Initial Problem

Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21
Temp_Vars: W, X, Y, Z
Locations: f0, f20, f26, f33, f39, f47, f50, f59, f62, f69, f71, f73, f74, f76, f78
Transitions:
41:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f20(Z,Arg_1,Arg_2,X,W,Arg_5,Arg_6,0,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,0,3,1,Y):|:0<=X && 1<=Y && Arg_19<=3 && 3<=Arg_19
42:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f20(Z,Arg_1,Arg_2,X,W,Arg_5,Arg_6,0,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,0,Arg_19,1,Y):|:Arg_19<=2 && 0<=X && 1<=Y
43:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f20(Z,Arg_1,Arg_2,X,W,Arg_5,Arg_6,0,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,0,Arg_19,1,Y):|:4<=Arg_19 && 0<=X && 1<=Y
0:f20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(Arg_0,1,Arg_3,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_0+1<=0
1:f20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(Arg_0,1,Arg_3,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:1<=Arg_0
2:f20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(0,1,0,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_3<=0 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
3:f20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(0,0,Arg_3,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_3+1<=0 && Arg_0<=0 && 0<=Arg_0
4:f20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(0,0,Arg_3,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:1<=Arg_3 && Arg_0<=0 && 0<=Arg_0
25:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,0,W,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:W+1<=0 && Arg_2+1<=Arg_4
26:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,0,W,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:1<=W && Arg_2+1<=Arg_4
6:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,W,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:W+1<=0 && Arg_2+1<=Arg_4
7:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,W,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:1<=W && Arg_2+1<=Arg_4
8:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_2+1<=Arg_4
5:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_4<=Arg_2
11:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_7+1<=Arg_8 && 2+Arg_9<=0
12:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_7+1<=Arg_8 && 0<=Arg_9
9:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_8<=Arg_7
10:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,-1,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_7+1<=Arg_8 && Arg_9+1<=0 && 0<=1+Arg_9
27:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,W,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_7+1<=Arg_8 && W+1<=0
28:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,W,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_7+1<=Arg_8 && 1<=W
14:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,0,W,X,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_7+1<=Arg_8 && W+1<=0
15:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,0,W,X,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_7+1<=Arg_8 && 1<=W
17:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,0,0,Arg_12,W,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_7+1<=Arg_8
13:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_8<=Arg_7
29:f47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_12+1<=0
30:f47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:1<=Arg_12
16:f47(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,0,W,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_12<=0 && 0<=Arg_12
31:f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,1,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_13+1<=0
20:f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,W,Arg_18,Arg_19,Arg_20,Arg_21):|:0<=Arg_13 && Arg_14<=2
21:f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,W,Arg_18,Arg_19,Arg_20,Arg_21):|:0<=Arg_13 && 4<=Arg_14
22:f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,3,Arg_15,1,W,Arg_18,Arg_19,Arg_20,Arg_21):|:0<=Arg_13 && Arg_14<=3 && 3<=Arg_14
18:f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,3,1,W,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:0<=Arg_13 && W<=0 && Arg_14<=3 && 3<=Arg_14
19:f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,3,1,W,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:0<=Arg_13 && 2<=W && Arg_14<=3 && 3<=Arg_14
23:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,W,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_17<=10
24:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,W,Arg_14,Arg_15,Arg_16,10,Arg_18,Arg_19,Arg_20,Arg_21):|:11<=Arg_17
32:f62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,1,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_13+1<=0
33:f62(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_10,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18+1,Arg_19,Arg_20,Arg_21):|:0<=Arg_13
35:f69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f71(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,0,Arg_19,Arg_20,Arg_21):|:Arg_18<=0 && 0<=Arg_18
38:f69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f74(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:Arg_18+1<=0
39:f69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f74(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21):|:1<=Arg_18
34:f71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21)
37:f73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f74(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21)
36:f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21)
40:f76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21) -> f78(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21)

Preprocessing

Cut unreachable locations [f73; f76; f78] from the program graph

Cut unsatisfiable transition 3: f20->f26

Eliminate variables {Arg_1,Arg_5,Arg_6,Arg_11,Arg_15,Arg_16,Arg_20,Arg_21} that do not contribute to the problem

Found invariant 1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_10<=0 && 0<=Arg_10 for location f50

Found invariant 0<=Arg_7 && 0<=Arg_3+Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_18+Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_18+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 2<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_18 && 1<=Arg_0+Arg_18 && 1+Arg_0<=Arg_18 && Arg_0<=0 && 0<=Arg_0 for location f74

Found invariant 1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_10<=0 && 0<=Arg_10 for location f47

Found invariant 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 for location f33

Found invariant 0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_18<=Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && Arg_18<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_18<=0 && Arg_18<=Arg_0 && Arg_0+Arg_18<=0 && 0<=Arg_18 && 0<=Arg_0+Arg_18 && Arg_0<=Arg_18 && Arg_0<=0 && 0<=Arg_0 for location f71

Found invariant 1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_13+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_13+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_13+Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_13+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_13+Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_13+Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && 0<=Arg_13 && 0<=Arg_10+Arg_13 && Arg_10<=Arg_13 && Arg_10<=0 && 0<=Arg_10 for location f59

Found invariant 0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 for location f69

Found invariant Arg_7<=0 && Arg_7<=Arg_3 && Arg_7<=Arg_18 && Arg_18+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_18+Arg_7 && Arg_18<=Arg_7 && 0<=Arg_3 && 0<=Arg_18+Arg_3 && Arg_18<=Arg_3 && Arg_18<=0 && 0<=Arg_18 for location f20

Found invariant 1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && Arg_17<=9+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_17<=10+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_17<=9+Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && Arg_17<=10+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && Arg_17<=10+Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && Arg_17<=10+Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_17<=10 && Arg_17<=10+Arg_10 && Arg_10+Arg_17<=10 && Arg_10<=0 && 0<=Arg_10 for location f62

Found invariant 0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 for location f26

Found invariant 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 for location f39

Cut unsatisfiable transition 132: f69->f74

Problem after Preprocessing

Start: f0
Program_Vars: Arg_0, Arg_2, Arg_3, Arg_4, Arg_7, Arg_8, Arg_9, Arg_10, Arg_12, Arg_13, Arg_14, Arg_17, Arg_18, Arg_19
Temp_Vars: W, X, Y, Z
Locations: f0, f20, f26, f33, f39, f47, f50, f59, f62, f69, f71, f74
Transitions:
95:f0(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f20(Z,Arg_2,X,W,0,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,0,3):|:0<=X && 1<=Y && Arg_19<=3 && 3<=Arg_19
96:f0(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f20(Z,Arg_2,X,W,0,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,0,Arg_19):|:Arg_19<=2 && 0<=X && 1<=Y
97:f0(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f20(Z,Arg_2,X,W,0,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,0,Arg_19):|:4<=Arg_19 && 0<=X && 1<=Y
98:f20(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(Arg_0,Arg_3,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:Arg_7<=0 && Arg_7<=Arg_3 && Arg_7<=Arg_18 && Arg_18+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_18+Arg_7 && Arg_18<=Arg_7 && 0<=Arg_3 && 0<=Arg_18+Arg_3 && Arg_18<=Arg_3 && Arg_18<=0 && 0<=Arg_18 && Arg_0+1<=0
99:f20(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(Arg_0,Arg_3,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:Arg_7<=0 && Arg_7<=Arg_3 && Arg_7<=Arg_18 && Arg_18+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_18+Arg_7 && Arg_18<=Arg_7 && 0<=Arg_3 && 0<=Arg_18+Arg_3 && Arg_18<=Arg_3 && Arg_18<=0 && 0<=Arg_18 && 1<=Arg_0
100:f20(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(0,0,0,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:Arg_7<=0 && Arg_7<=Arg_3 && Arg_7<=Arg_18 && Arg_18+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_18+Arg_7 && Arg_18<=Arg_7 && 0<=Arg_3 && 0<=Arg_18+Arg_3 && Arg_18<=Arg_3 && Arg_18<=0 && 0<=Arg_18 && Arg_3<=0 && 0<=Arg_3 && Arg_0<=0 && 0<=Arg_0
101:f20(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(0,Arg_3,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:Arg_7<=0 && Arg_7<=Arg_3 && Arg_7<=Arg_18 && Arg_18+Arg_7<=0 && 0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_18+Arg_7 && Arg_18<=Arg_7 && 0<=Arg_3 && 0<=Arg_18+Arg_3 && Arg_18<=Arg_3 && Arg_18<=0 && 0<=Arg_18 && 1<=Arg_3 && Arg_0<=0 && 0<=Arg_0
106:f26(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && W+1<=0 && Arg_2+1<=Arg_4
107:f26(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && 1<=W && Arg_2+1<=Arg_4
103:f26(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && W+1<=0 && Arg_2+1<=Arg_4
104:f26(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && 1<=W && Arg_2+1<=Arg_4
105:f26(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_2+1<=Arg_4
102:f26(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f69(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_4<=Arg_2
110:f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_7+1<=Arg_8 && 2+Arg_9<=0
111:f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_7+1<=Arg_8 && 0<=Arg_9
108:f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_8<=Arg_7
109:f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,-1,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_7+1<=Arg_8 && Arg_9+1<=0 && 0<=1+Arg_9
116:f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,W,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_7+1<=Arg_8 && W+1<=0
117:f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,W,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_7+1<=Arg_8 && 1<=W
113:f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f47(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,0,X,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_7+1<=Arg_8 && W+1<=0
114:f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f47(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,0,X,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_7+1<=Arg_8 && 1<=W
115:f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f50(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,0,Arg_12,W,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_7+1<=Arg_8
112:f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f69(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_8<=Arg_7
119:f47(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_10<=0 && 0<=Arg_10 && Arg_12+1<=0
120:f47(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_10<=0 && 0<=Arg_10 && 1<=Arg_12
118:f47(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f50(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,0,W,Arg_14,Arg_17,Arg_18,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_10<=0 && 0<=Arg_10 && Arg_12<=0 && 0<=Arg_12
126:f50(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_10<=0 && 0<=Arg_10 && Arg_13+1<=0
123:f50(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f59(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,W,Arg_18,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_10<=0 && 0<=Arg_10 && 0<=Arg_13 && Arg_14<=2
124:f50(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f59(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,W,Arg_18,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_10<=0 && 0<=Arg_10 && 0<=Arg_13 && 4<=Arg_14
125:f50(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f59(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,3,W,Arg_18,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_10<=0 && 0<=Arg_10 && 0<=Arg_13 && Arg_14<=3 && 3<=Arg_14
121:f50(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f69(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,3,Arg_17,Arg_18,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_10<=0 && 0<=Arg_10 && 0<=Arg_13 && W<=0 && Arg_14<=3 && 3<=Arg_14
122:f50(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f69(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,3,Arg_17,Arg_18,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_10<=0 && 0<=Arg_10 && 0<=Arg_13 && 2<=W && Arg_14<=3 && 3<=Arg_14
127:f59(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f62(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,W,Arg_14,Arg_17,Arg_18,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_13+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_13+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_13+Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_13+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_13+Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_13+Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && 0<=Arg_13 && 0<=Arg_10+Arg_13 && Arg_10<=Arg_13 && Arg_10<=0 && 0<=Arg_10 && Arg_17<=10
128:f59(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f62(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,W,Arg_14,10,Arg_18,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && 1<=Arg_13+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 0<=Arg_13+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && 1<=Arg_13+Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_13+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_13+Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && 0<=Arg_13+Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && 0<=Arg_13 && 0<=Arg_10+Arg_13 && Arg_10<=Arg_13 && Arg_10<=0 && 0<=Arg_10 && 11<=Arg_17
129:f62(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && Arg_17<=9+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_17<=10+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_17<=9+Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && Arg_17<=10+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && Arg_17<=10+Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && Arg_17<=10+Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_17<=10 && Arg_17<=10+Arg_10 && Arg_10+Arg_17<=10 && Arg_10<=0 && 0<=Arg_10 && Arg_13+1<=0
130:f62(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_10,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18+1,Arg_19):|:1<=Arg_8 && 1<=Arg_7+Arg_8 && 1+Arg_7<=Arg_8 && 2<=Arg_4+Arg_8 && 1<=Arg_3+Arg_8 && 1<=Arg_2+Arg_8 && 1<=Arg_18+Arg_8 && Arg_17<=9+Arg_8 && 1<=Arg_10+Arg_8 && 1+Arg_10<=Arg_8 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_17<=10+Arg_7 && 0<=Arg_10+Arg_7 && Arg_10<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_17<=9+Arg_4 && 1<=Arg_10+Arg_4 && 1+Arg_10<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && Arg_17<=10+Arg_3 && 0<=Arg_10+Arg_3 && Arg_10<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && Arg_17<=10+Arg_2 && 0<=Arg_10+Arg_2 && Arg_10<=Arg_2 && 0<=Arg_18 && Arg_17<=10+Arg_18 && 0<=Arg_10+Arg_18 && Arg_10<=Arg_18 && Arg_17<=10 && Arg_17<=10+Arg_10 && Arg_10+Arg_17<=10 && Arg_10<=0 && 0<=Arg_10 && 0<=Arg_13
131:f69(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f71(0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,0,Arg_19):|:0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_18<=0 && 0<=Arg_18
133:f69(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f74(0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && 1<=Arg_18
134:f71(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f71(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && Arg_18<=Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && Arg_18<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_18<=0 && Arg_18<=Arg_0 && Arg_0+Arg_18<=0 && 0<=Arg_18 && 0<=Arg_0+Arg_18 && Arg_0<=Arg_18 && Arg_0<=0 && 0<=Arg_0
135:f74(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f74(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 0<=Arg_3+Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_18+Arg_7 && 0<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_3<=Arg_2 && 0<=Arg_3 && 1<=Arg_2+Arg_3 && 1<=Arg_18+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 1<=Arg_2 && 2<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 1<=Arg_0+Arg_2 && 1+Arg_0<=Arg_2 && 1<=Arg_18 && 1<=Arg_0+Arg_18 && 1+Arg_0<=Arg_18 && Arg_0<=0 && 0<=Arg_0

MPRF for transition 110:f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_7+1<=Arg_8 && 2+Arg_9<=0 of depth 1:

new bound:

12*Arg_8 {O(n)}

MPRF:

f33 [Arg_8-Arg_7 ]
f39 [Arg_8-Arg_7 ]
f47 [Arg_8-Arg_7 ]
f50 [Arg_8-Arg_7 ]
f59 [Arg_8-Arg_7 ]
f62 [Arg_8-Arg_7 ]
f26 [Arg_8-Arg_7 ]

MPRF for transition 111:f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19) -> f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19):|:0<=Arg_7 && 1<=Arg_4+Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_2+Arg_7 && 0<=Arg_18+Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_18+Arg_4 && 1+Arg_18<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_18+Arg_3 && 0<=Arg_2 && 0<=Arg_18+Arg_2 && Arg_18<=Arg_2 && 0<=Arg_18 && Arg_7+1<=Arg_8 && 0<=Arg_9 of depth 1:

new bound:

12*Arg_8 {O(n)}

MPRF:

f33 [Arg_8-Arg_7 ]
f39 [Arg_8-Arg_7 ]
f47 [Arg_8-Arg_7 ]
f50 [Arg_8-Arg_7 ]
f59 [Arg_8-Arg_7 ]
f62 [Arg_8-Arg_7 ]
f26 [Arg_8-Arg_7 ]

All Bounds

Timebounds

Overall timebound:inf {Infinity}
95: f0->f20: 1 {O(1)}
96: f0->f20: 1 {O(1)}
97: f0->f20: 1 {O(1)}
98: f20->f26: 1 {O(1)}
99: f20->f26: 1 {O(1)}
100: f20->f26: 1 {O(1)}
101: f20->f26: 1 {O(1)}
102: f26->f69: 1 {O(1)}
103: f26->f33: inf {Infinity}
104: f26->f33: inf {Infinity}
105: f26->f33: inf {Infinity}
106: f26->f26: inf {Infinity}
107: f26->f26: inf {Infinity}
108: f33->f39: inf {Infinity}
109: f33->f39: inf {Infinity}
110: f33->f33: 12*Arg_8 {O(n)}
111: f33->f33: 12*Arg_8 {O(n)}
112: f39->f69: 1 {O(1)}
113: f39->f47: inf {Infinity}
114: f39->f47: inf {Infinity}
115: f39->f50: inf {Infinity}
116: f39->f26: inf {Infinity}
117: f39->f26: inf {Infinity}
118: f47->f50: inf {Infinity}
119: f47->f26: inf {Infinity}
120: f47->f26: inf {Infinity}
121: f50->f69: 1 {O(1)}
122: f50->f69: 1 {O(1)}
123: f50->f59: inf {Infinity}
124: f50->f59: inf {Infinity}
125: f50->f59: inf {Infinity}
126: f50->f26: inf {Infinity}
127: f59->f62: inf {Infinity}
128: f59->f62: inf {Infinity}
129: f62->f26: inf {Infinity}
130: f62->f26: inf {Infinity}
131: f69->f71: 1 {O(1)}
133: f69->f74: 1 {O(1)}
134: f71->f71: inf {Infinity}
135: f74->f74: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
95: f0->f20: 1 {O(1)}
96: f0->f20: 1 {O(1)}
97: f0->f20: 1 {O(1)}
98: f20->f26: 1 {O(1)}
99: f20->f26: 1 {O(1)}
100: f20->f26: 1 {O(1)}
101: f20->f26: 1 {O(1)}
102: f26->f69: 1 {O(1)}
103: f26->f33: inf {Infinity}
104: f26->f33: inf {Infinity}
105: f26->f33: inf {Infinity}
106: f26->f26: inf {Infinity}
107: f26->f26: inf {Infinity}
108: f33->f39: inf {Infinity}
109: f33->f39: inf {Infinity}
110: f33->f33: 12*Arg_8 {O(n)}
111: f33->f33: 12*Arg_8 {O(n)}
112: f39->f69: 1 {O(1)}
113: f39->f47: inf {Infinity}
114: f39->f47: inf {Infinity}
115: f39->f50: inf {Infinity}
116: f39->f26: inf {Infinity}
117: f39->f26: inf {Infinity}
118: f47->f50: inf {Infinity}
119: f47->f26: inf {Infinity}
120: f47->f26: inf {Infinity}
121: f50->f69: 1 {O(1)}
122: f50->f69: 1 {O(1)}
123: f50->f59: inf {Infinity}
124: f50->f59: inf {Infinity}
125: f50->f59: inf {Infinity}
126: f50->f26: inf {Infinity}
127: f59->f62: inf {Infinity}
128: f59->f62: inf {Infinity}
129: f62->f26: inf {Infinity}
130: f62->f26: inf {Infinity}
131: f69->f71: 1 {O(1)}
133: f69->f74: 1 {O(1)}
134: f71->f71: inf {Infinity}
135: f74->f74: inf {Infinity}

Sizebounds

95: f0->f20, Arg_2: Arg_2 {O(n)}
95: f0->f20, Arg_7: 0 {O(1)}
95: f0->f20, Arg_8: Arg_8 {O(n)}
95: f0->f20, Arg_9: Arg_9 {O(n)}
95: f0->f20, Arg_10: Arg_10 {O(n)}
95: f0->f20, Arg_12: Arg_12 {O(n)}
95: f0->f20, Arg_13: Arg_13 {O(n)}
95: f0->f20, Arg_14: Arg_14 {O(n)}
95: f0->f20, Arg_17: Arg_17 {O(n)}
95: f0->f20, Arg_18: 0 {O(1)}
95: f0->f20, Arg_19: 3 {O(1)}
96: f0->f20, Arg_2: Arg_2 {O(n)}
96: f0->f20, Arg_7: 0 {O(1)}
96: f0->f20, Arg_8: Arg_8 {O(n)}
96: f0->f20, Arg_9: Arg_9 {O(n)}
96: f0->f20, Arg_10: Arg_10 {O(n)}
96: f0->f20, Arg_12: Arg_12 {O(n)}
96: f0->f20, Arg_13: Arg_13 {O(n)}
96: f0->f20, Arg_14: Arg_14 {O(n)}
96: f0->f20, Arg_17: Arg_17 {O(n)}
96: f0->f20, Arg_18: 0 {O(1)}
96: f0->f20, Arg_19: Arg_19 {O(n)}
97: f0->f20, Arg_2: Arg_2 {O(n)}
97: f0->f20, Arg_7: 0 {O(1)}
97: f0->f20, Arg_8: Arg_8 {O(n)}
97: f0->f20, Arg_9: Arg_9 {O(n)}
97: f0->f20, Arg_10: Arg_10 {O(n)}
97: f0->f20, Arg_12: Arg_12 {O(n)}
97: f0->f20, Arg_13: Arg_13 {O(n)}
97: f0->f20, Arg_14: Arg_14 {O(n)}
97: f0->f20, Arg_17: Arg_17 {O(n)}
97: f0->f20, Arg_18: 0 {O(1)}
97: f0->f20, Arg_19: Arg_19 {O(n)}
98: f20->f26, Arg_7: 0 {O(1)}
98: f20->f26, Arg_8: 3*Arg_8 {O(n)}
98: f20->f26, Arg_9: 3*Arg_9 {O(n)}
98: f20->f26, Arg_10: 3*Arg_10 {O(n)}
98: f20->f26, Arg_12: 3*Arg_12 {O(n)}
98: f20->f26, Arg_13: 3*Arg_13 {O(n)}
98: f20->f26, Arg_14: 3*Arg_14 {O(n)}
98: f20->f26, Arg_17: 3*Arg_17 {O(n)}
98: f20->f26, Arg_18: 0 {O(1)}
98: f20->f26, Arg_19: 2*Arg_19+3 {O(n)}
99: f20->f26, Arg_7: 0 {O(1)}
99: f20->f26, Arg_8: 3*Arg_8 {O(n)}
99: f20->f26, Arg_9: 3*Arg_9 {O(n)}
99: f20->f26, Arg_10: 3*Arg_10 {O(n)}
99: f20->f26, Arg_12: 3*Arg_12 {O(n)}
99: f20->f26, Arg_13: 3*Arg_13 {O(n)}
99: f20->f26, Arg_14: 3*Arg_14 {O(n)}
99: f20->f26, Arg_17: 3*Arg_17 {O(n)}
99: f20->f26, Arg_18: 0 {O(1)}
99: f20->f26, Arg_19: 2*Arg_19+3 {O(n)}
100: f20->f26, Arg_0: 0 {O(1)}
100: f20->f26, Arg_2: 0 {O(1)}
100: f20->f26, Arg_3: 0 {O(1)}
100: f20->f26, Arg_7: 0 {O(1)}
100: f20->f26, Arg_8: 3*Arg_8 {O(n)}
100: f20->f26, Arg_9: 3*Arg_9 {O(n)}
100: f20->f26, Arg_10: 3*Arg_10 {O(n)}
100: f20->f26, Arg_12: 3*Arg_12 {O(n)}
100: f20->f26, Arg_13: 3*Arg_13 {O(n)}
100: f20->f26, Arg_14: 3*Arg_14 {O(n)}
100: f20->f26, Arg_17: 3*Arg_17 {O(n)}
100: f20->f26, Arg_18: 0 {O(1)}
100: f20->f26, Arg_19: 2*Arg_19+3 {O(n)}
101: f20->f26, Arg_0: 0 {O(1)}
101: f20->f26, Arg_7: 0 {O(1)}
101: f20->f26, Arg_8: 3*Arg_8 {O(n)}
101: f20->f26, Arg_9: 3*Arg_9 {O(n)}
101: f20->f26, Arg_10: 3*Arg_10 {O(n)}
101: f20->f26, Arg_12: 3*Arg_12 {O(n)}
101: f20->f26, Arg_13: 3*Arg_13 {O(n)}
101: f20->f26, Arg_14: 3*Arg_14 {O(n)}
101: f20->f26, Arg_17: 3*Arg_17 {O(n)}
101: f20->f26, Arg_18: 0 {O(1)}
101: f20->f26, Arg_19: 2*Arg_19+3 {O(n)}
102: f26->f69, Arg_7: 0 {O(1)}
102: f26->f69, Arg_8: 552*Arg_8 {O(n)}
102: f26->f69, Arg_9: 60*Arg_9+135 {O(n)}
102: f26->f69, Arg_14: 552*Arg_14+54 {O(n)}
102: f26->f69, Arg_19: 368*Arg_19+552 {O(n)}
103: f26->f33, Arg_7: 0 {O(1)}
103: f26->f33, Arg_8: 60*Arg_8 {O(n)}
103: f26->f33, Arg_9: 60*Arg_9+135 {O(n)}
103: f26->f33, Arg_14: 60*Arg_14+6 {O(n)}
103: f26->f33, Arg_19: 40*Arg_19+60 {O(n)}
104: f26->f33, Arg_7: 0 {O(1)}
104: f26->f33, Arg_8: 60*Arg_8 {O(n)}
104: f26->f33, Arg_9: 60*Arg_9+135 {O(n)}
104: f26->f33, Arg_14: 60*Arg_14+6 {O(n)}
104: f26->f33, Arg_19: 40*Arg_19+60 {O(n)}
105: f26->f33, Arg_7: 0 {O(1)}
105: f26->f33, Arg_8: 60*Arg_8 {O(n)}
105: f26->f33, Arg_9: 60*Arg_9+135 {O(n)}
105: f26->f33, Arg_14: 60*Arg_14+6 {O(n)}
105: f26->f33, Arg_19: 40*Arg_19+60 {O(n)}
106: f26->f26, Arg_7: 0 {O(1)}
106: f26->f26, Arg_8: 60*Arg_8 {O(n)}
106: f26->f26, Arg_9: 24*Arg_9+54 {O(n)}
106: f26->f26, Arg_14: 60*Arg_14+6 {O(n)}
106: f26->f26, Arg_19: 40*Arg_19+60 {O(n)}
107: f26->f26, Arg_7: 0 {O(1)}
107: f26->f26, Arg_8: 60*Arg_8 {O(n)}
107: f26->f26, Arg_9: 24*Arg_9+54 {O(n)}
107: f26->f26, Arg_14: 60*Arg_14+6 {O(n)}
107: f26->f26, Arg_19: 40*Arg_19+60 {O(n)}
108: f33->f39, Arg_7: 24*Arg_8 {O(n)}
108: f33->f39, Arg_8: 540*Arg_8 {O(n)}
108: f33->f39, Arg_9: 540*Arg_9+1215 {O(n)}
108: f33->f39, Arg_14: 540*Arg_14+54 {O(n)}
108: f33->f39, Arg_19: 360*Arg_19+540 {O(n)}
109: f33->f39, Arg_7: 0 {O(1)}
109: f33->f39, Arg_8: 60*Arg_8 {O(n)}
109: f33->f39, Arg_9: 1 {O(1)}
109: f33->f39, Arg_14: 60*Arg_14+6 {O(n)}
109: f33->f39, Arg_19: 40*Arg_19+60 {O(n)}
110: f33->f33, Arg_7: 12*Arg_8 {O(n)}
110: f33->f33, Arg_8: 180*Arg_8 {O(n)}
110: f33->f33, Arg_9: 180*Arg_9+405 {O(n)}
110: f33->f33, Arg_14: 180*Arg_14+18 {O(n)}
110: f33->f33, Arg_19: 120*Arg_19+180 {O(n)}
111: f33->f33, Arg_7: 12*Arg_8 {O(n)}
111: f33->f33, Arg_8: 180*Arg_8 {O(n)}
111: f33->f33, Arg_9: 180*Arg_9+405 {O(n)}
111: f33->f33, Arg_14: 180*Arg_14+18 {O(n)}
111: f33->f33, Arg_19: 120*Arg_19+180 {O(n)}
112: f39->f69, Arg_7: 24*Arg_8 {O(n)}
112: f39->f69, Arg_8: 540*Arg_8 {O(n)}
112: f39->f69, Arg_9: 540*Arg_9+1215 {O(n)}
112: f39->f69, Arg_14: 540*Arg_14+54 {O(n)}
112: f39->f69, Arg_19: 360*Arg_19+540 {O(n)}
113: f39->f47, Arg_7: 0 {O(1)}
113: f39->f47, Arg_8: 60*Arg_8 {O(n)}
113: f39->f47, Arg_9: 1 {O(1)}
113: f39->f47, Arg_10: 0 {O(1)}
113: f39->f47, Arg_14: 60*Arg_14+6 {O(n)}
113: f39->f47, Arg_19: 40*Arg_19+60 {O(n)}
114: f39->f47, Arg_7: 0 {O(1)}
114: f39->f47, Arg_8: 60*Arg_8 {O(n)}
114: f39->f47, Arg_9: 1 {O(1)}
114: f39->f47, Arg_10: 0 {O(1)}
114: f39->f47, Arg_14: 60*Arg_14+6 {O(n)}
114: f39->f47, Arg_19: 40*Arg_19+60 {O(n)}
115: f39->f50, Arg_7: 0 {O(1)}
115: f39->f50, Arg_8: 60*Arg_8 {O(n)}
115: f39->f50, Arg_9: 1 {O(1)}
115: f39->f50, Arg_10: 0 {O(1)}
115: f39->f50, Arg_14: 60*Arg_14+6 {O(n)}
115: f39->f50, Arg_19: 40*Arg_19+60 {O(n)}
116: f39->f26, Arg_7: 0 {O(1)}
116: f39->f26, Arg_8: 60*Arg_8 {O(n)}
116: f39->f26, Arg_9: 1 {O(1)}
116: f39->f26, Arg_14: 60*Arg_14+6 {O(n)}
116: f39->f26, Arg_19: 40*Arg_19+60 {O(n)}
117: f39->f26, Arg_7: 0 {O(1)}
117: f39->f26, Arg_8: 60*Arg_8 {O(n)}
117: f39->f26, Arg_9: 1 {O(1)}
117: f39->f26, Arg_14: 60*Arg_14+6 {O(n)}
117: f39->f26, Arg_19: 40*Arg_19+60 {O(n)}
118: f47->f50, Arg_7: 0 {O(1)}
118: f47->f50, Arg_8: 60*Arg_8 {O(n)}
118: f47->f50, Arg_9: 2 {O(1)}
118: f47->f50, Arg_10: 0 {O(1)}
118: f47->f50, Arg_12: 0 {O(1)}
118: f47->f50, Arg_14: 60*Arg_14+6 {O(n)}
118: f47->f50, Arg_19: 40*Arg_19+60 {O(n)}
119: f47->f26, Arg_7: 0 {O(1)}
119: f47->f26, Arg_8: 60*Arg_8 {O(n)}
119: f47->f26, Arg_9: 2 {O(1)}
119: f47->f26, Arg_10: 0 {O(1)}
119: f47->f26, Arg_14: 60*Arg_14+6 {O(n)}
119: f47->f26, Arg_19: 40*Arg_19+60 {O(n)}
120: f47->f26, Arg_7: 0 {O(1)}
120: f47->f26, Arg_8: 60*Arg_8 {O(n)}
120: f47->f26, Arg_9: 2 {O(1)}
120: f47->f26, Arg_10: 0 {O(1)}
120: f47->f26, Arg_14: 60*Arg_14+6 {O(n)}
120: f47->f26, Arg_19: 40*Arg_19+60 {O(n)}
121: f50->f69, Arg_7: 0 {O(1)}
121: f50->f69, Arg_8: 120*Arg_8 {O(n)}
121: f50->f69, Arg_9: 3 {O(1)}
121: f50->f69, Arg_10: 0 {O(1)}
121: f50->f69, Arg_14: 3 {O(1)}
121: f50->f69, Arg_19: 80*Arg_19+120 {O(n)}
122: f50->f69, Arg_7: 0 {O(1)}
122: f50->f69, Arg_8: 120*Arg_8 {O(n)}
122: f50->f69, Arg_9: 3 {O(1)}
122: f50->f69, Arg_10: 0 {O(1)}
122: f50->f69, Arg_14: 3 {O(1)}
122: f50->f69, Arg_19: 80*Arg_19+120 {O(n)}
123: f50->f59, Arg_7: 0 {O(1)}
123: f50->f59, Arg_8: 60*Arg_8 {O(n)}
123: f50->f59, Arg_9: 3 {O(1)}
123: f50->f59, Arg_10: 0 {O(1)}
123: f50->f59, Arg_14: 60*Arg_14+6 {O(n)}
123: f50->f59, Arg_19: 40*Arg_19+60 {O(n)}
124: f50->f59, Arg_7: 0 {O(1)}
124: f50->f59, Arg_8: 60*Arg_8 {O(n)}
124: f50->f59, Arg_9: 3 {O(1)}
124: f50->f59, Arg_10: 0 {O(1)}
124: f50->f59, Arg_14: 60*Arg_14+6 {O(n)}
124: f50->f59, Arg_19: 40*Arg_19+60 {O(n)}
125: f50->f59, Arg_7: 0 {O(1)}
125: f50->f59, Arg_8: 60*Arg_8 {O(n)}
125: f50->f59, Arg_9: 3 {O(1)}
125: f50->f59, Arg_10: 0 {O(1)}
125: f50->f59, Arg_14: 3 {O(1)}
125: f50->f59, Arg_19: 40*Arg_19+60 {O(n)}
126: f50->f26, Arg_7: 0 {O(1)}
126: f50->f26, Arg_8: 60*Arg_8 {O(n)}
126: f50->f26, Arg_9: 3 {O(1)}
126: f50->f26, Arg_10: 0 {O(1)}
126: f50->f26, Arg_14: 60*Arg_14+6 {O(n)}
126: f50->f26, Arg_19: 40*Arg_19+60 {O(n)}
127: f59->f62, Arg_7: 0 {O(1)}
127: f59->f62, Arg_8: 60*Arg_8 {O(n)}
127: f59->f62, Arg_9: 9 {O(1)}
127: f59->f62, Arg_10: 0 {O(1)}
127: f59->f62, Arg_14: 60*Arg_14+6 {O(n)}
127: f59->f62, Arg_19: 40*Arg_19+60 {O(n)}
128: f59->f62, Arg_7: 0 {O(1)}
128: f59->f62, Arg_8: 60*Arg_8 {O(n)}
128: f59->f62, Arg_9: 9 {O(1)}
128: f59->f62, Arg_10: 0 {O(1)}
128: f59->f62, Arg_14: 60*Arg_14+6 {O(n)}
128: f59->f62, Arg_17: 10 {O(1)}
128: f59->f62, Arg_19: 40*Arg_19+60 {O(n)}
129: f62->f26, Arg_7: 0 {O(1)}
129: f62->f26, Arg_8: 60*Arg_8 {O(n)}
129: f62->f26, Arg_9: 18 {O(1)}
129: f62->f26, Arg_10: 0 {O(1)}
129: f62->f26, Arg_14: 60*Arg_14+6 {O(n)}
129: f62->f26, Arg_19: 40*Arg_19+60 {O(n)}
130: f62->f26, Arg_7: 0 {O(1)}
130: f62->f26, Arg_8: 60*Arg_8 {O(n)}
130: f62->f26, Arg_9: 0 {O(1)}
130: f62->f26, Arg_10: 0 {O(1)}
130: f62->f26, Arg_14: 60*Arg_14+6 {O(n)}
130: f62->f26, Arg_19: 40*Arg_19+60 {O(n)}
131: f69->f71, Arg_0: 0 {O(1)}
131: f69->f71, Arg_7: 24*Arg_8 {O(n)}
131: f69->f71, Arg_8: 1332*Arg_8 {O(n)}
131: f69->f71, Arg_9: 600*Arg_9+1356 {O(n)}
131: f69->f71, Arg_14: 1092*Arg_14+114 {O(n)}
131: f69->f71, Arg_18: 0 {O(1)}
131: f69->f71, Arg_19: 888*Arg_19+1332 {O(n)}
133: f69->f74, Arg_0: 0 {O(1)}
133: f69->f74, Arg_7: 24*Arg_8 {O(n)}
133: f69->f74, Arg_8: 1332*Arg_8 {O(n)}
133: f69->f74, Arg_9: 600*Arg_9+1356 {O(n)}
133: f69->f74, Arg_14: 1092*Arg_14+114 {O(n)}
133: f69->f74, Arg_19: 888*Arg_19+1332 {O(n)}
134: f71->f71, Arg_0: 0 {O(1)}
134: f71->f71, Arg_7: 24*Arg_8 {O(n)}
134: f71->f71, Arg_8: 1332*Arg_8 {O(n)}
134: f71->f71, Arg_9: 600*Arg_9+1356 {O(n)}
134: f71->f71, Arg_14: 1092*Arg_14+114 {O(n)}
134: f71->f71, Arg_18: 0 {O(1)}
134: f71->f71, Arg_19: 888*Arg_19+1332 {O(n)}
135: f74->f74, Arg_0: 0 {O(1)}
135: f74->f74, Arg_7: 24*Arg_8 {O(n)}
135: f74->f74, Arg_8: 1332*Arg_8 {O(n)}
135: f74->f74, Arg_9: 600*Arg_9+1356 {O(n)}
135: f74->f74, Arg_14: 1092*Arg_14+114 {O(n)}
135: f74->f74, Arg_19: 888*Arg_19+1332 {O(n)}