Initial Problem
Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11
Temp_Vars: M, N
Locations: f0, f23, f29, f33, f44, f52, f55, f63, f71
Transitions:
0:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f23(1,1,10,M,N,0,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
1:f23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_5+1<=Arg_2
26:f23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_2<=Arg_5
2:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,0,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_5+1<=Arg_2
25:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_2<=Arg_5
24:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f29(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8,0,Arg_10,Arg_11):|:Arg_2<=Arg_7 && Arg_0<=0 && 0<=Arg_0
3:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7+1,1,Arg_9,Arg_10,Arg_11):|:Arg_6+1<=0 && Arg_7+1<=Arg_2
4:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7+1,1,Arg_9,Arg_10,Arg_11):|:1<=Arg_6 && Arg_7+1<=Arg_2
5:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7+1,1,Arg_9,Arg_10,Arg_11):|:Arg_7+1<=Arg_2 && Arg_6<=0 && 0<=Arg_6
6:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,Arg_7+1,0,Arg_9,Arg_10,Arg_11):|:N+1<=M && Arg_7+1<=Arg_2 && Arg_6<=0 && 0<=Arg_6
7:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,Arg_7+1,0,Arg_9,Arg_10,Arg_11):|:Arg_7+1<=Arg_2 && Arg_6<=0 && 0<=Arg_6
22:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_0+1<=0 && Arg_2<=Arg_7
23:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1<=Arg_0 && Arg_2<=Arg_7
8:f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f29(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8,1,Arg_10,Arg_11):|:Arg_6+1<=0
9:f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f29(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8,1,Arg_10,Arg_11):|:1<=Arg_6
10:f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f29(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5+1,0,Arg_7,Arg_8,0,Arg_10,Arg_11):|:Arg_6<=0 && 0<=Arg_6
15:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f52(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8,Arg_9,0,Arg_11):|:2+Arg_5<=Arg_2 && Arg_1<=0 && 0<=Arg_1
11:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_1+1<=0 && 2+Arg_5<=Arg_2
12:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1<=Arg_1 && 2+Arg_5<=Arg_2
19:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_0+1<=0 && Arg_2<=Arg_5+1
20:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1<=Arg_0 && Arg_2<=Arg_5+1
21:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f71(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,1):|:Arg_2<=Arg_5+1 && Arg_0<=0 && 0<=Arg_0
13:f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f52(Arg_0,1,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8,Arg_9,1,Arg_11):|:N+1<=M
14:f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f52(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5+1,Arg_6,Arg_7,Arg_8,Arg_9,0,Arg_11)
16:f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0):|:Arg_1+1<=0
17:f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0):|:1<=Arg_1
18:f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> f71(Arg_0,0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,1):|:Arg_1<=0 && 0<=Arg_1
Preprocessing
Cut unsatisfiable transition 3: f33->f33
Eliminate variables {Arg_3,Arg_4,Arg_8,Arg_9,Arg_10,Arg_11} that do not contribute to the problem
Found invariant 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 0<=Arg_0 for location f29
Found invariant 10<=Arg_7 && 10<=Arg_6+Arg_7 && 9+Arg_6<=Arg_7 && 10<=Arg_5+Arg_7 && 20<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 11<=Arg_1+Arg_7 && 9+Arg_1<=Arg_7 && 9+Arg_0<=Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 for location f44
Found invariant Arg_5<=8 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=18 && Arg_5<=7+Arg_1 && Arg_1+Arg_5<=9 && Arg_5<=8+Arg_0 && Arg_0+Arg_5<=9 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 0<=Arg_0 for location f55
Found invariant 0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 for location f33
Found invariant 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=10+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 10<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 for location f52
Found invariant 9<=Arg_5 && 19<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 9<=Arg_1+Arg_5 && 8+Arg_1<=Arg_5 && 9<=Arg_0+Arg_5 && 8+Arg_0<=Arg_5 && Arg_2<=10 && Arg_2<=10+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 10<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 for location f71
Found invariant 9<=Arg_5 && 19<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 9<=Arg_1+Arg_5 && 8+Arg_1<=Arg_5 && 10<=Arg_0+Arg_5 && 8+Arg_0<=Arg_5 && Arg_2<=10 && Arg_2<=10+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=9+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 10<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 11<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && Arg_0+Arg_1<=2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 for location f63
Found invariant Arg_5<=10 && Arg_5<=Arg_2 && Arg_2+Arg_5<=20 && Arg_5<=9+Arg_1 && Arg_1+Arg_5<=11 && Arg_5<=9+Arg_0 && Arg_0+Arg_5<=11 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=9+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 11<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 for location f23
Cut unsatisfiable transition 79: f44->f29
Cut unsatisfiable transition 82: f52->f55
Cut unsatisfiable transition 85: f52->f63
Cut unsatisfiable transition 90: f63->f71
Problem after Preprocessing
Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_5, Arg_6, Arg_7
Temp_Vars: M, N
Locations: f0, f23, f29, f33, f44, f52, f55, f63, f71
Transitions:
67:f0(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f23(1,1,10,0,Arg_6,Arg_7)
68:f23(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f23(Arg_0,Arg_1,Arg_2,Arg_5+1,Arg_6,Arg_7):|:Arg_5<=10 && Arg_5<=Arg_2 && Arg_2+Arg_5<=20 && Arg_5<=9+Arg_1 && Arg_1+Arg_5<=11 && Arg_5<=9+Arg_0 && Arg_0+Arg_5<=11 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=9+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 11<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_5+1<=Arg_2
69:f23(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f29(Arg_0,Arg_1,Arg_2,0,Arg_6,Arg_7):|:Arg_5<=10 && Arg_5<=Arg_2 && Arg_2+Arg_5<=20 && Arg_5<=9+Arg_1 && Arg_1+Arg_5<=11 && Arg_5<=9+Arg_0 && Arg_0+Arg_5<=11 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=9+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 11<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_5
70:f29(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f33(Arg_0,Arg_1,Arg_2,Arg_5,0,0):|:0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 0<=Arg_0 && Arg_5+1<=Arg_2
71:f29(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f52(Arg_0,Arg_1,Arg_2,0,Arg_6,Arg_7):|:0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 0<=Arg_0 && Arg_2<=Arg_5
78:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f29(0,Arg_1,Arg_2,Arg_5+1,Arg_6,Arg_7):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && Arg_2<=Arg_7 && Arg_0<=0 && 0<=Arg_0
72:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f33(Arg_0,Arg_1,Arg_2,Arg_5,1,Arg_7+1):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_6 && Arg_7+1<=Arg_2
73:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f33(Arg_0,Arg_1,Arg_2,Arg_5,1,Arg_7+1):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && Arg_7+1<=Arg_2 && Arg_6<=0 && 0<=Arg_6
74:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f33(Arg_0,Arg_1,Arg_2,Arg_5,0,Arg_7+1):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && N+1<=M && Arg_7+1<=Arg_2 && Arg_6<=0 && 0<=Arg_6
75:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f33(Arg_0,Arg_1,Arg_2,Arg_5,0,Arg_7+1):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && Arg_7+1<=Arg_2 && Arg_6<=0 && 0<=Arg_6
76:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f44(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && Arg_0+1<=0 && Arg_2<=Arg_7
77:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f44(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_7
80:f44(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f29(1,Arg_1,Arg_2,Arg_5+1,Arg_6,Arg_7):|:10<=Arg_7 && 10<=Arg_6+Arg_7 && 9+Arg_6<=Arg_7 && 10<=Arg_5+Arg_7 && 20<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 11<=Arg_1+Arg_7 && 9+Arg_1<=Arg_7 && 9+Arg_0<=Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_6
81:f44(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f29(0,Arg_1,Arg_2,Arg_5+1,0,Arg_7):|:10<=Arg_7 && 10<=Arg_6+Arg_7 && 9+Arg_6<=Arg_7 && 10<=Arg_5+Arg_7 && 20<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 11<=Arg_1+Arg_7 && 9+Arg_1<=Arg_7 && 9+Arg_0<=Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && Arg_6<=0 && 0<=Arg_6
84:f52(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f52(Arg_0,0,Arg_2,Arg_5+1,Arg_6,Arg_7):|:0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=10+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 10<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && 2+Arg_5<=Arg_2 && Arg_1<=0 && 0<=Arg_1
83:f52(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f55(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7):|:0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=10+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 10<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_1 && 2+Arg_5<=Arg_2
86:f52(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f63(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7):|:0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=10+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 10<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_0 && Arg_2<=Arg_5+1
87:f52(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f71(0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7):|:0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=10+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 10<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && Arg_2<=Arg_5+1 && Arg_0<=0 && 0<=Arg_0
88:f55(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f52(Arg_0,1,Arg_2,Arg_5+1,Arg_6,Arg_7):|:Arg_5<=8 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=18 && Arg_5<=7+Arg_1 && Arg_1+Arg_5<=9 && Arg_5<=8+Arg_0 && Arg_0+Arg_5<=9 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 0<=Arg_0 && N+1<=M
89:f55(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f52(Arg_0,0,Arg_2,Arg_5+1,Arg_6,Arg_7):|:Arg_5<=8 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=18 && Arg_5<=7+Arg_1 && Arg_1+Arg_5<=9 && Arg_5<=8+Arg_0 && Arg_0+Arg_5<=9 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 0<=Arg_0
91:f63(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f71(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7):|:9<=Arg_5 && 19<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 9<=Arg_1+Arg_5 && 8+Arg_1<=Arg_5 && 10<=Arg_0+Arg_5 && 8+Arg_0<=Arg_5 && Arg_2<=10 && Arg_2<=10+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=9+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 10<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 11<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && Arg_0+Arg_1<=2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && 1<=Arg_1
92:f63(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f71(Arg_0,0,Arg_2,Arg_5,Arg_6,Arg_7):|:9<=Arg_5 && 19<=Arg_2+Arg_5 && Arg_2<=1+Arg_5 && 9<=Arg_1+Arg_5 && 8+Arg_1<=Arg_5 && 10<=Arg_0+Arg_5 && 8+Arg_0<=Arg_5 && Arg_2<=10 && Arg_2<=10+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=9+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 10<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 11<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && Arg_0+Arg_1<=2 && 0<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_1<=0 && 0<=Arg_1
MPRF for transition 68:f23(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f23(Arg_0,Arg_1,Arg_2,Arg_5+1,Arg_6,Arg_7):|:Arg_5<=10 && Arg_5<=Arg_2 && Arg_2+Arg_5<=20 && Arg_5<=9+Arg_1 && Arg_1+Arg_5<=11 && Arg_5<=9+Arg_0 && Arg_0+Arg_5<=11 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=9+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 11<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 2<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_5+1<=Arg_2 of depth 1:
new bound:
11 {O(1)}
MPRF:
f23 [11-Arg_5 ]
MPRF for transition 70:f29(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f33(Arg_0,Arg_1,Arg_2,Arg_5,0,0):|:0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 0<=Arg_0 && Arg_5+1<=Arg_2 of depth 1:
new bound:
10 {O(1)}
MPRF:
f33 [Arg_2-Arg_5-1 ]
f44 [9*Arg_1-Arg_5 ]
f29 [Arg_2-Arg_5 ]
MPRF for transition 72:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f33(Arg_0,Arg_1,Arg_2,Arg_5,1,Arg_7+1):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_6 && Arg_7+1<=Arg_2 of depth 1:
new bound:
100 {O(1)}
MPRF:
f33 [Arg_2-Arg_7 ]
f44 [Arg_2-Arg_7 ]
f29 [Arg_2-Arg_7 ]
MPRF for transition 73:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f33(Arg_0,Arg_1,Arg_2,Arg_5,1,Arg_7+1):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && Arg_7+1<=Arg_2 && Arg_6<=0 && 0<=Arg_6 of depth 1:
new bound:
100 {O(1)}
MPRF:
f33 [10-Arg_6 ]
f44 [-Arg_6 ]
f29 [-Arg_6 ]
MPRF for transition 74:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f33(Arg_0,Arg_1,Arg_2,Arg_5,0,Arg_7+1):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && N+1<=M && Arg_7+1<=Arg_2 && Arg_6<=0 && 0<=Arg_6 of depth 1:
new bound:
100 {O(1)}
MPRF:
f33 [Arg_2-Arg_7 ]
f44 [Arg_2-Arg_7 ]
f29 [Arg_2-Arg_7 ]
MPRF for transition 75:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f33(Arg_0,Arg_1,Arg_2,Arg_5,0,Arg_7+1):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && Arg_7+1<=Arg_2 && Arg_6<=0 && 0<=Arg_6 of depth 1:
new bound:
100 {O(1)}
MPRF:
f33 [Arg_2-Arg_7 ]
f44 [Arg_2-Arg_7 ]
f29 [Arg_2-Arg_7 ]
MPRF for transition 76:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f44(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && Arg_0+1<=0 && Arg_2<=Arg_7 of depth 1:
new bound:
430 {O(1)}
MPRF:
f33 [Arg_1+4*Arg_5+5-Arg_0 ]
f44 [4*Arg_0+Arg_1+4*Arg_5 ]
f29 [Arg_1 ]
MPRF for transition 77:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f44(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_0 && Arg_2<=Arg_7 of depth 1:
new bound:
190 {O(1)}
MPRF:
f33 [Arg_0+2*Arg_5 ]
f44 [1-Arg_0 ]
f29 [0 ]
MPRF for transition 78:f33(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f29(0,Arg_1,Arg_2,Arg_5+1,Arg_6,Arg_7):|:0<=Arg_7 && 0<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 0<=Arg_5+Arg_7 && 10<=Arg_2+Arg_7 && Arg_2<=10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && Arg_0<=1+Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && Arg_2<=Arg_7 && Arg_0<=0 && 0<=Arg_0 of depth 1:
new bound:
10 {O(1)}
MPRF:
f33 [1 ]
f44 [0 ]
f29 [2-2*Arg_5 ]
MPRF for transition 80:f44(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f29(1,Arg_1,Arg_2,Arg_5+1,Arg_6,Arg_7):|:10<=Arg_7 && 10<=Arg_6+Arg_7 && 9+Arg_6<=Arg_7 && 10<=Arg_5+Arg_7 && 20<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 11<=Arg_1+Arg_7 && 9+Arg_1<=Arg_7 && 9+Arg_0<=Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 1<=Arg_6 of depth 1:
new bound:
20 {O(1)}
MPRF:
f33 [2 ]
f44 [Arg_6+1 ]
f29 [Arg_0 ]
MPRF for transition 81:f44(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f29(0,Arg_1,Arg_2,Arg_5+1,0,Arg_7):|:10<=Arg_7 && 10<=Arg_6+Arg_7 && 9+Arg_6<=Arg_7 && 10<=Arg_5+Arg_7 && 20<=Arg_2+Arg_7 && Arg_2<=Arg_7 && 11<=Arg_1+Arg_7 && 9+Arg_1<=Arg_7 && 9+Arg_0<=Arg_7 && Arg_6<=1 && Arg_6<=1+Arg_5 && 9+Arg_6<=Arg_2 && Arg_2+Arg_6<=11 && Arg_6<=Arg_1 && Arg_1+Arg_6<=2 && Arg_0+Arg_6<=2 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && 10<=Arg_2+Arg_6 && Arg_2<=10+Arg_6 && 1<=Arg_1+Arg_6 && Arg_1<=1+Arg_6 && Arg_0<=1+Arg_6 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 1<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_0+Arg_1<=2 && 1<=Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && Arg_6<=0 && 0<=Arg_6 of depth 1:
new bound:
10 {O(1)}
MPRF:
f33 [1 ]
f44 [1 ]
f29 [0 ]
MPRF for transition 83:f52(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f55(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7):|:0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=10+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 10<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_1 && 2+Arg_5<=Arg_2 of depth 1:
new bound:
9 {O(1)}
MPRF:
f55 [8-Arg_5 ]
f52 [9-Arg_5 ]
MPRF for transition 84:f52(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f52(Arg_0,0,Arg_2,Arg_5+1,Arg_6,Arg_7):|:0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=10+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 10<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 0<=Arg_1 && 0<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && Arg_0<=1 && 0<=Arg_0 && 2+Arg_5<=Arg_2 && Arg_1<=0 && 0<=Arg_1 of depth 1:
new bound:
10 {O(1)}
MPRF:
f55 [Arg_2-Arg_5 ]
f52 [Arg_2-Arg_5 ]
MPRF for transition 88:f55(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f52(Arg_0,1,Arg_2,Arg_5+1,Arg_6,Arg_7):|:Arg_5<=8 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=18 && Arg_5<=7+Arg_1 && Arg_1+Arg_5<=9 && Arg_5<=8+Arg_0 && Arg_0+Arg_5<=9 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 0<=Arg_0 && N+1<=M of depth 1:
new bound:
50 {O(1)}
MPRF:
f55 [50-5*Arg_5 ]
f52 [5*Arg_2-5*Arg_5 ]
MPRF for transition 89:f55(Arg_0,Arg_1,Arg_2,Arg_5,Arg_6,Arg_7) -> f52(Arg_0,0,Arg_2,Arg_5+1,Arg_6,Arg_7):|:Arg_5<=8 && 2+Arg_5<=Arg_2 && Arg_2+Arg_5<=18 && Arg_5<=7+Arg_1 && Arg_1+Arg_5<=9 && Arg_5<=8+Arg_0 && Arg_0+Arg_5<=9 && 0<=Arg_5 && 10<=Arg_2+Arg_5 && Arg_2<=10+Arg_5 && 1<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 0<=Arg_0+Arg_5 && Arg_0<=1+Arg_5 && Arg_2<=10 && Arg_2<=9+Arg_1 && Arg_1+Arg_2<=11 && Arg_2<=10+Arg_0 && Arg_0+Arg_2<=11 && 10<=Arg_2 && 11<=Arg_1+Arg_2 && 9+Arg_1<=Arg_2 && 10<=Arg_0+Arg_2 && 9+Arg_0<=Arg_2 && Arg_1<=1 && Arg_1<=1+Arg_0 && Arg_0+Arg_1<=2 && 1<=Arg_1 && 1<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=1 && 0<=Arg_0 of depth 1:
new bound:
1 {O(1)}
MPRF:
f55 [1 ]
f52 [Arg_1 ]
All Bounds
Timebounds
Overall timebound:1158 {O(1)}
67: f0->f23: 1 {O(1)}
68: f23->f23: 11 {O(1)}
69: f23->f29: 1 {O(1)}
70: f29->f33: 10 {O(1)}
71: f29->f52: 1 {O(1)}
72: f33->f33: 100 {O(1)}
73: f33->f33: 100 {O(1)}
74: f33->f33: 100 {O(1)}
75: f33->f33: 100 {O(1)}
76: f33->f44: 430 {O(1)}
77: f33->f44: 190 {O(1)}
78: f33->f29: 10 {O(1)}
80: f44->f29: 20 {O(1)}
81: f44->f29: 10 {O(1)}
83: f52->f55: 9 {O(1)}
84: f52->f52: 10 {O(1)}
86: f52->f63: 1 {O(1)}
87: f52->f71: 1 {O(1)}
88: f55->f52: 50 {O(1)}
89: f55->f52: 1 {O(1)}
91: f63->f71: 1 {O(1)}
92: f63->f71: 1 {O(1)}
Costbounds
Overall costbound: 1158 {O(1)}
67: f0->f23: 1 {O(1)}
68: f23->f23: 11 {O(1)}
69: f23->f29: 1 {O(1)}
70: f29->f33: 10 {O(1)}
71: f29->f52: 1 {O(1)}
72: f33->f33: 100 {O(1)}
73: f33->f33: 100 {O(1)}
74: f33->f33: 100 {O(1)}
75: f33->f33: 100 {O(1)}
76: f33->f44: 430 {O(1)}
77: f33->f44: 190 {O(1)}
78: f33->f29: 10 {O(1)}
80: f44->f29: 20 {O(1)}
81: f44->f29: 10 {O(1)}
83: f52->f55: 9 {O(1)}
84: f52->f52: 10 {O(1)}
86: f52->f63: 1 {O(1)}
87: f52->f71: 1 {O(1)}
88: f55->f52: 50 {O(1)}
89: f55->f52: 1 {O(1)}
91: f63->f71: 1 {O(1)}
92: f63->f71: 1 {O(1)}
Sizebounds
67: f0->f23, Arg_0: 1 {O(1)}
67: f0->f23, Arg_1: 1 {O(1)}
67: f0->f23, Arg_2: 10 {O(1)}
67: f0->f23, Arg_5: 0 {O(1)}
67: f0->f23, Arg_6: Arg_6 {O(n)}
67: f0->f23, Arg_7: Arg_7 {O(n)}
68: f23->f23, Arg_0: 1 {O(1)}
68: f23->f23, Arg_1: 1 {O(1)}
68: f23->f23, Arg_2: 10 {O(1)}
68: f23->f23, Arg_5: 10 {O(1)}
68: f23->f23, Arg_6: Arg_6 {O(n)}
68: f23->f23, Arg_7: Arg_7 {O(n)}
69: f23->f29, Arg_0: 1 {O(1)}
69: f23->f29, Arg_1: 1 {O(1)}
69: f23->f29, Arg_2: 10 {O(1)}
69: f23->f29, Arg_5: 0 {O(1)}
69: f23->f29, Arg_6: Arg_6 {O(n)}
69: f23->f29, Arg_7: Arg_7 {O(n)}
70: f29->f33, Arg_0: 1 {O(1)}
70: f29->f33, Arg_1: 1 {O(1)}
70: f29->f33, Arg_2: 10 {O(1)}
70: f29->f33, Arg_5: 9 {O(1)}
70: f29->f33, Arg_6: 0 {O(1)}
70: f29->f33, Arg_7: 0 {O(1)}
71: f29->f52, Arg_0: 1 {O(1)}
71: f29->f52, Arg_1: 1 {O(1)}
71: f29->f52, Arg_2: 10 {O(1)}
71: f29->f52, Arg_5: 0 {O(1)}
71: f29->f52, Arg_6: 2 {O(1)}
71: f29->f52, Arg_7: 200 {O(1)}
72: f33->f33, Arg_0: 5 {O(1)}
72: f33->f33, Arg_1: 1 {O(1)}
72: f33->f33, Arg_2: 10 {O(1)}
72: f33->f33, Arg_5: 45 {O(1)}
72: f33->f33, Arg_6: 1 {O(1)}
72: f33->f33, Arg_7: 10 {O(1)}
73: f33->f33, Arg_0: 5 {O(1)}
73: f33->f33, Arg_1: 1 {O(1)}
73: f33->f33, Arg_2: 10 {O(1)}
73: f33->f33, Arg_5: 45 {O(1)}
73: f33->f33, Arg_6: 1 {O(1)}
73: f33->f33, Arg_7: 10 {O(1)}
74: f33->f33, Arg_0: 2 {O(1)}
74: f33->f33, Arg_1: 1 {O(1)}
74: f33->f33, Arg_2: 10 {O(1)}
74: f33->f33, Arg_5: 18 {O(1)}
74: f33->f33, Arg_6: 0 {O(1)}
74: f33->f33, Arg_7: 10 {O(1)}
75: f33->f33, Arg_0: 2 {O(1)}
75: f33->f33, Arg_1: 1 {O(1)}
75: f33->f33, Arg_2: 10 {O(1)}
75: f33->f33, Arg_5: 18 {O(1)}
75: f33->f33, Arg_6: 0 {O(1)}
75: f33->f33, Arg_7: 10 {O(1)}
76: f33->f44, Arg_0: 14 {O(1)}
76: f33->f44, Arg_1: 1 {O(1)}
76: f33->f44, Arg_2: 10 {O(1)}
76: f33->f44, Arg_5: 126 {O(1)}
76: f33->f44, Arg_6: 1 {O(1)}
76: f33->f44, Arg_7: 40 {O(1)}
77: f33->f44, Arg_0: 1 {O(1)}
77: f33->f44, Arg_1: 1 {O(1)}
77: f33->f44, Arg_2: 10 {O(1)}
77: f33->f44, Arg_5: 126 {O(1)}
77: f33->f44, Arg_6: 1 {O(1)}
77: f33->f44, Arg_7: 40 {O(1)}
78: f33->f29, Arg_0: 0 {O(1)}
78: f33->f29, Arg_1: 1 {O(1)}
78: f33->f29, Arg_2: 10 {O(1)}
78: f33->f29, Arg_5: 130 {O(1)}
78: f33->f29, Arg_6: 1 {O(1)}
78: f33->f29, Arg_7: 40 {O(1)}
80: f44->f29, Arg_0: 1 {O(1)}
80: f44->f29, Arg_1: 1 {O(1)}
80: f44->f29, Arg_2: 10 {O(1)}
80: f44->f29, Arg_5: 254 {O(1)}
80: f44->f29, Arg_6: 1 {O(1)}
80: f44->f29, Arg_7: 80 {O(1)}
81: f44->f29, Arg_0: 0 {O(1)}
81: f44->f29, Arg_1: 1 {O(1)}
81: f44->f29, Arg_2: 10 {O(1)}
81: f44->f29, Arg_5: 254 {O(1)}
81: f44->f29, Arg_6: 0 {O(1)}
81: f44->f29, Arg_7: 80 {O(1)}
83: f52->f55, Arg_0: 1 {O(1)}
83: f52->f55, Arg_1: 1 {O(1)}
83: f52->f55, Arg_2: 10 {O(1)}
83: f52->f55, Arg_5: 8 {O(1)}
83: f52->f55, Arg_6: 2 {O(1)}
83: f52->f55, Arg_7: 200 {O(1)}
84: f52->f52, Arg_0: 1 {O(1)}
84: f52->f52, Arg_1: 0 {O(1)}
84: f52->f52, Arg_2: 10 {O(1)}
84: f52->f52, Arg_5: 9 {O(1)}
84: f52->f52, Arg_6: 2 {O(1)}
84: f52->f52, Arg_7: 200 {O(1)}
86: f52->f63, Arg_0: 1 {O(1)}
86: f52->f63, Arg_1: 1 {O(1)}
86: f52->f63, Arg_2: 10 {O(1)}
86: f52->f63, Arg_5: 27 {O(1)}
86: f52->f63, Arg_6: 6 {O(1)}
86: f52->f63, Arg_7: 600 {O(1)}
87: f52->f71, Arg_0: 0 {O(1)}
87: f52->f71, Arg_1: 1 {O(1)}
87: f52->f71, Arg_2: 10 {O(1)}
87: f52->f71, Arg_5: 27 {O(1)}
87: f52->f71, Arg_6: 6 {O(1)}
87: f52->f71, Arg_7: 600 {O(1)}
88: f55->f52, Arg_0: 1 {O(1)}
88: f55->f52, Arg_1: 1 {O(1)}
88: f55->f52, Arg_2: 10 {O(1)}
88: f55->f52, Arg_5: 9 {O(1)}
88: f55->f52, Arg_6: 2 {O(1)}
88: f55->f52, Arg_7: 200 {O(1)}
89: f55->f52, Arg_0: 1 {O(1)}
89: f55->f52, Arg_1: 0 {O(1)}
89: f55->f52, Arg_2: 10 {O(1)}
89: f55->f52, Arg_5: 9 {O(1)}
89: f55->f52, Arg_6: 2 {O(1)}
89: f55->f52, Arg_7: 200 {O(1)}
91: f63->f71, Arg_0: 1 {O(1)}
91: f63->f71, Arg_1: 1 {O(1)}
91: f63->f71, Arg_2: 10 {O(1)}
91: f63->f71, Arg_5: 27 {O(1)}
91: f63->f71, Arg_6: 6 {O(1)}
91: f63->f71, Arg_7: 600 {O(1)}
92: f63->f71, Arg_0: 1 {O(1)}
92: f63->f71, Arg_1: 0 {O(1)}
92: f63->f71, Arg_2: 10 {O(1)}
92: f63->f71, Arg_5: 27 {O(1)}
92: f63->f71, Arg_6: 6 {O(1)}
92: f63->f71, Arg_7: 600 {O(1)}