Initial Problem
Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9
Temp_Vars: K, L
Locations: f0, f10, f16, f19, f27, f30, f31, f36, f37, f38, f49, f56
Transitions:
6:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f10(1,Arg_1,0,9,1,K,Arg_6,Arg_7,Arg_8,Arg_9)
7:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f10(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_2+1<=Arg_3
33:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f16(Arg_0,Arg_1,0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_3<=Arg_2
8:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_4+1<=0 && Arg_2+1<=Arg_3
9:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:1<=Arg_4 && Arg_2+1<=Arg_3
13:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(Arg_0,0,Arg_2,Arg_3,0,Arg_5,0,Arg_7,Arg_8,Arg_9):|:Arg_2+1<=Arg_3 && Arg_4<=0 && 0<=Arg_4
30:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_4+1<=0 && Arg_3<=Arg_2
31:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:1<=Arg_4 && Arg_3<=Arg_2
32:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f56(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_5,Arg_6,Arg_7,Arg_8,1):|:Arg_3<=Arg_2 && Arg_4<=0 && 0<=Arg_4
10:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(Arg_0,0,Arg_2,Arg_3,1,Arg_5,1,Arg_7,Arg_8,Arg_9):|:K+1<=Arg_3
11:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(Arg_0,0,Arg_2,Arg_3,0,Arg_5,0,Arg_7,Arg_8,Arg_9)
12:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(Arg_0,0,Arg_2,Arg_3,0,Arg_5,0,Arg_7,Arg_8,Arg_9):|:K+1<=0
29:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f16(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_3<=Arg_1
20:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(Arg_0,Arg_2+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_1+1<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2
14:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_1+1<=Arg_3 && Arg_2+1<=Arg_1
15:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:1+Arg_1<=Arg_2 && Arg_1+1<=Arg_3
0:f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_0+1<=0
1:f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:1<=Arg_0
19:f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f36(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,0,Arg_8,Arg_9):|:Arg_0<=0 && 0<=Arg_0
16:f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f36(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,1,Arg_8,Arg_9):|:L+1<=K
17:f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f36(1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,1,Arg_8,Arg_9)
18:f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f36(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,0,Arg_8,Arg_9)
25:f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,0,Arg_9):|:Arg_0<=0 && 0<=Arg_0
2:f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_0+1<=0
3:f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:1<=Arg_0
24:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,0,Arg_9)
4:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:Arg_2+L+1<=Arg_1+K
5:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9):|:1+Arg_1+L<=Arg_2+K
21:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(1,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,1,Arg_9):|:Arg_2+L+1<=Arg_1+K
22:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(1,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,1,Arg_9):|:1+Arg_1+L<=Arg_2+K
23:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f27(0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,0,Arg_9)
26:f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0):|:Arg_0+1<=0
27:f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,0):|:1<=Arg_0
28:f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9) -> f56(0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,1):|:Arg_0<=0 && 0<=Arg_0
Preprocessing
Cut unsatisfiable transition 2: f36->f37
Eliminate variables {Arg_5,Arg_6,Arg_7,Arg_8,Arg_9} that do not contribute to the problem
Found invariant Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && 8+Arg_4<=Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 18<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 9<=Arg_2 && 9<=Arg_0+Arg_2 && 8+Arg_0<=Arg_2 && Arg_0<=1 && 0<=Arg_0 for location f56
Found invariant Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && 8+Arg_4<=Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 18<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 9<=Arg_2 && 9<=Arg_0+Arg_2 && 8+Arg_0<=Arg_2 && Arg_0<=1 && 0<=Arg_0 for location f49
Found invariant Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_2+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && Arg_2<=8 && Arg_2<=8+Arg_0 && Arg_0+Arg_2<=9 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 for location f19
Found invariant Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 for location f31
Found invariant Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 for location f37
Found invariant Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 for location f38
Found invariant Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 0<=Arg_0 for location f36
Found invariant Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 0<=Arg_0 for location f30
Found invariant Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && 1<=Arg_4 && 10<=Arg_3+Arg_4 && Arg_3<=8+Arg_4 && 1<=Arg_2+Arg_4 && Arg_2<=8+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_2+Arg_3<=18 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && Arg_2<=9 && Arg_2<=8+Arg_0 && Arg_0+Arg_2<=10 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 1<=Arg_0 for location f10
Found invariant Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 for location f16
Found invariant Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=10 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=18 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=9+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=9 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=10 && Arg_0<=1 && 0<=Arg_0 for location f27
Cut unsatisfiable transition 89: f30->f31
Cut unsatisfiable transition 103: f49->f56
Problem after Preprocessing
Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars: K, L
Locations: f0, f10, f16, f19, f27, f30, f31, f36, f37, f38, f49, f56
Transitions:
73:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f10(1,Arg_1,0,9,1)
74:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f10(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && 1<=Arg_4 && 10<=Arg_3+Arg_4 && Arg_3<=8+Arg_4 && 1<=Arg_2+Arg_4 && Arg_2<=8+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_2+Arg_3<=18 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && Arg_2<=9 && Arg_2<=8+Arg_0 && Arg_0+Arg_2<=10 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2+1<=Arg_3
75:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f16(Arg_0,Arg_1,0,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && 1<=Arg_4 && 10<=Arg_3+Arg_4 && Arg_3<=8+Arg_4 && 1<=Arg_2+Arg_4 && Arg_2<=8+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_2+Arg_3<=18 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && Arg_2<=9 && Arg_2<=8+Arg_0 && Arg_0+Arg_2<=10 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_3<=Arg_2
76:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && Arg_4+1<=0 && Arg_2+1<=Arg_3
77:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_4 && Arg_2+1<=Arg_3
78:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(Arg_0,0,Arg_2,Arg_3,0):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_4<=0 && 0<=Arg_4
79:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && Arg_4+1<=0 && Arg_3<=Arg_2
80:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_4 && Arg_3<=Arg_2
81:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f56(Arg_0,Arg_1,Arg_2,Arg_3,0):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && Arg_3<=Arg_2 && Arg_4<=0 && 0<=Arg_4
82:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(Arg_0,0,Arg_2,Arg_3,1):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_2+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && Arg_2<=8 && Arg_2<=8+Arg_0 && Arg_0+Arg_2<=9 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && K+1<=Arg_3
83:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(Arg_0,0,Arg_2,Arg_3,0):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_2+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && Arg_2<=8 && Arg_2<=8+Arg_0 && Arg_0+Arg_2<=9 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0
84:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(Arg_0,0,Arg_2,Arg_3,0):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_2+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && Arg_2<=8 && Arg_2<=8+Arg_0 && Arg_0+Arg_2<=9 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && K+1<=0
88:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f16(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=10 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=18 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=9+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=9 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=10 && Arg_0<=1 && 0<=Arg_0 && Arg_3<=Arg_1
87:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(Arg_0,Arg_2+1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=10 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=18 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=9+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=9 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=10 && Arg_0<=1 && 0<=Arg_0 && Arg_1+1<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2
85:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=10 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=18 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=9+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=9 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=10 && Arg_0<=1 && 0<=Arg_0 && Arg_1+1<=Arg_3 && Arg_2+1<=Arg_1
86:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=10 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=18 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=9+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=9 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=10 && Arg_0<=1 && 0<=Arg_0 && 1+Arg_1<=Arg_2 && Arg_1+1<=Arg_3
90:f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_0
91:f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f36(0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 0<=Arg_0 && Arg_0<=0 && 0<=Arg_0
92:f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f36(1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 && L+1<=K
93:f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f36(1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0
94:f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f36(0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0
96:f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 0<=Arg_0 && Arg_0<=0 && 0<=Arg_0
95:f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_0
99:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0
97:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 && Arg_2+L+1<=Arg_1+K
98:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_1+L<=Arg_2+K
100:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(1,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 && Arg_2+L+1<=Arg_1+K
101:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(1,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_1+L<=Arg_2+K
102:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0
104:f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f56(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && 8+Arg_4<=Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 18<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 9<=Arg_2 && 9<=Arg_0+Arg_2 && 8+Arg_0<=Arg_2 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_0
105:f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f56(0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && 8+Arg_4<=Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 18<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 9<=Arg_2 && 9<=Arg_0+Arg_2 && 8+Arg_0<=Arg_2 && Arg_0<=1 && 0<=Arg_0 && Arg_0<=0 && 0<=Arg_0
MPRF for transition 74:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f10(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=10 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && 1<=Arg_4 && 10<=Arg_3+Arg_4 && Arg_3<=8+Arg_4 && 1<=Arg_2+Arg_4 && Arg_2<=8+Arg_4 && 2<=Arg_0+Arg_4 && Arg_0<=Arg_4 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_2+Arg_3<=18 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && Arg_2<=9 && Arg_2<=8+Arg_0 && Arg_0+Arg_2<=10 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 1<=Arg_0 && Arg_2+1<=Arg_3 of depth 1:
new bound:
10 {O(1)}
MPRF:
f10 [10-Arg_2 ]
MPRF for transition 76:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && Arg_4+1<=0 && Arg_2+1<=Arg_3 of depth 1:
new bound:
9 {O(1)}
MPRF:
f19 [8-Arg_2 ]
f16 [Arg_3-Arg_2 ]
f30 [8-Arg_2 ]
f31 [8*Arg_0-Arg_2 ]
f36 [17-Arg_2-Arg_3 ]
f37 [17*Arg_0-Arg_2-Arg_3 ]
f38 [17-Arg_2-Arg_3 ]
f27 [8-Arg_2 ]
MPRF for transition 77:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_4 && Arg_2+1<=Arg_3 of depth 1:
new bound:
9 {O(1)}
MPRF:
f19 [8-Arg_2 ]
f16 [Arg_3-Arg_2 ]
f30 [8-Arg_2 ]
f31 [8*Arg_0-Arg_2 ]
f36 [17-Arg_2-Arg_3 ]
f37 [17*Arg_0-Arg_2-Arg_3 ]
f38 [17*Arg_0-Arg_2-Arg_3 ]
f27 [8-Arg_2 ]
MPRF for transition 78:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(Arg_0,0,Arg_2,Arg_3,0):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && Arg_2+1<=Arg_3 && Arg_4<=0 && 0<=Arg_4 of depth 1:
new bound:
79 {O(1)}
MPRF:
f19 [Arg_0+56-7*Arg_2 ]
f16 [8*Arg_3-8*Arg_2-7 ]
f30 [57-8*Arg_2 ]
f31 [6*Arg_3+3-8*Arg_2 ]
f36 [57-8*Arg_2 ]
f37 [57*Arg_0-8*Arg_2 ]
f38 [57*Arg_0-8*Arg_2 ]
f27 [Arg_3+48-8*Arg_2 ]
MPRF for transition 82:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(Arg_0,0,Arg_2,Arg_3,1):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_2+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && Arg_2<=8 && Arg_2<=8+Arg_0 && Arg_0+Arg_2<=9 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && K+1<=Arg_3 of depth 1:
new bound:
9 {O(1)}
MPRF:
f19 [9-Arg_2 ]
f16 [9-Arg_2 ]
f30 [8-Arg_2 ]
f31 [8*Arg_0-Arg_2 ]
f36 [Arg_3-Arg_2-1 ]
f37 [Arg_3-Arg_2-1 ]
f38 [Arg_3-Arg_2-1 ]
f27 [8-Arg_2 ]
MPRF for transition 83:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(Arg_0,0,Arg_2,Arg_3,0):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_2+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && Arg_2<=8 && Arg_2<=8+Arg_0 && Arg_0+Arg_2<=9 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 of depth 1:
new bound:
9 {O(1)}
MPRF:
f19 [9-Arg_2 ]
f16 [9-Arg_2 ]
f30 [8-Arg_2 ]
f31 [8*Arg_0-Arg_2 ]
f36 [Arg_3-Arg_2-1 ]
f37 [Arg_3-Arg_2-1 ]
f38 [Arg_3-Arg_2-1 ]
f27 [8-Arg_2 ]
MPRF for transition 84:f19(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(Arg_0,0,Arg_2,Arg_3,0):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_2+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_2+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_2<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && Arg_2<=8 && Arg_2<=8+Arg_0 && Arg_0+Arg_2<=9 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_0<=1 && 0<=Arg_0 && K+1<=0 of depth 1:
new bound:
73 {O(1)}
MPRF:
f19 [73-9*Arg_2 ]
f16 [73-9*Arg_2 ]
f30 [72-9*Arg_2 ]
f31 [72*Arg_0-9*Arg_2 ]
f36 [8*Arg_3-9*Arg_2 ]
f37 [8*Arg_3-9*Arg_2 ]
f38 [8*Arg_3-9*Arg_2 ]
f27 [72-9*Arg_2 ]
MPRF for transition 85:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=10 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=18 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=9+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=9 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=10 && Arg_0<=1 && 0<=Arg_0 && Arg_1+1<=Arg_3 && Arg_2+1<=Arg_1 of depth 1:
new bound:
5841 {O(1)}
MPRF:
f19 [5841-648*Arg_2 ]
f16 [Arg_3+5832-648*Arg_2 ]
f30 [5769-72*Arg_1-648*Arg_2 ]
f31 [5769*Arg_0-72*Arg_1-648*Arg_2 ]
f36 [641*Arg_3-72*Arg_1-648*Arg_2 ]
f37 [641*Arg_3-72*Arg_1-648*Arg_2 ]
f38 [641*Arg_3-72*Arg_1-648*Arg_2 ]
f27 [5841-72*Arg_1-648*Arg_2 ]
MPRF for transition 87:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(Arg_0,Arg_2+1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=10 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=18 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=9+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=9 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=10 && Arg_0<=1 && 0<=Arg_0 && Arg_1+1<=Arg_3 && Arg_2<=Arg_1 && Arg_1<=Arg_2 of depth 1:
new bound:
819 {O(1)}
MPRF:
f19 [Arg_3+810-81*Arg_2 ]
f16 [91*Arg_3-81*Arg_2 ]
f30 [810-9*Arg_1-81*Arg_2 ]
f31 [810*Arg_0-9*Arg_1-81*Arg_2 ]
f36 [90*Arg_3-9*Arg_1-81*Arg_2 ]
f37 [90*Arg_3-9*Arg_1-81*Arg_2 ]
f38 [90*Arg_3-9*Arg_1-81*Arg_2 ]
f27 [819-9*Arg_1-81*Arg_2 ]
MPRF for transition 94:f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f36(0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 of depth 1:
new bound:
9 {O(1)}
MPRF:
f19 [9*Arg_0 ]
f16 [9*Arg_0 ]
f30 [9*Arg_0 ]
f31 [9 ]
f36 [9*Arg_0 ]
f37 [9*Arg_0 ]
f38 [Arg_3 ]
f27 [9*Arg_0 ]
MPRF for transition 99:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 of depth 1:
new bound:
1 {O(1)}
MPRF:
f19 [Arg_0 ]
f16 [Arg_0 ]
f30 [Arg_0 ]
f31 [10-Arg_3 ]
f36 [Arg_0 ]
f37 [1 ]
f38 [Arg_0 ]
f27 [Arg_0 ]
MPRF for transition 102:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 of depth 1:
new bound:
1 {O(1)}
MPRF:
f19 [Arg_0 ]
f16 [Arg_0 ]
f30 [Arg_0 ]
f31 [Arg_0 ]
f36 [Arg_0 ]
f37 [10-Arg_3 ]
f38 [1 ]
f27 [Arg_0 ]
MPRF for transition 86:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=10 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=18 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=9+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=9 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=10 && Arg_0<=1 && 0<=Arg_0 && 1+Arg_1<=Arg_2 && Arg_1+1<=Arg_3 of depth 1:
new bound:
8*Arg_1+12420 {O(n)}
MPRF:
f19 [Arg_3+1-8*Arg_1 ]
f16 [10-8*Arg_1 ]
f30 [65-8*Arg_1 ]
f31 [Arg_3+56-8*Arg_1 ]
f36 [65-8*Arg_1 ]
f37 [65-8*Arg_1 ]
f38 [65-8*Arg_1 ]
f27 [73-8*Arg_1 ]
MPRF for transition 88:f27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f16(Arg_0,Arg_1,Arg_2+1,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=10 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=18 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=9+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=9 && Arg_1<=9+Arg_0 && Arg_0+Arg_1<=10 && Arg_0<=1 && 0<=Arg_0 && Arg_3<=Arg_1 of depth 1:
new bound:
1590 {O(1)}
MPRF:
f19 [4*Arg_3-4*Arg_2-24 ]
f16 [4*Arg_3-4*Arg_2-24 ]
f30 [9 ]
f31 [9*Arg_0 ]
f36 [Arg_3 ]
f37 [Arg_3 ]
f38 [Arg_3 ]
f27 [9 ]
MPRF for transition 90:f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_0 of depth 1:
new bound:
8*Arg_1+12134 {O(n)}
MPRF:
f19 [64-8*Arg_1 ]
f16 [64-8*Arg_1 ]
f30 [71-8*Arg_1 ]
f31 [63-8*Arg_1 ]
f36 [63-8*Arg_1 ]
f37 [7*Arg_3-8*Arg_1 ]
f38 [7*Arg_3-8*Arg_1 ]
f27 [71-8*Arg_1 ]
MPRF for transition 91:f30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f36(0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 0<=Arg_0 && Arg_0<=0 && 0<=Arg_0 of depth 1:
new bound:
9*Arg_1+11059 {O(n)}
MPRF:
f19 [9-9*Arg_1 ]
f16 [Arg_3-9*Arg_1 ]
f30 [65-8*Arg_1 ]
f31 [57*Arg_0-8*Arg_1 ]
f36 [57-8*Arg_1 ]
f37 [57-8*Arg_1 ]
f38 [66-8*Arg_1-Arg_3 ]
f27 [65-8*Arg_1 ]
MPRF for transition 92:f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f36(1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 && L+1<=K of depth 1:
new bound:
17*Arg_1+11203 {O(n)}
MPRF:
f19 [9-17*Arg_1 ]
f16 [9*Arg_3-17*Arg_1-72 ]
f30 [65-8*Arg_1 ]
f31 [65-8*Arg_1 ]
f36 [57-8*Arg_1 ]
f37 [7*Arg_3-8*Arg_1-6 ]
f38 [57-8*Arg_1 ]
f27 [65-8*Arg_1 ]
MPRF for transition 93:f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f36(1,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 of depth 1:
new bound:
9*Arg_1+14119 {O(n)}
MPRF:
f19 [9-9*Arg_1 ]
f16 [9-9*Arg_1 ]
f30 [8*Arg_3-8*Arg_1-7 ]
f31 [65-8*Arg_1 ]
f36 [57-8*Arg_1 ]
f37 [Arg_3+48-8*Arg_1 ]
f38 [72*Arg_0+57-8*Arg_1-8*Arg_3 ]
f27 [74-8*Arg_1-Arg_3 ]
MPRF for transition 95:f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 0<=Arg_0 && 1<=Arg_0 of depth 1:
new bound:
9*Arg_1+14119 {O(n)}
MPRF:
f19 [9-9*Arg_1 ]
f16 [9-9*Arg_1 ]
f30 [74-8*Arg_1-Arg_3 ]
f31 [74-8*Arg_1-Arg_3 ]
f36 [65-8*Arg_1 ]
f37 [57-8*Arg_1 ]
f38 [81*Arg_0-8*Arg_1-24 ]
f27 [74-8*Arg_1-Arg_3 ]
MPRF for transition 96:f36(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(0,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=1+Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=9+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 9<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 0<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=8+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 0<=Arg_0 && Arg_0<=0 && 0<=Arg_0 of depth 1:
new bound:
9*Arg_1+11059 {O(n)}
MPRF:
f19 [9-9*Arg_1 ]
f16 [Arg_3-9*Arg_1 ]
f30 [65-8*Arg_1 ]
f31 [72*Arg_0-8*Arg_1-7 ]
f36 [65-8*Arg_1 ]
f37 [57-8*Arg_1 ]
f38 [66-8*Arg_1-Arg_3 ]
f27 [65-8*Arg_1 ]
MPRF for transition 97:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 && Arg_2+L+1<=Arg_1+K of depth 1:
new bound:
15*Arg_1+32589 {O(n)}
MPRF:
f19 [64*Arg_0-15*Arg_1-55 ]
f16 [64*Arg_0-15*Arg_1-55 ]
f30 [64*Arg_0+64-8*Arg_1-7*Arg_3 ]
f31 [65-8*Arg_1 ]
f36 [64*Arg_0+1-8*Arg_1 ]
f37 [64*Arg_0+1-8*Arg_1 ]
f38 [64*Arg_0-8*Arg_1-7 ]
f27 [64*Arg_0+64-8*Arg_1-7*Arg_3 ]
MPRF for transition 98:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_1+L<=Arg_2+K of depth 1:
new bound:
1530 {O(1)}
MPRF:
f19 [0 ]
f16 [0 ]
f30 [Arg_3-Arg_1 ]
f31 [9*Arg_0-Arg_1 ]
f36 [9-Arg_1 ]
f37 [9-Arg_1 ]
f38 [8-Arg_1 ]
f27 [Arg_3-Arg_1 ]
MPRF for transition 100:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(1,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 && Arg_2+L+1<=Arg_1+K of depth 1:
new bound:
8*Arg_1+12312 {O(n)}
MPRF:
f19 [72*Arg_0-8*Arg_1 ]
f16 [72*Arg_0-8*Arg_1 ]
f30 [72*Arg_0-8*Arg_1 ]
f31 [72-8*Arg_1 ]
f36 [72*Arg_0-8*Arg_1 ]
f37 [72*Arg_0-8*Arg_1 ]
f38 [72-8*Arg_1 ]
f27 [72*Arg_0-8*Arg_1 ]
MPRF for transition 101:f38(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> f27(1,Arg_1+1,Arg_2,Arg_3,Arg_4):|:Arg_4<=1 && 8+Arg_4<=Arg_3 && Arg_3+Arg_4<=10 && Arg_4<=1+Arg_2 && Arg_1+Arg_4<=9 && Arg_4<=Arg_0 && Arg_0+Arg_4<=2 && Arg_3<=9 && Arg_3<=9+Arg_2 && Arg_1+Arg_3<=17 && Arg_3<=8+Arg_0 && Arg_0+Arg_3<=10 && 9<=Arg_3 && 9<=Arg_2+Arg_3 && 1+Arg_1<=Arg_3 && 10<=Arg_0+Arg_3 && 8+Arg_0<=Arg_3 && 0<=Arg_2 && Arg_1<=8+Arg_2 && 1<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=8 && Arg_1<=7+Arg_0 && Arg_0+Arg_1<=9 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_1+L<=Arg_2+K of depth 1:
new bound:
8*Arg_1+12312 {O(n)}
MPRF:
f19 [72*Arg_0-8*Arg_1 ]
f16 [72*Arg_0-8*Arg_1 ]
f30 [72*Arg_0-8*Arg_1 ]
f31 [Arg_0+71-8*Arg_1 ]
f36 [72*Arg_0-8*Arg_1 ]
f37 [72*Arg_0-8*Arg_1 ]
f38 [72-8*Arg_1 ]
f27 [72*Arg_0-8*Arg_1 ]
All Bounds
Timebounds
Overall timebound:100*Arg_1+153322 {O(n)}
73: f0->f10: 1 {O(1)}
74: f10->f10: 10 {O(1)}
75: f10->f16: 1 {O(1)}
76: f16->f19: 9 {O(1)}
77: f16->f19: 9 {O(1)}
78: f16->f27: 79 {O(1)}
79: f16->f49: 1 {O(1)}
80: f16->f49: 1 {O(1)}
81: f16->f56: 1 {O(1)}
82: f19->f27: 9 {O(1)}
83: f19->f27: 9 {O(1)}
84: f19->f27: 73 {O(1)}
85: f27->f30: 5841 {O(1)}
86: f27->f30: 8*Arg_1+12420 {O(n)}
87: f27->f27: 819 {O(1)}
88: f27->f16: 1590 {O(1)}
90: f30->f31: 8*Arg_1+12134 {O(n)}
91: f30->f36: 9*Arg_1+11059 {O(n)}
92: f31->f36: 17*Arg_1+11203 {O(n)}
93: f31->f36: 9*Arg_1+14119 {O(n)}
94: f31->f36: 9 {O(1)}
95: f36->f37: 9*Arg_1+14119 {O(n)}
96: f36->f27: 9*Arg_1+11059 {O(n)}
97: f37->f38: 15*Arg_1+32589 {O(n)}
98: f37->f38: 1530 {O(1)}
99: f37->f27: 1 {O(1)}
100: f38->f27: 8*Arg_1+12312 {O(n)}
101: f38->f27: 8*Arg_1+12312 {O(n)}
102: f38->f27: 1 {O(1)}
104: f49->f56: 1 {O(1)}
105: f49->f56: 1 {O(1)}
Costbounds
Overall costbound: 100*Arg_1+153322 {O(n)}
73: f0->f10: 1 {O(1)}
74: f10->f10: 10 {O(1)}
75: f10->f16: 1 {O(1)}
76: f16->f19: 9 {O(1)}
77: f16->f19: 9 {O(1)}
78: f16->f27: 79 {O(1)}
79: f16->f49: 1 {O(1)}
80: f16->f49: 1 {O(1)}
81: f16->f56: 1 {O(1)}
82: f19->f27: 9 {O(1)}
83: f19->f27: 9 {O(1)}
84: f19->f27: 73 {O(1)}
85: f27->f30: 5841 {O(1)}
86: f27->f30: 8*Arg_1+12420 {O(n)}
87: f27->f27: 819 {O(1)}
88: f27->f16: 1590 {O(1)}
90: f30->f31: 8*Arg_1+12134 {O(n)}
91: f30->f36: 9*Arg_1+11059 {O(n)}
92: f31->f36: 17*Arg_1+11203 {O(n)}
93: f31->f36: 9*Arg_1+14119 {O(n)}
94: f31->f36: 9 {O(1)}
95: f36->f37: 9*Arg_1+14119 {O(n)}
96: f36->f27: 9*Arg_1+11059 {O(n)}
97: f37->f38: 15*Arg_1+32589 {O(n)}
98: f37->f38: 1530 {O(1)}
99: f37->f27: 1 {O(1)}
100: f38->f27: 8*Arg_1+12312 {O(n)}
101: f38->f27: 8*Arg_1+12312 {O(n)}
102: f38->f27: 1 {O(1)}
104: f49->f56: 1 {O(1)}
105: f49->f56: 1 {O(1)}
Sizebounds
73: f0->f10, Arg_0: 1 {O(1)}
73: f0->f10, Arg_1: Arg_1 {O(n)}
73: f0->f10, Arg_2: 0 {O(1)}
73: f0->f10, Arg_3: 9 {O(1)}
73: f0->f10, Arg_4: 1 {O(1)}
74: f10->f10, Arg_0: 1 {O(1)}
74: f10->f10, Arg_1: Arg_1 {O(n)}
74: f10->f10, Arg_2: 9 {O(1)}
74: f10->f10, Arg_3: 9 {O(1)}
74: f10->f10, Arg_4: 1 {O(1)}
75: f10->f16, Arg_0: 1 {O(1)}
75: f10->f16, Arg_1: Arg_1 {O(n)}
75: f10->f16, Arg_2: 0 {O(1)}
75: f10->f16, Arg_3: 9 {O(1)}
75: f10->f16, Arg_4: 1 {O(1)}
76: f16->f19, Arg_0: 1 {O(1)}
76: f16->f19, Arg_1: 9 {O(1)}
76: f16->f19, Arg_2: 8 {O(1)}
76: f16->f19, Arg_3: 9 {O(1)}
76: f16->f19, Arg_4: 12 {O(1)}
77: f16->f19, Arg_0: 1 {O(1)}
77: f16->f19, Arg_1: Arg_1+9 {O(n)}
77: f16->f19, Arg_2: 8 {O(1)}
77: f16->f19, Arg_3: 9 {O(1)}
77: f16->f19, Arg_4: 1 {O(1)}
78: f16->f27, Arg_0: 1 {O(1)}
78: f16->f27, Arg_1: 0 {O(1)}
78: f16->f27, Arg_2: 8 {O(1)}
78: f16->f27, Arg_3: 9 {O(1)}
78: f16->f27, Arg_4: 0 {O(1)}
79: f16->f49, Arg_0: 1 {O(1)}
79: f16->f49, Arg_1: 9 {O(1)}
79: f16->f49, Arg_2: 244 {O(1)}
79: f16->f49, Arg_3: 9 {O(1)}
79: f16->f49, Arg_4: 12 {O(1)}
80: f16->f49, Arg_0: 1 {O(1)}
80: f16->f49, Arg_1: 9 {O(1)}
80: f16->f49, Arg_2: 244 {O(1)}
80: f16->f49, Arg_3: 9 {O(1)}
80: f16->f49, Arg_4: 1 {O(1)}
81: f16->f56, Arg_0: 1 {O(1)}
81: f16->f56, Arg_1: 9 {O(1)}
81: f16->f56, Arg_2: 244 {O(1)}
81: f16->f56, Arg_3: 9 {O(1)}
81: f16->f56, Arg_4: 0 {O(1)}
82: f19->f27, Arg_0: 1 {O(1)}
82: f19->f27, Arg_1: 0 {O(1)}
82: f19->f27, Arg_2: 8 {O(1)}
82: f19->f27, Arg_3: 9 {O(1)}
82: f19->f27, Arg_4: 1 {O(1)}
83: f19->f27, Arg_0: 1 {O(1)}
83: f19->f27, Arg_1: 0 {O(1)}
83: f19->f27, Arg_2: 8 {O(1)}
83: f19->f27, Arg_3: 9 {O(1)}
83: f19->f27, Arg_4: 0 {O(1)}
84: f19->f27, Arg_0: 1 {O(1)}
84: f19->f27, Arg_1: 0 {O(1)}
84: f19->f27, Arg_2: 8 {O(1)}
84: f19->f27, Arg_3: 9 {O(1)}
84: f19->f27, Arg_4: 0 {O(1)}
85: f27->f30, Arg_0: 1 {O(1)}
85: f27->f30, Arg_1: 8 {O(1)}
85: f27->f30, Arg_2: 7 {O(1)}
85: f27->f30, Arg_3: 9 {O(1)}
85: f27->f30, Arg_4: 2 {O(1)}
86: f27->f30, Arg_0: 1 {O(1)}
86: f27->f30, Arg_1: 25*Arg_1+35701 {O(n)}
86: f27->f30, Arg_2: 46 {O(1)}
86: f27->f30, Arg_3: 9 {O(1)}
86: f27->f30, Arg_4: 2 {O(1)}
87: f27->f27, Arg_0: 1 {O(1)}
87: f27->f27, Arg_1: 9 {O(1)}
87: f27->f27, Arg_2: 8 {O(1)}
87: f27->f27, Arg_3: 9 {O(1)}
87: f27->f27, Arg_4: 2 {O(1)}
88: f27->f16, Arg_0: 1 {O(1)}
88: f27->f16, Arg_1: 9 {O(1)}
88: f27->f16, Arg_2: 244 {O(1)}
88: f27->f16, Arg_3: 9 {O(1)}
88: f27->f16, Arg_4: 12 {O(1)}
90: f30->f31, Arg_0: 1 {O(1)}
90: f30->f31, Arg_1: 25*Arg_1+35701 {O(n)}
90: f30->f31, Arg_2: 46 {O(1)}
90: f30->f31, Arg_3: 9 {O(1)}
90: f30->f31, Arg_4: 2 {O(1)}
91: f30->f36, Arg_0: 0 {O(1)}
91: f30->f36, Arg_1: 25*Arg_1+35701 {O(n)}
91: f30->f36, Arg_2: 46 {O(1)}
91: f30->f36, Arg_3: 9 {O(1)}
91: f30->f36, Arg_4: 2 {O(1)}
92: f31->f36, Arg_0: 1 {O(1)}
92: f31->f36, Arg_1: 25*Arg_1+35701 {O(n)}
92: f31->f36, Arg_2: 46 {O(1)}
92: f31->f36, Arg_3: 9 {O(1)}
92: f31->f36, Arg_4: 2 {O(1)}
93: f31->f36, Arg_0: 1 {O(1)}
93: f31->f36, Arg_1: 25*Arg_1+35701 {O(n)}
93: f31->f36, Arg_2: 46 {O(1)}
93: f31->f36, Arg_3: 9 {O(1)}
93: f31->f36, Arg_4: 2 {O(1)}
94: f31->f36, Arg_0: 0 {O(1)}
94: f31->f36, Arg_1: 25*Arg_1+35701 {O(n)}
94: f31->f36, Arg_2: 46 {O(1)}
94: f31->f36, Arg_3: 9 {O(1)}
94: f31->f36, Arg_4: 2 {O(1)}
95: f36->f37, Arg_0: 1 {O(1)}
95: f36->f37, Arg_1: 25*Arg_1+35701 {O(n)}
95: f36->f37, Arg_2: 46 {O(1)}
95: f36->f37, Arg_3: 9 {O(1)}
95: f36->f37, Arg_4: 2 {O(1)}
96: f36->f27, Arg_0: 0 {O(1)}
96: f36->f27, Arg_1: 25*Arg_1+35701 {O(n)}
96: f36->f27, Arg_2: 46 {O(1)}
96: f36->f27, Arg_3: 9 {O(1)}
96: f36->f27, Arg_4: 2 {O(1)}
97: f37->f38, Arg_0: 1 {O(1)}
97: f37->f38, Arg_1: 25*Arg_1+35701 {O(n)}
97: f37->f38, Arg_2: 46 {O(1)}
97: f37->f38, Arg_3: 9 {O(1)}
97: f37->f38, Arg_4: 2 {O(1)}
98: f37->f38, Arg_0: 1 {O(1)}
98: f37->f38, Arg_1: 25*Arg_1+35701 {O(n)}
98: f37->f38, Arg_2: 46 {O(1)}
98: f37->f38, Arg_3: 9 {O(1)}
98: f37->f38, Arg_4: 2 {O(1)}
99: f37->f27, Arg_0: 0 {O(1)}
99: f37->f27, Arg_1: 25*Arg_1+35701 {O(n)}
99: f37->f27, Arg_2: 46 {O(1)}
99: f37->f27, Arg_3: 9 {O(1)}
99: f37->f27, Arg_4: 2 {O(1)}
100: f38->f27, Arg_0: 1 {O(1)}
100: f38->f27, Arg_1: 25*Arg_1+35701 {O(n)}
100: f38->f27, Arg_2: 46 {O(1)}
100: f38->f27, Arg_3: 9 {O(1)}
100: f38->f27, Arg_4: 2 {O(1)}
101: f38->f27, Arg_0: 1 {O(1)}
101: f38->f27, Arg_1: 25*Arg_1+35701 {O(n)}
101: f38->f27, Arg_2: 46 {O(1)}
101: f38->f27, Arg_3: 9 {O(1)}
101: f38->f27, Arg_4: 2 {O(1)}
102: f38->f27, Arg_0: 0 {O(1)}
102: f38->f27, Arg_1: 25*Arg_1+35701 {O(n)}
102: f38->f27, Arg_2: 46 {O(1)}
102: f38->f27, Arg_3: 9 {O(1)}
102: f38->f27, Arg_4: 2 {O(1)}
104: f49->f56, Arg_0: 1 {O(1)}
104: f49->f56, Arg_1: 18 {O(1)}
104: f49->f56, Arg_2: 488 {O(1)}
104: f49->f56, Arg_3: 9 {O(1)}
104: f49->f56, Arg_4: 13 {O(1)}
105: f49->f56, Arg_0: 0 {O(1)}
105: f49->f56, Arg_1: 18 {O(1)}
105: f49->f56, Arg_2: 488 {O(1)}
105: f49->f56, Arg_3: 9 {O(1)}
105: f49->f56, Arg_4: 13 {O(1)}