Initial Problem

Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12
Temp_Vars: N
Locations: f0, f15, f19, f33, f36, f41, f50, f54, f66, f70, f80, f84, f96
Transitions:
0:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f15(50,5,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12)
1:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f19(Arg_0,Arg_1,Arg_2,0,0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_2<=Arg_1
26:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1,0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_0):|:1+Arg_1<=Arg_2
25:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f15(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_1<=Arg_4
2:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f19(Arg_0,Arg_1,Arg_2,Arg_3+N,Arg_4+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_1 && Arg_2+1<=Arg_4
3:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f19(Arg_0,Arg_1,Arg_2,Arg_3+N,Arg_4+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_4<=Arg_2 && Arg_4<=Arg_1
4:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f19(Arg_0,Arg_1,Arg_2,Arg_3+N,Arg_2+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2
5:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6+1<=Arg_5
24:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_5<=Arg_6
9:f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,Arg_7+1,N,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=Arg_5 && Arg_6<=0 && 0<=Arg_6
6:f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,N,0,Arg_10,Arg_11,Arg_12):|:Arg_6+1<=0 && Arg_7<=Arg_5
7:f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,N,0,Arg_10,Arg_11,Arg_12):|:1<=Arg_6 && Arg_7<=Arg_5
23:f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_5<=Arg_7
22:f41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=Arg_9
8:f41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f41(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,N,Arg_9+1,Arg_10,Arg_11,Arg_12):|:Arg_9+1<=Arg_6
21:f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_5<=Arg_7
10:f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,N,0,Arg_10,Arg_11,Arg_12):|:Arg_7<=Arg_5
20:f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_6<=Arg_9
11:f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,N,Arg_9+1,Arg_10,Arg_11,Arg_12):|:Arg_9<=Arg_6
12:f66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,0,N,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=Arg_5
19:f66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5-1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_5<=Arg_6
18:f70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_6<=Arg_7
13:f70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f70(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,N,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7+1<=Arg_6
14:f80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f84(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6+1,N,Arg_9,Arg_10,Arg_11,Arg_12):|:0<=Arg_6
17:f80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f96(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,0,0,Arg_12):|:Arg_6+1<=0
16:f84(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12):|:1+Arg_5<=Arg_7
15:f84(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12) -> f84(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7+1,N,Arg_9,Arg_10,Arg_11,Arg_12):|:Arg_7<=Arg_5

Preprocessing

Eliminate variables {N,Arg_0,Arg_3,Arg_8,Arg_10,Arg_11,Arg_12} that do not contribute to the problem

Found invariant Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 for location f50

Found invariant Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 for location f19

Found invariant Arg_6<=6 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=11 && Arg_6<=Arg_2 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=11 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 for location f66

Found invariant Arg_6<=6 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=11 && Arg_6<=Arg_2 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 for location f33

Found invariant Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 0<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_2+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_2+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 for location f41

Found invariant Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_2 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 0<=Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_2+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 for location f54

Found invariant Arg_7<=5 && Arg_7<=Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && Arg_6<=5+Arg_7 && 5<=Arg_5+Arg_7 && Arg_5<=5+Arg_7 && 6<=Arg_2+Arg_7 && 5<=Arg_1+Arg_7 && Arg_1<=5+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 for location f70

Found invariant Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=1+Arg_6 && 4<=Arg_5+Arg_6 && Arg_5<=6+Arg_6 && 5<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=6+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 for location f80

Found invariant 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 for location f15

Found invariant Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 for location f36

Found invariant Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 for location f84

Found invariant 1+Arg_6<=0 && 6+Arg_6<=Arg_5 && Arg_5+Arg_6<=4 && 7+Arg_6<=Arg_2 && 6+Arg_6<=Arg_1 && Arg_1+Arg_6<=4 && 0<=1+Arg_6 && 4<=Arg_5+Arg_6 && Arg_5<=6+Arg_6 && 5<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=6+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 for location f96

Cut unsatisfiable transition 71: f36->f41

Problem after Preprocessing

Start: f0
Program_Vars: Arg_1, Arg_2, Arg_4, Arg_5, Arg_6, Arg_7, Arg_9
Temp_Vars:
Locations: f0, f15, f19, f33, f36, f41, f50, f54, f66, f70, f80, f84, f96
Transitions:
62:f0(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f15(5,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9)
63:f15(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f19(Arg_1,Arg_2,0,Arg_5,Arg_6,Arg_7,Arg_9):|:0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_2<=Arg_1
64:f15(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f33(Arg_1,Arg_2,Arg_4,Arg_1,0,Arg_7,Arg_9):|:0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_1<=Arg_2
68:f19(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f15(Arg_1,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9):|:Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_1<=Arg_4
65:f19(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f19(Arg_1,Arg_2,Arg_4+1,Arg_5,Arg_6,Arg_7,Arg_9):|:Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_4<=Arg_1 && Arg_2+1<=Arg_4
66:f19(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f19(Arg_1,Arg_2,Arg_4+1,Arg_5,Arg_6,Arg_7,Arg_9):|:Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1
67:f19(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f19(Arg_1,Arg_2,Arg_2+1,Arg_5,Arg_6,Arg_7,Arg_9):|:Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2
69:f33(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f36(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_9):|:Arg_6<=6 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=11 && Arg_6<=Arg_2 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_6+1<=Arg_5
70:f33(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f66(Arg_1,Arg_2,Arg_4,Arg_5,1,Arg_7,Arg_9):|:Arg_6<=6 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=11 && Arg_6<=Arg_2 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_5<=Arg_6
73:f36(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f36(Arg_1,Arg_2,Arg_4,Arg_5,0,Arg_7+1,Arg_9):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_7<=Arg_5 && Arg_6<=0 && 0<=Arg_6
72:f36(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f41(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,0):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1<=Arg_6 && Arg_7<=Arg_5
74:f36(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f50(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_9):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_5<=Arg_7
76:f41(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f36(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_9):|:Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 0<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_2+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_2+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_6<=Arg_9
75:f41(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f41(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9+1):|:Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 0<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_2+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_2+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_9+1<=Arg_6
78:f50(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f33(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_9):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_5<=Arg_7
77:f50(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f54(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,0):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_7<=Arg_5
80:f54(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f50(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_9):|:Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_2 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 0<=Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_2+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_6<=Arg_9
79:f54(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f54(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9+1):|:Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_2 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 0<=Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_2+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_9<=Arg_6
81:f66(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f70(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,0,Arg_9):|:Arg_6<=6 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=11 && Arg_6<=Arg_2 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=11 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_6<=Arg_5
82:f66(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f80(Arg_1,Arg_2,Arg_4,Arg_5,Arg_5-1,Arg_7,Arg_9):|:Arg_6<=6 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=11 && Arg_6<=Arg_2 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=11 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_5<=Arg_6
84:f70(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f66(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_9):|:Arg_7<=5 && Arg_7<=Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && Arg_6<=5+Arg_7 && 5<=Arg_5+Arg_7 && Arg_5<=5+Arg_7 && 6<=Arg_2+Arg_7 && 5<=Arg_1+Arg_7 && Arg_1<=5+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_6<=Arg_7
83:f70(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f70(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_9):|:Arg_7<=5 && Arg_7<=Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && Arg_6<=5+Arg_7 && 5<=Arg_5+Arg_7 && Arg_5<=5+Arg_7 && 6<=Arg_2+Arg_7 && 5<=Arg_1+Arg_7 && Arg_1<=5+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_7+1<=Arg_6
85:f80(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f84(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_9):|:Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=1+Arg_6 && 4<=Arg_5+Arg_6 && Arg_5<=6+Arg_6 && 5<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=6+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 0<=Arg_6
86:f80(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f96(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9):|:Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=1+Arg_6 && 4<=Arg_5+Arg_6 && Arg_5<=6+Arg_6 && 5<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=6+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_6+1<=0
88:f84(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f80(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6-1,Arg_7,Arg_9):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_5<=Arg_7
87:f84(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f84(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_9):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_7<=Arg_5

MPRF for transition 63:f15(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f19(Arg_1,Arg_2,0,Arg_5,Arg_6,Arg_7,Arg_9):|:0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_2<=Arg_1 of depth 1:

new bound:

6 {O(1)}

MPRF:

f19 [Arg_1-Arg_2 ]
f15 [Arg_1+1-Arg_2 ]

MPRF for transition 65:f19(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f19(Arg_1,Arg_2,Arg_4+1,Arg_5,Arg_6,Arg_7,Arg_9):|:Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_4<=Arg_1 && Arg_2+1<=Arg_4 of depth 1:

new bound:

181 {O(1)}

MPRF:

f19 [181-30*Arg_2-5*Arg_4 ]
f15 [181-30*Arg_2 ]

MPRF for transition 67:f19(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f19(Arg_1,Arg_2,Arg_2+1,Arg_5,Arg_6,Arg_7,Arg_9):|:Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_4<=Arg_1 && Arg_2<=Arg_4 && Arg_4<=Arg_2 of depth 1:

new bound:

43 {O(1)}

MPRF:

f19 [43-6*Arg_2-Arg_4 ]
f15 [43-6*Arg_2 ]

MPRF for transition 66:f19(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f19(Arg_1,Arg_2,Arg_4+1,Arg_5,Arg_6,Arg_7,Arg_9):|:Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_4<=Arg_2 && Arg_4<=Arg_1 of depth 1:

new bound:

42 {O(1)}

MPRF:

f19 [7-Arg_4 ]
f15 [-Arg_4 ]

MPRF for transition 68:f19(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f15(Arg_1,Arg_2+1,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9):|:Arg_4<=6 && Arg_4<=6+Arg_2 && Arg_4<=1+Arg_1 && Arg_1+Arg_4<=11 && 0<=Arg_4 && 0<=Arg_2+Arg_4 && 5<=Arg_1+Arg_4 && Arg_1<=5+Arg_4 && 0<=Arg_2 && 5<=Arg_1+Arg_2 && Arg_1<=5+Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_1<=Arg_4 of depth 1:

new bound:

6 {O(1)}

MPRF:

f19 [1 ]
f15 [0 ]

MPRF for transition 69:f33(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f36(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_9):|:Arg_6<=6 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=11 && Arg_6<=Arg_2 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_6+1<=Arg_5 of depth 1:

new bound:

11 {O(1)}

MPRF:

f41 [2*Arg_5-Arg_6 ]
f36 [10-Arg_6 ]
f33 [11-Arg_6 ]
f54 [2*Arg_5-Arg_6 ]
f50 [2*Arg_5-Arg_6 ]

MPRF for transition 72:f36(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f41(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,0):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1<=Arg_6 && Arg_7<=Arg_5 of depth 1:

new bound:

25 {O(1)}

MPRF:

f41 [25-4*Arg_6-Arg_7 ]
f36 [26-4*Arg_6-Arg_7 ]
f33 [25-5*Arg_6 ]
f54 [4*Arg_1-4*Arg_6 ]
f50 [4*Arg_1-4*Arg_6 ]

MPRF for transition 73:f36(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f36(Arg_1,Arg_2,Arg_4,Arg_5,0,Arg_7+1,Arg_9):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_7<=Arg_5 && Arg_6<=0 && 0<=Arg_6 of depth 1:

new bound:

35 {O(1)}

MPRF:

f41 [6*Arg_5-20*Arg_6-5*Arg_7 ]
f36 [6*Arg_5-20*Arg_6-5*Arg_7 ]
f33 [6*Arg_5-Arg_1-25*Arg_6 ]
f54 [10*Arg_5-20*Arg_6-50 ]
f50 [10*Arg_5-20*Arg_6-50 ]

MPRF for transition 74:f36(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f50(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_9):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_5<=Arg_7 of depth 1:

new bound:

21 {O(1)}

MPRF:

f41 [Arg_1+16-5*Arg_6 ]
f36 [21-5*Arg_6 ]
f33 [21-5*Arg_6 ]
f54 [4*Arg_1+20-4*Arg_5-5*Arg_6 ]
f50 [20-5*Arg_6 ]

MPRF for transition 75:f41(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f41(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9+1):|:Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 0<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_2+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_2+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_9+1<=Arg_6 of depth 1:

new bound:

402 {O(1)}

MPRF:

f41 [12*Arg_2+200-4*Arg_1-48*Arg_6-10*Arg_7-3*Arg_9 ]
f36 [12*Arg_2+200-2*Arg_1-48*Arg_6-12*Arg_7 ]
f33 [12*Arg_2+188-2*Arg_1-60*Arg_6 ]
f54 [17*Arg_1+12*Arg_2+38-Arg_5-48*Arg_6 ]
f50 [17*Arg_1+12*Arg_2+38-Arg_5-48*Arg_6 ]

MPRF for transition 76:f41(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f36(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_9):|:Arg_9<=4 && 1+Arg_9<=Arg_7 && Arg_7+Arg_9<=9 && Arg_9<=Arg_6 && Arg_6+Arg_9<=8 && 1+Arg_9<=Arg_5 && Arg_5+Arg_9<=9 && 2+Arg_9<=Arg_2 && 1+Arg_9<=Arg_1 && Arg_1+Arg_9<=9 && 0<=Arg_9 && 2<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 1<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_2+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && Arg_7<=5 && Arg_7<=4+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 2<=Arg_7 && 3<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 7<=Arg_5+Arg_7 && Arg_5<=3+Arg_7 && 8<=Arg_2+Arg_7 && 7<=Arg_1+Arg_7 && Arg_1<=3+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_6<=Arg_9 of depth 1:

new bound:

25 {O(1)}

MPRF:

f41 [26-5*Arg_6-Arg_7 ]
f36 [26-5*Arg_6-Arg_7 ]
f33 [25-6*Arg_6 ]
f54 [4*Arg_1-5*Arg_6 ]
f50 [4*Arg_1-5*Arg_6 ]

MPRF for transition 77:f50(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f54(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,0):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_7<=Arg_5 of depth 1:

new bound:

442 {O(1)}

MPRF:

f41 [26*Arg_2-30*Arg_6 ]
f36 [26*Arg_2-30*Arg_6 ]
f33 [26*Arg_2-30*Arg_6 ]
f54 [26*Arg_2-24*Arg_6-6*Arg_7 ]
f50 [26*Arg_2+6-24*Arg_6-6*Arg_7 ]

MPRF for transition 78:f50(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f33(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_9):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=11 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_5<=Arg_7 of depth 1:

new bound:

10 {O(1)}

MPRF:

f41 [2*Arg_1-Arg_6 ]
f36 [2*Arg_1-Arg_6 ]
f33 [2*Arg_5-Arg_6 ]
f54 [Arg_5+5-Arg_6 ]
f50 [Arg_5+5-Arg_6 ]

MPRF for transition 79:f54(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f54(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9+1):|:Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_2 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 0<=Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_2+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_9<=Arg_6 of depth 1:

new bound:

785 {O(1)}

MPRF:

f41 [785-150*Arg_6 ]
f36 [2*Arg_5+775-150*Arg_6 ]
f33 [Arg_1+156*Arg_5-150*Arg_6 ]
f54 [35*Arg_5+615-115*Arg_6-30*Arg_7-5*Arg_9 ]
f50 [Arg_1+810-120*Arg_6-30*Arg_7 ]

MPRF for transition 80:f54(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f50(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_9):|:Arg_9<=5 && Arg_9<=Arg_7 && Arg_7+Arg_9<=10 && Arg_9<=1+Arg_6 && Arg_6+Arg_9<=9 && Arg_9<=Arg_5 && Arg_5+Arg_9<=10 && 1+Arg_9<=Arg_2 && Arg_9<=Arg_1 && Arg_1+Arg_9<=10 && 0<=Arg_9 && 1<=Arg_7+Arg_9 && Arg_7<=5+Arg_9 && 0<=Arg_6+Arg_9 && Arg_6<=4+Arg_9 && 5<=Arg_5+Arg_9 && Arg_5<=5+Arg_9 && 6<=Arg_2+Arg_9 && 5<=Arg_1+Arg_9 && Arg_1<=5+Arg_9 && Arg_7<=5 && Arg_7<=5+Arg_6 && Arg_6+Arg_7<=9 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_6<=Arg_9 of depth 1:

new bound:

78 {O(1)}

MPRF:

f41 [4*Arg_2-5*Arg_6 ]
f36 [4*Arg_2-5*Arg_6 ]
f33 [Arg_1+4*Arg_2-Arg_5-5*Arg_6 ]
f54 [4*Arg_2+1-4*Arg_6-Arg_7 ]
f50 [4*Arg_2+1-4*Arg_6-Arg_7 ]

MPRF for transition 81:f66(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f70(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,0,Arg_9):|:Arg_6<=6 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=11 && Arg_6<=Arg_2 && Arg_6<=1+Arg_1 && Arg_1+Arg_6<=11 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_6<=Arg_5 of depth 1:

new bound:

8 {O(1)}

MPRF:

f70 [6-Arg_6 ]
f66 [7-Arg_6 ]

MPRF for transition 83:f70(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f70(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_9):|:Arg_7<=5 && Arg_7<=Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && Arg_6<=5+Arg_7 && 5<=Arg_5+Arg_7 && Arg_5<=5+Arg_7 && 6<=Arg_2+Arg_7 && 5<=Arg_1+Arg_7 && Arg_1<=5+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_7+1<=Arg_6 of depth 1:

new bound:

74 {O(1)}

MPRF:

f70 [56-10*Arg_6-Arg_7 ]
f66 [60-Arg_1-9*Arg_6 ]

MPRF for transition 84:f70(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f66(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6+1,Arg_7,Arg_9):|:Arg_7<=5 && Arg_7<=Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=Arg_5 && Arg_5+Arg_7<=10 && 1+Arg_7<=Arg_2 && Arg_7<=Arg_1 && Arg_1+Arg_7<=10 && 0<=Arg_7 && 1<=Arg_6+Arg_7 && Arg_6<=5+Arg_7 && 5<=Arg_5+Arg_7 && Arg_5<=5+Arg_7 && 6<=Arg_2+Arg_7 && 5<=Arg_1+Arg_7 && Arg_1<=5+Arg_7 && Arg_6<=5 && Arg_6<=Arg_5 && Arg_5+Arg_6<=10 && 1+Arg_6<=Arg_2 && Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && 1<=Arg_6 && 6<=Arg_5+Arg_6 && Arg_5<=4+Arg_6 && 7<=Arg_2+Arg_6 && 6<=Arg_1+Arg_6 && Arg_1<=4+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_6<=Arg_7 of depth 1:

new bound:

41 {O(1)}

MPRF:

f70 [26-5*Arg_6 ]
f66 [31-Arg_1-5*Arg_6 ]

MPRF for transition 85:f80(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f84(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_6+1,Arg_9):|:Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=1+Arg_6 && 4<=Arg_5+Arg_6 && Arg_5<=6+Arg_6 && 5<=Arg_2+Arg_6 && 4<=Arg_1+Arg_6 && Arg_1<=6+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 0<=Arg_6 of depth 1:

new bound:

5 {O(1)}

MPRF:

f84 [Arg_6 ]
f80 [Arg_6+1 ]

MPRF for transition 87:f84(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f84(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7+1,Arg_9):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && Arg_7<=Arg_5 of depth 1:

new bound:

135 {O(1)}

MPRF:

f84 [6*Arg_5+30*Arg_6-5*Arg_7 ]
f80 [6*Arg_5+25*Arg_6-Arg_1 ]

MPRF for transition 88:f84(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_9) -> f80(Arg_1,Arg_2,Arg_4,Arg_5,Arg_6-1,Arg_7,Arg_9):|:Arg_7<=6 && Arg_7<=6+Arg_6 && Arg_6+Arg_7<=10 && Arg_7<=1+Arg_5 && Arg_5+Arg_7<=11 && Arg_7<=Arg_2 && Arg_7<=1+Arg_1 && Arg_1+Arg_7<=11 && 1<=Arg_7 && 1<=Arg_6+Arg_7 && 1+Arg_6<=Arg_7 && 6<=Arg_5+Arg_7 && Arg_5<=4+Arg_7 && 7<=Arg_2+Arg_7 && 6<=Arg_1+Arg_7 && Arg_1<=4+Arg_7 && Arg_6<=4 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=9 && 2+Arg_6<=Arg_2 && 1+Arg_6<=Arg_1 && Arg_1+Arg_6<=9 && 0<=Arg_6 && 5<=Arg_5+Arg_6 && Arg_5<=5+Arg_6 && 6<=Arg_2+Arg_6 && 5<=Arg_1+Arg_6 && Arg_1<=5+Arg_6 && Arg_5<=5 && 1+Arg_5<=Arg_2 && Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && 5<=Arg_5 && 11<=Arg_2+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=Arg_5 && 6<=Arg_2 && 11<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && Arg_1<=5 && 5<=Arg_1 && 1+Arg_5<=Arg_7 of depth 1:

new bound:

15 {O(1)}

MPRF:

f84 [Arg_6+1 ]
f80 [Arg_1+Arg_6+1-Arg_5 ]

All Bounds

Timebounds

Overall timebound:2395 {O(1)}
62: f0->f15: 1 {O(1)}
63: f15->f19: 6 {O(1)}
64: f15->f33: 1 {O(1)}
65: f19->f19: 181 {O(1)}
66: f19->f19: 42 {O(1)}
67: f19->f19: 43 {O(1)}
68: f19->f15: 6 {O(1)}
69: f33->f36: 11 {O(1)}
70: f33->f66: 1 {O(1)}
72: f36->f41: 25 {O(1)}
73: f36->f36: 35 {O(1)}
74: f36->f50: 21 {O(1)}
75: f41->f41: 402 {O(1)}
76: f41->f36: 25 {O(1)}
77: f50->f54: 442 {O(1)}
78: f50->f33: 10 {O(1)}
79: f54->f54: 785 {O(1)}
80: f54->f50: 78 {O(1)}
81: f66->f70: 8 {O(1)}
82: f66->f80: 1 {O(1)}
83: f70->f70: 74 {O(1)}
84: f70->f66: 41 {O(1)}
85: f80->f84: 5 {O(1)}
86: f80->f96: 1 {O(1)}
87: f84->f84: 135 {O(1)}
88: f84->f80: 15 {O(1)}

Costbounds

Overall costbound: 2395 {O(1)}
62: f0->f15: 1 {O(1)}
63: f15->f19: 6 {O(1)}
64: f15->f33: 1 {O(1)}
65: f19->f19: 181 {O(1)}
66: f19->f19: 42 {O(1)}
67: f19->f19: 43 {O(1)}
68: f19->f15: 6 {O(1)}
69: f33->f36: 11 {O(1)}
70: f33->f66: 1 {O(1)}
72: f36->f41: 25 {O(1)}
73: f36->f36: 35 {O(1)}
74: f36->f50: 21 {O(1)}
75: f41->f41: 402 {O(1)}
76: f41->f36: 25 {O(1)}
77: f50->f54: 442 {O(1)}
78: f50->f33: 10 {O(1)}
79: f54->f54: 785 {O(1)}
80: f54->f50: 78 {O(1)}
81: f66->f70: 8 {O(1)}
82: f66->f80: 1 {O(1)}
83: f70->f70: 74 {O(1)}
84: f70->f66: 41 {O(1)}
85: f80->f84: 5 {O(1)}
86: f80->f96: 1 {O(1)}
87: f84->f84: 135 {O(1)}
88: f84->f80: 15 {O(1)}

Sizebounds

62: f0->f15, Arg_1: 5 {O(1)}
62: f0->f15, Arg_2: 0 {O(1)}
62: f0->f15, Arg_4: Arg_4 {O(n)}
62: f0->f15, Arg_5: Arg_5 {O(n)}
62: f0->f15, Arg_6: Arg_6 {O(n)}
62: f0->f15, Arg_7: Arg_7 {O(n)}
62: f0->f15, Arg_9: Arg_9 {O(n)}
63: f15->f19, Arg_1: 5 {O(1)}
63: f15->f19, Arg_2: 5 {O(1)}
63: f15->f19, Arg_4: 0 {O(1)}
63: f15->f19, Arg_5: Arg_5 {O(n)}
63: f15->f19, Arg_6: Arg_6 {O(n)}
63: f15->f19, Arg_7: Arg_7 {O(n)}
63: f15->f19, Arg_9: Arg_9 {O(n)}
64: f15->f33, Arg_1: 5 {O(1)}
64: f15->f33, Arg_2: 17 {O(1)}
64: f15->f33, Arg_4: 6 {O(1)}
64: f15->f33, Arg_5: 5 {O(1)}
64: f15->f33, Arg_6: 0 {O(1)}
64: f15->f33, Arg_7: Arg_7 {O(n)}
64: f15->f33, Arg_9: Arg_9 {O(n)}
65: f19->f19, Arg_1: 5 {O(1)}
65: f19->f19, Arg_2: 4 {O(1)}
65: f19->f19, Arg_4: 6 {O(1)}
65: f19->f19, Arg_5: Arg_5 {O(n)}
65: f19->f19, Arg_6: Arg_6 {O(n)}
65: f19->f19, Arg_7: Arg_7 {O(n)}
65: f19->f19, Arg_9: Arg_9 {O(n)}
66: f19->f19, Arg_1: 5 {O(1)}
66: f19->f19, Arg_2: 5 {O(1)}
66: f19->f19, Arg_4: 6 {O(1)}
66: f19->f19, Arg_5: Arg_5 {O(n)}
66: f19->f19, Arg_6: Arg_6 {O(n)}
66: f19->f19, Arg_7: Arg_7 {O(n)}
66: f19->f19, Arg_9: Arg_9 {O(n)}
67: f19->f19, Arg_1: 5 {O(1)}
67: f19->f19, Arg_2: 5 {O(1)}
67: f19->f19, Arg_4: 6 {O(1)}
67: f19->f19, Arg_5: Arg_5 {O(n)}
67: f19->f19, Arg_6: Arg_6 {O(n)}
67: f19->f19, Arg_7: Arg_7 {O(n)}
67: f19->f19, Arg_9: Arg_9 {O(n)}
68: f19->f15, Arg_1: 5 {O(1)}
68: f19->f15, Arg_2: 17 {O(1)}
68: f19->f15, Arg_4: 6 {O(1)}
68: f19->f15, Arg_5: Arg_5 {O(n)}
68: f19->f15, Arg_6: Arg_6 {O(n)}
68: f19->f15, Arg_7: Arg_7 {O(n)}
68: f19->f15, Arg_9: Arg_9 {O(n)}
69: f33->f36, Arg_1: 5 {O(1)}
69: f33->f36, Arg_2: 17 {O(1)}
69: f33->f36, Arg_4: 6 {O(1)}
69: f33->f36, Arg_5: 5 {O(1)}
69: f33->f36, Arg_6: 4 {O(1)}
69: f33->f36, Arg_7: 5 {O(1)}
69: f33->f36, Arg_9: Arg_9+5 {O(n)}
70: f33->f66, Arg_1: 5 {O(1)}
70: f33->f66, Arg_2: 17 {O(1)}
70: f33->f66, Arg_4: 6 {O(1)}
70: f33->f66, Arg_5: 5 {O(1)}
70: f33->f66, Arg_6: 1 {O(1)}
70: f33->f66, Arg_7: 6 {O(1)}
70: f33->f66, Arg_9: 5 {O(1)}
72: f36->f41, Arg_1: 5 {O(1)}
72: f36->f41, Arg_2: 17 {O(1)}
72: f36->f41, Arg_4: 6 {O(1)}
72: f36->f41, Arg_5: 5 {O(1)}
72: f36->f41, Arg_6: 4 {O(1)}
72: f36->f41, Arg_7: 5 {O(1)}
72: f36->f41, Arg_9: 0 {O(1)}
73: f36->f36, Arg_1: 5 {O(1)}
73: f36->f36, Arg_2: 17 {O(1)}
73: f36->f36, Arg_4: 6 {O(1)}
73: f36->f36, Arg_5: 5 {O(1)}
73: f36->f36, Arg_6: 0 {O(1)}
73: f36->f36, Arg_7: 6 {O(1)}
73: f36->f36, Arg_9: Arg_9+5 {O(n)}
74: f36->f50, Arg_1: 5 {O(1)}
74: f36->f50, Arg_2: 17 {O(1)}
74: f36->f50, Arg_4: 6 {O(1)}
74: f36->f50, Arg_5: 5 {O(1)}
74: f36->f50, Arg_6: 4 {O(1)}
74: f36->f50, Arg_7: 5 {O(1)}
74: f36->f50, Arg_9: Arg_9+9 {O(n)}
75: f41->f41, Arg_1: 5 {O(1)}
75: f41->f41, Arg_2: 17 {O(1)}
75: f41->f41, Arg_4: 6 {O(1)}
75: f41->f41, Arg_5: 5 {O(1)}
75: f41->f41, Arg_6: 4 {O(1)}
75: f41->f41, Arg_7: 5 {O(1)}
75: f41->f41, Arg_9: 4 {O(1)}
76: f41->f36, Arg_1: 5 {O(1)}
76: f41->f36, Arg_2: 17 {O(1)}
76: f41->f36, Arg_4: 6 {O(1)}
76: f41->f36, Arg_5: 5 {O(1)}
76: f41->f36, Arg_6: 4 {O(1)}
76: f41->f36, Arg_7: 6 {O(1)}
76: f41->f36, Arg_9: 4 {O(1)}
77: f50->f54, Arg_1: 5 {O(1)}
77: f50->f54, Arg_2: 17 {O(1)}
77: f50->f54, Arg_4: 6 {O(1)}
77: f50->f54, Arg_5: 5 {O(1)}
77: f50->f54, Arg_6: 4 {O(1)}
77: f50->f54, Arg_7: 5 {O(1)}
77: f50->f54, Arg_9: 0 {O(1)}
78: f50->f33, Arg_1: 5 {O(1)}
78: f50->f33, Arg_2: 17 {O(1)}
78: f50->f33, Arg_4: 6 {O(1)}
78: f50->f33, Arg_5: 5 {O(1)}
78: f50->f33, Arg_6: 6 {O(1)}
78: f50->f33, Arg_7: 6 {O(1)}
78: f50->f33, Arg_9: 5 {O(1)}
79: f54->f54, Arg_1: 5 {O(1)}
79: f54->f54, Arg_2: 17 {O(1)}
79: f54->f54, Arg_4: 6 {O(1)}
79: f54->f54, Arg_5: 5 {O(1)}
79: f54->f54, Arg_6: 4 {O(1)}
79: f54->f54, Arg_7: 5 {O(1)}
79: f54->f54, Arg_9: 5 {O(1)}
80: f54->f50, Arg_1: 5 {O(1)}
80: f54->f50, Arg_2: 17 {O(1)}
80: f54->f50, Arg_4: 6 {O(1)}
80: f54->f50, Arg_5: 5 {O(1)}
80: f54->f50, Arg_6: 4 {O(1)}
80: f54->f50, Arg_7: 6 {O(1)}
80: f54->f50, Arg_9: 5 {O(1)}
81: f66->f70, Arg_1: 5 {O(1)}
81: f66->f70, Arg_2: 17 {O(1)}
81: f66->f70, Arg_4: 6 {O(1)}
81: f66->f70, Arg_5: 5 {O(1)}
81: f66->f70, Arg_6: 5 {O(1)}
81: f66->f70, Arg_7: 0 {O(1)}
81: f66->f70, Arg_9: 5 {O(1)}
82: f66->f80, Arg_1: 5 {O(1)}
82: f66->f80, Arg_2: 17 {O(1)}
82: f66->f80, Arg_4: 6 {O(1)}
82: f66->f80, Arg_5: 5 {O(1)}
82: f66->f80, Arg_6: 4 {O(1)}
82: f66->f80, Arg_7: 5 {O(1)}
82: f66->f80, Arg_9: 5 {O(1)}
83: f70->f70, Arg_1: 5 {O(1)}
83: f70->f70, Arg_2: 17 {O(1)}
83: f70->f70, Arg_4: 6 {O(1)}
83: f70->f70, Arg_5: 5 {O(1)}
83: f70->f70, Arg_6: 5 {O(1)}
83: f70->f70, Arg_7: 5 {O(1)}
83: f70->f70, Arg_9: 5 {O(1)}
84: f70->f66, Arg_1: 5 {O(1)}
84: f70->f66, Arg_2: 17 {O(1)}
84: f70->f66, Arg_4: 6 {O(1)}
84: f70->f66, Arg_5: 5 {O(1)}
84: f70->f66, Arg_6: 6 {O(1)}
84: f70->f66, Arg_7: 5 {O(1)}
84: f70->f66, Arg_9: 5 {O(1)}
85: f80->f84, Arg_1: 5 {O(1)}
85: f80->f84, Arg_2: 17 {O(1)}
85: f80->f84, Arg_4: 6 {O(1)}
85: f80->f84, Arg_5: 5 {O(1)}
85: f80->f84, Arg_6: 4 {O(1)}
85: f80->f84, Arg_7: 5 {O(1)}
85: f80->f84, Arg_9: 5 {O(1)}
86: f80->f96, Arg_1: 5 {O(1)}
86: f80->f96, Arg_2: 17 {O(1)}
86: f80->f96, Arg_4: 6 {O(1)}
86: f80->f96, Arg_5: 5 {O(1)}
86: f80->f96, Arg_6: 1 {O(1)}
86: f80->f96, Arg_7: 6 {O(1)}
86: f80->f96, Arg_9: 5 {O(1)}
87: f84->f84, Arg_1: 5 {O(1)}
87: f84->f84, Arg_2: 17 {O(1)}
87: f84->f84, Arg_4: 6 {O(1)}
87: f84->f84, Arg_5: 5 {O(1)}
87: f84->f84, Arg_6: 4 {O(1)}
87: f84->f84, Arg_7: 6 {O(1)}
87: f84->f84, Arg_9: 5 {O(1)}
88: f84->f80, Arg_1: 5 {O(1)}
88: f84->f80, Arg_2: 17 {O(1)}
88: f84->f80, Arg_4: 6 {O(1)}
88: f84->f80, Arg_5: 5 {O(1)}
88: f84->f80, Arg_6: 3 {O(1)}
88: f84->f80, Arg_7: 6 {O(1)}
88: f84->f80, Arg_9: 5 {O(1)}