Start: l0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
0:l0(Arg_0,Arg_1,Arg_2,Arg_3) -> l1(Arg_0,Arg_1,Arg_2,Arg_3)
1:l1(Arg_0,Arg_1,Arg_2,Arg_3) -> l1(Arg_0,Arg_1,Arg_2+Arg_3,Arg_3-1):|:1<=Arg_3
2:l1(Arg_0,Arg_1,Arg_2,Arg_3) -> l2(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<1
3:l2(Arg_0,Arg_1,Arg_2,Arg_3) -> l3(Arg_2,Arg_2,Arg_2,Arg_3):|:1<=Arg_2
5:l3(Arg_0,Arg_1,Arg_2,Arg_3) -> l2(Arg_0,Arg_1,Arg_2-1,Arg_3):|:Arg_0<=0
4:l3(Arg_0,Arg_1,Arg_2,Arg_3) -> l3(Arg_0+Arg_1,Arg_1-1,Arg_2,Arg_3):|:1<=Arg_0
Found invariant Arg_3<=0 for location l2
Found invariant Arg_3<=0 && 1+Arg_3<=Arg_2 && 1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_0 for location l3
Start: l0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
0:l0(Arg_0,Arg_1,Arg_2,Arg_3) -> l1(Arg_0,Arg_1,Arg_2,Arg_3)
1:l1(Arg_0,Arg_1,Arg_2,Arg_3) -> l1(Arg_0,Arg_1,Arg_2+Arg_3,Arg_3-1):|:1<=Arg_3
2:l1(Arg_0,Arg_1,Arg_2,Arg_3) -> l2(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<1
3:l2(Arg_0,Arg_1,Arg_2,Arg_3) -> l3(Arg_2,Arg_2,Arg_2,Arg_3):|:Arg_3<=0 && 1<=Arg_2
5:l3(Arg_0,Arg_1,Arg_2,Arg_3) -> l2(Arg_0,Arg_1,Arg_2-1,Arg_3):|:Arg_3<=0 && 1+Arg_3<=Arg_2 && 1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_0 && Arg_0<=0
4:l3(Arg_0,Arg_1,Arg_2,Arg_3) -> l3(Arg_0+Arg_1,Arg_1-1,Arg_2,Arg_3):|:Arg_3<=0 && 1+Arg_3<=Arg_2 && 1<=Arg_2 && Arg_1<=Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0
new bound:
Arg_3 {O(n)}
MPRF:
l1 [Arg_3 ]
new bound:
2*Arg_3*Arg_3+2*Arg_2+2*Arg_3 {O(n^2)}
MPRF:
l3 [Arg_2-1 ]
l2 [Arg_2 ]
new bound:
2*Arg_3*Arg_3+2*Arg_2+2*Arg_3 {O(n^2)}
MPRF:
l3 [Arg_2 ]
l2 [Arg_2 ]
new bound:
64*Arg_3*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3*Arg_3+128*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3+146*Arg_3*Arg_3+64*Arg_2*Arg_2+82*Arg_2+82*Arg_3+25 {O(n^4)}
MPRF:
l2 [Arg_2+3 ; Arg_2 ]
l3 [Arg_1+3 ; Arg_0+2*Arg_2-2*Arg_1 ]
Overall timebound:64*Arg_3*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3*Arg_3+128*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3+150*Arg_3*Arg_3+64*Arg_2*Arg_2+86*Arg_2+87*Arg_3+27 {O(n^4)}
0: l0->l1: 1 {O(1)}
1: l1->l1: Arg_3 {O(n)}
2: l1->l2: 1 {O(1)}
3: l2->l3: 2*Arg_3*Arg_3+2*Arg_2+2*Arg_3 {O(n^2)}
4: l3->l3: 64*Arg_3*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3*Arg_3+128*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3+146*Arg_3*Arg_3+64*Arg_2*Arg_2+82*Arg_2+82*Arg_3+25 {O(n^4)}
5: l3->l2: 2*Arg_3*Arg_3+2*Arg_2+2*Arg_3 {O(n^2)}
Overall costbound: 64*Arg_3*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3*Arg_3+128*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3+150*Arg_3*Arg_3+64*Arg_2*Arg_2+86*Arg_2+87*Arg_3+27 {O(n^4)}
0: l0->l1: 1 {O(1)}
1: l1->l1: Arg_3 {O(n)}
2: l1->l2: 1 {O(1)}
3: l2->l3: 2*Arg_3*Arg_3+2*Arg_2+2*Arg_3 {O(n^2)}
4: l3->l3: 64*Arg_3*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3*Arg_3+128*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3+146*Arg_3*Arg_3+64*Arg_2*Arg_2+82*Arg_2+82*Arg_3+25 {O(n^4)}
5: l3->l2: 2*Arg_3*Arg_3+2*Arg_2+2*Arg_3 {O(n^2)}
0: l0->l1, Arg_0: Arg_0 {O(n)}
0: l0->l1, Arg_1: Arg_1 {O(n)}
0: l0->l1, Arg_2: Arg_2 {O(n)}
0: l0->l1, Arg_3: Arg_3 {O(n)}
1: l1->l1, Arg_0: Arg_0 {O(n)}
1: l1->l1, Arg_1: Arg_1 {O(n)}
1: l1->l1, Arg_2: 2*Arg_3*Arg_3+2*Arg_3+Arg_2 {O(n^2)}
1: l1->l1, Arg_3: Arg_3 {O(n)}
2: l1->l2, Arg_0: 2*Arg_0 {O(n)}
2: l1->l2, Arg_1: 2*Arg_1 {O(n)}
2: l1->l2, Arg_2: 2*Arg_3*Arg_3+2*Arg_2+2*Arg_3 {O(n^2)}
2: l1->l2, Arg_3: 2*Arg_3 {O(n)}
3: l2->l3, Arg_0: 4*Arg_3*Arg_3+4*Arg_2+4*Arg_3 {O(n^2)}
3: l2->l3, Arg_1: 4*Arg_3*Arg_3+4*Arg_2+4*Arg_3 {O(n^2)}
3: l2->l3, Arg_2: 2*Arg_3*Arg_3+2*Arg_2+2*Arg_3 {O(n^2)}
3: l2->l3, Arg_3: 2*Arg_3 {O(n)}
4: l3->l3, Arg_0: 4096*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3+16384*Arg_2*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3+16384*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3+24576*Arg_2*Arg_2*Arg_3*Arg_3*Arg_3*Arg_3+35584*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3+49152*Arg_2*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3+16384*Arg_2*Arg_2*Arg_2*Arg_3*Arg_3+49152*Arg_2*Arg_2*Arg_3*Arg_3*Arg_3+49408*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3+82176*Arg_2*Arg_3*Arg_3*Arg_3*Arg_3+16384*Arg_2*Arg_2*Arg_2*Arg_3+4096*Arg_2*Arg_2*Arg_2*Arg_2+47764*Arg_3*Arg_3*Arg_3*Arg_3+57600*Arg_2*Arg_2*Arg_3*Arg_3+82432*Arg_2*Arg_3*Arg_3*Arg_3+11008*Arg_2*Arg_2*Arg_2+32296*Arg_3*Arg_3*Arg_3+33024*Arg_2*Arg_2*Arg_3+54312*Arg_2*Arg_3*Arg_3+10644*Arg_2*Arg_2+15038*Arg_3*Arg_3+21288*Arg_2*Arg_3+4394*Arg_2+4394*Arg_3+650 {O(n^8)}
4: l3->l3, Arg_1: 64*Arg_3*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3*Arg_3+128*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3+150*Arg_3*Arg_3+64*Arg_2*Arg_2+86*Arg_2+86*Arg_3+25 {O(n^4)}
4: l3->l3, Arg_2: 2*Arg_3*Arg_3+2*Arg_2+2*Arg_3 {O(n^2)}
4: l3->l3, Arg_3: 2*Arg_3 {O(n)}
5: l3->l2, Arg_0: 4096*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3+16384*Arg_2*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3+16384*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3+24576*Arg_2*Arg_2*Arg_3*Arg_3*Arg_3*Arg_3+35584*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3+49152*Arg_2*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3+16384*Arg_2*Arg_2*Arg_2*Arg_3*Arg_3+49152*Arg_2*Arg_2*Arg_3*Arg_3*Arg_3+49408*Arg_3*Arg_3*Arg_3*Arg_3*Arg_3+82176*Arg_2*Arg_3*Arg_3*Arg_3*Arg_3+16384*Arg_2*Arg_2*Arg_2*Arg_3+4096*Arg_2*Arg_2*Arg_2*Arg_2+47764*Arg_3*Arg_3*Arg_3*Arg_3+57600*Arg_2*Arg_2*Arg_3*Arg_3+82432*Arg_2*Arg_3*Arg_3*Arg_3+11008*Arg_2*Arg_2*Arg_2+32296*Arg_3*Arg_3*Arg_3+33024*Arg_2*Arg_2*Arg_3+54312*Arg_2*Arg_3*Arg_3+10644*Arg_2*Arg_2+15038*Arg_3*Arg_3+21288*Arg_2*Arg_3+4394*Arg_2+4394*Arg_3+650 {O(n^8)}
5: l3->l2, Arg_1: 64*Arg_3*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3*Arg_3+128*Arg_3*Arg_3*Arg_3+128*Arg_2*Arg_3+150*Arg_3*Arg_3+64*Arg_2*Arg_2+86*Arg_2+86*Arg_3+25 {O(n^4)}
5: l3->l2, Arg_2: 2*Arg_3*Arg_3+2*Arg_2+2*Arg_3 {O(n^2)}
5: l3->l2, Arg_3: 2*Arg_3 {O(n)}