Initial Problem
Start: f2
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22
Temp_Vars: A1, B1, C1, D1, E1, F1, X, Y, Z
Locations: f1, f13, f16, f2, f27, f35, f38, f53
Transitions:
1:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:Arg_8<=Arg_7
23:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:1+Arg_7<=Arg_8
22:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:1+Arg_9<=Arg_10
2:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11+2,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:Arg_10<=Arg_9
0:f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f13(1,X,Y,Z,A1,B1,C1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:Arg_0<=1 && 1<=Arg_0
3:f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f27(Arg_0,X,Y,Z,A1,B1,C1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:Arg_0<=0
4:f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f27(Arg_0,X,Y,Z,A1,B1,C1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:2<=Arg_0
19:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:2+Arg_0<=0 && 1+Arg_7<=Arg_8
20:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:0<=Arg_0 && 1+Arg_7<=Arg_8
21:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f1(-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
5:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_7+2-Arg_8,1,0,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:Arg_8<=0 && Arg_8<=Arg_7
6:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_7+2-Arg_8,1,0,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:2<=Arg_8 && Arg_8<=Arg_7
7:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,1,Arg_9,Arg_10,Arg_11,1,1,0,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
18:f35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
8:f35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
17:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_13,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_5*Arg_13+Arg_13-Arg_6*Arg_14,Arg_5*Arg_14+Arg_6*Arg_13+Arg_14,Arg_15,Arg_16+1,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22+2):|:1+Arg_9<=Arg_10
11:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,X+3,Arg_12,Arg_13,Arg_14,Arg_15,1,Y*Arg_1+Z*Arg_1,A1*Arg_1-B1*Arg_1,C1*Arg_2-D1*Arg_2,-E1*Arg_2-F1*Arg_2,Arg_21,Arg_22):|:Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
12:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,X+3,Arg_12,Arg_13,Arg_14,Arg_15,1,Y*Arg_1+Z*Arg_1,A1*Arg_1-B1*Arg_1,C1*Arg_2-D1*Arg_2,-E1*Arg_2-F1*Arg_2,Arg_21,Arg_22):|:Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
13:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,2,1,Arg_12,Arg_13,Arg_14,Arg_15,1,X*Arg_1+Y*Arg_1,Z*Arg_1-A1*Arg_1,B1*Arg_2-C1*Arg_2,-D1*Arg_2-E1*Arg_2,Arg_21,Arg_22):|:1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
9:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:Arg_16<=0 && Arg_10<=Arg_9
10:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:2<=Arg_16 && Arg_10<=Arg_9
14:f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_9+2-Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,X*Arg_1+Y*Arg_1,Z*Arg_1-A1*Arg_1,B1*Arg_2-C1*Arg_2,-D1*Arg_2-E1*Arg_2,Arg_15+3-F1,Arg_22):|:2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
15:f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_9+2-Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,X*Arg_1+Y*Arg_1,Z*Arg_1-A1*Arg_1,B1*Arg_2-C1*Arg_2,-D1*Arg_2-E1*Arg_2,Arg_15+3-F1,Arg_22):|:2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
16:f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,2,1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,X*Arg_1+Y*Arg_1,Z*Arg_1-A1*Arg_1,B1*Arg_2-C1*Arg_2,-D1*Arg_2-E1*Arg_2,Arg_15+3-F1,Arg_22):|:2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₁
τ = Arg_8<=Arg_7
f27
f27
f13->f27
t₂₃
τ = 1+Arg_7<=Arg_8
f16->f13
t₂₂
η (Arg_8) = Arg_8+1
τ = 1+Arg_9<=Arg_10
f16->f16
t₂
η (Arg_10) = Arg_10+1
η (Arg_11) = Arg_11+2
τ = Arg_10<=Arg_9
f2
f2
f2->f13
t₀
η (Arg_0) = 1
η (Arg_1) = X
η (Arg_2) = Y
η (Arg_3) = Z
η (Arg_4) = A1
η (Arg_5) = B1
η (Arg_6) = C1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₃
η (Arg_1) = X
η (Arg_2) = Y
η (Arg_3) = Z
η (Arg_4) = A1
η (Arg_5) = B1
η (Arg_6) = C1
τ = Arg_0<=0
f2->f27
t₄
η (Arg_1) = X
η (Arg_2) = Y
η (Arg_3) = Z
η (Arg_4) = A1
η (Arg_5) = B1
η (Arg_6) = C1
τ = 2<=Arg_0
f27->f1
t₁₉
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₂₀
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₂₁
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₅
η (Arg_12) = Arg_7+2-Arg_8
η (Arg_13) = 1
η (Arg_14) = 0
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₆
η (Arg_12) = Arg_7+2-Arg_8
η (Arg_13) = 1
η (Arg_14) = 0
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇
η (Arg_8) = 1
η (Arg_12) = 1
η (Arg_13) = 1
η (Arg_14) = 0
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₁₈
η (Arg_8) = Arg_8+1
τ = 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈
τ = 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₁₇
η (Arg_4) = Arg_13
η (Arg_13) = Arg_5*Arg_13+Arg_13-Arg_6*Arg_14
η (Arg_14) = Arg_5*Arg_14+Arg_6*Arg_13+Arg_14
η (Arg_16) = Arg_16+1
η (Arg_22) = Arg_22+2
τ = 1+Arg_9<=Arg_10
f38->f38
t₁₁
η (Arg_10) = Arg_10+1
η (Arg_11) = X+3
η (Arg_16) = 1
η (Arg_17) = Y*Arg_1+Z*Arg_1
η (Arg_18) = A1*Arg_1-B1*Arg_1
η (Arg_19) = C1*Arg_2-D1*Arg_2
η (Arg_20) = -E1*Arg_2-F1*Arg_2
τ = Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₁₂
η (Arg_10) = Arg_10+1
η (Arg_11) = X+3
η (Arg_16) = 1
η (Arg_17) = Y*Arg_1+Z*Arg_1
η (Arg_18) = A1*Arg_1-B1*Arg_1
η (Arg_19) = C1*Arg_2-D1*Arg_2
η (Arg_20) = -E1*Arg_2-F1*Arg_2
τ = Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₁₃
η (Arg_10) = 2
η (Arg_11) = 1
η (Arg_16) = 1
η (Arg_17) = X*Arg_1+Y*Arg_1
η (Arg_18) = Z*Arg_1-A1*Arg_1
η (Arg_19) = B1*Arg_2-C1*Arg_2
η (Arg_20) = -D1*Arg_2-E1*Arg_2
τ = 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₉
τ = Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₁₀
τ = 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₁₄
η (Arg_10) = Arg_10+1
η (Arg_11) = Arg_9+2-Arg_10
η (Arg_17) = X*Arg_1+Y*Arg_1
η (Arg_18) = Z*Arg_1-A1*Arg_1
η (Arg_19) = B1*Arg_2-C1*Arg_2
η (Arg_20) = -D1*Arg_2-E1*Arg_2
η (Arg_21) = Arg_15+3-F1
τ = 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₁₅
η (Arg_10) = Arg_10+1
η (Arg_11) = Arg_9+2-Arg_10
η (Arg_17) = X*Arg_1+Y*Arg_1
η (Arg_18) = Z*Arg_1-A1*Arg_1
η (Arg_19) = B1*Arg_2-C1*Arg_2
η (Arg_20) = -D1*Arg_2-E1*Arg_2
η (Arg_21) = Arg_15+3-F1
τ = 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₁₆
η (Arg_10) = 2
η (Arg_11) = 1
η (Arg_17) = X*Arg_1+Y*Arg_1
η (Arg_18) = Z*Arg_1-A1*Arg_1
η (Arg_19) = B1*Arg_2-C1*Arg_2
η (Arg_20) = -D1*Arg_2-E1*Arg_2
η (Arg_21) = Arg_15+3-F1
τ = 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
Preprocessing
Eliminate variables {A1,B1,C1,D1,E1,Y,Z,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_11,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22} that do not contribute to the problem
Found invariant Arg_8<=Arg_7 for location f35
Found invariant Arg_0<=1 && 1<=Arg_0 for location f13
Found invariant Arg_8<=Arg_7 for location f38
Found invariant Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 for location f16
Found invariant 1+Arg_7<=Arg_8 for location f1
Found invariant Arg_10<=Arg_9 && Arg_8<=Arg_7 for location f53
Problem after Preprocessing
Start: f2
Program_Vars: Arg_0, Arg_7, Arg_8, Arg_9, Arg_10, Arg_15, Arg_16
Temp_Vars: F1, X
Locations: f1, f13, f16, f2, f27, f35, f38, f53
Transitions:
67:f13(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f16(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
68:f13(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f27(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
70:f16(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f13(Arg_0,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
69:f16(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f16(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,Arg_16):|:Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
71:f2(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f13(1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_0<=1 && 1<=Arg_0
72:f2(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f27(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_0<=0
73:f2(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f27(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:2<=Arg_0
77:f27(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f1(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:2+Arg_0<=0 && 1+Arg_7<=Arg_8
78:f27(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f1(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:0<=Arg_0 && 1+Arg_7<=Arg_8
79:f27(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f1(-1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
74:f27(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=0 && Arg_8<=Arg_7
75:f27(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:2<=Arg_8 && Arg_8<=Arg_7
76:f27(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,1,Arg_9,Arg_10,Arg_15,Arg_16):|:1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
81:f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f27(Arg_0,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
80:f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
87:f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16+1):|:Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
84:f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,1):|:Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
85:f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,1):|:Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
86:f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,2,Arg_15,1):|:Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
82:f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f53(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
83:f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f53(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
88:f53(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,Arg_16):|:Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
89:f53(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,Arg_16):|:Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
90:f53(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,2,Arg_15,Arg_16):|:Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 67:f13(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f16(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7 of depth 1:
new bound:
Arg_7+Arg_8+1 {O(n)}
MPRF:
f16 [Arg_7-Arg_8 ]
f13 [Arg_7+1-Arg_8 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 69:f16(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f16(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,Arg_16):|:Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9 of depth 1:
new bound:
Arg_10+Arg_9+1 {O(n)}
MPRF:
f16 [Arg_9+1-Arg_10 ]
f13 [Arg_9+1-Arg_10 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 70:f16(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f13(Arg_0,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10 of depth 1:
new bound:
Arg_7+Arg_8+1 {O(n)}
MPRF:
f16 [Arg_7+1-Arg_8 ]
f13 [Arg_7+1-Arg_8 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 74:f27(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=0 && Arg_8<=Arg_7 of depth 1:
new bound:
2*Arg_8+2 {O(n)}
MPRF:
f27 [1-Arg_8 ]
f35 [-Arg_8 ]
f53 [-Arg_8 ]
f38 [-Arg_8 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 75:f27(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:2<=Arg_8 && Arg_8<=Arg_7 of depth 1:
new bound:
2*Arg_7+2*Arg_8+2 {O(n)}
MPRF:
f27 [Arg_7+1-Arg_8 ]
f35 [Arg_7-Arg_8 ]
f53 [Arg_7-Arg_8 ]
f38 [Arg_7-Arg_8 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 76:f27(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,1,Arg_9,Arg_10,Arg_15,Arg_16):|:1<=Arg_7 && Arg_8<=1 && 1<=Arg_8 of depth 1:
new bound:
2*Arg_8+4 {O(n)}
MPRF:
f27 [2-Arg_8 ]
f35 [1-Arg_8 ]
f53 [1-Arg_8 ]
f38 [1-Arg_8 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 80:f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1 of depth 1:
new bound:
2*Arg_15+4*Arg_16+6 {O(n)}
MPRF:
f27 [Arg_15+3-2*Arg_16 ]
f35 [Arg_15+3-2*Arg_16 ]
f53 [Arg_15+1-2*Arg_16 ]
f38 [Arg_15+1-2*Arg_16 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 81:f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f27(Arg_0,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16 of depth 1:
new bound:
2*Arg_7+2*Arg_8+2 {O(n)}
MPRF:
f27 [Arg_7+1-Arg_8 ]
f35 [Arg_7+1-Arg_8 ]
f53 [Arg_7+1-Arg_8 ]
f38 [Arg_7+1-Arg_8 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 82:f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f53(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9 of depth 1:
new bound:
2*Arg_10+2*Arg_9+2 {O(n)}
MPRF:
f27 [Arg_9+1-Arg_10 ]
f35 [Arg_9+1-Arg_10 ]
f53 [Arg_9-Arg_10 ]
f38 [Arg_9+1-Arg_10 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 83:f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f53(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9 of depth 1:
new bound:
2*Arg_10+2*Arg_9+2 {O(n)}
MPRF:
f27 [Arg_9+1-Arg_10 ]
f35 [Arg_9+1-Arg_10 ]
f53 [Arg_9-Arg_10 ]
f38 [Arg_9+1-Arg_10 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 84:f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,1):|:Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16 of depth 1:
new bound:
2*Arg_10+2*Arg_9 {O(n)}
MPRF:
f27 [Arg_9-Arg_10 ]
f35 [Arg_9-Arg_10 ]
f53 [Arg_9-Arg_10 ]
f38 [Arg_9-Arg_10 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 85:f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,1):|:Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16 of depth 1:
new bound:
2*Arg_10+4*Arg_9 {O(n)}
MPRF:
f27 [2*Arg_9-Arg_10 ]
f35 [2*Arg_9-Arg_10 ]
f53 [2*Arg_9-Arg_10 ]
f38 [2*Arg_9-Arg_10 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 86:f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,2,Arg_15,1):|:Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16 of depth 1:
new bound:
2*Arg_10+4*Arg_9 {O(n)}
MPRF:
f27 [2*Arg_9-Arg_10 ]
f35 [2*Arg_9-Arg_10 ]
f53 [2*Arg_9-Arg_10 ]
f38 [2*Arg_9-Arg_10 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 88:f53(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,Arg_16):|:Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0 of depth 1:
new bound:
2*Arg_10+2 {O(n)}
MPRF:
f27 [1-Arg_10 ]
f35 [1-Arg_10 ]
f53 [1-Arg_10 ]
f38 [1-Arg_10 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 89:f53(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,Arg_16):|:Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10 of depth 1:
new bound:
2*Arg_10+4*Arg_9 {O(n)}
MPRF:
f27 [2*Arg_9-Arg_10 ]
f35 [2*Arg_9-Arg_10 ]
f53 [2*Arg_9-Arg_10 ]
f38 [2*Arg_9-Arg_10 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 90:f53(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f38(Arg_0,Arg_7,Arg_8,Arg_9,2,Arg_15,Arg_16):|:Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10 of depth 1:
new bound:
2*Arg_10+4*Arg_9 {O(n)}
MPRF:
f27 [2*Arg_9-Arg_10 ]
f35 [2*Arg_9-Arg_10 ]
f53 [2*Arg_9-Arg_10 ]
f38 [2*Arg_9-Arg_10 ]
Show Graph
G
f1
f1
f13
f13
f16
f16
f13->f16
t₆₇
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f27
f27
f13->f27
t₆₈
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f16->f13
t₇₀
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f16->f16
t₆₉
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f2
f2
f2->f13
t₇₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f2->f27
t₇₂
τ = Arg_0<=0
f2->f27
t₇₃
τ = 2<=Arg_0
f27->f1
t₇₇
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f27->f1
t₇₈
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f27->f1
t₇₉
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35
f35
f27->f35
t₇₄
τ = Arg_8<=0 && Arg_8<=Arg_7
f27->f35
t₇₅
τ = 2<=Arg_8 && Arg_8<=Arg_7
f27->f35
t₇₆
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f35->f27
t₈₁
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f38
f38
f35->f38
t₈₀
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f38->f35
t₈₇
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f38->f38
t₈₄
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₅
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10+4*X<=Arg_9 && Arg_9+1<=5*X+Arg_10 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f38->f38
t₈₆
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f53
f53
f38->f53
t₈₂
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f38->f53
t₈₃
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f53->f38
t₈₈
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=0
f53->f38
t₈₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && 2<=Arg_10
f53->f38
t₉₀
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2*F1<=Arg_16 && Arg_16+1<=3*F1 && Arg_10<=1 && 1<=Arg_10
knowledge_propagation leads to new time bound 12*Arg_9+2*Arg_15+4*Arg_16+8*Arg_10+8 {O(n)} for transition 87:f38(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16+1):|:Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
All Bounds
Timebounds
Overall timebound:10*Arg_8+25*Arg_10+35*Arg_9+4*Arg_15+6*Arg_7+8*Arg_16+40 {O(n)}
67: f13->f16: Arg_7+Arg_8+1 {O(n)}
68: f13->f27: 1 {O(1)}
69: f16->f16: Arg_10+Arg_9+1 {O(n)}
70: f16->f13: Arg_7+Arg_8+1 {O(n)}
71: f2->f13: 1 {O(1)}
72: f2->f27: 1 {O(1)}
73: f2->f27: 1 {O(1)}
74: f27->f35: 2*Arg_8+2 {O(n)}
75: f27->f35: 2*Arg_7+2*Arg_8+2 {O(n)}
76: f27->f35: 2*Arg_8+4 {O(n)}
77: f27->f1: 1 {O(1)}
78: f27->f1: 1 {O(1)}
79: f27->f1: 1 {O(1)}
80: f35->f38: 2*Arg_15+4*Arg_16+6 {O(n)}
81: f35->f27: 2*Arg_7+2*Arg_8+2 {O(n)}
82: f38->f53: 2*Arg_10+2*Arg_9+2 {O(n)}
83: f38->f53: 2*Arg_10+2*Arg_9+2 {O(n)}
84: f38->f38: 2*Arg_10+2*Arg_9 {O(n)}
85: f38->f38: 2*Arg_10+4*Arg_9 {O(n)}
86: f38->f38: 2*Arg_10+4*Arg_9 {O(n)}
87: f38->f35: 12*Arg_9+2*Arg_15+4*Arg_16+8*Arg_10+8 {O(n)}
88: f53->f38: 2*Arg_10+2 {O(n)}
89: f53->f38: 2*Arg_10+4*Arg_9 {O(n)}
90: f53->f38: 2*Arg_10+4*Arg_9 {O(n)}
Costbounds
Overall costbound: 10*Arg_8+25*Arg_10+35*Arg_9+4*Arg_15+6*Arg_7+8*Arg_16+40 {O(n)}
67: f13->f16: Arg_7+Arg_8+1 {O(n)}
68: f13->f27: 1 {O(1)}
69: f16->f16: Arg_10+Arg_9+1 {O(n)}
70: f16->f13: Arg_7+Arg_8+1 {O(n)}
71: f2->f13: 1 {O(1)}
72: f2->f27: 1 {O(1)}
73: f2->f27: 1 {O(1)}
74: f27->f35: 2*Arg_8+2 {O(n)}
75: f27->f35: 2*Arg_7+2*Arg_8+2 {O(n)}
76: f27->f35: 2*Arg_8+4 {O(n)}
77: f27->f1: 1 {O(1)}
78: f27->f1: 1 {O(1)}
79: f27->f1: 1 {O(1)}
80: f35->f38: 2*Arg_15+4*Arg_16+6 {O(n)}
81: f35->f27: 2*Arg_7+2*Arg_8+2 {O(n)}
82: f38->f53: 2*Arg_10+2*Arg_9+2 {O(n)}
83: f38->f53: 2*Arg_10+2*Arg_9+2 {O(n)}
84: f38->f38: 2*Arg_10+2*Arg_9 {O(n)}
85: f38->f38: 2*Arg_10+4*Arg_9 {O(n)}
86: f38->f38: 2*Arg_10+4*Arg_9 {O(n)}
87: f38->f35: 12*Arg_9+2*Arg_15+4*Arg_16+8*Arg_10+8 {O(n)}
88: f53->f38: 2*Arg_10+2 {O(n)}
89: f53->f38: 2*Arg_10+4*Arg_9 {O(n)}
90: f53->f38: 2*Arg_10+4*Arg_9 {O(n)}
Sizebounds
67: f13->f16, Arg_0: 1 {O(1)}
67: f13->f16, Arg_7: Arg_7 {O(n)}
67: f13->f16, Arg_8: 2*Arg_8+Arg_7+1 {O(n)}
67: f13->f16, Arg_9: Arg_9 {O(n)}
67: f13->f16, Arg_10: 2*Arg_10+Arg_9+1 {O(n)}
67: f13->f16, Arg_15: Arg_15 {O(n)}
67: f13->f16, Arg_16: Arg_16 {O(n)}
68: f13->f27, Arg_0: 1 {O(1)}
68: f13->f27, Arg_7: 2*Arg_7 {O(n)}
68: f13->f27, Arg_8: 3*Arg_8+Arg_7+1 {O(n)}
68: f13->f27, Arg_9: 2*Arg_9 {O(n)}
68: f13->f27, Arg_10: 3*Arg_10+Arg_9+1 {O(n)}
68: f13->f27, Arg_15: 2*Arg_15 {O(n)}
68: f13->f27, Arg_16: 2*Arg_16 {O(n)}
69: f16->f16, Arg_0: 1 {O(1)}
69: f16->f16, Arg_7: Arg_7 {O(n)}
69: f16->f16, Arg_8: 2*Arg_8+Arg_7+1 {O(n)}
69: f16->f16, Arg_9: Arg_9 {O(n)}
69: f16->f16, Arg_10: 2*Arg_10+Arg_9+1 {O(n)}
69: f16->f16, Arg_15: Arg_15 {O(n)}
69: f16->f16, Arg_16: Arg_16 {O(n)}
70: f16->f13, Arg_0: 1 {O(1)}
70: f16->f13, Arg_7: Arg_7 {O(n)}
70: f16->f13, Arg_8: 2*Arg_8+Arg_7+1 {O(n)}
70: f16->f13, Arg_9: Arg_9 {O(n)}
70: f16->f13, Arg_10: 2*Arg_10+Arg_9+1 {O(n)}
70: f16->f13, Arg_15: Arg_15 {O(n)}
70: f16->f13, Arg_16: Arg_16 {O(n)}
71: f2->f13, Arg_0: 1 {O(1)}
71: f2->f13, Arg_7: Arg_7 {O(n)}
71: f2->f13, Arg_8: Arg_8 {O(n)}
71: f2->f13, Arg_9: Arg_9 {O(n)}
71: f2->f13, Arg_10: Arg_10 {O(n)}
71: f2->f13, Arg_15: Arg_15 {O(n)}
71: f2->f13, Arg_16: Arg_16 {O(n)}
72: f2->f27, Arg_0: Arg_0 {O(n)}
72: f2->f27, Arg_7: Arg_7 {O(n)}
72: f2->f27, Arg_8: Arg_8 {O(n)}
72: f2->f27, Arg_9: Arg_9 {O(n)}
72: f2->f27, Arg_10: Arg_10 {O(n)}
72: f2->f27, Arg_15: Arg_15 {O(n)}
72: f2->f27, Arg_16: Arg_16 {O(n)}
73: f2->f27, Arg_0: Arg_0 {O(n)}
73: f2->f27, Arg_7: Arg_7 {O(n)}
73: f2->f27, Arg_8: Arg_8 {O(n)}
73: f2->f27, Arg_9: Arg_9 {O(n)}
73: f2->f27, Arg_10: Arg_10 {O(n)}
73: f2->f27, Arg_15: Arg_15 {O(n)}
73: f2->f27, Arg_16: Arg_16 {O(n)}
74: f27->f35, Arg_0: 6*Arg_0 {O(n)}
74: f27->f35, Arg_7: 6*Arg_7 {O(n)}
74: f27->f35, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
74: f27->f35, Arg_9: 6*Arg_9 {O(n)}
74: f27->f35, Arg_10: 4*Arg_9+8*Arg_10+7 {O(n)}
74: f27->f35, Arg_15: 6*Arg_15 {O(n)}
74: f27->f35, Arg_16: 10*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}
75: f27->f35, Arg_0: 6*Arg_0 {O(n)}
75: f27->f35, Arg_7: 6*Arg_7 {O(n)}
75: f27->f35, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
75: f27->f35, Arg_9: 6*Arg_9 {O(n)}
75: f27->f35, Arg_10: 4*Arg_9+8*Arg_10+7 {O(n)}
75: f27->f35, Arg_15: 6*Arg_15 {O(n)}
75: f27->f35, Arg_16: 10*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}
76: f27->f35, Arg_0: 6*Arg_0 {O(n)}
76: f27->f35, Arg_7: 6*Arg_7 {O(n)}
76: f27->f35, Arg_8: 1 {O(1)}
76: f27->f35, Arg_9: 6*Arg_9 {O(n)}
76: f27->f35, Arg_10: 4*Arg_9+8*Arg_10+7 {O(n)}
76: f27->f35, Arg_15: 6*Arg_15 {O(n)}
76: f27->f35, Arg_16: 10*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}
77: f27->f1, Arg_0: 7*Arg_0 {O(n)}
77: f27->f1, Arg_7: 7*Arg_7 {O(n)}
77: f27->f1, Arg_8: 2*Arg_7+7*Arg_8+4 {O(n)}
77: f27->f1, Arg_9: 7*Arg_9 {O(n)}
77: f27->f1, Arg_10: 4*Arg_9+9*Arg_10+7 {O(n)}
77: f27->f1, Arg_15: 7*Arg_15 {O(n)}
77: f27->f1, Arg_16: 11*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}
78: f27->f1, Arg_0: 8*Arg_0+1 {O(n)}
78: f27->f1, Arg_7: 10*Arg_7 {O(n)}
78: f27->f1, Arg_8: 11*Arg_8+3*Arg_7+5 {O(n)}
78: f27->f1, Arg_9: 10*Arg_9 {O(n)}
78: f27->f1, Arg_10: 13*Arg_10+5*Arg_9+8 {O(n)}
78: f27->f1, Arg_15: 10*Arg_15 {O(n)}
78: f27->f1, Arg_16: 12*Arg_9+14*Arg_16+2*Arg_15+8*Arg_10+9 {O(n)}
79: f27->f1, Arg_0: 1 {O(1)}
79: f27->f1, Arg_7: 7*Arg_7 {O(n)}
79: f27->f1, Arg_8: 2*Arg_7+7*Arg_8+4 {O(n)}
79: f27->f1, Arg_9: 7*Arg_9 {O(n)}
79: f27->f1, Arg_10: 4*Arg_9+9*Arg_10+7 {O(n)}
79: f27->f1, Arg_15: 7*Arg_15 {O(n)}
79: f27->f1, Arg_16: 11*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}
80: f35->f38, Arg_0: 6*Arg_0 {O(n)}
80: f35->f38, Arg_7: 6*Arg_7 {O(n)}
80: f35->f38, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
80: f35->f38, Arg_9: 6*Arg_9 {O(n)}
80: f35->f38, Arg_10: 4*Arg_9+8*Arg_10+7 {O(n)}
80: f35->f38, Arg_15: 6*Arg_15 {O(n)}
80: f35->f38, Arg_16: 10*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}
81: f35->f27, Arg_0: 6*Arg_0 {O(n)}
81: f35->f27, Arg_7: 6*Arg_7 {O(n)}
81: f35->f27, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
81: f35->f27, Arg_9: 6*Arg_9 {O(n)}
81: f35->f27, Arg_10: 4*Arg_9+8*Arg_10+7 {O(n)}
81: f35->f27, Arg_15: 6*Arg_15 {O(n)}
81: f35->f27, Arg_16: 10*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}
82: f38->f53, Arg_0: 6*Arg_0 {O(n)}
82: f38->f53, Arg_7: 6*Arg_7 {O(n)}
82: f38->f53, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
82: f38->f53, Arg_9: 6*Arg_9 {O(n)}
82: f38->f53, Arg_10: 4*Arg_9+8*Arg_10+7 {O(n)}
82: f38->f53, Arg_15: 6*Arg_15 {O(n)}
82: f38->f53, Arg_16: 10*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}
83: f38->f53, Arg_0: 6*Arg_0 {O(n)}
83: f38->f53, Arg_7: 6*Arg_7 {O(n)}
83: f38->f53, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
83: f38->f53, Arg_9: 6*Arg_9 {O(n)}
83: f38->f53, Arg_10: 4*Arg_9+8*Arg_10+7 {O(n)}
83: f38->f53, Arg_15: 6*Arg_15 {O(n)}
83: f38->f53, Arg_16: 10*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}
84: f38->f38, Arg_0: 6*Arg_0 {O(n)}
84: f38->f38, Arg_7: 6*Arg_7 {O(n)}
84: f38->f38, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
84: f38->f38, Arg_9: 6*Arg_9 {O(n)}
84: f38->f38, Arg_10: 4*Arg_9+8*Arg_10+8 {O(n)}
84: f38->f38, Arg_15: 6*Arg_15 {O(n)}
84: f38->f38, Arg_16: 1 {O(1)}
85: f38->f38, Arg_0: 12*Arg_0 {O(n)}
85: f38->f38, Arg_7: 12*Arg_7 {O(n)}
85: f38->f38, Arg_8: 12*Arg_8+4*Arg_7+8 {O(n)}
85: f38->f38, Arg_9: 12*Arg_9 {O(n)}
85: f38->f38, Arg_10: 10*Arg_10+8*Arg_9+9 {O(n)}
85: f38->f38, Arg_15: 12*Arg_15 {O(n)}
85: f38->f38, Arg_16: 1 {O(1)}
86: f38->f38, Arg_0: 6*Arg_0 {O(n)}
86: f38->f38, Arg_7: 6*Arg_7 {O(n)}
86: f38->f38, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
86: f38->f38, Arg_9: 6*Arg_9 {O(n)}
86: f38->f38, Arg_10: 2 {O(1)}
86: f38->f38, Arg_15: 6*Arg_15 {O(n)}
86: f38->f38, Arg_16: 1 {O(1)}
87: f38->f35, Arg_0: 6*Arg_0 {O(n)}
87: f38->f35, Arg_7: 6*Arg_7 {O(n)}
87: f38->f35, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
87: f38->f35, Arg_9: 6*Arg_9 {O(n)}
87: f38->f35, Arg_10: 4*Arg_9+8*Arg_10+7 {O(n)}
87: f38->f35, Arg_15: 6*Arg_15 {O(n)}
87: f38->f35, Arg_16: 10*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}
88: f53->f38, Arg_0: 6*Arg_0 {O(n)}
88: f53->f38, Arg_7: 6*Arg_7 {O(n)}
88: f53->f38, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
88: f53->f38, Arg_9: 6*Arg_9 {O(n)}
88: f53->f38, Arg_10: 4*Arg_9+8*Arg_10+7 {O(n)}
88: f53->f38, Arg_15: 6*Arg_15 {O(n)}
88: f53->f38, Arg_16: 10*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}
89: f53->f38, Arg_0: 6*Arg_0 {O(n)}
89: f53->f38, Arg_7: 6*Arg_7 {O(n)}
89: f53->f38, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
89: f53->f38, Arg_9: 6*Arg_9 {O(n)}
89: f53->f38, Arg_10: 4*Arg_9+8*Arg_10+7 {O(n)}
89: f53->f38, Arg_15: 6*Arg_15 {O(n)}
89: f53->f38, Arg_16: 10*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}
90: f53->f38, Arg_0: 6*Arg_0 {O(n)}
90: f53->f38, Arg_7: 6*Arg_7 {O(n)}
90: f53->f38, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
90: f53->f38, Arg_9: 6*Arg_9 {O(n)}
90: f53->f38, Arg_10: 2 {O(1)}
90: f53->f38, Arg_15: 6*Arg_15 {O(n)}
90: f53->f38, Arg_16: 10*Arg_16+12*Arg_9+2*Arg_15+8*Arg_10+9 {O(n)}