Initial Problem

Start: eval_unperfect_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6
Temp_Vars:
Locations: eval_unperfect_0, eval_unperfect_1, eval_unperfect_10, eval_unperfect_11, eval_unperfect_12, eval_unperfect_9, eval_unperfect_bb0_in, eval_unperfect_bb1_in, eval_unperfect_bb2_in, eval_unperfect_bb3_in, eval_unperfect_bb4_in, eval_unperfect_bb5_in, eval_unperfect_bb6_in, eval_unperfect_start, eval_unperfect_stop
Transitions:
2:eval_unperfect_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)
4:eval_unperfect_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_3):|:0<Arg_3
3:eval_unperfect_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_3<=0
17:eval_unperfect_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_11(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_5<=0 && 0<=Arg_5
18:eval_unperfect_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_11(Arg_0,Arg_1,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_5<0
19:eval_unperfect_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_11(Arg_0,Arg_1,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:0<Arg_5
20:eval_unperfect_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)
21:eval_unperfect_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0,Arg_5,Arg_2)
16:eval_unperfect_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)
1:eval_unperfect_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)
5:eval_unperfect_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_4<=1 && 1<=Arg_4
6:eval_unperfect_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb4_in(Arg_4-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6):|:Arg_4<1
7:eval_unperfect_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb4_in(Arg_4-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6):|:1<Arg_4
8:eval_unperfect_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<0
9:eval_unperfect_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:0<Arg_6
10:eval_unperfect_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=0 && 0<=Arg_6
11:eval_unperfect_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)
12:eval_unperfect_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_0<=Arg_5
13:eval_unperfect_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_5<Arg_0
14:eval_unperfect_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-Arg_0,Arg_6)
15:eval_unperfect_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_9(Arg_0,Arg_6-Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)
0:eval_unperfect_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)

Preprocessing

Found invariant Arg_6<=Arg_3 && Arg_5<=Arg_3 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 3<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 for location eval_unperfect_bb5_in

Found invariant Arg_6<=Arg_3 && Arg_2<=Arg_6 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && Arg_2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_2 && 1<=Arg_0 for location eval_unperfect_11

Found invariant Arg_6<=Arg_3 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 for location eval_unperfect_9

Found invariant Arg_6<=Arg_3 && Arg_4<=1 && Arg_4<=Arg_3 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_3 for location eval_unperfect_bb2_in

Found invariant Arg_6<=Arg_3 && Arg_2<=Arg_6 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && Arg_2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_2 && 1<=Arg_0 for location eval_unperfect_12

Found invariant Arg_6<=Arg_3 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 for location eval_unperfect_bb6_in

Found invariant Arg_6<=Arg_3 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 for location eval_unperfect_10

Found invariant Arg_6<=Arg_3 && Arg_4<=Arg_3 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_3 for location eval_unperfect_bb1_in

Found invariant Arg_6<=Arg_3 && Arg_5<=Arg_3 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 for location eval_unperfect_bb4_in

Cut unsatisfiable transition 6: eval_unperfect_bb1_in->eval_unperfect_bb4_in

Problem after Preprocessing

Start: eval_unperfect_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6
Temp_Vars:
Locations: eval_unperfect_0, eval_unperfect_1, eval_unperfect_10, eval_unperfect_11, eval_unperfect_12, eval_unperfect_9, eval_unperfect_bb0_in, eval_unperfect_bb1_in, eval_unperfect_bb2_in, eval_unperfect_bb3_in, eval_unperfect_bb4_in, eval_unperfect_bb5_in, eval_unperfect_bb6_in, eval_unperfect_start, eval_unperfect_stop
Transitions:
2:eval_unperfect_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)
4:eval_unperfect_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_3):|:0<Arg_3
3:eval_unperfect_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_3<=0
17:eval_unperfect_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_11(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 && Arg_5<=0 && 0<=Arg_5
18:eval_unperfect_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_11(Arg_0,Arg_1,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 && Arg_5<0
19:eval_unperfect_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_11(Arg_0,Arg_1,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 && 0<Arg_5
20:eval_unperfect_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_2<=Arg_6 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && Arg_2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_2 && 1<=Arg_0
21:eval_unperfect_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0,Arg_5,Arg_2):|:Arg_6<=Arg_3 && Arg_2<=Arg_6 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && Arg_2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_2 && 1<=Arg_0
16:eval_unperfect_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0
1:eval_unperfect_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)
5:eval_unperfect_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_4<=Arg_3 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_4<=1 && 1<=Arg_4
7:eval_unperfect_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb4_in(Arg_4-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6):|:Arg_6<=Arg_3 && Arg_4<=Arg_3 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_3 && 1<Arg_4
8:eval_unperfect_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_4<=1 && Arg_4<=Arg_3 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<0
9:eval_unperfect_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_4<=1 && Arg_4<=Arg_3 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_3 && 0<Arg_6
10:eval_unperfect_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_4<=1 && Arg_4<=Arg_3 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_3 && Arg_6<=0 && 0<=Arg_6
11:eval_unperfect_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)
12:eval_unperfect_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_5<=Arg_3 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 && Arg_0<=Arg_5
13:eval_unperfect_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_5<=Arg_3 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 && Arg_5<Arg_0
14:eval_unperfect_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-Arg_0,Arg_6):|:Arg_6<=Arg_3 && Arg_5<=Arg_3 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 3<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0
15:eval_unperfect_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_9(Arg_0,Arg_6-Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0
0:eval_unperfect_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6)

MPRF for transition 17:eval_unperfect_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_11(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 && Arg_5<=0 && 0<=Arg_5 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

eval_unperfect_11 [Arg_4-2 ]
eval_unperfect_12 [Arg_0-1 ]
eval_unperfect_10 [Arg_0 ]
eval_unperfect_bb1_in [Arg_4-1 ]
eval_unperfect_bb5_in [Arg_0 ]
eval_unperfect_bb4_in [Arg_4-1 ]
eval_unperfect_bb6_in [Arg_4-1 ]
eval_unperfect_9 [Arg_0 ]

MPRF for transition 18:eval_unperfect_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_11(Arg_0,Arg_1,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 && Arg_5<0 of depth 1:

new bound:

Arg_3+2 {O(n)}

MPRF:

eval_unperfect_11 [Arg_0-2 ]
eval_unperfect_12 [Arg_0-2 ]
eval_unperfect_10 [Arg_0-1 ]
eval_unperfect_bb1_in [Arg_4-2 ]
eval_unperfect_bb5_in [Arg_0-1 ]
eval_unperfect_bb4_in [Arg_0-1 ]
eval_unperfect_bb6_in [Arg_0-1 ]
eval_unperfect_9 [Arg_0-1 ]

MPRF for transition 19:eval_unperfect_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_11(Arg_0,Arg_1,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 && 0<Arg_5 of depth 1:

new bound:

Arg_3+2 {O(n)}

MPRF:

eval_unperfect_11 [Arg_0-2 ]
eval_unperfect_12 [Arg_4-3 ]
eval_unperfect_10 [Arg_0-1 ]
eval_unperfect_bb1_in [Arg_4-2 ]
eval_unperfect_bb5_in [Arg_0-1 ]
eval_unperfect_bb4_in [Arg_0-1 ]
eval_unperfect_bb6_in [Arg_0-1 ]
eval_unperfect_9 [Arg_0-1 ]

MPRF for transition 20:eval_unperfect_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_2<=Arg_6 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && Arg_2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_2 && 1<=Arg_0 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

eval_unperfect_11 [Arg_4-1 ]
eval_unperfect_12 [Arg_0-1 ]
eval_unperfect_10 [Arg_4-1 ]
eval_unperfect_bb1_in [Arg_4-1 ]
eval_unperfect_bb5_in [Arg_0 ]
eval_unperfect_bb4_in [Arg_0 ]
eval_unperfect_bb6_in [Arg_4-1 ]
eval_unperfect_9 [Arg_4-1 ]

MPRF for transition 21:eval_unperfect_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0,Arg_5,Arg_2):|:Arg_6<=Arg_3 && Arg_2<=Arg_6 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && Arg_2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && Arg_1<=Arg_2 && 1<=Arg_0 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

eval_unperfect_11 [Arg_0 ]
eval_unperfect_12 [Arg_4-1 ]
eval_unperfect_10 [Arg_4-1 ]
eval_unperfect_bb1_in [Arg_4-1 ]
eval_unperfect_bb5_in [Arg_0 ]
eval_unperfect_bb4_in [Arg_0 ]
eval_unperfect_bb6_in [Arg_0 ]
eval_unperfect_9 [Arg_0 ]

MPRF for transition 16:eval_unperfect_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && 1+Arg_1<=Arg_6 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 1+Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

eval_unperfect_11 [Arg_4-2 ]
eval_unperfect_12 [Arg_4-2 ]
eval_unperfect_10 [Arg_4-2 ]
eval_unperfect_bb1_in [Arg_4-1 ]
eval_unperfect_bb5_in [Arg_0 ]
eval_unperfect_bb4_in [Arg_0 ]
eval_unperfect_bb6_in [Arg_0 ]
eval_unperfect_9 [Arg_4-1 ]

MPRF for transition 7:eval_unperfect_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb4_in(Arg_4-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_3,Arg_6):|:Arg_6<=Arg_3 && Arg_4<=Arg_3 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && 1<=Arg_3 && 1<Arg_4 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

eval_unperfect_11 [Arg_4-2 ]
eval_unperfect_12 [Arg_0-1 ]
eval_unperfect_10 [Arg_4-2 ]
eval_unperfect_bb1_in [Arg_4-1 ]
eval_unperfect_bb5_in [Arg_0-1 ]
eval_unperfect_bb4_in [Arg_4-2 ]
eval_unperfect_bb6_in [Arg_4-2 ]
eval_unperfect_9 [Arg_4-2 ]

MPRF for transition 13:eval_unperfect_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_5<=Arg_3 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 && Arg_5<Arg_0 of depth 1:

new bound:

2*Arg_3 {O(n)}

MPRF:

eval_unperfect_11 [2*Arg_4-2 ]
eval_unperfect_12 [2*Arg_4-2 ]
eval_unperfect_10 [2*Arg_0 ]
eval_unperfect_bb1_in [2*Arg_4 ]
eval_unperfect_bb5_in [Arg_0+Arg_4 ]
eval_unperfect_bb4_in [Arg_0+Arg_4 ]
eval_unperfect_bb6_in [Arg_0+Arg_4-1 ]
eval_unperfect_9 [2*Arg_0 ]

MPRF for transition 15:eval_unperfect_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_9(Arg_0,Arg_6-Arg_0,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && 2+Arg_5<=Arg_4 && 2+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 of depth 1:

new bound:

Arg_3 {O(n)}

MPRF:

eval_unperfect_11 [Arg_4-1 ]
eval_unperfect_12 [Arg_0 ]
eval_unperfect_10 [Arg_4-1 ]
eval_unperfect_bb1_in [Arg_4 ]
eval_unperfect_bb5_in [Arg_4 ]
eval_unperfect_bb4_in [Arg_4 ]
eval_unperfect_bb6_in [Arg_4 ]
eval_unperfect_9 [Arg_4-1 ]

MPRF for transition 12:eval_unperfect_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_6<=Arg_3 && Arg_5<=Arg_3 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 && Arg_0<=Arg_5 of depth 1:

new bound:

2*Arg_3*Arg_3+2*Arg_3 {O(n^2)}

MPRF:

eval_unperfect_11 [2*Arg_3 ]
eval_unperfect_12 [2*Arg_3 ]
eval_unperfect_9 [2*Arg_3 ]
eval_unperfect_10 [2*Arg_3 ]
eval_unperfect_bb1_in [2*Arg_3 ]
eval_unperfect_bb6_in [2*Arg_5 ]
eval_unperfect_bb5_in [2*Arg_5-2 ]
eval_unperfect_bb4_in [2*Arg_5 ]

MPRF for transition 14:eval_unperfect_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-Arg_0,Arg_6):|:Arg_6<=Arg_3 && Arg_5<=Arg_3 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 3<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0 of depth 1:

new bound:

4*Arg_3*Arg_3*Arg_3+16*Arg_3*Arg_3+3*Arg_3 {O(n^3)}

MPRF:

eval_unperfect_11 [Arg_3+2*Arg_4 ]
eval_unperfect_12 [2*Arg_0+Arg_3 ]
eval_unperfect_9 [Arg_3+3*Arg_4+2*Arg_6-Arg_0-2*Arg_1 ]
eval_unperfect_10 [2*Arg_0+Arg_3+2*Arg_6-2*Arg_1 ]
eval_unperfect_bb1_in [Arg_3+2*Arg_4 ]
eval_unperfect_bb6_in [Arg_0+Arg_5-1 ]
eval_unperfect_bb5_in [Arg_5 ]
eval_unperfect_bb4_in [Arg_0+Arg_5-1 ]

knowledge_propagation leads to new time bound 2*Arg_3*Arg_3+2*Arg_3 {O(n^2)} for transition 14:eval_unperfect_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> eval_unperfect_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-Arg_0,Arg_6):|:Arg_6<=Arg_3 && Arg_5<=Arg_3 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=1+Arg_5 && 3<=Arg_3+Arg_5 && 2<=Arg_0+Arg_5 && Arg_0<=Arg_5 && Arg_4<=Arg_3 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 4<=Arg_3+Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 2<=Arg_3 && 3<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_0

All Bounds

Timebounds

Overall timebound:4*Arg_3*Arg_3+14*Arg_3+19 {O(n^2)}
2: eval_unperfect_0->eval_unperfect_1: 1 {O(1)}
3: eval_unperfect_1->eval_unperfect_bb3_in: 1 {O(1)}
4: eval_unperfect_1->eval_unperfect_bb1_in: 1 {O(1)}
17: eval_unperfect_10->eval_unperfect_11: Arg_3+1 {O(n)}
18: eval_unperfect_10->eval_unperfect_11: Arg_3+2 {O(n)}
19: eval_unperfect_10->eval_unperfect_11: Arg_3+2 {O(n)}
20: eval_unperfect_11->eval_unperfect_12: Arg_3+1 {O(n)}
21: eval_unperfect_12->eval_unperfect_bb1_in: Arg_3+1 {O(n)}
16: eval_unperfect_9->eval_unperfect_10: Arg_3+1 {O(n)}
1: eval_unperfect_bb0_in->eval_unperfect_0: 1 {O(1)}
5: eval_unperfect_bb1_in->eval_unperfect_bb2_in: 1 {O(1)}
7: eval_unperfect_bb1_in->eval_unperfect_bb4_in: Arg_3+1 {O(n)}
8: eval_unperfect_bb2_in->eval_unperfect_bb3_in: 1 {O(1)}
9: eval_unperfect_bb2_in->eval_unperfect_bb3_in: 1 {O(1)}
10: eval_unperfect_bb2_in->eval_unperfect_bb3_in: 1 {O(1)}
11: eval_unperfect_bb3_in->eval_unperfect_stop: 1 {O(1)}
12: eval_unperfect_bb4_in->eval_unperfect_bb5_in: 2*Arg_3*Arg_3+2*Arg_3 {O(n^2)}
13: eval_unperfect_bb4_in->eval_unperfect_bb6_in: 2*Arg_3 {O(n)}
14: eval_unperfect_bb5_in->eval_unperfect_bb4_in: 2*Arg_3*Arg_3+2*Arg_3 {O(n^2)}
15: eval_unperfect_bb6_in->eval_unperfect_9: Arg_3 {O(n)}
0: eval_unperfect_start->eval_unperfect_bb0_in: 1 {O(1)}

Costbounds

Overall costbound: 4*Arg_3*Arg_3+14*Arg_3+19 {O(n^2)}
2: eval_unperfect_0->eval_unperfect_1: 1 {O(1)}
3: eval_unperfect_1->eval_unperfect_bb3_in: 1 {O(1)}
4: eval_unperfect_1->eval_unperfect_bb1_in: 1 {O(1)}
17: eval_unperfect_10->eval_unperfect_11: Arg_3+1 {O(n)}
18: eval_unperfect_10->eval_unperfect_11: Arg_3+2 {O(n)}
19: eval_unperfect_10->eval_unperfect_11: Arg_3+2 {O(n)}
20: eval_unperfect_11->eval_unperfect_12: Arg_3+1 {O(n)}
21: eval_unperfect_12->eval_unperfect_bb1_in: Arg_3+1 {O(n)}
16: eval_unperfect_9->eval_unperfect_10: Arg_3+1 {O(n)}
1: eval_unperfect_bb0_in->eval_unperfect_0: 1 {O(1)}
5: eval_unperfect_bb1_in->eval_unperfect_bb2_in: 1 {O(1)}
7: eval_unperfect_bb1_in->eval_unperfect_bb4_in: Arg_3+1 {O(n)}
8: eval_unperfect_bb2_in->eval_unperfect_bb3_in: 1 {O(1)}
9: eval_unperfect_bb2_in->eval_unperfect_bb3_in: 1 {O(1)}
10: eval_unperfect_bb2_in->eval_unperfect_bb3_in: 1 {O(1)}
11: eval_unperfect_bb3_in->eval_unperfect_stop: 1 {O(1)}
12: eval_unperfect_bb4_in->eval_unperfect_bb5_in: 2*Arg_3*Arg_3+2*Arg_3 {O(n^2)}
13: eval_unperfect_bb4_in->eval_unperfect_bb6_in: 2*Arg_3 {O(n)}
14: eval_unperfect_bb5_in->eval_unperfect_bb4_in: 2*Arg_3*Arg_3+2*Arg_3 {O(n^2)}
15: eval_unperfect_bb6_in->eval_unperfect_9: Arg_3 {O(n)}
0: eval_unperfect_start->eval_unperfect_bb0_in: 1 {O(1)}

Sizebounds

2: eval_unperfect_0->eval_unperfect_1, Arg_0: Arg_0 {O(n)}
2: eval_unperfect_0->eval_unperfect_1, Arg_1: Arg_1 {O(n)}
2: eval_unperfect_0->eval_unperfect_1, Arg_2: Arg_2 {O(n)}
2: eval_unperfect_0->eval_unperfect_1, Arg_3: Arg_3 {O(n)}
2: eval_unperfect_0->eval_unperfect_1, Arg_4: Arg_4 {O(n)}
2: eval_unperfect_0->eval_unperfect_1, Arg_5: Arg_5 {O(n)}
2: eval_unperfect_0->eval_unperfect_1, Arg_6: Arg_6 {O(n)}
3: eval_unperfect_1->eval_unperfect_bb3_in, Arg_0: Arg_0 {O(n)}
3: eval_unperfect_1->eval_unperfect_bb3_in, Arg_1: Arg_1 {O(n)}
3: eval_unperfect_1->eval_unperfect_bb3_in, Arg_2: Arg_2 {O(n)}
3: eval_unperfect_1->eval_unperfect_bb3_in, Arg_3: Arg_3 {O(n)}
3: eval_unperfect_1->eval_unperfect_bb3_in, Arg_4: Arg_4 {O(n)}
3: eval_unperfect_1->eval_unperfect_bb3_in, Arg_5: Arg_5 {O(n)}
3: eval_unperfect_1->eval_unperfect_bb3_in, Arg_6: Arg_6 {O(n)}
4: eval_unperfect_1->eval_unperfect_bb1_in, Arg_0: Arg_0 {O(n)}
4: eval_unperfect_1->eval_unperfect_bb1_in, Arg_1: Arg_1 {O(n)}
4: eval_unperfect_1->eval_unperfect_bb1_in, Arg_2: Arg_2 {O(n)}
4: eval_unperfect_1->eval_unperfect_bb1_in, Arg_3: Arg_3 {O(n)}
4: eval_unperfect_1->eval_unperfect_bb1_in, Arg_4: Arg_3 {O(n)}
4: eval_unperfect_1->eval_unperfect_bb1_in, Arg_5: Arg_5 {O(n)}
4: eval_unperfect_1->eval_unperfect_bb1_in, Arg_6: Arg_3 {O(n)}
17: eval_unperfect_10->eval_unperfect_11, Arg_0: Arg_3 {O(n)}
17: eval_unperfect_10->eval_unperfect_11, Arg_1: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
17: eval_unperfect_10->eval_unperfect_11, Arg_2: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
17: eval_unperfect_10->eval_unperfect_11, Arg_3: Arg_3 {O(n)}
17: eval_unperfect_10->eval_unperfect_11, Arg_4: 2*Arg_3 {O(n)}
17: eval_unperfect_10->eval_unperfect_11, Arg_5: 0 {O(1)}
17: eval_unperfect_10->eval_unperfect_11, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
18: eval_unperfect_10->eval_unperfect_11, Arg_0: Arg_3 {O(n)}
18: eval_unperfect_10->eval_unperfect_11, Arg_1: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
18: eval_unperfect_10->eval_unperfect_11, Arg_2: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
18: eval_unperfect_10->eval_unperfect_11, Arg_3: Arg_3 {O(n)}
18: eval_unperfect_10->eval_unperfect_11, Arg_4: 2*Arg_3 {O(n)}
18: eval_unperfect_10->eval_unperfect_11, Arg_5: 2*Arg_3 {O(n)}
18: eval_unperfect_10->eval_unperfect_11, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
19: eval_unperfect_10->eval_unperfect_11, Arg_0: Arg_3 {O(n)}
19: eval_unperfect_10->eval_unperfect_11, Arg_1: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
19: eval_unperfect_10->eval_unperfect_11, Arg_2: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
19: eval_unperfect_10->eval_unperfect_11, Arg_3: Arg_3 {O(n)}
19: eval_unperfect_10->eval_unperfect_11, Arg_4: 2*Arg_3 {O(n)}
19: eval_unperfect_10->eval_unperfect_11, Arg_5: 2*Arg_3 {O(n)}
19: eval_unperfect_10->eval_unperfect_11, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
20: eval_unperfect_11->eval_unperfect_12, Arg_0: Arg_3 {O(n)}
20: eval_unperfect_11->eval_unperfect_12, Arg_1: 3*Arg_3*Arg_3+6*Arg_3 {O(n^2)}
20: eval_unperfect_11->eval_unperfect_12, Arg_2: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
20: eval_unperfect_11->eval_unperfect_12, Arg_3: Arg_3 {O(n)}
20: eval_unperfect_11->eval_unperfect_12, Arg_4: 6*Arg_3 {O(n)}
20: eval_unperfect_11->eval_unperfect_12, Arg_5: 4*Arg_3 {O(n)}
20: eval_unperfect_11->eval_unperfect_12, Arg_6: 3*Arg_3*Arg_3+6*Arg_3 {O(n^2)}
21: eval_unperfect_12->eval_unperfect_bb1_in, Arg_0: Arg_3 {O(n)}
21: eval_unperfect_12->eval_unperfect_bb1_in, Arg_1: 3*Arg_3*Arg_3+6*Arg_3 {O(n^2)}
21: eval_unperfect_12->eval_unperfect_bb1_in, Arg_2: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
21: eval_unperfect_12->eval_unperfect_bb1_in, Arg_3: Arg_3 {O(n)}
21: eval_unperfect_12->eval_unperfect_bb1_in, Arg_4: Arg_3 {O(n)}
21: eval_unperfect_12->eval_unperfect_bb1_in, Arg_5: 4*Arg_3 {O(n)}
21: eval_unperfect_12->eval_unperfect_bb1_in, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
16: eval_unperfect_9->eval_unperfect_10, Arg_0: Arg_3 {O(n)}
16: eval_unperfect_9->eval_unperfect_10, Arg_1: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
16: eval_unperfect_9->eval_unperfect_10, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
16: eval_unperfect_9->eval_unperfect_10, Arg_3: Arg_3 {O(n)}
16: eval_unperfect_9->eval_unperfect_10, Arg_4: 2*Arg_3 {O(n)}
16: eval_unperfect_9->eval_unperfect_10, Arg_5: 2*Arg_3 {O(n)}
16: eval_unperfect_9->eval_unperfect_10, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
1: eval_unperfect_bb0_in->eval_unperfect_0, Arg_0: Arg_0 {O(n)}
1: eval_unperfect_bb0_in->eval_unperfect_0, Arg_1: Arg_1 {O(n)}
1: eval_unperfect_bb0_in->eval_unperfect_0, Arg_2: Arg_2 {O(n)}
1: eval_unperfect_bb0_in->eval_unperfect_0, Arg_3: Arg_3 {O(n)}
1: eval_unperfect_bb0_in->eval_unperfect_0, Arg_4: Arg_4 {O(n)}
1: eval_unperfect_bb0_in->eval_unperfect_0, Arg_5: Arg_5 {O(n)}
1: eval_unperfect_bb0_in->eval_unperfect_0, Arg_6: Arg_6 {O(n)}
5: eval_unperfect_bb1_in->eval_unperfect_bb2_in, Arg_0: Arg_0+Arg_3 {O(n)}
5: eval_unperfect_bb1_in->eval_unperfect_bb2_in, Arg_1: 3*Arg_3*Arg_3+6*Arg_3+Arg_1 {O(n^2)}
5: eval_unperfect_bb1_in->eval_unperfect_bb2_in, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
5: eval_unperfect_bb1_in->eval_unperfect_bb2_in, Arg_3: 2*Arg_3 {O(n)}
5: eval_unperfect_bb1_in->eval_unperfect_bb2_in, Arg_4: 1 {O(1)}
5: eval_unperfect_bb1_in->eval_unperfect_bb2_in, Arg_5: 4*Arg_3+Arg_5 {O(n)}
5: eval_unperfect_bb1_in->eval_unperfect_bb2_in, Arg_6: Arg_3*Arg_3+3*Arg_3 {O(n^2)}
7: eval_unperfect_bb1_in->eval_unperfect_bb4_in, Arg_0: Arg_3 {O(n)}
7: eval_unperfect_bb1_in->eval_unperfect_bb4_in, Arg_1: 3*Arg_3*Arg_3+6*Arg_3+Arg_1 {O(n^2)}
7: eval_unperfect_bb1_in->eval_unperfect_bb4_in, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
7: eval_unperfect_bb1_in->eval_unperfect_bb4_in, Arg_3: Arg_3 {O(n)}
7: eval_unperfect_bb1_in->eval_unperfect_bb4_in, Arg_4: 2*Arg_3 {O(n)}
7: eval_unperfect_bb1_in->eval_unperfect_bb4_in, Arg_5: 2*Arg_3 {O(n)}
7: eval_unperfect_bb1_in->eval_unperfect_bb4_in, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
8: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_0: Arg_0+Arg_3 {O(n)}
8: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_1: 3*Arg_3*Arg_3+6*Arg_3+Arg_1 {O(n^2)}
8: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
8: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_3: 2*Arg_3 {O(n)}
8: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_4: 1 {O(1)}
8: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_5: 4*Arg_3+Arg_5 {O(n)}
8: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_6: Arg_3*Arg_3+3*Arg_3 {O(n^2)}
9: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_0: Arg_0+Arg_3 {O(n)}
9: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_1: 3*Arg_3*Arg_3+6*Arg_3+Arg_1 {O(n^2)}
9: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
9: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_3: 2*Arg_3 {O(n)}
9: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_4: 1 {O(1)}
9: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_5: 4*Arg_3+Arg_5 {O(n)}
9: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_6: Arg_3*Arg_3+3*Arg_3 {O(n^2)}
10: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_0: Arg_0+Arg_3 {O(n)}
10: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_1: 3*Arg_3*Arg_3+6*Arg_3+Arg_1 {O(n^2)}
10: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
10: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_3: 2*Arg_3 {O(n)}
10: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_4: 1 {O(1)}
10: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_5: 4*Arg_3+Arg_5 {O(n)}
10: eval_unperfect_bb2_in->eval_unperfect_bb3_in, Arg_6: 0 {O(1)}
11: eval_unperfect_bb3_in->eval_unperfect_stop, Arg_0: 3*Arg_3+4*Arg_0 {O(n)}
11: eval_unperfect_bb3_in->eval_unperfect_stop, Arg_1: 9*Arg_3*Arg_3+18*Arg_3+4*Arg_1 {O(n^2)}
11: eval_unperfect_bb3_in->eval_unperfect_stop, Arg_2: 3*Arg_3*Arg_3+4*Arg_2+6*Arg_3 {O(n^2)}
11: eval_unperfect_bb3_in->eval_unperfect_stop, Arg_3: 7*Arg_3 {O(n)}
11: eval_unperfect_bb3_in->eval_unperfect_stop, Arg_4: Arg_4+3 {O(n)}
11: eval_unperfect_bb3_in->eval_unperfect_stop, Arg_5: 12*Arg_3+4*Arg_5 {O(n)}
11: eval_unperfect_bb3_in->eval_unperfect_stop, Arg_6: 2*Arg_3*Arg_3+6*Arg_3+Arg_6 {O(n^2)}
12: eval_unperfect_bb4_in->eval_unperfect_bb5_in, Arg_0: Arg_3 {O(n)}
12: eval_unperfect_bb4_in->eval_unperfect_bb5_in, Arg_1: 3*Arg_3*Arg_3+6*Arg_3+Arg_1 {O(n^2)}
12: eval_unperfect_bb4_in->eval_unperfect_bb5_in, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
12: eval_unperfect_bb4_in->eval_unperfect_bb5_in, Arg_3: Arg_3 {O(n)}
12: eval_unperfect_bb4_in->eval_unperfect_bb5_in, Arg_4: 2*Arg_3 {O(n)}
12: eval_unperfect_bb4_in->eval_unperfect_bb5_in, Arg_5: 2*Arg_3 {O(n)}
12: eval_unperfect_bb4_in->eval_unperfect_bb5_in, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
13: eval_unperfect_bb4_in->eval_unperfect_bb6_in, Arg_0: Arg_3 {O(n)}
13: eval_unperfect_bb4_in->eval_unperfect_bb6_in, Arg_1: 3*Arg_3*Arg_3+6*Arg_3+Arg_1 {O(n^2)}
13: eval_unperfect_bb4_in->eval_unperfect_bb6_in, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
13: eval_unperfect_bb4_in->eval_unperfect_bb6_in, Arg_3: Arg_3 {O(n)}
13: eval_unperfect_bb4_in->eval_unperfect_bb6_in, Arg_4: 2*Arg_3 {O(n)}
13: eval_unperfect_bb4_in->eval_unperfect_bb6_in, Arg_5: 2*Arg_3 {O(n)}
13: eval_unperfect_bb4_in->eval_unperfect_bb6_in, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
14: eval_unperfect_bb5_in->eval_unperfect_bb4_in, Arg_0: Arg_3 {O(n)}
14: eval_unperfect_bb5_in->eval_unperfect_bb4_in, Arg_1: 3*Arg_3*Arg_3+6*Arg_3+Arg_1 {O(n^2)}
14: eval_unperfect_bb5_in->eval_unperfect_bb4_in, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
14: eval_unperfect_bb5_in->eval_unperfect_bb4_in, Arg_3: Arg_3 {O(n)}
14: eval_unperfect_bb5_in->eval_unperfect_bb4_in, Arg_4: 2*Arg_3 {O(n)}
14: eval_unperfect_bb5_in->eval_unperfect_bb4_in, Arg_5: 2*Arg_3 {O(n)}
14: eval_unperfect_bb5_in->eval_unperfect_bb4_in, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
15: eval_unperfect_bb6_in->eval_unperfect_9, Arg_0: Arg_3 {O(n)}
15: eval_unperfect_bb6_in->eval_unperfect_9, Arg_1: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
15: eval_unperfect_bb6_in->eval_unperfect_9, Arg_2: Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
15: eval_unperfect_bb6_in->eval_unperfect_9, Arg_3: Arg_3 {O(n)}
15: eval_unperfect_bb6_in->eval_unperfect_9, Arg_4: 2*Arg_3 {O(n)}
15: eval_unperfect_bb6_in->eval_unperfect_9, Arg_5: 2*Arg_3 {O(n)}
15: eval_unperfect_bb6_in->eval_unperfect_9, Arg_6: Arg_3*Arg_3+2*Arg_3 {O(n^2)}
0: eval_unperfect_start->eval_unperfect_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_unperfect_start->eval_unperfect_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_unperfect_start->eval_unperfect_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_unperfect_start->eval_unperfect_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_unperfect_start->eval_unperfect_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_unperfect_start->eval_unperfect_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_unperfect_start->eval_unperfect_bb0_in, Arg_6: Arg_6 {O(n)}