Initial Problem
Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24, Arg_25, Arg_26
Temp_Vars: B1, C1, D1
Locations: f0, f103, f107, f117, f125, f23, f33, f39, f44, f46, f49, f54, f60, f66, f72, f87, f91, f99
Transitions:
0:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f23(0,Arg_1,0,2*Arg_4,Arg_4,4*Arg_4,4*Arg_4+3,4*Arg_4+4,Arg_4,B1,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26)
24:f103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,0,Arg_25,Arg_26):|:Arg_12<=0 && 0<=Arg_12
25:f103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,C1,Arg_25,Arg_26):|:Arg_12+1<=0
26:f103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,C1,Arg_25,Arg_26):|:1<=Arg_12
27:f107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,0,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,0,Arg_26):|:Arg_12<=0 && 0<=Arg_12
28:f107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,B1,Arg_26):|:Arg_12+1<=0
29:f107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,B1,Arg_26):|:1<=Arg_12
30:f117(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f117(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
31:f117(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f125(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10
1:f23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,1,0,0,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_3
2:f23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f23(Arg_0+B1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,C1,1-C1,B1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:2<=C1 && Arg_10<=Arg_3
3:f23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f23(Arg_0+B1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,C1,1-C1,B1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:C1<=0 && Arg_10<=Arg_3
46:f23(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_3<=Arg_10
4:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
43:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_16+1<=0 && 1+Arg_4<=Arg_10
44:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1<=Arg_16 && 1+Arg_4<=Arg_10
45:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,0,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
5:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
42:f39(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10
41:f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f117(Arg_0,Arg_1,B1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_14<=Arg_15
6:f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_15<=Arg_14
7:f46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_16+1<=0 && Arg_17<=0
8:f46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1<=Arg_16 && Arg_17<=0
12:f46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,0,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
40:f46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1<=Arg_17
9:f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
39:f49(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10
10:f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
38:f54(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f60(Arg_0,Arg_17+Arg_3,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10
37:f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17+1,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10
11:f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f60(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
36:f66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f46(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17+1,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_5<=Arg_10
13:f66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f66(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+2,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_5
14:f72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,2*Arg_10,B1,1-B1,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_3
33:f72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f87(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,0):|:1+Arg_3<=Arg_10
34:f72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f87(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,C1):|:D1+1<=0 && 1+Arg_3<=Arg_10
35:f72(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f87(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,C1):|:1<=D1 && 1+Arg_3<=Arg_10
15:f87(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,0,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,0,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_12<=0 && 0<=Arg_12
16:f87(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,B1,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_12+1<=0
17:f87(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,B1,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1<=Arg_12
32:f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f44(Arg_0,Arg_1,Arg_2+Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15+1,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10
18:f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,2*Arg_10,Arg_19,Arg_20,Arg_21,0,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
19:f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,2*Arg_10,Arg_19,Arg_20,Arg_21,C1,Arg_23,Arg_24,Arg_25,Arg_26):|:D1+1<=0 && Arg_10<=Arg_4
20:f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,2*Arg_10,Arg_19,Arg_20,Arg_21,C1,Arg_23,Arg_24,Arg_25,Arg_26):|:1<=D1 && Arg_10<=Arg_4
21:f99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,0,Arg_24,Arg_25,Arg_26):|:Arg_12<=0 && 0<=Arg_12
22:f99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,C1,Arg_24,Arg_25,Arg_26):|:Arg_12+1<=0
23:f99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,C1,Arg_24,Arg_25,Arg_26):|:1<=Arg_12
Show Graph
G
f0
f0
f23
f23
f0->f23
t₀
η (Arg_0) = 0
η (Arg_2) = 0
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
η (Arg_6) = 4*Arg_4+3
η (Arg_7) = 4*Arg_4+4
η (Arg_8) = Arg_4
η (Arg_9) = B1
f103
f103
f107
f107
f103->f107
t₂₄
η (Arg_12) = B1
η (Arg_24) = 0
τ = Arg_12<=0 && 0<=Arg_12
f103->f107
t₂₅
η (Arg_12) = B1
η (Arg_24) = C1
τ = Arg_12+1<=0
f103->f107
t₂₆
η (Arg_12) = B1
η (Arg_24) = C1
τ = 1<=Arg_12
f91
f91
f107->f91
t₂₇
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
η (Arg_25) = 0
τ = Arg_12<=0 && 0<=Arg_12
f107->f91
t₂₈
η (Arg_10) = Arg_10+1
η (Arg_25) = B1
τ = Arg_12+1<=0
f107->f91
t₂₉
η (Arg_10) = Arg_10+1
η (Arg_25) = B1
τ = 1<=Arg_12
f117
f117
f117->f117
t₃₀
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_4
f125
f125
f117->f125
t₃₁
τ = 1+Arg_4<=Arg_10
f23->f23
t₁
η (Arg_10) = Arg_10+1
η (Arg_11) = 1
η (Arg_12) = 0
η (Arg_13) = 0
τ = Arg_10<=Arg_3
f23->f23
t₂
η (Arg_0) = Arg_0+B1
η (Arg_10) = Arg_10+1
η (Arg_11) = C1
η (Arg_12) = 1-C1
η (Arg_13) = B1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₃
η (Arg_0) = Arg_0+B1
η (Arg_10) = Arg_10+1
η (Arg_11) = C1
η (Arg_12) = 1-C1
η (Arg_13) = B1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₄₆
τ = 1+Arg_3<=Arg_10
f33->f33
t₄
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_4
f39
f39
f33->f39
t₄₃
τ = Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₄₄
τ = 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₄₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f39
t₅
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_4
f39->f44
t₄₂
τ = 1+Arg_4<=Arg_10
f44->f117
t₄₁
η (Arg_2) = B1
τ = 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₆
τ = Arg_15<=Arg_14
f49
f49
f46->f49
t₇
τ = Arg_16+1<=0 && Arg_17<=0
f46->f49
t₈
τ = 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂
η (Arg_16) = 0
τ = Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₄₀
τ = 1<=Arg_17
f49->f49
t₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_4
f54
f54
f49->f54
t₃₉
τ = 1+Arg_4<=Arg_10
f54->f54
t₁₀
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_4
f60
f60
f54->f60
t₃₈
η (Arg_1) = Arg_17+Arg_3
τ = 1+Arg_4<=Arg_10
f60->f46
t₃₇
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10
f60->f60
t₁₁
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_4
f66->f46
t₃₆
η (Arg_17) = Arg_17+1
τ = 1+Arg_5<=Arg_10
f66->f66
t₁₃
η (Arg_10) = Arg_10+2
τ = Arg_10<=Arg_5
f72->f72
t₁₄
η (Arg_10) = Arg_10+1
η (Arg_18) = 2*Arg_10
η (Arg_19) = B1
η (Arg_20) = 1-B1
τ = Arg_10<=Arg_3
f87
f87
f72->f87
t₃₃
η (Arg_12) = B1
η (Arg_26) = 0
τ = 1+Arg_3<=Arg_10
f72->f87
t₃₄
η (Arg_12) = B1
η (Arg_26) = C1
τ = D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₃₅
η (Arg_12) = B1
η (Arg_26) = C1
τ = 1<=D1 && 1+Arg_3<=Arg_10
f87->f91
t₁₅
η (Arg_12) = 0
η (Arg_21) = 0
τ = Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₆
η (Arg_21) = B1
τ = Arg_12+1<=0
f87->f91
t₁₇
η (Arg_21) = B1
τ = 1<=Arg_12
f91->f44
t₃₂
η (Arg_2) = Arg_2+Arg_0
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10
f99
f99
f91->f99
t₁₈
η (Arg_12) = B1
η (Arg_18) = 2*Arg_10
η (Arg_22) = 0
τ = Arg_10<=Arg_4
f91->f99
t₁₉
η (Arg_12) = B1
η (Arg_18) = 2*Arg_10
η (Arg_22) = C1
τ = D1+1<=0 && Arg_10<=Arg_4
f91->f99
t₂₀
η (Arg_12) = B1
η (Arg_18) = 2*Arg_10
η (Arg_22) = C1
τ = 1<=D1 && Arg_10<=Arg_4
f99->f103
t₂₁
η (Arg_12) = B1
η (Arg_23) = 0
τ = Arg_12<=0 && 0<=Arg_12
f99->f103
t₂₂
η (Arg_12) = B1
η (Arg_23) = C1
τ = Arg_12+1<=0
f99->f103
t₂₃
η (Arg_12) = B1
η (Arg_23) = C1
τ = 1<=Arg_12
Preprocessing
Cut unsatisfiable transition 5: f39->f39
Cut unsatisfiable transition 10: f54->f54
Cut unsatisfiable transition 11: f60->f60
Eliminate variables {Arg_0,Arg_1,Arg_2,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_13,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26} that do not contribute to the problem
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 for location f125
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 for location f44
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 for location f49
Found invariant 1<=0 for location f107
Found invariant 1<=0 for location f99
Found invariant 1<=0 for location f103
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 for location f66
Found invariant 1+Arg_3<=Arg_10 for location f33
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 for location f54
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 for location f72
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 for location f87
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 for location f91
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 for location f46
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 for location f117
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 for location f39
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 for location f60
Cut unsatisfiable transition 104: f103->f107
Cut unsatisfiable transition 105: f103->f107
Cut unsatisfiable transition 106: f103->f107
Cut unsatisfiable transition 107: f107->f91
Cut unsatisfiable transition 108: f107->f91
Cut unsatisfiable transition 109: f107->f91
Cut unsatisfiable transition 110: f117->f117
Cut unsatisfiable transition 127: f49->f49
Cut unsatisfiable transition 133: f72->f72
Cut unsatisfiable transition 140: f91->f99
Cut unsatisfiable transition 141: f91->f99
Cut unsatisfiable transition 142: f91->f99
Cut unsatisfiable transition 144: f99->f103
Cut unsatisfiable transition 145: f99->f103
Cut unsatisfiable transition 146: f99->f103
Cut unreachable locations [f103; f107; f99] from the program graph
Problem after Preprocessing
Start: f0
Program_Vars: Arg_3, Arg_4, Arg_5, Arg_10, Arg_12, Arg_14, Arg_15, Arg_16, Arg_17
Temp_Vars: B1, C1, D1
Locations: f0, f117, f125, f23, f33, f39, f44, f46, f49, f54, f60, f66, f72, f87, f91
Transitions:
103:f0(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f23(2*Arg_4,Arg_4,4*Arg_4,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17)
111:f117(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f125(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
112:f23(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f23(Arg_3,Arg_4,Arg_5,Arg_10+1,0,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_10<=Arg_3
113:f23(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f23(Arg_3,Arg_4,Arg_5,Arg_10+1,1-C1,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=C1 && Arg_10<=Arg_3
114:f23(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f23(Arg_3,Arg_4,Arg_5,Arg_10+1,1-C1,Arg_14,Arg_15,Arg_16,Arg_17):|:C1<=0 && Arg_10<=Arg_3
115:f23(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f33(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_3<=Arg_10
116:f33(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f33(Arg_3,Arg_4,Arg_5,Arg_10+1,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_3<=Arg_10 && Arg_10<=Arg_4
117:f33(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f39(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
118:f33(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f39(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
119:f33(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,0,Arg_17):|:1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
120:f39(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
122:f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f117(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
121:f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
123:f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f49(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
124:f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f49(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
125:f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f66(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,0,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
126:f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f72(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
128:f49(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f54(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
129:f54(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f60(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
130:f60(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17+1):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
132:f66(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17+1):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
131:f66(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f66(Arg_3,Arg_4,Arg_5,Arg_10+2,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
134:f72(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f87(Arg_3,Arg_4,Arg_5,Arg_10,B1,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
135:f72(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f87(Arg_3,Arg_4,Arg_5,Arg_10,B1,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
136:f72(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f87(Arg_3,Arg_4,Arg_5,Arg_10,B1,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
137:f87(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f91(Arg_3,Arg_4,Arg_5,Arg_10,0,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
138:f87(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f91(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
139:f87(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f91(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
143:f91(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15+1,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 112:f23(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f23(Arg_3,Arg_4,Arg_5,Arg_10+1,0,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_10<=Arg_3 of depth 1:
new bound:
2*Arg_4+Arg_10+1 {O(n)}
MPRF:
f23 [Arg_3+1-Arg_10 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 113:f23(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f23(Arg_3,Arg_4,Arg_5,Arg_10+1,1-C1,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=C1 && Arg_10<=Arg_3 of depth 1:
new bound:
2*Arg_4+Arg_10+1 {O(n)}
MPRF:
f23 [Arg_3+1-Arg_10 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 114:f23(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f23(Arg_3,Arg_4,Arg_5,Arg_10+1,1-C1,Arg_14,Arg_15,Arg_16,Arg_17):|:C1<=0 && Arg_10<=Arg_3 of depth 1:
new bound:
2*Arg_4+Arg_10+1 {O(n)}
MPRF:
f23 [Arg_3+1-Arg_10 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 116:f33(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f33(Arg_3,Arg_4,Arg_5,Arg_10+1,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_3<=Arg_10 && Arg_10<=Arg_4 of depth 1:
new bound:
19*Arg_10+28*Arg_4+10 {O(n)}
MPRF:
f33 [Arg_4+1-Arg_10 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 121:f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f49 [Arg_14-Arg_15 ]
f54 [Arg_14-Arg_15 ]
f60 [Arg_14-Arg_15 ]
f66 [Arg_14-Arg_15 ]
f46 [Arg_14-Arg_15 ]
f72 [Arg_14-Arg_15 ]
f87 [Arg_14-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f44 [Arg_14+1-Arg_15 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 123:f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f49(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f49 [-Arg_17 ]
f54 [-Arg_17 ]
f60 [-Arg_17 ]
f66 [-Arg_17 ]
f46 [1-Arg_17 ]
f72 [1-Arg_17 ]
f87 [1-Arg_17 ]
f91 [1-Arg_17 ]
f44 [1-Arg_17 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 124:f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f49(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f49 [-Arg_17 ]
f54 [-Arg_17 ]
f60 [-Arg_17 ]
f66 [-Arg_17 ]
f46 [1-Arg_17 ]
f72 [1-Arg_17 ]
f87 [1-Arg_17 ]
f91 [1-Arg_17 ]
f44 [1-Arg_17 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 125:f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f66(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,0,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f49 [1-Arg_17 ]
f54 [1-Arg_17 ]
f60 [1-Arg_17 ]
f66 [-Arg_17 ]
f46 [1-Arg_17 ]
f72 [1-Arg_17 ]
f87 [1-Arg_17 ]
f91 [1-Arg_17 ]
f44 [1-Arg_17 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 126:f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f72(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f49 [Arg_14+1-Arg_15 ]
f54 [Arg_14+1-Arg_15 ]
f60 [Arg_14+1-Arg_15 ]
f66 [Arg_14+1-Arg_15 ]
f46 [Arg_14+1-Arg_15 ]
f72 [Arg_14-Arg_15 ]
f87 [Arg_14-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f44 [Arg_14+1-Arg_15 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 128:f49(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f54(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f49 [1-Arg_17 ]
f54 [-Arg_17 ]
f60 [-Arg_17 ]
f66 [-Arg_17 ]
f46 [1-Arg_17 ]
f72 [1-Arg_17 ]
f87 [1-Arg_17 ]
f91 [1-Arg_17 ]
f44 [1-Arg_17 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 129:f54(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f60(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f49 [1-Arg_17 ]
f54 [1-Arg_17 ]
f60 [-Arg_17 ]
f66 [-Arg_17 ]
f46 [1-Arg_17 ]
f72 [1-Arg_17 ]
f87 [1-Arg_17 ]
f91 [1-Arg_17 ]
f44 [1-Arg_17 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 130:f60(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17+1):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f49 [1-Arg_17 ]
f54 [1-Arg_17 ]
f60 [1-Arg_17 ]
f66 [-Arg_17 ]
f46 [1-Arg_17 ]
f72 [1-Arg_17 ]
f87 [1-Arg_17 ]
f91 [1-Arg_17 ]
f44 [1-Arg_17 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 131:f66(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f66(Arg_3,Arg_4,Arg_5,Arg_10+2,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5 of depth 1:
new bound:
171*Arg_10+732*Arg_4+84 {O(n)}
MPRF:
f49 [2*Arg_5-Arg_4-Arg_10 ]
f54 [2*Arg_5-Arg_4-Arg_10 ]
f60 [2*Arg_5-Arg_4-Arg_10 ]
f66 [2*Arg_5-Arg_4-Arg_10 ]
f46 [2*Arg_5-Arg_4-Arg_10 ]
f72 [2*Arg_5-Arg_4-Arg_10 ]
f87 [2*Arg_5-Arg_4-Arg_10 ]
f91 [2*Arg_5-Arg_4-Arg_10 ]
f44 [2*Arg_5-Arg_4-Arg_10 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 132:f66(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f46(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17+1):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f49 [-Arg_17 ]
f54 [-Arg_17 ]
f60 [-Arg_17 ]
f66 [1-Arg_17 ]
f46 [1-Arg_17 ]
f72 [1-Arg_17 ]
f87 [1-Arg_17 ]
f91 [1-Arg_17 ]
f44 [1-Arg_17 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 134:f72(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f87(Arg_3,Arg_4,Arg_5,Arg_10,B1,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f49 [Arg_14+1-Arg_15 ]
f54 [Arg_14+1-Arg_15 ]
f60 [Arg_14+1-Arg_15 ]
f66 [Arg_14+1-Arg_15 ]
f46 [Arg_14+1-Arg_15 ]
f72 [Arg_14+1-Arg_15 ]
f87 [Arg_14-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f44 [Arg_14+1-Arg_15 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 135:f72(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f87(Arg_3,Arg_4,Arg_5,Arg_10,B1,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f49 [Arg_14+1-Arg_15 ]
f54 [Arg_14+1-Arg_15 ]
f60 [Arg_14+1-Arg_15 ]
f66 [Arg_14+1-Arg_15 ]
f46 [Arg_14+1-Arg_15 ]
f72 [Arg_14+1-Arg_15 ]
f87 [Arg_14-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f44 [Arg_14+1-Arg_15 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 136:f72(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f87(Arg_3,Arg_4,Arg_5,Arg_10,B1,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f49 [Arg_14+1-Arg_15 ]
f54 [Arg_14+1-Arg_15 ]
f60 [Arg_14+1-Arg_15 ]
f66 [Arg_14+1-Arg_15 ]
f46 [Arg_14+1-Arg_15 ]
f72 [Arg_14+1-Arg_15 ]
f87 [Arg_14-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f44 [Arg_14+1-Arg_15 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 137:f87(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f91(Arg_3,Arg_4,Arg_5,Arg_10,0,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f49 [Arg_14+1-Arg_15 ]
f54 [Arg_14+1-Arg_15 ]
f60 [Arg_14+1-Arg_15 ]
f66 [Arg_14+1-Arg_15 ]
f46 [Arg_14+1-Arg_15 ]
f72 [Arg_14+1-Arg_15 ]
f87 [Arg_14+1-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f44 [Arg_14+1-Arg_15 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 138:f87(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f91(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f49 [Arg_14+1-Arg_15 ]
f54 [Arg_14+1-Arg_15 ]
f60 [Arg_14+1-Arg_15 ]
f66 [Arg_14+1-Arg_15 ]
f46 [Arg_14+1-Arg_15 ]
f72 [Arg_14+1-Arg_15 ]
f87 [Arg_14+1-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f44 [Arg_14+1-Arg_15 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 139:f87(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f91(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f49 [Arg_14+1-Arg_15 ]
f54 [Arg_14+1-Arg_15 ]
f60 [Arg_14+1-Arg_15 ]
f66 [Arg_14+1-Arg_15 ]
f46 [Arg_14+1-Arg_15 ]
f72 [Arg_14+1-Arg_15 ]
f87 [Arg_14+1-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f44 [Arg_14+1-Arg_15 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 143:f91(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15+1,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f49 [Arg_14+1-Arg_15 ]
f54 [Arg_14+1-Arg_15 ]
f60 [Arg_14+1-Arg_15 ]
f66 [Arg_14+1-Arg_15 ]
f46 [Arg_14+1-Arg_15 ]
f72 [Arg_14+1-Arg_15 ]
f87 [Arg_14+1-Arg_15 ]
f91 [Arg_14+1-Arg_15 ]
f44 [Arg_14+1-Arg_15 ]
Show Graph
G
f0
f0
f23
f23
f0->f23
t₁₀₃
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f117
f117
f125
f125
f117->f125
t₁₁₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f23->f23
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f23->f23
t₁₁₃
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f23->f23
t₁₁₄
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f33
f33
f23->f33
t₁₁₅
τ = 1+Arg_3<=Arg_10
f33->f33
t₁₁₆
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f39
f39
f33->f39
t₁₁₇
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f33->f39
t₁₁₈
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f44
f44
f33->f44
t₁₁₉
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f39->f44
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f44->f117
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f46
f46
f44->f46
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f49
f49
f46->f49
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f46->f49
t₁₂₄
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f66
f66
f46->f66
t₁₂₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f72
f72
f46->f72
t₁₂₆
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f54
f54
f49->f54
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60
f60
f54->f60
t₁₂₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f60->f46
t₁₃₀
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f66->f46
t₁₃₂
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f66->f66
t₁₃₁
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f87
f87
f72->f87
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f72->f87
t₁₃₆
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f87->f91
t₁₃₇
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f87->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f87->f91
t₁₃₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f44
t₁₄₃
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
All Bounds
Timebounds
Overall timebound:193*Arg_10+420*Arg_17+540*Arg_14+540*Arg_15+766*Arg_4+137 {O(n)}
103: f0->f23: 1 {O(1)}
111: f117->f125: 1 {O(1)}
112: f23->f23: 2*Arg_4+Arg_10+1 {O(n)}
113: f23->f23: 2*Arg_4+Arg_10+1 {O(n)}
114: f23->f23: 2*Arg_4+Arg_10+1 {O(n)}
115: f23->f33: 1 {O(1)}
116: f33->f33: 19*Arg_10+28*Arg_4+10 {O(n)}
117: f33->f39: 1 {O(1)}
118: f33->f39: 1 {O(1)}
119: f33->f44: 1 {O(1)}
120: f39->f44: 1 {O(1)}
121: f44->f46: 60*Arg_14+60*Arg_15+2 {O(n)}
122: f44->f117: 1 {O(1)}
123: f46->f49: 60*Arg_17+2 {O(n)}
124: f46->f49: 60*Arg_17+2 {O(n)}
125: f46->f66: 60*Arg_17+2 {O(n)}
126: f46->f72: 60*Arg_14+60*Arg_15+2 {O(n)}
128: f49->f54: 60*Arg_17+2 {O(n)}
129: f54->f60: 60*Arg_17+2 {O(n)}
130: f60->f46: 60*Arg_17+2 {O(n)}
131: f66->f66: 171*Arg_10+732*Arg_4+84 {O(n)}
132: f66->f46: 60*Arg_17+2 {O(n)}
134: f72->f87: 60*Arg_14+60*Arg_15+2 {O(n)}
135: f72->f87: 60*Arg_14+60*Arg_15+2 {O(n)}
136: f72->f87: 60*Arg_14+60*Arg_15+2 {O(n)}
137: f87->f91: 60*Arg_14+60*Arg_15+2 {O(n)}
138: f87->f91: 60*Arg_14+60*Arg_15+2 {O(n)}
139: f87->f91: 60*Arg_14+60*Arg_15+2 {O(n)}
143: f91->f44: 60*Arg_14+60*Arg_15+2 {O(n)}
Costbounds
Overall costbound: 193*Arg_10+420*Arg_17+540*Arg_14+540*Arg_15+766*Arg_4+137 {O(n)}
103: f0->f23: 1 {O(1)}
111: f117->f125: 1 {O(1)}
112: f23->f23: 2*Arg_4+Arg_10+1 {O(n)}
113: f23->f23: 2*Arg_4+Arg_10+1 {O(n)}
114: f23->f23: 2*Arg_4+Arg_10+1 {O(n)}
115: f23->f33: 1 {O(1)}
116: f33->f33: 19*Arg_10+28*Arg_4+10 {O(n)}
117: f33->f39: 1 {O(1)}
118: f33->f39: 1 {O(1)}
119: f33->f44: 1 {O(1)}
120: f39->f44: 1 {O(1)}
121: f44->f46: 60*Arg_14+60*Arg_15+2 {O(n)}
122: f44->f117: 1 {O(1)}
123: f46->f49: 60*Arg_17+2 {O(n)}
124: f46->f49: 60*Arg_17+2 {O(n)}
125: f46->f66: 60*Arg_17+2 {O(n)}
126: f46->f72: 60*Arg_14+60*Arg_15+2 {O(n)}
128: f49->f54: 60*Arg_17+2 {O(n)}
129: f54->f60: 60*Arg_17+2 {O(n)}
130: f60->f46: 60*Arg_17+2 {O(n)}
131: f66->f66: 171*Arg_10+732*Arg_4+84 {O(n)}
132: f66->f46: 60*Arg_17+2 {O(n)}
134: f72->f87: 60*Arg_14+60*Arg_15+2 {O(n)}
135: f72->f87: 60*Arg_14+60*Arg_15+2 {O(n)}
136: f72->f87: 60*Arg_14+60*Arg_15+2 {O(n)}
137: f87->f91: 60*Arg_14+60*Arg_15+2 {O(n)}
138: f87->f91: 60*Arg_14+60*Arg_15+2 {O(n)}
139: f87->f91: 60*Arg_14+60*Arg_15+2 {O(n)}
143: f91->f44: 60*Arg_14+60*Arg_15+2 {O(n)}
Sizebounds
103: f0->f23, Arg_3: 2*Arg_4 {O(n)}
103: f0->f23, Arg_4: Arg_4 {O(n)}
103: f0->f23, Arg_5: 4*Arg_4 {O(n)}
103: f0->f23, Arg_10: Arg_10 {O(n)}
103: f0->f23, Arg_12: Arg_12 {O(n)}
103: f0->f23, Arg_14: Arg_14 {O(n)}
103: f0->f23, Arg_15: Arg_15 {O(n)}
103: f0->f23, Arg_16: Arg_16 {O(n)}
103: f0->f23, Arg_17: Arg_17 {O(n)}
111: f117->f125, Arg_3: 240*Arg_4 {O(n)}
111: f117->f125, Arg_4: 120*Arg_4 {O(n)}
111: f117->f125, Arg_5: 480*Arg_4 {O(n)}
111: f117->f125, Arg_10: 1848*Arg_4+684*Arg_10+336 {O(n)}
111: f117->f125, Arg_14: 120*Arg_14 {O(n)}
111: f117->f125, Arg_15: 180*Arg_15+60*Arg_14+2 {O(n)}
111: f117->f125, Arg_16: 80*Arg_16 {O(n)}
111: f117->f125, Arg_17: 120*Arg_17+1 {O(n)}
112: f23->f23, Arg_3: 6*Arg_4 {O(n)}
112: f23->f23, Arg_4: 3*Arg_4 {O(n)}
112: f23->f23, Arg_5: 12*Arg_4 {O(n)}
112: f23->f23, Arg_10: 6*Arg_10+6*Arg_4+3 {O(n)}
112: f23->f23, Arg_12: 0 {O(1)}
112: f23->f23, Arg_14: 3*Arg_14 {O(n)}
112: f23->f23, Arg_15: 3*Arg_15 {O(n)}
112: f23->f23, Arg_16: 3*Arg_16 {O(n)}
112: f23->f23, Arg_17: 3*Arg_17 {O(n)}
113: f23->f23, Arg_3: 6*Arg_4 {O(n)}
113: f23->f23, Arg_4: 3*Arg_4 {O(n)}
113: f23->f23, Arg_5: 12*Arg_4 {O(n)}
113: f23->f23, Arg_10: 6*Arg_10+6*Arg_4+3 {O(n)}
113: f23->f23, Arg_14: 3*Arg_14 {O(n)}
113: f23->f23, Arg_15: 3*Arg_15 {O(n)}
113: f23->f23, Arg_16: 3*Arg_16 {O(n)}
113: f23->f23, Arg_17: 3*Arg_17 {O(n)}
114: f23->f23, Arg_3: 6*Arg_4 {O(n)}
114: f23->f23, Arg_4: 3*Arg_4 {O(n)}
114: f23->f23, Arg_5: 12*Arg_4 {O(n)}
114: f23->f23, Arg_10: 6*Arg_10+6*Arg_4+3 {O(n)}
114: f23->f23, Arg_14: 3*Arg_14 {O(n)}
114: f23->f23, Arg_15: 3*Arg_15 {O(n)}
114: f23->f23, Arg_16: 3*Arg_16 {O(n)}
114: f23->f23, Arg_17: 3*Arg_17 {O(n)}
115: f23->f33, Arg_3: 20*Arg_4 {O(n)}
115: f23->f33, Arg_4: 10*Arg_4 {O(n)}
115: f23->f33, Arg_5: 40*Arg_4 {O(n)}
115: f23->f33, Arg_10: 18*Arg_4+19*Arg_10+9 {O(n)}
115: f23->f33, Arg_14: 10*Arg_14 {O(n)}
115: f23->f33, Arg_15: 10*Arg_15 {O(n)}
115: f23->f33, Arg_16: 10*Arg_16 {O(n)}
115: f23->f33, Arg_17: 10*Arg_17 {O(n)}
116: f33->f33, Arg_3: 20*Arg_4 {O(n)}
116: f33->f33, Arg_4: 10*Arg_4 {O(n)}
116: f33->f33, Arg_5: 40*Arg_4 {O(n)}
116: f33->f33, Arg_10: 38*Arg_10+46*Arg_4+19 {O(n)}
116: f33->f33, Arg_14: 10*Arg_14 {O(n)}
116: f33->f33, Arg_15: 10*Arg_15 {O(n)}
116: f33->f33, Arg_16: 10*Arg_16 {O(n)}
116: f33->f33, Arg_17: 10*Arg_17 {O(n)}
117: f33->f39, Arg_3: 40*Arg_4 {O(n)}
117: f33->f39, Arg_4: 20*Arg_4 {O(n)}
117: f33->f39, Arg_5: 80*Arg_4 {O(n)}
117: f33->f39, Arg_10: 57*Arg_10+64*Arg_4+28 {O(n)}
117: f33->f39, Arg_14: 20*Arg_14 {O(n)}
117: f33->f39, Arg_15: 20*Arg_15 {O(n)}
117: f33->f39, Arg_16: 20*Arg_16 {O(n)}
117: f33->f39, Arg_17: 20*Arg_17 {O(n)}
118: f33->f39, Arg_3: 40*Arg_4 {O(n)}
118: f33->f39, Arg_4: 20*Arg_4 {O(n)}
118: f33->f39, Arg_5: 80*Arg_4 {O(n)}
118: f33->f39, Arg_10: 57*Arg_10+64*Arg_4+28 {O(n)}
118: f33->f39, Arg_14: 20*Arg_14 {O(n)}
118: f33->f39, Arg_15: 20*Arg_15 {O(n)}
118: f33->f39, Arg_16: 20*Arg_16 {O(n)}
118: f33->f39, Arg_17: 20*Arg_17 {O(n)}
119: f33->f44, Arg_3: 40*Arg_4 {O(n)}
119: f33->f44, Arg_4: 20*Arg_4 {O(n)}
119: f33->f44, Arg_5: 80*Arg_4 {O(n)}
119: f33->f44, Arg_10: 57*Arg_10+64*Arg_4+28 {O(n)}
119: f33->f44, Arg_14: 20*Arg_14 {O(n)}
119: f33->f44, Arg_15: 20*Arg_15 {O(n)}
119: f33->f44, Arg_16: 0 {O(1)}
119: f33->f44, Arg_17: 20*Arg_17 {O(n)}
120: f39->f44, Arg_3: 80*Arg_4 {O(n)}
120: f39->f44, Arg_4: 40*Arg_4 {O(n)}
120: f39->f44, Arg_5: 160*Arg_4 {O(n)}
120: f39->f44, Arg_10: 114*Arg_10+128*Arg_4+56 {O(n)}
120: f39->f44, Arg_14: 40*Arg_14 {O(n)}
120: f39->f44, Arg_15: 40*Arg_15 {O(n)}
120: f39->f44, Arg_16: 40*Arg_16 {O(n)}
120: f39->f44, Arg_17: 40*Arg_17 {O(n)}
121: f44->f46, Arg_3: 120*Arg_4 {O(n)}
121: f44->f46, Arg_4: 60*Arg_4 {O(n)}
121: f44->f46, Arg_5: 240*Arg_4 {O(n)}
121: f44->f46, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
121: f44->f46, Arg_14: 60*Arg_14 {O(n)}
121: f44->f46, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
121: f44->f46, Arg_16: 40*Arg_16 {O(n)}
121: f44->f46, Arg_17: 60*Arg_17+1 {O(n)}
122: f44->f117, Arg_3: 240*Arg_4 {O(n)}
122: f44->f117, Arg_4: 120*Arg_4 {O(n)}
122: f44->f117, Arg_5: 480*Arg_4 {O(n)}
122: f44->f117, Arg_10: 1848*Arg_4+684*Arg_10+336 {O(n)}
122: f44->f117, Arg_14: 120*Arg_14 {O(n)}
122: f44->f117, Arg_15: 180*Arg_15+60*Arg_14+2 {O(n)}
122: f44->f117, Arg_16: 80*Arg_16 {O(n)}
122: f44->f117, Arg_17: 120*Arg_17+1 {O(n)}
123: f46->f49, Arg_3: 120*Arg_4 {O(n)}
123: f46->f49, Arg_4: 60*Arg_4 {O(n)}
123: f46->f49, Arg_5: 240*Arg_4 {O(n)}
123: f46->f49, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
123: f46->f49, Arg_14: 60*Arg_14 {O(n)}
123: f46->f49, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
123: f46->f49, Arg_16: 40*Arg_16 {O(n)}
123: f46->f49, Arg_17: 60*Arg_17+1 {O(n)}
124: f46->f49, Arg_3: 120*Arg_4 {O(n)}
124: f46->f49, Arg_4: 60*Arg_4 {O(n)}
124: f46->f49, Arg_5: 240*Arg_4 {O(n)}
124: f46->f49, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
124: f46->f49, Arg_14: 60*Arg_14 {O(n)}
124: f46->f49, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
124: f46->f49, Arg_16: 40*Arg_16 {O(n)}
124: f46->f49, Arg_17: 60*Arg_17+1 {O(n)}
125: f46->f66, Arg_3: 120*Arg_4 {O(n)}
125: f46->f66, Arg_4: 60*Arg_4 {O(n)}
125: f46->f66, Arg_5: 240*Arg_4 {O(n)}
125: f46->f66, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
125: f46->f66, Arg_14: 60*Arg_14 {O(n)}
125: f46->f66, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
125: f46->f66, Arg_16: 0 {O(1)}
125: f46->f66, Arg_17: 60*Arg_17+1 {O(n)}
126: f46->f72, Arg_3: 120*Arg_4 {O(n)}
126: f46->f72, Arg_4: 60*Arg_4 {O(n)}
126: f46->f72, Arg_5: 240*Arg_4 {O(n)}
126: f46->f72, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
126: f46->f72, Arg_14: 60*Arg_14 {O(n)}
126: f46->f72, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
126: f46->f72, Arg_16: 40*Arg_16 {O(n)}
126: f46->f72, Arg_17: 60*Arg_17+1 {O(n)}
128: f49->f54, Arg_3: 120*Arg_4 {O(n)}
128: f49->f54, Arg_4: 60*Arg_4 {O(n)}
128: f49->f54, Arg_5: 240*Arg_4 {O(n)}
128: f49->f54, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
128: f49->f54, Arg_14: 60*Arg_14 {O(n)}
128: f49->f54, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
128: f49->f54, Arg_16: 40*Arg_16 {O(n)}
128: f49->f54, Arg_17: 60*Arg_17+1 {O(n)}
129: f54->f60, Arg_3: 120*Arg_4 {O(n)}
129: f54->f60, Arg_4: 60*Arg_4 {O(n)}
129: f54->f60, Arg_5: 240*Arg_4 {O(n)}
129: f54->f60, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
129: f54->f60, Arg_14: 60*Arg_14 {O(n)}
129: f54->f60, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
129: f54->f60, Arg_16: 40*Arg_16 {O(n)}
129: f54->f60, Arg_17: 60*Arg_17+1 {O(n)}
130: f60->f46, Arg_3: 120*Arg_4 {O(n)}
130: f60->f46, Arg_4: 60*Arg_4 {O(n)}
130: f60->f46, Arg_5: 240*Arg_4 {O(n)}
130: f60->f46, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
130: f60->f46, Arg_14: 60*Arg_14 {O(n)}
130: f60->f46, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
130: f60->f46, Arg_16: 40*Arg_16 {O(n)}
130: f60->f46, Arg_17: 60*Arg_17+1 {O(n)}
131: f66->f66, Arg_3: 120*Arg_4 {O(n)}
131: f66->f66, Arg_4: 60*Arg_4 {O(n)}
131: f66->f66, Arg_5: 240*Arg_4 {O(n)}
131: f66->f66, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
131: f66->f66, Arg_14: 60*Arg_14 {O(n)}
131: f66->f66, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
131: f66->f66, Arg_16: 0 {O(1)}
131: f66->f66, Arg_17: 60*Arg_17+1 {O(n)}
132: f66->f46, Arg_3: 120*Arg_4 {O(n)}
132: f66->f46, Arg_4: 60*Arg_4 {O(n)}
132: f66->f46, Arg_5: 240*Arg_4 {O(n)}
132: f66->f46, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
132: f66->f46, Arg_14: 60*Arg_14 {O(n)}
132: f66->f46, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
132: f66->f46, Arg_16: 0 {O(1)}
132: f66->f46, Arg_17: 60*Arg_17+1 {O(n)}
134: f72->f87, Arg_3: 120*Arg_4 {O(n)}
134: f72->f87, Arg_4: 60*Arg_4 {O(n)}
134: f72->f87, Arg_5: 240*Arg_4 {O(n)}
134: f72->f87, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
134: f72->f87, Arg_14: 60*Arg_14 {O(n)}
134: f72->f87, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
134: f72->f87, Arg_16: 40*Arg_16 {O(n)}
134: f72->f87, Arg_17: 60*Arg_17+1 {O(n)}
135: f72->f87, Arg_3: 120*Arg_4 {O(n)}
135: f72->f87, Arg_4: 60*Arg_4 {O(n)}
135: f72->f87, Arg_5: 240*Arg_4 {O(n)}
135: f72->f87, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
135: f72->f87, Arg_14: 60*Arg_14 {O(n)}
135: f72->f87, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
135: f72->f87, Arg_16: 40*Arg_16 {O(n)}
135: f72->f87, Arg_17: 60*Arg_17+1 {O(n)}
136: f72->f87, Arg_3: 120*Arg_4 {O(n)}
136: f72->f87, Arg_4: 60*Arg_4 {O(n)}
136: f72->f87, Arg_5: 240*Arg_4 {O(n)}
136: f72->f87, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
136: f72->f87, Arg_14: 60*Arg_14 {O(n)}
136: f72->f87, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
136: f72->f87, Arg_16: 40*Arg_16 {O(n)}
136: f72->f87, Arg_17: 60*Arg_17+1 {O(n)}
137: f87->f91, Arg_3: 120*Arg_4 {O(n)}
137: f87->f91, Arg_4: 60*Arg_4 {O(n)}
137: f87->f91, Arg_5: 240*Arg_4 {O(n)}
137: f87->f91, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
137: f87->f91, Arg_12: 0 {O(1)}
137: f87->f91, Arg_14: 60*Arg_14 {O(n)}
137: f87->f91, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
137: f87->f91, Arg_16: 40*Arg_16 {O(n)}
137: f87->f91, Arg_17: 60*Arg_17+1 {O(n)}
138: f87->f91, Arg_3: 120*Arg_4 {O(n)}
138: f87->f91, Arg_4: 60*Arg_4 {O(n)}
138: f87->f91, Arg_5: 240*Arg_4 {O(n)}
138: f87->f91, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
138: f87->f91, Arg_14: 60*Arg_14 {O(n)}
138: f87->f91, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
138: f87->f91, Arg_16: 40*Arg_16 {O(n)}
138: f87->f91, Arg_17: 60*Arg_17+1 {O(n)}
139: f87->f91, Arg_3: 120*Arg_4 {O(n)}
139: f87->f91, Arg_4: 60*Arg_4 {O(n)}
139: f87->f91, Arg_5: 240*Arg_4 {O(n)}
139: f87->f91, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
139: f87->f91, Arg_14: 60*Arg_14 {O(n)}
139: f87->f91, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
139: f87->f91, Arg_16: 40*Arg_16 {O(n)}
139: f87->f91, Arg_17: 60*Arg_17+1 {O(n)}
143: f91->f44, Arg_3: 120*Arg_4 {O(n)}
143: f91->f44, Arg_4: 60*Arg_4 {O(n)}
143: f91->f44, Arg_5: 240*Arg_4 {O(n)}
143: f91->f44, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
143: f91->f44, Arg_14: 60*Arg_14 {O(n)}
143: f91->f44, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
143: f91->f44, Arg_16: 40*Arg_16 {O(n)}
143: f91->f44, Arg_17: 60*Arg_17+1 {O(n)}