Initial Problem
Start: eval_abc_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: eval_abc_0, eval_abc_1, eval_abc_12, eval_abc_13, eval_abc_15, eval_abc_16, eval_abc_2, eval_abc_3, eval_abc_4, eval_abc_5, eval_abc_6, eval_abc_bb0_in, eval_abc_bb1_in, eval_abc_bb2_in, eval_abc_bb3_in, eval_abc_bb4_in, eval_abc_bb5_in, eval_abc_bb6_in, eval_abc_bb7_in, eval_abc_bb8_in, eval_abc_start, eval_abc_stop
Transitions:
2:eval_abc_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
3:eval_abc_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
19:eval_abc_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
20:eval_abc_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1,Arg_6,Arg_7)
22:eval_abc_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
23:eval_abc_16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7)
4:eval_abc_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
5:eval_abc_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
6:eval_abc_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
7:eval_abc_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
8:eval_abc_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,1,Arg_4,Arg_5,Arg_6,Arg_7)
1:eval_abc_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
9:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,1,Arg_6,Arg_7):|:Arg_3<=Arg_7
10:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<Arg_3
11:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_3
12:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_3<Arg_5
13:eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb4_in(Arg_4+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7):|:Arg_4+1<=Arg_7
14:eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb6_in(Arg_4+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<Arg_4+1
16:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0,Arg_5,Arg_6,Arg_7):|:Arg_0<Arg_6
15:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=Arg_0
17:eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7)
18:eval_abc_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_12(Arg_0,Arg_5+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
21:eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_15(Arg_0,Arg_1,Arg_3+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
24:eval_abc_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
0:eval_abc_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
Preprocessing
Found invariant Arg_7<=Arg_4 && 1+Arg_7<=Arg_0 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 3<=Arg_0+Arg_7 && Arg_0<=1+Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && 2<=Arg_0 for location eval_abc_12
Found invariant 1<=Arg_7 && 3<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_2+Arg_7 && Arg_2<=1+Arg_7 && Arg_5<=1+Arg_3 && Arg_5<=Arg_2 && 2<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1+Arg_3<=Arg_2 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_2 for location eval_abc_16
Found invariant 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=1+Arg_3 && 1<=Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_3 for location eval_abc_bb2_in
Found invariant 1<=Arg_7 && 3<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=1+Arg_3 && 2<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_3 for location eval_abc_bb7_in
Found invariant Arg_7<=Arg_4 && 1+Arg_7<=Arg_0 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 3<=Arg_0+Arg_7 && Arg_0<=1+Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && 2<=Arg_0 for location eval_abc_13
Found invariant 2<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 3<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_6<=2+Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 2<=Arg_3+Arg_6 && 3<=Arg_0+Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_0+Arg_3 && 2<=Arg_0 for location eval_abc_bb4_in
Found invariant 1+Arg_7<=Arg_3 && 1<=Arg_3 for location eval_abc_bb8_in
Found invariant 1<=Arg_3 for location eval_abc_bb1_in
Found invariant 1+Arg_7<=Arg_3 && 1<=Arg_3 for location eval_abc_stop
Found invariant Arg_7<=Arg_4 && 1+Arg_7<=Arg_0 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_0<=1+Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_0+Arg_3 && 2<=Arg_0 for location eval_abc_bb6_in
Found invariant 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_3 for location eval_abc_bb3_in
Found invariant 2<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 3<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_6<=1+Arg_4 && Arg_6<=Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 2<=Arg_3+Arg_6 && 3<=Arg_0+Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_0+Arg_3 && 2<=Arg_0 for location eval_abc_bb5_in
Found invariant 1<=Arg_7 && 3<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_2+Arg_7 && Arg_2<=1+Arg_7 && Arg_5<=1+Arg_3 && Arg_5<=Arg_2 && 2<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1+Arg_3<=Arg_2 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_2 for location eval_abc_15
Problem after Preprocessing
Start: eval_abc_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: eval_abc_0, eval_abc_1, eval_abc_12, eval_abc_13, eval_abc_15, eval_abc_16, eval_abc_2, eval_abc_3, eval_abc_4, eval_abc_5, eval_abc_6, eval_abc_bb0_in, eval_abc_bb1_in, eval_abc_bb2_in, eval_abc_bb3_in, eval_abc_bb4_in, eval_abc_bb5_in, eval_abc_bb6_in, eval_abc_bb7_in, eval_abc_bb8_in, eval_abc_start, eval_abc_stop
Transitions:
2:eval_abc_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
3:eval_abc_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
19:eval_abc_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && 1+Arg_7<=Arg_0 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 3<=Arg_0+Arg_7 && Arg_0<=1+Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && 2<=Arg_0
20:eval_abc_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1,Arg_6,Arg_7):|:Arg_7<=Arg_4 && 1+Arg_7<=Arg_0 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 3<=Arg_0+Arg_7 && Arg_0<=1+Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && 2<=Arg_0
22:eval_abc_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_7 && 3<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_2+Arg_7 && Arg_2<=1+Arg_7 && Arg_5<=1+Arg_3 && Arg_5<=Arg_2 && 2<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1+Arg_3<=Arg_2 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_2
23:eval_abc_16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_7 && 3<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_2+Arg_7 && Arg_2<=1+Arg_7 && Arg_5<=1+Arg_3 && Arg_5<=Arg_2 && 2<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1+Arg_3<=Arg_2 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_2
4:eval_abc_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
5:eval_abc_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
6:eval_abc_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
7:eval_abc_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
8:eval_abc_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,1,Arg_4,Arg_5,Arg_6,Arg_7)
1:eval_abc_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
9:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,1,Arg_6,Arg_7):|:1<=Arg_3 && Arg_3<=Arg_7
10:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_3 && Arg_7<Arg_3
11:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_7):|:1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=1+Arg_3 && 1<=Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_3 && Arg_5<=Arg_3
12:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=1+Arg_3 && 1<=Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_3 && Arg_3<Arg_5
13:eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb4_in(Arg_4+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7):|:1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_3 && Arg_4+1<=Arg_7
14:eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb6_in(Arg_4+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_3 && Arg_7<Arg_4+1
16:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0,Arg_5,Arg_6,Arg_7):|:2<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 3<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_6<=2+Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 2<=Arg_3+Arg_6 && 3<=Arg_0+Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_0+Arg_3 && 2<=Arg_0 && Arg_0<Arg_6
15:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 3<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_6<=2+Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 2<=Arg_3+Arg_6 && 3<=Arg_0+Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_0+Arg_3 && 2<=Arg_0 && Arg_6<=Arg_0
17:eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:2<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 3<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_6<=1+Arg_4 && Arg_6<=Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 2<=Arg_3+Arg_6 && 3<=Arg_0+Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_0+Arg_3 && 2<=Arg_0
18:eval_abc_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_12(Arg_0,Arg_5+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && 1+Arg_7<=Arg_0 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_0<=1+Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_0+Arg_3 && 2<=Arg_0
21:eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_15(Arg_0,Arg_1,Arg_3+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_7 && 3<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=1+Arg_3 && 2<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_3
24:eval_abc_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1+Arg_7<=Arg_3 && 1<=Arg_3
0:eval_abc_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
MPRF for transition 22:eval_abc_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_7 && 3<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_2+Arg_7 && Arg_2<=1+Arg_7 && Arg_5<=1+Arg_3 && Arg_5<=Arg_2 && 2<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1+Arg_3<=Arg_2 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_2 of depth 1:
new bound:
Arg_7+2 {O(n)}
MPRF:
eval_abc_13 [Arg_7+1-Arg_3 ]
eval_abc_16 [Arg_5+Arg_7-Arg_2-Arg_3 ]
eval_abc_bb1_in [Arg_7+1-Arg_3 ]
eval_abc_bb2_in [Arg_7+1-Arg_3 ]
eval_abc_bb3_in [Arg_7+1-Arg_3 ]
eval_abc_bb5_in [Arg_7+1-Arg_3 ]
eval_abc_bb4_in [Arg_7+1-Arg_3 ]
eval_abc_bb6_in [Arg_4+1-Arg_3 ]
eval_abc_12 [Arg_4+1-Arg_3 ]
eval_abc_bb7_in [Arg_7+1-Arg_3 ]
eval_abc_15 [Arg_7+1-Arg_3 ]
MPRF for transition 23:eval_abc_16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_7 && 3<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_2+Arg_7 && Arg_2<=1+Arg_7 && Arg_5<=1+Arg_3 && Arg_5<=Arg_2 && 2<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 4<=Arg_2+Arg_5 && Arg_2<=Arg_5 && 1+Arg_3<=Arg_2 && 1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_2 of depth 1:
new bound:
3*Arg_7+2 {O(n)}
MPRF:
eval_abc_13 [3*Arg_4-Arg_3-1 ]
eval_abc_16 [3*Arg_7-Arg_5 ]
eval_abc_bb1_in [3*Arg_7-Arg_3-1 ]
eval_abc_bb2_in [3*Arg_7-Arg_3-1 ]
eval_abc_bb3_in [3*Arg_7-Arg_3-1 ]
eval_abc_bb5_in [Arg_4+3*Arg_7-Arg_0-Arg_3 ]
eval_abc_bb4_in [3*Arg_7-Arg_3-1 ]
eval_abc_bb6_in [3*Arg_7-Arg_3-1 ]
eval_abc_12 [3*Arg_7-Arg_3-1 ]
eval_abc_bb7_in [3*Arg_7-Arg_5 ]
eval_abc_15 [3*Arg_7-Arg_5 ]
MPRF for transition 9:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,1,Arg_6,Arg_7):|:1<=Arg_3 && Arg_3<=Arg_7 of depth 1:
new bound:
Arg_7+2 {O(n)}
MPRF:
eval_abc_13 [Arg_7-Arg_3 ]
eval_abc_16 [Arg_7-Arg_3 ]
eval_abc_bb1_in [Arg_7+1-Arg_3 ]
eval_abc_bb2_in [Arg_7-Arg_3 ]
eval_abc_bb3_in [Arg_7-Arg_3 ]
eval_abc_bb5_in [Arg_7-Arg_3 ]
eval_abc_bb4_in [Arg_7-Arg_3 ]
eval_abc_bb6_in [Arg_7-Arg_3 ]
eval_abc_12 [Arg_7-Arg_3 ]
eval_abc_bb7_in [Arg_7-Arg_3 ]
eval_abc_15 [Arg_7-Arg_3 ]
MPRF for transition 12:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=1+Arg_3 && 1<=Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_3 && Arg_3<Arg_5 of depth 1:
new bound:
2*Arg_7+1 {O(n)}
MPRF:
eval_abc_13 [Arg_4+Arg_7-Arg_3 ]
eval_abc_16 [2*Arg_7-Arg_5 ]
eval_abc_bb1_in [2*Arg_7-Arg_3 ]
eval_abc_bb2_in [2*Arg_7-Arg_3 ]
eval_abc_bb3_in [2*Arg_7-Arg_3 ]
eval_abc_bb5_in [2*Arg_7-Arg_3 ]
eval_abc_bb4_in [2*Arg_7-Arg_3 ]
eval_abc_bb6_in [2*Arg_4-Arg_3 ]
eval_abc_12 [Arg_4+Arg_7-Arg_3 ]
eval_abc_bb7_in [2*Arg_7-Arg_3-1 ]
eval_abc_15 [2*Arg_7-Arg_3-1 ]
MPRF for transition 21:eval_abc_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_15(Arg_0,Arg_1,Arg_3+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_7 && 3<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=1+Arg_3 && 2<=Arg_5 && 3<=Arg_3+Arg_5 && 1+Arg_3<=Arg_5 && 1<=Arg_3 of depth 1:
new bound:
2*Arg_7+1 {O(n)}
MPRF:
eval_abc_13 [2*Arg_4-Arg_3 ]
eval_abc_16 [2*Arg_7-Arg_2 ]
eval_abc_bb1_in [2*Arg_7-Arg_3 ]
eval_abc_bb2_in [2*Arg_7-Arg_3 ]
eval_abc_bb3_in [2*Arg_7-Arg_3 ]
eval_abc_bb5_in [2*Arg_7-Arg_3 ]
eval_abc_bb4_in [2*Arg_7-Arg_3 ]
eval_abc_bb6_in [2*Arg_7-Arg_3 ]
eval_abc_12 [2*Arg_4-Arg_3 ]
eval_abc_bb7_in [2*Arg_7-Arg_3 ]
eval_abc_15 [2*Arg_7-Arg_5 ]
MPRF for transition 19:eval_abc_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && 1+Arg_7<=Arg_0 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 3<=Arg_0+Arg_7 && Arg_0<=1+Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && 2<=Arg_0 of depth 1:
new bound:
4*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
MPRF:
eval_abc_13 [Arg_3-Arg_5 ]
eval_abc_15 [Arg_3+1 ]
eval_abc_16 [Arg_3+1 ]
eval_abc_bb1_in [Arg_3 ]
eval_abc_bb2_in [Arg_3+1-Arg_5 ]
eval_abc_bb7_in [Arg_3-Arg_5 ]
eval_abc_bb3_in [Arg_3+1-Arg_5 ]
eval_abc_bb5_in [Arg_3+1-Arg_5 ]
eval_abc_bb4_in [Arg_3+1-Arg_5 ]
eval_abc_bb6_in [Arg_3+Arg_4+1-Arg_5-Arg_7 ]
eval_abc_12 [Arg_3+1-Arg_5 ]
MPRF for transition 20:eval_abc_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_1,Arg_6,Arg_7):|:Arg_7<=Arg_4 && 1+Arg_7<=Arg_0 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_1+Arg_7 && Arg_1<=1+Arg_7 && 3<=Arg_0+Arg_7 && Arg_0<=1+Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_1 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_1+Arg_5 && Arg_1<=1+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_1+Arg_4 && Arg_1<=1+Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_1+Arg_3 && Arg_1<=1+Arg_3 && 3<=Arg_0+Arg_3 && Arg_1<=Arg_0 && 2<=Arg_1 && 4<=Arg_0+Arg_1 && 2<=Arg_0 of depth 1:
new bound:
8*Arg_7*Arg_7+18*Arg_7+10 {O(n^2)}
MPRF:
eval_abc_13 [2*Arg_3-Arg_5 ]
eval_abc_15 [2*Arg_3+3 ]
eval_abc_16 [2*Arg_3+1 ]
eval_abc_bb1_in [2*Arg_3-1 ]
eval_abc_bb2_in [2*Arg_3-Arg_5 ]
eval_abc_bb7_in [2*Arg_3-Arg_5 ]
eval_abc_bb3_in [2*Arg_3-Arg_5 ]
eval_abc_bb5_in [2*Arg_3-Arg_5 ]
eval_abc_bb4_in [2*Arg_3-Arg_5 ]
eval_abc_bb6_in [2*Arg_3-Arg_5 ]
eval_abc_12 [2*Arg_3-Arg_5 ]
MPRF for transition 11:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3,Arg_5,Arg_6,Arg_7):|:1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=1+Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=1+Arg_3 && 1<=Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_3 && Arg_5<=Arg_3 of depth 1:
new bound:
4*Arg_7*Arg_7+8*Arg_7+5 {O(n^2)}
MPRF:
eval_abc_13 [Arg_1+Arg_3-2*Arg_5 ]
eval_abc_15 [Arg_2+1 ]
eval_abc_16 [Arg_2+1 ]
eval_abc_bb1_in [Arg_3+1 ]
eval_abc_bb2_in [Arg_3+2-Arg_5 ]
eval_abc_bb7_in [Arg_3-Arg_5 ]
eval_abc_bb3_in [Arg_3+1-Arg_5 ]
eval_abc_bb5_in [Arg_3+1-Arg_5 ]
eval_abc_bb4_in [Arg_3+1-Arg_5 ]
eval_abc_bb6_in [Arg_3+1-Arg_5 ]
eval_abc_12 [Arg_3+1-Arg_5 ]
MPRF for transition 14:eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb6_in(Arg_4+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_3 && Arg_7<Arg_4+1 of depth 1:
new bound:
2*Arg_7*Arg_7+2*Arg_7 {O(n^2)}
MPRF:
eval_abc_13 [Arg_7-Arg_5 ]
eval_abc_15 [Arg_7 ]
eval_abc_16 [Arg_7 ]
eval_abc_bb1_in [Arg_7 ]
eval_abc_bb2_in [Arg_7+1-Arg_5 ]
eval_abc_bb7_in [Arg_7-Arg_5 ]
eval_abc_bb3_in [Arg_7+1-Arg_5 ]
eval_abc_bb5_in [Arg_0+Arg_7-Arg_4-Arg_5 ]
eval_abc_bb4_in [Arg_7+1-Arg_5 ]
eval_abc_bb6_in [Arg_4-Arg_5 ]
eval_abc_12 [Arg_7-Arg_5 ]
MPRF for transition 18:eval_abc_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_12(Arg_0,Arg_5+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && 1+Arg_7<=Arg_0 && 1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && 3<=Arg_0+Arg_7 && Arg_0<=1+Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_0+Arg_3 && 2<=Arg_0 of depth 1:
new bound:
6*Arg_7*Arg_7+8*Arg_7+3 {O(n^2)}
MPRF:
eval_abc_13 [Arg_3+Arg_4-Arg_5-1 ]
eval_abc_15 [Arg_2+Arg_7 ]
eval_abc_16 [Arg_2+Arg_7 ]
eval_abc_bb1_in [Arg_3+Arg_7 ]
eval_abc_bb2_in [Arg_3+Arg_7-Arg_5 ]
eval_abc_bb7_in [Arg_3+Arg_7-Arg_5 ]
eval_abc_bb3_in [Arg_3+Arg_7-Arg_5 ]
eval_abc_bb5_in [Arg_3+Arg_7-Arg_5 ]
eval_abc_bb4_in [Arg_3+Arg_7-Arg_5 ]
eval_abc_bb6_in [Arg_3+Arg_7-Arg_5 ]
eval_abc_12 [Arg_3+Arg_7-Arg_5-1 ]
MPRF for transition 13:eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb4_in(Arg_4+1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,1,Arg_7):|:1<=Arg_7 && 2<=Arg_5+Arg_7 && Arg_5<=Arg_7 && 2<=Arg_4+Arg_7 && Arg_4<=Arg_7 && 2<=Arg_3+Arg_7 && Arg_3<=Arg_7 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 1<=Arg_3 && Arg_4+1<=Arg_7 of depth 1:
new bound:
6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+4*Arg_7 {O(n^3)}
MPRF:
eval_abc_12 [Arg_7 ]
eval_abc_13 [Arg_7 ]
eval_abc_16 [Arg_7 ]
eval_abc_bb1_in [Arg_7 ]
eval_abc_bb2_in [Arg_7 ]
eval_abc_bb6_in [Arg_7-Arg_4 ]
eval_abc_bb3_in [Arg_7+1-Arg_4 ]
eval_abc_bb5_in [Arg_4+Arg_7+2-2*Arg_0 ]
eval_abc_bb4_in [Arg_4+Arg_7+2-2*Arg_0 ]
eval_abc_bb7_in [Arg_7 ]
eval_abc_15 [Arg_7 ]
MPRF for transition 16:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_0,Arg_5,Arg_6,Arg_7):|:2<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 3<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_6<=2+Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 2<=Arg_3+Arg_6 && 3<=Arg_0+Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_0+Arg_3 && 2<=Arg_0 && Arg_0<Arg_6 of depth 1:
new bound:
6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+4*Arg_7 {O(n^3)}
MPRF:
eval_abc_12 [Arg_7 ]
eval_abc_13 [Arg_7 ]
eval_abc_16 [Arg_7 ]
eval_abc_bb1_in [Arg_7 ]
eval_abc_bb2_in [Arg_7 ]
eval_abc_bb6_in [Arg_7-Arg_4 ]
eval_abc_bb3_in [Arg_7-Arg_4 ]
eval_abc_bb5_in [Arg_7+1-Arg_0 ]
eval_abc_bb4_in [Arg_7+1-Arg_0 ]
eval_abc_bb7_in [Arg_7 ]
eval_abc_15 [Arg_7 ]
MPRF for transition 15:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 3<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_6<=2+Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 2<=Arg_3+Arg_6 && 3<=Arg_0+Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_0+Arg_3 && 2<=Arg_0 && Arg_6<=Arg_0 of depth 1:
new bound:
72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+308*Arg_7*Arg_7*Arg_7*Arg_7+312*Arg_7*Arg_7*Arg_7+184*Arg_7*Arg_7+50*Arg_7 {O(n^6)}
MPRF:
eval_abc_13 [2*Arg_7 ]
eval_abc_16 [2*Arg_7 ]
eval_abc_bb1_in [2*Arg_7 ]
eval_abc_bb2_in [2*Arg_7 ]
eval_abc_bb3_in [2*Arg_4+2*Arg_7-2*Arg_3 ]
eval_abc_bb5_in [Arg_0+2*Arg_7-Arg_4-Arg_5-Arg_6-2 ]
eval_abc_bb4_in [Arg_0+2*Arg_7-Arg_4-Arg_5-Arg_6-1 ]
eval_abc_bb6_in [2*Arg_4 ]
eval_abc_12 [2*Arg_7 ]
eval_abc_bb7_in [2*Arg_7 ]
eval_abc_15 [2*Arg_7 ]
MPRF for transition 17:eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6+1,Arg_7):|:2<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=Arg_7 && 3<=Arg_5+Arg_7 && 1+Arg_5<=Arg_7 && 3<=Arg_4+Arg_7 && 1+Arg_4<=Arg_7 && 3<=Arg_3+Arg_7 && 1+Arg_3<=Arg_7 && 4<=Arg_0+Arg_7 && Arg_0<=Arg_7 && Arg_6<=1+Arg_4 && Arg_6<=Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 2<=Arg_3+Arg_6 && 3<=Arg_0+Arg_6 && Arg_5<=Arg_4 && Arg_5<=Arg_3 && 1+Arg_5<=Arg_0 && 1<=Arg_5 && 2<=Arg_4+Arg_5 && 2<=Arg_3+Arg_5 && 3<=Arg_0+Arg_5 && 1+Arg_4<=Arg_0 && 1<=Arg_4 && 2<=Arg_3+Arg_4 && Arg_3<=Arg_4 && 3<=Arg_0+Arg_4 && Arg_0<=1+Arg_4 && 1+Arg_3<=Arg_0 && 1<=Arg_3 && 3<=Arg_0+Arg_3 && 2<=Arg_0 of depth 1:
new bound:
72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+1 {O(n^6)}
MPRF:
eval_abc_13 [3*Arg_4+1-2*Arg_3 ]
eval_abc_16 [Arg_7+1 ]
eval_abc_bb1_in [Arg_7+1 ]
eval_abc_bb2_in [Arg_7+1 ]
eval_abc_bb3_in [2*Arg_4+Arg_7+1-2*Arg_3 ]
eval_abc_bb5_in [Arg_0+Arg_4+1-Arg_3-Arg_6 ]
eval_abc_bb4_in [Arg_0+Arg_4+1-Arg_3-Arg_6 ]
eval_abc_bb6_in [2*Arg_4+Arg_7+1-2*Arg_3 ]
eval_abc_12 [3*Arg_4+1-2*Arg_3 ]
eval_abc_bb7_in [Arg_7+1 ]
eval_abc_15 [Arg_7+1 ]
All Bounds
Timebounds
Overall timebound:144*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+384*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+610*Arg_7*Arg_7*Arg_7*Arg_7+634*Arg_7*Arg_7*Arg_7+412*Arg_7*Arg_7+164*Arg_7+42 {O(n^6)}
2: eval_abc_0->eval_abc_1: 1 {O(1)}
3: eval_abc_1->eval_abc_2: 1 {O(1)}
19: eval_abc_12->eval_abc_13: 4*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
20: eval_abc_13->eval_abc_bb2_in: 8*Arg_7*Arg_7+18*Arg_7+10 {O(n^2)}
22: eval_abc_15->eval_abc_16: Arg_7+2 {O(n)}
23: eval_abc_16->eval_abc_bb1_in: 3*Arg_7+2 {O(n)}
4: eval_abc_2->eval_abc_3: 1 {O(1)}
5: eval_abc_3->eval_abc_4: 1 {O(1)}
6: eval_abc_4->eval_abc_5: 1 {O(1)}
7: eval_abc_5->eval_abc_6: 1 {O(1)}
8: eval_abc_6->eval_abc_bb1_in: 1 {O(1)}
1: eval_abc_bb0_in->eval_abc_0: 1 {O(1)}
9: eval_abc_bb1_in->eval_abc_bb2_in: Arg_7+2 {O(n)}
10: eval_abc_bb1_in->eval_abc_bb8_in: 1 {O(1)}
11: eval_abc_bb2_in->eval_abc_bb3_in: 4*Arg_7*Arg_7+8*Arg_7+5 {O(n^2)}
12: eval_abc_bb2_in->eval_abc_bb7_in: 2*Arg_7+1 {O(n)}
13: eval_abc_bb3_in->eval_abc_bb4_in: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+4*Arg_7 {O(n^3)}
14: eval_abc_bb3_in->eval_abc_bb6_in: 2*Arg_7*Arg_7+2*Arg_7 {O(n^2)}
15: eval_abc_bb4_in->eval_abc_bb5_in: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+308*Arg_7*Arg_7*Arg_7*Arg_7+312*Arg_7*Arg_7*Arg_7+184*Arg_7*Arg_7+50*Arg_7 {O(n^6)}
16: eval_abc_bb4_in->eval_abc_bb3_in: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+4*Arg_7 {O(n^3)}
17: eval_abc_bb5_in->eval_abc_bb4_in: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+1 {O(n^6)}
18: eval_abc_bb6_in->eval_abc_12: 6*Arg_7*Arg_7+8*Arg_7+3 {O(n^2)}
21: eval_abc_bb7_in->eval_abc_15: 2*Arg_7+1 {O(n)}
24: eval_abc_bb8_in->eval_abc_stop: 1 {O(1)}
0: eval_abc_start->eval_abc_bb0_in: 1 {O(1)}
Costbounds
Overall costbound: 144*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+384*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+610*Arg_7*Arg_7*Arg_7*Arg_7+634*Arg_7*Arg_7*Arg_7+412*Arg_7*Arg_7+164*Arg_7+42 {O(n^6)}
2: eval_abc_0->eval_abc_1: 1 {O(1)}
3: eval_abc_1->eval_abc_2: 1 {O(1)}
19: eval_abc_12->eval_abc_13: 4*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
20: eval_abc_13->eval_abc_bb2_in: 8*Arg_7*Arg_7+18*Arg_7+10 {O(n^2)}
22: eval_abc_15->eval_abc_16: Arg_7+2 {O(n)}
23: eval_abc_16->eval_abc_bb1_in: 3*Arg_7+2 {O(n)}
4: eval_abc_2->eval_abc_3: 1 {O(1)}
5: eval_abc_3->eval_abc_4: 1 {O(1)}
6: eval_abc_4->eval_abc_5: 1 {O(1)}
7: eval_abc_5->eval_abc_6: 1 {O(1)}
8: eval_abc_6->eval_abc_bb1_in: 1 {O(1)}
1: eval_abc_bb0_in->eval_abc_0: 1 {O(1)}
9: eval_abc_bb1_in->eval_abc_bb2_in: Arg_7+2 {O(n)}
10: eval_abc_bb1_in->eval_abc_bb8_in: 1 {O(1)}
11: eval_abc_bb2_in->eval_abc_bb3_in: 4*Arg_7*Arg_7+8*Arg_7+5 {O(n^2)}
12: eval_abc_bb2_in->eval_abc_bb7_in: 2*Arg_7+1 {O(n)}
13: eval_abc_bb3_in->eval_abc_bb4_in: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+4*Arg_7 {O(n^3)}
14: eval_abc_bb3_in->eval_abc_bb6_in: 2*Arg_7*Arg_7+2*Arg_7 {O(n^2)}
15: eval_abc_bb4_in->eval_abc_bb5_in: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+308*Arg_7*Arg_7*Arg_7*Arg_7+312*Arg_7*Arg_7*Arg_7+184*Arg_7*Arg_7+50*Arg_7 {O(n^6)}
16: eval_abc_bb4_in->eval_abc_bb3_in: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+4*Arg_7 {O(n^3)}
17: eval_abc_bb5_in->eval_abc_bb4_in: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+1 {O(n^6)}
18: eval_abc_bb6_in->eval_abc_12: 6*Arg_7*Arg_7+8*Arg_7+3 {O(n^2)}
21: eval_abc_bb7_in->eval_abc_15: 2*Arg_7+1 {O(n)}
24: eval_abc_bb8_in->eval_abc_stop: 1 {O(1)}
0: eval_abc_start->eval_abc_bb0_in: 1 {O(1)}
Sizebounds
2: eval_abc_0->eval_abc_1, Arg_0: Arg_0 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_1: Arg_1 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_2: Arg_2 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_3: Arg_3 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_4: Arg_4 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_5: Arg_5 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_6: Arg_6 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_7: Arg_7 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_0: Arg_0 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_1: Arg_1 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_2: Arg_2 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_3: Arg_3 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_4: Arg_4 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_5: Arg_5 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_6: Arg_6 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_7: Arg_7 {O(n)}
19: eval_abc_12->eval_abc_13, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+10 {O(n^3)}
19: eval_abc_12->eval_abc_13, Arg_1: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
19: eval_abc_12->eval_abc_13, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
19: eval_abc_12->eval_abc_13, Arg_3: 2*Arg_7+2 {O(n)}
19: eval_abc_12->eval_abc_13, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+8 {O(n^3)}
19: eval_abc_12->eval_abc_13, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
19: eval_abc_12->eval_abc_13, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+Arg_6+2 {O(n^6)}
19: eval_abc_12->eval_abc_13, Arg_7: Arg_7 {O(n)}
20: eval_abc_13->eval_abc_bb2_in, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+10 {O(n^3)}
20: eval_abc_13->eval_abc_bb2_in, Arg_1: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
20: eval_abc_13->eval_abc_bb2_in, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
20: eval_abc_13->eval_abc_bb2_in, Arg_3: 2*Arg_7+2 {O(n)}
20: eval_abc_13->eval_abc_bb2_in, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+8 {O(n^3)}
20: eval_abc_13->eval_abc_bb2_in, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
20: eval_abc_13->eval_abc_bb2_in, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+Arg_6+2 {O(n^6)}
20: eval_abc_13->eval_abc_bb2_in, Arg_7: Arg_7 {O(n)}
22: eval_abc_15->eval_abc_16, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+10 {O(n^3)}
22: eval_abc_15->eval_abc_16, Arg_1: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
22: eval_abc_15->eval_abc_16, Arg_2: 2*Arg_7+2 {O(n)}
22: eval_abc_15->eval_abc_16, Arg_3: 2*Arg_7+2 {O(n)}
22: eval_abc_15->eval_abc_16, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+8 {O(n^3)}
22: eval_abc_15->eval_abc_16, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
22: eval_abc_15->eval_abc_16, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+Arg_6+2 {O(n^6)}
22: eval_abc_15->eval_abc_16, Arg_7: Arg_7 {O(n)}
23: eval_abc_16->eval_abc_bb1_in, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+10 {O(n^3)}
23: eval_abc_16->eval_abc_bb1_in, Arg_1: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
23: eval_abc_16->eval_abc_bb1_in, Arg_2: 2*Arg_7+2 {O(n)}
23: eval_abc_16->eval_abc_bb1_in, Arg_3: 2*Arg_7+2 {O(n)}
23: eval_abc_16->eval_abc_bb1_in, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+8 {O(n^3)}
23: eval_abc_16->eval_abc_bb1_in, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
23: eval_abc_16->eval_abc_bb1_in, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+Arg_6+2 {O(n^6)}
23: eval_abc_16->eval_abc_bb1_in, Arg_7: Arg_7 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_0: Arg_0 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_1: Arg_1 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_2: Arg_2 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_3: Arg_3 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_4: Arg_4 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_5: Arg_5 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_6: Arg_6 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_7: Arg_7 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_0: Arg_0 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_1: Arg_1 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_2: Arg_2 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_3: Arg_3 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_4: Arg_4 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_5: Arg_5 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_6: Arg_6 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_7: Arg_7 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_0: Arg_0 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_1: Arg_1 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_2: Arg_2 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_3: Arg_3 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_4: Arg_4 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_5: Arg_5 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_6: Arg_6 {O(n)}
6: eval_abc_4->eval_abc_5, Arg_7: Arg_7 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_0: Arg_0 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_1: Arg_1 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_2: Arg_2 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_3: Arg_3 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_4: Arg_4 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_5: Arg_5 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_6: Arg_6 {O(n)}
7: eval_abc_5->eval_abc_6, Arg_7: Arg_7 {O(n)}
8: eval_abc_6->eval_abc_bb1_in, Arg_0: Arg_0 {O(n)}
8: eval_abc_6->eval_abc_bb1_in, Arg_1: Arg_1 {O(n)}
8: eval_abc_6->eval_abc_bb1_in, Arg_2: Arg_2 {O(n)}
8: eval_abc_6->eval_abc_bb1_in, Arg_3: 1 {O(1)}
8: eval_abc_6->eval_abc_bb1_in, Arg_4: Arg_4 {O(n)}
8: eval_abc_6->eval_abc_bb1_in, Arg_5: Arg_5 {O(n)}
8: eval_abc_6->eval_abc_bb1_in, Arg_6: Arg_6 {O(n)}
8: eval_abc_6->eval_abc_bb1_in, Arg_7: Arg_7 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_0: Arg_0 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_1: Arg_1 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_2: Arg_2 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_3: Arg_3 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_4: Arg_4 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_5: Arg_5 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_6: Arg_6 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_7: Arg_7 {O(n)}
9: eval_abc_bb1_in->eval_abc_bb2_in, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+Arg_0+10 {O(n^3)}
9: eval_abc_bb1_in->eval_abc_bb2_in, Arg_1: 6*Arg_7*Arg_7+8*Arg_7+Arg_1+4 {O(n^2)}
9: eval_abc_bb1_in->eval_abc_bb2_in, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
9: eval_abc_bb1_in->eval_abc_bb2_in, Arg_3: 2*Arg_7+2 {O(n)}
9: eval_abc_bb1_in->eval_abc_bb2_in, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+Arg_4+8 {O(n^3)}
9: eval_abc_bb1_in->eval_abc_bb2_in, Arg_5: 1 {O(1)}
9: eval_abc_bb1_in->eval_abc_bb2_in, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+Arg_6+2 {O(n^6)}
9: eval_abc_bb1_in->eval_abc_bb2_in, Arg_7: Arg_7 {O(n)}
10: eval_abc_bb1_in->eval_abc_bb8_in, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+Arg_0+10 {O(n^3)}
10: eval_abc_bb1_in->eval_abc_bb8_in, Arg_1: 6*Arg_7*Arg_7+8*Arg_7+Arg_1+4 {O(n^2)}
10: eval_abc_bb1_in->eval_abc_bb8_in, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
10: eval_abc_bb1_in->eval_abc_bb8_in, Arg_3: 2*Arg_7+3 {O(n)}
10: eval_abc_bb1_in->eval_abc_bb8_in, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+Arg_4+8 {O(n^3)}
10: eval_abc_bb1_in->eval_abc_bb8_in, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+Arg_5+4 {O(n^2)}
10: eval_abc_bb1_in->eval_abc_bb8_in, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+2*Arg_6+53*Arg_7+2 {O(n^6)}
10: eval_abc_bb1_in->eval_abc_bb8_in, Arg_7: 2*Arg_7 {O(n)}
11: eval_abc_bb2_in->eval_abc_bb3_in, Arg_0: 12*Arg_7*Arg_7*Arg_7+16*Arg_7*Arg_7+24*Arg_7+Arg_0+20 {O(n^3)}
11: eval_abc_bb2_in->eval_abc_bb3_in, Arg_1: 12*Arg_7*Arg_7+16*Arg_7+Arg_1+8 {O(n^2)}
11: eval_abc_bb2_in->eval_abc_bb3_in, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
11: eval_abc_bb2_in->eval_abc_bb3_in, Arg_3: 2*Arg_7+2 {O(n)}
11: eval_abc_bb2_in->eval_abc_bb3_in, Arg_4: 4*Arg_7+4 {O(n)}
11: eval_abc_bb2_in->eval_abc_bb3_in, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
11: eval_abc_bb2_in->eval_abc_bb3_in, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+Arg_6+2 {O(n^6)}
11: eval_abc_bb2_in->eval_abc_bb3_in, Arg_7: Arg_7 {O(n)}
12: eval_abc_bb2_in->eval_abc_bb7_in, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+10 {O(n^3)}
12: eval_abc_bb2_in->eval_abc_bb7_in, Arg_1: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
12: eval_abc_bb2_in->eval_abc_bb7_in, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
12: eval_abc_bb2_in->eval_abc_bb7_in, Arg_3: 2*Arg_7+2 {O(n)}
12: eval_abc_bb2_in->eval_abc_bb7_in, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+8 {O(n^3)}
12: eval_abc_bb2_in->eval_abc_bb7_in, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
12: eval_abc_bb2_in->eval_abc_bb7_in, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+Arg_6+2 {O(n^6)}
12: eval_abc_bb2_in->eval_abc_bb7_in, Arg_7: Arg_7 {O(n)}
13: eval_abc_bb3_in->eval_abc_bb4_in, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+8*Arg_7+4 {O(n^3)}
13: eval_abc_bb3_in->eval_abc_bb4_in, Arg_1: 12*Arg_7*Arg_7+16*Arg_7+Arg_1+8 {O(n^2)}
13: eval_abc_bb3_in->eval_abc_bb4_in, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
13: eval_abc_bb3_in->eval_abc_bb4_in, Arg_3: 2*Arg_7+2 {O(n)}
13: eval_abc_bb3_in->eval_abc_bb4_in, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+8 {O(n^3)}
13: eval_abc_bb3_in->eval_abc_bb4_in, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
13: eval_abc_bb3_in->eval_abc_bb4_in, Arg_6: 1 {O(1)}
13: eval_abc_bb3_in->eval_abc_bb4_in, Arg_7: Arg_7 {O(n)}
14: eval_abc_bb3_in->eval_abc_bb6_in, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+10 {O(n^3)}
14: eval_abc_bb3_in->eval_abc_bb6_in, Arg_1: 24*Arg_7*Arg_7+2*Arg_1+32*Arg_7+16 {O(n^2)}
14: eval_abc_bb3_in->eval_abc_bb6_in, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
14: eval_abc_bb3_in->eval_abc_bb6_in, Arg_3: 2*Arg_7+2 {O(n)}
14: eval_abc_bb3_in->eval_abc_bb6_in, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+8 {O(n^3)}
14: eval_abc_bb3_in->eval_abc_bb6_in, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
14: eval_abc_bb3_in->eval_abc_bb6_in, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+Arg_6+2 {O(n^6)}
14: eval_abc_bb3_in->eval_abc_bb6_in, Arg_7: Arg_7 {O(n)}
15: eval_abc_bb4_in->eval_abc_bb5_in, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+8*Arg_7+4 {O(n^3)}
15: eval_abc_bb4_in->eval_abc_bb5_in, Arg_1: 12*Arg_7*Arg_7+16*Arg_7+Arg_1+8 {O(n^2)}
15: eval_abc_bb4_in->eval_abc_bb5_in, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
15: eval_abc_bb4_in->eval_abc_bb5_in, Arg_3: 2*Arg_7+2 {O(n)}
15: eval_abc_bb4_in->eval_abc_bb5_in, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+8 {O(n^3)}
15: eval_abc_bb4_in->eval_abc_bb5_in, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
15: eval_abc_bb4_in->eval_abc_bb5_in, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+2 {O(n^6)}
15: eval_abc_bb4_in->eval_abc_bb5_in, Arg_7: Arg_7 {O(n)}
16: eval_abc_bb4_in->eval_abc_bb3_in, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+8*Arg_7+4 {O(n^3)}
16: eval_abc_bb4_in->eval_abc_bb3_in, Arg_1: 12*Arg_7*Arg_7+16*Arg_7+Arg_1+8 {O(n^2)}
16: eval_abc_bb4_in->eval_abc_bb3_in, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
16: eval_abc_bb4_in->eval_abc_bb3_in, Arg_3: 2*Arg_7+2 {O(n)}
16: eval_abc_bb4_in->eval_abc_bb3_in, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+8*Arg_7+4 {O(n^3)}
16: eval_abc_bb4_in->eval_abc_bb3_in, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
16: eval_abc_bb4_in->eval_abc_bb3_in, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+2 {O(n^6)}
16: eval_abc_bb4_in->eval_abc_bb3_in, Arg_7: Arg_7 {O(n)}
17: eval_abc_bb5_in->eval_abc_bb4_in, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+8*Arg_7+4 {O(n^3)}
17: eval_abc_bb5_in->eval_abc_bb4_in, Arg_1: 12*Arg_7*Arg_7+16*Arg_7+Arg_1+8 {O(n^2)}
17: eval_abc_bb5_in->eval_abc_bb4_in, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
17: eval_abc_bb5_in->eval_abc_bb4_in, Arg_3: 2*Arg_7+2 {O(n)}
17: eval_abc_bb5_in->eval_abc_bb4_in, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+8 {O(n^3)}
17: eval_abc_bb5_in->eval_abc_bb4_in, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
17: eval_abc_bb5_in->eval_abc_bb4_in, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+2 {O(n^6)}
17: eval_abc_bb5_in->eval_abc_bb4_in, Arg_7: Arg_7 {O(n)}
18: eval_abc_bb6_in->eval_abc_12, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+10 {O(n^3)}
18: eval_abc_bb6_in->eval_abc_12, Arg_1: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
18: eval_abc_bb6_in->eval_abc_12, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
18: eval_abc_bb6_in->eval_abc_12, Arg_3: 2*Arg_7+2 {O(n)}
18: eval_abc_bb6_in->eval_abc_12, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+8 {O(n^3)}
18: eval_abc_bb6_in->eval_abc_12, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
18: eval_abc_bb6_in->eval_abc_12, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+Arg_6+2 {O(n^6)}
18: eval_abc_bb6_in->eval_abc_12, Arg_7: Arg_7 {O(n)}
21: eval_abc_bb7_in->eval_abc_15, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+10 {O(n^3)}
21: eval_abc_bb7_in->eval_abc_15, Arg_1: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
21: eval_abc_bb7_in->eval_abc_15, Arg_2: 2*Arg_7+2 {O(n)}
21: eval_abc_bb7_in->eval_abc_15, Arg_3: 2*Arg_7+2 {O(n)}
21: eval_abc_bb7_in->eval_abc_15, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+8 {O(n^3)}
21: eval_abc_bb7_in->eval_abc_15, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+4 {O(n^2)}
21: eval_abc_bb7_in->eval_abc_15, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+53*Arg_7+Arg_6+2 {O(n^6)}
21: eval_abc_bb7_in->eval_abc_15, Arg_7: Arg_7 {O(n)}
24: eval_abc_bb8_in->eval_abc_stop, Arg_0: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+Arg_0+10 {O(n^3)}
24: eval_abc_bb8_in->eval_abc_stop, Arg_1: 6*Arg_7*Arg_7+8*Arg_7+Arg_1+4 {O(n^2)}
24: eval_abc_bb8_in->eval_abc_stop, Arg_2: 2*Arg_7+Arg_2+2 {O(n)}
24: eval_abc_bb8_in->eval_abc_stop, Arg_3: 2*Arg_7+3 {O(n)}
24: eval_abc_bb8_in->eval_abc_stop, Arg_4: 6*Arg_7*Arg_7*Arg_7+8*Arg_7*Arg_7+12*Arg_7+Arg_4+8 {O(n^3)}
24: eval_abc_bb8_in->eval_abc_stop, Arg_5: 6*Arg_7*Arg_7+8*Arg_7+Arg_5+4 {O(n^2)}
24: eval_abc_bb8_in->eval_abc_stop, Arg_6: 72*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+192*Arg_7*Arg_7*Arg_7*Arg_7*Arg_7+302*Arg_7*Arg_7*Arg_7*Arg_7+310*Arg_7*Arg_7*Arg_7+188*Arg_7*Arg_7+2*Arg_6+53*Arg_7+2 {O(n^6)}
24: eval_abc_bb8_in->eval_abc_stop, Arg_7: 2*Arg_7 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_6: Arg_6 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_7: Arg_7 {O(n)}