Initial Problem
Start: start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20
Temp_Vars: A1, B1, C1, D1, E1, F1, G1, H1, I1, V, W, X, Y, Z
Locations: f1, f10, f15, f2, f24, f28, f32, f42, f60, f68, f75, start
Transitions:
27:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1+Arg_0<=Arg_2
3:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_2<=Arg_0
6:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,V,W,V+W,X,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:X+1<=0 && 1+Arg_3<=Arg_0
7:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,V,W,V+W,X,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1<=X && 1+Arg_3<=Arg_0
4:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_0<=Arg_3
5:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,V,W,V+W,0,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1+Arg_3<=Arg_0
28:f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1+Arg_0<=Arg_1
0:f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f2(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_1<=Arg_0
9:f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_4,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_3+1<=Arg_2
10:f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_4,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1+Arg_2<=Arg_3
8:f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f75(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_2<=Arg_3 && Arg_3<=Arg_2
11:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,V,W,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_9<=29
12:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,V,W,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:31<=Arg_9
13:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,30,V,W,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_9<=30 && 30<=Arg_9
14:f32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,V+X-W,Arg_11,Z,Z,1,1,0,Arg_17,Arg_18,Arg_19,Arg_20):|:X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
15:f32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,V+X-W,Arg_11,Arg_12,-Z,1,1,0,Z,Arg_18,Arg_19,Arg_20):|:X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
18:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,V-W*Arg_14,X,Arg_12,Arg_13,Z,Y,H1,Arg_17,B1*Arg_15,W*Arg_14,Arg_20):|:A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
19:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,V-W*Arg_14,X,Arg_12,Arg_13,Z,Y,H1,Arg_17,B1*Arg_15,W*Arg_14,Arg_20):|:A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
16:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_1+1<=Arg_2
17:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,V*Arg_15,W*Arg_14,Arg_20):|:Arg_2<=Arg_1
26:f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1+Arg_0<=Arg_20
20:f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,V,Arg_19,Arg_20+1):|:Arg_20<=Arg_0
21:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
22:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_11+1<=0
23:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1<=Arg_11
24:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
25:f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f10(Arg_0,Arg_1,Arg_2+1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_2<=Arg_3 && Arg_3<=Arg_2
1:f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_3+1<=Arg_2
2:f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1+Arg_2<=Arg_3
29:start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20)
Show Graph
G
f1
f1
f10
f10
f10->f1
t₂₇
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₃
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆
η (Arg_3) = Arg_3+1
η (Arg_5) = V
η (Arg_6) = W
η (Arg_7) = V+W
η (Arg_8) = X
τ = X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₇
η (Arg_3) = Arg_3+1
η (Arg_5) = V
η (Arg_6) = W
η (Arg_7) = V+W
η (Arg_8) = X
τ = 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₄
τ = Arg_0<=Arg_3
f15->f24
t₅
η (Arg_5) = V
η (Arg_6) = W
η (Arg_7) = V+W
η (Arg_8) = 0
τ = 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₂₈
τ = 1+Arg_0<=Arg_1
f2->f2
t₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₉
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = Arg_3+1<=Arg_2
f24->f28
t₁₀
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₈
η (Arg_3) = Arg_2
τ = Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₁₁
η (Arg_10) = V
η (Arg_11) = W
τ = Arg_9<=29
f28->f32
t₁₂
η (Arg_10) = V
η (Arg_11) = W
τ = 31<=Arg_9
f28->f32
t₁₃
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₁₄
η (Arg_10) = V+X-W
η (Arg_12) = Z
η (Arg_13) = Z
η (Arg_14) = 1
η (Arg_15) = 1
η (Arg_16) = 0
τ = X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₁₅
η (Arg_10) = V+X-W
η (Arg_13) = -Z
η (Arg_14) = 1
η (Arg_15) = 1
η (Arg_16) = 0
η (Arg_17) = Z
τ = X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₁₈
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
η (Arg_16) = H1
η (Arg_18) = B1*Arg_15
η (Arg_19) = W*Arg_14
τ = A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₁₉
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
η (Arg_16) = H1
η (Arg_18) = B1*Arg_15
η (Arg_19) = W*Arg_14
τ = A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₁₆
τ = Arg_1+1<=Arg_2
f42->f68
t₁₇
η (Arg_11) = 0
η (Arg_18) = V*Arg_15
η (Arg_19) = W*Arg_14
τ = Arg_2<=Arg_1
f60->f42
t₂₆
η (Arg_1) = Arg_1-1
τ = 1+Arg_0<=Arg_20
f60->f60
t₂₀
η (Arg_18) = V
η (Arg_20) = Arg_20+1
τ = Arg_20<=Arg_0
f68->f75
t₂₁
η (Arg_11) = 0
τ = Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₂₂
τ = Arg_11+1<=0
f68->f75
t₂₃
τ = 1<=Arg_11
f68->f75
t₂₄
η (Arg_11) = 0
τ = Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₂₅
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₁
τ = Arg_3+1<=Arg_2
f75->f15
t₂
τ = 1+Arg_2<=Arg_3
start
start
start->f2
t₂₉
Preprocessing
Eliminate variables {Arg_5,Arg_6,Arg_7,Arg_8,Arg_12,Arg_13,Arg_16,Arg_17,Arg_18,Arg_19} that do not contribute to the problem
Found invariant 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 for location f42
Found invariant 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 for location f68
Found invariant 0<=Arg_4 && Arg_2<=Arg_0 for location f75
Found invariant 0<=Arg_4 && Arg_2<=Arg_0 for location f15
Found invariant 0<=Arg_4 && Arg_2<=Arg_0 for location f24
Found invariant 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 for location f28
Found invariant 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 for location f32
Found invariant 1+Arg_0<=Arg_2 for location f1
Found invariant 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 for location f60
Problem after Preprocessing
Start: start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_9, Arg_10, Arg_11, Arg_14, Arg_15, Arg_20
Temp_Vars: A1, B1, C1, D1, E1, F1, G1, H1, I1, V, W, X, Y, Z
Locations: f1, f10, f15, f2, f24, f28, f32, f42, f60, f68, f75, start
Transitions:
65:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:1+Arg_0<=Arg_2
64:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:Arg_2<=Arg_0
68:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
69:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
66:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
67:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
71:f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:1+Arg_0<=Arg_1
70:f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f2(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:Arg_1<=Arg_0
73:f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_4,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
74:f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_4,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
72:f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f75(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
75:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V,W,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
76:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V,W,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
77:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,30,V,W,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
78:f32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V+X-W,Arg_11,1,1,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
79:f32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V+X-W,Arg_11,1,1,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
82:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V-W*Arg_14,X,Z,Y,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
83:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V-W*Arg_14,X,Z,Y,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
80:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
81:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,0,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
85:f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
84:f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20+1):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
86:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,0,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
87:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
88:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
89:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,0,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
92:f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f10(Arg_0,Arg_1,Arg_2+1,Arg_2,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
90:f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
91:f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
93:start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20)
Show Graph
G
f1
f1
f10
f10
f10->f1
t₆₅
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₆₄
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆₈
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₆₉
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₆₆
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f15->f24
t₆₇
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₇₁
τ = 1+Arg_0<=Arg_1
f2->f2
t₇₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f24->f28
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f28->f32
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f28->f32
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₇₈
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₇₉
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₈₂
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₈₃
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f60->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f60->f60
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f75
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f75
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f75
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f75->f15
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f2
t₉₃
MPRF for transition 70:f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f2(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:Arg_1<=Arg_0 of depth 1:
new bound:
Arg_0+Arg_1+1 {O(n)}
MPRF:
f2 [Arg_0+1-Arg_1 ]
Show Graph
G
f1
f1
f10
f10
f10->f1
t₆₅
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₆₄
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆₈
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₆₉
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₆₆
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f15->f24
t₆₇
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₇₁
τ = 1+Arg_0<=Arg_1
f2->f2
t₇₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f24->f28
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f28->f32
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f28->f32
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₇₈
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₇₉
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₈₂
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₈₃
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f60->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f60->f60
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f75
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f75
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f75
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f75->f15
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f2
t₉₃
MPRF for transition 64:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:Arg_2<=Arg_0 of depth 1:
new bound:
2*Arg_0+2*Arg_2+1 {O(n)}
MPRF:
f24 [Arg_0-Arg_2 ]
f28 [Arg_0-Arg_2 ]
f32 [Arg_0-Arg_2 ]
f60 [Arg_0-Arg_2 ]
f42 [Arg_0-Arg_2 ]
f68 [Arg_0-Arg_2 ]
f15 [Arg_0-Arg_2 ]
f75 [Arg_0-Arg_2 ]
f10 [Arg_0+1-Arg_2 ]
Show Graph
G
f1
f1
f10
f10
f10->f1
t₆₅
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₆₄
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆₈
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₆₉
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₆₆
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f15->f24
t₆₇
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₇₁
τ = 1+Arg_0<=Arg_1
f2->f2
t₇₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f24->f28
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f28->f32
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f28->f32
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₇₈
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₇₉
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₈₂
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₈₃
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f60->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f60->f60
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f75
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f75
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f75
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f75->f15
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f2
t₉₃
MPRF for transition 68:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0 of depth 1:
new bound:
2*Arg_0+2*Arg_3 {O(n)}
MPRF:
f24 [Arg_0-Arg_3 ]
f28 [Arg_0-Arg_3 ]
f32 [Arg_0-Arg_3 ]
f60 [Arg_0-Arg_3 ]
f42 [Arg_0-Arg_3 ]
f68 [Arg_0-Arg_3 ]
f15 [Arg_0-Arg_3 ]
f75 [Arg_0-Arg_3 ]
f10 [Arg_0-Arg_3 ]
Show Graph
G
f1
f1
f10
f10
f10->f1
t₆₅
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₆₄
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆₈
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₆₉
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₆₆
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f15->f24
t₆₇
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₇₁
τ = 1+Arg_0<=Arg_1
f2->f2
t₇₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f24->f28
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f28->f32
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f28->f32
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₇₈
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₇₉
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₈₂
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₈₃
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f60->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f60->f60
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f75
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f75
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f75
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f75->f15
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f2
t₉₃
MPRF for transition 69:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f15(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0 of depth 1:
new bound:
2*Arg_0+2*Arg_3 {O(n)}
MPRF:
f24 [Arg_0-Arg_3 ]
f28 [Arg_0-Arg_3 ]
f32 [Arg_0-Arg_3 ]
f60 [Arg_0-Arg_3 ]
f42 [Arg_0-Arg_3 ]
f68 [Arg_0-Arg_3 ]
f15 [Arg_0-Arg_3 ]
f75 [Arg_0-Arg_3 ]
f10 [Arg_0-Arg_3 ]
Show Graph
G
f1
f1
f10
f10
f10->f1
t₆₅
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₆₄
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆₈
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₆₉
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₆₆
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f15->f24
t₆₇
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₇₁
τ = 1+Arg_0<=Arg_1
f2->f2
t₇₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f24->f28
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f28->f32
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f28->f32
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₇₈
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₇₉
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₈₂
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₈₃
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f60->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f60->f60
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f75
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f75
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f75
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f75->f15
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f2
t₉₃
MPRF for transition 82:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V-Temp_Int_2483,X,Z,Y,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1 of depth 1:
new bound:
2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
MPRF:
f24 [Arg_1+1-Arg_2 ]
f28 [Arg_1+1-Arg_2 ]
f32 [Arg_1+Arg_4-Arg_2-Arg_9 ]
f60 [Arg_1-Arg_2 ]
f42 [Arg_1+1-Arg_2 ]
f68 [Arg_1+Arg_4-Arg_2-Arg_9 ]
f15 [Arg_1+1-Arg_2 ]
f75 [Arg_1+1-Arg_2 ]
f10 [Arg_1+1-Arg_2 ]
Show Graph
G
f1
f1
f10
f10
f10->f1
t₆₅
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₆₄
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆₈
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₆₉
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₆₆
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f15->f24
t₆₇
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₇₁
τ = 1+Arg_0<=Arg_1
f2->f2
t₇₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f24->f28
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f28->f32
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f28->f32
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₇₈
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₇₉
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₈₂
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₈₃
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f60->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f60->f60
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f75
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f75
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f75
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f75->f15
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f2
t₉₃
MPRF for transition 83:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V-Temp_Int_2484,X,Z,Y,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1 of depth 1:
new bound:
2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
MPRF:
f24 [Arg_1+1-Arg_2 ]
f28 [Arg_1+1-Arg_2 ]
f32 [Arg_1+Arg_4-Arg_2-Arg_9 ]
f60 [Arg_1-Arg_2 ]
f42 [Arg_1+1-Arg_2 ]
f68 [Arg_1+Arg_4-Arg_2-Arg_9 ]
f15 [Arg_1+1-Arg_2 ]
f75 [Arg_1+1-Arg_2 ]
f10 [Arg_1+1-Arg_2 ]
Show Graph
G
f1
f1
f10
f10
f10->f1
t₆₅
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₆₄
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆₈
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₆₉
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₆₆
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f15->f24
t₆₇
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₇₁
τ = 1+Arg_0<=Arg_1
f2->f2
t₇₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f24->f28
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f28->f32
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f28->f32
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₇₈
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₇₉
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₈₂
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₈₃
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f60->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f60->f60
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f75
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f75
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f75
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f75->f15
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f2
t₉₃
MPRF for transition 84:f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20+1):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0 of depth 1:
new bound:
2*Arg_0+2*Arg_20+1 {O(n)}
MPRF:
f24 [Arg_0+1-Arg_20 ]
f28 [Arg_0+1-Arg_20 ]
f32 [Arg_0+1-Arg_20 ]
f60 [Arg_0+Arg_9+2-Arg_4-Arg_20 ]
f42 [Arg_0+Arg_4-Arg_9-Arg_20 ]
f68 [Arg_0+Arg_4-Arg_9-Arg_20 ]
f15 [Arg_0+1-Arg_20 ]
f75 [Arg_0+1-Arg_20 ]
f10 [Arg_0+1-Arg_20 ]
Show Graph
G
f1
f1
f10
f10
f10->f1
t₆₅
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₆₄
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆₈
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₆₉
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₆₆
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f15->f24
t₆₇
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₇₁
τ = 1+Arg_0<=Arg_1
f2->f2
t₇₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f24->f28
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f28->f32
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f28->f32
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₇₈
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₇₉
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₈₂
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₈₃
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f60->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f60->f60
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f75
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f75
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f75
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f75->f15
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f2
t₉₃
MPRF for transition 85:f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20 of depth 1:
new bound:
2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
MPRF:
f24 [Arg_1+1-Arg_2 ]
f28 [Arg_1+1-Arg_2 ]
f32 [Arg_1+Arg_4-Arg_2-Arg_9 ]
f60 [Arg_1+1-Arg_2 ]
f42 [Arg_1+1-Arg_2 ]
f68 [Arg_1+Arg_4-Arg_2-Arg_9 ]
f15 [Arg_1+1-Arg_2 ]
f75 [Arg_1+1-Arg_2 ]
f10 [Arg_1+1-Arg_2 ]
Show Graph
G
f1
f1
f10
f10
f10->f1
t₆₅
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₆₄
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆₈
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₆₉
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₆₆
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f15->f24
t₆₇
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₇₁
τ = 1+Arg_0<=Arg_1
f2->f2
t₇₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f24->f28
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f28->f32
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f28->f32
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₇₈
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₇₉
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₈₂
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₈₃
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f60->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f60->f60
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f75
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f75
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f75
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f75->f15
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f2
t₉₃
MPRF for transition 92:f75(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f10(Arg_0,Arg_1,Arg_2+1,Arg_2,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 of depth 1:
new bound:
2*Arg_0+2*Arg_2+1 {O(n)}
MPRF:
f24 [Arg_0+1-Arg_2 ]
f28 [Arg_0+1-Arg_2 ]
f32 [Arg_0+Arg_4-Arg_2-Arg_9 ]
f60 [Arg_0+Arg_4-Arg_2-Arg_9 ]
f42 [Arg_0+1-Arg_2 ]
f68 [Arg_0+Arg_4-Arg_2-Arg_9 ]
f15 [Arg_0+1-Arg_2 ]
f75 [Arg_0+1-Arg_2 ]
f10 [Arg_0+1-Arg_2 ]
Show Graph
G
f1
f1
f10
f10
f10->f1
t₆₅
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₆₄
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆₈
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₆₉
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₆₆
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f15->f24
t₆₇
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₇₁
τ = 1+Arg_0<=Arg_1
f2->f2
t₇₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f24->f28
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f28->f32
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f28->f32
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₇₈
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₇₉
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₈₂
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₈₃
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f60->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f60->f60
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f75
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f75
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f75
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f75->f15
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f2
t₉₃
MPRF for transition 75:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V,W,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29 of depth 1:
new bound:
60*Arg_0+60*Arg_2+60 {O(n)}
MPRF:
f10 [30 ]
f24 [30-Arg_4 ]
f28 [31-Arg_4 ]
f32 [30-Arg_4 ]
f60 [29*Arg_4-30*Arg_9 ]
f42 [29-Arg_9 ]
f68 [29*Arg_4-30*Arg_9 ]
f75 [30-Arg_4 ]
f15 [30-Arg_4 ]
Show Graph
G
f1
f1
f10
f10
f10->f1
t₆₅
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₆₄
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆₈
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₆₉
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₆₆
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f15->f24
t₆₇
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₇₁
τ = 1+Arg_0<=Arg_1
f2->f2
t₇₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f24->f28
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f28->f32
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f28->f32
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₇₈
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₇₉
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₈₂
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₈₃
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f60->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f60->f60
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f75
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f75
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f75
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f75->f15
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f2
t₉₃
MPRF for transition 77:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_20) -> f32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,30,V,W,Arg_14,Arg_15,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9 of depth 1:
new bound:
54062*Arg_0+54062*Arg_2+54062 {O(n)}
MPRF:
f10 [27031 ]
f24 [27031-Arg_4 ]
f28 [27032-Arg_4 ]
f32 [30*Arg_9+27061-31*Arg_4 ]
f60 [27030*Arg_4-27031*Arg_9 ]
f42 [27031-Arg_4 ]
f68 [27031-Arg_4 ]
f75 [27031-Arg_4 ]
f15 [27031-Arg_4 ]
Show Graph
G
f1
f1
f10
f10
f10->f1
t₆₅
τ = 1+Arg_0<=Arg_2
f15
f15
f10->f15
t₆₄
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f15->f15
t₆₈
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f15->f15
t₆₉
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f24
f24
f15->f24
t₆₆
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f15->f24
t₆₇
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f2
f2
f2->f10
t₇₁
τ = 1+Arg_0<=Arg_1
f2->f2
t₇₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f28
f28
f24->f28
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f24->f28
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f75
f75
f24->f75
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f32
f32
f28->f32
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f28->f32
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f28->f32
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f32->f42
t₇₈
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10+X*Z<=Y && Y+1<=X*Arg_10+X*Z+X && 0<=Arg_10
f32->f42
t₇₉
η (Arg_10) = V+X-W
η (Arg_14) = 1
η (Arg_15) = 1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && X*Arg_10<=Y+X*Z && X*Z+Y+1<=X*Arg_10+X && Arg_10+1<=0
f60
f60
f42->f60
t₈₂
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && A1+1<=0 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f42->f60
t₈₃
η (Arg_10) = V-W*Arg_14
η (Arg_11) = X
η (Arg_14) = Z
η (Arg_15) = Y
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && A1*V*X<=X*Arg_10 && X*Arg_10+1<=A1*V*X+V && 1<=A1 && Arg_2<=Arg_1 && A1*C1<=B1*Arg_15 && B1*Arg_15+1<=A1*C1+C1 && Y<=C1 && A1*D1<=B1*Arg_15 && B1*Arg_15+1<=A1*D1+D1 && D1<=Y && A1*E1<=Arg_10 && Arg_10+1<=A1*E1+E1 && Z<=E1 && A1*F1<=Arg_10 && Arg_10+1<=A1*F1+F1 && F1<=Z && A1*G1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*G1*X+G1 && H1<=G1 && A1*I1*X<=B1*X*Arg_15 && B1*X*Arg_15+1<=A1*I1*X+I1 && I1<=H1
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f60->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f60->f60
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f75
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f75
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f75
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f75
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f75->f10
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f75->f15
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f75->f15
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f2
t₉₃
All Bounds
Timebounds
Overall timebound:inf {Infinity}
64: f10->f15: 2*Arg_0+2*Arg_2+1 {O(n)}
65: f10->f1: 1 {O(1)}
66: f15->f24: inf {Infinity}
67: f15->f24: inf {Infinity}
68: f15->f15: 2*Arg_0+2*Arg_3 {O(n)}
69: f15->f15: 2*Arg_0+2*Arg_3 {O(n)}
70: f2->f2: Arg_0+Arg_1+1 {O(n)}
71: f2->f10: 1 {O(1)}
72: f24->f75: inf {Infinity}
73: f24->f28: inf {Infinity}
74: f24->f28: inf {Infinity}
75: f28->f32: 60*Arg_0+60*Arg_2+60 {O(n)}
76: f28->f32: inf {Infinity}
77: f28->f32: 54062*Arg_0+54062*Arg_2+54062 {O(n)}
78: f32->f42: inf {Infinity}
79: f32->f42: inf {Infinity}
80: f42->f68: inf {Infinity}
81: f42->f68: inf {Infinity}
82: f42->f60: 2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
83: f42->f60: 2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
84: f60->f60: 2*Arg_0+2*Arg_20+1 {O(n)}
85: f60->f42: 2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
86: f68->f75: inf {Infinity}
87: f68->f75: inf {Infinity}
88: f68->f75: inf {Infinity}
89: f68->f75: inf {Infinity}
90: f75->f15: inf {Infinity}
91: f75->f15: inf {Infinity}
92: f75->f10: 2*Arg_0+2*Arg_2+1 {O(n)}
93: start->f2: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
64: f10->f15: 2*Arg_0+2*Arg_2+1 {O(n)}
65: f10->f1: 1 {O(1)}
66: f15->f24: inf {Infinity}
67: f15->f24: inf {Infinity}
68: f15->f15: 2*Arg_0+2*Arg_3 {O(n)}
69: f15->f15: 2*Arg_0+2*Arg_3 {O(n)}
70: f2->f2: Arg_0+Arg_1+1 {O(n)}
71: f2->f10: 1 {O(1)}
72: f24->f75: inf {Infinity}
73: f24->f28: inf {Infinity}
74: f24->f28: inf {Infinity}
75: f28->f32: 60*Arg_0+60*Arg_2+60 {O(n)}
76: f28->f32: inf {Infinity}
77: f28->f32: 54062*Arg_0+54062*Arg_2+54062 {O(n)}
78: f32->f42: inf {Infinity}
79: f32->f42: inf {Infinity}
80: f42->f68: inf {Infinity}
81: f42->f68: inf {Infinity}
82: f42->f60: 2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
83: f42->f60: 2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
84: f60->f60: 2*Arg_0+2*Arg_20+1 {O(n)}
85: f60->f42: 2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
86: f68->f75: inf {Infinity}
87: f68->f75: inf {Infinity}
88: f68->f75: inf {Infinity}
89: f68->f75: inf {Infinity}
90: f75->f15: inf {Infinity}
91: f75->f15: inf {Infinity}
92: f75->f10: 2*Arg_0+2*Arg_2+1 {O(n)}
93: start->f2: 1 {O(1)}
Sizebounds
64: f10->f15, Arg_0: 2*Arg_0 {O(n)}
64: f10->f15, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
64: f10->f15, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
64: f10->f15, Arg_3: 10*Arg_0+2*Arg_3+20*Arg_2+5 {O(n)}
64: f10->f15, Arg_4: 0 {O(1)}
64: f10->f15, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
65: f10->f1, Arg_0: 4*Arg_0 {O(n)}
65: f10->f1, Arg_1: 2*Arg_2+3*Arg_0+9*Arg_1+4 {O(n)}
65: f10->f1, Arg_2: 2*Arg_0+6*Arg_2+1 {O(n)}
65: f10->f1, Arg_3: 10*Arg_0+2*Arg_3+20*Arg_2+5 {O(n)}
65: f10->f1, Arg_20: 2*Arg_0+6*Arg_20+1 {O(n)}
66: f15->f24, Arg_0: 2*Arg_0 {O(n)}
66: f15->f24, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
66: f15->f24, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
66: f15->f24, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
66: f15->f24, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
67: f15->f24, Arg_0: 2*Arg_0 {O(n)}
67: f15->f24, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
67: f15->f24, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
67: f15->f24, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
67: f15->f24, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
68: f15->f15, Arg_0: 2*Arg_0 {O(n)}
68: f15->f15, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
68: f15->f15, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
68: f15->f15, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
68: f15->f15, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
69: f15->f15, Arg_0: 2*Arg_0 {O(n)}
69: f15->f15, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
69: f15->f15, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
69: f15->f15, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
69: f15->f15, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
70: f2->f2, Arg_0: Arg_0 {O(n)}
70: f2->f2, Arg_1: 2*Arg_1+Arg_0+1 {O(n)}
70: f2->f2, Arg_2: Arg_2 {O(n)}
70: f2->f2, Arg_3: Arg_3 {O(n)}
70: f2->f2, Arg_4: Arg_4 {O(n)}
70: f2->f2, Arg_9: Arg_9 {O(n)}
70: f2->f2, Arg_10: Arg_10 {O(n)}
70: f2->f2, Arg_11: Arg_11 {O(n)}
70: f2->f2, Arg_14: Arg_14 {O(n)}
70: f2->f2, Arg_15: Arg_15 {O(n)}
70: f2->f2, Arg_20: Arg_20 {O(n)}
71: f2->f10, Arg_0: 2*Arg_0 {O(n)}
71: f2->f10, Arg_1: 3*Arg_1+Arg_0+1 {O(n)}
71: f2->f10, Arg_2: 2*Arg_2 {O(n)}
71: f2->f10, Arg_3: 2*Arg_3 {O(n)}
71: f2->f10, Arg_4: 2*Arg_4 {O(n)}
71: f2->f10, Arg_9: 2*Arg_9 {O(n)}
71: f2->f10, Arg_10: 2*Arg_10 {O(n)}
71: f2->f10, Arg_11: 2*Arg_11 {O(n)}
71: f2->f10, Arg_14: 2*Arg_14 {O(n)}
71: f2->f10, Arg_15: 2*Arg_15 {O(n)}
71: f2->f10, Arg_20: 2*Arg_20 {O(n)}
72: f24->f75, Arg_0: 2*Arg_0 {O(n)}
72: f24->f75, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
72: f24->f75, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
72: f24->f75, Arg_3: 4*Arg_0+8*Arg_2+2 {O(n)}
72: f24->f75, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
73: f24->f28, Arg_0: 2*Arg_0 {O(n)}
73: f24->f28, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
73: f24->f28, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
73: f24->f28, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
73: f24->f28, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
74: f24->f28, Arg_0: 2*Arg_0 {O(n)}
74: f24->f28, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
74: f24->f28, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
74: f24->f28, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
74: f24->f28, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
75: f28->f32, Arg_0: 2*Arg_0 {O(n)}
75: f28->f32, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
75: f28->f32, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
75: f28->f32, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
75: f28->f32, Arg_4: 30 {O(1)}
75: f28->f32, Arg_9: 29 {O(1)}
75: f28->f32, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
76: f28->f32, Arg_0: 2*Arg_0 {O(n)}
76: f28->f32, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
76: f28->f32, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
76: f28->f32, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
76: f28->f32, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
77: f28->f32, Arg_0: 2*Arg_0 {O(n)}
77: f28->f32, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
77: f28->f32, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
77: f28->f32, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
77: f28->f32, Arg_4: 31 {O(1)}
77: f28->f32, Arg_9: 30 {O(1)}
77: f28->f32, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
78: f32->f42, Arg_0: 2*Arg_0 {O(n)}
78: f32->f42, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
78: f32->f42, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
78: f32->f42, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
78: f32->f42, Arg_14: 1 {O(1)}
78: f32->f42, Arg_15: 1 {O(1)}
78: f32->f42, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
79: f32->f42, Arg_0: 2*Arg_0 {O(n)}
79: f32->f42, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
79: f32->f42, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
79: f32->f42, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
79: f32->f42, Arg_14: 1 {O(1)}
79: f32->f42, Arg_15: 1 {O(1)}
79: f32->f42, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
80: f42->f68, Arg_0: 2*Arg_0 {O(n)}
80: f42->f68, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
80: f42->f68, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
80: f42->f68, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
80: f42->f68, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
81: f42->f68, Arg_0: 2*Arg_0 {O(n)}
81: f42->f68, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
81: f42->f68, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
81: f42->f68, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
81: f42->f68, Arg_11: 0 {O(1)}
81: f42->f68, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
82: f42->f60, Arg_0: 2*Arg_0 {O(n)}
82: f42->f60, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
82: f42->f60, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
82: f42->f60, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
82: f42->f60, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
83: f42->f60, Arg_0: 2*Arg_0 {O(n)}
83: f42->f60, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
83: f42->f60, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
83: f42->f60, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
83: f42->f60, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
84: f60->f60, Arg_0: 2*Arg_0 {O(n)}
84: f60->f60, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
84: f60->f60, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
84: f60->f60, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
84: f60->f60, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
85: f60->f42, Arg_0: 2*Arg_0 {O(n)}
85: f60->f42, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
85: f60->f42, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
85: f60->f42, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
85: f60->f42, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
86: f68->f75, Arg_0: 2*Arg_0 {O(n)}
86: f68->f75, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
86: f68->f75, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
86: f68->f75, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
86: f68->f75, Arg_11: 0 {O(1)}
86: f68->f75, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
87: f68->f75, Arg_0: 2*Arg_0 {O(n)}
87: f68->f75, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
87: f68->f75, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
87: f68->f75, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
87: f68->f75, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
88: f68->f75, Arg_0: 2*Arg_0 {O(n)}
88: f68->f75, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
88: f68->f75, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
88: f68->f75, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
88: f68->f75, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
89: f68->f75, Arg_0: 2*Arg_0 {O(n)}
89: f68->f75, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
89: f68->f75, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
89: f68->f75, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
89: f68->f75, Arg_11: 0 {O(1)}
89: f68->f75, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
90: f75->f15, Arg_0: 2*Arg_0 {O(n)}
90: f75->f15, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
90: f75->f15, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
90: f75->f15, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
90: f75->f15, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
91: f75->f15, Arg_0: 2*Arg_0 {O(n)}
91: f75->f15, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
91: f75->f15, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
91: f75->f15, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
91: f75->f15, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
92: f75->f10, Arg_0: 2*Arg_0 {O(n)}
92: f75->f10, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
92: f75->f10, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
92: f75->f10, Arg_3: 10*Arg_0+20*Arg_2+5 {O(n)}
92: f75->f10, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
93: start->f2, Arg_0: Arg_0 {O(n)}
93: start->f2, Arg_1: Arg_1 {O(n)}
93: start->f2, Arg_2: Arg_2 {O(n)}
93: start->f2, Arg_3: Arg_3 {O(n)}
93: start->f2, Arg_4: Arg_4 {O(n)}
93: start->f2, Arg_9: Arg_9 {O(n)}
93: start->f2, Arg_10: Arg_10 {O(n)}
93: start->f2, Arg_11: Arg_11 {O(n)}
93: start->f2, Arg_14: Arg_14 {O(n)}
93: start->f2, Arg_15: Arg_15 {O(n)}
93: start->f2, Arg_20: Arg_20 {O(n)}