Initial Problem
Start: f2
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24, Arg_25, Arg_26
Temp_Vars: B1, C1, D1
Locations: f1, f103, f107, f118, f13, f2, f24, f31, f37, f40, f44, f50, f57, f64, f71, f86, f91, f99
Transitions:
24:f103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,0,Arg_25,Arg_26):|:Arg_12<=0 && 0<=Arg_12
25:f103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,C1,Arg_25,Arg_26):|:Arg_12+1<=0
26:f103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,C1,Arg_25,Arg_26):|:1<=Arg_12
27:f107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,0,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,0,Arg_26):|:Arg_12<=0 && 0<=Arg_12
28:f107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,B1,Arg_26):|:Arg_12+1<=0
29:f107(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,B1,Arg_26):|:1<=Arg_12
31:f118(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10
30:f118(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f118(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
1:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,1,0,0,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_3
2:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f13(Arg_0+B1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,C1,1-C1,B1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:2<=C1 && Arg_10<=Arg_3
3:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f13(Arg_0+B1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,C1,1-C1,B1,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:C1<=0 && Arg_10<=Arg_3
46:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_3<=Arg_10
0:f2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f13(0,Arg_1,0,2*Arg_4,Arg_4,4*Arg_4,4*Arg_4+3,4*Arg_4+4,Arg_4,B1,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26)
4:f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
43:f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_16+1<=0 && 1+Arg_4<=Arg_10
44:f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1<=Arg_16 && 1+Arg_4<=Arg_10
45:f24(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,0,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
5:f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
42:f31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10
41:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f118(Arg_0,Arg_1,B1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_14<=Arg_15
6:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_15<=Arg_14
7:f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_16+1<=0 && Arg_17<=0
8:f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1<=Arg_16 && Arg_17<=0
12:f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,0,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
40:f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1<=Arg_17
9:f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
39:f44(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10
10:f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
38:f50(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f57(Arg_0,Arg_17+Arg_3,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10
37:f57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17+1,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10
11:f57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f57(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
36:f64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f40(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17+1,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_5<=Arg_10
13:f64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f64(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+2,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_5
14:f71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,2*Arg_10,B1,1-B1,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_3
33:f71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f86(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,0):|:1+Arg_3<=Arg_10
34:f71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f86(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,C1):|:D1+1<=0 && 1+Arg_3<=Arg_10
35:f71(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f86(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,C1):|:1<=D1 && 1+Arg_3<=Arg_10
15:f86(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,0,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,0,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_12<=0 && 0<=Arg_12
16:f86(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,B1,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_12+1<=0
17:f86(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,B1,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1<=Arg_12
32:f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f37(Arg_0,Arg_1,Arg_2+Arg_0,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15+1,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26):|:1+Arg_4<=Arg_10
18:f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,2*Arg_10,Arg_19,Arg_20,Arg_21,0,Arg_23,Arg_24,Arg_25,Arg_26):|:Arg_10<=Arg_4
19:f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,2*Arg_10,Arg_19,Arg_20,Arg_21,C1,Arg_23,Arg_24,Arg_25,Arg_26):|:D1+1<=0 && Arg_10<=Arg_4
20:f91(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,2*Arg_10,Arg_19,Arg_20,Arg_21,C1,Arg_23,Arg_24,Arg_25,Arg_26):|:1<=D1 && Arg_10<=Arg_4
21:f99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,0,Arg_24,Arg_25,Arg_26):|:Arg_12<=0 && 0<=Arg_12
22:f99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,C1,Arg_24,Arg_25,Arg_26):|:Arg_12+1<=0
23:f99(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26) -> f103(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,B1,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,C1,Arg_24,Arg_25,Arg_26):|:1<=Arg_12
Show Graph
G
f1
f1
f103
f103
f107
f107
f103->f107
t₂₄
η (Arg_12) = B1
η (Arg_24) = 0
τ = Arg_12<=0 && 0<=Arg_12
f103->f107
t₂₅
η (Arg_12) = B1
η (Arg_24) = C1
τ = Arg_12+1<=0
f103->f107
t₂₆
η (Arg_12) = B1
η (Arg_24) = C1
τ = 1<=Arg_12
f91
f91
f107->f91
t₂₇
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
η (Arg_25) = 0
τ = Arg_12<=0 && 0<=Arg_12
f107->f91
t₂₈
η (Arg_10) = Arg_10+1
η (Arg_25) = B1
τ = Arg_12+1<=0
f107->f91
t₂₉
η (Arg_10) = Arg_10+1
η (Arg_25) = B1
τ = 1<=Arg_12
f118
f118
f118->f1
t₃₁
τ = 1+Arg_4<=Arg_10
f118->f118
t₃₀
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_4
f13
f13
f13->f13
t₁
η (Arg_10) = Arg_10+1
η (Arg_11) = 1
η (Arg_12) = 0
η (Arg_13) = 0
τ = Arg_10<=Arg_3
f13->f13
t₂
η (Arg_0) = Arg_0+B1
η (Arg_10) = Arg_10+1
η (Arg_11) = C1
η (Arg_12) = 1-C1
η (Arg_13) = B1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₃
η (Arg_0) = Arg_0+B1
η (Arg_10) = Arg_10+1
η (Arg_11) = C1
η (Arg_12) = 1-C1
η (Arg_13) = B1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₄₆
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₀
η (Arg_0) = 0
η (Arg_2) = 0
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
η (Arg_6) = 4*Arg_4+3
η (Arg_7) = 4*Arg_4+4
η (Arg_8) = Arg_4
η (Arg_9) = B1
f24->f24
t₄
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_4
f31
f31
f24->f31
t₄₃
τ = Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₄₄
τ = 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₄₅
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f31
t₅
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_4
f31->f37
t₄₂
τ = 1+Arg_4<=Arg_10
f37->f118
t₄₁
η (Arg_2) = B1
τ = 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₆
τ = Arg_15<=Arg_14
f44
f44
f40->f44
t₇
τ = Arg_16+1<=0 && Arg_17<=0
f40->f44
t₈
τ = 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂
η (Arg_16) = 0
τ = Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₄₀
τ = 1<=Arg_17
f44->f44
t₉
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_4
f50
f50
f44->f50
t₃₉
τ = 1+Arg_4<=Arg_10
f50->f50
t₁₀
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_4
f57
f57
f50->f57
t₃₈
η (Arg_1) = Arg_17+Arg_3
τ = 1+Arg_4<=Arg_10
f57->f40
t₃₇
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10
f57->f57
t₁₁
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_4
f64->f40
t₃₆
η (Arg_17) = Arg_17+1
τ = 1+Arg_5<=Arg_10
f64->f64
t₁₃
η (Arg_10) = Arg_10+2
τ = Arg_10<=Arg_5
f71->f71
t₁₄
η (Arg_10) = Arg_10+1
η (Arg_18) = 2*Arg_10
η (Arg_19) = B1
η (Arg_20) = 1-B1
τ = Arg_10<=Arg_3
f86
f86
f71->f86
t₃₃
η (Arg_12) = B1
η (Arg_26) = 0
τ = 1+Arg_3<=Arg_10
f71->f86
t₃₄
η (Arg_12) = B1
η (Arg_26) = C1
τ = D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₃₅
η (Arg_12) = B1
η (Arg_26) = C1
τ = 1<=D1 && 1+Arg_3<=Arg_10
f86->f91
t₁₅
η (Arg_12) = 0
η (Arg_21) = 0
τ = Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₆
η (Arg_21) = B1
τ = Arg_12+1<=0
f86->f91
t₁₇
η (Arg_21) = B1
τ = 1<=Arg_12
f91->f37
t₃₂
η (Arg_2) = Arg_2+Arg_0
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10
f99
f99
f91->f99
t₁₈
η (Arg_12) = B1
η (Arg_18) = 2*Arg_10
η (Arg_22) = 0
τ = Arg_10<=Arg_4
f91->f99
t₁₉
η (Arg_12) = B1
η (Arg_18) = 2*Arg_10
η (Arg_22) = C1
τ = D1+1<=0 && Arg_10<=Arg_4
f91->f99
t₂₀
η (Arg_12) = B1
η (Arg_18) = 2*Arg_10
η (Arg_22) = C1
τ = 1<=D1 && Arg_10<=Arg_4
f99->f103
t₂₁
η (Arg_12) = B1
η (Arg_23) = 0
τ = Arg_12<=0 && 0<=Arg_12
f99->f103
t₂₂
η (Arg_12) = B1
η (Arg_23) = C1
τ = Arg_12+1<=0
f99->f103
t₂₃
η (Arg_12) = B1
η (Arg_23) = C1
τ = 1<=Arg_12
Preprocessing
Cut unsatisfiable transition 5: f31->f31
Cut unsatisfiable transition 10: f50->f50
Cut unsatisfiable transition 11: f57->f57
Eliminate variables {Arg_0,Arg_1,Arg_2,Arg_6,Arg_7,Arg_8,Arg_9,Arg_11,Arg_13,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26} that do not contribute to the problem
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 for location f50
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 for location f44
Found invariant 1<=0 for location f107
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 for location f118
Found invariant 1<=0 for location f99
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 for location f40
Found invariant 1<=0 for location f103
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 for location f31
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 for location f37
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 for location f64
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 for location f71
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 for location f57
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 for location f86
Found invariant 1+Arg_3<=Arg_10 for location f24
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 for location f91
Found invariant 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 for location f1
Cut unsatisfiable transition 102: f103->f107
Cut unsatisfiable transition 103: f103->f107
Cut unsatisfiable transition 104: f103->f107
Cut unsatisfiable transition 105: f107->f91
Cut unsatisfiable transition 106: f107->f91
Cut unsatisfiable transition 107: f107->f91
Cut unsatisfiable transition 108: f118->f118
Cut unsatisfiable transition 126: f44->f44
Cut unsatisfiable transition 132: f71->f71
Cut unsatisfiable transition 139: f91->f99
Cut unsatisfiable transition 140: f91->f99
Cut unsatisfiable transition 141: f91->f99
Cut unsatisfiable transition 143: f99->f103
Cut unsatisfiable transition 144: f99->f103
Cut unsatisfiable transition 145: f99->f103
Cut unreachable locations [f103; f107; f99] from the program graph
Problem after Preprocessing
Start: f2
Program_Vars: Arg_3, Arg_4, Arg_5, Arg_10, Arg_12, Arg_14, Arg_15, Arg_16, Arg_17
Temp_Vars: B1, C1, D1
Locations: f1, f118, f13, f2, f24, f31, f37, f40, f44, f50, f57, f64, f71, f86, f91
Transitions:
109:f118(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f1(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
110:f13(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f13(Arg_3,Arg_4,Arg_5,Arg_10+1,0,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_10<=Arg_3
111:f13(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f13(Arg_3,Arg_4,Arg_5,Arg_10+1,1-C1,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=C1 && Arg_10<=Arg_3
112:f13(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f13(Arg_3,Arg_4,Arg_5,Arg_10+1,1-C1,Arg_14,Arg_15,Arg_16,Arg_17):|:C1<=0 && Arg_10<=Arg_3
113:f13(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f24(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_3<=Arg_10
114:f2(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f13(2*Arg_4,Arg_4,4*Arg_4,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17)
115:f24(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f24(Arg_3,Arg_4,Arg_5,Arg_10+1,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_3<=Arg_10 && Arg_10<=Arg_4
116:f24(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f31(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
117:f24(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f31(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
118:f24(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f37(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,0,Arg_17):|:1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
119:f31(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f37(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
121:f37(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f118(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
120:f37(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
122:f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
123:f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
124:f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f64(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,0,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
125:f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f71(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
127:f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f50(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
128:f50(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f57(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
129:f57(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17+1):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
131:f64(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17+1):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
130:f64(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f64(Arg_3,Arg_4,Arg_5,Arg_10+2,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
133:f71(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f86(Arg_3,Arg_4,Arg_5,Arg_10,B1,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
134:f71(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f86(Arg_3,Arg_4,Arg_5,Arg_10,B1,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
135:f71(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f86(Arg_3,Arg_4,Arg_5,Arg_10,B1,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
136:f86(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f91(Arg_3,Arg_4,Arg_5,Arg_10,0,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
137:f86(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f91(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
138:f86(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f91(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
142:f91(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f37(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15+1,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 110:f13(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f13(Arg_3,Arg_4,Arg_5,Arg_10+1,0,Arg_14,Arg_15,Arg_16,Arg_17):|:Arg_10<=Arg_3 of depth 1:
new bound:
2*Arg_4+Arg_10+1 {O(n)}
MPRF:
f13 [Arg_3+1-Arg_10 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 111:f13(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f13(Arg_3,Arg_4,Arg_5,Arg_10+1,1-C1,Arg_14,Arg_15,Arg_16,Arg_17):|:2<=C1 && Arg_10<=Arg_3 of depth 1:
new bound:
2*Arg_4+Arg_10+1 {O(n)}
MPRF:
f13 [Arg_3+1-Arg_10 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 112:f13(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f13(Arg_3,Arg_4,Arg_5,Arg_10+1,1-C1,Arg_14,Arg_15,Arg_16,Arg_17):|:C1<=0 && Arg_10<=Arg_3 of depth 1:
new bound:
2*Arg_4+Arg_10+1 {O(n)}
MPRF:
f13 [Arg_3+1-Arg_10 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 115:f24(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f24(Arg_3,Arg_4,Arg_5,Arg_10+1,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_3<=Arg_10 && Arg_10<=Arg_4 of depth 1:
new bound:
19*Arg_10+28*Arg_4+10 {O(n)}
MPRF:
f24 [Arg_4+1-Arg_10 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 120:f37(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f44 [Arg_14-Arg_15 ]
f50 [Arg_14-Arg_15 ]
f57 [Arg_14-Arg_15 ]
f64 [Arg_14-Arg_15 ]
f40 [Arg_14-Arg_15 ]
f71 [Arg_14-Arg_15 ]
f86 [Arg_14-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f37 [Arg_14+1-Arg_15 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 122:f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f44 [-Arg_17 ]
f50 [-Arg_17 ]
f57 [-Arg_17 ]
f64 [-Arg_17 ]
f40 [1-Arg_17 ]
f71 [1-Arg_17 ]
f86 [1-Arg_17 ]
f91 [1-Arg_17 ]
f37 [1-Arg_17 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 123:f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f44 [-Arg_17 ]
f50 [-Arg_17 ]
f57 [-Arg_17 ]
f64 [-Arg_17 ]
f40 [1-Arg_17 ]
f71 [1-Arg_17 ]
f86 [1-Arg_17 ]
f91 [1-Arg_17 ]
f37 [1-Arg_17 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 124:f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f64(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,0,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f44 [1-Arg_17 ]
f50 [1-Arg_17 ]
f57 [1-Arg_17 ]
f64 [-Arg_17 ]
f40 [1-Arg_17 ]
f71 [1-Arg_17 ]
f86 [1-Arg_17 ]
f91 [1-Arg_17 ]
f37 [1-Arg_17 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 125:f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f71(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f44 [Arg_14+1-Arg_15 ]
f50 [Arg_14+1-Arg_15 ]
f57 [Arg_14+1-Arg_15 ]
f64 [Arg_14+1-Arg_15 ]
f40 [Arg_14+1-Arg_15 ]
f71 [Arg_14-Arg_15 ]
f86 [Arg_14-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f37 [Arg_14+1-Arg_15 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 127:f44(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f50(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f44 [1-Arg_17 ]
f50 [-Arg_17 ]
f57 [-Arg_17 ]
f64 [-Arg_17 ]
f40 [1-Arg_17 ]
f71 [1-Arg_17 ]
f86 [1-Arg_17 ]
f91 [1-Arg_17 ]
f37 [1-Arg_17 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 128:f50(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f57(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f44 [1-Arg_17 ]
f50 [1-Arg_17 ]
f57 [-Arg_17 ]
f64 [-Arg_17 ]
f40 [1-Arg_17 ]
f71 [1-Arg_17 ]
f86 [1-Arg_17 ]
f91 [1-Arg_17 ]
f37 [1-Arg_17 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 129:f57(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17+1):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f44 [1-Arg_17 ]
f50 [1-Arg_17 ]
f57 [1-Arg_17 ]
f64 [-Arg_17 ]
f40 [1-Arg_17 ]
f71 [1-Arg_17 ]
f86 [1-Arg_17 ]
f91 [1-Arg_17 ]
f37 [1-Arg_17 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 130:f64(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f64(Arg_3,Arg_4,Arg_5,Arg_10+2,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5 of depth 1:
new bound:
171*Arg_10+732*Arg_4+84 {O(n)}
MPRF:
f44 [2*Arg_5-Arg_4-Arg_10 ]
f50 [2*Arg_5-Arg_4-Arg_10 ]
f57 [2*Arg_5-Arg_4-Arg_10 ]
f64 [2*Arg_5-Arg_4-Arg_10 ]
f40 [2*Arg_5-Arg_4-Arg_10 ]
f71 [2*Arg_5-Arg_4-Arg_10 ]
f86 [2*Arg_5-Arg_4-Arg_10 ]
f91 [2*Arg_5-Arg_4-Arg_10 ]
f37 [2*Arg_5-Arg_4-Arg_10 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 131:f64(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f40(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17+1):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10 of depth 1:
new bound:
60*Arg_17+2 {O(n)}
MPRF:
f44 [-Arg_17 ]
f50 [-Arg_17 ]
f57 [-Arg_17 ]
f64 [1-Arg_17 ]
f40 [1-Arg_17 ]
f71 [1-Arg_17 ]
f86 [1-Arg_17 ]
f91 [1-Arg_17 ]
f37 [1-Arg_17 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 133:f71(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f86(Arg_3,Arg_4,Arg_5,Arg_10,B1,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f44 [Arg_14+1-Arg_15 ]
f50 [Arg_14+1-Arg_15 ]
f57 [Arg_14+1-Arg_15 ]
f64 [Arg_14+1-Arg_15 ]
f40 [Arg_14+1-Arg_15 ]
f71 [Arg_14+1-Arg_15 ]
f86 [Arg_14-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f37 [Arg_14+1-Arg_15 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 134:f71(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f86(Arg_3,Arg_4,Arg_5,Arg_10,B1,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f44 [Arg_14+1-Arg_15 ]
f50 [Arg_14+1-Arg_15 ]
f57 [Arg_14+1-Arg_15 ]
f64 [Arg_14+1-Arg_15 ]
f40 [Arg_14+1-Arg_15 ]
f71 [Arg_14+1-Arg_15 ]
f86 [Arg_14-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f37 [Arg_14+1-Arg_15 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 135:f71(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f86(Arg_3,Arg_4,Arg_5,Arg_10,B1,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f44 [Arg_14+1-Arg_15 ]
f50 [Arg_14+1-Arg_15 ]
f57 [Arg_14+1-Arg_15 ]
f64 [Arg_14+1-Arg_15 ]
f40 [Arg_14+1-Arg_15 ]
f71 [Arg_14+1-Arg_15 ]
f86 [Arg_14-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f37 [Arg_14+1-Arg_15 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 136:f86(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f91(Arg_3,Arg_4,Arg_5,Arg_10,0,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f44 [Arg_14+1-Arg_15 ]
f50 [Arg_14+1-Arg_15 ]
f57 [Arg_14+1-Arg_15 ]
f64 [Arg_14+1-Arg_15 ]
f40 [Arg_14+1-Arg_15 ]
f71 [Arg_14+1-Arg_15 ]
f86 [Arg_14+1-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f37 [Arg_14+1-Arg_15 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 137:f86(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f91(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f44 [Arg_14+1-Arg_15 ]
f50 [Arg_14+1-Arg_15 ]
f57 [Arg_14+1-Arg_15 ]
f64 [Arg_14+1-Arg_15 ]
f40 [Arg_14+1-Arg_15 ]
f71 [Arg_14+1-Arg_15 ]
f86 [Arg_14+1-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f37 [Arg_14+1-Arg_15 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 138:f86(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f91(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f44 [Arg_14+1-Arg_15 ]
f50 [Arg_14+1-Arg_15 ]
f57 [Arg_14+1-Arg_15 ]
f64 [Arg_14+1-Arg_15 ]
f40 [Arg_14+1-Arg_15 ]
f71 [Arg_14+1-Arg_15 ]
f86 [Arg_14+1-Arg_15 ]
f91 [Arg_14-Arg_15 ]
f37 [Arg_14+1-Arg_15 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
MPRF for transition 142:f91(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15,Arg_16,Arg_17) -> f37(Arg_3,Arg_4,Arg_5,Arg_10,Arg_12,Arg_14,Arg_15+1,Arg_16,Arg_17):|:1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10 of depth 1:
new bound:
60*Arg_14+60*Arg_15+2 {O(n)}
MPRF:
f44 [Arg_14+1-Arg_15 ]
f50 [Arg_14+1-Arg_15 ]
f57 [Arg_14+1-Arg_15 ]
f64 [Arg_14+1-Arg_15 ]
f40 [Arg_14+1-Arg_15 ]
f71 [Arg_14+1-Arg_15 ]
f86 [Arg_14+1-Arg_15 ]
f91 [Arg_14+1-Arg_15 ]
f37 [Arg_14+1-Arg_15 ]
Show Graph
G
f1
f1
f118
f118
f118->f1
t₁₀₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15 && 1+Arg_4<=Arg_10
f13
f13
f13->f13
t₁₁₀
η (Arg_10) = Arg_10+1
η (Arg_12) = 0
τ = Arg_10<=Arg_3
f13->f13
t₁₁₁
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = 2<=C1 && Arg_10<=Arg_3
f13->f13
t₁₁₂
η (Arg_10) = Arg_10+1
η (Arg_12) = 1-C1
τ = C1<=0 && Arg_10<=Arg_3
f24
f24
f13->f24
t₁₁₃
τ = 1+Arg_3<=Arg_10
f2
f2
f2->f13
t₁₁₄
η (Arg_3) = 2*Arg_4
η (Arg_5) = 4*Arg_4
f24->f24
t₁₁₅
η (Arg_10) = Arg_10+1
τ = 1+Arg_3<=Arg_10 && Arg_10<=Arg_4
f31
f31
f24->f31
t₁₁₆
τ = 1+Arg_3<=Arg_10 && Arg_16+1<=0 && 1+Arg_4<=Arg_10
f24->f31
t₁₁₇
τ = 1+Arg_3<=Arg_10 && 1<=Arg_16 && 1+Arg_4<=Arg_10
f37
f37
f24->f37
t₁₁₈
η (Arg_16) = 0
τ = 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10 && Arg_16<=0 && 0<=Arg_16
f31->f37
t₁₁₉
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_4<=Arg_10
f37->f118
t₁₂₁
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1+Arg_14<=Arg_15
f40
f40
f37->f40
t₁₂₀
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14
f44
f44
f40->f44
t₁₂₂
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_16+1<=0 && Arg_17<=0
f40->f44
t₁₂₃
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_16 && Arg_17<=0
f64
f64
f40->f64
t₁₂₄
η (Arg_16) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && Arg_17<=0 && Arg_16<=0 && 0<=Arg_16
f71
f71
f40->f71
t₁₂₅
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_15<=Arg_14 && 1<=Arg_17
f50
f50
f44->f50
t₁₂₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57
f57
f50->f57
t₁₂₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f57->f40
t₁₂₉
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
f64->f40
t₁₃₁
η (Arg_17) = Arg_17+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && 1+Arg_5<=Arg_10
f64->f64
t₁₃₀
η (Arg_10) = Arg_10+2
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && Arg_17<=0 && Arg_17<=Arg_16 && Arg_16+Arg_17<=0 && Arg_16<=0 && 0<=Arg_16 && Arg_15<=Arg_14 && Arg_10<=Arg_5
f86
f86
f71->f86
t₁₃₃
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₄
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && D1+1<=0 && 1+Arg_3<=Arg_10
f71->f86
t₁₃₅
η (Arg_12) = B1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=D1 && 1+Arg_3<=Arg_10
f91
f91
f86->f91
t₁₃₆
η (Arg_12) = 0
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12<=0 && 0<=Arg_12
f86->f91
t₁₃₇
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && Arg_12+1<=0
f86->f91
t₁₃₈
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1<=Arg_12
f91->f37
t₁₄₂
η (Arg_15) = Arg_15+1
τ = 1+Arg_4<=Arg_10 && 1+Arg_3<=Arg_10 && 1<=Arg_17 && Arg_15<=Arg_14 && 1+Arg_4<=Arg_10
All Bounds
Timebounds
Overall timebound:193*Arg_10+420*Arg_17+540*Arg_14+540*Arg_15+766*Arg_4+137 {O(n)}
109: f118->f1: 1 {O(1)}
110: f13->f13: 2*Arg_4+Arg_10+1 {O(n)}
111: f13->f13: 2*Arg_4+Arg_10+1 {O(n)}
112: f13->f13: 2*Arg_4+Arg_10+1 {O(n)}
113: f13->f24: 1 {O(1)}
114: f2->f13: 1 {O(1)}
115: f24->f24: 19*Arg_10+28*Arg_4+10 {O(n)}
116: f24->f31: 1 {O(1)}
117: f24->f31: 1 {O(1)}
118: f24->f37: 1 {O(1)}
119: f31->f37: 1 {O(1)}
120: f37->f40: 60*Arg_14+60*Arg_15+2 {O(n)}
121: f37->f118: 1 {O(1)}
122: f40->f44: 60*Arg_17+2 {O(n)}
123: f40->f44: 60*Arg_17+2 {O(n)}
124: f40->f64: 60*Arg_17+2 {O(n)}
125: f40->f71: 60*Arg_14+60*Arg_15+2 {O(n)}
127: f44->f50: 60*Arg_17+2 {O(n)}
128: f50->f57: 60*Arg_17+2 {O(n)}
129: f57->f40: 60*Arg_17+2 {O(n)}
130: f64->f64: 171*Arg_10+732*Arg_4+84 {O(n)}
131: f64->f40: 60*Arg_17+2 {O(n)}
133: f71->f86: 60*Arg_14+60*Arg_15+2 {O(n)}
134: f71->f86: 60*Arg_14+60*Arg_15+2 {O(n)}
135: f71->f86: 60*Arg_14+60*Arg_15+2 {O(n)}
136: f86->f91: 60*Arg_14+60*Arg_15+2 {O(n)}
137: f86->f91: 60*Arg_14+60*Arg_15+2 {O(n)}
138: f86->f91: 60*Arg_14+60*Arg_15+2 {O(n)}
142: f91->f37: 60*Arg_14+60*Arg_15+2 {O(n)}
Costbounds
Overall costbound: 193*Arg_10+420*Arg_17+540*Arg_14+540*Arg_15+766*Arg_4+137 {O(n)}
109: f118->f1: 1 {O(1)}
110: f13->f13: 2*Arg_4+Arg_10+1 {O(n)}
111: f13->f13: 2*Arg_4+Arg_10+1 {O(n)}
112: f13->f13: 2*Arg_4+Arg_10+1 {O(n)}
113: f13->f24: 1 {O(1)}
114: f2->f13: 1 {O(1)}
115: f24->f24: 19*Arg_10+28*Arg_4+10 {O(n)}
116: f24->f31: 1 {O(1)}
117: f24->f31: 1 {O(1)}
118: f24->f37: 1 {O(1)}
119: f31->f37: 1 {O(1)}
120: f37->f40: 60*Arg_14+60*Arg_15+2 {O(n)}
121: f37->f118: 1 {O(1)}
122: f40->f44: 60*Arg_17+2 {O(n)}
123: f40->f44: 60*Arg_17+2 {O(n)}
124: f40->f64: 60*Arg_17+2 {O(n)}
125: f40->f71: 60*Arg_14+60*Arg_15+2 {O(n)}
127: f44->f50: 60*Arg_17+2 {O(n)}
128: f50->f57: 60*Arg_17+2 {O(n)}
129: f57->f40: 60*Arg_17+2 {O(n)}
130: f64->f64: 171*Arg_10+732*Arg_4+84 {O(n)}
131: f64->f40: 60*Arg_17+2 {O(n)}
133: f71->f86: 60*Arg_14+60*Arg_15+2 {O(n)}
134: f71->f86: 60*Arg_14+60*Arg_15+2 {O(n)}
135: f71->f86: 60*Arg_14+60*Arg_15+2 {O(n)}
136: f86->f91: 60*Arg_14+60*Arg_15+2 {O(n)}
137: f86->f91: 60*Arg_14+60*Arg_15+2 {O(n)}
138: f86->f91: 60*Arg_14+60*Arg_15+2 {O(n)}
142: f91->f37: 60*Arg_14+60*Arg_15+2 {O(n)}
Sizebounds
109: f118->f1, Arg_3: 240*Arg_4 {O(n)}
109: f118->f1, Arg_4: 120*Arg_4 {O(n)}
109: f118->f1, Arg_5: 480*Arg_4 {O(n)}
109: f118->f1, Arg_10: 1848*Arg_4+684*Arg_10+336 {O(n)}
109: f118->f1, Arg_14: 120*Arg_14 {O(n)}
109: f118->f1, Arg_15: 180*Arg_15+60*Arg_14+2 {O(n)}
109: f118->f1, Arg_16: 80*Arg_16 {O(n)}
109: f118->f1, Arg_17: 120*Arg_17+1 {O(n)}
110: f13->f13, Arg_3: 6*Arg_4 {O(n)}
110: f13->f13, Arg_4: 3*Arg_4 {O(n)}
110: f13->f13, Arg_5: 12*Arg_4 {O(n)}
110: f13->f13, Arg_10: 6*Arg_10+6*Arg_4+3 {O(n)}
110: f13->f13, Arg_12: 0 {O(1)}
110: f13->f13, Arg_14: 3*Arg_14 {O(n)}
110: f13->f13, Arg_15: 3*Arg_15 {O(n)}
110: f13->f13, Arg_16: 3*Arg_16 {O(n)}
110: f13->f13, Arg_17: 3*Arg_17 {O(n)}
111: f13->f13, Arg_3: 6*Arg_4 {O(n)}
111: f13->f13, Arg_4: 3*Arg_4 {O(n)}
111: f13->f13, Arg_5: 12*Arg_4 {O(n)}
111: f13->f13, Arg_10: 6*Arg_10+6*Arg_4+3 {O(n)}
111: f13->f13, Arg_14: 3*Arg_14 {O(n)}
111: f13->f13, Arg_15: 3*Arg_15 {O(n)}
111: f13->f13, Arg_16: 3*Arg_16 {O(n)}
111: f13->f13, Arg_17: 3*Arg_17 {O(n)}
112: f13->f13, Arg_3: 6*Arg_4 {O(n)}
112: f13->f13, Arg_4: 3*Arg_4 {O(n)}
112: f13->f13, Arg_5: 12*Arg_4 {O(n)}
112: f13->f13, Arg_10: 6*Arg_10+6*Arg_4+3 {O(n)}
112: f13->f13, Arg_14: 3*Arg_14 {O(n)}
112: f13->f13, Arg_15: 3*Arg_15 {O(n)}
112: f13->f13, Arg_16: 3*Arg_16 {O(n)}
112: f13->f13, Arg_17: 3*Arg_17 {O(n)}
113: f13->f24, Arg_3: 20*Arg_4 {O(n)}
113: f13->f24, Arg_4: 10*Arg_4 {O(n)}
113: f13->f24, Arg_5: 40*Arg_4 {O(n)}
113: f13->f24, Arg_10: 18*Arg_4+19*Arg_10+9 {O(n)}
113: f13->f24, Arg_14: 10*Arg_14 {O(n)}
113: f13->f24, Arg_15: 10*Arg_15 {O(n)}
113: f13->f24, Arg_16: 10*Arg_16 {O(n)}
113: f13->f24, Arg_17: 10*Arg_17 {O(n)}
114: f2->f13, Arg_3: 2*Arg_4 {O(n)}
114: f2->f13, Arg_4: Arg_4 {O(n)}
114: f2->f13, Arg_5: 4*Arg_4 {O(n)}
114: f2->f13, Arg_10: Arg_10 {O(n)}
114: f2->f13, Arg_12: Arg_12 {O(n)}
114: f2->f13, Arg_14: Arg_14 {O(n)}
114: f2->f13, Arg_15: Arg_15 {O(n)}
114: f2->f13, Arg_16: Arg_16 {O(n)}
114: f2->f13, Arg_17: Arg_17 {O(n)}
115: f24->f24, Arg_3: 20*Arg_4 {O(n)}
115: f24->f24, Arg_4: 10*Arg_4 {O(n)}
115: f24->f24, Arg_5: 40*Arg_4 {O(n)}
115: f24->f24, Arg_10: 38*Arg_10+46*Arg_4+19 {O(n)}
115: f24->f24, Arg_14: 10*Arg_14 {O(n)}
115: f24->f24, Arg_15: 10*Arg_15 {O(n)}
115: f24->f24, Arg_16: 10*Arg_16 {O(n)}
115: f24->f24, Arg_17: 10*Arg_17 {O(n)}
116: f24->f31, Arg_3: 40*Arg_4 {O(n)}
116: f24->f31, Arg_4: 20*Arg_4 {O(n)}
116: f24->f31, Arg_5: 80*Arg_4 {O(n)}
116: f24->f31, Arg_10: 57*Arg_10+64*Arg_4+28 {O(n)}
116: f24->f31, Arg_14: 20*Arg_14 {O(n)}
116: f24->f31, Arg_15: 20*Arg_15 {O(n)}
116: f24->f31, Arg_16: 20*Arg_16 {O(n)}
116: f24->f31, Arg_17: 20*Arg_17 {O(n)}
117: f24->f31, Arg_3: 40*Arg_4 {O(n)}
117: f24->f31, Arg_4: 20*Arg_4 {O(n)}
117: f24->f31, Arg_5: 80*Arg_4 {O(n)}
117: f24->f31, Arg_10: 57*Arg_10+64*Arg_4+28 {O(n)}
117: f24->f31, Arg_14: 20*Arg_14 {O(n)}
117: f24->f31, Arg_15: 20*Arg_15 {O(n)}
117: f24->f31, Arg_16: 20*Arg_16 {O(n)}
117: f24->f31, Arg_17: 20*Arg_17 {O(n)}
118: f24->f37, Arg_3: 40*Arg_4 {O(n)}
118: f24->f37, Arg_4: 20*Arg_4 {O(n)}
118: f24->f37, Arg_5: 80*Arg_4 {O(n)}
118: f24->f37, Arg_10: 57*Arg_10+64*Arg_4+28 {O(n)}
118: f24->f37, Arg_14: 20*Arg_14 {O(n)}
118: f24->f37, Arg_15: 20*Arg_15 {O(n)}
118: f24->f37, Arg_16: 0 {O(1)}
118: f24->f37, Arg_17: 20*Arg_17 {O(n)}
119: f31->f37, Arg_3: 80*Arg_4 {O(n)}
119: f31->f37, Arg_4: 40*Arg_4 {O(n)}
119: f31->f37, Arg_5: 160*Arg_4 {O(n)}
119: f31->f37, Arg_10: 114*Arg_10+128*Arg_4+56 {O(n)}
119: f31->f37, Arg_14: 40*Arg_14 {O(n)}
119: f31->f37, Arg_15: 40*Arg_15 {O(n)}
119: f31->f37, Arg_16: 40*Arg_16 {O(n)}
119: f31->f37, Arg_17: 40*Arg_17 {O(n)}
120: f37->f40, Arg_3: 120*Arg_4 {O(n)}
120: f37->f40, Arg_4: 60*Arg_4 {O(n)}
120: f37->f40, Arg_5: 240*Arg_4 {O(n)}
120: f37->f40, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
120: f37->f40, Arg_14: 60*Arg_14 {O(n)}
120: f37->f40, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
120: f37->f40, Arg_16: 40*Arg_16 {O(n)}
120: f37->f40, Arg_17: 60*Arg_17+1 {O(n)}
121: f37->f118, Arg_3: 240*Arg_4 {O(n)}
121: f37->f118, Arg_4: 120*Arg_4 {O(n)}
121: f37->f118, Arg_5: 480*Arg_4 {O(n)}
121: f37->f118, Arg_10: 1848*Arg_4+684*Arg_10+336 {O(n)}
121: f37->f118, Arg_14: 120*Arg_14 {O(n)}
121: f37->f118, Arg_15: 180*Arg_15+60*Arg_14+2 {O(n)}
121: f37->f118, Arg_16: 80*Arg_16 {O(n)}
121: f37->f118, Arg_17: 120*Arg_17+1 {O(n)}
122: f40->f44, Arg_3: 120*Arg_4 {O(n)}
122: f40->f44, Arg_4: 60*Arg_4 {O(n)}
122: f40->f44, Arg_5: 240*Arg_4 {O(n)}
122: f40->f44, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
122: f40->f44, Arg_14: 60*Arg_14 {O(n)}
122: f40->f44, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
122: f40->f44, Arg_16: 40*Arg_16 {O(n)}
122: f40->f44, Arg_17: 60*Arg_17+1 {O(n)}
123: f40->f44, Arg_3: 120*Arg_4 {O(n)}
123: f40->f44, Arg_4: 60*Arg_4 {O(n)}
123: f40->f44, Arg_5: 240*Arg_4 {O(n)}
123: f40->f44, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
123: f40->f44, Arg_14: 60*Arg_14 {O(n)}
123: f40->f44, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
123: f40->f44, Arg_16: 40*Arg_16 {O(n)}
123: f40->f44, Arg_17: 60*Arg_17+1 {O(n)}
124: f40->f64, Arg_3: 120*Arg_4 {O(n)}
124: f40->f64, Arg_4: 60*Arg_4 {O(n)}
124: f40->f64, Arg_5: 240*Arg_4 {O(n)}
124: f40->f64, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
124: f40->f64, Arg_14: 60*Arg_14 {O(n)}
124: f40->f64, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
124: f40->f64, Arg_16: 0 {O(1)}
124: f40->f64, Arg_17: 60*Arg_17+1 {O(n)}
125: f40->f71, Arg_3: 120*Arg_4 {O(n)}
125: f40->f71, Arg_4: 60*Arg_4 {O(n)}
125: f40->f71, Arg_5: 240*Arg_4 {O(n)}
125: f40->f71, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
125: f40->f71, Arg_14: 60*Arg_14 {O(n)}
125: f40->f71, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
125: f40->f71, Arg_16: 40*Arg_16 {O(n)}
125: f40->f71, Arg_17: 60*Arg_17+1 {O(n)}
127: f44->f50, Arg_3: 120*Arg_4 {O(n)}
127: f44->f50, Arg_4: 60*Arg_4 {O(n)}
127: f44->f50, Arg_5: 240*Arg_4 {O(n)}
127: f44->f50, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
127: f44->f50, Arg_14: 60*Arg_14 {O(n)}
127: f44->f50, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
127: f44->f50, Arg_16: 40*Arg_16 {O(n)}
127: f44->f50, Arg_17: 60*Arg_17+1 {O(n)}
128: f50->f57, Arg_3: 120*Arg_4 {O(n)}
128: f50->f57, Arg_4: 60*Arg_4 {O(n)}
128: f50->f57, Arg_5: 240*Arg_4 {O(n)}
128: f50->f57, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
128: f50->f57, Arg_14: 60*Arg_14 {O(n)}
128: f50->f57, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
128: f50->f57, Arg_16: 40*Arg_16 {O(n)}
128: f50->f57, Arg_17: 60*Arg_17+1 {O(n)}
129: f57->f40, Arg_3: 120*Arg_4 {O(n)}
129: f57->f40, Arg_4: 60*Arg_4 {O(n)}
129: f57->f40, Arg_5: 240*Arg_4 {O(n)}
129: f57->f40, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
129: f57->f40, Arg_14: 60*Arg_14 {O(n)}
129: f57->f40, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
129: f57->f40, Arg_16: 40*Arg_16 {O(n)}
129: f57->f40, Arg_17: 60*Arg_17+1 {O(n)}
130: f64->f64, Arg_3: 120*Arg_4 {O(n)}
130: f64->f64, Arg_4: 60*Arg_4 {O(n)}
130: f64->f64, Arg_5: 240*Arg_4 {O(n)}
130: f64->f64, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
130: f64->f64, Arg_14: 60*Arg_14 {O(n)}
130: f64->f64, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
130: f64->f64, Arg_16: 0 {O(1)}
130: f64->f64, Arg_17: 60*Arg_17+1 {O(n)}
131: f64->f40, Arg_3: 120*Arg_4 {O(n)}
131: f64->f40, Arg_4: 60*Arg_4 {O(n)}
131: f64->f40, Arg_5: 240*Arg_4 {O(n)}
131: f64->f40, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
131: f64->f40, Arg_14: 60*Arg_14 {O(n)}
131: f64->f40, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
131: f64->f40, Arg_16: 0 {O(1)}
131: f64->f40, Arg_17: 60*Arg_17+1 {O(n)}
133: f71->f86, Arg_3: 120*Arg_4 {O(n)}
133: f71->f86, Arg_4: 60*Arg_4 {O(n)}
133: f71->f86, Arg_5: 240*Arg_4 {O(n)}
133: f71->f86, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
133: f71->f86, Arg_14: 60*Arg_14 {O(n)}
133: f71->f86, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
133: f71->f86, Arg_16: 40*Arg_16 {O(n)}
133: f71->f86, Arg_17: 60*Arg_17+1 {O(n)}
134: f71->f86, Arg_3: 120*Arg_4 {O(n)}
134: f71->f86, Arg_4: 60*Arg_4 {O(n)}
134: f71->f86, Arg_5: 240*Arg_4 {O(n)}
134: f71->f86, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
134: f71->f86, Arg_14: 60*Arg_14 {O(n)}
134: f71->f86, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
134: f71->f86, Arg_16: 40*Arg_16 {O(n)}
134: f71->f86, Arg_17: 60*Arg_17+1 {O(n)}
135: f71->f86, Arg_3: 120*Arg_4 {O(n)}
135: f71->f86, Arg_4: 60*Arg_4 {O(n)}
135: f71->f86, Arg_5: 240*Arg_4 {O(n)}
135: f71->f86, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
135: f71->f86, Arg_14: 60*Arg_14 {O(n)}
135: f71->f86, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
135: f71->f86, Arg_16: 40*Arg_16 {O(n)}
135: f71->f86, Arg_17: 60*Arg_17+1 {O(n)}
136: f86->f91, Arg_3: 120*Arg_4 {O(n)}
136: f86->f91, Arg_4: 60*Arg_4 {O(n)}
136: f86->f91, Arg_5: 240*Arg_4 {O(n)}
136: f86->f91, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
136: f86->f91, Arg_12: 0 {O(1)}
136: f86->f91, Arg_14: 60*Arg_14 {O(n)}
136: f86->f91, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
136: f86->f91, Arg_16: 40*Arg_16 {O(n)}
136: f86->f91, Arg_17: 60*Arg_17+1 {O(n)}
137: f86->f91, Arg_3: 120*Arg_4 {O(n)}
137: f86->f91, Arg_4: 60*Arg_4 {O(n)}
137: f86->f91, Arg_5: 240*Arg_4 {O(n)}
137: f86->f91, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
137: f86->f91, Arg_14: 60*Arg_14 {O(n)}
137: f86->f91, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
137: f86->f91, Arg_16: 40*Arg_16 {O(n)}
137: f86->f91, Arg_17: 60*Arg_17+1 {O(n)}
138: f86->f91, Arg_3: 120*Arg_4 {O(n)}
138: f86->f91, Arg_4: 60*Arg_4 {O(n)}
138: f86->f91, Arg_5: 240*Arg_4 {O(n)}
138: f86->f91, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
138: f86->f91, Arg_14: 60*Arg_14 {O(n)}
138: f86->f91, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
138: f86->f91, Arg_16: 40*Arg_16 {O(n)}
138: f86->f91, Arg_17: 60*Arg_17+1 {O(n)}
142: f91->f37, Arg_3: 120*Arg_4 {O(n)}
142: f91->f37, Arg_4: 60*Arg_4 {O(n)}
142: f91->f37, Arg_5: 240*Arg_4 {O(n)}
142: f91->f37, Arg_10: 1656*Arg_4+513*Arg_10+252 {O(n)}
142: f91->f37, Arg_14: 60*Arg_14 {O(n)}
142: f91->f37, Arg_15: 120*Arg_15+60*Arg_14+2 {O(n)}
142: f91->f37, Arg_16: 40*Arg_16 {O(n)}
142: f91->f37, Arg_17: 60*Arg_17+1 {O(n)}