Initial Problem
Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17
Temp_Vars: S, T, U
Locations: f0, f10, f13, f29, f34, f53, f55, f61, f73
Transitions:
0:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=Arg_0
1:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f13(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_1+1<=Arg_0
20:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_0<=Arg_1 && S+1<=0
21:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_0<=Arg_1
17:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f10(Arg_0,Arg_1+1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,0):|:1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
2:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f13(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_2,S,S,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+S<=Arg_2 && Arg_3<=Arg_0
3:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f13(Arg_0,Arg_1,S,Arg_3+1,Arg_2,S,S,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2<=S && Arg_3<=Arg_0
18:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_2+1<=0 && 1+Arg_0<=Arg_3
19:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1<=Arg_2 && 1+Arg_0<=Arg_3
4:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f29(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_3<=Arg_0
16:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3
5:f34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f34(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,0,0,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_3<=Arg_0
6:f34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f34(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,S,T,Arg_9+T,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:S+1<=0 && Arg_3<=Arg_0
7:f34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f34(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,S,T,Arg_9+T,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1<=S && Arg_3<=Arg_0
14:f34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,S,T,T,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3
15:f34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,-S,T,S,Arg_17):|:U+1<=0 && 1+Arg_0<=Arg_3
13:f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f10(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_10
8:f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_10<=Arg_0
9:f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f55(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,S,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_3<=Arg_0
12:f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,S,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3
11:f61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_0<=Arg_3
10:f61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f61(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_3<=Arg_0
Preprocessing
Cut unsatisfiable transition 4: f29->f29
Cut unsatisfiable transition 10: f61->f61
Eliminate variables {T,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17} that do not contribute to the problem
Found invariant 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location f29
Found invariant 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location f55
Found invariant 0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location f13
Found invariant 2<=Arg_1 && 4<=Arg_0+Arg_1 && Arg_0<=Arg_1 && 2<=Arg_0 for location f73
Found invariant 2<=Arg_0 for location f10
Found invariant 3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location f61
Found invariant 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location f53
Found invariant 3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 for location f34
Cut unsatisfiable transition 57: f13->f29
Cut unsatisfiable transition 60: f34->f34
Cut unsatisfiable transition 61: f34->f34
Cut unsatisfiable transition 62: f34->f34
Cut unsatisfiable transition 67: f55->f55
Problem after Preprocessing
Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_10
Temp_Vars: S, U
Locations: f0, f10, f13, f29, f34, f53, f55, f61, f73
Transitions:
50:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:2<=Arg_0
51:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f13(Arg_0,Arg_1,0,Arg_3,Arg_10):|:2<=Arg_0 && Arg_1+1<=Arg_0
52:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:2<=Arg_0 && Arg_0<=Arg_1 && S+1<=0
53:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f73(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:2<=Arg_0 && Arg_0<=Arg_1
56:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f10(Arg_0,Arg_1+1,0,Arg_3,Arg_10):|:0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2
54:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f13(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_10):|:0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+S<=Arg_2 && Arg_3<=Arg_0
55:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f13(Arg_0,Arg_1,S,Arg_3+1,Arg_10):|:0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=S && Arg_3<=Arg_0
58:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1<=Arg_2 && 1+Arg_0<=Arg_3
59:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3
63:f34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3
64:f34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && U+1<=0 && 1+Arg_0<=Arg_3
66:f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f10(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_10):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10
65:f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_10<=Arg_0
68:f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3
69:f61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10+1):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3
MPRF for transition 51:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f13(Arg_0,Arg_1,0,Arg_3,Arg_10):|:2<=Arg_0 && Arg_1+1<=Arg_0 of depth 1:
new bound:
2*Arg_0+2*Arg_1 {O(n)}
MPRF:
f13 [2*Arg_0-2*Arg_1-2 ]
f29 [2*Arg_0-2*Arg_1-2 ]
f34 [2*Arg_0-2*Arg_1-2 ]
f10 [2*Arg_0-2*Arg_1 ]
f55 [2*Arg_0-2*Arg_1-2 ]
f61 [2*Arg_0-2*Arg_1-2 ]
f53 [2*Arg_0-2*Arg_1-2 ]
MPRF for transition 54:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f13(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_10):|:0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+S<=Arg_2 && Arg_3<=Arg_0 of depth 1:
new bound:
2*Arg_0+Arg_3 {O(n)}
MPRF:
f13 [2*Arg_0-Arg_3 ]
f29 [2*Arg_0-Arg_3 ]
f34 [2*Arg_0-Arg_3 ]
f10 [2*Arg_0-Arg_3 ]
f55 [2*Arg_0-Arg_3 ]
f61 [2*Arg_0-Arg_3 ]
f53 [2*Arg_0-Arg_3 ]
MPRF for transition 55:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f13(Arg_0,Arg_1,S,Arg_3+1,Arg_10):|:0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_2<=S && Arg_3<=Arg_0 of depth 1:
new bound:
2*Arg_0+Arg_3 {O(n)}
MPRF:
f13 [2*Arg_0-Arg_3 ]
f29 [2*Arg_0-Arg_3 ]
f34 [2*Arg_0-Arg_3 ]
f10 [2*Arg_0-Arg_3 ]
f55 [2*Arg_0-Arg_3 ]
f61 [2*Arg_0-Arg_3 ]
f53 [2*Arg_0-Arg_3 ]
MPRF for transition 56:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f10(Arg_0,Arg_1+1,0,Arg_3,Arg_10):|:0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 && Arg_2<=0 && 0<=Arg_2 of depth 1:
new bound:
Arg_0+Arg_1 {O(n)}
MPRF:
f13 [Arg_0-Arg_1 ]
f29 [Arg_0-Arg_1 ]
f34 [Arg_0-Arg_1 ]
f10 [Arg_0-Arg_1 ]
f55 [Arg_0-Arg_1 ]
f61 [Arg_0-Arg_1 ]
f53 [Arg_0-Arg_1 ]
MPRF for transition 58:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:0<=Arg_2 && 2<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1<=Arg_2 && 1+Arg_0<=Arg_3 of depth 1:
new bound:
Arg_0+Arg_1+1 {O(n)}
MPRF:
f13 [Arg_0+1-Arg_1 ]
f29 [Arg_0-Arg_1 ]
f34 [Arg_0-Arg_1 ]
f10 [Arg_0+1-Arg_1 ]
f55 [Arg_0-Arg_1 ]
f61 [Arg_0-Arg_1 ]
f53 [Arg_0-Arg_1 ]
MPRF for transition 59:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 of depth 1:
new bound:
Arg_0+Arg_1+1 {O(n)}
MPRF:
f13 [Arg_0+1-Arg_1 ]
f29 [Arg_0+1-Arg_1 ]
f34 [Arg_0-Arg_1 ]
f10 [Arg_0+1-Arg_1 ]
f55 [Arg_0-Arg_1 ]
f61 [Arg_0-Arg_1 ]
f53 [Arg_0-Arg_1 ]
MPRF for transition 63:f34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 of depth 1:
new bound:
2*Arg_0+2*Arg_1+1 {O(n)}
MPRF:
f13 [2*Arg_0-2*Arg_1-1 ]
f29 [2*Arg_0-2*Arg_1-1 ]
f34 [2*Arg_0-2*Arg_1-1 ]
f10 [2*Arg_0-2*Arg_1-1 ]
f55 [2*Arg_0-2*Arg_1-2 ]
f61 [2*Arg_0-2*Arg_1-2 ]
f53 [2*Arg_0-2*Arg_1-2 ]
MPRF for transition 64:f34(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && U+1<=0 && 1+Arg_0<=Arg_3 of depth 1:
new bound:
Arg_0+Arg_1 {O(n)}
MPRF:
f13 [Arg_0-Arg_1 ]
f29 [Arg_0-Arg_1 ]
f34 [Arg_0-Arg_1 ]
f10 [Arg_0-Arg_1 ]
f55 [Arg_0-Arg_1-1 ]
f61 [Arg_0-Arg_1-1 ]
f53 [Arg_0-Arg_1-1 ]
MPRF for transition 65:f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && Arg_10<=Arg_0 of depth 1:
new bound:
Arg_0+Arg_10+1 {O(n)}
MPRF:
f13 [Arg_0+1-Arg_10 ]
f29 [Arg_0+1-Arg_10 ]
f34 [Arg_0+1-Arg_10 ]
f10 [Arg_0+1-Arg_10 ]
f55 [Arg_0-Arg_10 ]
f61 [Arg_0-Arg_10 ]
f53 [Arg_0+1-Arg_10 ]
MPRF for transition 66:f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f10(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_10):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_10 of depth 1:
new bound:
Arg_0+Arg_1 {O(n)}
MPRF:
f13 [Arg_0-Arg_1 ]
f29 [Arg_0-Arg_1 ]
f34 [Arg_0-Arg_1 ]
f10 [Arg_0-Arg_1 ]
f55 [Arg_0-Arg_1 ]
f61 [Arg_0-Arg_1 ]
f53 [Arg_0-Arg_1 ]
MPRF for transition 68:f55(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 of depth 1:
new bound:
Arg_0+Arg_10+2 {O(n)}
MPRF:
f13 [Arg_0+2-Arg_10 ]
f29 [Arg_0+2-Arg_10 ]
f34 [Arg_0+2-Arg_10 ]
f10 [Arg_0+2-Arg_10 ]
f55 [Arg_0+2-Arg_10 ]
f61 [Arg_0+1-Arg_10 ]
f53 [Arg_0+2-Arg_10 ]
MPRF for transition 69:f61(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10) -> f53(Arg_0,Arg_1,Arg_2,Arg_3,Arg_10+1):|:3<=Arg_3 && 4<=Arg_2+Arg_3 && 1+Arg_10<=Arg_3 && 2+Arg_1<=Arg_3 && 5<=Arg_0+Arg_3 && 1+Arg_0<=Arg_3 && 1<=Arg_2 && 3<=Arg_0+Arg_2 && Arg_10<=Arg_0 && 1+Arg_1<=Arg_0 && 2<=Arg_0 && 1+Arg_0<=Arg_3 of depth 1:
new bound:
Arg_0+Arg_10+1 {O(n)}
MPRF:
f13 [Arg_0+1-Arg_10 ]
f29 [Arg_0+1-Arg_10 ]
f34 [Arg_0+1-Arg_10 ]
f10 [Arg_0+1-Arg_10 ]
f55 [Arg_0+1-Arg_10 ]
f61 [Arg_0+1-Arg_10 ]
f53 [Arg_0+1-Arg_10 ]
All Bounds
Timebounds
Overall timebound:16*Arg_0+2*Arg_3+3*Arg_10+9*Arg_1+10 {O(n)}
50: f0->f10: 1 {O(1)}
51: f10->f13: 2*Arg_0+2*Arg_1 {O(n)}
52: f10->f73: 1 {O(1)}
53: f10->f73: 1 {O(1)}
54: f13->f13: 2*Arg_0+Arg_3 {O(n)}
55: f13->f13: 2*Arg_0+Arg_3 {O(n)}
56: f13->f10: Arg_0+Arg_1 {O(n)}
58: f13->f29: Arg_0+Arg_1+1 {O(n)}
59: f29->f34: Arg_0+Arg_1+1 {O(n)}
63: f34->f53: 2*Arg_0+2*Arg_1+1 {O(n)}
64: f34->f53: Arg_0+Arg_1 {O(n)}
65: f53->f55: Arg_0+Arg_10+1 {O(n)}
66: f53->f10: Arg_0+Arg_1 {O(n)}
68: f55->f61: Arg_0+Arg_10+2 {O(n)}
69: f61->f53: Arg_0+Arg_10+1 {O(n)}
Costbounds
Overall costbound: 16*Arg_0+2*Arg_3+3*Arg_10+9*Arg_1+10 {O(n)}
50: f0->f10: 1 {O(1)}
51: f10->f13: 2*Arg_0+2*Arg_1 {O(n)}
52: f10->f73: 1 {O(1)}
53: f10->f73: 1 {O(1)}
54: f13->f13: 2*Arg_0+Arg_3 {O(n)}
55: f13->f13: 2*Arg_0+Arg_3 {O(n)}
56: f13->f10: Arg_0+Arg_1 {O(n)}
58: f13->f29: Arg_0+Arg_1+1 {O(n)}
59: f29->f34: Arg_0+Arg_1+1 {O(n)}
63: f34->f53: 2*Arg_0+2*Arg_1+1 {O(n)}
64: f34->f53: Arg_0+Arg_1 {O(n)}
65: f53->f55: Arg_0+Arg_10+1 {O(n)}
66: f53->f10: Arg_0+Arg_1 {O(n)}
68: f55->f61: Arg_0+Arg_10+2 {O(n)}
69: f61->f53: Arg_0+Arg_10+1 {O(n)}
Sizebounds
50: f0->f10, Arg_0: Arg_0 {O(n)}
50: f0->f10, Arg_1: Arg_1 {O(n)}
50: f0->f10, Arg_2: Arg_2 {O(n)}
50: f0->f10, Arg_3: Arg_3 {O(n)}
50: f0->f10, Arg_10: Arg_10 {O(n)}
51: f10->f13, Arg_0: Arg_0 {O(n)}
51: f10->f13, Arg_1: 2*Arg_0+3*Arg_1 {O(n)}
51: f10->f13, Arg_2: 0 {O(1)}
51: f10->f13, Arg_3: 3*Arg_3+4*Arg_0 {O(n)}
51: f10->f13, Arg_10: 2*Arg_10+Arg_0+1 {O(n)}
52: f10->f73, Arg_0: 3*Arg_0 {O(n)}
52: f10->f73, Arg_1: 4*Arg_0+7*Arg_1 {O(n)}
52: f10->f73, Arg_3: 7*Arg_3+8*Arg_0 {O(n)}
52: f10->f73, Arg_10: 2*Arg_0+5*Arg_10+2 {O(n)}
53: f10->f73, Arg_0: 3*Arg_0 {O(n)}
53: f10->f73, Arg_1: 4*Arg_0+7*Arg_1 {O(n)}
53: f10->f73, Arg_3: 7*Arg_3+8*Arg_0 {O(n)}
53: f10->f73, Arg_10: 2*Arg_0+5*Arg_10+2 {O(n)}
54: f13->f13, Arg_0: Arg_0 {O(n)}
54: f13->f13, Arg_1: 2*Arg_0+3*Arg_1 {O(n)}
54: f13->f13, Arg_3: 3*Arg_3+4*Arg_0 {O(n)}
54: f13->f13, Arg_10: 2*Arg_10+Arg_0+1 {O(n)}
55: f13->f13, Arg_0: Arg_0 {O(n)}
55: f13->f13, Arg_1: 2*Arg_0+3*Arg_1 {O(n)}
55: f13->f13, Arg_3: 3*Arg_3+4*Arg_0 {O(n)}
55: f13->f13, Arg_10: 2*Arg_10+Arg_0+1 {O(n)}
56: f13->f10, Arg_0: Arg_0 {O(n)}
56: f13->f10, Arg_1: 2*Arg_0+3*Arg_1 {O(n)}
56: f13->f10, Arg_2: 0 {O(1)}
56: f13->f10, Arg_3: 3*Arg_3+4*Arg_0 {O(n)}
56: f13->f10, Arg_10: 2*Arg_10+Arg_0+1 {O(n)}
58: f13->f29, Arg_0: Arg_0 {O(n)}
58: f13->f29, Arg_1: 2*Arg_0+3*Arg_1 {O(n)}
58: f13->f29, Arg_3: 3*Arg_3+4*Arg_0 {O(n)}
58: f13->f29, Arg_10: 2*Arg_10+Arg_0+1 {O(n)}
59: f29->f34, Arg_0: Arg_0 {O(n)}
59: f29->f34, Arg_1: 2*Arg_0+3*Arg_1 {O(n)}
59: f29->f34, Arg_3: 3*Arg_3+4*Arg_0 {O(n)}
59: f29->f34, Arg_10: 2*Arg_10+Arg_0+1 {O(n)}
63: f34->f53, Arg_0: Arg_0 {O(n)}
63: f34->f53, Arg_1: 2*Arg_0+3*Arg_1 {O(n)}
63: f34->f53, Arg_3: 3*Arg_3+4*Arg_0 {O(n)}
63: f34->f53, Arg_10: 2*Arg_10+Arg_0+1 {O(n)}
64: f34->f53, Arg_0: Arg_0 {O(n)}
64: f34->f53, Arg_1: 2*Arg_0+3*Arg_1 {O(n)}
64: f34->f53, Arg_3: 3*Arg_3+4*Arg_0 {O(n)}
64: f34->f53, Arg_10: 2*Arg_10+Arg_0+1 {O(n)}
65: f53->f55, Arg_0: Arg_0 {O(n)}
65: f53->f55, Arg_1: 2*Arg_0+3*Arg_1 {O(n)}
65: f53->f55, Arg_3: 3*Arg_3+4*Arg_0 {O(n)}
65: f53->f55, Arg_10: 2*Arg_10+Arg_0+1 {O(n)}
66: f53->f10, Arg_0: Arg_0 {O(n)}
66: f53->f10, Arg_1: 2*Arg_0+3*Arg_1 {O(n)}
66: f53->f10, Arg_3: 3*Arg_3+4*Arg_0 {O(n)}
66: f53->f10, Arg_10: 2*Arg_10+Arg_0+1 {O(n)}
68: f55->f61, Arg_0: Arg_0 {O(n)}
68: f55->f61, Arg_1: 2*Arg_0+3*Arg_1 {O(n)}
68: f55->f61, Arg_3: 3*Arg_3+4*Arg_0 {O(n)}
68: f55->f61, Arg_10: 2*Arg_10+Arg_0+1 {O(n)}
69: f61->f53, Arg_0: Arg_0 {O(n)}
69: f61->f53, Arg_1: 2*Arg_0+3*Arg_1 {O(n)}
69: f61->f53, Arg_3: 3*Arg_3+4*Arg_0 {O(n)}
69: f61->f53, Arg_10: 2*Arg_10+Arg_0+1 {O(n)}