Initial Problem
Start: f17
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24, Arg_25, Arg_26, Arg_27, Arg_28, Arg_29, Arg_30, Arg_31, Arg_32, Arg_33, Arg_34, Arg_35, Arg_36, Arg_37, Arg_38, Arg_39
Temp_Vars: A2, B2, C2, D2, E2, F2, G2, H2, I2, O1, P1, Q1, R1, S1, T1, U1, V1, W1, X1, Y1, Z1
Locations: f13, f16, f17, f18, f6, f7, f9
Transitions:
1:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,S1,R1,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_14+1<=Q1 && R1+1<=Q1 && 0<=Arg_16 && Q1+1<=P1 && 2<=O1
2:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,S1,R1,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_14+1<=Q1 && R1+1<=Q1 && 0<=Arg_16 && P1+1<=Q1 && 2<=O1
3:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,S1,R1,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_14+1<=Q1 && Q1+1<=R1 && 0<=Arg_16 && Q1+1<=P1 && 2<=O1
4:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,S1,R1,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_14+1<=Q1 && Q1+1<=R1 && 0<=Arg_16 && P1+1<=Q1 && 2<=O1
5:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,S1,R1,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Q1+1<=Arg_14 && R1+1<=Q1 && 0<=Arg_16 && Q1+1<=P1 && 2<=O1
6:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,S1,R1,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Q1+1<=Arg_14 && R1+1<=Q1 && 0<=Arg_16 && P1+1<=Q1 && 2<=O1
7:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,S1,R1,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Q1+1<=Arg_14 && Q1+1<=R1 && 0<=Arg_16 && Q1+1<=P1 && 2<=O1
8:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,S1,R1,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Q1+1<=Arg_14 && Q1+1<=R1 && 0<=Arg_16 && P1+1<=Q1 && 2<=O1
46:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,Arg_24,Arg_2,Arg_24,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,R1,Arg_15,Arg_30-1,Arg_17,O1,Arg_19,Arg_20,Arg_21,S1,Arg_23,Arg_24,Arg_25,P1,0,Arg_28,Arg_29,1+Arg_7,0,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_24,Arg_7,Arg_20):|:2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 1<=Arg_30 && Arg_20+1<=Arg_24 && Arg_16+1<=Arg_30 && Arg_30<=Arg_16+1 && Arg_31<=0 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
47:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,Arg_24,Arg_2,Arg_24,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,R1,Arg_15,Arg_30-1,Arg_17,O1,Arg_19,Arg_20,Arg_21,S1,Arg_23,Arg_24,Arg_25,P1,0,Arg_28,Arg_29,1+Arg_7,0,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_24,Arg_7,Arg_20):|:2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 1<=Arg_30 && Arg_16+1<=Arg_30 && Arg_30<=Arg_16+1 && Arg_31<=0 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
48:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,Arg_24,Arg_2,Arg_24,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,R1,Arg_15,Arg_30-1,Arg_17,O1,Arg_19,Arg_20,Arg_21,S1,Arg_23,Arg_24,Arg_25,P1,0,Arg_28,Arg_29,1+Arg_7,0,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_24,Arg_7,Arg_20):|:2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 1<=Arg_30 && Arg_16+1<=Arg_30 && Arg_30<=Arg_16+1 && Arg_31<=0 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
49:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,Arg_24,Arg_2,Arg_24,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,R1,Arg_15,Arg_30-1,Arg_17,O1,Arg_19,Arg_20,Arg_21,S1,Arg_23,Arg_24,Arg_25,P1,0,Arg_28,Arg_29,1+Arg_7,0,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_24,Arg_7,Arg_20):|:2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 1<=Arg_30 && Arg_24+1<=Arg_20 && Arg_16+1<=Arg_30 && Arg_30<=Arg_16+1 && Arg_31<=0 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
9:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,Arg_28,Arg_29,1+Arg_30,Arg_31-1,S1,Arg_14,R1,1+Arg_30,Arg_31-1,Arg_37,Arg_38,Arg_39):|:T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
10:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,Arg_28,Arg_29,1+Arg_30,Arg_31-1,S1,Arg_14,R1,1+Arg_30,Arg_31-1,Arg_37,Arg_38,Arg_39):|:T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
11:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,Arg_28,Arg_29,1+Arg_30,Arg_31-1,S1,Arg_14,R1,1+Arg_30,Arg_31-1,Arg_37,Arg_38,Arg_39):|:T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
12:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,Arg_28,Arg_29,1+Arg_30,Arg_31-1,S1,Arg_14,R1,1+Arg_30,Arg_31-1,Arg_37,Arg_38,Arg_39):|:T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
13:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,Arg_28,Arg_29,1+Arg_30,Arg_31-1,S1,Arg_14,R1,1+Arg_30,Arg_31-1,Arg_37,Arg_38,Arg_39):|:Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
14:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,Arg_28,Arg_29,1+Arg_30,Arg_31-1,S1,Arg_14,R1,1+Arg_30,Arg_31-1,Arg_37,Arg_38,Arg_39):|:Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
15:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,Arg_28,Arg_29,1+Arg_30,Arg_31-1,S1,Arg_14,R1,1+Arg_30,Arg_31-1,Arg_37,Arg_38,Arg_39):|:Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
16:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_22,Arg_21,Arg_22,Arg_23,P1,Arg_25,P1,Arg_27,Arg_28,Arg_29,1+Arg_30,Arg_31-1,S1,Arg_14,R1,1+Arg_30,Arg_31-1,Arg_37,Arg_38,Arg_39):|:Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
50:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,Arg_24,Arg_2,Arg_24,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,R1,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_20,Arg_21,S1,Arg_23,Arg_24,Arg_25,P1,0,Arg_28,Arg_29,1+Arg_7-Arg_31,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_24,Arg_7-Arg_31,Arg_20):|:2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_20+1<=Arg_24 && Arg_22<=Arg_14 && Arg_14<=Arg_22
51:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,Arg_24,Arg_2,Arg_24,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,R1,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_20,Arg_21,S1,Arg_23,Arg_24,Arg_25,P1,0,Arg_28,Arg_29,1+Arg_7-Arg_31,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_24,Arg_7-Arg_31,Arg_20):|:2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
52:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,Arg_24,Arg_2,Arg_24,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,R1,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_20,Arg_21,S1,Arg_23,Arg_24,Arg_25,P1,0,Arg_28,Arg_29,1+Arg_7-Arg_31,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_24,Arg_7-Arg_31,Arg_20):|:2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
53:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,Arg_24,Arg_2,Arg_24,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,R1,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_20,Arg_21,S1,Arg_23,Arg_24,Arg_25,P1,0,Arg_28,Arg_29,1+Arg_7-Arg_31,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_24,Arg_7-Arg_31,Arg_20):|:2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_24+1<=Arg_20 && Arg_22<=Arg_14 && Arg_14<=Arg_22
44:f17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(S1,Y1,T1,I2,Q1,W1,Z1,Arg_7,A2,Arg_9,Arg_10,Arg_11,Arg_12,O1,X1,R1,Arg_16,U1,P1,Arg_19,Arg_20,V1,C2,Arg_23,Arg_20,Arg_25,B2,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,H2,Arg_38,G2):|:D2<=0 && E2<=0 && P1<=0 && F2<=0
54:f17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(P1,X1,Q1,H2,R1,V1,A2,Arg_7,U1,Arg_9,Arg_10,Arg_11,Arg_12,O1,C2,S1,Arg_16,W1,1,Arg_19,Arg_6,T1,B2,Arg_23,Arg_6,Arg_25,Z1,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,G2,Arg_38,Y1)
55:f17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(P1,G2,Q1,D2,R1,W1,Z1,Arg_7,A2,Arg_9,Arg_10,Arg_11,Arg_12,O1,Y1,S1,Arg_16,U1,1,Arg_19,T1,V1,X1,Arg_23,B2,Arg_25,C2,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,I2,Arg_38,H2):|:1<=0 && B2+1<=T1
56:f17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(P1,G2,Q1,D2,R1,W1,Z1,Arg_7,A2,Arg_9,Arg_10,Arg_11,Arg_12,O1,Y1,S1,Arg_16,U1,1,Arg_19,T1,V1,X1,Arg_23,B2,Arg_25,C2,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,I2,Arg_38,H2):|:1<=0 && T1+1<=B2
57:f17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(P1,G2,Q1,D2,R1,W1,Z1,Arg_7,A2,Arg_9,Arg_10,Arg_11,Arg_12,O1,Y1,S1,Arg_16,U1,1,Arg_19,T1,V1,X1,Arg_23,B2,Arg_25,C2,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,I2,Arg_38,H2):|:1<=0 && B2+1<=T1
58:f17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(P1,G2,Q1,D2,R1,W1,Z1,Arg_7,A2,Arg_9,Arg_10,Arg_11,Arg_12,O1,Y1,S1,Arg_16,U1,1,Arg_19,T1,V1,X1,Arg_23,B2,Arg_25,C2,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,I2,Arg_38,H2):|:1<=0 && T1+1<=B2
39:f17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f9(P1,Arg_1,2,Arg_3,R1,Arg_5,Q1,Arg_7,R1,Arg_9,Arg_10,Arg_11,Arg_12,O1,Arg_14,S1,Arg_16,R1,P1,T1,S1,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:2<=P1
25:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(Arg_0,Q1,Arg_2,W1,Arg_4,S1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,P1,Arg_21,Arg_22,Arg_23,R1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,V1,Arg_38,T1):|:0<=Arg_38 && 0<=Arg_31 && 2<=O1 && R1+1<=P1 && 1<=U1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
26:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(Arg_0,Q1,Arg_2,W1,Arg_4,S1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,P1,Arg_21,Arg_22,Arg_23,R1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,V1,Arg_38,T1):|:0<=Arg_38 && 0<=Arg_31 && 2<=O1 && R1+1<=P1 && U1+1<=0 && Arg_39<=Arg_37 && Arg_37<=Arg_39
27:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(Arg_0,Q1,Arg_2,W1,Arg_4,S1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,P1,Arg_21,Arg_22,Arg_23,R1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,V1,Arg_38,T1):|:0<=Arg_38 && 0<=Arg_31 && 2<=O1 && P1+1<=R1 && 1<=U1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
28:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(Arg_0,Q1,Arg_2,W1,Arg_4,S1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,P1,Arg_21,Arg_22,Arg_23,R1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,V1,Arg_38,T1):|:0<=Arg_38 && 0<=Arg_31 && 2<=O1 && P1+1<=R1 && U1+1<=0 && Arg_39<=Arg_37 && Arg_37<=Arg_39
17:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_37+1<=S1 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && P1+1<=Arg_39 && S1+1<=P1
18:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_37+1<=S1 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && P1+1<=Arg_39 && P1+1<=S1
19:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_37+1<=S1 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && Arg_39+1<=P1 && S1+1<=P1
20:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_37+1<=S1 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && Arg_39+1<=P1 && P1+1<=S1
21:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:S1+1<=Arg_37 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && P1+1<=Arg_39 && S1+1<=P1
22:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:S1+1<=Arg_37 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && P1+1<=Arg_39 && P1+1<=S1
23:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:S1+1<=Arg_37 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && Arg_39+1<=P1 && S1+1<=P1
24:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:S1+1<=Arg_37 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && Arg_39+1<=P1 && P1+1<=S1
37:f7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(Arg_0,S1,Arg_2,T1,Arg_4,P1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Q1,Arg_38,R1):|:0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
38:f7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(Arg_0,S1,Arg_2,T1,Arg_4,P1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Q1,Arg_38,R1):|:0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
29:f7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_31+Arg_7-1,Arg_8,0,Arg_10,Arg_31+Arg_7-1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,0,S1,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
30:f7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_31+Arg_7-1,Arg_8,0,Arg_10,Arg_31+Arg_7-1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,0,S1,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
31:f7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_31+Arg_7-1,Arg_8,0,Arg_10,Arg_31+Arg_7-1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,0,S1,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
32:f7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_31+Arg_7-1,Arg_8,0,Arg_10,Arg_31+Arg_7-1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,0,S1,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
33:f7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_31+Arg_7-1,Arg_8,0,Arg_10,Arg_31+Arg_7-1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,0,S1,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
34:f7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_31+Arg_7-1,Arg_8,0,Arg_10,Arg_31+Arg_7-1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,0,S1,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
35:f7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_31+Arg_7-1,Arg_8,0,Arg_10,Arg_31+Arg_7-1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,0,S1,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
36:f7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f7(Arg_0,P1,Arg_2,Arg_37,Arg_4,Arg_5,Arg_6,Arg_31+Arg_7-1,Arg_8,0,Arg_10,Arg_31+Arg_7-1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,O1,Arg_19,Arg_39,Arg_21,Arg_22,Arg_23,P1,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,0,S1,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
40:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(P1,Arg_1,Q1,Arg_3,R1,V1,A2,Arg_7,U1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_4,S1,Arg_31,W1,O1,Arg_19,Arg_20,T1,Arg_20,Arg_31+1,Z1,C2,Z1,Arg_27,Arg_28,Arg_29,1,Arg_31,B2,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
41:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(P1,Arg_1,Q1,Arg_3,R1,V1,A2,Arg_7,U1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_4,S1,Arg_31,W1,O1,Arg_19,Arg_20,T1,Arg_20,Arg_31+1,Z1,C2,Z1,Arg_27,Arg_28,Arg_29,1,Arg_31,B2,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
42:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(P1,Arg_1,Q1,Arg_3,R1,V1,A2,Arg_7,U1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_4,S1,Arg_31,W1,O1,Arg_19,Arg_20,T1,Arg_20,Arg_31+1,Z1,C2,Z1,Arg_27,Arg_28,Arg_29,1,Arg_31,B2,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
43:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f16(P1,Arg_1,Q1,Arg_3,R1,V1,A2,Arg_7,U1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_4,S1,Arg_31,W1,O1,Arg_19,Arg_20,T1,Arg_20,Arg_31+1,Z1,C2,Z1,Arg_27,Arg_28,Arg_29,1,Arg_31,B2,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
45:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f18(P1,X1,Q1,H2,R1,V1,A2,Arg_7,U1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,C2,S1,Arg_16,W1,O1,Arg_19,Arg_4,T1,B2,Arg_23,Arg_4,Arg_25,Z1,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,G2,Arg_38,Y1):|:2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
0:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39) -> f9(Arg_0,Arg_1,1+Arg_2,Arg_3,Arg_6,Arg_5,O1,Arg_7,Arg_6,Arg_9,P1,Arg_11,Arg_2,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39):|:Arg_2+1<=Arg_0 && 0<=Arg_2
Show Graph
G
f13
f13
f16
f16
f13->f16
t₁
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_28) = S1
η (Arg_29) = R1
τ = Arg_14+1<=Q1 && R1+1<=Q1 && 0<=Arg_16 && Q1+1<=P1 && 2<=O1
f13->f16
t₂
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_28) = S1
η (Arg_29) = R1
τ = Arg_14+1<=Q1 && R1+1<=Q1 && 0<=Arg_16 && P1+1<=Q1 && 2<=O1
f13->f16
t₃
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_28) = S1
η (Arg_29) = R1
τ = Arg_14+1<=Q1 && Q1+1<=R1 && 0<=Arg_16 && Q1+1<=P1 && 2<=O1
f13->f16
t₄
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_28) = S1
η (Arg_29) = R1
τ = Arg_14+1<=Q1 && Q1+1<=R1 && 0<=Arg_16 && P1+1<=Q1 && 2<=O1
f13->f16
t₅
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_28) = S1
η (Arg_29) = R1
τ = Q1+1<=Arg_14 && R1+1<=Q1 && 0<=Arg_16 && Q1+1<=P1 && 2<=O1
f13->f16
t₆
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_28) = S1
η (Arg_29) = R1
τ = Q1+1<=Arg_14 && R1+1<=Q1 && 0<=Arg_16 && P1+1<=Q1 && 2<=O1
f13->f16
t₇
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_28) = S1
η (Arg_29) = R1
τ = Q1+1<=Arg_14 && Q1+1<=R1 && 0<=Arg_16 && Q1+1<=P1 && 2<=O1
f13->f16
t₈
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_28) = S1
η (Arg_29) = R1
τ = Q1+1<=Arg_14 && Q1+1<=R1 && 0<=Arg_16 && P1+1<=Q1 && 2<=O1
f7
f7
f13->f7
t₄₆
η (Arg_1) = Arg_24
η (Arg_3) = Arg_24
η (Arg_14) = R1
η (Arg_16) = Arg_30-1
η (Arg_18) = O1
η (Arg_22) = S1
η (Arg_26) = P1
η (Arg_27) = 0
η (Arg_30) = 1+Arg_7
η (Arg_31) = 0
η (Arg_37) = Arg_24
η (Arg_38) = Arg_7
η (Arg_39) = Arg_20
τ = 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 1<=Arg_30 && Arg_20+1<=Arg_24 && Arg_16+1<=Arg_30 && Arg_30<=Arg_16+1 && Arg_31<=0 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f13->f7
t₄₇
η (Arg_1) = Arg_24
η (Arg_3) = Arg_24
η (Arg_14) = R1
η (Arg_16) = Arg_30-1
η (Arg_18) = O1
η (Arg_22) = S1
η (Arg_26) = P1
η (Arg_27) = 0
η (Arg_30) = 1+Arg_7
η (Arg_31) = 0
η (Arg_37) = Arg_24
η (Arg_38) = Arg_7
η (Arg_39) = Arg_20
τ = 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 1<=Arg_30 && Arg_16+1<=Arg_30 && Arg_30<=Arg_16+1 && Arg_31<=0 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f13->f7
t₄₈
η (Arg_1) = Arg_24
η (Arg_3) = Arg_24
η (Arg_14) = R1
η (Arg_16) = Arg_30-1
η (Arg_18) = O1
η (Arg_22) = S1
η (Arg_26) = P1
η (Arg_27) = 0
η (Arg_30) = 1+Arg_7
η (Arg_31) = 0
η (Arg_37) = Arg_24
η (Arg_38) = Arg_7
η (Arg_39) = Arg_20
τ = 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 1<=Arg_30 && Arg_16+1<=Arg_30 && Arg_30<=Arg_16+1 && Arg_31<=0 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f13->f7
t₄₉
η (Arg_1) = Arg_24
η (Arg_3) = Arg_24
η (Arg_14) = R1
η (Arg_16) = Arg_30-1
η (Arg_18) = O1
η (Arg_22) = S1
η (Arg_26) = P1
η (Arg_27) = 0
η (Arg_30) = 1+Arg_7
η (Arg_31) = 0
η (Arg_37) = Arg_24
η (Arg_38) = Arg_7
η (Arg_39) = Arg_20
τ = 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 1<=Arg_30 && Arg_24+1<=Arg_20 && Arg_16+1<=Arg_30 && Arg_30<=Arg_16+1 && Arg_31<=0 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f16
t₉
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
η (Arg_32) = S1
η (Arg_33) = Arg_14
η (Arg_34) = R1
η (Arg_35) = 1+Arg_30
η (Arg_36) = Arg_31-1
τ = T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₀
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
η (Arg_32) = S1
η (Arg_33) = Arg_14
η (Arg_34) = R1
η (Arg_35) = 1+Arg_30
η (Arg_36) = Arg_31-1
τ = T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₁
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
η (Arg_32) = S1
η (Arg_33) = Arg_14
η (Arg_34) = R1
η (Arg_35) = 1+Arg_30
η (Arg_36) = Arg_31-1
τ = T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
η (Arg_32) = S1
η (Arg_33) = Arg_14
η (Arg_34) = R1
η (Arg_35) = 1+Arg_30
η (Arg_36) = Arg_31-1
τ = T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₃
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
η (Arg_32) = S1
η (Arg_33) = Arg_14
η (Arg_34) = R1
η (Arg_35) = 1+Arg_30
η (Arg_36) = Arg_31-1
τ = Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₄
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
η (Arg_32) = S1
η (Arg_33) = Arg_14
η (Arg_34) = R1
η (Arg_35) = 1+Arg_30
η (Arg_36) = Arg_31-1
τ = Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₅
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
η (Arg_32) = S1
η (Arg_33) = Arg_14
η (Arg_34) = R1
η (Arg_35) = 1+Arg_30
η (Arg_36) = Arg_31-1
τ = Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₆
η (Arg_18) = O1
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_26) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
η (Arg_32) = S1
η (Arg_33) = Arg_14
η (Arg_34) = R1
η (Arg_35) = 1+Arg_30
η (Arg_36) = Arg_31-1
τ = Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f7
t₅₀
η (Arg_1) = Arg_24
η (Arg_3) = Arg_24
η (Arg_14) = R1
η (Arg_18) = O1
η (Arg_22) = S1
η (Arg_26) = P1
η (Arg_27) = 0
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_38) = Arg_7-Arg_31
η (Arg_39) = Arg_20
τ = 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_20+1<=Arg_24 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₅₁
η (Arg_1) = Arg_24
η (Arg_3) = Arg_24
η (Arg_14) = R1
η (Arg_18) = O1
η (Arg_22) = S1
η (Arg_26) = P1
η (Arg_27) = 0
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_38) = Arg_7-Arg_31
η (Arg_39) = Arg_20
τ = 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₅₂
η (Arg_1) = Arg_24
η (Arg_3) = Arg_24
η (Arg_14) = R1
η (Arg_18) = O1
η (Arg_22) = S1
η (Arg_26) = P1
η (Arg_27) = 0
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_38) = Arg_7-Arg_31
η (Arg_39) = Arg_20
τ = 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₅₃
η (Arg_1) = Arg_24
η (Arg_3) = Arg_24
η (Arg_14) = R1
η (Arg_18) = O1
η (Arg_22) = S1
η (Arg_26) = P1
η (Arg_27) = 0
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_38) = Arg_7-Arg_31
η (Arg_39) = Arg_20
τ = 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_24+1<=Arg_20 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₄₄
η (Arg_0) = S1
η (Arg_1) = Y1
η (Arg_2) = T1
η (Arg_3) = I2
η (Arg_4) = Q1
η (Arg_5) = W1
η (Arg_6) = Z1
η (Arg_8) = A2
η (Arg_13) = O1
η (Arg_14) = X1
η (Arg_15) = R1
η (Arg_17) = U1
η (Arg_18) = P1
η (Arg_21) = V1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_26) = B2
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₅₄
η (Arg_0) = P1
η (Arg_1) = X1
η (Arg_2) = Q1
η (Arg_3) = H2
η (Arg_4) = R1
η (Arg_5) = V1
η (Arg_6) = A2
η (Arg_8) = U1
η (Arg_13) = O1
η (Arg_14) = C2
η (Arg_15) = S1
η (Arg_17) = W1
η (Arg_18) = 1
η (Arg_20) = Arg_6
η (Arg_21) = T1
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_26) = Z1
η (Arg_37) = G2
η (Arg_39) = Y1
f17->f18
t₅₅
η (Arg_0) = P1
η (Arg_1) = G2
η (Arg_2) = Q1
η (Arg_3) = D2
η (Arg_4) = R1
η (Arg_5) = W1
η (Arg_6) = Z1
η (Arg_8) = A2
η (Arg_13) = O1
η (Arg_14) = Y1
η (Arg_15) = S1
η (Arg_17) = U1
η (Arg_18) = 1
η (Arg_20) = T1
η (Arg_21) = V1
η (Arg_22) = X1
η (Arg_24) = B2
η (Arg_26) = C2
η (Arg_37) = I2
η (Arg_39) = H2
τ = 1<=0 && B2+1<=T1
f17->f18
t₅₆
η (Arg_0) = P1
η (Arg_1) = G2
η (Arg_2) = Q1
η (Arg_3) = D2
η (Arg_4) = R1
η (Arg_5) = W1
η (Arg_6) = Z1
η (Arg_8) = A2
η (Arg_13) = O1
η (Arg_14) = Y1
η (Arg_15) = S1
η (Arg_17) = U1
η (Arg_18) = 1
η (Arg_20) = T1
η (Arg_21) = V1
η (Arg_22) = X1
η (Arg_24) = B2
η (Arg_26) = C2
η (Arg_37) = I2
η (Arg_39) = H2
τ = 1<=0 && T1+1<=B2
f17->f18
t₅₇
η (Arg_0) = P1
η (Arg_1) = G2
η (Arg_2) = Q1
η (Arg_3) = D2
η (Arg_4) = R1
η (Arg_5) = W1
η (Arg_6) = Z1
η (Arg_8) = A2
η (Arg_13) = O1
η (Arg_14) = Y1
η (Arg_15) = S1
η (Arg_17) = U1
η (Arg_18) = 1
η (Arg_20) = T1
η (Arg_21) = V1
η (Arg_22) = X1
η (Arg_24) = B2
η (Arg_26) = C2
η (Arg_37) = I2
η (Arg_39) = H2
τ = 1<=0 && B2+1<=T1
f17->f18
t₅₈
η (Arg_0) = P1
η (Arg_1) = G2
η (Arg_2) = Q1
η (Arg_3) = D2
η (Arg_4) = R1
η (Arg_5) = W1
η (Arg_6) = Z1
η (Arg_8) = A2
η (Arg_13) = O1
η (Arg_14) = Y1
η (Arg_15) = S1
η (Arg_17) = U1
η (Arg_18) = 1
η (Arg_20) = T1
η (Arg_21) = V1
η (Arg_22) = X1
η (Arg_24) = B2
η (Arg_26) = C2
η (Arg_37) = I2
η (Arg_39) = H2
τ = 1<=0 && T1+1<=B2
f9
f9
f17->f9
t₃₉
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_8) = R1
η (Arg_13) = O1
η (Arg_15) = S1
η (Arg_17) = R1
η (Arg_18) = P1
η (Arg_19) = T1
η (Arg_20) = S1
τ = 2<=P1
f6
f6
f6->f18
t₂₅
η (Arg_1) = Q1
η (Arg_3) = W1
η (Arg_5) = S1
η (Arg_18) = O1
η (Arg_20) = P1
η (Arg_24) = R1
η (Arg_37) = V1
η (Arg_39) = T1
τ = 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && R1+1<=P1 && 1<=U1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f6->f18
t₂₆
η (Arg_1) = Q1
η (Arg_3) = W1
η (Arg_5) = S1
η (Arg_18) = O1
η (Arg_20) = P1
η (Arg_24) = R1
η (Arg_37) = V1
η (Arg_39) = T1
τ = 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && R1+1<=P1 && U1+1<=0 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f6->f18
t₂₇
η (Arg_1) = Q1
η (Arg_3) = W1
η (Arg_5) = S1
η (Arg_18) = O1
η (Arg_20) = P1
η (Arg_24) = R1
η (Arg_37) = V1
η (Arg_39) = T1
τ = 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && P1+1<=R1 && 1<=U1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f6->f18
t₂₈
η (Arg_1) = Q1
η (Arg_3) = W1
η (Arg_5) = S1
η (Arg_18) = O1
η (Arg_20) = P1
η (Arg_24) = R1
η (Arg_37) = V1
η (Arg_39) = T1
τ = 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && P1+1<=R1 && U1+1<=0 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f6->f7
t₁₇
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
τ = Arg_37+1<=S1 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && P1+1<=Arg_39 && S1+1<=P1
f6->f7
t₁₈
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
τ = Arg_37+1<=S1 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && P1+1<=Arg_39 && P1+1<=S1
f6->f7
t₁₉
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
τ = Arg_37+1<=S1 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && Arg_39+1<=P1 && S1+1<=P1
f6->f7
t₂₀
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
τ = Arg_37+1<=S1 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && Arg_39+1<=P1 && P1+1<=S1
f6->f7
t₂₁
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
τ = S1+1<=Arg_37 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && P1+1<=Arg_39 && S1+1<=P1
f6->f7
t₂₂
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
τ = S1+1<=Arg_37 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && P1+1<=Arg_39 && P1+1<=S1
f6->f7
t₂₃
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
τ = S1+1<=Arg_37 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && Arg_39+1<=P1 && S1+1<=P1
f6->f7
t₂₄
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
τ = S1+1<=Arg_37 && 0<=Arg_38 && 0<=Arg_31 && 2<=O1 && Arg_39+1<=P1 && P1+1<=S1
f7->f18
t₃₇
η (Arg_1) = S1
η (Arg_3) = T1
η (Arg_5) = P1
η (Arg_18) = O1
η (Arg_37) = Q1
η (Arg_39) = R1
τ = 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₃₈
η (Arg_1) = S1
η (Arg_3) = T1
η (Arg_5) = P1
η (Arg_18) = O1
η (Arg_37) = Q1
η (Arg_39) = R1
τ = 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₂₉
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_9) = 0
η (Arg_11) = Arg_31+Arg_7-1
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
η (Arg_32) = S1
τ = Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₃₀
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_9) = 0
η (Arg_11) = Arg_31+Arg_7-1
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
η (Arg_32) = S1
τ = Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₃₁
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_9) = 0
η (Arg_11) = Arg_31+Arg_7-1
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
η (Arg_32) = S1
τ = Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₃₂
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_9) = 0
η (Arg_11) = Arg_31+Arg_7-1
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
η (Arg_32) = S1
τ = Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₃₃
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_9) = 0
η (Arg_11) = Arg_31+Arg_7-1
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
η (Arg_32) = S1
τ = R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₃₄
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_9) = 0
η (Arg_11) = Arg_31+Arg_7-1
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
η (Arg_32) = S1
τ = R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₃₅
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_9) = 0
η (Arg_11) = Arg_31+Arg_7-1
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
η (Arg_32) = S1
τ = R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₃₆
η (Arg_1) = P1
η (Arg_3) = Arg_37
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_9) = 0
η (Arg_11) = Arg_31+Arg_7-1
η (Arg_18) = O1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
η (Arg_32) = S1
τ = R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₄₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_5) = V1
η (Arg_6) = A2
η (Arg_8) = U1
η (Arg_14) = Arg_4
η (Arg_15) = S1
η (Arg_16) = Arg_31
η (Arg_17) = W1
η (Arg_18) = O1
η (Arg_21) = T1
η (Arg_22) = Arg_20
η (Arg_23) = Arg_31+1
η (Arg_24) = Z1
η (Arg_25) = C2
η (Arg_26) = Z1
η (Arg_30) = 1
η (Arg_32) = B2
τ = O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₄₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_5) = V1
η (Arg_6) = A2
η (Arg_8) = U1
η (Arg_14) = Arg_4
η (Arg_15) = S1
η (Arg_16) = Arg_31
η (Arg_17) = W1
η (Arg_18) = O1
η (Arg_21) = T1
η (Arg_22) = Arg_20
η (Arg_23) = Arg_31+1
η (Arg_24) = Z1
η (Arg_25) = C2
η (Arg_26) = Z1
η (Arg_30) = 1
η (Arg_32) = B2
τ = O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₄₂
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_5) = V1
η (Arg_6) = A2
η (Arg_8) = U1
η (Arg_14) = Arg_4
η (Arg_15) = S1
η (Arg_16) = Arg_31
η (Arg_17) = W1
η (Arg_18) = O1
η (Arg_21) = T1
η (Arg_22) = Arg_20
η (Arg_23) = Arg_31+1
η (Arg_24) = Z1
η (Arg_25) = C2
η (Arg_26) = Z1
η (Arg_30) = 1
η (Arg_32) = B2
τ = O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₄₃
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_5) = V1
η (Arg_6) = A2
η (Arg_8) = U1
η (Arg_14) = Arg_4
η (Arg_15) = S1
η (Arg_16) = Arg_31
η (Arg_17) = W1
η (Arg_18) = O1
η (Arg_21) = T1
η (Arg_22) = Arg_20
η (Arg_23) = Arg_31+1
η (Arg_24) = Z1
η (Arg_25) = C2
η (Arg_26) = Z1
η (Arg_30) = 1
η (Arg_32) = B2
τ = O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₄₅
η (Arg_0) = P1
η (Arg_1) = X1
η (Arg_2) = Q1
η (Arg_3) = H2
η (Arg_4) = R1
η (Arg_5) = V1
η (Arg_6) = A2
η (Arg_8) = U1
η (Arg_14) = C2
η (Arg_15) = S1
η (Arg_17) = W1
η (Arg_18) = O1
η (Arg_20) = Arg_4
η (Arg_21) = T1
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_26) = Z1
η (Arg_37) = G2
η (Arg_39) = Y1
τ = 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₀
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
η (Arg_8) = Arg_6
η (Arg_10) = P1
η (Arg_12) = Arg_2
τ = Arg_2+1<=Arg_0 && 0<=Arg_2
Preprocessing
Cut unreachable locations [f13; f6] from the program graph
Cut unsatisfiable transition 50: f16->f7
Cut unsatisfiable transition 53: f16->f7
Cut unsatisfiable transition 55: f17->f18
Cut unsatisfiable transition 56: f17->f18
Cut unsatisfiable transition 57: f17->f18
Cut unsatisfiable transition 58: f17->f18
Eliminate variables {U1,W1,Arg_1,Arg_3,Arg_5,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_21,Arg_23,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_38} that do not contribute to the problem
Found invariant Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 for location f7
Found invariant 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 for location f16
Found invariant Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 for location f9
Problem after Preprocessing
Start: f17
Program_Vars: Arg_0, Arg_2, Arg_4, Arg_6, Arg_7, Arg_14, Arg_20, Arg_22, Arg_24, Arg_30, Arg_31, Arg_37, Arg_39
Temp_Vars: A2, B2, C2, D2, E2, F2, G2, H2, I2, O1, P1, Q1, R1, S1, T1, V1, X1, Y1, Z1
Locations: f16, f17, f18, f7, f9
Transitions:
123:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
124:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
125:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
126:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
127:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
128:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
129:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
130:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
131:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,R1,Arg_20,S1,Arg_24,1+Arg_7-Arg_31,Arg_31,Arg_24,Arg_20):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
132:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,R1,Arg_20,S1,Arg_24,1+Arg_7-Arg_31,Arg_31,Arg_24,Arg_20):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
134:f17(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f18(S1,T1,Q1,Z1,Arg_7,X1,Arg_20,C2,Arg_20,Arg_30,Arg_31,H2,G2):|:D2<=0 && E2<=0 && P1<=0 && F2<=0
135:f17(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f18(P1,Q1,R1,A2,Arg_7,C2,Arg_6,B2,Arg_6,Arg_30,Arg_31,G2,Y1)
133:f17(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f9(P1,2,R1,Q1,Arg_7,Arg_14,S1,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39):|:2<=P1
144:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f18(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Q1,R1):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
145:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f18(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Q1,R1):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
136:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
137:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
138:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
139:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
140:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
141:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
142:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
143:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
147:f9(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(P1,Q1,R1,A2,Arg_7,Arg_4,Arg_20,Arg_20,Z1,1,Arg_31,Arg_37,Arg_39):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
148:f9(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(P1,Q1,R1,A2,Arg_7,Arg_4,Arg_20,Arg_20,Z1,1,Arg_31,Arg_37,Arg_39):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
149:f9(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(P1,Q1,R1,A2,Arg_7,Arg_4,Arg_20,Arg_20,Z1,1,Arg_31,Arg_37,Arg_39):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
150:f9(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(P1,Q1,R1,A2,Arg_7,Arg_4,Arg_20,Arg_20,Z1,1,Arg_31,Arg_37,Arg_39):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
151:f9(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f18(P1,Q1,R1,A2,Arg_7,C2,Arg_4,B2,Arg_4,Arg_30,Arg_31,G2,Y1):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
146:f9(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f9(Arg_0,1+Arg_2,Arg_6,O1,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 123:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1 of depth 1:
new bound:
8*Arg_31+4 {O(n)}
MPRF:
f16 [Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 124:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1 of depth 1:
new bound:
8*Arg_31+4 {O(n)}
MPRF:
f16 [Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 125:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1 of depth 1:
new bound:
8*Arg_31+4 {O(n)}
MPRF:
f16 [Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 126:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1 of depth 1:
new bound:
8*Arg_31+4 {O(n)}
MPRF:
f16 [Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 127:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1 of depth 1:
new bound:
8*Arg_31+4 {O(n)}
MPRF:
f16 [Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 128:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1 of depth 1:
new bound:
8*Arg_31+4 {O(n)}
MPRF:
f16 [Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 129:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1 of depth 1:
new bound:
8*Arg_31+4 {O(n)}
MPRF:
f16 [Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 130:f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f16(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_22,Arg_22,P1,1+Arg_30,Arg_31-1,Arg_37,Arg_39):|:1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1 of depth 1:
new bound:
8*Arg_31+4 {O(n)}
MPRF:
f16 [Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 136:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1 of depth 1:
new bound:
1024*Arg_31+1024*Arg_7+18 {O(n)}
MPRF:
f7 [Arg_7+Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 137:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1 of depth 1:
new bound:
1024*Arg_31+1024*Arg_7+18 {O(n)}
MPRF:
f7 [Arg_7+Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 138:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1 of depth 1:
new bound:
1024*Arg_31+1024*Arg_7+18 {O(n)}
MPRF:
f7 [Arg_7+Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 139:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1 of depth 1:
new bound:
1024*Arg_31+1024*Arg_7+18 {O(n)}
MPRF:
f7 [Arg_7+Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 140:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1 of depth 1:
new bound:
1024*Arg_31+1024*Arg_7+18 {O(n)}
MPRF:
f7 [Arg_7+Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 141:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1 of depth 1:
new bound:
1024*Arg_31+1024*Arg_7+18 {O(n)}
MPRF:
f7 [Arg_7+Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 142:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1 of depth 1:
new bound:
1024*Arg_31+1024*Arg_7+18 {O(n)}
MPRF:
f7 [Arg_7+Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
MPRF for transition 143:f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_14,Arg_20,Arg_22,Arg_24,Arg_30,Arg_31,Arg_37,Arg_39) -> f7(Arg_0,Arg_2,Arg_4,Arg_6,Arg_31+Arg_7-1,Arg_14,Arg_39,Arg_22,P1,Arg_30,0,Arg_37,Arg_39):|:Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1 of depth 1:
new bound:
1024*Arg_31+1024*Arg_7+18 {O(n)}
MPRF:
f7 [Arg_7+Arg_31+1 ]
Show Graph
G
f16
f16
f16->f16
t₁₂₃
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₄
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₅
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₆
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && T1+1<=Q1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₇
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₂₈
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && R1+1<=Q1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f16->f16
t₁₂₉
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && Q1+1<=P1 && 2<=O1
f16->f16
t₁₃₀
η (Arg_20) = Arg_22
η (Arg_24) = P1
η (Arg_30) = 1+Arg_30
η (Arg_31) = Arg_31-1
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && Q1+1<=T1 && Q1+1<=R1 && 0<=Arg_30 && 0<=Arg_31 && P1+1<=Q1 && 2<=O1
f7
f7
f16->f7
t₁₃₁
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_24+1<=Arg_20 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f16->f7
t₁₃₂
η (Arg_14) = R1
η (Arg_22) = S1
η (Arg_30) = 1+Arg_7-Arg_31
η (Arg_37) = Arg_24
η (Arg_39) = Arg_20
τ = 1<=Arg_30 && 3<=Arg_2+Arg_30 && Arg_22<=Arg_20 && Arg_20<=Arg_22 && 2<=Arg_2 && 2<=Q1 && Arg_20+1<=Arg_24 && 2<=O1 && 0<=Arg_30 && 0<=Arg_31 && Arg_22<=Arg_14 && Arg_14<=Arg_22
f17
f17
f18
f18
f17->f18
t₁₃₄
η (Arg_0) = S1
η (Arg_2) = T1
η (Arg_4) = Q1
η (Arg_6) = Z1
η (Arg_14) = X1
η (Arg_22) = C2
η (Arg_24) = Arg_20
η (Arg_37) = H2
η (Arg_39) = G2
τ = D2<=0 && E2<=0 && P1<=0 && F2<=0
f17->f18
t₁₃₅
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_6
η (Arg_22) = B2
η (Arg_24) = Arg_6
η (Arg_37) = G2
η (Arg_39) = Y1
f9
f9
f17->f9
t₁₃₃
η (Arg_0) = P1
η (Arg_2) = 2
η (Arg_4) = R1
η (Arg_6) = Q1
η (Arg_20) = S1
τ = 2<=P1
f7->f18
t₁₄₄
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && 1<=V1 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f18
t₁₄₅
η (Arg_37) = Q1
η (Arg_39) = R1
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && 0<=Arg_7 && 0<=Arg_31 && V1+1<=0 && 2<=O1 && Arg_39<=Arg_37 && Arg_37<=Arg_39
f7->f7
t₁₃₆
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₃₇
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₃₈
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₃₉
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && Arg_37+1<=R1 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f7->f7
t₁₄₀
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && R1+1<=P1
f7->f7
t₁₄₁
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && P1+1<=Arg_39 && P1+1<=R1
f7->f7
t₁₄₂
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && R1+1<=P1
f7->f7
t₁₄₃
η (Arg_7) = Arg_31+Arg_7-1
η (Arg_20) = Arg_39
η (Arg_24) = P1
η (Arg_31) = 0
τ = Arg_39<=Arg_20 && Arg_20<=Arg_39 && 0<=Arg_31 && 2<=Arg_2+Arg_31 && 2<=Arg_2 && R1+1<=Arg_37 && 0<=Arg_7 && 0<=Q1 && 2<=O1 && Arg_39+1<=P1 && P1+1<=R1
f9->f16
t₁₄₇
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₈
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Arg_20+1<=Z1 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₄₉
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_4+1<=Arg_20 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f16
t₁₅₀
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = Arg_4
η (Arg_22) = Arg_20
η (Arg_24) = Z1
η (Arg_30) = 1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && O1<=X1 && 2<=Y1 && Y1<=Q1 && Z1+1<=Arg_20 && Arg_0<=Arg_2 && 0<=Arg_2 && Arg_20+1<=Arg_4 && 0<=Q1 && 2<=O1 && Arg_30<=1 && 1<=Arg_30
f9->f18
t₁₅₁
η (Arg_0) = P1
η (Arg_2) = Q1
η (Arg_4) = R1
η (Arg_6) = A2
η (Arg_14) = C2
η (Arg_20) = Arg_4
η (Arg_22) = B2
η (Arg_24) = Arg_4
η (Arg_37) = G2
η (Arg_39) = Y1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=I2 && I2<=Q1 && 2<=D2 && D2<=Q1 && Arg_0<=Arg_2 && 0<=Arg_2 && O1<=Q1 && 2<=O1 && 0<=Q1 && Arg_4<=Arg_20 && Arg_20<=Arg_4
f9->f9
t₁₄₆
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = O1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
All Bounds
Timebounds
Overall timebound:inf {Infinity}
123: f16->f16: 8*Arg_31+4 {O(n)}
124: f16->f16: 8*Arg_31+4 {O(n)}
125: f16->f16: 8*Arg_31+4 {O(n)}
126: f16->f16: 8*Arg_31+4 {O(n)}
127: f16->f16: 8*Arg_31+4 {O(n)}
128: f16->f16: 8*Arg_31+4 {O(n)}
129: f16->f16: 8*Arg_31+4 {O(n)}
130: f16->f16: 8*Arg_31+4 {O(n)}
131: f16->f7: 1 {O(1)}
132: f16->f7: 1 {O(1)}
133: f17->f9: 1 {O(1)}
134: f17->f18: 1 {O(1)}
135: f17->f18: 1 {O(1)}
136: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
137: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
138: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
139: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
140: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
141: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
142: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
143: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
144: f7->f18: 1 {O(1)}
145: f7->f18: 1 {O(1)}
146: f9->f9: inf {Infinity}
147: f9->f16: 1 {O(1)}
148: f9->f16: 1 {O(1)}
149: f9->f16: 1 {O(1)}
150: f9->f16: 1 {O(1)}
151: f9->f18: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
123: f16->f16: 8*Arg_31+4 {O(n)}
124: f16->f16: 8*Arg_31+4 {O(n)}
125: f16->f16: 8*Arg_31+4 {O(n)}
126: f16->f16: 8*Arg_31+4 {O(n)}
127: f16->f16: 8*Arg_31+4 {O(n)}
128: f16->f16: 8*Arg_31+4 {O(n)}
129: f16->f16: 8*Arg_31+4 {O(n)}
130: f16->f16: 8*Arg_31+4 {O(n)}
131: f16->f7: 1 {O(1)}
132: f16->f7: 1 {O(1)}
133: f17->f9: 1 {O(1)}
134: f17->f18: 1 {O(1)}
135: f17->f18: 1 {O(1)}
136: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
137: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
138: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
139: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
140: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
141: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
142: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
143: f7->f7: 1024*Arg_31+1024*Arg_7+18 {O(n)}
144: f7->f18: 1 {O(1)}
145: f7->f18: 1 {O(1)}
146: f9->f9: inf {Infinity}
147: f9->f16: 1 {O(1)}
148: f9->f16: 1 {O(1)}
149: f9->f16: 1 {O(1)}
150: f9->f16: 1 {O(1)}
151: f9->f18: 1 {O(1)}
Sizebounds
123: f16->f16, Arg_7: 64*Arg_7 {O(n)}
123: f16->f16, Arg_30: 64*Arg_31+64 {O(n)}
123: f16->f16, Arg_31: 64*Arg_31+1 {O(n)}
123: f16->f16, Arg_37: 64*Arg_37 {O(n)}
123: f16->f16, Arg_39: 64*Arg_39 {O(n)}
124: f16->f16, Arg_7: 64*Arg_7 {O(n)}
124: f16->f16, Arg_30: 64*Arg_31+64 {O(n)}
124: f16->f16, Arg_31: 64*Arg_31+1 {O(n)}
124: f16->f16, Arg_37: 64*Arg_37 {O(n)}
124: f16->f16, Arg_39: 64*Arg_39 {O(n)}
125: f16->f16, Arg_7: 64*Arg_7 {O(n)}
125: f16->f16, Arg_30: 64*Arg_31+64 {O(n)}
125: f16->f16, Arg_31: 64*Arg_31+1 {O(n)}
125: f16->f16, Arg_37: 64*Arg_37 {O(n)}
125: f16->f16, Arg_39: 64*Arg_39 {O(n)}
126: f16->f16, Arg_7: 64*Arg_7 {O(n)}
126: f16->f16, Arg_30: 64*Arg_31+64 {O(n)}
126: f16->f16, Arg_31: 64*Arg_31+1 {O(n)}
126: f16->f16, Arg_37: 64*Arg_37 {O(n)}
126: f16->f16, Arg_39: 64*Arg_39 {O(n)}
127: f16->f16, Arg_7: 64*Arg_7 {O(n)}
127: f16->f16, Arg_30: 64*Arg_31+64 {O(n)}
127: f16->f16, Arg_31: 64*Arg_31+1 {O(n)}
127: f16->f16, Arg_37: 64*Arg_37 {O(n)}
127: f16->f16, Arg_39: 64*Arg_39 {O(n)}
128: f16->f16, Arg_7: 64*Arg_7 {O(n)}
128: f16->f16, Arg_30: 64*Arg_31+64 {O(n)}
128: f16->f16, Arg_31: 64*Arg_31+1 {O(n)}
128: f16->f16, Arg_37: 64*Arg_37 {O(n)}
128: f16->f16, Arg_39: 64*Arg_39 {O(n)}
129: f16->f16, Arg_7: 64*Arg_7 {O(n)}
129: f16->f16, Arg_30: 64*Arg_31+64 {O(n)}
129: f16->f16, Arg_31: 64*Arg_31+1 {O(n)}
129: f16->f16, Arg_37: 64*Arg_37 {O(n)}
129: f16->f16, Arg_39: 64*Arg_39 {O(n)}
130: f16->f16, Arg_7: 64*Arg_7 {O(n)}
130: f16->f16, Arg_30: 64*Arg_31+64 {O(n)}
130: f16->f16, Arg_31: 64*Arg_31+1 {O(n)}
130: f16->f16, Arg_37: 64*Arg_37 {O(n)}
130: f16->f16, Arg_39: 64*Arg_39 {O(n)}
131: f16->f7, Arg_7: 512*Arg_7 {O(n)}
131: f16->f7, Arg_30: 512*Arg_31+512*Arg_7+16 {O(n)}
131: f16->f7, Arg_31: 512*Arg_31+8 {O(n)}
132: f16->f7, Arg_7: 512*Arg_7 {O(n)}
132: f16->f7, Arg_30: 512*Arg_31+512*Arg_7+16 {O(n)}
132: f16->f7, Arg_31: 512*Arg_31+8 {O(n)}
133: f17->f9, Arg_2: 2 {O(1)}
133: f17->f9, Arg_7: Arg_7 {O(n)}
133: f17->f9, Arg_14: Arg_14 {O(n)}
133: f17->f9, Arg_22: Arg_22 {O(n)}
133: f17->f9, Arg_24: Arg_24 {O(n)}
133: f17->f9, Arg_30: Arg_30 {O(n)}
133: f17->f9, Arg_31: Arg_31 {O(n)}
133: f17->f9, Arg_37: Arg_37 {O(n)}
133: f17->f9, Arg_39: Arg_39 {O(n)}
134: f17->f18, Arg_7: Arg_7 {O(n)}
134: f17->f18, Arg_20: Arg_20 {O(n)}
134: f17->f18, Arg_24: Arg_20 {O(n)}
134: f17->f18, Arg_30: Arg_30 {O(n)}
134: f17->f18, Arg_31: Arg_31 {O(n)}
135: f17->f18, Arg_7: Arg_7 {O(n)}
135: f17->f18, Arg_20: Arg_6 {O(n)}
135: f17->f18, Arg_24: Arg_6 {O(n)}
135: f17->f18, Arg_30: Arg_30 {O(n)}
135: f17->f18, Arg_31: Arg_31 {O(n)}
136: f7->f7, Arg_7: 7340032*Arg_31*Arg_31+7340032*Arg_31*Arg_7+130048*Arg_7+259072*Arg_31+2272 {O(n^2)}
136: f7->f7, Arg_30: 7168*Arg_31+7168*Arg_7+224 {O(n)}
136: f7->f7, Arg_31: 0 {O(1)}
137: f7->f7, Arg_7: 7340032*Arg_31*Arg_31+7340032*Arg_31*Arg_7+130048*Arg_7+259072*Arg_31+2272 {O(n^2)}
137: f7->f7, Arg_30: 7168*Arg_31+7168*Arg_7+224 {O(n)}
137: f7->f7, Arg_31: 0 {O(1)}
138: f7->f7, Arg_7: 7340032*Arg_31*Arg_31+7340032*Arg_31*Arg_7+130048*Arg_7+259072*Arg_31+2272 {O(n^2)}
138: f7->f7, Arg_30: 7168*Arg_31+7168*Arg_7+224 {O(n)}
138: f7->f7, Arg_31: 0 {O(1)}
139: f7->f7, Arg_7: 7340032*Arg_31*Arg_31+7340032*Arg_31*Arg_7+130048*Arg_7+259072*Arg_31+2272 {O(n^2)}
139: f7->f7, Arg_30: 7168*Arg_31+7168*Arg_7+224 {O(n)}
139: f7->f7, Arg_31: 0 {O(1)}
140: f7->f7, Arg_7: 7340032*Arg_31*Arg_31+7340032*Arg_31*Arg_7+130048*Arg_7+259072*Arg_31+2272 {O(n^2)}
140: f7->f7, Arg_30: 7168*Arg_31+7168*Arg_7+224 {O(n)}
140: f7->f7, Arg_31: 0 {O(1)}
141: f7->f7, Arg_7: 7340032*Arg_31*Arg_31+7340032*Arg_31*Arg_7+130048*Arg_7+259072*Arg_31+2272 {O(n^2)}
141: f7->f7, Arg_30: 7168*Arg_31+7168*Arg_7+224 {O(n)}
141: f7->f7, Arg_31: 0 {O(1)}
142: f7->f7, Arg_7: 7340032*Arg_31*Arg_31+7340032*Arg_31*Arg_7+130048*Arg_7+259072*Arg_31+2272 {O(n^2)}
142: f7->f7, Arg_30: 7168*Arg_31+7168*Arg_7+224 {O(n)}
142: f7->f7, Arg_31: 0 {O(1)}
143: f7->f7, Arg_7: 7340032*Arg_31*Arg_31+7340032*Arg_31*Arg_7+130048*Arg_7+259072*Arg_31+2272 {O(n^2)}
143: f7->f7, Arg_30: 7168*Arg_31+7168*Arg_7+224 {O(n)}
143: f7->f7, Arg_31: 0 {O(1)}
144: f7->f18, Arg_7: 44040192*Arg_31*Arg_31+44040192*Arg_31*Arg_7+1554432*Arg_31+780288*Arg_7+13632 {O(n^2)}
144: f7->f18, Arg_30: 43008*Arg_31+43008*Arg_7+1344 {O(n)}
144: f7->f18, Arg_31: 0 {O(1)}
145: f7->f18, Arg_7: 44040192*Arg_31*Arg_31+44040192*Arg_31*Arg_7+1554432*Arg_31+780288*Arg_7+13632 {O(n^2)}
145: f7->f18, Arg_30: 43008*Arg_31+43008*Arg_7+1344 {O(n)}
145: f7->f18, Arg_31: 0 {O(1)}
146: f9->f9, Arg_7: Arg_7 {O(n)}
146: f9->f9, Arg_14: Arg_14 {O(n)}
146: f9->f9, Arg_22: Arg_22 {O(n)}
146: f9->f9, Arg_24: Arg_24 {O(n)}
146: f9->f9, Arg_30: Arg_30 {O(n)}
146: f9->f9, Arg_31: Arg_31 {O(n)}
146: f9->f9, Arg_37: Arg_37 {O(n)}
146: f9->f9, Arg_39: Arg_39 {O(n)}
147: f9->f16, Arg_7: 2*Arg_7 {O(n)}
147: f9->f16, Arg_30: 1 {O(1)}
147: f9->f16, Arg_31: 2*Arg_31 {O(n)}
147: f9->f16, Arg_37: 2*Arg_37 {O(n)}
147: f9->f16, Arg_39: 2*Arg_39 {O(n)}
148: f9->f16, Arg_7: 2*Arg_7 {O(n)}
148: f9->f16, Arg_30: 1 {O(1)}
148: f9->f16, Arg_31: 2*Arg_31 {O(n)}
148: f9->f16, Arg_37: 2*Arg_37 {O(n)}
148: f9->f16, Arg_39: 2*Arg_39 {O(n)}
149: f9->f16, Arg_7: 2*Arg_7 {O(n)}
149: f9->f16, Arg_30: 1 {O(1)}
149: f9->f16, Arg_31: 2*Arg_31 {O(n)}
149: f9->f16, Arg_37: 2*Arg_37 {O(n)}
149: f9->f16, Arg_39: 2*Arg_39 {O(n)}
150: f9->f16, Arg_7: 2*Arg_7 {O(n)}
150: f9->f16, Arg_30: 1 {O(1)}
150: f9->f16, Arg_31: 2*Arg_31 {O(n)}
150: f9->f16, Arg_37: 2*Arg_37 {O(n)}
150: f9->f16, Arg_39: 2*Arg_39 {O(n)}
151: f9->f18, Arg_7: 2*Arg_7 {O(n)}
151: f9->f18, Arg_30: 2*Arg_30 {O(n)}
151: f9->f18, Arg_31: 2*Arg_31 {O(n)}