Initial Problem

Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24
Temp_Vars: A1, B1, C1, Z
Locations: f0, f20, f26, f33, f39, f52, f59, f63, f68, f71, f73, f76
Transitions:
30:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f20(C1,Arg_1,Arg_2,A1,Z,Arg_5,Arg_6,Arg_7,0,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,0,3,1,B1,C1):|:0<=A1 && 1<=B1 && Arg_21<=3 && 3<=Arg_21
31:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f20(C1,Arg_1,Arg_2,A1,Z,Arg_5,Arg_6,Arg_7,0,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,0,Arg_21,1,B1,C1):|:Arg_21<=2 && 0<=A1 && 1<=B1
32:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f20(C1,Arg_1,Arg_2,A1,Z,Arg_5,Arg_6,Arg_7,0,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,0,Arg_21,1,B1,C1):|:4<=Arg_21 && 0<=A1 && 1<=B1
0:f20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f26(Arg_0,1,Arg_3,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:1<=Arg_0
1:f20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f26(Arg_0,1,Arg_3,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_3<=0 && Arg_0<=0
2:f20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f26(Arg_0,0,Arg_3,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:1<=Arg_3 && Arg_0<=0
21:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Z,A1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_2+1<=Arg_4 && Z<=0 && 1<=A1
4:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Z,A1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:1<=Z && Arg_2+1<=Arg_4
5:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Z,A1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_2+1<=Arg_4 && Z<=0 && A1<=0
3:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_4<=Arg_2
8:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_7<=Arg_8 && 2+Arg_9<=0
9:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_7<=Arg_8 && 0<=Arg_9
6:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_8+1<=Arg_7
7:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,-1,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_7<=Arg_8 && Arg_9+1<=0 && 0<=1+Arg_9
22:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Z,Z,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_8+1<=Arg_7 && 1<=Z
23:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Z,Z,A1,Arg_13,Arg_14,B1,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:1<=B1 && 1<=A1 && Arg_8+1<=Arg_7 && Z<=0
11:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Z,Z,A1,B1,B1,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:A1<=0 && Arg_8+1<=Arg_7 && Z<=0
12:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Z,Z,A1,C1,C1,B1,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:B1<=0 && 1<=A1 && Arg_8+1<=Arg_7 && Z<=0
10:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_7<=Arg_8
24:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_14+1<=0
15:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Z,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:0<=Arg_14 && Arg_16<=2
16:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Z,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:0<=Arg_14 && 4<=Arg_16
17:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,3,1,Z,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:0<=Arg_14 && Arg_16<=3 && 3<=Arg_16
13:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,3,Z,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:0<=Arg_14 && Z<=0 && Arg_16<=3 && 3<=Arg_16
14:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,3,Z,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:0<=Arg_14 && 2<=Z && Arg_16<=3 && 3<=Arg_16
18:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Z,Arg_15,Arg_16,Arg_17,Arg_18,Z,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_18<=10
19:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Z,Arg_15,Arg_16,Arg_17,10,Z,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:11<=Arg_18
20:f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_14+1<=0
25:f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f26(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_11,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20+1,Arg_21,Arg_22,Arg_23,Arg_24):|:0<=Arg_14
27:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f71(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:Arg_20<=0
28:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f71(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24):|:1<=Arg_20
26:f71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24)
29:f73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24) -> f76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24)

Preprocessing

Cut unreachable locations [f73; f76] from the program graph

Eliminate variables {Arg_1,Arg_5,Arg_6,Arg_10,Arg_12,Arg_13,Arg_15,Arg_17,Arg_19,Arg_22,Arg_23,Arg_24} that do not contribute to the problem

Found invariant 0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 for location f68

Found invariant 0<=Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 for location f33

Found invariant 1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && Arg_11<=Arg_2 && Arg_11<=0 for location f52

Found invariant 0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_0+Arg_20 && Arg_0<=Arg_20 && 0<=Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_0<=1 && 0<=Arg_0 for location f71

Found invariant 1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 0<=Arg_14+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_14+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_14+Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_14+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_14+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && 0<=Arg_14+Arg_2 && Arg_11<=Arg_2 && 0<=Arg_14 && Arg_11<=Arg_14 && Arg_11<=0 for location f59

Found invariant 1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_18<=10+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && Arg_18<=9+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_18<=9+Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_18<=10+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && Arg_18<=10+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && Arg_18<=10+Arg_2 && Arg_11<=Arg_2 && Arg_18<=10 && Arg_11+Arg_18<=10 && Arg_11<=0 for location f63

Found invariant Arg_8<=0 && Arg_8<=Arg_3 && Arg_8<=Arg_20 && Arg_20+Arg_8<=0 && 0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && Arg_20<=Arg_8 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && Arg_20<=Arg_3 && Arg_20<=0 && 0<=Arg_20 for location f20

Found invariant 0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 for location f26

Found invariant 0<=Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 for location f39

Problem after Preprocessing

Start: f0
Program_Vars: Arg_0, Arg_2, Arg_3, Arg_4, Arg_7, Arg_8, Arg_9, Arg_11, Arg_14, Arg_16, Arg_18, Arg_20, Arg_21
Temp_Vars: A1, B1, C1, Z
Locations: f0, f20, f26, f33, f39, f52, f59, f63, f68, f71
Transitions:
76:f0(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f20(C1,Arg_2,A1,Z,Arg_7,0,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,0,3):|:0<=A1 && 1<=B1 && Arg_21<=3 && 3<=Arg_21
77:f0(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f20(C1,Arg_2,A1,Z,Arg_7,0,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,0,Arg_21):|:Arg_21<=2 && 0<=A1 && 1<=B1
78:f0(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f20(C1,Arg_2,A1,Z,Arg_7,0,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,0,Arg_21):|:4<=Arg_21 && 0<=A1 && 1<=B1
79:f20(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f26(Arg_0,Arg_3,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:Arg_8<=0 && Arg_8<=Arg_3 && Arg_8<=Arg_20 && Arg_20+Arg_8<=0 && 0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && Arg_20<=Arg_8 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && Arg_20<=Arg_3 && Arg_20<=0 && 0<=Arg_20 && 1<=Arg_0
80:f20(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f26(Arg_0,Arg_3,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:Arg_8<=0 && Arg_8<=Arg_3 && Arg_8<=Arg_20 && Arg_20+Arg_8<=0 && 0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && Arg_20<=Arg_8 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && Arg_20<=Arg_3 && Arg_20<=0 && 0<=Arg_20 && Arg_3<=0 && Arg_0<=0
81:f20(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f26(Arg_0,Arg_3,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:Arg_8<=0 && Arg_8<=Arg_3 && Arg_8<=Arg_20 && Arg_20+Arg_8<=0 && 0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && Arg_20<=Arg_8 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && Arg_20<=Arg_3 && Arg_20<=0 && 0<=Arg_20 && 1<=Arg_3 && Arg_0<=0
85:f26(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && Arg_2+1<=Arg_4 && Z<=0 && 1<=A1
83:f26(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && 1<=Z && Arg_2+1<=Arg_4
84:f26(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && Arg_2+1<=Arg_4 && Z<=0 && A1<=0
82:f26(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f68(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && Arg_4<=Arg_2
88:f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8+1,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && Arg_7<=Arg_8 && 2+Arg_9<=0
89:f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8+1,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && Arg_7<=Arg_8 && 0<=Arg_9
86:f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && Arg_8+1<=Arg_7
87:f33(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,-1,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && Arg_7<=Arg_8 && Arg_9+1<=0 && 0<=1+Arg_9
93:f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Z,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && Arg_8+1<=Arg_7 && 1<=Z
94:f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Z,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && 1<=B1 && 1<=A1 && Arg_8+1<=Arg_7 && Z<=0
91:f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f52(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Z,B1,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && A1<=0 && Arg_8+1<=Arg_7 && Z<=0
92:f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f52(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Z,C1,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && B1<=0 && 1<=A1 && Arg_8+1<=Arg_7 && Z<=0
90:f39(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f68(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && Arg_7<=Arg_8
100:f52(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && Arg_11<=Arg_2 && Arg_11<=0 && Arg_14+1<=0
97:f52(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f59(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Z,Arg_20,Arg_21):|:1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && Arg_11<=Arg_2 && Arg_11<=0 && 0<=Arg_14 && Arg_16<=2
98:f52(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f59(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Z,Arg_20,Arg_21):|:1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && Arg_11<=Arg_2 && Arg_11<=0 && 0<=Arg_14 && 4<=Arg_16
99:f52(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f59(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,3,Z,Arg_20,Arg_21):|:1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && Arg_11<=Arg_2 && Arg_11<=0 && 0<=Arg_14 && Arg_16<=3 && 3<=Arg_16
95:f52(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f68(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,3,Arg_18,Arg_20,Arg_21):|:1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && Arg_11<=Arg_2 && Arg_11<=0 && 0<=Arg_14 && Z<=0 && Arg_16<=3 && 3<=Arg_16
96:f52(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f68(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,3,Arg_18,Arg_20,Arg_21):|:1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && Arg_11<=Arg_2 && Arg_11<=0 && 0<=Arg_14 && 2<=Z && Arg_16<=3 && 3<=Arg_16
101:f59(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f63(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Z,Arg_16,Arg_18,Arg_20,Arg_21):|:1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 0<=Arg_14+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_14+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_14+Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_14+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_14+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && 0<=Arg_14+Arg_2 && Arg_11<=Arg_2 && 0<=Arg_14 && Arg_11<=Arg_14 && Arg_11<=0 && Arg_18<=10
102:f59(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f63(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Z,Arg_16,10,Arg_20,Arg_21):|:1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 0<=Arg_14+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && 1<=Arg_14+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && 1<=Arg_14+Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_14+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_14+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && 0<=Arg_14+Arg_2 && Arg_11<=Arg_2 && 0<=Arg_14 && Arg_11<=Arg_14 && Arg_11<=0 && 11<=Arg_18
103:f63(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_18<=10+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && Arg_18<=9+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_18<=9+Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_18<=10+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && Arg_18<=10+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && Arg_18<=10+Arg_2 && Arg_11<=Arg_2 && Arg_18<=10 && Arg_11+Arg_18<=10 && Arg_11<=0 && Arg_14+1<=0
104:f63(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f26(Arg_0,Arg_2+1,Arg_3,Arg_4,Arg_7,Arg_8,Arg_11,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20+1,Arg_21):|:1+Arg_8<=Arg_7 && 0<=Arg_8 && 1<=Arg_7+Arg_8 && 1<=Arg_4+Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_18<=10+Arg_8 && Arg_11<=Arg_8 && 1<=Arg_7 && 2<=Arg_4+Arg_7 && 1<=Arg_3+Arg_7 && 1<=Arg_20+Arg_7 && 1<=Arg_2+Arg_7 && Arg_18<=9+Arg_7 && 1+Arg_11<=Arg_7 && 1<=Arg_4 && 1<=Arg_3+Arg_4 && 1+Arg_3<=Arg_4 && 1<=Arg_20+Arg_4 && 1+Arg_20<=Arg_4 && 1<=Arg_2+Arg_4 && 1+Arg_2<=Arg_4 && Arg_18<=9+Arg_4 && 1+Arg_11<=Arg_4 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_18<=10+Arg_3 && Arg_11<=Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && Arg_18<=10+Arg_20 && Arg_11<=Arg_20 && 0<=Arg_2 && Arg_18<=10+Arg_2 && Arg_11<=Arg_2 && Arg_18<=10 && Arg_11+Arg_18<=10 && Arg_11<=0 && 0<=Arg_14
105:f68(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f71(0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && Arg_20<=0
106:f68(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f71(1,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_2 && 1<=Arg_20
107:f71(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21) -> f71(Arg_0,Arg_2,Arg_3,Arg_4,Arg_7,Arg_8,Arg_9,Arg_11,Arg_14,Arg_16,Arg_18,Arg_20,Arg_21):|:0<=Arg_8 && 0<=Arg_3+Arg_8 && 0<=Arg_20+Arg_8 && 0<=Arg_2+Arg_8 && 0<=Arg_0+Arg_8 && Arg_0<=1+Arg_8 && Arg_3<=Arg_2 && 0<=Arg_3 && 0<=Arg_20+Arg_3 && 0<=Arg_2+Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_20<=Arg_2 && 0<=Arg_20 && 0<=Arg_2+Arg_20 && 0<=Arg_0+Arg_20 && Arg_0<=Arg_20 && 0<=Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=Arg_2 && Arg_0<=1 && 0<=Arg_0

All Bounds

Timebounds

Overall timebound:inf {Infinity}
76: f0->f20: 1 {O(1)}
77: f0->f20: 1 {O(1)}
78: f0->f20: 1 {O(1)}
79: f20->f26: 1 {O(1)}
80: f20->f26: 1 {O(1)}
81: f20->f26: 1 {O(1)}
82: f26->f68: 1 {O(1)}
83: f26->f33: inf {Infinity}
84: f26->f33: inf {Infinity}
85: f26->f26: inf {Infinity}
86: f33->f39: inf {Infinity}
87: f33->f39: inf {Infinity}
88: f33->f33: inf {Infinity}
89: f33->f33: inf {Infinity}
90: f39->f68: 1 {O(1)}
91: f39->f52: inf {Infinity}
92: f39->f52: inf {Infinity}
93: f39->f26: inf {Infinity}
94: f39->f26: inf {Infinity}
95: f52->f68: 1 {O(1)}
96: f52->f68: 1 {O(1)}
97: f52->f59: inf {Infinity}
98: f52->f59: inf {Infinity}
99: f52->f59: inf {Infinity}
100: f52->f26: inf {Infinity}
101: f59->f63: inf {Infinity}
102: f59->f63: inf {Infinity}
103: f63->f26: inf {Infinity}
104: f63->f26: inf {Infinity}
105: f68->f71: 1 {O(1)}
106: f68->f71: 1 {O(1)}
107: f71->f71: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
76: f0->f20: 1 {O(1)}
77: f0->f20: 1 {O(1)}
78: f0->f20: 1 {O(1)}
79: f20->f26: 1 {O(1)}
80: f20->f26: 1 {O(1)}
81: f20->f26: 1 {O(1)}
82: f26->f68: 1 {O(1)}
83: f26->f33: inf {Infinity}
84: f26->f33: inf {Infinity}
85: f26->f26: inf {Infinity}
86: f33->f39: inf {Infinity}
87: f33->f39: inf {Infinity}
88: f33->f33: inf {Infinity}
89: f33->f33: inf {Infinity}
90: f39->f68: 1 {O(1)}
91: f39->f52: inf {Infinity}
92: f39->f52: inf {Infinity}
93: f39->f26: inf {Infinity}
94: f39->f26: inf {Infinity}
95: f52->f68: 1 {O(1)}
96: f52->f68: 1 {O(1)}
97: f52->f59: inf {Infinity}
98: f52->f59: inf {Infinity}
99: f52->f59: inf {Infinity}
100: f52->f26: inf {Infinity}
101: f59->f63: inf {Infinity}
102: f59->f63: inf {Infinity}
103: f63->f26: inf {Infinity}
104: f63->f26: inf {Infinity}
105: f68->f71: 1 {O(1)}
106: f68->f71: 1 {O(1)}
107: f71->f71: inf {Infinity}

Sizebounds

76: f0->f20, Arg_2: Arg_2 {O(n)}
76: f0->f20, Arg_7: Arg_7 {O(n)}
76: f0->f20, Arg_8: 0 {O(1)}
76: f0->f20, Arg_9: Arg_9 {O(n)}
76: f0->f20, Arg_11: Arg_11 {O(n)}
76: f0->f20, Arg_14: Arg_14 {O(n)}
76: f0->f20, Arg_16: Arg_16 {O(n)}
76: f0->f20, Arg_18: Arg_18 {O(n)}
76: f0->f20, Arg_20: 0 {O(1)}
76: f0->f20, Arg_21: 3 {O(1)}
77: f0->f20, Arg_2: Arg_2 {O(n)}
77: f0->f20, Arg_7: Arg_7 {O(n)}
77: f0->f20, Arg_8: 0 {O(1)}
77: f0->f20, Arg_9: Arg_9 {O(n)}
77: f0->f20, Arg_11: Arg_11 {O(n)}
77: f0->f20, Arg_14: Arg_14 {O(n)}
77: f0->f20, Arg_16: Arg_16 {O(n)}
77: f0->f20, Arg_18: Arg_18 {O(n)}
77: f0->f20, Arg_20: 0 {O(1)}
77: f0->f20, Arg_21: Arg_21 {O(n)}
78: f0->f20, Arg_2: Arg_2 {O(n)}
78: f0->f20, Arg_7: Arg_7 {O(n)}
78: f0->f20, Arg_8: 0 {O(1)}
78: f0->f20, Arg_9: Arg_9 {O(n)}
78: f0->f20, Arg_11: Arg_11 {O(n)}
78: f0->f20, Arg_14: Arg_14 {O(n)}
78: f0->f20, Arg_16: Arg_16 {O(n)}
78: f0->f20, Arg_18: Arg_18 {O(n)}
78: f0->f20, Arg_20: 0 {O(1)}
78: f0->f20, Arg_21: Arg_21 {O(n)}
79: f20->f26, Arg_7: 3*Arg_7 {O(n)}
79: f20->f26, Arg_8: 0 {O(1)}
79: f20->f26, Arg_9: 3*Arg_9 {O(n)}
79: f20->f26, Arg_11: 3*Arg_11 {O(n)}
79: f20->f26, Arg_14: 3*Arg_14 {O(n)}
79: f20->f26, Arg_16: 3*Arg_16 {O(n)}
79: f20->f26, Arg_18: 3*Arg_18 {O(n)}
79: f20->f26, Arg_20: 0 {O(1)}
79: f20->f26, Arg_21: 2*Arg_21+3 {O(n)}
80: f20->f26, Arg_2: 0 {O(1)}
80: f20->f26, Arg_3: 0 {O(1)}
80: f20->f26, Arg_7: 3*Arg_7 {O(n)}
80: f20->f26, Arg_8: 0 {O(1)}
80: f20->f26, Arg_9: 3*Arg_9 {O(n)}
80: f20->f26, Arg_11: 3*Arg_11 {O(n)}
80: f20->f26, Arg_14: 3*Arg_14 {O(n)}
80: f20->f26, Arg_16: 3*Arg_16 {O(n)}
80: f20->f26, Arg_18: 3*Arg_18 {O(n)}
80: f20->f26, Arg_20: 0 {O(1)}
80: f20->f26, Arg_21: 2*Arg_21+3 {O(n)}
81: f20->f26, Arg_7: 3*Arg_7 {O(n)}
81: f20->f26, Arg_8: 0 {O(1)}
81: f20->f26, Arg_9: 3*Arg_9 {O(n)}
81: f20->f26, Arg_11: 3*Arg_11 {O(n)}
81: f20->f26, Arg_14: 3*Arg_14 {O(n)}
81: f20->f26, Arg_16: 3*Arg_16 {O(n)}
81: f20->f26, Arg_18: 3*Arg_18 {O(n)}
81: f20->f26, Arg_20: 0 {O(1)}
81: f20->f26, Arg_21: 2*Arg_21+3 {O(n)}
82: f26->f68, Arg_7: 171*Arg_7 {O(n)}
82: f26->f68, Arg_8: 0 {O(1)}
82: f26->f68, Arg_16: 171*Arg_16+36 {O(n)}
82: f26->f68, Arg_21: 114*Arg_21+171 {O(n)}
83: f26->f33, Arg_7: 27*Arg_7 {O(n)}
83: f26->f33, Arg_8: 0 {O(1)}
83: f26->f33, Arg_16: 27*Arg_16+6 {O(n)}
83: f26->f33, Arg_21: 18*Arg_21+27 {O(n)}
84: f26->f33, Arg_7: 27*Arg_7 {O(n)}
84: f26->f33, Arg_8: 0 {O(1)}
84: f26->f33, Arg_16: 27*Arg_16+6 {O(n)}
84: f26->f33, Arg_21: 18*Arg_21+27 {O(n)}
85: f26->f26, Arg_7: 27*Arg_7 {O(n)}
85: f26->f26, Arg_8: 0 {O(1)}
85: f26->f26, Arg_16: 27*Arg_16+6 {O(n)}
85: f26->f26, Arg_21: 18*Arg_21+27 {O(n)}
86: f33->f39, Arg_7: 27*Arg_7 {O(n)}
86: f33->f39, Arg_8: 0 {O(1)}
86: f33->f39, Arg_16: 27*Arg_16+6 {O(n)}
86: f33->f39, Arg_21: 18*Arg_21+27 {O(n)}
87: f33->f39, Arg_7: 54*Arg_7 {O(n)}
87: f33->f39, Arg_8: 0 {O(1)}
87: f33->f39, Arg_9: 1 {O(1)}
87: f33->f39, Arg_16: 54*Arg_16+12 {O(n)}
87: f33->f39, Arg_21: 36*Arg_21+54 {O(n)}
88: f33->f33, Arg_7: 54*Arg_7 {O(n)}
88: f33->f33, Arg_16: 54*Arg_16+12 {O(n)}
88: f33->f33, Arg_21: 36*Arg_21+54 {O(n)}
89: f33->f33, Arg_7: 54*Arg_7 {O(n)}
89: f33->f33, Arg_16: 54*Arg_16+12 {O(n)}
89: f33->f33, Arg_21: 36*Arg_21+54 {O(n)}
90: f39->f68, Arg_7: 54*Arg_7 {O(n)}
90: f39->f68, Arg_8: 0 {O(1)}
90: f39->f68, Arg_9: 1 {O(1)}
90: f39->f68, Arg_16: 54*Arg_16+12 {O(n)}
90: f39->f68, Arg_21: 36*Arg_21+54 {O(n)}
91: f39->f52, Arg_7: 27*Arg_7 {O(n)}
91: f39->f52, Arg_8: 0 {O(1)}
91: f39->f52, Arg_16: 27*Arg_16+6 {O(n)}
91: f39->f52, Arg_21: 18*Arg_21+27 {O(n)}
92: f39->f52, Arg_7: 27*Arg_7 {O(n)}
92: f39->f52, Arg_8: 0 {O(1)}
92: f39->f52, Arg_16: 27*Arg_16+6 {O(n)}
92: f39->f52, Arg_21: 18*Arg_21+27 {O(n)}
93: f39->f26, Arg_7: 27*Arg_7 {O(n)}
93: f39->f26, Arg_8: 0 {O(1)}
93: f39->f26, Arg_16: 27*Arg_16+6 {O(n)}
93: f39->f26, Arg_21: 18*Arg_21+27 {O(n)}
94: f39->f26, Arg_7: 27*Arg_7 {O(n)}
94: f39->f26, Arg_8: 0 {O(1)}
94: f39->f26, Arg_16: 27*Arg_16+6 {O(n)}
94: f39->f26, Arg_21: 18*Arg_21+27 {O(n)}
95: f52->f68, Arg_7: 54*Arg_7 {O(n)}
95: f52->f68, Arg_8: 0 {O(1)}
95: f52->f68, Arg_16: 3 {O(1)}
95: f52->f68, Arg_21: 36*Arg_21+54 {O(n)}
96: f52->f68, Arg_7: 54*Arg_7 {O(n)}
96: f52->f68, Arg_8: 0 {O(1)}
96: f52->f68, Arg_16: 3 {O(1)}
96: f52->f68, Arg_21: 36*Arg_21+54 {O(n)}
97: f52->f59, Arg_7: 27*Arg_7 {O(n)}
97: f52->f59, Arg_8: 0 {O(1)}
97: f52->f59, Arg_16: 27*Arg_16+6 {O(n)}
97: f52->f59, Arg_21: 18*Arg_21+27 {O(n)}
98: f52->f59, Arg_7: 27*Arg_7 {O(n)}
98: f52->f59, Arg_8: 0 {O(1)}
98: f52->f59, Arg_16: 27*Arg_16+6 {O(n)}
98: f52->f59, Arg_21: 18*Arg_21+27 {O(n)}
99: f52->f59, Arg_7: 27*Arg_7 {O(n)}
99: f52->f59, Arg_8: 0 {O(1)}
99: f52->f59, Arg_16: 3 {O(1)}
99: f52->f59, Arg_21: 18*Arg_21+27 {O(n)}
100: f52->f26, Arg_7: 27*Arg_7 {O(n)}
100: f52->f26, Arg_8: 0 {O(1)}
100: f52->f26, Arg_16: 27*Arg_16+6 {O(n)}
100: f52->f26, Arg_21: 18*Arg_21+27 {O(n)}
101: f59->f63, Arg_7: 27*Arg_7 {O(n)}
101: f59->f63, Arg_8: 0 {O(1)}
101: f59->f63, Arg_16: 27*Arg_16+6 {O(n)}
101: f59->f63, Arg_21: 18*Arg_21+27 {O(n)}
102: f59->f63, Arg_7: 27*Arg_7 {O(n)}
102: f59->f63, Arg_8: 0 {O(1)}
102: f59->f63, Arg_16: 27*Arg_16+6 {O(n)}
102: f59->f63, Arg_18: 10 {O(1)}
102: f59->f63, Arg_21: 18*Arg_21+27 {O(n)}
103: f63->f26, Arg_7: 27*Arg_7 {O(n)}
103: f63->f26, Arg_8: 0 {O(1)}
103: f63->f26, Arg_16: 27*Arg_16+6 {O(n)}
103: f63->f26, Arg_21: 18*Arg_21+27 {O(n)}
104: f63->f26, Arg_7: 27*Arg_7 {O(n)}
104: f63->f26, Arg_8: 0 {O(1)}
104: f63->f26, Arg_16: 27*Arg_16+6 {O(n)}
104: f63->f26, Arg_21: 18*Arg_21+27 {O(n)}
105: f68->f71, Arg_0: 0 {O(1)}
105: f68->f71, Arg_7: 333*Arg_7 {O(n)}
105: f68->f71, Arg_8: 0 {O(1)}
105: f68->f71, Arg_16: 225*Arg_16+54 {O(n)}
105: f68->f71, Arg_20: 0 {O(1)}
105: f68->f71, Arg_21: 222*Arg_21+333 {O(n)}
106: f68->f71, Arg_0: 1 {O(1)}
106: f68->f71, Arg_7: 333*Arg_7 {O(n)}
106: f68->f71, Arg_8: 0 {O(1)}
106: f68->f71, Arg_16: 225*Arg_16+54 {O(n)}
106: f68->f71, Arg_21: 222*Arg_21+333 {O(n)}
107: f71->f71, Arg_0: 1 {O(1)}
107: f71->f71, Arg_7: 666*Arg_7 {O(n)}
107: f71->f71, Arg_8: 0 {O(1)}
107: f71->f71, Arg_16: 450*Arg_16+108 {O(n)}
107: f71->f71, Arg_21: 444*Arg_21+666 {O(n)}