Initial Problem

Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars: F
Locations: f0, f10, f16, f25, f27, f30
Transitions:
6:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f10(F,0,F,Arg_3,0)
0:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f16(Arg_0,0,F,F,Arg_4):|:Arg_0<=0
5:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1<=Arg_0
4:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f10(F,Arg_1,F,Arg_3,0):|:Arg_3<=0
1:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1<=Arg_3
2:f25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f25(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
3:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)

Preprocessing

Cut unreachable locations [f27; f30] from the program graph

Eliminate variables {Arg_1,Arg_2,Arg_4} that do not contribute to the problem

Found invariant Arg_0<=0 for location f16

Found invariant 1<=Arg_0 for location f25

Problem after Preprocessing

Start: f0
Program_Vars: Arg_0, Arg_3
Temp_Vars: F
Locations: f0, f10, f16, f25
Transitions:
16:f0(Arg_0,Arg_3) -> f10(F,Arg_3)
17:f10(Arg_0,Arg_3) -> f16(Arg_0,F):|:Arg_0<=0
18:f10(Arg_0,Arg_3) -> f25(Arg_0,Arg_3):|:1<=Arg_0
20:f16(Arg_0,Arg_3) -> f10(F,Arg_3):|:Arg_0<=0 && Arg_3<=0
19:f16(Arg_0,Arg_3) -> f16(Arg_0,Arg_3):|:Arg_0<=0 && 1<=Arg_3
21:f25(Arg_0,Arg_3) -> f25(Arg_0,Arg_3):|:1<=Arg_0

All Bounds

Timebounds

Overall timebound:inf {Infinity}
16: f0->f10: 1 {O(1)}
17: f10->f16: inf {Infinity}
18: f10->f25: 1 {O(1)}
19: f16->f16: inf {Infinity}
20: f16->f10: inf {Infinity}
21: f25->f25: inf {Infinity}

Costbounds

Overall costbound: inf {Infinity}
16: f0->f10: 1 {O(1)}
17: f10->f16: inf {Infinity}
18: f10->f25: 1 {O(1)}
19: f16->f16: inf {Infinity}
20: f16->f10: inf {Infinity}
21: f25->f25: inf {Infinity}

Sizebounds

16: f0->f10, Arg_3: Arg_3 {O(n)}