0 ]
eval_realheapsort_step2_bb2_in [0 ]
eval_realheapsort_step2_bb3_in [0 ]
eval_realheapsort_step2_bb4_in [0 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___3 [Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [Arg_1+Arg_2-2*Arg_4 ]
eval_realheapsort_step2_bb11_in [0 ]
n_eval_realheapsort_step2_bb5_in___32 [Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb5_in___41 [0 ]
n_eval_realheapsort_step2_bb6_in___31 [Arg_1-Arg_2 ]
n_eval_realheapsort_step2_bb6_in___40 [0 ]
n_eval_realheapsort_step2_bb7_in___29 [Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb7_in___30 [Arg_2+Arg_3+3 ]
n_eval_realheapsort_step2_bb7_in___38 [0 ]
n_eval_realheapsort_step2_bb7_in___39 [0 ]
n_eval_realheapsort_step2_bb8_in___28 [Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb8_in___37 [0 ]
n_eval_realheapsort_step2_bb9_in___2 [Arg_1-Arg_3-3 ]
n_eval_realheapsort_step2_bb10_in___22 [Arg_2+Arg_3+1 ]
n_eval_realheapsort_step2_bb9_in___23 [Arg_2+Arg_3+3 ]
n_eval_realheapsort_step2_bb10_in___24 [Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___25 [Arg_1-Arg_2 ]
n_eval_realheapsort_step2_bb10_in___26 [Arg_1-Arg_2 ]
n_eval_realheapsort_step2_bb9_in___27 [Arg_1-Arg_2 ]
n_eval_realheapsort_step2_bb9_in___36 [0 ]
n_eval_realheapsort_step2_bb9_in___4 [0 ]
n_eval_realheapsort_step2_bb4_in___34 [0 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 268:n_eval_realheapsort_step2_bb9_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3 of depth 1:
new bound:
Arg_1 {O(n)}
MPRF:
eval_realheapsort_step2_59 [Arg_1-Arg_3-1 ]
eval_realheapsort_step2_58 [Arg_1-Arg_3-1 ]
eval_realheapsort_step2_bb2_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb3_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb4_in [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___33 [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb11_in [Arg_1-Arg_3-1 ]
n_eval_realheapsort_step2_bb5_in___32 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___31 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb6_in___40 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___29 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___30 [2*Arg_4+3 ]
n_eval_realheapsort_step2_bb7_in___38 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb7_in___39 [3 ]
n_eval_realheapsort_step2_bb8_in___28 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb8_in___37 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_1+3*Arg_4-Arg_3-3 ]
n_eval_realheapsort_step2_bb9_in___2 [3*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___22 [Arg_1+2*Arg_2+1-Arg_3-Arg_4 ]
n_eval_realheapsort_step2_bb9_in___23 [2*Arg_2+3 ]
n_eval_realheapsort_step2_bb10_in___24 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___25 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___26 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___27 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___35 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___36 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb10_in___3 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb9_in___4 [Arg_1-Arg_3 ]
n_eval_realheapsort_step2_bb4_in___34 [Arg_2-Arg_3-1 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 269:n_eval_realheapsort_step2_bb9_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3 of depth 1:
new bound:
6*Arg_1*Arg_1+14*Arg_1+8 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [0 ]
eval_realheapsort_step2_58 [0 ]
eval_realheapsort_step2_bb2_in [0 ]
eval_realheapsort_step2_bb3_in [0 ]
eval_realheapsort_step2_bb4_in [0 ]
n_eval_realheapsort_step2_bb10_in___1 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___3 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [2*Arg_1-2*Arg_2 ]
eval_realheapsort_step2_bb11_in [0 ]
n_eval_realheapsort_step2_bb5_in___32 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb5_in___41 [0 ]
n_eval_realheapsort_step2_bb6_in___31 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb6_in___40 [0 ]
n_eval_realheapsort_step2_bb7_in___29 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb7_in___30 [2*Arg_1-2*Arg_2-4 ]
n_eval_realheapsort_step2_bb7_in___38 [0 ]
n_eval_realheapsort_step2_bb7_in___39 [0 ]
n_eval_realheapsort_step2_bb8_in___28 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb8_in___37 [0 ]
n_eval_realheapsort_step2_bb9_in___2 [0 ]
n_eval_realheapsort_step2_bb10_in___22 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___23 [Arg_1+Arg_3-1 ]
n_eval_realheapsort_step2_bb10_in___24 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___25 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb10_in___26 [2*Arg_1-2*Arg_4 ]
n_eval_realheapsort_step2_bb9_in___27 [2*Arg_1-2*Arg_2 ]
n_eval_realheapsort_step2_bb9_in___36 [0 ]
n_eval_realheapsort_step2_bb9_in___4 [0 ]
n_eval_realheapsort_step2_bb4_in___34 [0 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 270:n_eval_realheapsort_step2_bb9_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3 of depth 1:
new bound:
Arg_1+5 {O(n)}
MPRF:
eval_realheapsort_step2_59 [Arg_1-Arg_3-6 ]
eval_realheapsort_step2_58 [Arg_1-Arg_3-6 ]
eval_realheapsort_step2_bb2_in [Arg_1-Arg_3-5 ]
eval_realheapsort_step2_bb3_in [Arg_1-Arg_3-5 ]
eval_realheapsort_step2_bb4_in [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb4_in___33 [Arg_1-Arg_3-5 ]
eval_realheapsort_step2_bb11_in [Arg_1-Arg_3-6 ]
n_eval_realheapsort_step2_bb5_in___32 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb6_in___31 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb6_in___40 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb7_in___29 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb7_in___30 [2*Arg_2-2 ]
n_eval_realheapsort_step2_bb7_in___38 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb7_in___39 [-2 ]
n_eval_realheapsort_step2_bb8_in___28 [Arg_1+Arg_2-Arg_3-Arg_4-5 ]
n_eval_realheapsort_step2_bb8_in___37 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___1 [-2 ]
n_eval_realheapsort_step2_bb9_in___2 [-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___22 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb9_in___23 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___24 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb9_in___25 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___26 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb9_in___27 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___35 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb9_in___36 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___3 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb9_in___4 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb4_in___34 [Arg_1-Arg_3-6 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 271:n_eval_realheapsort_step2_bb9_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3 of depth 1:
new bound:
3*Arg_1*Arg_1+7*Arg_1+6 {O(n^2)}
MPRF:
eval_realheapsort_step2_59 [-2 ]
eval_realheapsort_step2_58 [-2 ]
eval_realheapsort_step2_bb2_in [-2 ]
eval_realheapsort_step2_bb3_in [-2 ]
eval_realheapsort_step2_bb4_in [-2 ]
n_eval_realheapsort_step2_bb10_in___1 [Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___3 [Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb10_in___35 [Arg_1-Arg_4 ]
n_eval_realheapsort_step2_bb4_in___33 [Arg_1+Arg_2-2*Arg_4-4 ]
eval_realheapsort_step2_bb11_in [-2 ]
n_eval_realheapsort_step2_bb5_in___32 [Arg_1-Arg_4-4 ]
n_eval_realheapsort_step2_bb5_in___41 [-2 ]
n_eval_realheapsort_step2_bb6_in___31 [Arg_1-2*Arg_2-3 ]
n_eval_realheapsort_step2_bb6_in___40 [-2 ]
n_eval_realheapsort_step2_bb7_in___29 [Arg_1-2*Arg_2-3 ]
n_eval_realheapsort_step2_bb7_in___30 [Arg_1-Arg_4-4 ]
n_eval_realheapsort_step2_bb7_in___38 [-2 ]
n_eval_realheapsort_step2_bb7_in___39 [-2 ]
n_eval_realheapsort_step2_bb8_in___28 [Arg_1-2*Arg_2-3 ]
n_eval_realheapsort_step2_bb8_in___37 [-2 ]
n_eval_realheapsort_step2_bb9_in___2 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___22 [Arg_1-Arg_4-2 ]
n_eval_realheapsort_step2_bb9_in___23 [Arg_1-Arg_4-2 ]
n_eval_realheapsort_step2_bb10_in___24 [Arg_1-Arg_4-4 ]
n_eval_realheapsort_step2_bb9_in___25 [Arg_1+Arg_4-4*Arg_2-5 ]
n_eval_realheapsort_step2_bb10_in___26 [Arg_1-Arg_4-4 ]
n_eval_realheapsort_step2_bb9_in___27 [Arg_1-Arg_4-2 ]
n_eval_realheapsort_step2_bb9_in___36 [-2 ]
n_eval_realheapsort_step2_bb9_in___4 [-2 ]
n_eval_realheapsort_step2_bb4_in___34 [-2 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
MPRF for transition 272:n_eval_realheapsort_step2_bb9_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3 of depth 1:
new bound:
Arg_1+5 {O(n)}
MPRF:
eval_realheapsort_step2_59 [Arg_1-Arg_3-6 ]
eval_realheapsort_step2_58 [Arg_1-Arg_3-6 ]
eval_realheapsort_step2_bb2_in [Arg_1-Arg_3-5 ]
eval_realheapsort_step2_bb3_in [Arg_1-Arg_3-5 ]
eval_realheapsort_step2_bb4_in [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb4_in___33 [Arg_1-Arg_3-5 ]
eval_realheapsort_step2_bb11_in [Arg_1-Arg_3-6 ]
n_eval_realheapsort_step2_bb5_in___32 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb5_in___41 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb6_in___31 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb6_in___40 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb7_in___29 [Arg_1+Arg_2-Arg_3-Arg_4-5 ]
n_eval_realheapsort_step2_bb7_in___30 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb7_in___38 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb7_in___39 [-2 ]
n_eval_realheapsort_step2_bb8_in___28 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb8_in___37 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___1 [-2 ]
n_eval_realheapsort_step2_bb9_in___2 [-2*Arg_4 ]
n_eval_realheapsort_step2_bb10_in___22 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb9_in___23 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___24 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb9_in___25 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___26 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb9_in___27 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___35 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb9_in___36 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb10_in___3 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb9_in___4 [Arg_1-Arg_3-5 ]
n_eval_realheapsort_step2_bb4_in___34 [Arg_1-Arg_3-6 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
CFR: Improvement to new bound with the following program:
new bound:
279*Arg_1*Arg_1+503*Arg_1+304 {O(n^2)}
cfr-program:
Start: eval_realheapsort_step2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars:
Locations: eval_realheapsort_step2_0, eval_realheapsort_step2_1, eval_realheapsort_step2_10, eval_realheapsort_step2_11, eval_realheapsort_step2_12, eval_realheapsort_step2_2, eval_realheapsort_step2_3, eval_realheapsort_step2_4, eval_realheapsort_step2_5, eval_realheapsort_step2_58, eval_realheapsort_step2_59, eval_realheapsort_step2_6, eval_realheapsort_step2_7, eval_realheapsort_step2_8, eval_realheapsort_step2_9, eval_realheapsort_step2_bb0_in, eval_realheapsort_step2_bb11_in, eval_realheapsort_step2_bb12_in, eval_realheapsort_step2_bb1_in, eval_realheapsort_step2_bb2_in, eval_realheapsort_step2_bb3_in, eval_realheapsort_step2_bb4_in, eval_realheapsort_step2_start, eval_realheapsort_step2_stop, n_eval_realheapsort_step2_bb10_in___1, n_eval_realheapsort_step2_bb10_in___22, n_eval_realheapsort_step2_bb10_in___24, n_eval_realheapsort_step2_bb10_in___26, n_eval_realheapsort_step2_bb10_in___3, n_eval_realheapsort_step2_bb10_in___35, n_eval_realheapsort_step2_bb4_in___33, n_eval_realheapsort_step2_bb4_in___34, n_eval_realheapsort_step2_bb5_in___32, n_eval_realheapsort_step2_bb5_in___41, n_eval_realheapsort_step2_bb6_in___31, n_eval_realheapsort_step2_bb6_in___40, n_eval_realheapsort_step2_bb7_in___29, n_eval_realheapsort_step2_bb7_in___30, n_eval_realheapsort_step2_bb7_in___38, n_eval_realheapsort_step2_bb7_in___39, n_eval_realheapsort_step2_bb8_in___28, n_eval_realheapsort_step2_bb8_in___37, n_eval_realheapsort_step2_bb9_in___2, n_eval_realheapsort_step2_bb9_in___23, n_eval_realheapsort_step2_bb9_in___25, n_eval_realheapsort_step2_bb9_in___27, n_eval_realheapsort_step2_bb9_in___36, n_eval_realheapsort_step2_bb9_in___4
Transitions:
2:eval_realheapsort_step2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
3:eval_realheapsort_step2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
14:eval_realheapsort_step2_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 3<=Arg_1
15:eval_realheapsort_step2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 3<=Arg_1
16:eval_realheapsort_step2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,0,Arg_4):|:3<=Arg_1 && 3<=Arg_1
5:eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=2
4:eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
7:eval_realheapsort_step2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 3<=Arg_1
8:eval_realheapsort_step2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 3<=Arg_1
9:eval_realheapsort_step2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 3<=Arg_1
33:eval_realheapsort_step2_58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
34:eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
10:eval_realheapsort_step2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 3<=Arg_1
11:eval_realheapsort_step2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 3<=Arg_1
12:eval_realheapsort_step2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 3<=Arg_1
13:eval_realheapsort_step2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 3<=Arg_1
1:eval_realheapsort_step2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
32:eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_58(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
35:eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
6:eval_realheapsort_step2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1 && 3<=Arg_1
18:eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
17:eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
19:eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,0,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
21:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
235:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
0:eval_realheapsort_step2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
222:n_eval_realheapsort_step2_bb10_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
224:n_eval_realheapsort_step2_bb10_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
225:n_eval_realheapsort_step2_bb10_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
226:n_eval_realheapsort_step2_bb10_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
227:n_eval_realheapsort_step2_bb10_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
228:n_eval_realheapsort_step2_bb10_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
298:n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
233:n_eval_realheapsort_step2_bb4_in___33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb5_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
299:n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
241:n_eval_realheapsort_step2_bb5_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
242:n_eval_realheapsort_step2_bb5_in___32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___30(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
243:n_eval_realheapsort_step2_bb5_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb6_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
244:n_eval_realheapsort_step2_bb5_in___41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___39(Arg_0,Arg_1,Arg_2,Arg_1-2*Arg_2-3,Arg_4):|:3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
248:n_eval_realheapsort_step2_bb6_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
249:n_eval_realheapsort_step2_bb6_in___31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb8_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
250:n_eval_realheapsort_step2_bb6_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb7_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
251:n_eval_realheapsort_step2_bb6_in___40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb8_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
254:n_eval_realheapsort_step2_bb7_in___29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___27(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
255:n_eval_realheapsort_step2_bb7_in___30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___23(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
256:n_eval_realheapsort_step2_bb7_in___38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___36(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
257:n_eval_realheapsort_step2_bb7_in___39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___2(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
259:n_eval_realheapsort_step2_bb8_in___28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___25(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
260:n_eval_realheapsort_step2_bb8_in___37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb9_in___4(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
265:n_eval_realheapsort_step2_bb9_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
266:n_eval_realheapsort_step2_bb9_in___2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
267:n_eval_realheapsort_step2_bb9_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___22(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
268:n_eval_realheapsort_step2_bb9_in___23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
269:n_eval_realheapsort_step2_bb9_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
270:n_eval_realheapsort_step2_bb9_in___25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
271:n_eval_realheapsort_step2_bb9_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
272:n_eval_realheapsort_step2_bb9_in___27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
273:n_eval_realheapsort_step2_bb9_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
274:n_eval_realheapsort_step2_bb9_in___36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
275:n_eval_realheapsort_step2_bb9_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb10_in___3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
276:n_eval_realheapsort_step2_bb9_in___4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> n_eval_realheapsort_step2_bb4_in___34(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 && 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3 && 0<=Arg_2+Arg_3 && 1<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1 && 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 && 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___41
n_eval_realheapsort_step2_bb5_in___41
eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41
t₂₃₅
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_2<=0 && 2+Arg_2<=Arg_1 && 0<=Arg_2 && 2<=Arg_1+Arg_2 && 2<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3 && 2+Arg_3<=Arg_1 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb10_in___1
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb4_in___33
n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33
t₂₂₂
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22
n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33
t₂₂₄
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24
n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33
t₂₂₅
η (Arg_2) = Arg_4
τ = 2+Arg_4<=Arg_1 && 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26
n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33
t₂₂₆
η (Arg_2) = Arg_4
τ = 3+Arg_4<=Arg_1 && 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3
n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33
t₂₂₇
η (Arg_2) = Arg_4
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35
n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33
t₂₂₈
η (Arg_2) = Arg_4
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in
t₂₉₈
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb5_in___32
n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32
t₂₃₃
τ = Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && 2+Arg_2<=Arg_1 && 1<=Arg_2 && 4<=Arg_1+Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3 && 3+2*Arg_2+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34
n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in
t₂₉₉
τ = 2+Arg_4<=Arg_2 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_2 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 3<=Arg_2+Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=Arg_1 && 3<=Arg_2 && 6<=Arg_1+Arg_2 && Arg_1<=Arg_2 && 3<=Arg_1 && 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb6_in___31
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31
t₂₄₁
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb7_in___30
n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30
t₂₄₂
η (Arg_3) = Arg_1-2*Arg_2-3
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+Arg_3+2*Arg_4<=Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb6_in___40
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40
t₂₄₃
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2+Arg_3<Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb7_in___39
n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39
t₂₄₄
η (Arg_3) = Arg_1-2*Arg_2-3
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 3+2*Arg_2<=Arg_1 && Arg_1<=2*Arg_2+Arg_3+3 && 3+2*Arg_2+Arg_3<=Arg_1
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb7_in___29
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29
t₂₄₈
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb8_in___28
n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28
t₂₄₉
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb7_in___38
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38
t₂₅₀
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb8_in___37
n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37
t₂₅₁
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb9_in___27
n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27
t₂₅₄
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb9_in___23
n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23
t₂₅₅
η (Arg_4) = 2*Arg_2+1
τ = Arg_4<=Arg_2 && 4+Arg_4<=Arg_1 && 1<=Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 3+2*Arg_4<=Arg_1 && Arg_1<=Arg_3+2*Arg_4+3 && 3+Arg_3+2*Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb9_in___36
n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36
t₂₅₆
η (Arg_4) = 2*Arg_2+1
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb9_in___2
n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2
t₂₅₇
η (Arg_4) = 2*Arg_2+1
τ = 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb9_in___25
n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25
t₂₅₉
η (Arg_4) = 2*Arg_2+2
τ = Arg_4<=Arg_2 && 5+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && Arg_2<=Arg_4 && 7<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 3+Arg_3+2*Arg_4<Arg_1 && 0<=Arg_3 && Arg_2<=Arg_4 && Arg_4<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb9_in___4
n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4
t₂₆₀
η (Arg_4) = 2*Arg_2+2
τ = 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1
t₂₆₅
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34
t₂₆₆
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 2+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 4<=Arg_1+Arg_4 && 3+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=3+Arg_3 && Arg_2<=0 && 3+Arg_2<=Arg_1 && 0<=Arg_2 && 3<=Arg_1+Arg_2 && 3<=Arg_1 && 3<=Arg_1 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && Arg_1<=Arg_3+3 && 3+Arg_3<=Arg_1 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22
t₂₆₇
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34
t₂₆₈
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 8<=Arg_1+Arg_4 && 5+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 5<=Arg_1+Arg_3 && 4+Arg_2<=Arg_1 && 1<=Arg_2 && 6<=Arg_1+Arg_2 && 5<=Arg_1 && 2+Arg_4<=Arg_1 && Arg_1<=Arg_3+Arg_4+2 && 2+Arg_3+Arg_4<=Arg_1 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24
t₂₆₉
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34
t₂₇₀
η (Arg_2) = Arg_1
τ = 4<=Arg_4 && 4<=Arg_3+Arg_4 && 5<=Arg_2+Arg_4 && 3+Arg_2<=Arg_4 && 10<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 1+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+2<=Arg_4 && Arg_4<=2+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26
t₂₇₁
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34
t₂₇₂
η (Arg_2) = Arg_1
τ = 3<=Arg_4 && 3<=Arg_3+Arg_4 && 4<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 9<=Arg_1+Arg_4 && 6+Arg_3<=Arg_1 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 6<=Arg_1+Arg_3 && 5+Arg_2<=Arg_1 && 1<=Arg_2 && 7<=Arg_1+Arg_2 && 6<=Arg_1 && 2+Arg_3+Arg_4<Arg_1 && 0<=Arg_3 && 2*Arg_2+1<=Arg_4 && Arg_4<=1+2*Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35
t₂₇₃
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34
t₂₇₄
η (Arg_2) = Arg_1
τ = Arg_4<=1 && Arg_4<=1+Arg_3 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=1 && 3+Arg_4<=Arg_1 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 5<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=1 && 1<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3
t₂₇₅
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34
t₂₇₆
η (Arg_2) = Arg_1
τ = Arg_4<=2 && Arg_4<=2+Arg_3 && Arg_4<=2+Arg_2 && Arg_2+Arg_4<=2 && 2+Arg_4<=Arg_1 && 2<=Arg_4 && 2<=Arg_3+Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 6<=Arg_1+Arg_4 && 4+Arg_3<=Arg_1 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 4<=Arg_1+Arg_3 && Arg_2<=0 && 4+Arg_2<=Arg_1 && 0<=Arg_2 && 4<=Arg_1+Arg_2 && 4<=Arg_1 && 3+Arg_3<Arg_1 && 0<=Arg_3 && Arg_4<=2 && 2<=Arg_4 && Arg_2<=0 && 0<=Arg_2 && 0<=Arg_3
All Bounds
Timebounds
Overall timebound:279*Arg_1*Arg_1+503*Arg_1+323 {O(n^2)}
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1: 1 {O(1)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2: 1 {O(1)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11: 1 {O(1)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12: 1 {O(1)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in: 1 {O(1)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in: 1 {O(1)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in: 1 {O(1)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4: 1 {O(1)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5: 1 {O(1)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6: 1 {O(1)}
33: eval_realheapsort_step2_58->eval_realheapsort_step2_59: Arg_1+1 {O(n)}
34: eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in: Arg_1+1 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7: 1 {O(1)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8: 1 {O(1)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9: 1 {O(1)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10: 1 {O(1)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0: 1 {O(1)}
32: eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58: Arg_1+1 {O(n)}
35: eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop: 1 {O(1)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3: 1 {O(1)}
17: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in: Arg_1+1 {O(n)}
18: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in: 1 {O(1)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in: Arg_1+1 {O(n)}
21: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in: Arg_1+3 {O(n)}
235: eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41: Arg_1+1 {O(n)}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in: 1 {O(1)}
222: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33: Arg_1+1 {O(n)}
224: n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33: 5*Arg_1*Arg_1+18*Arg_1+19 {O(n^2)}
225: n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33: 17*Arg_1*Arg_1+27*Arg_1+10 {O(n^2)}
226: n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33: 6*Arg_1*Arg_1+14*Arg_1+8 {O(n^2)}
227: n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33: Arg_1+1 {O(n)}
228: n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33: Arg_1+1 {O(n)}
233: n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32: 6*Arg_1*Arg_1+14*Arg_1+8 {O(n^2)}
298: n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in: Arg_1+2 {O(n)}
299: n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in: Arg_1+2 {O(n)}
241: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31: 42*Arg_1*Arg_1+62*Arg_1+68 {O(n^2)}
242: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30: 84*Arg_1*Arg_1+136*Arg_1+60 {O(n^2)}
243: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40: Arg_1+1 {O(n)}
244: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39: Arg_1+1 {O(n)}
248: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29: 18*Arg_1*Arg_1+46*Arg_1+42 {O(n^2)}
249: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28: 10*Arg_1*Arg_1+16*Arg_1+4 {O(n^2)}
250: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38: Arg_1+1 {O(n)}
251: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37: Arg_1+1 {O(n)}
254: n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27: 12*Arg_1*Arg_1+19*Arg_1+4 {O(n^2)}
255: n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23: 59*Arg_1*Arg_1+75*Arg_1+12 {O(n^2)}
256: n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36: Arg_1+1 {O(n)}
257: n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2: Arg_1+1 {O(n)}
259: n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25: 8*Arg_1*Arg_1+20*Arg_1+12 {O(n^2)}
260: n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4: Arg_1+1 {O(n)}
265: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1: Arg_1+1 {O(n)}
266: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34: Arg_1+1 {O(n)}
267: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22: 3*Arg_1*Arg_1+7*Arg_1+4 {O(n^2)}
268: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34: Arg_1 {O(n)}
269: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24: 6*Arg_1*Arg_1+14*Arg_1+8 {O(n^2)}
270: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34: Arg_1+5 {O(n)}
271: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26: 3*Arg_1*Arg_1+7*Arg_1+6 {O(n^2)}
272: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34: Arg_1+5 {O(n)}
273: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35: Arg_1+1 {O(n)}
274: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34: Arg_1+1 {O(n)}
275: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3: Arg_1+1 {O(n)}
276: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34: Arg_1+1 {O(n)}
Costbounds
Overall costbound: 279*Arg_1*Arg_1+503*Arg_1+323 {O(n^2)}
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1: 1 {O(1)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2: 1 {O(1)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11: 1 {O(1)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12: 1 {O(1)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in: 1 {O(1)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in: 1 {O(1)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in: 1 {O(1)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4: 1 {O(1)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5: 1 {O(1)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6: 1 {O(1)}
33: eval_realheapsort_step2_58->eval_realheapsort_step2_59: Arg_1+1 {O(n)}
34: eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in: Arg_1+1 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7: 1 {O(1)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8: 1 {O(1)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9: 1 {O(1)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10: 1 {O(1)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0: 1 {O(1)}
32: eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58: Arg_1+1 {O(n)}
35: eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop: 1 {O(1)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3: 1 {O(1)}
17: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in: Arg_1+1 {O(n)}
18: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in: 1 {O(1)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in: Arg_1+1 {O(n)}
21: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in: Arg_1+3 {O(n)}
235: eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41: Arg_1+1 {O(n)}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in: 1 {O(1)}
222: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33: Arg_1+1 {O(n)}
224: n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33: 5*Arg_1*Arg_1+18*Arg_1+19 {O(n^2)}
225: n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33: 17*Arg_1*Arg_1+27*Arg_1+10 {O(n^2)}
226: n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33: 6*Arg_1*Arg_1+14*Arg_1+8 {O(n^2)}
227: n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33: Arg_1+1 {O(n)}
228: n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33: Arg_1+1 {O(n)}
233: n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32: 6*Arg_1*Arg_1+14*Arg_1+8 {O(n^2)}
298: n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in: Arg_1+2 {O(n)}
299: n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in: Arg_1+2 {O(n)}
241: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31: 42*Arg_1*Arg_1+62*Arg_1+68 {O(n^2)}
242: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30: 84*Arg_1*Arg_1+136*Arg_1+60 {O(n^2)}
243: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40: Arg_1+1 {O(n)}
244: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39: Arg_1+1 {O(n)}
248: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29: 18*Arg_1*Arg_1+46*Arg_1+42 {O(n^2)}
249: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28: 10*Arg_1*Arg_1+16*Arg_1+4 {O(n^2)}
250: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38: Arg_1+1 {O(n)}
251: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37: Arg_1+1 {O(n)}
254: n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27: 12*Arg_1*Arg_1+19*Arg_1+4 {O(n^2)}
255: n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23: 59*Arg_1*Arg_1+75*Arg_1+12 {O(n^2)}
256: n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36: Arg_1+1 {O(n)}
257: n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2: Arg_1+1 {O(n)}
259: n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25: 8*Arg_1*Arg_1+20*Arg_1+12 {O(n^2)}
260: n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4: Arg_1+1 {O(n)}
265: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1: Arg_1+1 {O(n)}
266: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34: Arg_1+1 {O(n)}
267: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22: 3*Arg_1*Arg_1+7*Arg_1+4 {O(n^2)}
268: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34: Arg_1 {O(n)}
269: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24: 6*Arg_1*Arg_1+14*Arg_1+8 {O(n^2)}
270: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34: Arg_1+5 {O(n)}
271: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26: 3*Arg_1*Arg_1+7*Arg_1+6 {O(n^2)}
272: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34: Arg_1+5 {O(n)}
273: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35: Arg_1+1 {O(n)}
274: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34: Arg_1+1 {O(n)}
275: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3: Arg_1+1 {O(n)}
276: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34: Arg_1+1 {O(n)}
Sizebounds
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1, Arg_0: Arg_0 {O(n)}
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1, Arg_1: Arg_1 {O(n)}
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1, Arg_2: Arg_2 {O(n)}
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1, Arg_3: Arg_3 {O(n)}
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1, Arg_4: Arg_4 {O(n)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2, Arg_0: Arg_0 {O(n)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2, Arg_1: Arg_1 {O(n)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2, Arg_2: Arg_2 {O(n)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2, Arg_3: Arg_3 {O(n)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2, Arg_4: Arg_4 {O(n)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11, Arg_0: Arg_0 {O(n)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11, Arg_1: Arg_1 {O(n)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11, Arg_2: Arg_2 {O(n)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11, Arg_3: Arg_3 {O(n)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11, Arg_4: Arg_4 {O(n)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12, Arg_0: Arg_0 {O(n)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12, Arg_1: Arg_1 {O(n)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12, Arg_2: Arg_2 {O(n)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12, Arg_3: Arg_3 {O(n)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12, Arg_4: Arg_4 {O(n)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in, Arg_0: Arg_0 {O(n)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in, Arg_1: Arg_1 {O(n)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in, Arg_2: Arg_2 {O(n)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in, Arg_3: 0 {O(1)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in, Arg_4: Arg_4 {O(n)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in, Arg_0: Arg_0 {O(n)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in, Arg_1: Arg_1 {O(n)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in, Arg_2: Arg_2 {O(n)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in, Arg_3: Arg_3 {O(n)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in, Arg_4: Arg_4 {O(n)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in, Arg_0: Arg_0 {O(n)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in, Arg_1: Arg_1 {O(n)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in, Arg_2: Arg_2 {O(n)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in, Arg_3: Arg_3 {O(n)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in, Arg_4: Arg_4 {O(n)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4, Arg_0: Arg_0 {O(n)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4, Arg_1: Arg_1 {O(n)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4, Arg_2: Arg_2 {O(n)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4, Arg_3: Arg_3 {O(n)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4, Arg_4: Arg_4 {O(n)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5, Arg_0: Arg_0 {O(n)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5, Arg_1: Arg_1 {O(n)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5, Arg_2: Arg_2 {O(n)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5, Arg_3: Arg_3 {O(n)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5, Arg_4: Arg_4 {O(n)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6, Arg_0: Arg_0 {O(n)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6, Arg_1: Arg_1 {O(n)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6, Arg_2: Arg_2 {O(n)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6, Arg_3: Arg_3 {O(n)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6, Arg_4: Arg_4 {O(n)}
33: eval_realheapsort_step2_58->eval_realheapsort_step2_59, Arg_0: Arg_1+1 {O(n)}
33: eval_realheapsort_step2_58->eval_realheapsort_step2_59, Arg_1: Arg_1 {O(n)}
33: eval_realheapsort_step2_58->eval_realheapsort_step2_59, Arg_2: 156*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*76+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*80*Arg_1*Arg_1+6*Arg_1+6 {O(EXP)}
33: eval_realheapsort_step2_58->eval_realheapsort_step2_59, Arg_3: Arg_1+1 {O(n)}
33: eval_realheapsort_step2_58->eval_realheapsort_step2_59, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+Arg_4+12 {O(EXP)}
34: eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in, Arg_0: Arg_1+1 {O(n)}
34: eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in, Arg_1: Arg_1 {O(n)}
34: eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in, Arg_2: 156*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*76+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*80*Arg_1*Arg_1+6*Arg_1+6 {O(EXP)}
34: eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in, Arg_3: Arg_1+1 {O(n)}
34: eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+Arg_4+12 {O(EXP)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7, Arg_0: Arg_0 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7, Arg_1: Arg_1 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7, Arg_2: Arg_2 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7, Arg_3: Arg_3 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7, Arg_4: Arg_4 {O(n)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8, Arg_0: Arg_0 {O(n)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8, Arg_1: Arg_1 {O(n)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8, Arg_2: Arg_2 {O(n)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8, Arg_3: Arg_3 {O(n)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8, Arg_4: Arg_4 {O(n)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9, Arg_0: Arg_0 {O(n)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9, Arg_1: Arg_1 {O(n)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9, Arg_2: Arg_2 {O(n)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9, Arg_3: Arg_3 {O(n)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9, Arg_4: Arg_4 {O(n)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10, Arg_0: Arg_0 {O(n)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10, Arg_1: Arg_1 {O(n)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10, Arg_2: Arg_2 {O(n)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10, Arg_3: Arg_3 {O(n)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10, Arg_4: Arg_4 {O(n)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0, Arg_0: Arg_0 {O(n)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0, Arg_1: Arg_1 {O(n)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0, Arg_2: Arg_2 {O(n)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0, Arg_3: Arg_3 {O(n)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0, Arg_4: Arg_4 {O(n)}
32: eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58, Arg_0: Arg_1+1 {O(n)}
32: eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58, Arg_1: Arg_1 {O(n)}
32: eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58, Arg_2: 156*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*76+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*80*Arg_1*Arg_1+6*Arg_1+6 {O(EXP)}
32: eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58, Arg_3: Arg_1+1 {O(n)}
32: eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+Arg_4+12 {O(EXP)}
35: eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop, Arg_0: Arg_0+Arg_1+1 {O(n)}
35: eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop, Arg_1: 2*Arg_1 {O(n)}
35: eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop, Arg_2: 156*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*76+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*80*Arg_1*Arg_1+6*Arg_1+Arg_2+6 {O(EXP)}
35: eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop, Arg_3: Arg_1+Arg_3+1 {O(n)}
35: eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+2*Arg_4+12 {O(EXP)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3, Arg_0: Arg_0 {O(n)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3, Arg_1: Arg_1 {O(n)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3, Arg_2: Arg_2 {O(n)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3, Arg_3: Arg_3 {O(n)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3, Arg_4: Arg_4 {O(n)}
17: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
17: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in, Arg_1: Arg_1 {O(n)}
17: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in, Arg_2: 156*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*76+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*80*Arg_1*Arg_1+6*Arg_1+Arg_2+6 {O(EXP)}
17: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in, Arg_3: Arg_1+1 {O(n)}
17: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+Arg_4+12 {O(EXP)}
18: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in, Arg_0: Arg_1+1 {O(n)}
18: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in, Arg_1: Arg_1 {O(n)}
18: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in, Arg_2: 156*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*76+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*80*Arg_1*Arg_1+6*Arg_1+6 {O(EXP)}
18: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in, Arg_3: Arg_1+1 {O(n)}
18: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+Arg_4+12 {O(EXP)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in, Arg_1: Arg_1 {O(n)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in, Arg_2: 0 {O(1)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in, Arg_3: Arg_1+1 {O(n)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+Arg_4+12 {O(EXP)}
21: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
21: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in, Arg_1: Arg_1 {O(n)}
21: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in, Arg_2: 0 {O(1)}
21: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in, Arg_3: Arg_1+1 {O(n)}
21: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+Arg_4+12 {O(EXP)}
235: eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41, Arg_0: Arg_0+Arg_1+1 {O(n)}
235: eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41, Arg_1: Arg_1 {O(n)}
235: eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41, Arg_2: 0 {O(1)}
235: eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41, Arg_3: 5*Arg_1+1 {O(n)}
235: eval_realheapsort_step2_bb4_in->n_eval_realheapsort_step2_bb5_in___41, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+Arg_4+12 {O(EXP)}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in, Arg_4: Arg_4 {O(n)}
222: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33, Arg_0: Arg_0+Arg_1+1 {O(n)}
222: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33, Arg_1: Arg_1 {O(n)}
222: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33, Arg_2: 1 {O(1)}
222: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33, Arg_3: Arg_1 {O(n)}
222: n_eval_realheapsort_step2_bb10_in___1->n_eval_realheapsort_step2_bb4_in___33, Arg_4: 1 {O(1)}
224: n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
224: n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33, Arg_1: Arg_1 {O(n)}
224: n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33, Arg_2: 2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*38+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*40*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*78*Arg_1+2 {O(EXP)}
224: n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33, Arg_3: Arg_1 {O(n)}
224: n_eval_realheapsort_step2_bb10_in___22->n_eval_realheapsort_step2_bb4_in___33, Arg_4: 2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*38+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*40*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*78*Arg_1+2 {O(EXP)}
225: n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
225: n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33, Arg_1: Arg_1 {O(n)}
225: n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
225: n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33, Arg_3: 5*Arg_1+1 {O(n)}
225: n_eval_realheapsort_step2_bb10_in___24->n_eval_realheapsort_step2_bb4_in___33, Arg_4: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
226: n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
226: n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33, Arg_1: Arg_1 {O(n)}
226: n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
226: n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33, Arg_3: 5*Arg_1+1 {O(n)}
226: n_eval_realheapsort_step2_bb10_in___26->n_eval_realheapsort_step2_bb4_in___33, Arg_4: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
227: n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33, Arg_0: Arg_0+Arg_1+1 {O(n)}
227: n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33, Arg_1: Arg_1 {O(n)}
227: n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33, Arg_2: 2 {O(1)}
227: n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33, Arg_3: 5*Arg_1+1 {O(n)}
227: n_eval_realheapsort_step2_bb10_in___3->n_eval_realheapsort_step2_bb4_in___33, Arg_4: 2 {O(1)}
228: n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33, Arg_0: Arg_0+Arg_1+1 {O(n)}
228: n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33, Arg_1: Arg_1 {O(n)}
228: n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33, Arg_2: 1 {O(1)}
228: n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33, Arg_3: 5*Arg_1+1 {O(n)}
228: n_eval_realheapsort_step2_bb10_in___35->n_eval_realheapsort_step2_bb4_in___33, Arg_4: 1 {O(1)}
233: n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
233: n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32, Arg_1: Arg_1 {O(n)}
233: n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
233: n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32, Arg_3: 5*Arg_1+1 {O(n)}
233: n_eval_realheapsort_step2_bb4_in___33->n_eval_realheapsort_step2_bb5_in___32, Arg_4: 2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*38+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*40*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*78*Arg_1+3 {O(EXP)}
298: n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in, Arg_0: 9*Arg_0+9*Arg_1+9 {O(n)}
298: n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in, Arg_1: Arg_1 {O(n)}
298: n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in, Arg_2: 156*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*76+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*80*Arg_1*Arg_1+6 {O(EXP)}
298: n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in, Arg_3: 5*Arg_1+1 {O(n)}
298: n_eval_realheapsort_step2_bb4_in___33->eval_realheapsort_step2_bb11_in, Arg_4: 156*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*76+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*80*Arg_1*Arg_1+6 {O(EXP)}
299: n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in, Arg_0: 9*Arg_0+9*Arg_1+9 {O(n)}
299: n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in, Arg_1: Arg_1 {O(n)}
299: n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in, Arg_2: 6*Arg_1 {O(n)}
299: n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in, Arg_3: 5*Arg_1+1 {O(n)}
299: n_eval_realheapsort_step2_bb4_in___34->eval_realheapsort_step2_bb11_in, Arg_4: 156*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*76+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*80*Arg_1*Arg_1+6 {O(EXP)}
241: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
241: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31, Arg_1: Arg_1 {O(n)}
241: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
241: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31, Arg_3: 5*Arg_1+1 {O(n)}
241: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb6_in___31, Arg_4: 2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*38+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*40*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*78*Arg_1+3 {O(EXP)}
242: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
242: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30, Arg_1: Arg_1 {O(n)}
242: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
242: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30, Arg_3: Arg_1 {O(n)}
242: n_eval_realheapsort_step2_bb5_in___32->n_eval_realheapsort_step2_bb7_in___30, Arg_4: 2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*38+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*40*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*78*Arg_1+3 {O(EXP)}
243: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40, Arg_0: Arg_0+Arg_1+1 {O(n)}
243: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40, Arg_1: Arg_1 {O(n)}
243: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40, Arg_2: 0 {O(1)}
243: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40, Arg_3: 5*Arg_1+1 {O(n)}
243: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb6_in___40, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+Arg_4+12 {O(EXP)}
244: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39, Arg_0: Arg_0+Arg_1+1 {O(n)}
244: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39, Arg_1: Arg_1 {O(n)}
244: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39, Arg_2: 0 {O(1)}
244: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39, Arg_3: Arg_1 {O(n)}
244: n_eval_realheapsort_step2_bb5_in___41->n_eval_realheapsort_step2_bb7_in___39, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+Arg_4+12 {O(EXP)}
248: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
248: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29, Arg_1: Arg_1 {O(n)}
248: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
248: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29, Arg_3: 5*Arg_1+1 {O(n)}
248: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb7_in___29, Arg_4: 2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*38+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*40*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*78*Arg_1+3 {O(EXP)}
249: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
249: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28, Arg_1: Arg_1 {O(n)}
249: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
249: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28, Arg_3: 5*Arg_1+1 {O(n)}
249: n_eval_realheapsort_step2_bb6_in___31->n_eval_realheapsort_step2_bb8_in___28, Arg_4: 2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*38+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*40*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*78*Arg_1+3 {O(EXP)}
250: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38, Arg_0: Arg_0+Arg_1+1 {O(n)}
250: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38, Arg_1: Arg_1 {O(n)}
250: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38, Arg_2: 0 {O(1)}
250: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38, Arg_3: 5*Arg_1+1 {O(n)}
250: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb7_in___38, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+Arg_4+12 {O(EXP)}
251: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37, Arg_0: Arg_0+Arg_1+1 {O(n)}
251: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37, Arg_1: Arg_1 {O(n)}
251: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37, Arg_2: 0 {O(1)}
251: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37, Arg_3: 5*Arg_1+1 {O(n)}
251: n_eval_realheapsort_step2_bb6_in___40->n_eval_realheapsort_step2_bb8_in___37, Arg_4: 152*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+160*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*312*Arg_1+Arg_4+12 {O(EXP)}
254: n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
254: n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27, Arg_1: Arg_1 {O(n)}
254: n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
254: n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27, Arg_3: 5*Arg_1+1 {O(n)}
254: n_eval_realheapsort_step2_bb7_in___29->n_eval_realheapsort_step2_bb9_in___27, Arg_4: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
255: n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
255: n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23, Arg_1: Arg_1 {O(n)}
255: n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
255: n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23, Arg_3: Arg_1 {O(n)}
255: n_eval_realheapsort_step2_bb7_in___30->n_eval_realheapsort_step2_bb9_in___23, Arg_4: 2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*38+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*40*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*78*Arg_1+2 {O(EXP)}
256: n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36, Arg_0: Arg_0+Arg_1+1 {O(n)}
256: n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36, Arg_1: Arg_1 {O(n)}
256: n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36, Arg_2: 0 {O(1)}
256: n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36, Arg_3: 5*Arg_1+1 {O(n)}
256: n_eval_realheapsort_step2_bb7_in___38->n_eval_realheapsort_step2_bb9_in___36, Arg_4: 1 {O(1)}
257: n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2, Arg_0: Arg_0+Arg_1+1 {O(n)}
257: n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2, Arg_1: Arg_1 {O(n)}
257: n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2, Arg_2: 0 {O(1)}
257: n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2, Arg_3: Arg_1 {O(n)}
257: n_eval_realheapsort_step2_bb7_in___39->n_eval_realheapsort_step2_bb9_in___2, Arg_4: 1 {O(1)}
259: n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
259: n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25, Arg_1: Arg_1 {O(n)}
259: n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
259: n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25, Arg_3: 5*Arg_1+1 {O(n)}
259: n_eval_realheapsort_step2_bb8_in___28->n_eval_realheapsort_step2_bb9_in___25, Arg_4: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
260: n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4, Arg_0: Arg_0+Arg_1+1 {O(n)}
260: n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4, Arg_1: Arg_1 {O(n)}
260: n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4, Arg_2: 0 {O(1)}
260: n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4, Arg_3: 5*Arg_1+1 {O(n)}
260: n_eval_realheapsort_step2_bb8_in___37->n_eval_realheapsort_step2_bb9_in___4, Arg_4: 2 {O(1)}
265: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1, Arg_0: Arg_0+Arg_1+1 {O(n)}
265: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1, Arg_1: Arg_1 {O(n)}
265: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1, Arg_2: 0 {O(1)}
265: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1, Arg_3: Arg_1 {O(n)}
265: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb10_in___1, Arg_4: 1 {O(1)}
266: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34, Arg_0: Arg_0+Arg_1+1 {O(n)}
266: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34, Arg_1: Arg_1 {O(n)}
266: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34, Arg_2: Arg_1 {O(n)}
266: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34, Arg_3: Arg_1 {O(n)}
266: n_eval_realheapsort_step2_bb9_in___2->n_eval_realheapsort_step2_bb4_in___34, Arg_4: 1 {O(1)}
267: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
267: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22, Arg_1: Arg_1 {O(n)}
267: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
267: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22, Arg_3: Arg_1 {O(n)}
267: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb10_in___22, Arg_4: 2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*38+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*40*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*78*Arg_1+2 {O(EXP)}
268: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
268: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34, Arg_1: Arg_1 {O(n)}
268: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34, Arg_2: Arg_1 {O(n)}
268: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34, Arg_3: Arg_1 {O(n)}
268: n_eval_realheapsort_step2_bb9_in___23->n_eval_realheapsort_step2_bb4_in___34, Arg_4: 2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*38+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*40*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*78*Arg_1+2 {O(EXP)}
269: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
269: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24, Arg_1: Arg_1 {O(n)}
269: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
269: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24, Arg_3: 5*Arg_1+1 {O(n)}
269: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb10_in___24, Arg_4: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
270: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
270: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34, Arg_1: Arg_1 {O(n)}
270: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34, Arg_2: Arg_1 {O(n)}
270: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34, Arg_3: 5*Arg_1+1 {O(n)}
270: n_eval_realheapsort_step2_bb9_in___25->n_eval_realheapsort_step2_bb4_in___34, Arg_4: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
271: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
271: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26, Arg_1: Arg_1 {O(n)}
271: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26, Arg_2: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
271: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26, Arg_3: 5*Arg_1+1 {O(n)}
271: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb10_in___26, Arg_4: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
272: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34, Arg_0: 2*Arg_0+2*Arg_1+2 {O(n)}
272: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34, Arg_1: Arg_1 {O(n)}
272: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34, Arg_2: Arg_1 {O(n)}
272: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34, Arg_3: 5*Arg_1+1 {O(n)}
272: n_eval_realheapsort_step2_bb9_in___27->n_eval_realheapsort_step2_bb4_in___34, Arg_4: 19*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)+20*2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*Arg_1*Arg_1+2^(12*Arg_1*Arg_1+19*Arg_1+4)*2^(8*Arg_1*Arg_1+20*Arg_1+12)*39*Arg_1 {O(EXP)}
273: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35, Arg_0: Arg_0+Arg_1+1 {O(n)}
273: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35, Arg_1: Arg_1 {O(n)}
273: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35, Arg_2: 0 {O(1)}
273: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35, Arg_3: 5*Arg_1+1 {O(n)}
273: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb10_in___35, Arg_4: 1 {O(1)}
274: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34, Arg_0: Arg_0+Arg_1+1 {O(n)}
274: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34, Arg_1: Arg_1 {O(n)}
274: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34, Arg_2: Arg_1 {O(n)}
274: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34, Arg_3: 5*Arg_1+1 {O(n)}
274: n_eval_realheapsort_step2_bb9_in___36->n_eval_realheapsort_step2_bb4_in___34, Arg_4: 1 {O(1)}
275: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3, Arg_0: Arg_0+Arg_1+1 {O(n)}
275: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3, Arg_1: Arg_1 {O(n)}
275: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3, Arg_2: 0 {O(1)}
275: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3, Arg_3: 5*Arg_1+1 {O(n)}
275: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb10_in___3, Arg_4: 2 {O(1)}
276: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34, Arg_0: Arg_0+Arg_1+1 {O(n)}
276: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34, Arg_1: Arg_1 {O(n)}
276: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34, Arg_2: Arg_1 {O(n)}
276: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34, Arg_3: 5*Arg_1+1 {O(n)}
276: n_eval_realheapsort_step2_bb9_in___4->n_eval_realheapsort_step2_bb4_in___34, Arg_4: 2 {O(1)}