Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars: F
Locations: f0, f10, f16, f25, f27, f30
Transitions:
6:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f10(F,0,Arg_2,0,F)
0:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f16(Arg_0,0,F,Arg_3,Arg_4):|:Arg_0<=0 && 1<=F
5:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1<=Arg_0
4:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f10(F,Arg_1,Arg_2,0,F):|:Arg_2<=0
1:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1<=Arg_2
2:f25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
3:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
Cut unreachable locations [f27; f30] from the program graph
Cut unsatisfiable transition 4: f16->f10
Eliminate variables {Arg_1,Arg_3,Arg_4} that do not contribute to the problem
Found invariant 1<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_0<=0 for location f16
Found invariant 1<=Arg_0 for location f25
Start: f0
Program_Vars: Arg_0, Arg_2
Temp_Vars: F
Locations: f0, f10, f16, f25
Transitions:
16:f0(Arg_0,Arg_2) -> f10(F,Arg_2)
17:f10(Arg_0,Arg_2) -> f16(Arg_0,F):|:Arg_0<=0 && 1<=F
18:f10(Arg_0,Arg_2) -> f25(Arg_0,Arg_2):|:1<=Arg_0
19:f16(Arg_0,Arg_2) -> f16(Arg_0,Arg_2):|:1<=Arg_2 && 1+Arg_0<=Arg_2 && Arg_0<=0 && 1<=Arg_2
20:f25(Arg_0,Arg_2) -> f25(Arg_0,Arg_2):|:1<=Arg_0
Overall timebound:inf {Infinity}
16: f0->f10: 1 {O(1)}
17: f10->f16: 1 {O(1)}
18: f10->f25: 1 {O(1)}
19: f16->f16: inf {Infinity}
20: f25->f25: inf {Infinity}
Overall costbound: inf {Infinity}
16: f0->f10: 1 {O(1)}
17: f10->f16: 1 {O(1)}
18: f10->f25: 1 {O(1)}
19: f16->f16: inf {Infinity}
20: f25->f25: inf {Infinity}
16: f0->f10, Arg_2: Arg_2 {O(n)}
18: f10->f25, Arg_2: Arg_2 {O(n)}
20: f25->f25, Arg_2: Arg_2 {O(n)}