Initial Problem
Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10
Temp_Vars: L, M, N
Locations: f0, f11, f40, f43, f48, f54, f59, f63, f69
Transitions:
1:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,10,20,1,20,0,0,Arg_7,Arg_8,Arg_9,Arg_10)
2:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_4<=Arg_3 && Arg_6<=0 && 0<=Arg_6
3:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_4<=Arg_3+1 && 2+Arg_3<=Arg_4 && Arg_6<=0 && 0<=Arg_6
4:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3+1,Arg_5,1,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_4<=Arg_3+1 && Arg_3+1<=Arg_4 && Arg_6<=0 && 0<=Arg_6
5:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3+1,Arg_5,1,N,Arg_8,Arg_9,Arg_10):|:M+1<=L && Arg_4<=Arg_3+1 && Arg_3+1<=Arg_4 && Arg_6<=0 && 0<=Arg_6
6:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f40(Arg_4,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,0,N,L,Arg_3+1,M):|:2+Arg_3<=Arg_4 && Arg_6<=0 && 0<=Arg_6
21:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_6+1<=0
22:f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f69(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_6
9:f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,Arg_6,Arg_7,Arg_8,Arg_9+1,Arg_10):|:Arg_5<=0 && 0<=Arg_5
7:f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_5+1<=0
8:f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_5
10:f43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9+1,Arg_10):|:N+1<=Arg_10
20:f43(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f48(Arg_0-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
11:f48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f48(Arg_0-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10)
18:f48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_9<=Arg_0
19:f48(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_0+1<=Arg_9
12:f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_5+1<=0
13:f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1<=Arg_5
14:f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,0,Arg_6,N,Arg_8,Arg_9,Arg_10):|:Arg_5<=0 && 0<=Arg_5
15:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_0+1<=Arg_1
16:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0-1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_1<=Arg_0
0:f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:1+Arg_1<=Arg_0
17:f63(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_2,Arg_9,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10):|:Arg_0<=Arg_1
Preprocessing
Cut unsatisfiable transition 3: f11->f11
Eliminate variables {Arg_2,Arg_7,Arg_8} that do not contribute to the problem
Found invariant 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 for location f48
Found invariant Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 for location f11
Found invariant 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 for location f40
Found invariant 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 for location f54
Found invariant 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 for location f59
Found invariant 2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && Arg_3<=9+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 for location f63
Found invariant Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 1<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 4<=Arg_4+Arg_6 && Arg_4<=19+Arg_6 && 3<=Arg_3+Arg_6 && 11<=Arg_1+Arg_6 && Arg_1<=9+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && 1+Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 2<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=18+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 2<=Arg_3 && 12<=Arg_1+Arg_3 && Arg_1<=8+Arg_3 && Arg_1<=10 && 10<=Arg_1 for location f69
Found invariant 3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 for location f43
Cut unsatisfiable transition 64: f11->f69
Cut unsatisfiable transition 66: f40->f59
Cut unsatisfiable transition 74: f54->f40
Problem after Preprocessing
Start: f0
Program_Vars: Arg_0, Arg_1, Arg_3, Arg_4, Arg_5, Arg_6, Arg_9, Arg_10
Temp_Vars: L, M, N
Locations: f0, f11, f40, f43, f48, f54, f59, f63, f69
Transitions:
59:f0(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,10,1,20,0,0,Arg_9,Arg_10)
60:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,1,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_4<=Arg_3 && Arg_6<=0 && 0<=Arg_6
61:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_3+1,Arg_5,1,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_4<=Arg_3+1 && Arg_3+1<=Arg_4 && Arg_6<=0 && 0<=Arg_6
62:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_3+1,Arg_5,1,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && M+1<=L && Arg_4<=Arg_3+1 && Arg_3+1<=Arg_4 && Arg_6<=0 && 0<=Arg_6
63:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f40(Arg_4,Arg_1,Arg_3,Arg_4,Arg_5,0,Arg_3+1,M):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && 2+Arg_3<=Arg_4 && Arg_6<=0 && 0<=Arg_6
65:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f69(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && 1<=Arg_6
68:f40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f43(Arg_0,Arg_1,Arg_3,Arg_4,0,Arg_6,Arg_9+1,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_5<=0 && 0<=Arg_5
67:f40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f59(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 1<=Arg_5
69:f43(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f43(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9+1,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && N+1<=Arg_10
70:f43(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f48(Arg_0-1,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20
71:f48(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f48(Arg_0-1,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19
72:f48(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f54(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && Arg_9<=Arg_0
73:f48(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f54(Arg_0,Arg_1,Arg_3,Arg_4,1,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && Arg_0+1<=Arg_9
75:f54(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 1<=Arg_5
76:f54(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_3,Arg_4,0,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && Arg_5<=0 && 0<=Arg_5
77:f59(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f63(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_0+1<=Arg_1
78:f59(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f63(Arg_0,Arg_1,Arg_3,Arg_0-1,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_1<=Arg_0
79:f63(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && Arg_3<=9+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 1+Arg_1<=Arg_0
80:f63(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_9,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && Arg_3<=9+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_0<=Arg_1
MPRF for transition 60:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,1,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_4<=Arg_3 && Arg_6<=0 && 0<=Arg_6 of depth 1:
new bound:
10 {O(1)}
MPRF:
f43 [Arg_1 ]
f48 [Arg_1 ]
f54 [10 ]
f40 [10 ]
f59 [10*Arg_5 ]
f63 [10 ]
f11 [10-Arg_6 ]
MPRF for transition 61:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_3+1,Arg_5,1,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && Arg_4<=Arg_3+1 && Arg_3+1<=Arg_4 && Arg_6<=0 && 0<=Arg_6 of depth 1:
new bound:
10 {O(1)}
MPRF:
f43 [Arg_1 ]
f48 [Arg_1 ]
f54 [10 ]
f40 [10 ]
f59 [10*Arg_5 ]
f63 [Arg_1 ]
f11 [10-Arg_6 ]
MPRF for transition 62:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_3+1,Arg_5,1,Arg_9,Arg_10):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && M+1<=L && Arg_4<=Arg_3+1 && Arg_3+1<=Arg_4 && Arg_6<=0 && 0<=Arg_6 of depth 1:
new bound:
10 {O(1)}
MPRF:
f43 [Arg_1 ]
f48 [Arg_1 ]
f54 [Arg_1 ]
f40 [Arg_1 ]
f59 [10*Arg_5 ]
f63 [10*Arg_5 ]
f11 [10-Arg_6 ]
MPRF for transition 73:f48(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f54(Arg_0,Arg_1,Arg_3,Arg_4,1,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && Arg_0+1<=Arg_9 of depth 1:
new bound:
340 {O(1)}
MPRF:
f43 [17*Arg_4 ]
f48 [17*Arg_4 ]
f54 [17*Arg_4-Arg_5 ]
f40 [17*Arg_4-171*Arg_5 ]
f59 [17*Arg_4-Arg_1-161*Arg_5 ]
f63 [17*Arg_4-161*Arg_5-10 ]
f11 [17*Arg_4-171*Arg_5 ]
MPRF for transition 75:f54(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && 1<=Arg_5 of depth 1:
new bound:
10 {O(1)}
MPRF:
f43 [2*Arg_1-10 ]
f48 [2*Arg_1-10 ]
f54 [10 ]
f40 [10-Arg_5 ]
f59 [10-Arg_5 ]
f63 [10-Arg_5 ]
f11 [10-Arg_5 ]
MPRF for transition 78:f59(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f63(Arg_0,Arg_1,Arg_3,Arg_0-1,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_1<=Arg_0 of depth 1:
new bound:
220 {O(1)}
MPRF:
f43 [10*Arg_4-2*Arg_1 ]
f48 [10*Arg_4-20 ]
f54 [10*Arg_4-20 ]
f40 [10*Arg_4-20 ]
f59 [10*Arg_4-20 ]
f63 [10*Arg_4-20 ]
f11 [10*Arg_4-20 ]
MPRF for transition 80:f63(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_9,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && Arg_3<=9+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_0<=Arg_1 of depth 1:
new bound:
105 {O(1)}
MPRF:
f43 [100-5*Arg_3 ]
f48 [100-5*Arg_3 ]
f54 [100-5*Arg_3 ]
f40 [10*Arg_1-5*Arg_3 ]
f59 [100*Arg_5-5*Arg_3 ]
f63 [100-5*Arg_3 ]
f11 [100-5*Arg_3 ]
knowledge_propagation leads to new time bound 220 {O(1)} for transition 79:f63(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && Arg_3<=9+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=1+Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 1+Arg_1<=Arg_0
knowledge_propagation leads to new time bound 326 {O(1)} for transition 63:f11(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f40(Arg_4,Arg_1,Arg_3,Arg_4,Arg_5,0,Arg_3+1,M):|:Arg_6<=1 && Arg_6<=1+Arg_5 && Arg_5+Arg_6<=2 && 2+Arg_6<=Arg_4 && Arg_4+Arg_6<=21 && 1+Arg_6<=Arg_3 && 9+Arg_6<=Arg_1 && Arg_1+Arg_6<=11 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && 3<=Arg_4 && 6<=Arg_3+Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_1<=10 && 10<=Arg_1 && 2+Arg_3<=Arg_4 && Arg_6<=0 && 0<=Arg_6
knowledge_propagation leads to new time bound 336 {O(1)} for transition 67:f40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f59(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && 1<=Arg_5
knowledge_propagation leads to new time bound 336 {O(1)} for transition 77:f59(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f63(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && 1+Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 1<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 1<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=19+Arg_5 && 2<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 11<=Arg_1+Arg_5 && Arg_1<=9+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_0+1<=Arg_1
MPRF for transition 72:f48(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f54(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=19 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && Arg_9<=Arg_0 of depth 1:
new bound:
2414680 {O(1)}
MPRF:
f43 [20*Arg_0+970*Arg_4-298*Arg_1 ]
f48 [20*Arg_0+970*Arg_4-2960 ]
f54 [20*Arg_0+39*Arg_1+970*Arg_4-3370 ]
f40 [20*Arg_0+970*Arg_4-298*Arg_1 ]
f59 [20*Arg_0+970*Arg_4-298*Arg_1 ]
f63 [110*Arg_0+990*Arg_4+1911-388*Arg_1-2221*Arg_5 ]
f11 [990*Arg_4-298*Arg_1 ]
knowledge_propagation leads to new time bound 2414680 {O(1)} for transition 76:f54(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f40(Arg_0,Arg_1,Arg_3,Arg_4,0,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 2+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=16+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=19 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=19+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=17+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=19+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=39 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=37 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=18+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=29 && 10<=Arg_1 && Arg_0<=9+Arg_1 && Arg_0<=19 && Arg_5<=0 && 0<=Arg_5
knowledge_propagation leads to new time bound 2415006 {O(1)} for transition 68:f40(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f43(Arg_0,Arg_1,Arg_3,Arg_4,0,Arg_6,Arg_9+1,Arg_10):|:2<=Arg_9 && 2<=Arg_6+Arg_9 && 2+Arg_6<=Arg_9 && 2<=Arg_5+Arg_9 && 1+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=18+Arg_9 && 3<=Arg_3+Arg_9 && 1+Arg_3<=Arg_9 && 12<=Arg_1+Arg_9 && Arg_1<=8+Arg_9 && Arg_0<=18+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=1 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=1+Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=1 && 2+Arg_5<=Arg_4 && Arg_4+Arg_5<=21 && Arg_5<=Arg_3 && Arg_3+Arg_5<=19 && 9+Arg_5<=Arg_1 && Arg_1+Arg_5<=11 && Arg_0+Arg_5<=21 && 0<=Arg_5 && 4<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 && Arg_5<=0 && 0<=Arg_5
MPRF for transition 70:f43(Arg_0,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10) -> f48(Arg_0-1,Arg_1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_9,Arg_10):|:3<=Arg_9 && 3<=Arg_6+Arg_9 && 3+Arg_6<=Arg_9 && 3<=Arg_5+Arg_9 && 3+Arg_5<=Arg_9 && 6<=Arg_4+Arg_9 && Arg_4<=17+Arg_9 && 4<=Arg_3+Arg_9 && 2+Arg_3<=Arg_9 && 13<=Arg_1+Arg_9 && Arg_1<=7+Arg_9 && Arg_0<=17+Arg_9 && Arg_6<=0 && Arg_6<=Arg_5 && Arg_5+Arg_6<=0 && 3+Arg_6<=Arg_4 && Arg_4+Arg_6<=20 && 1+Arg_6<=Arg_3 && Arg_3+Arg_6<=18 && 10+Arg_6<=Arg_1 && Arg_1+Arg_6<=10 && Arg_0+Arg_6<=20 && 0<=Arg_6 && 0<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && Arg_4<=20+Arg_6 && 1<=Arg_3+Arg_6 && Arg_3<=18+Arg_6 && 10<=Arg_1+Arg_6 && Arg_1<=10+Arg_6 && Arg_0<=20+Arg_6 && Arg_5<=0 && 3+Arg_5<=Arg_4 && Arg_4+Arg_5<=20 && 1+Arg_5<=Arg_3 && Arg_3+Arg_5<=18 && 10+Arg_5<=Arg_1 && Arg_1+Arg_5<=10 && Arg_0+Arg_5<=20 && 0<=Arg_5 && 3<=Arg_4+Arg_5 && Arg_4<=20+Arg_5 && 1<=Arg_3+Arg_5 && Arg_3<=18+Arg_5 && 10<=Arg_1+Arg_5 && Arg_1<=10+Arg_5 && Arg_0<=20+Arg_5 && Arg_4<=20 && Arg_4<=19+Arg_3 && Arg_3+Arg_4<=38 && Arg_4<=10+Arg_1 && Arg_1+Arg_4<=30 && Arg_0+Arg_4<=40 && 3<=Arg_4 && 4<=Arg_3+Arg_4 && 2+Arg_3<=Arg_4 && 13<=Arg_1+Arg_4 && Arg_1<=7+Arg_4 && Arg_0<=Arg_4 && Arg_3<=18 && Arg_3<=8+Arg_1 && Arg_1+Arg_3<=28 && Arg_0+Arg_3<=38 && 1<=Arg_3 && 11<=Arg_1+Arg_3 && Arg_1<=9+Arg_3 && Arg_0<=19+Arg_3 && Arg_1<=10 && Arg_0+Arg_1<=30 && 10<=Arg_1 && Arg_0<=10+Arg_1 && Arg_0<=20 of depth 1:
new bound:
2414681 {O(1)}
MPRF:
f43 [1 ]
f48 [1-Arg_3 ]
f54 [1-Arg_3 ]
f40 [1-18*Arg_5 ]
f59 [-17*Arg_5 ]
f63 [-17*Arg_5 ]
f11 [1-18*Arg_5 ]
All Bounds
Timebounds
Overall timebound:inf {Infinity}
59: f0->f11: 1 {O(1)}
60: f11->f11: 10 {O(1)}
61: f11->f11: 10 {O(1)}
62: f11->f11: 10 {O(1)}
63: f11->f40: 326 {O(1)}
65: f11->f69: 1 {O(1)}
67: f40->f59: 336 {O(1)}
68: f40->f43: 2415006 {O(1)}
69: f43->f43: inf {Infinity}
70: f43->f48: 2414681 {O(1)}
71: f48->f48: inf {Infinity}
72: f48->f54: 2414680 {O(1)}
73: f48->f54: 340 {O(1)}
75: f54->f40: 10 {O(1)}
76: f54->f40: 2414680 {O(1)}
77: f59->f63: 336 {O(1)}
78: f59->f63: 220 {O(1)}
79: f63->f11: 220 {O(1)}
80: f63->f11: 105 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
59: f0->f11: 1 {O(1)}
60: f11->f11: 10 {O(1)}
61: f11->f11: 10 {O(1)}
62: f11->f11: 10 {O(1)}
63: f11->f40: 326 {O(1)}
65: f11->f69: 1 {O(1)}
67: f40->f59: 336 {O(1)}
68: f40->f43: 2415006 {O(1)}
69: f43->f43: inf {Infinity}
70: f43->f48: 2414681 {O(1)}
71: f48->f48: inf {Infinity}
72: f48->f54: 2414680 {O(1)}
73: f48->f54: 340 {O(1)}
75: f54->f40: 10 {O(1)}
76: f54->f40: 2414680 {O(1)}
77: f59->f63: 336 {O(1)}
78: f59->f63: 220 {O(1)}
79: f63->f11: 220 {O(1)}
80: f63->f11: 105 {O(1)}
Sizebounds
59: f0->f11, Arg_0: Arg_0 {O(n)}
59: f0->f11, Arg_1: 10 {O(1)}
59: f0->f11, Arg_3: 1 {O(1)}
59: f0->f11, Arg_4: 20 {O(1)}
59: f0->f11, Arg_5: 0 {O(1)}
59: f0->f11, Arg_6: 0 {O(1)}
59: f0->f11, Arg_9: Arg_9 {O(n)}
59: f0->f11, Arg_10: Arg_10 {O(n)}
60: f11->f11, Arg_1: 10 {O(1)}
60: f11->f11, Arg_4: 20 {O(1)}
60: f11->f11, Arg_5: 1 {O(1)}
60: f11->f11, Arg_6: 1 {O(1)}
61: f11->f11, Arg_1: 10 {O(1)}
61: f11->f11, Arg_3: 19 {O(1)}
61: f11->f11, Arg_4: 20 {O(1)}
61: f11->f11, Arg_5: 1 {O(1)}
61: f11->f11, Arg_6: 1 {O(1)}
62: f11->f11, Arg_1: 10 {O(1)}
62: f11->f11, Arg_3: 19 {O(1)}
62: f11->f11, Arg_4: 20 {O(1)}
62: f11->f11, Arg_5: 1 {O(1)}
62: f11->f11, Arg_6: 1 {O(1)}
63: f11->f40, Arg_0: 20 {O(1)}
63: f11->f40, Arg_1: 10 {O(1)}
63: f11->f40, Arg_3: 18 {O(1)}
63: f11->f40, Arg_4: 20 {O(1)}
63: f11->f40, Arg_5: 1 {O(1)}
63: f11->f40, Arg_6: 0 {O(1)}
63: f11->f40, Arg_9: 19 {O(1)}
65: f11->f69, Arg_1: 10 {O(1)}
65: f11->f69, Arg_4: 20 {O(1)}
65: f11->f69, Arg_5: 1 {O(1)}
65: f11->f69, Arg_6: 1 {O(1)}
67: f40->f59, Arg_1: 10 {O(1)}
67: f40->f59, Arg_3: 18 {O(1)}
67: f40->f59, Arg_4: 20 {O(1)}
67: f40->f59, Arg_5: 1 {O(1)}
67: f40->f59, Arg_6: 0 {O(1)}
68: f40->f43, Arg_0: 39 {O(1)}
68: f40->f43, Arg_1: 10 {O(1)}
68: f40->f43, Arg_3: 18 {O(1)}
68: f40->f43, Arg_4: 20 {O(1)}
68: f40->f43, Arg_5: 0 {O(1)}
68: f40->f43, Arg_6: 0 {O(1)}
68: f40->f43, Arg_9: 40 {O(1)}
69: f43->f43, Arg_0: 39 {O(1)}
69: f43->f43, Arg_1: 10 {O(1)}
69: f43->f43, Arg_3: 18 {O(1)}
69: f43->f43, Arg_4: 20 {O(1)}
69: f43->f43, Arg_5: 0 {O(1)}
69: f43->f43, Arg_6: 0 {O(1)}
70: f43->f48, Arg_0: 80 {O(1)}
70: f43->f48, Arg_1: 10 {O(1)}
70: f43->f48, Arg_3: 18 {O(1)}
70: f43->f48, Arg_4: 20 {O(1)}
70: f43->f48, Arg_5: 0 {O(1)}
70: f43->f48, Arg_6: 0 {O(1)}
71: f48->f48, Arg_1: 10 {O(1)}
71: f48->f48, Arg_3: 18 {O(1)}
71: f48->f48, Arg_4: 20 {O(1)}
71: f48->f48, Arg_5: 0 {O(1)}
71: f48->f48, Arg_6: 0 {O(1)}
72: f48->f54, Arg_0: 19 {O(1)}
72: f48->f54, Arg_1: 10 {O(1)}
72: f48->f54, Arg_3: 17 {O(1)}
72: f48->f54, Arg_4: 20 {O(1)}
72: f48->f54, Arg_5: 0 {O(1)}
72: f48->f54, Arg_6: 0 {O(1)}
72: f48->f54, Arg_9: 19 {O(1)}
73: f48->f54, Arg_1: 10 {O(1)}
73: f48->f54, Arg_3: 18 {O(1)}
73: f48->f54, Arg_4: 20 {O(1)}
73: f48->f54, Arg_5: 1 {O(1)}
73: f48->f54, Arg_6: 0 {O(1)}
75: f54->f40, Arg_1: 10 {O(1)}
75: f54->f40, Arg_3: 18 {O(1)}
75: f54->f40, Arg_4: 20 {O(1)}
75: f54->f40, Arg_5: 1 {O(1)}
75: f54->f40, Arg_6: 0 {O(1)}
76: f54->f40, Arg_0: 19 {O(1)}
76: f54->f40, Arg_1: 10 {O(1)}
76: f54->f40, Arg_3: 17 {O(1)}
76: f54->f40, Arg_4: 20 {O(1)}
76: f54->f40, Arg_5: 0 {O(1)}
76: f54->f40, Arg_6: 0 {O(1)}
76: f54->f40, Arg_9: 19 {O(1)}
77: f59->f63, Arg_1: 10 {O(1)}
77: f59->f63, Arg_3: 18 {O(1)}
77: f59->f63, Arg_4: 20 {O(1)}
77: f59->f63, Arg_5: 1 {O(1)}
77: f59->f63, Arg_6: 0 {O(1)}
78: f59->f63, Arg_0: 20 {O(1)}
78: f59->f63, Arg_1: 10 {O(1)}
78: f59->f63, Arg_3: 18 {O(1)}
78: f59->f63, Arg_4: 19 {O(1)}
78: f59->f63, Arg_5: 1 {O(1)}
78: f59->f63, Arg_6: 0 {O(1)}
79: f63->f11, Arg_0: 20 {O(1)}
79: f63->f11, Arg_1: 10 {O(1)}
79: f63->f11, Arg_3: 18 {O(1)}
79: f63->f11, Arg_4: 20 {O(1)}
79: f63->f11, Arg_5: 1 {O(1)}
79: f63->f11, Arg_6: 0 {O(1)}
80: f63->f11, Arg_1: 10 {O(1)}
80: f63->f11, Arg_4: 20 {O(1)}
80: f63->f11, Arg_5: 1 {O(1)}
80: f63->f11, Arg_6: 0 {O(1)}