Initial Problem

Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9
Temp_Vars: K, L
Locations: f0, f17, f27, f37, f45, f55, f65, f75, f83, f93
Transitions:
0:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f17(0,K,L,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9)
1:f17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f17(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_3+1<=Arg_4
16:f17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_4-1,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_4<=Arg_3
2:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5-1,Arg_6,Arg_7,Arg_8,Arg_9):|:0<=Arg_5
15:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,Arg_7,Arg_8,Arg_9):|:Arg_5+1<=0
3:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_8,Arg_9):|:Arg_6+1<=Arg_4
14:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f45(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_4<=Arg_6
4:f45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f45(Arg_0+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_0+1<=Arg_4
13:f45(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,0,Arg_8,Arg_9):|:Arg_4<=Arg_0
5:f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_8,Arg_9):|:Arg_7+1<=Arg_4
12:f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f65(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_4-1,Arg_9):|:Arg_4<=Arg_7
6:f65(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f65(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8-1,Arg_9):|:0<=Arg_8
11:f65(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0):|:Arg_8+1<=0
7:f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9+1):|:Arg_9+1<=Arg_4
10:f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f83(Arg_4-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_4<=Arg_9
8:f83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f83(Arg_0-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:0<=Arg_0
9:f83(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f93(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_0+1<=0

Preprocessing

Eliminate variables {K,L,Arg_1,Arg_2} that do not contribute to the problem

Found invariant 1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && 1+Arg_8<=Arg_0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_0+Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 for location f65

Found invariant Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 for location f45

Found invariant Arg_7<=Arg_6 && Arg_7<=Arg_3 && Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_0+Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 for location f55

Found invariant Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1+Arg_0+Arg_5<=0 && Arg_4<=Arg_3 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 for location f37

Found invariant Arg_9<=Arg_7 && Arg_9<=Arg_6 && Arg_9<=Arg_3 && 0<=Arg_9 && 1+Arg_8<=Arg_9 && 0<=Arg_7+Arg_9 && 0<=Arg_6+Arg_9 && 1+Arg_5<=Arg_9 && Arg_4<=Arg_9 && 0<=Arg_3+Arg_9 && 1+Arg_0<=Arg_9 && 1+Arg_8<=0 && 1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 2+Arg_5+Arg_8<=0 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && Arg_8<=Arg_0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 1+Arg_0<=Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_0 && Arg_4<=Arg_3 && 1+Arg_0<=Arg_4 && 0<=Arg_3 && 1+Arg_0<=Arg_3 for location f83

Found invariant Arg_9<=Arg_7 && Arg_9<=Arg_6 && Arg_9<=Arg_3 && Arg_9<=Arg_0 && 0<=Arg_9 && 1+Arg_8<=Arg_9 && 0<=Arg_7+Arg_9 && 0<=Arg_6+Arg_9 && 1+Arg_5<=Arg_9 && 0<=Arg_3+Arg_9 && 0<=Arg_0+Arg_9 && 1+Arg_8<=0 && 1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 2+Arg_5+Arg_8<=0 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && 1+Arg_8<=Arg_0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_0+Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 for location f75

Found invariant Arg_9<=Arg_7 && Arg_9<=Arg_6 && Arg_9<=Arg_3 && 0<=Arg_9 && 1+Arg_8<=Arg_9 && 0<=Arg_7+Arg_9 && 0<=Arg_6+Arg_9 && 1+Arg_5<=Arg_9 && Arg_4<=Arg_9 && 0<=Arg_3+Arg_9 && 1+Arg_0<=Arg_9 && 1+Arg_8<=0 && 1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 2+Arg_5+Arg_8<=0 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && Arg_8<=Arg_0 && 2+Arg_0+Arg_8<=0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 1+Arg_0<=Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_0 && 2+Arg_0+Arg_5<=0 && Arg_4<=Arg_3 && 1+Arg_0<=Arg_4 && 0<=Arg_3 && 1+Arg_0<=Arg_3 && 1+Arg_0<=0 for location f93

Found invariant 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 for location f17

Found invariant 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 for location f27

Problem after Preprocessing

Start: f0
Program_Vars: Arg_0, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9
Temp_Vars:
Locations: f0, f17, f27, f37, f45, f55, f65, f75, f83, f93
Transitions:
42:f0(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f17(0,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9)
43:f17(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f17(Arg_0,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_3+1<=Arg_4
44:f17(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(Arg_0,Arg_3,Arg_4,Arg_4-1,Arg_6,Arg_7,Arg_8,Arg_9):|:0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=Arg_3
45:f27(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(Arg_0,Arg_3,Arg_4,Arg_5-1,Arg_6,Arg_7,Arg_8,Arg_9):|:1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 && 0<=Arg_5
46:f27(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f37(Arg_0,Arg_3,Arg_4,Arg_5,0,Arg_7,Arg_8,Arg_9):|:1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_5+1<=0
47:f37(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f37(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_8,Arg_9):|:Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1+Arg_0+Arg_5<=0 && Arg_4<=Arg_3 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_6+1<=Arg_4
48:f37(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f45(0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1+Arg_0+Arg_5<=0 && Arg_4<=Arg_3 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_4<=Arg_6
49:f45(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f45(Arg_0+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 && Arg_0+1<=Arg_4
50:f45(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f55(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,0,Arg_8,Arg_9):|:Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 && Arg_4<=Arg_0
51:f55(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f55(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_8,Arg_9):|:Arg_7<=Arg_6 && Arg_7<=Arg_3 && Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_0+Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 && Arg_7+1<=Arg_4
52:f55(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f65(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_4-1,Arg_9):|:Arg_7<=Arg_6 && Arg_7<=Arg_3 && Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_0+Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 && Arg_4<=Arg_7
53:f65(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f65(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8-1,Arg_9):|:1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && 1+Arg_8<=Arg_0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_0+Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 && 0<=Arg_8
54:f65(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f75(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0):|:1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && 1+Arg_8<=Arg_0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_0+Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 && Arg_8+1<=0
55:f75(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f75(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9+1):|:Arg_9<=Arg_7 && Arg_9<=Arg_6 && Arg_9<=Arg_3 && Arg_9<=Arg_0 && 0<=Arg_9 && 1+Arg_8<=Arg_9 && 0<=Arg_7+Arg_9 && 0<=Arg_6+Arg_9 && 1+Arg_5<=Arg_9 && 0<=Arg_3+Arg_9 && 0<=Arg_0+Arg_9 && 1+Arg_8<=0 && 1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 2+Arg_5+Arg_8<=0 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && 1+Arg_8<=Arg_0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_0+Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 && Arg_9+1<=Arg_4
56:f75(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f83(Arg_4-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_9<=Arg_7 && Arg_9<=Arg_6 && Arg_9<=Arg_3 && Arg_9<=Arg_0 && 0<=Arg_9 && 1+Arg_8<=Arg_9 && 0<=Arg_7+Arg_9 && 0<=Arg_6+Arg_9 && 1+Arg_5<=Arg_9 && 0<=Arg_3+Arg_9 && 0<=Arg_0+Arg_9 && 1+Arg_8<=0 && 1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 2+Arg_5+Arg_8<=0 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && 1+Arg_8<=Arg_0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_0+Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 && Arg_4<=Arg_9
57:f83(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f83(Arg_0-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_9<=Arg_7 && Arg_9<=Arg_6 && Arg_9<=Arg_3 && 0<=Arg_9 && 1+Arg_8<=Arg_9 && 0<=Arg_7+Arg_9 && 0<=Arg_6+Arg_9 && 1+Arg_5<=Arg_9 && Arg_4<=Arg_9 && 0<=Arg_3+Arg_9 && 1+Arg_0<=Arg_9 && 1+Arg_8<=0 && 1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 2+Arg_5+Arg_8<=0 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && Arg_8<=Arg_0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 1+Arg_0<=Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_0 && Arg_4<=Arg_3 && 1+Arg_0<=Arg_4 && 0<=Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_0
58:f83(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f93(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_9<=Arg_7 && Arg_9<=Arg_6 && Arg_9<=Arg_3 && 0<=Arg_9 && 1+Arg_8<=Arg_9 && 0<=Arg_7+Arg_9 && 0<=Arg_6+Arg_9 && 1+Arg_5<=Arg_9 && Arg_4<=Arg_9 && 0<=Arg_3+Arg_9 && 1+Arg_0<=Arg_9 && 1+Arg_8<=0 && 1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 2+Arg_5+Arg_8<=0 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && Arg_8<=Arg_0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 1+Arg_0<=Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_0 && Arg_4<=Arg_3 && 1+Arg_0<=Arg_4 && 0<=Arg_3 && 1+Arg_0<=Arg_3 && Arg_0+1<=0

MPRF for transition 43:f17(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f17(Arg_0,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_3+1<=Arg_4 of depth 1:

new bound:

Arg_4 {O(n)}

MPRF:

f17 [Arg_4-Arg_3 ]

MPRF for transition 45:f27(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(Arg_0,Arg_3,Arg_4,Arg_5-1,Arg_6,Arg_7,Arg_8,Arg_9):|:1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && Arg_4<=Arg_3 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 && 0<=Arg_5 of depth 1:

new bound:

2*Arg_4+3 {O(n)}

MPRF:

f27 [Arg_5+1 ]

MPRF for transition 47:f37(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f37(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_8,Arg_9):|:Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1+Arg_0+Arg_5<=0 && Arg_4<=Arg_3 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && Arg_0<=0 && 0<=Arg_0 && Arg_6+1<=Arg_4 of depth 1:

new bound:

2*Arg_4+1 {O(n)}

MPRF:

f37 [Arg_3+1-Arg_6 ]

MPRF for transition 49:f45(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f45(Arg_0+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 && Arg_0+1<=Arg_4 of depth 1:

new bound:

2*Arg_4+2 {O(n)}

MPRF:

f45 [Arg_6+1-Arg_0 ]

MPRF for transition 51:f55(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f55(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_8,Arg_9):|:Arg_7<=Arg_6 && Arg_7<=Arg_3 && Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_0+Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 && Arg_7+1<=Arg_4 of depth 1:

new bound:

2*Arg_4+3 {O(n)}

MPRF:

f55 [Arg_0+1-Arg_7 ]

MPRF for transition 53:f65(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f65(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8-1,Arg_9):|:1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && 1+Arg_8<=Arg_0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_0+Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 && 0<=Arg_8 of depth 1:

new bound:

32*Arg_4+3 {O(n)}

MPRF:

f65 [Arg_8+1 ]

MPRF for transition 55:f75(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f75(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9+1):|:Arg_9<=Arg_7 && Arg_9<=Arg_6 && Arg_9<=Arg_3 && Arg_9<=Arg_0 && 0<=Arg_9 && 1+Arg_8<=Arg_9 && 0<=Arg_7+Arg_9 && 0<=Arg_6+Arg_9 && 1+Arg_5<=Arg_9 && 0<=Arg_3+Arg_9 && 0<=Arg_0+Arg_9 && 1+Arg_8<=0 && 1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 2+Arg_5+Arg_8<=0 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && 1+Arg_8<=Arg_0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && Arg_7<=Arg_0 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 0<=Arg_0+Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 0<=Arg_0+Arg_6 && Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && Arg_4<=Arg_3 && Arg_4<=Arg_0 && 0<=Arg_3 && 0<=Arg_0+Arg_3 && Arg_0<=Arg_3 && 0<=Arg_0 && Arg_9+1<=Arg_4 of depth 1:

new bound:

8*Arg_4+9 {O(n)}

MPRF:

f75 [Arg_0+1-Arg_9 ]

MPRF for transition 57:f83(Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f83(Arg_0-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_9<=Arg_7 && Arg_9<=Arg_6 && Arg_9<=Arg_3 && 0<=Arg_9 && 1+Arg_8<=Arg_9 && 0<=Arg_7+Arg_9 && 0<=Arg_6+Arg_9 && 1+Arg_5<=Arg_9 && Arg_4<=Arg_9 && 0<=Arg_3+Arg_9 && 1+Arg_0<=Arg_9 && 1+Arg_8<=0 && 1+Arg_8<=Arg_7 && 1+Arg_8<=Arg_6 && 2+Arg_5+Arg_8<=0 && 1+Arg_8<=Arg_4 && 1+Arg_8<=Arg_3 && Arg_8<=Arg_0 && Arg_5<=Arg_8 && Arg_7<=Arg_6 && Arg_7<=Arg_3 && 0<=Arg_7 && 0<=Arg_6+Arg_7 && 1+Arg_5<=Arg_7 && Arg_4<=Arg_7 && 0<=Arg_3+Arg_7 && 1+Arg_0<=Arg_7 && Arg_6<=Arg_3 && 0<=Arg_6 && 1+Arg_5<=Arg_6 && Arg_4<=Arg_6 && 0<=Arg_3+Arg_6 && 1+Arg_0<=Arg_6 && 1+Arg_5<=0 && 1+Arg_5<=Arg_4 && 1+Arg_5<=Arg_3 && Arg_5<=Arg_0 && Arg_4<=Arg_3 && 1+Arg_0<=Arg_4 && 0<=Arg_3 && 1+Arg_0<=Arg_3 && 0<=Arg_0 of depth 1:

new bound:

128*Arg_4+3 {O(n)}

MPRF:

f83 [Arg_0+1 ]

All Bounds

Timebounds

Overall timebound:177*Arg_4+33 {O(n)}
42: f0->f17: 1 {O(1)}
43: f17->f17: Arg_4 {O(n)}
44: f17->f27: 1 {O(1)}
45: f27->f27: 2*Arg_4+3 {O(n)}
46: f27->f37: 1 {O(1)}
47: f37->f37: 2*Arg_4+1 {O(n)}
48: f37->f45: 1 {O(1)}
49: f45->f45: 2*Arg_4+2 {O(n)}
50: f45->f55: 1 {O(1)}
51: f55->f55: 2*Arg_4+3 {O(n)}
52: f55->f65: 1 {O(1)}
53: f65->f65: 32*Arg_4+3 {O(n)}
54: f65->f75: 1 {O(1)}
55: f75->f75: 8*Arg_4+9 {O(n)}
56: f75->f83: 1 {O(1)}
57: f83->f83: 128*Arg_4+3 {O(n)}
58: f83->f93: 1 {O(1)}

Costbounds

Overall costbound: 177*Arg_4+33 {O(n)}
42: f0->f17: 1 {O(1)}
43: f17->f17: Arg_4 {O(n)}
44: f17->f27: 1 {O(1)}
45: f27->f27: 2*Arg_4+3 {O(n)}
46: f27->f37: 1 {O(1)}
47: f37->f37: 2*Arg_4+1 {O(n)}
48: f37->f45: 1 {O(1)}
49: f45->f45: 2*Arg_4+2 {O(n)}
50: f45->f55: 1 {O(1)}
51: f55->f55: 2*Arg_4+3 {O(n)}
52: f55->f65: 1 {O(1)}
53: f65->f65: 32*Arg_4+3 {O(n)}
54: f65->f75: 1 {O(1)}
55: f75->f75: 8*Arg_4+9 {O(n)}
56: f75->f83: 1 {O(1)}
57: f83->f83: 128*Arg_4+3 {O(n)}
58: f83->f93: 1 {O(1)}

Sizebounds

42: f0->f17, Arg_0: 0 {O(1)}
42: f0->f17, Arg_3: 0 {O(1)}
42: f0->f17, Arg_4: Arg_4 {O(n)}
42: f0->f17, Arg_5: Arg_5 {O(n)}
42: f0->f17, Arg_6: Arg_6 {O(n)}
42: f0->f17, Arg_7: Arg_7 {O(n)}
42: f0->f17, Arg_8: Arg_8 {O(n)}
42: f0->f17, Arg_9: Arg_9 {O(n)}
43: f17->f17, Arg_0: 0 {O(1)}
43: f17->f17, Arg_3: Arg_4 {O(n)}
43: f17->f17, Arg_4: Arg_4 {O(n)}
43: f17->f17, Arg_5: Arg_5 {O(n)}
43: f17->f17, Arg_6: Arg_6 {O(n)}
43: f17->f17, Arg_7: Arg_7 {O(n)}
43: f17->f17, Arg_8: Arg_8 {O(n)}
43: f17->f17, Arg_9: Arg_9 {O(n)}
44: f17->f27, Arg_0: 0 {O(1)}
44: f17->f27, Arg_3: Arg_4 {O(n)}
44: f17->f27, Arg_4: 2*Arg_4 {O(n)}
44: f17->f27, Arg_5: 2*Arg_4+2 {O(n)}
44: f17->f27, Arg_6: 2*Arg_6 {O(n)}
44: f17->f27, Arg_7: 2*Arg_7 {O(n)}
44: f17->f27, Arg_8: 2*Arg_8 {O(n)}
44: f17->f27, Arg_9: 2*Arg_9 {O(n)}
45: f27->f27, Arg_0: 0 {O(1)}
45: f27->f27, Arg_3: Arg_4 {O(n)}
45: f27->f27, Arg_4: 2*Arg_4 {O(n)}
45: f27->f27, Arg_5: 2*Arg_4+3 {O(n)}
45: f27->f27, Arg_6: 2*Arg_6 {O(n)}
45: f27->f27, Arg_7: 2*Arg_7 {O(n)}
45: f27->f27, Arg_8: 2*Arg_8 {O(n)}
45: f27->f27, Arg_9: 2*Arg_9 {O(n)}
46: f27->f37, Arg_0: 0 {O(1)}
46: f27->f37, Arg_3: 2*Arg_4 {O(n)}
46: f27->f37, Arg_4: 4*Arg_4 {O(n)}
46: f27->f37, Arg_5: 4*Arg_4+5 {O(n)}
46: f27->f37, Arg_6: 0 {O(1)}
46: f27->f37, Arg_7: 4*Arg_7 {O(n)}
46: f27->f37, Arg_8: 4*Arg_8 {O(n)}
46: f27->f37, Arg_9: 4*Arg_9 {O(n)}
47: f37->f37, Arg_0: 0 {O(1)}
47: f37->f37, Arg_3: 2*Arg_4 {O(n)}
47: f37->f37, Arg_4: 4*Arg_4 {O(n)}
47: f37->f37, Arg_5: 4*Arg_4+5 {O(n)}
47: f37->f37, Arg_6: 2*Arg_4+1 {O(n)}
47: f37->f37, Arg_7: 4*Arg_7 {O(n)}
47: f37->f37, Arg_8: 4*Arg_8 {O(n)}
47: f37->f37, Arg_9: 4*Arg_9 {O(n)}
48: f37->f45, Arg_0: 0 {O(1)}
48: f37->f45, Arg_3: 4*Arg_4 {O(n)}
48: f37->f45, Arg_4: 8*Arg_4 {O(n)}
48: f37->f45, Arg_5: 8*Arg_4+10 {O(n)}
48: f37->f45, Arg_6: 2*Arg_4+1 {O(n)}
48: f37->f45, Arg_7: 8*Arg_7 {O(n)}
48: f37->f45, Arg_8: 8*Arg_8 {O(n)}
48: f37->f45, Arg_9: 8*Arg_9 {O(n)}
49: f45->f45, Arg_0: 2*Arg_4+2 {O(n)}
49: f45->f45, Arg_3: 4*Arg_4 {O(n)}
49: f45->f45, Arg_4: 8*Arg_4 {O(n)}
49: f45->f45, Arg_5: 8*Arg_4+10 {O(n)}
49: f45->f45, Arg_6: 2*Arg_4+1 {O(n)}
49: f45->f45, Arg_7: 8*Arg_7 {O(n)}
49: f45->f45, Arg_8: 8*Arg_8 {O(n)}
49: f45->f45, Arg_9: 8*Arg_9 {O(n)}
50: f45->f55, Arg_0: 2*Arg_4+2 {O(n)}
50: f45->f55, Arg_3: 8*Arg_4 {O(n)}
50: f45->f55, Arg_4: 16*Arg_4 {O(n)}
50: f45->f55, Arg_5: 16*Arg_4+20 {O(n)}
50: f45->f55, Arg_6: 4*Arg_4+2 {O(n)}
50: f45->f55, Arg_7: 0 {O(1)}
50: f45->f55, Arg_8: 16*Arg_8 {O(n)}
50: f45->f55, Arg_9: 16*Arg_9 {O(n)}
51: f55->f55, Arg_0: 2*Arg_4+2 {O(n)}
51: f55->f55, Arg_3: 8*Arg_4 {O(n)}
51: f55->f55, Arg_4: 16*Arg_4 {O(n)}
51: f55->f55, Arg_5: 16*Arg_4+20 {O(n)}
51: f55->f55, Arg_6: 4*Arg_4+2 {O(n)}
51: f55->f55, Arg_7: 2*Arg_4+3 {O(n)}
51: f55->f55, Arg_8: 16*Arg_8 {O(n)}
51: f55->f55, Arg_9: 16*Arg_9 {O(n)}
52: f55->f65, Arg_0: 4*Arg_4+4 {O(n)}
52: f55->f65, Arg_3: 16*Arg_4 {O(n)}
52: f55->f65, Arg_4: 32*Arg_4 {O(n)}
52: f55->f65, Arg_5: 32*Arg_4+40 {O(n)}
52: f55->f65, Arg_6: 8*Arg_4+4 {O(n)}
52: f55->f65, Arg_7: 2*Arg_4+3 {O(n)}
52: f55->f65, Arg_8: 32*Arg_4+2 {O(n)}
52: f55->f65, Arg_9: 32*Arg_9 {O(n)}
53: f65->f65, Arg_0: 4*Arg_4+4 {O(n)}
53: f65->f65, Arg_3: 16*Arg_4 {O(n)}
53: f65->f65, Arg_4: 32*Arg_4 {O(n)}
53: f65->f65, Arg_5: 32*Arg_4+40 {O(n)}
53: f65->f65, Arg_6: 8*Arg_4+4 {O(n)}
53: f65->f65, Arg_7: 2*Arg_4+3 {O(n)}
53: f65->f65, Arg_8: 32*Arg_4+3 {O(n)}
53: f65->f65, Arg_9: 32*Arg_9 {O(n)}
54: f65->f75, Arg_0: 8*Arg_4+8 {O(n)}
54: f65->f75, Arg_3: 32*Arg_4 {O(n)}
54: f65->f75, Arg_4: 64*Arg_4 {O(n)}
54: f65->f75, Arg_5: 64*Arg_4+80 {O(n)}
54: f65->f75, Arg_6: 16*Arg_4+8 {O(n)}
54: f65->f75, Arg_7: 4*Arg_4+6 {O(n)}
54: f65->f75, Arg_8: 64*Arg_4+5 {O(n)}
54: f65->f75, Arg_9: 0 {O(1)}
55: f75->f75, Arg_0: 8*Arg_4+8 {O(n)}
55: f75->f75, Arg_3: 32*Arg_4 {O(n)}
55: f75->f75, Arg_4: 64*Arg_4 {O(n)}
55: f75->f75, Arg_5: 64*Arg_4+80 {O(n)}
55: f75->f75, Arg_6: 16*Arg_4+8 {O(n)}
55: f75->f75, Arg_7: 4*Arg_4+6 {O(n)}
55: f75->f75, Arg_8: 64*Arg_4+5 {O(n)}
55: f75->f75, Arg_9: 8*Arg_4+9 {O(n)}
56: f75->f83, Arg_0: 128*Arg_4+2 {O(n)}
56: f75->f83, Arg_3: 64*Arg_4 {O(n)}
56: f75->f83, Arg_4: 128*Arg_4 {O(n)}
56: f75->f83, Arg_5: 128*Arg_4+160 {O(n)}
56: f75->f83, Arg_6: 32*Arg_4+16 {O(n)}
56: f75->f83, Arg_7: 8*Arg_4+12 {O(n)}
56: f75->f83, Arg_8: 128*Arg_4+10 {O(n)}
56: f75->f83, Arg_9: 8*Arg_4+9 {O(n)}
57: f83->f83, Arg_0: 128*Arg_4+3 {O(n)}
57: f83->f83, Arg_3: 64*Arg_4 {O(n)}
57: f83->f83, Arg_4: 128*Arg_4 {O(n)}
57: f83->f83, Arg_5: 128*Arg_4+160 {O(n)}
57: f83->f83, Arg_6: 32*Arg_4+16 {O(n)}
57: f83->f83, Arg_7: 8*Arg_4+12 {O(n)}
57: f83->f83, Arg_8: 128*Arg_4+10 {O(n)}
57: f83->f83, Arg_9: 8*Arg_4+9 {O(n)}
58: f83->f93, Arg_0: 256*Arg_4+5 {O(n)}
58: f83->f93, Arg_3: 128*Arg_4 {O(n)}
58: f83->f93, Arg_4: 256*Arg_4 {O(n)}
58: f83->f93, Arg_5: 256*Arg_4+320 {O(n)}
58: f83->f93, Arg_6: 64*Arg_4+32 {O(n)}
58: f83->f93, Arg_7: 16*Arg_4+24 {O(n)}
58: f83->f93, Arg_8: 256*Arg_4+20 {O(n)}
58: f83->f93, Arg_9: 16*Arg_4+18 {O(n)}