Initial Problem
Start: f3
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24, Arg_25, Arg_26, Arg_27, Arg_28, Arg_29, Arg_30, Arg_31
Temp_Vars: G1, H1, I1, J1, K1, L1, M1, N1, O1, P1, Q1, R1, S1, T1, U1, V1, W1, X1
Locations: f1, f10, f3, f4, f9
Transitions:
0:f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f1(Arg_0,Arg_1,1+Arg_2,Arg_3,Arg_6,Arg_5,G1,Arg_7,Arg_6,Arg_9,H1,Arg_11,Arg_2,Arg_14,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_2+1<=Arg_0 && 0<=Arg_2
14:f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f10(H1,L1,K1,N1,J1,Arg_5,R1,Arg_25+1,Q1,Arg_14,Arg_10,S1,Arg_12,Arg_13,Arg_14,Arg_4,Arg_25,Arg_19,Arg_19,Arg_19,G1,Arg_4,Arg_4,Arg_4,M1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,I1):|:Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_19+1<=Arg_4 && 0<=K1 && 2<=G1 && Arg_4+1<=Arg_19
15:f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f10(H1,L1,K1,N1,J1,Arg_5,R1,Arg_25+1,Q1,Arg_14,Arg_10,S1,Arg_12,Arg_13,Arg_14,Arg_4,Arg_25,Arg_19,Arg_19,Arg_19,G1,Arg_4,Arg_4,Arg_4,M1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,I1):|:Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_19+1<=Arg_4 && 0<=K1 && 2<=G1
16:f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f10(H1,L1,K1,N1,J1,Arg_5,R1,Arg_25+1,Q1,Arg_14,Arg_10,S1,Arg_12,Arg_13,Arg_14,Arg_4,Arg_25,Arg_19,Arg_19,Arg_19,G1,Arg_4,Arg_4,Arg_4,M1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,I1):|:Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_4+1<=Arg_19 && 0<=K1 && 2<=G1
17:f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f10(H1,L1,K1,N1,J1,Arg_5,R1,Arg_25+1,Q1,Arg_14,Arg_10,S1,Arg_12,Arg_13,Arg_14,Arg_4,Arg_25,Arg_19,Arg_19,Arg_19,G1,Arg_4,Arg_4,Arg_4,M1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,I1):|:Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_4+1<=Arg_19 && 0<=K1 && 2<=G1 && Arg_19+1<=Arg_4
7:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,G1,H1,H1,Arg_15,Arg_24,Arg_25-1,I1,Arg_14,Arg_25-1,Arg_29,Arg_30,Arg_31):|:Arg_15+1<=J1 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
8:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,G1,H1,H1,Arg_15,Arg_24,Arg_25-1,I1,Arg_14,Arg_25-1,Arg_29,Arg_30,Arg_31):|:Arg_15+1<=J1 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
9:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,G1,H1,H1,Arg_15,Arg_24,Arg_25-1,I1,Arg_14,Arg_25-1,Arg_29,Arg_30,Arg_31):|:J1+1<=Arg_15 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
10:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,G1,H1,H1,Arg_15,Arg_24,Arg_25-1,I1,Arg_14,Arg_25-1,Arg_29,Arg_30,Arg_31):|:J1+1<=Arg_15 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
11:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,K1,Arg_16,Arg_17,J1,Arg_19,G1,Arg_21,I1,L1,H1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:2<=G1 && 0<=Arg_25 && Arg_18<=Arg_15 && Arg_15<=Arg_18
13:f3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f1(J1,Arg_1,2,K1,K1,M1,L1,Arg_7,K1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,G1,Arg_18,G1,J1,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,H1,I1,G1):|:2<=J1
12:f3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f4(J1,N1,M1,R1,L1,Arg_5,T1,Arg_7,S1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,W1,Arg_16,Arg_29,V1,Arg_29,I1,Arg_29,U1,X1,Q1,Arg_25,Arg_26,Arg_27,Arg_28,G1,H1,K1):|:O1<=0 && I1<=0 && P1<=0
18:f3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f4(J1,N1,M1,R1,L1,Arg_5,T1,Arg_7,S1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,X1,Arg_16,G1,W1,Arg_6,1,U1,V1,O1,Q1,Arg_25,Arg_26,Arg_27,Arg_28,H1,I1,K1):|:1<=0 && U1+1<=G1
19:f3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f4(J1,N1,M1,R1,L1,Arg_5,T1,Arg_7,S1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,X1,Arg_16,G1,W1,Arg_6,1,U1,V1,O1,Q1,Arg_25,Arg_26,Arg_27,Arg_28,H1,I1,K1):|:1<=0 && G1+1<=U1
20:f3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f4(J1,N1,M1,R1,L1,Arg_5,T1,Arg_7,S1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,X1,Arg_16,G1,W1,Arg_6,1,U1,V1,O1,Q1,Arg_25,Arg_26,Arg_27,Arg_28,H1,I1,K1):|:1<=0 && U1+1<=G1
21:f3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f4(J1,N1,M1,R1,L1,Arg_5,T1,Arg_7,S1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,X1,Arg_16,G1,W1,Arg_6,1,U1,V1,O1,Q1,Arg_25,Arg_26,Arg_27,Arg_28,H1,I1,K1):|:1<=0 && G1+1<=U1
1:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,G1,H1,H1,Arg_15,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_15+1<=I1 && 0<=Arg_16 && I1+1<=H1 && 2<=G1
2:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,G1,H1,H1,Arg_15,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:Arg_15+1<=I1 && 0<=Arg_16 && H1+1<=I1 && 2<=G1
3:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,G1,H1,H1,Arg_15,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:I1+1<=Arg_15 && 0<=Arg_16 && I1+1<=H1 && 2<=G1
4:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_18,Arg_18,Arg_18,G1,H1,H1,Arg_15,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:I1+1<=Arg_15 && 0<=Arg_16 && H1+1<=I1 && 2<=G1
5:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,M1,Arg_16,G1,L1,Arg_19,H1,J1,K1,N1,I1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:0<=Arg_16 && J1+1<=G1 && 2<=H1 && Arg_18<=Arg_15 && Arg_15<=Arg_18
6:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31) -> f4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,M1,Arg_16,G1,L1,Arg_19,H1,J1,K1,N1,I1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31):|:0<=Arg_16 && G1+1<=J1 && 2<=H1 && Arg_18<=Arg_15 && Arg_15<=Arg_18
Show Graph
G
f1
f1
f1->f1
t₀
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = G1
η (Arg_8) = Arg_6
η (Arg_10) = H1
η (Arg_12) = Arg_2
η (Arg_13) = Arg_14
τ = Arg_2+1<=Arg_0 && 0<=Arg_2
f10
f10
f1->f10
t₁₄
η (Arg_0) = H1
η (Arg_1) = L1
η (Arg_2) = K1
η (Arg_3) = N1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_7) = Arg_25+1
η (Arg_8) = Q1
η (Arg_9) = Arg_14
η (Arg_11) = S1
η (Arg_15) = Arg_4
η (Arg_16) = Arg_25
η (Arg_17) = Arg_19
η (Arg_18) = Arg_19
η (Arg_20) = G1
η (Arg_21) = Arg_4
η (Arg_22) = Arg_4
η (Arg_23) = Arg_4
η (Arg_24) = M1
η (Arg_31) = I1
τ = Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_19+1<=Arg_4 && 0<=K1 && 2<=G1 && Arg_4+1<=Arg_19
f1->f10
t₁₅
η (Arg_0) = H1
η (Arg_1) = L1
η (Arg_2) = K1
η (Arg_3) = N1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_7) = Arg_25+1
η (Arg_8) = Q1
η (Arg_9) = Arg_14
η (Arg_11) = S1
η (Arg_15) = Arg_4
η (Arg_16) = Arg_25
η (Arg_17) = Arg_19
η (Arg_18) = Arg_19
η (Arg_20) = G1
η (Arg_21) = Arg_4
η (Arg_22) = Arg_4
η (Arg_23) = Arg_4
η (Arg_24) = M1
η (Arg_31) = I1
τ = Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_19+1<=Arg_4 && 0<=K1 && 2<=G1
f1->f10
t₁₆
η (Arg_0) = H1
η (Arg_1) = L1
η (Arg_2) = K1
η (Arg_3) = N1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_7) = Arg_25+1
η (Arg_8) = Q1
η (Arg_9) = Arg_14
η (Arg_11) = S1
η (Arg_15) = Arg_4
η (Arg_16) = Arg_25
η (Arg_17) = Arg_19
η (Arg_18) = Arg_19
η (Arg_20) = G1
η (Arg_21) = Arg_4
η (Arg_22) = Arg_4
η (Arg_23) = Arg_4
η (Arg_24) = M1
η (Arg_31) = I1
τ = Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_4+1<=Arg_19 && 0<=K1 && 2<=G1
f1->f10
t₁₇
η (Arg_0) = H1
η (Arg_1) = L1
η (Arg_2) = K1
η (Arg_3) = N1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_7) = Arg_25+1
η (Arg_8) = Q1
η (Arg_9) = Arg_14
η (Arg_11) = S1
η (Arg_15) = Arg_4
η (Arg_16) = Arg_25
η (Arg_17) = Arg_19
η (Arg_18) = Arg_19
η (Arg_20) = G1
η (Arg_21) = Arg_4
η (Arg_22) = Arg_4
η (Arg_23) = Arg_4
η (Arg_24) = M1
η (Arg_31) = I1
τ = Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_4+1<=Arg_19 && 0<=K1 && 2<=G1 && Arg_19+1<=Arg_4
f10->f10
t₇
η (Arg_17) = Arg_18
η (Arg_19) = Arg_18
η (Arg_20) = G1
η (Arg_21) = H1
η (Arg_22) = H1
η (Arg_23) = Arg_15
η (Arg_25) = Arg_25-1
η (Arg_26) = I1
η (Arg_27) = Arg_14
η (Arg_28) = Arg_25-1
τ = Arg_15+1<=J1 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
f10->f10
t₈
η (Arg_17) = Arg_18
η (Arg_19) = Arg_18
η (Arg_20) = G1
η (Arg_21) = H1
η (Arg_22) = H1
η (Arg_23) = Arg_15
η (Arg_25) = Arg_25-1
η (Arg_26) = I1
η (Arg_27) = Arg_14
η (Arg_28) = Arg_25-1
τ = Arg_15+1<=J1 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
f10->f10
t₉
η (Arg_17) = Arg_18
η (Arg_19) = Arg_18
η (Arg_20) = G1
η (Arg_21) = H1
η (Arg_22) = H1
η (Arg_23) = Arg_15
η (Arg_25) = Arg_25-1
η (Arg_26) = I1
η (Arg_27) = Arg_14
η (Arg_28) = Arg_25-1
τ = J1+1<=Arg_15 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
f10->f10
t₁₀
η (Arg_17) = Arg_18
η (Arg_19) = Arg_18
η (Arg_20) = G1
η (Arg_21) = H1
η (Arg_22) = H1
η (Arg_23) = Arg_15
η (Arg_25) = Arg_25-1
η (Arg_26) = I1
η (Arg_27) = Arg_14
η (Arg_28) = Arg_25-1
τ = J1+1<=Arg_15 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
f4
f4
f10->f4
t₁₁
η (Arg_15) = K1
η (Arg_18) = J1
η (Arg_20) = G1
η (Arg_22) = I1
η (Arg_23) = L1
η (Arg_24) = H1
τ = 2<=G1 && 0<=Arg_25 && Arg_18<=Arg_15 && Arg_15<=Arg_18
f3
f3
f3->f1
t₁₃
η (Arg_0) = J1
η (Arg_2) = 2
η (Arg_3) = K1
η (Arg_4) = K1
η (Arg_5) = M1
η (Arg_6) = L1
η (Arg_8) = K1
η (Arg_17) = G1
η (Arg_19) = G1
η (Arg_20) = J1
η (Arg_29) = H1
η (Arg_30) = I1
η (Arg_31) = G1
τ = 2<=J1
f3->f4
t₁₂
η (Arg_0) = J1
η (Arg_1) = N1
η (Arg_2) = M1
η (Arg_3) = R1
η (Arg_4) = L1
η (Arg_6) = T1
η (Arg_8) = S1
η (Arg_15) = W1
η (Arg_17) = Arg_29
η (Arg_18) = V1
η (Arg_19) = Arg_29
η (Arg_20) = I1
η (Arg_21) = Arg_29
η (Arg_22) = U1
η (Arg_23) = X1
η (Arg_24) = Q1
η (Arg_29) = G1
η (Arg_30) = H1
η (Arg_31) = K1
τ = O1<=0 && I1<=0 && P1<=0
f3->f4
t₁₈
η (Arg_0) = J1
η (Arg_1) = N1
η (Arg_2) = M1
η (Arg_3) = R1
η (Arg_4) = L1
η (Arg_6) = T1
η (Arg_8) = S1
η (Arg_15) = X1
η (Arg_17) = G1
η (Arg_18) = W1
η (Arg_19) = Arg_6
η (Arg_20) = 1
η (Arg_21) = U1
η (Arg_22) = V1
η (Arg_23) = O1
η (Arg_24) = Q1
η (Arg_29) = H1
η (Arg_30) = I1
η (Arg_31) = K1
τ = 1<=0 && U1+1<=G1
f3->f4
t₁₉
η (Arg_0) = J1
η (Arg_1) = N1
η (Arg_2) = M1
η (Arg_3) = R1
η (Arg_4) = L1
η (Arg_6) = T1
η (Arg_8) = S1
η (Arg_15) = X1
η (Arg_17) = G1
η (Arg_18) = W1
η (Arg_19) = Arg_6
η (Arg_20) = 1
η (Arg_21) = U1
η (Arg_22) = V1
η (Arg_23) = O1
η (Arg_24) = Q1
η (Arg_29) = H1
η (Arg_30) = I1
η (Arg_31) = K1
τ = 1<=0 && G1+1<=U1
f3->f4
t₂₀
η (Arg_0) = J1
η (Arg_1) = N1
η (Arg_2) = M1
η (Arg_3) = R1
η (Arg_4) = L1
η (Arg_6) = T1
η (Arg_8) = S1
η (Arg_15) = X1
η (Arg_17) = G1
η (Arg_18) = W1
η (Arg_19) = Arg_6
η (Arg_20) = 1
η (Arg_21) = U1
η (Arg_22) = V1
η (Arg_23) = O1
η (Arg_24) = Q1
η (Arg_29) = H1
η (Arg_30) = I1
η (Arg_31) = K1
τ = 1<=0 && U1+1<=G1
f3->f4
t₂₁
η (Arg_0) = J1
η (Arg_1) = N1
η (Arg_2) = M1
η (Arg_3) = R1
η (Arg_4) = L1
η (Arg_6) = T1
η (Arg_8) = S1
η (Arg_15) = X1
η (Arg_17) = G1
η (Arg_18) = W1
η (Arg_19) = Arg_6
η (Arg_20) = 1
η (Arg_21) = U1
η (Arg_22) = V1
η (Arg_23) = O1
η (Arg_24) = Q1
η (Arg_29) = H1
η (Arg_30) = I1
η (Arg_31) = K1
τ = 1<=0 && G1+1<=U1
f9
f9
f9->f10
t₁
η (Arg_17) = Arg_18
η (Arg_19) = Arg_18
η (Arg_20) = G1
η (Arg_21) = H1
η (Arg_22) = H1
η (Arg_23) = Arg_15
τ = Arg_15+1<=I1 && 0<=Arg_16 && I1+1<=H1 && 2<=G1
f9->f10
t₂
η (Arg_17) = Arg_18
η (Arg_19) = Arg_18
η (Arg_20) = G1
η (Arg_21) = H1
η (Arg_22) = H1
η (Arg_23) = Arg_15
τ = Arg_15+1<=I1 && 0<=Arg_16 && H1+1<=I1 && 2<=G1
f9->f10
t₃
η (Arg_17) = Arg_18
η (Arg_19) = Arg_18
η (Arg_20) = G1
η (Arg_21) = H1
η (Arg_22) = H1
η (Arg_23) = Arg_15
τ = I1+1<=Arg_15 && 0<=Arg_16 && I1+1<=H1 && 2<=G1
f9->f10
t₄
η (Arg_17) = Arg_18
η (Arg_19) = Arg_18
η (Arg_20) = G1
η (Arg_21) = H1
η (Arg_22) = H1
η (Arg_23) = Arg_15
τ = I1+1<=Arg_15 && 0<=Arg_16 && H1+1<=I1 && 2<=G1
f9->f4
t₅
η (Arg_15) = M1
η (Arg_17) = G1
η (Arg_18) = L1
η (Arg_20) = H1
η (Arg_21) = J1
η (Arg_22) = K1
η (Arg_23) = N1
η (Arg_24) = I1
τ = 0<=Arg_16 && J1+1<=G1 && 2<=H1 && Arg_18<=Arg_15 && Arg_15<=Arg_18
f9->f4
t₆
η (Arg_15) = M1
η (Arg_17) = G1
η (Arg_18) = L1
η (Arg_20) = H1
η (Arg_21) = J1
η (Arg_22) = K1
η (Arg_23) = N1
η (Arg_24) = I1
τ = 0<=Arg_16 && G1+1<=J1 && 2<=H1 && Arg_18<=Arg_15 && Arg_15<=Arg_18
Preprocessing
Cut unreachable locations [f9] from the program graph
Cut unsatisfiable transition 14: f1->f10
Cut unsatisfiable transition 17: f1->f10
Cut unsatisfiable transition 18: f3->f4
Cut unsatisfiable transition 19: f3->f4
Cut unsatisfiable transition 20: f3->f4
Cut unsatisfiable transition 21: f3->f4
Eliminate variables {N1,Q1,S1,X1,Arg_1,Arg_3,Arg_5,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_16,Arg_17,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_26,Arg_27,Arg_28,Arg_30,Arg_31} that do not contribute to the problem
Found invariant 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 for location f10
Found invariant Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 for location f1
Problem after Preprocessing
Start: f3
Program_Vars: Arg_0, Arg_2, Arg_4, Arg_6, Arg_15, Arg_18, Arg_19, Arg_25, Arg_29
Temp_Vars: G1, H1, I1, J1, K1, L1, M1, O1, P1, R1, T1, U1, V1, W1
Locations: f1, f10, f3, f4
Transitions:
36:f1(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f1(Arg_0,1+Arg_2,Arg_6,G1,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
37:f1(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f10(H1,K1,J1,R1,Arg_4,Arg_19,Arg_19,Arg_25,Arg_29):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_19+1<=Arg_4 && 0<=K1 && 2<=G1
38:f1(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f10(H1,K1,J1,R1,Arg_4,Arg_19,Arg_19,Arg_25,Arg_29):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_4+1<=Arg_19 && 0<=K1 && 2<=G1
39:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_18,Arg_25-1,Arg_29):|:2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
40:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_18,Arg_25-1,Arg_29):|:2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
41:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_18,Arg_25-1,Arg_29):|:2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
42:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_18,Arg_25-1,Arg_29):|:2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
43:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f4(Arg_0,Arg_2,Arg_4,Arg_6,K1,J1,Arg_19,Arg_25,Arg_29):|:2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && 2<=G1 && 0<=Arg_25 && Arg_18<=Arg_15 && Arg_15<=Arg_18
45:f3(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f1(J1,2,K1,L1,Arg_15,Arg_18,G1,Arg_25,H1):|:2<=J1
44:f3(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f4(J1,M1,L1,T1,W1,V1,Arg_29,Arg_25,G1):|:O1<=0 && I1<=0 && P1<=0
Show Graph
G
f1
f1
f1->f1
t₃₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = G1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f10
f10
f1->f10
t₃₇
η (Arg_0) = H1
η (Arg_2) = K1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_15) = Arg_4
η (Arg_18) = Arg_19
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_19+1<=Arg_4 && 0<=K1 && 2<=G1
f1->f10
t₃₈
η (Arg_0) = H1
η (Arg_2) = K1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_15) = Arg_4
η (Arg_18) = Arg_19
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_4+1<=Arg_19 && 0<=K1 && 2<=G1
f10->f10
t₃₉
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
f10->f10
t₄₀
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
f10->f10
t₄₁
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
f10->f10
t₄₂
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
f4
f4
f10->f4
t₄₃
η (Arg_15) = K1
η (Arg_18) = J1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && 2<=G1 && 0<=Arg_25 && Arg_18<=Arg_15 && Arg_15<=Arg_18
f3
f3
f3->f1
t₄₅
η (Arg_0) = J1
η (Arg_2) = 2
η (Arg_4) = K1
η (Arg_6) = L1
η (Arg_19) = G1
η (Arg_29) = H1
τ = 2<=J1
f3->f4
t₄₄
η (Arg_0) = J1
η (Arg_2) = M1
η (Arg_4) = L1
η (Arg_6) = T1
η (Arg_15) = W1
η (Arg_18) = V1
η (Arg_19) = Arg_29
η (Arg_29) = G1
τ = O1<=0 && I1<=0 && P1<=0
MPRF for transition 39:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_18,Arg_25-1,Arg_29):|:2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && J1+1<=H1 && 2<=G1 of depth 1:
new bound:
4*Arg_25+2 {O(n)}
MPRF:
f10 [Arg_25+1 ]
Show Graph
G
f1
f1
f1->f1
t₃₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = G1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f10
f10
f1->f10
t₃₇
η (Arg_0) = H1
η (Arg_2) = K1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_15) = Arg_4
η (Arg_18) = Arg_19
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_19+1<=Arg_4 && 0<=K1 && 2<=G1
f1->f10
t₃₈
η (Arg_0) = H1
η (Arg_2) = K1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_15) = Arg_4
η (Arg_18) = Arg_19
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_4+1<=Arg_19 && 0<=K1 && 2<=G1
f10->f10
t₃₉
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
f10->f10
t₄₀
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
f10->f10
t₄₁
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
f10->f10
t₄₂
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
f4
f4
f10->f4
t₄₃
η (Arg_15) = K1
η (Arg_18) = J1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && 2<=G1 && 0<=Arg_25 && Arg_18<=Arg_15 && Arg_15<=Arg_18
f3
f3
f3->f1
t₄₅
η (Arg_0) = J1
η (Arg_2) = 2
η (Arg_4) = K1
η (Arg_6) = L1
η (Arg_19) = G1
η (Arg_29) = H1
τ = 2<=J1
f3->f4
t₄₄
η (Arg_0) = J1
η (Arg_2) = M1
η (Arg_4) = L1
η (Arg_6) = T1
η (Arg_15) = W1
η (Arg_18) = V1
η (Arg_19) = Arg_29
η (Arg_29) = G1
τ = O1<=0 && I1<=0 && P1<=0
MPRF for transition 40:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_18,Arg_25-1,Arg_29):|:2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && H1+1<=J1 && 2<=G1 of depth 1:
new bound:
4*Arg_25+2 {O(n)}
MPRF:
f10 [Arg_25+1 ]
Show Graph
G
f1
f1
f1->f1
t₃₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = G1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f10
f10
f1->f10
t₃₇
η (Arg_0) = H1
η (Arg_2) = K1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_15) = Arg_4
η (Arg_18) = Arg_19
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_19+1<=Arg_4 && 0<=K1 && 2<=G1
f1->f10
t₃₈
η (Arg_0) = H1
η (Arg_2) = K1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_15) = Arg_4
η (Arg_18) = Arg_19
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_4+1<=Arg_19 && 0<=K1 && 2<=G1
f10->f10
t₃₉
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
f10->f10
t₄₀
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
f10->f10
t₄₁
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
f10->f10
t₄₂
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
f4
f4
f10->f4
t₄₃
η (Arg_15) = K1
η (Arg_18) = J1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && 2<=G1 && 0<=Arg_25 && Arg_18<=Arg_15 && Arg_15<=Arg_18
f3
f3
f3->f1
t₄₅
η (Arg_0) = J1
η (Arg_2) = 2
η (Arg_4) = K1
η (Arg_6) = L1
η (Arg_19) = G1
η (Arg_29) = H1
τ = 2<=J1
f3->f4
t₄₄
η (Arg_0) = J1
η (Arg_2) = M1
η (Arg_4) = L1
η (Arg_6) = T1
η (Arg_15) = W1
η (Arg_18) = V1
η (Arg_19) = Arg_29
η (Arg_29) = G1
τ = O1<=0 && I1<=0 && P1<=0
MPRF for transition 41:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_18,Arg_25-1,Arg_29):|:2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && J1+1<=H1 && 2<=G1 of depth 1:
new bound:
4*Arg_25+2 {O(n)}
MPRF:
f10 [Arg_25+1 ]
Show Graph
G
f1
f1
f1->f1
t₃₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = G1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f10
f10
f1->f10
t₃₇
η (Arg_0) = H1
η (Arg_2) = K1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_15) = Arg_4
η (Arg_18) = Arg_19
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_19+1<=Arg_4 && 0<=K1 && 2<=G1
f1->f10
t₃₈
η (Arg_0) = H1
η (Arg_2) = K1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_15) = Arg_4
η (Arg_18) = Arg_19
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_4+1<=Arg_19 && 0<=K1 && 2<=G1
f10->f10
t₃₉
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
f10->f10
t₄₀
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
f10->f10
t₄₁
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
f10->f10
t₄₂
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
f4
f4
f10->f4
t₄₃
η (Arg_15) = K1
η (Arg_18) = J1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && 2<=G1 && 0<=Arg_25 && Arg_18<=Arg_15 && Arg_15<=Arg_18
f3
f3
f3->f1
t₄₅
η (Arg_0) = J1
η (Arg_2) = 2
η (Arg_4) = K1
η (Arg_6) = L1
η (Arg_19) = G1
η (Arg_29) = H1
τ = 2<=J1
f3->f4
t₄₄
η (Arg_0) = J1
η (Arg_2) = M1
η (Arg_4) = L1
η (Arg_6) = T1
η (Arg_15) = W1
η (Arg_18) = V1
η (Arg_19) = Arg_29
η (Arg_29) = G1
τ = O1<=0 && I1<=0 && P1<=0
MPRF for transition 42:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_19,Arg_25,Arg_29) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_15,Arg_18,Arg_18,Arg_25-1,Arg_29):|:2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && H1+1<=J1 && 2<=G1 of depth 1:
new bound:
4*Arg_25+2 {O(n)}
MPRF:
f10 [Arg_25+1 ]
Show Graph
G
f1
f1
f1->f1
t₃₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = G1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f10
f10
f1->f10
t₃₇
η (Arg_0) = H1
η (Arg_2) = K1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_15) = Arg_4
η (Arg_18) = Arg_19
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_19+1<=Arg_4 && 0<=K1 && 2<=G1
f1->f10
t₃₈
η (Arg_0) = H1
η (Arg_2) = K1
η (Arg_4) = J1
η (Arg_6) = R1
η (Arg_15) = Arg_4
η (Arg_18) = Arg_19
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_0<=Arg_2 && 0<=Arg_2 && G1<=T1 && 2<=U1 && U1<=K1 && Arg_4+1<=Arg_19 && 0<=K1 && 2<=G1
f10->f10
t₃₉
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
f10->f10
t₄₀
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && Arg_15+1<=J1 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
f10->f10
t₄₁
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && J1+1<=H1 && 2<=G1
f10->f10
t₄₂
η (Arg_19) = Arg_18
η (Arg_25) = Arg_25-1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && J1+1<=Arg_15 && 0<=Arg_25 && H1+1<=J1 && 2<=G1
f4
f4
f10->f4
t₄₃
η (Arg_15) = K1
η (Arg_18) = J1
τ = 2<=Arg_2 && Arg_19<=Arg_18 && Arg_18<=Arg_19 && 2<=G1 && 0<=Arg_25 && Arg_18<=Arg_15 && Arg_15<=Arg_18
f3
f3
f3->f1
t₄₅
η (Arg_0) = J1
η (Arg_2) = 2
η (Arg_4) = K1
η (Arg_6) = L1
η (Arg_19) = G1
η (Arg_29) = H1
τ = 2<=J1
f3->f4
t₄₄
η (Arg_0) = J1
η (Arg_2) = M1
η (Arg_4) = L1
η (Arg_6) = T1
η (Arg_15) = W1
η (Arg_18) = V1
η (Arg_19) = Arg_29
η (Arg_29) = G1
τ = O1<=0 && I1<=0 && P1<=0
All Bounds
Timebounds
Overall timebound:inf {Infinity}
36: f1->f1: inf {Infinity}
37: f1->f10: 1 {O(1)}
38: f1->f10: 1 {O(1)}
39: f10->f10: 4*Arg_25+2 {O(n)}
40: f10->f10: 4*Arg_25+2 {O(n)}
41: f10->f10: 4*Arg_25+2 {O(n)}
42: f10->f10: 4*Arg_25+2 {O(n)}
43: f10->f4: 1 {O(1)}
44: f3->f4: 1 {O(1)}
45: f3->f1: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
36: f1->f1: inf {Infinity}
37: f1->f10: 1 {O(1)}
38: f1->f10: 1 {O(1)}
39: f10->f10: 4*Arg_25+2 {O(n)}
40: f10->f10: 4*Arg_25+2 {O(n)}
41: f10->f10: 4*Arg_25+2 {O(n)}
42: f10->f10: 4*Arg_25+2 {O(n)}
43: f10->f4: 1 {O(1)}
44: f3->f4: 1 {O(1)}
45: f3->f1: 1 {O(1)}
Sizebounds
36: f1->f1, Arg_15: Arg_15 {O(n)}
36: f1->f1, Arg_18: Arg_18 {O(n)}
36: f1->f1, Arg_25: Arg_25 {O(n)}
37: f1->f10, Arg_25: 2*Arg_25 {O(n)}
38: f1->f10, Arg_25: 2*Arg_25 {O(n)}
39: f10->f10, Arg_25: 16*Arg_25+1 {O(n)}
40: f10->f10, Arg_25: 16*Arg_25+1 {O(n)}
41: f10->f10, Arg_25: 16*Arg_25+1 {O(n)}
42: f10->f10, Arg_25: 16*Arg_25+1 {O(n)}
43: f10->f4, Arg_25: 64*Arg_25+4 {O(n)}
44: f3->f4, Arg_19: Arg_29 {O(n)}
44: f3->f4, Arg_25: Arg_25 {O(n)}
45: f3->f1, Arg_2: 2 {O(1)}
45: f3->f1, Arg_15: Arg_15 {O(n)}
45: f3->f1, Arg_18: Arg_18 {O(n)}
45: f3->f1, Arg_25: Arg_25 {O(n)}