Initial Problem
Start: eval_rank2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11
Temp_Vars: nondef_0, nondef_1
Locations: eval_rank2_0, eval_rank2_1, eval_rank2_14, eval_rank2_15, eval_rank2_2, eval_rank2_20, eval_rank2_21, eval_rank2_26, eval_rank2_27, eval_rank2_29, eval_rank2_3, eval_rank2_30, eval_rank2_31, eval_rank2_32, eval_rank2_4, eval_rank2_5, eval_rank2_6, eval_rank2_7, eval_rank2_8, eval_rank2__critedge1_in, eval_rank2__critedge_in, eval_rank2_bb0_in, eval_rank2_bb1_in, eval_rank2_bb2_in, eval_rank2_bb3_in, eval_rank2_bb4_in, eval_rank2_bb5_in, eval_rank2_bb6_in, eval_rank2_bb7_in, eval_rank2_bb8_in, eval_rank2_bb9_in, eval_rank2_start, eval_rank2_stop
Transitions:
2:eval_rank2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
3:eval_rank2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
17:eval_rank2_14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_15(Arg_0,Arg_1,Arg_2,Arg_3,nondef_0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
19:eval_rank2_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_4<=0
18:eval_rank2_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:0<Arg_4
4:eval_rank2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
24:eval_rank2_20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_21(nondef_1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
26:eval_rank2_21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2__critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_0<=0
25:eval_rank2_21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:0<Arg_0
29:eval_rank2_26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
30:eval_rank2_27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_8,Arg_8,Arg_9,Arg_1,Arg_11)
32:eval_rank2_29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
5:eval_rank2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
33:eval_rank2_30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_31(Arg_0,Arg_1,Arg_2,Arg_10-Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
34:eval_rank2_31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
35:eval_rank2_32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_2,Arg_7,Arg_8,Arg_3,Arg_10,Arg_11)
6:eval_rank2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
7:eval_rank2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
8:eval_rank2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
9:eval_rank2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
10:eval_rank2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5,Arg_7,Arg_8,Arg_5,Arg_10,Arg_11)
28:eval_rank2__critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_26(Arg_0,Arg_11-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
31:eval_rank2__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_29(Arg_0,Arg_1,Arg_7-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
1:eval_rank2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
11:eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:2<=Arg_6
12:eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_6<2
13:eval_rank2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6-1,Arg_8,Arg_9,Arg_9+Arg_6-1,Arg_11)
15:eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_10<Arg_7+1
14:eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_7+1<=Arg_10
16:eval_rank2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
20:eval_rank2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_7,Arg_9,Arg_10,Arg_10-1)
22:eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2__critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_11<Arg_8+3
21:eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_8+3<=Arg_11
23:eval_rank2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
27:eval_rank2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_11-2)
36:eval_rank2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
0:eval_rank2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
Preprocessing
Found invariant Arg_6<=1 for location eval_rank2_stop
Found invariant 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0 for location eval_rank2_bb8_in
Found invariant 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10 for location eval_rank2_bb5_in
Found invariant 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 for location eval_rank2_15
Found invariant 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 for location eval_rank2_20
Found invariant Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2 for location eval_rank2_31
Found invariant 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 for location eval_rank2_21
Found invariant Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2 for location eval_rank2_32
Found invariant Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1 for location eval_rank2_26
Found invariant Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1 for location eval_rank2_27
Found invariant Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 for location eval_rank2_bb6_in
Found invariant Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2 for location eval_rank2_29
Found invariant 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 for location eval_rank2_bb3_in
Found invariant Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2 for location eval_rank2_30
Found invariant 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 for location eval_rank2_14
Found invariant Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 for location eval_rank2__critedge1_in
Found invariant Arg_6<=1 for location eval_rank2_bb9_in
Found invariant 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 for location eval_rank2_bb7_in
Found invariant 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 for location eval_rank2_bb4_in
Found invariant 2<=Arg_6 for location eval_rank2_bb2_in
Found invariant 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 for location eval_rank2__critedge_in
Problem after Preprocessing
Start: eval_rank2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11
Temp_Vars: nondef_0, nondef_1
Locations: eval_rank2_0, eval_rank2_1, eval_rank2_14, eval_rank2_15, eval_rank2_2, eval_rank2_20, eval_rank2_21, eval_rank2_26, eval_rank2_27, eval_rank2_29, eval_rank2_3, eval_rank2_30, eval_rank2_31, eval_rank2_32, eval_rank2_4, eval_rank2_5, eval_rank2_6, eval_rank2_7, eval_rank2_8, eval_rank2__critedge1_in, eval_rank2__critedge_in, eval_rank2_bb0_in, eval_rank2_bb1_in, eval_rank2_bb2_in, eval_rank2_bb3_in, eval_rank2_bb4_in, eval_rank2_bb5_in, eval_rank2_bb6_in, eval_rank2_bb7_in, eval_rank2_bb8_in, eval_rank2_bb9_in, eval_rank2_start, eval_rank2_stop
Transitions:
2:eval_rank2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
3:eval_rank2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
17:eval_rank2_14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_15(Arg_0,Arg_1,Arg_2,Arg_3,nondef_0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
19:eval_rank2_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
18:eval_rank2_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
4:eval_rank2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
24:eval_rank2_20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_21(nondef_1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
26:eval_rank2_21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2__critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
25:eval_rank2_21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
29:eval_rank2_26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
30:eval_rank2_27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_8,Arg_8,Arg_9,Arg_1,Arg_11):|:Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
32:eval_rank2_29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
5:eval_rank2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
33:eval_rank2_30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_31(Arg_0,Arg_1,Arg_2,Arg_10-Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
34:eval_rank2_31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
35:eval_rank2_32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_2,Arg_7,Arg_8,Arg_3,Arg_10,Arg_11):|:Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
6:eval_rank2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
7:eval_rank2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
8:eval_rank2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
9:eval_rank2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
10:eval_rank2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_5,Arg_7,Arg_8,Arg_5,Arg_10,Arg_11)
28:eval_rank2__critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_26(Arg_0,Arg_11-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
31:eval_rank2__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_29(Arg_0,Arg_1,Arg_7-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
1:eval_rank2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
11:eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:2<=Arg_6
12:eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_6<2
13:eval_rank2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6-1,Arg_8,Arg_9,Arg_9+Arg_6-1,Arg_11):|:2<=Arg_6
15:eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
14:eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
16:eval_rank2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
20:eval_rank2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_7,Arg_9,Arg_10,Arg_10-1):|:1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
22:eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2__critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
21:eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
23:eval_rank2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
27:eval_rank2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_11-2):|:3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
36:eval_rank2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_6<=1
0:eval_rank2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11)
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 17:eval_rank2_14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_15(Arg_0,Arg_1,Arg_2,Arg_3,nondef_0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 of depth 1:
new bound:
2*Arg_5 {O(n)}
MPRF:
eval_rank2_15 [Arg_10 ]
eval_rank2_21 [Arg_10 ]
eval_rank2_27 [Arg_10-1 ]
eval_rank2_30 [Arg_10 ]
eval_rank2_31 [Arg_2+Arg_3 ]
eval_rank2_32 [Arg_2+Arg_3 ]
eval_rank2_26 [Arg_1+Arg_10-Arg_11 ]
eval_rank2_29 [Arg_10 ]
eval_rank2_bb1_in [Arg_6+Arg_9 ]
eval_rank2_bb2_in [Arg_6+Arg_9 ]
eval_rank2_bb3_in [Arg_10+1 ]
eval_rank2__critedge_in [Arg_10 ]
eval_rank2_bb4_in [Arg_10+1 ]
eval_rank2_14 [Arg_10+1 ]
eval_rank2_bb5_in [Arg_10 ]
eval_rank2__critedge1_in [Arg_10-1 ]
eval_rank2_bb7_in [Arg_10 ]
eval_rank2_20 [Arg_10 ]
eval_rank2_bb8_in [Arg_10 ]
eval_rank2_bb6_in [Arg_10 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 18:eval_rank2_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4 of depth 1:
new bound:
2*Arg_5+2 {O(n)}
MPRF:
eval_rank2_15 [Arg_10-1 ]
eval_rank2_21 [Arg_11-2 ]
eval_rank2_27 [Arg_11-2 ]
eval_rank2_30 [Arg_10-2 ]
eval_rank2_31 [Arg_2+Arg_3-2 ]
eval_rank2_32 [Arg_2+Arg_3-2 ]
eval_rank2_26 [Arg_11-2 ]
eval_rank2_29 [Arg_10-2 ]
eval_rank2_bb1_in [Arg_6+Arg_9-2 ]
eval_rank2_bb2_in [Arg_6+Arg_9-2 ]
eval_rank2_bb3_in [Arg_10-1 ]
eval_rank2__critedge_in [Arg_10-2 ]
eval_rank2_bb4_in [Arg_10-1 ]
eval_rank2_14 [Arg_10-1 ]
eval_rank2_bb5_in [Arg_10-3 ]
eval_rank2__critedge1_in [Arg_11-2 ]
eval_rank2_bb7_in [Arg_11-2 ]
eval_rank2_20 [Arg_11-2 ]
eval_rank2_bb8_in [Arg_11-2 ]
eval_rank2_bb6_in [Arg_11-2 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 19:eval_rank2_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0 of depth 1:
new bound:
4*Arg_5+6 {O(n)}
MPRF:
eval_rank2_15 [2*Arg_7+Arg_10-3 ]
eval_rank2_21 [2*Arg_8+Arg_11-2 ]
eval_rank2_27 [Arg_1+2*Arg_8-3 ]
eval_rank2_30 [2*Arg_7+Arg_10-8 ]
eval_rank2_31 [Arg_2+Arg_3+2*Arg_7-8 ]
eval_rank2_32 [3*Arg_2+Arg_3-6 ]
eval_rank2_26 [Arg_1+2*Arg_8-3 ]
eval_rank2_29 [2*Arg_7+Arg_10-8 ]
eval_rank2_bb1_in [3*Arg_6+Arg_9-6 ]
eval_rank2_bb2_in [3*Arg_6+Arg_9-6 ]
eval_rank2_bb3_in [2*Arg_7+Arg_10-3 ]
eval_rank2__critedge_in [2*Arg_7+Arg_10-8 ]
eval_rank2_bb4_in [2*Arg_7+Arg_10-3 ]
eval_rank2_14 [2*Arg_7+Arg_10-3 ]
eval_rank2_bb5_in [2*Arg_7+Arg_10-3 ]
eval_rank2__critedge1_in [2*Arg_8+Arg_11-4 ]
eval_rank2_bb7_in [2*Arg_8+Arg_11-2 ]
eval_rank2_20 [2*Arg_8+Arg_11-2 ]
eval_rank2_bb8_in [2*Arg_8+Arg_11-2 ]
eval_rank2_bb6_in [2*Arg_8+Arg_11-2 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 24:eval_rank2_20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_21(nondef_1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 of depth 1:
new bound:
2*Arg_5+3 {O(n)}
MPRF:
eval_rank2_15 [Arg_10-3 ]
eval_rank2_21 [Arg_11-4 ]
eval_rank2_27 [Arg_1-3 ]
eval_rank2_30 [Arg_10-3 ]
eval_rank2_31 [Arg_2+Arg_3-3 ]
eval_rank2_32 [Arg_2+Arg_3-3 ]
eval_rank2_26 [Arg_1-3 ]
eval_rank2_29 [Arg_10-3 ]
eval_rank2_bb1_in [Arg_6+Arg_9-3 ]
eval_rank2_bb2_in [Arg_6+Arg_9-3 ]
eval_rank2_bb3_in [Arg_10-3 ]
eval_rank2__critedge_in [Arg_10-3 ]
eval_rank2_bb4_in [Arg_10-3 ]
eval_rank2_14 [Arg_10-3 ]
eval_rank2_bb5_in [Arg_10-3 ]
eval_rank2__critedge1_in [Arg_11-4 ]
eval_rank2_bb7_in [Arg_11-2 ]
eval_rank2_20 [Arg_11-2 ]
eval_rank2_bb8_in [Arg_11-4 ]
eval_rank2_bb6_in [Arg_11-2 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 25:eval_rank2_21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0 of depth 1:
new bound:
3*Arg_5+9 {O(n)}
MPRF:
eval_rank2_15 [2*Arg_10-Arg_7-8 ]
eval_rank2_21 [2*Arg_10-Arg_8-8 ]
eval_rank2_27 [2*Arg_1+2*Arg_10-Arg_8-2*Arg_11-10 ]
eval_rank2_30 [2*Arg_10-Arg_7-8 ]
eval_rank2_31 [2*Arg_2+2*Arg_3-Arg_7-8 ]
eval_rank2_32 [2*Arg_2+2*Arg_3-Arg_7-8 ]
eval_rank2_26 [2*Arg_10-Arg_8-12 ]
eval_rank2_29 [2*Arg_10-Arg_7-8 ]
eval_rank2_bb1_in [Arg_6+2*Arg_9-9 ]
eval_rank2_bb2_in [Arg_6+2*Arg_9-9 ]
eval_rank2_bb3_in [2*Arg_10-Arg_7-8 ]
eval_rank2__critedge_in [2*Arg_10-Arg_7-8 ]
eval_rank2_bb4_in [2*Arg_10-Arg_7-8 ]
eval_rank2_14 [2*Arg_10-Arg_7-8 ]
eval_rank2_bb5_in [2*Arg_10-Arg_7-8 ]
eval_rank2__critedge1_in [2*Arg_10-Arg_8-12 ]
eval_rank2_bb7_in [2*Arg_10-Arg_8-8 ]
eval_rank2_20 [2*Arg_10-Arg_8-8 ]
eval_rank2_bb8_in [2*Arg_10-Arg_8-9 ]
eval_rank2_bb6_in [2*Arg_10-Arg_8-8 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 26:eval_rank2_21(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2__critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0 of depth 1:
new bound:
3*Arg_5+3 {O(n)}
MPRF:
eval_rank2_15 [2*Arg_10-Arg_7-2 ]
eval_rank2_21 [2*Arg_11-Arg_8 ]
eval_rank2_27 [2*Arg_11-Arg_8-4 ]
eval_rank2_30 [2*Arg_10-Arg_2-3 ]
eval_rank2_31 [Arg_2+2*Arg_3-3 ]
eval_rank2_32 [Arg_2+2*Arg_3-3 ]
eval_rank2_26 [2*Arg_11-Arg_8-4 ]
eval_rank2_29 [2*Arg_10-Arg_7-2 ]
eval_rank2_bb1_in [Arg_6+2*Arg_9-3 ]
eval_rank2_bb2_in [Arg_6+2*Arg_9-3 ]
eval_rank2_bb3_in [2*Arg_10-Arg_7-2 ]
eval_rank2__critedge_in [2*Arg_10-Arg_7-2 ]
eval_rank2_bb4_in [2*Arg_10-Arg_7-2 ]
eval_rank2_14 [2*Arg_10-Arg_7-2 ]
eval_rank2_bb5_in [2*Arg_10-Arg_7-2 ]
eval_rank2__critedge1_in [2*Arg_11-Arg_8-4 ]
eval_rank2_bb7_in [2*Arg_11-Arg_8 ]
eval_rank2_20 [2*Arg_11-Arg_8 ]
eval_rank2_bb8_in [2*Arg_11-Arg_8 ]
eval_rank2_bb6_in [2*Arg_11-Arg_8 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 29:eval_rank2_26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1 of depth 1:
new bound:
4*Arg_5 {O(n)}
MPRF:
eval_rank2_15 [2*Arg_10 ]
eval_rank2_21 [2*Arg_10 ]
eval_rank2_27 [Arg_1+2*Arg_10-Arg_11-3 ]
eval_rank2_30 [2*Arg_10 ]
eval_rank2_31 [2*Arg_2+2*Arg_3 ]
eval_rank2_32 [2*Arg_2+2*Arg_3 ]
eval_rank2_26 [Arg_1+2*Arg_10-Arg_11-2 ]
eval_rank2_29 [2*Arg_10 ]
eval_rank2_bb1_in [2*Arg_6+2*Arg_9 ]
eval_rank2_bb2_in [2*Arg_6+2*Arg_9 ]
eval_rank2_bb3_in [2*Arg_10 ]
eval_rank2__critedge_in [2*Arg_10 ]
eval_rank2_bb4_in [2*Arg_10 ]
eval_rank2_14 [2*Arg_10 ]
eval_rank2_bb5_in [2*Arg_10 ]
eval_rank2__critedge1_in [2*Arg_10 ]
eval_rank2_bb7_in [2*Arg_10 ]
eval_rank2_20 [2*Arg_10 ]
eval_rank2_bb8_in [2*Arg_10 ]
eval_rank2_bb6_in [2*Arg_10 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 30:eval_rank2_27(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_8,Arg_8,Arg_9,Arg_1,Arg_11):|:Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1 of depth 1:
new bound:
4*Arg_5 {O(n)}
MPRF:
eval_rank2_15 [2*Arg_10 ]
eval_rank2_21 [2*Arg_10 ]
eval_rank2_27 [2*Arg_1+1 ]
eval_rank2_30 [2*Arg_10 ]
eval_rank2_31 [2*Arg_2+2*Arg_3 ]
eval_rank2_32 [2*Arg_2+2*Arg_3 ]
eval_rank2_26 [2*Arg_1+1 ]
eval_rank2_29 [2*Arg_10 ]
eval_rank2_bb1_in [2*Arg_6+2*Arg_9 ]
eval_rank2_bb2_in [2*Arg_6+2*Arg_9 ]
eval_rank2_bb3_in [2*Arg_10 ]
eval_rank2__critedge_in [2*Arg_10 ]
eval_rank2_bb4_in [2*Arg_10 ]
eval_rank2_14 [2*Arg_10 ]
eval_rank2_bb5_in [2*Arg_10 ]
eval_rank2__critedge1_in [Arg_10+Arg_11-1 ]
eval_rank2_bb7_in [2*Arg_10 ]
eval_rank2_20 [2*Arg_10 ]
eval_rank2_bb8_in [2*Arg_10 ]
eval_rank2_bb6_in [2*Arg_10 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 28:eval_rank2__critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_26(Arg_0,Arg_11-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 of depth 1:
new bound:
2*Arg_5 {O(n)}
MPRF:
eval_rank2_15 [Arg_10 ]
eval_rank2_21 [Arg_10 ]
eval_rank2_27 [Arg_10-2 ]
eval_rank2_30 [Arg_10 ]
eval_rank2_31 [Arg_2+Arg_3 ]
eval_rank2_32 [Arg_2+Arg_3 ]
eval_rank2_26 [Arg_10-2 ]
eval_rank2_29 [Arg_10 ]
eval_rank2_bb1_in [Arg_6+Arg_9 ]
eval_rank2_bb2_in [Arg_6+Arg_9 ]
eval_rank2_bb3_in [Arg_10 ]
eval_rank2__critedge_in [Arg_10 ]
eval_rank2_bb4_in [Arg_10 ]
eval_rank2_14 [Arg_10 ]
eval_rank2_bb5_in [Arg_10 ]
eval_rank2__critedge1_in [Arg_10-1 ]
eval_rank2_bb7_in [Arg_10 ]
eval_rank2_20 [Arg_10 ]
eval_rank2_bb8_in [Arg_10 ]
eval_rank2_bb6_in [Arg_10 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 14:eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10 of depth 1:
new bound:
4*Arg_5+5 {O(n)}
MPRF:
eval_rank2_15 [2*Arg_10-5 ]
eval_rank2_21 [2*Arg_10-5 ]
eval_rank2_27 [2*Arg_1-3 ]
eval_rank2_30 [3*Arg_7+2*Arg_10-3*Arg_2-8 ]
eval_rank2_31 [2*Arg_3+3*Arg_7-Arg_2-8 ]
eval_rank2_32 [2*Arg_3+3*Arg_7-Arg_2-8 ]
eval_rank2_26 [2*Arg_10-7 ]
eval_rank2_29 [3*Arg_7+2*Arg_10-3*Arg_2-8 ]
eval_rank2_bb1_in [2*Arg_6+2*Arg_9-5 ]
eval_rank2_bb2_in [2*Arg_6+2*Arg_9-5 ]
eval_rank2_bb3_in [2*Arg_10-3 ]
eval_rank2__critedge_in [2*Arg_10-5 ]
eval_rank2_bb4_in [2*Arg_10-5 ]
eval_rank2_14 [2*Arg_10-5 ]
eval_rank2_bb5_in [2*Arg_10-5 ]
eval_rank2__critedge1_in [2*Arg_10-7 ]
eval_rank2_bb7_in [2*Arg_10-5 ]
eval_rank2_20 [2*Arg_10-5 ]
eval_rank2_bb8_in [2*Arg_10-5 ]
eval_rank2_bb6_in [2*Arg_10-5 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 16:eval_rank2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 of depth 1:
new bound:
4*Arg_5+3 {O(n)}
MPRF:
eval_rank2_15 [2*Arg_7+Arg_10-2 ]
eval_rank2_21 [2*Arg_8+Arg_11-1 ]
eval_rank2_27 [2*Arg_8+Arg_11-1 ]
eval_rank2_30 [2*Arg_2+Arg_10-3 ]
eval_rank2_31 [3*Arg_2+Arg_3-3 ]
eval_rank2_32 [3*Arg_2+Arg_3-3 ]
eval_rank2_26 [2*Arg_8+Arg_11-1 ]
eval_rank2_29 [2*Arg_7+Arg_10-5 ]
eval_rank2_bb1_in [3*Arg_6+Arg_9-3 ]
eval_rank2_bb2_in [3*Arg_6+Arg_9-3 ]
eval_rank2_bb3_in [2*Arg_7+Arg_10 ]
eval_rank2__critedge_in [2*Arg_7+Arg_10-5 ]
eval_rank2_bb4_in [2*Arg_7+Arg_10 ]
eval_rank2_14 [2*Arg_7+Arg_10-2 ]
eval_rank2_bb5_in [2*Arg_7+Arg_10-2 ]
eval_rank2__critedge1_in [2*Arg_8+Arg_11-1 ]
eval_rank2_bb7_in [2*Arg_8+Arg_11-1 ]
eval_rank2_20 [2*Arg_8+Arg_11-1 ]
eval_rank2_bb8_in [2*Arg_8+Arg_11-1 ]
eval_rank2_bb6_in [2*Arg_8+Arg_11-1 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 20:eval_rank2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_7,Arg_9,Arg_10,Arg_10-1):|:1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10 of depth 1:
new bound:
6*Arg_5+7 {O(n)}
MPRF:
eval_rank2_15 [4*Arg_10-2*Arg_7-5 ]
eval_rank2_21 [5*Arg_10-2*Arg_8-Arg_11-14 ]
eval_rank2_27 [9*Arg_1-2*Arg_8-5*Arg_11 ]
eval_rank2_30 [Arg_7+4*Arg_10-3*Arg_2-8 ]
eval_rank2_31 [Arg_2+4*Arg_3+Arg_7-8 ]
eval_rank2_32 [2*Arg_2+4*Arg_3-7 ]
eval_rank2_26 [4*Arg_1+5*Arg_10-2*Arg_8-5*Arg_11-10 ]
eval_rank2_29 [Arg_7+4*Arg_10-3*Arg_2-8 ]
eval_rank2_bb1_in [2*Arg_6+4*Arg_9-7 ]
eval_rank2_bb2_in [2*Arg_6+4*Arg_9-7 ]
eval_rank2_bb3_in [4*Arg_10-2*Arg_7-5 ]
eval_rank2__critedge_in [4*Arg_10-2*Arg_7-5 ]
eval_rank2_bb4_in [4*Arg_10-2*Arg_7-5 ]
eval_rank2_14 [4*Arg_10-2*Arg_7-5 ]
eval_rank2_bb5_in [4*Arg_10-2*Arg_7-5 ]
eval_rank2__critedge1_in [5*Arg_10-2*Arg_8-Arg_11-14 ]
eval_rank2_bb7_in [5*Arg_10-2*Arg_8-Arg_11-14 ]
eval_rank2_20 [5*Arg_10-2*Arg_8-Arg_11-14 ]
eval_rank2_bb8_in [5*Arg_10-2*Arg_8-Arg_11-14 ]
eval_rank2_bb6_in [5*Arg_10-2*Arg_8-Arg_11-14 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 21:eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11 of depth 1:
new bound:
3*Arg_5 {O(n)}
MPRF:
eval_rank2_15 [Arg_7+Arg_10 ]
eval_rank2_21 [Arg_8+Arg_11 ]
eval_rank2_27 [Arg_1+Arg_8 ]
eval_rank2_30 [Arg_7+Arg_10 ]
eval_rank2_31 [Arg_2+Arg_3+Arg_7 ]
eval_rank2_32 [Arg_2+Arg_3+Arg_7 ]
eval_rank2_26 [Arg_1+Arg_8 ]
eval_rank2_29 [Arg_7+Arg_10 ]
eval_rank2_bb1_in [2*Arg_6+Arg_9 ]
eval_rank2_bb2_in [2*Arg_6+Arg_9 ]
eval_rank2_bb3_in [Arg_7+Arg_10 ]
eval_rank2__critedge_in [Arg_7+Arg_10 ]
eval_rank2_bb4_in [Arg_7+Arg_10 ]
eval_rank2_14 [Arg_7+Arg_10 ]
eval_rank2_bb5_in [Arg_7+Arg_10 ]
eval_rank2__critedge1_in [Arg_8+Arg_11-1 ]
eval_rank2_bb7_in [Arg_8+Arg_11 ]
eval_rank2_20 [Arg_8+Arg_11 ]
eval_rank2_bb8_in [Arg_8+Arg_11 ]
eval_rank2_bb6_in [Arg_8+Arg_11+1 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 22:eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2__critedge1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3 of depth 1:
new bound:
2*Arg_5 {O(n)}
MPRF:
eval_rank2_15 [Arg_10 ]
eval_rank2_21 [Arg_11 ]
eval_rank2_27 [Arg_11-1 ]
eval_rank2_30 [Arg_10 ]
eval_rank2_31 [Arg_2+Arg_3 ]
eval_rank2_32 [Arg_2+Arg_3 ]
eval_rank2_26 [Arg_11-1 ]
eval_rank2_29 [Arg_10 ]
eval_rank2_bb1_in [Arg_6+Arg_9 ]
eval_rank2_bb2_in [Arg_6+Arg_9 ]
eval_rank2_bb3_in [Arg_10 ]
eval_rank2__critedge_in [Arg_10 ]
eval_rank2_bb4_in [Arg_10 ]
eval_rank2_14 [Arg_10 ]
eval_rank2_bb5_in [Arg_10 ]
eval_rank2__critedge1_in [Arg_11-1 ]
eval_rank2_bb7_in [Arg_11 ]
eval_rank2_20 [Arg_11 ]
eval_rank2_bb8_in [Arg_11 ]
eval_rank2_bb6_in [Arg_11 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 23:eval_rank2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_20(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 of depth 1:
new bound:
4*Arg_5+9 {O(n)}
MPRF:
eval_rank2_15 [2*Arg_10-9 ]
eval_rank2_21 [2*Arg_11-11 ]
eval_rank2_27 [2*Arg_1-9 ]
eval_rank2_30 [2*Arg_10-9 ]
eval_rank2_31 [2*Arg_2+2*Arg_3-9 ]
eval_rank2_32 [2*Arg_2+2*Arg_3-9 ]
eval_rank2_26 [2*Arg_11-11 ]
eval_rank2_29 [2*Arg_10-9 ]
eval_rank2_bb1_in [2*Arg_6+2*Arg_9-9 ]
eval_rank2_bb2_in [2*Arg_6+2*Arg_9-9 ]
eval_rank2_bb3_in [2*Arg_10-9 ]
eval_rank2__critedge_in [2*Arg_10-9 ]
eval_rank2_bb4_in [2*Arg_10-9 ]
eval_rank2_14 [2*Arg_10-9 ]
eval_rank2_bb5_in [2*Arg_10-9 ]
eval_rank2__critedge1_in [2*Arg_11-11 ]
eval_rank2_bb7_in [2*Arg_11-7 ]
eval_rank2_20 [2*Arg_11-11 ]
eval_rank2_bb8_in [2*Arg_11-11 ]
eval_rank2_bb6_in [2*Arg_11-7 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 27:eval_rank2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_11-2):|:3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0 of depth 1:
new bound:
3*Arg_5+9 {O(n)}
MPRF:
eval_rank2_15 [2*Arg_10-Arg_7-8 ]
eval_rank2_21 [2*Arg_10-Arg_8-8 ]
eval_rank2_27 [10*Arg_1-Arg_8-8*Arg_11 ]
eval_rank2_30 [8*Arg_2+2*Arg_10-9*Arg_7 ]
eval_rank2_31 [10*Arg_2+2*Arg_3-9*Arg_7 ]
eval_rank2_32 [Arg_2+2*Arg_3-9 ]
eval_rank2_26 [10*Arg_1-Arg_8-8*Arg_11 ]
eval_rank2_29 [8*Arg_2+2*Arg_10-9*Arg_7 ]
eval_rank2_bb1_in [Arg_6+2*Arg_9-9 ]
eval_rank2_bb2_in [Arg_6+2*Arg_9-9 ]
eval_rank2_bb3_in [2*Arg_10-Arg_7-8 ]
eval_rank2__critedge_in [2*Arg_10-Arg_7-8 ]
eval_rank2_bb4_in [2*Arg_10-Arg_7-8 ]
eval_rank2_14 [2*Arg_10-Arg_7-8 ]
eval_rank2_bb5_in [2*Arg_10-Arg_7-8 ]
eval_rank2__critedge1_in [2*Arg_11-Arg_8-10 ]
eval_rank2_bb7_in [2*Arg_10-Arg_8-8 ]
eval_rank2_20 [2*Arg_10-Arg_8-8 ]
eval_rank2_bb8_in [2*Arg_10-Arg_8-8 ]
eval_rank2_bb6_in [2*Arg_10-Arg_8-8 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 32:eval_rank2_29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2 of depth 1:
new bound:
12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
MPRF:
eval_rank2_15 [Arg_7 ]
eval_rank2_bb8_in [Arg_8+2-Arg_6 ]
eval_rank2_21 [Arg_8 ]
eval_rank2_27 [Arg_8 ]
eval_rank2_30 [Arg_2-1 ]
eval_rank2_31 [Arg_2-1 ]
eval_rank2_32 [Arg_2-1 ]
eval_rank2_26 [Arg_8 ]
eval_rank2_29 [Arg_2+1 ]
eval_rank2_bb1_in [Arg_6-1 ]
eval_rank2_bb2_in [Arg_6-1 ]
eval_rank2_bb3_in [Arg_7 ]
eval_rank2__critedge_in [Arg_7 ]
eval_rank2_bb4_in [Arg_7 ]
eval_rank2_14 [Arg_7 ]
eval_rank2_bb5_in [Arg_7 ]
eval_rank2_bb6_in [Arg_8 ]
eval_rank2__critedge1_in [Arg_8 ]
eval_rank2_bb7_in [Arg_8 ]
eval_rank2_20 [Arg_8 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 33:eval_rank2_30(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_31(Arg_0,Arg_1,Arg_2,Arg_10-Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2 of depth 1:
new bound:
12*Arg_5*Arg_5+67*Arg_5+90 {O(n^2)}
MPRF:
eval_rank2_15 [Arg_7+1 ]
eval_rank2_bb8_in [Arg_8+1 ]
eval_rank2_21 [Arg_8+1 ]
eval_rank2_27 [Arg_8+1 ]
eval_rank2_30 [Arg_7+1 ]
eval_rank2_31 [Arg_7-1 ]
eval_rank2_32 [Arg_7-1 ]
eval_rank2_26 [Arg_8+1 ]
eval_rank2_29 [Arg_7+1 ]
eval_rank2_bb1_in [Arg_6 ]
eval_rank2_bb2_in [Arg_6 ]
eval_rank2_bb3_in [Arg_7+1 ]
eval_rank2__critedge_in [Arg_7+1 ]
eval_rank2_bb4_in [Arg_7+1 ]
eval_rank2_14 [Arg_7+1 ]
eval_rank2_bb5_in [Arg_7+1 ]
eval_rank2_bb6_in [Arg_8+1 ]
eval_rank2__critedge1_in [Arg_8+1 ]
eval_rank2_bb7_in [Arg_8+1 ]
eval_rank2_20 [Arg_8+1 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 34:eval_rank2_31(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2 of depth 1:
new bound:
12*Arg_5*Arg_5+79*Arg_5+130 {O(n^2)}
MPRF:
eval_rank2_15 [Arg_7+5 ]
eval_rank2_bb8_in [Arg_8+5 ]
eval_rank2_21 [Arg_8+5 ]
eval_rank2_27 [Arg_8+5 ]
eval_rank2_30 [Arg_7+5 ]
eval_rank2_31 [Arg_2+6 ]
eval_rank2_32 [Arg_2+4 ]
eval_rank2_26 [Arg_8+5 ]
eval_rank2_29 [Arg_7+5 ]
eval_rank2_bb1_in [Arg_6+4 ]
eval_rank2_bb2_in [Arg_6+4 ]
eval_rank2_bb3_in [Arg_7+5 ]
eval_rank2__critedge_in [Arg_7+5 ]
eval_rank2_bb4_in [Arg_7+5 ]
eval_rank2_14 [Arg_7+5 ]
eval_rank2_bb5_in [Arg_7+5 ]
eval_rank2_bb6_in [Arg_8+5 ]
eval_rank2__critedge1_in [Arg_8+5 ]
eval_rank2_bb7_in [Arg_8+5 ]
eval_rank2_20 [Arg_8+5 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 35:eval_rank2_32(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_2,Arg_7,Arg_8,Arg_3,Arg_10,Arg_11):|:Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2 of depth 1:
new bound:
12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
MPRF:
eval_rank2_15 [Arg_7 ]
eval_rank2_bb8_in [Arg_8 ]
eval_rank2_21 [Arg_8 ]
eval_rank2_27 [Arg_8 ]
eval_rank2_30 [Arg_7 ]
eval_rank2_31 [Arg_7 ]
eval_rank2_32 [Arg_2+1 ]
eval_rank2_26 [Arg_8 ]
eval_rank2_29 [Arg_7 ]
eval_rank2_bb1_in [Arg_6-1 ]
eval_rank2_bb2_in [Arg_6-1 ]
eval_rank2_bb3_in [Arg_7 ]
eval_rank2__critedge_in [Arg_7 ]
eval_rank2_bb4_in [Arg_7 ]
eval_rank2_14 [Arg_7 ]
eval_rank2_bb5_in [Arg_7 ]
eval_rank2_bb6_in [Arg_8 ]
eval_rank2__critedge1_in [Arg_8 ]
eval_rank2_bb7_in [Arg_8 ]
eval_rank2_20 [Arg_8 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 31:eval_rank2__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_29(Arg_0,Arg_1,Arg_7-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 of depth 1:
new bound:
12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
MPRF:
eval_rank2_15 [Arg_7 ]
eval_rank2_bb8_in [Arg_8 ]
eval_rank2_21 [Arg_8 ]
eval_rank2_27 [Arg_8 ]
eval_rank2_30 [Arg_7-2 ]
eval_rank2_31 [Arg_7-2 ]
eval_rank2_32 [Arg_2-1 ]
eval_rank2_26 [Arg_8 ]
eval_rank2_29 [Arg_7-2 ]
eval_rank2_bb1_in [Arg_6-1 ]
eval_rank2_bb2_in [Arg_6-1 ]
eval_rank2_bb3_in [Arg_7 ]
eval_rank2__critedge_in [Arg_7 ]
eval_rank2_bb4_in [Arg_7 ]
eval_rank2_14 [Arg_7 ]
eval_rank2_bb5_in [Arg_7 ]
eval_rank2_bb6_in [Arg_8 ]
eval_rank2__critedge1_in [Arg_8 ]
eval_rank2_bb7_in [Arg_8 ]
eval_rank2_20 [Arg_8 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 11:eval_rank2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:2<=Arg_6 of depth 1:
new bound:
12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
MPRF:
eval_rank2_15 [Arg_7 ]
eval_rank2_bb8_in [Arg_8 ]
eval_rank2_21 [Arg_8 ]
eval_rank2_27 [Arg_8 ]
eval_rank2_30 [Arg_7 ]
eval_rank2_31 [Arg_7 ]
eval_rank2_32 [Arg_2+1 ]
eval_rank2_26 [Arg_8 ]
eval_rank2_29 [Arg_7 ]
eval_rank2_bb1_in [Arg_6+1 ]
eval_rank2_bb2_in [Arg_6-1 ]
eval_rank2_bb3_in [Arg_7 ]
eval_rank2__critedge_in [Arg_7 ]
eval_rank2_bb4_in [Arg_7 ]
eval_rank2_14 [Arg_7 ]
eval_rank2_bb5_in [Arg_7 ]
eval_rank2_bb6_in [Arg_8 ]
eval_rank2__critedge1_in [Arg_8 ]
eval_rank2_bb7_in [Arg_8 ]
eval_rank2_20 [Arg_8 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 13:eval_rank2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_6-1,Arg_8,Arg_9,Arg_9+Arg_6-1,Arg_11):|:2<=Arg_6 of depth 1:
new bound:
12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
MPRF:
eval_rank2_15 [Arg_7 ]
eval_rank2_bb8_in [Arg_8 ]
eval_rank2_21 [Arg_8 ]
eval_rank2_27 [Arg_8 ]
eval_rank2_30 [Arg_2+1 ]
eval_rank2_31 [Arg_2+1 ]
eval_rank2_32 [Arg_2+1 ]
eval_rank2_26 [Arg_8 ]
eval_rank2_29 [Arg_7 ]
eval_rank2_bb1_in [Arg_6+1 ]
eval_rank2_bb2_in [Arg_6+1 ]
eval_rank2_bb3_in [Arg_7 ]
eval_rank2__critedge_in [Arg_7 ]
eval_rank2_bb4_in [Arg_7 ]
eval_rank2_14 [Arg_7 ]
eval_rank2_bb5_in [Arg_7 ]
eval_rank2_bb6_in [Arg_8 ]
eval_rank2__critedge1_in [Arg_8 ]
eval_rank2_bb7_in [Arg_8 ]
eval_rank2_20 [Arg_8 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
MPRF for transition 15:eval_rank2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11) -> eval_rank2__critedge_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11):|:1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1 of depth 1:
new bound:
12*Arg_5*Arg_5+64*Arg_5+81 {O(n^2)}
MPRF:
eval_rank2_15 [Arg_7 ]
eval_rank2_bb8_in [Arg_8 ]
eval_rank2_21 [Arg_8 ]
eval_rank2_27 [Arg_1+Arg_8+1-Arg_11 ]
eval_rank2_30 [Arg_2 ]
eval_rank2_31 [Arg_2 ]
eval_rank2_32 [Arg_2 ]
eval_rank2_26 [Arg_1+Arg_8+1-Arg_11 ]
eval_rank2_29 [Arg_2 ]
eval_rank2_bb1_in [Arg_6 ]
eval_rank2_bb2_in [Arg_6 ]
eval_rank2_bb3_in [Arg_7 ]
eval_rank2__critedge_in [Arg_7-1 ]
eval_rank2_bb4_in [Arg_7 ]
eval_rank2_14 [Arg_7 ]
eval_rank2_bb5_in [Arg_7 ]
eval_rank2_bb6_in [Arg_8 ]
eval_rank2__critedge1_in [Arg_8 ]
eval_rank2_bb7_in [Arg_8 ]
eval_rank2_20 [Arg_8 ]
Show Graph
G
eval_rank2_0
eval_rank2_0
eval_rank2_1
eval_rank2_1
eval_rank2_0->eval_rank2_1
t₂
eval_rank2_2
eval_rank2_2
eval_rank2_1->eval_rank2_2
t₃
eval_rank2_14
eval_rank2_14
eval_rank2_15
eval_rank2_15
eval_rank2_14->eval_rank2_15
t₁₇
η (Arg_4) = nondef_0
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2__critedge_in
eval_rank2__critedge_in
eval_rank2_15->eval_rank2__critedge_in
t₁₉
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && Arg_4<=0
eval_rank2_bb5_in
eval_rank2_bb5_in
eval_rank2_15->eval_rank2_bb5_in
t₁₈
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10 && 0<Arg_4
eval_rank2_3
eval_rank2_3
eval_rank2_2->eval_rank2_3
t₄
eval_rank2_20
eval_rank2_20
eval_rank2_21
eval_rank2_21
eval_rank2_20->eval_rank2_21
t₂₄
η (Arg_0) = nondef_1
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2__critedge1_in
eval_rank2__critedge1_in
eval_rank2_21->eval_rank2__critedge1_in
t₂₆
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && Arg_0<=0
eval_rank2_bb8_in
eval_rank2_bb8_in
eval_rank2_21->eval_rank2_bb8_in
t₂₅
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10 && 0<Arg_0
eval_rank2_26
eval_rank2_26
eval_rank2_27
eval_rank2_27
eval_rank2_26->eval_rank2_27
t₂₉
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_bb3_in
eval_rank2_bb3_in
eval_rank2_27->eval_rank2_bb3_in
t₃₀
η (Arg_7) = Arg_8
η (Arg_10) = Arg_1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && Arg_8<=1+Arg_1 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && 1<=Arg_1+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && Arg_7<=1+Arg_1 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && 1<=Arg_1+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && Arg_6<=2+Arg_1 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_1+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1<=Arg_1+Arg_4 && 1+Arg_11<=Arg_10 && Arg_11<=1+Arg_1 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 1<=Arg_1+Arg_11 && 1+Arg_1<=Arg_11 && 2<=Arg_10 && 2<=Arg_1+Arg_10 && 2+Arg_1<=Arg_10 && 0<=Arg_1
eval_rank2_29
eval_rank2_29
eval_rank2_30
eval_rank2_30
eval_rank2_29->eval_rank2_30
t₃₂
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_4
eval_rank2_4
eval_rank2_3->eval_rank2_4
t₅
eval_rank2_31
eval_rank2_31
eval_rank2_30->eval_rank2_31
t₃₃
η (Arg_3) = Arg_10-Arg_2
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && 0<=Arg_2
eval_rank2_32
eval_rank2_32
eval_rank2_31->eval_rank2_32
t₃₄
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_bb1_in
eval_rank2_bb1_in
eval_rank2_32->eval_rank2_bb1_in
t₃₅
η (Arg_6) = Arg_2
η (Arg_9) = Arg_3
τ = Arg_7<=1+Arg_2 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 1<=Arg_2+Arg_7 && 1+Arg_2<=Arg_7 && Arg_6<=2+Arg_2 && 2<=Arg_6 && 2<=Arg_2+Arg_6 && Arg_3<=Arg_10 && 0<=Arg_2
eval_rank2_5
eval_rank2_5
eval_rank2_4->eval_rank2_5
t₆
eval_rank2_6
eval_rank2_6
eval_rank2_5->eval_rank2_6
t₇
eval_rank2_7
eval_rank2_7
eval_rank2_6->eval_rank2_7
t₈
eval_rank2_8
eval_rank2_8
eval_rank2_7->eval_rank2_8
t₉
eval_rank2_8->eval_rank2_bb1_in
t₁₀
η (Arg_6) = Arg_5
η (Arg_9) = Arg_5
eval_rank2__critedge1_in->eval_rank2_26
t₂₈
η (Arg_1) = Arg_11-1
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10
eval_rank2__critedge_in->eval_rank2_29
t₃₁
η (Arg_2) = Arg_7-1
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6
eval_rank2_bb0_in
eval_rank2_bb0_in
eval_rank2_bb0_in->eval_rank2_0
t₁
eval_rank2_bb2_in
eval_rank2_bb2_in
eval_rank2_bb1_in->eval_rank2_bb2_in
t₁₁
τ = 2<=Arg_6
eval_rank2_bb9_in
eval_rank2_bb9_in
eval_rank2_bb1_in->eval_rank2_bb9_in
t₁₂
τ = Arg_6<2
eval_rank2_bb2_in->eval_rank2_bb3_in
t₁₃
η (Arg_7) = Arg_6-1
η (Arg_10) = Arg_9+Arg_6-1
τ = 2<=Arg_6
eval_rank2_bb3_in->eval_rank2__critedge_in
t₁₅
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_10<Arg_7+1
eval_rank2_bb4_in
eval_rank2_bb4_in
eval_rank2_bb3_in->eval_rank2_bb4_in
t₁₄
τ = 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_6 && Arg_7+1<=Arg_10
eval_rank2_bb4_in->eval_rank2_14
t₁₆
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 4<=Arg_10+Arg_6 && 2<=Arg_10
eval_rank2_bb6_in
eval_rank2_bb6_in
eval_rank2_bb5_in->eval_rank2_bb6_in
t₂₀
η (Arg_8) = Arg_7
η (Arg_11) = Arg_10-1
τ = 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 3<=Arg_10+Arg_4 && 2<=Arg_10
eval_rank2_bb6_in->eval_rank2__critedge1_in
t₂₂
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_11<Arg_8+3
eval_rank2_bb7_in
eval_rank2_bb7_in
eval_rank2_bb6_in->eval_rank2_bb7_in
t₂₁
τ = Arg_8<=Arg_11 && 1+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 2<=Arg_11+Arg_8 && 3<=Arg_10+Arg_8 && Arg_7<=Arg_11 && 1+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 2<=Arg_11+Arg_7 && 3<=Arg_10+Arg_7 && Arg_6<=1+Arg_11 && Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 3<=Arg_11+Arg_6 && 4<=Arg_10+Arg_6 && 1<=Arg_4 && 2<=Arg_11+Arg_4 && 3<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 1<=Arg_11 && 3<=Arg_10+Arg_11 && 2<=Arg_10 && Arg_8+3<=Arg_11
eval_rank2_bb7_in->eval_rank2_20
t₂₃
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_10
eval_rank2_bb8_in->eval_rank2_bb6_in
t₂₇
η (Arg_8) = Arg_8+1
η (Arg_11) = Arg_11-2
τ = 3+Arg_8<=Arg_11 && 4+Arg_8<=Arg_10 && 1<=Arg_8 && 2<=Arg_7+Arg_8 && Arg_7<=Arg_8 && 3<=Arg_6+Arg_8 && Arg_6<=1+Arg_8 && 2<=Arg_4+Arg_8 && 5<=Arg_11+Arg_8 && 6<=Arg_10+Arg_8 && 2<=Arg_0+Arg_8 && 3+Arg_7<=Arg_11 && 4+Arg_7<=Arg_10 && 1<=Arg_7 && 3<=Arg_6+Arg_7 && Arg_6<=1+Arg_7 && 2<=Arg_4+Arg_7 && 5<=Arg_11+Arg_7 && 6<=Arg_10+Arg_7 && 2<=Arg_0+Arg_7 && 2+Arg_6<=Arg_11 && 3+Arg_6<=Arg_10 && 2<=Arg_6 && 3<=Arg_4+Arg_6 && 6<=Arg_11+Arg_6 && 7<=Arg_10+Arg_6 && 3<=Arg_0+Arg_6 && 1<=Arg_4 && 5<=Arg_11+Arg_4 && 6<=Arg_10+Arg_4 && 2<=Arg_0+Arg_4 && 1+Arg_11<=Arg_10 && 4<=Arg_11 && 9<=Arg_10+Arg_11 && 5<=Arg_0+Arg_11 && 5<=Arg_10 && 6<=Arg_0+Arg_10 && 1<=Arg_0
eval_rank2_stop
eval_rank2_stop
eval_rank2_bb9_in->eval_rank2_stop
t₃₆
τ = Arg_6<=1
eval_rank2_start
eval_rank2_start
eval_rank2_start->eval_rank2_bb0_in
t₀
All Bounds
Timebounds
Overall timebound:96*Arg_5*Arg_5+582*Arg_5+780 {O(n^2)}
2: eval_rank2_0->eval_rank2_1: 1 {O(1)}
3: eval_rank2_1->eval_rank2_2: 1 {O(1)}
17: eval_rank2_14->eval_rank2_15: 2*Arg_5 {O(n)}
18: eval_rank2_15->eval_rank2_bb5_in: 2*Arg_5+2 {O(n)}
19: eval_rank2_15->eval_rank2__critedge_in: 4*Arg_5+6 {O(n)}
4: eval_rank2_2->eval_rank2_3: 1 {O(1)}
24: eval_rank2_20->eval_rank2_21: 2*Arg_5+3 {O(n)}
25: eval_rank2_21->eval_rank2_bb8_in: 3*Arg_5+9 {O(n)}
26: eval_rank2_21->eval_rank2__critedge1_in: 3*Arg_5+3 {O(n)}
29: eval_rank2_26->eval_rank2_27: 4*Arg_5 {O(n)}
30: eval_rank2_27->eval_rank2_bb3_in: 4*Arg_5 {O(n)}
32: eval_rank2_29->eval_rank2_30: 12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
5: eval_rank2_3->eval_rank2_4: 1 {O(1)}
33: eval_rank2_30->eval_rank2_31: 12*Arg_5*Arg_5+67*Arg_5+90 {O(n^2)}
34: eval_rank2_31->eval_rank2_32: 12*Arg_5*Arg_5+79*Arg_5+130 {O(n^2)}
35: eval_rank2_32->eval_rank2_bb1_in: 12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
6: eval_rank2_4->eval_rank2_5: 1 {O(1)}
7: eval_rank2_5->eval_rank2_6: 1 {O(1)}
8: eval_rank2_6->eval_rank2_7: 1 {O(1)}
9: eval_rank2_7->eval_rank2_8: 1 {O(1)}
10: eval_rank2_8->eval_rank2_bb1_in: 1 {O(1)}
28: eval_rank2__critedge1_in->eval_rank2_26: 2*Arg_5 {O(n)}
31: eval_rank2__critedge_in->eval_rank2_29: 12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
1: eval_rank2_bb0_in->eval_rank2_0: 1 {O(1)}
11: eval_rank2_bb1_in->eval_rank2_bb2_in: 12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
12: eval_rank2_bb1_in->eval_rank2_bb9_in: 1 {O(1)}
13: eval_rank2_bb2_in->eval_rank2_bb3_in: 12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
14: eval_rank2_bb3_in->eval_rank2_bb4_in: 4*Arg_5+5 {O(n)}
15: eval_rank2_bb3_in->eval_rank2__critedge_in: 12*Arg_5*Arg_5+64*Arg_5+81 {O(n^2)}
16: eval_rank2_bb4_in->eval_rank2_14: 4*Arg_5+3 {O(n)}
20: eval_rank2_bb5_in->eval_rank2_bb6_in: 6*Arg_5+7 {O(n)}
21: eval_rank2_bb6_in->eval_rank2_bb7_in: 3*Arg_5 {O(n)}
22: eval_rank2_bb6_in->eval_rank2__critedge1_in: 2*Arg_5 {O(n)}
23: eval_rank2_bb7_in->eval_rank2_20: 4*Arg_5+9 {O(n)}
27: eval_rank2_bb8_in->eval_rank2_bb6_in: 3*Arg_5+9 {O(n)}
36: eval_rank2_bb9_in->eval_rank2_stop: 1 {O(1)}
0: eval_rank2_start->eval_rank2_bb0_in: 1 {O(1)}
Costbounds
Overall costbound: 96*Arg_5*Arg_5+582*Arg_5+780 {O(n^2)}
2: eval_rank2_0->eval_rank2_1: 1 {O(1)}
3: eval_rank2_1->eval_rank2_2: 1 {O(1)}
17: eval_rank2_14->eval_rank2_15: 2*Arg_5 {O(n)}
18: eval_rank2_15->eval_rank2_bb5_in: 2*Arg_5+2 {O(n)}
19: eval_rank2_15->eval_rank2__critedge_in: 4*Arg_5+6 {O(n)}
4: eval_rank2_2->eval_rank2_3: 1 {O(1)}
24: eval_rank2_20->eval_rank2_21: 2*Arg_5+3 {O(n)}
25: eval_rank2_21->eval_rank2_bb8_in: 3*Arg_5+9 {O(n)}
26: eval_rank2_21->eval_rank2__critedge1_in: 3*Arg_5+3 {O(n)}
29: eval_rank2_26->eval_rank2_27: 4*Arg_5 {O(n)}
30: eval_rank2_27->eval_rank2_bb3_in: 4*Arg_5 {O(n)}
32: eval_rank2_29->eval_rank2_30: 12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
5: eval_rank2_3->eval_rank2_4: 1 {O(1)}
33: eval_rank2_30->eval_rank2_31: 12*Arg_5*Arg_5+67*Arg_5+90 {O(n^2)}
34: eval_rank2_31->eval_rank2_32: 12*Arg_5*Arg_5+79*Arg_5+130 {O(n^2)}
35: eval_rank2_32->eval_rank2_bb1_in: 12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
6: eval_rank2_4->eval_rank2_5: 1 {O(1)}
7: eval_rank2_5->eval_rank2_6: 1 {O(1)}
8: eval_rank2_6->eval_rank2_7: 1 {O(1)}
9: eval_rank2_7->eval_rank2_8: 1 {O(1)}
10: eval_rank2_8->eval_rank2_bb1_in: 1 {O(1)}
28: eval_rank2__critedge1_in->eval_rank2_26: 2*Arg_5 {O(n)}
31: eval_rank2__critedge_in->eval_rank2_29: 12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
1: eval_rank2_bb0_in->eval_rank2_0: 1 {O(1)}
11: eval_rank2_bb1_in->eval_rank2_bb2_in: 12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
12: eval_rank2_bb1_in->eval_rank2_bb9_in: 1 {O(1)}
13: eval_rank2_bb2_in->eval_rank2_bb3_in: 12*Arg_5*Arg_5+64*Arg_5+82 {O(n^2)}
14: eval_rank2_bb3_in->eval_rank2_bb4_in: 4*Arg_5+5 {O(n)}
15: eval_rank2_bb3_in->eval_rank2__critedge_in: 12*Arg_5*Arg_5+64*Arg_5+81 {O(n^2)}
16: eval_rank2_bb4_in->eval_rank2_14: 4*Arg_5+3 {O(n)}
20: eval_rank2_bb5_in->eval_rank2_bb6_in: 6*Arg_5+7 {O(n)}
21: eval_rank2_bb6_in->eval_rank2_bb7_in: 3*Arg_5 {O(n)}
22: eval_rank2_bb6_in->eval_rank2__critedge1_in: 2*Arg_5 {O(n)}
23: eval_rank2_bb7_in->eval_rank2_20: 4*Arg_5+9 {O(n)}
27: eval_rank2_bb8_in->eval_rank2_bb6_in: 3*Arg_5+9 {O(n)}
36: eval_rank2_bb9_in->eval_rank2_stop: 1 {O(1)}
0: eval_rank2_start->eval_rank2_bb0_in: 1 {O(1)}
Sizebounds
2: eval_rank2_0->eval_rank2_1, Arg_0: Arg_0 {O(n)}
2: eval_rank2_0->eval_rank2_1, Arg_1: Arg_1 {O(n)}
2: eval_rank2_0->eval_rank2_1, Arg_2: Arg_2 {O(n)}
2: eval_rank2_0->eval_rank2_1, Arg_3: Arg_3 {O(n)}
2: eval_rank2_0->eval_rank2_1, Arg_4: Arg_4 {O(n)}
2: eval_rank2_0->eval_rank2_1, Arg_5: Arg_5 {O(n)}
2: eval_rank2_0->eval_rank2_1, Arg_6: Arg_6 {O(n)}
2: eval_rank2_0->eval_rank2_1, Arg_7: Arg_7 {O(n)}
2: eval_rank2_0->eval_rank2_1, Arg_8: Arg_8 {O(n)}
2: eval_rank2_0->eval_rank2_1, Arg_9: Arg_9 {O(n)}
2: eval_rank2_0->eval_rank2_1, Arg_10: Arg_10 {O(n)}
2: eval_rank2_0->eval_rank2_1, Arg_11: Arg_11 {O(n)}
3: eval_rank2_1->eval_rank2_2, Arg_0: Arg_0 {O(n)}
3: eval_rank2_1->eval_rank2_2, Arg_1: Arg_1 {O(n)}
3: eval_rank2_1->eval_rank2_2, Arg_2: Arg_2 {O(n)}
3: eval_rank2_1->eval_rank2_2, Arg_3: Arg_3 {O(n)}
3: eval_rank2_1->eval_rank2_2, Arg_4: Arg_4 {O(n)}
3: eval_rank2_1->eval_rank2_2, Arg_5: Arg_5 {O(n)}
3: eval_rank2_1->eval_rank2_2, Arg_6: Arg_6 {O(n)}
3: eval_rank2_1->eval_rank2_2, Arg_7: Arg_7 {O(n)}
3: eval_rank2_1->eval_rank2_2, Arg_8: Arg_8 {O(n)}
3: eval_rank2_1->eval_rank2_2, Arg_9: Arg_9 {O(n)}
3: eval_rank2_1->eval_rank2_2, Arg_10: Arg_10 {O(n)}
3: eval_rank2_1->eval_rank2_2, Arg_11: Arg_11 {O(n)}
17: eval_rank2_14->eval_rank2_15, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
17: eval_rank2_14->eval_rank2_15, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
17: eval_rank2_14->eval_rank2_15, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
17: eval_rank2_14->eval_rank2_15, Arg_5: Arg_5 {O(n)}
17: eval_rank2_14->eval_rank2_15, Arg_6: 4*Arg_5+9 {O(n)}
17: eval_rank2_14->eval_rank2_15, Arg_7: 4*Arg_5+9 {O(n)}
17: eval_rank2_14->eval_rank2_15, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
17: eval_rank2_14->eval_rank2_15, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
17: eval_rank2_14->eval_rank2_15, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
17: eval_rank2_14->eval_rank2_15, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
18: eval_rank2_15->eval_rank2_bb5_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
18: eval_rank2_15->eval_rank2_bb5_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
18: eval_rank2_15->eval_rank2_bb5_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
18: eval_rank2_15->eval_rank2_bb5_in, Arg_5: Arg_5 {O(n)}
18: eval_rank2_15->eval_rank2_bb5_in, Arg_6: 4*Arg_5+9 {O(n)}
18: eval_rank2_15->eval_rank2_bb5_in, Arg_7: 4*Arg_5+9 {O(n)}
18: eval_rank2_15->eval_rank2_bb5_in, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
18: eval_rank2_15->eval_rank2_bb5_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
18: eval_rank2_15->eval_rank2_bb5_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
18: eval_rank2_15->eval_rank2_bb5_in, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
19: eval_rank2_15->eval_rank2__critedge_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
19: eval_rank2_15->eval_rank2__critedge_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
19: eval_rank2_15->eval_rank2__critedge_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
19: eval_rank2_15->eval_rank2__critedge_in, Arg_5: Arg_5 {O(n)}
19: eval_rank2_15->eval_rank2__critedge_in, Arg_6: 4*Arg_5+9 {O(n)}
19: eval_rank2_15->eval_rank2__critedge_in, Arg_7: 4*Arg_5+9 {O(n)}
19: eval_rank2_15->eval_rank2__critedge_in, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
19: eval_rank2_15->eval_rank2__critedge_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
19: eval_rank2_15->eval_rank2__critedge_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
19: eval_rank2_15->eval_rank2__critedge_in, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
4: eval_rank2_2->eval_rank2_3, Arg_0: Arg_0 {O(n)}
4: eval_rank2_2->eval_rank2_3, Arg_1: Arg_1 {O(n)}
4: eval_rank2_2->eval_rank2_3, Arg_2: Arg_2 {O(n)}
4: eval_rank2_2->eval_rank2_3, Arg_3: Arg_3 {O(n)}
4: eval_rank2_2->eval_rank2_3, Arg_4: Arg_4 {O(n)}
4: eval_rank2_2->eval_rank2_3, Arg_5: Arg_5 {O(n)}
4: eval_rank2_2->eval_rank2_3, Arg_6: Arg_6 {O(n)}
4: eval_rank2_2->eval_rank2_3, Arg_7: Arg_7 {O(n)}
4: eval_rank2_2->eval_rank2_3, Arg_8: Arg_8 {O(n)}
4: eval_rank2_2->eval_rank2_3, Arg_9: Arg_9 {O(n)}
4: eval_rank2_2->eval_rank2_3, Arg_10: Arg_10 {O(n)}
4: eval_rank2_2->eval_rank2_3, Arg_11: Arg_11 {O(n)}
24: eval_rank2_20->eval_rank2_21, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
24: eval_rank2_20->eval_rank2_21, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
24: eval_rank2_20->eval_rank2_21, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
24: eval_rank2_20->eval_rank2_21, Arg_5: Arg_5 {O(n)}
24: eval_rank2_20->eval_rank2_21, Arg_6: 4*Arg_5+9 {O(n)}
24: eval_rank2_20->eval_rank2_21, Arg_7: 4*Arg_5+9 {O(n)}
24: eval_rank2_20->eval_rank2_21, Arg_8: 4*Arg_5+9 {O(n)}
24: eval_rank2_20->eval_rank2_21, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
24: eval_rank2_20->eval_rank2_21, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
24: eval_rank2_20->eval_rank2_21, Arg_11: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
25: eval_rank2_21->eval_rank2_bb8_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
25: eval_rank2_21->eval_rank2_bb8_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
25: eval_rank2_21->eval_rank2_bb8_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
25: eval_rank2_21->eval_rank2_bb8_in, Arg_5: Arg_5 {O(n)}
25: eval_rank2_21->eval_rank2_bb8_in, Arg_6: 4*Arg_5+9 {O(n)}
25: eval_rank2_21->eval_rank2_bb8_in, Arg_7: 4*Arg_5+9 {O(n)}
25: eval_rank2_21->eval_rank2_bb8_in, Arg_8: 4*Arg_5+9 {O(n)}
25: eval_rank2_21->eval_rank2_bb8_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
25: eval_rank2_21->eval_rank2_bb8_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
25: eval_rank2_21->eval_rank2_bb8_in, Arg_11: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
26: eval_rank2_21->eval_rank2__critedge1_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
26: eval_rank2_21->eval_rank2__critedge1_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
26: eval_rank2_21->eval_rank2__critedge1_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
26: eval_rank2_21->eval_rank2__critedge1_in, Arg_5: Arg_5 {O(n)}
26: eval_rank2_21->eval_rank2__critedge1_in, Arg_6: 4*Arg_5+9 {O(n)}
26: eval_rank2_21->eval_rank2__critedge1_in, Arg_7: 4*Arg_5+9 {O(n)}
26: eval_rank2_21->eval_rank2__critedge1_in, Arg_8: 4*Arg_5+9 {O(n)}
26: eval_rank2_21->eval_rank2__critedge1_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
26: eval_rank2_21->eval_rank2__critedge1_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
26: eval_rank2_21->eval_rank2__critedge1_in, Arg_11: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
29: eval_rank2_26->eval_rank2_27, Arg_1: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
29: eval_rank2_26->eval_rank2_27, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
29: eval_rank2_26->eval_rank2_27, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
29: eval_rank2_26->eval_rank2_27, Arg_5: Arg_5 {O(n)}
29: eval_rank2_26->eval_rank2_27, Arg_6: 4*Arg_5+9 {O(n)}
29: eval_rank2_26->eval_rank2_27, Arg_7: 12*Arg_5+27 {O(n)}
29: eval_rank2_26->eval_rank2_27, Arg_8: 4*Arg_5+9 {O(n)}
29: eval_rank2_26->eval_rank2_27, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
29: eval_rank2_26->eval_rank2_27, Arg_10: 288*Arg_5*Arg_5*Arg_5+2220*Arg_5*Arg_5+5628*Arg_5+4698 {O(n^3)}
29: eval_rank2_26->eval_rank2_27, Arg_11: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+3132 {O(n^3)}
30: eval_rank2_27->eval_rank2_bb3_in, Arg_1: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
30: eval_rank2_27->eval_rank2_bb3_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
30: eval_rank2_27->eval_rank2_bb3_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
30: eval_rank2_27->eval_rank2_bb3_in, Arg_5: Arg_5 {O(n)}
30: eval_rank2_27->eval_rank2_bb3_in, Arg_6: 4*Arg_5+9 {O(n)}
30: eval_rank2_27->eval_rank2_bb3_in, Arg_7: 4*Arg_5+9 {O(n)}
30: eval_rank2_27->eval_rank2_bb3_in, Arg_8: 4*Arg_5+9 {O(n)}
30: eval_rank2_27->eval_rank2_bb3_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
30: eval_rank2_27->eval_rank2_bb3_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
30: eval_rank2_27->eval_rank2_bb3_in, Arg_11: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+3132 {O(n^3)}
32: eval_rank2_29->eval_rank2_30, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
32: eval_rank2_29->eval_rank2_30, Arg_2: 4*Arg_5+9 {O(n)}
32: eval_rank2_29->eval_rank2_30, Arg_3: 288*Arg_5*Arg_5*Arg_5+2220*Arg_5*Arg_5+3*Arg_3+5628*Arg_5+4698 {O(n^3)}
32: eval_rank2_29->eval_rank2_30, Arg_5: Arg_5 {O(n)}
32: eval_rank2_29->eval_rank2_30, Arg_6: 12*Arg_5+27 {O(n)}
32: eval_rank2_29->eval_rank2_30, Arg_7: 8*Arg_5+18 {O(n)}
32: eval_rank2_29->eval_rank2_30, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
32: eval_rank2_29->eval_rank2_30, Arg_9: 288*Arg_5*Arg_5*Arg_5+2220*Arg_5*Arg_5+5628*Arg_5+4698 {O(n^3)}
32: eval_rank2_29->eval_rank2_30, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
32: eval_rank2_29->eval_rank2_30, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
5: eval_rank2_3->eval_rank2_4, Arg_0: Arg_0 {O(n)}
5: eval_rank2_3->eval_rank2_4, Arg_1: Arg_1 {O(n)}
5: eval_rank2_3->eval_rank2_4, Arg_2: Arg_2 {O(n)}
5: eval_rank2_3->eval_rank2_4, Arg_3: Arg_3 {O(n)}
5: eval_rank2_3->eval_rank2_4, Arg_4: Arg_4 {O(n)}
5: eval_rank2_3->eval_rank2_4, Arg_5: Arg_5 {O(n)}
5: eval_rank2_3->eval_rank2_4, Arg_6: Arg_6 {O(n)}
5: eval_rank2_3->eval_rank2_4, Arg_7: Arg_7 {O(n)}
5: eval_rank2_3->eval_rank2_4, Arg_8: Arg_8 {O(n)}
5: eval_rank2_3->eval_rank2_4, Arg_9: Arg_9 {O(n)}
5: eval_rank2_3->eval_rank2_4, Arg_10: Arg_10 {O(n)}
5: eval_rank2_3->eval_rank2_4, Arg_11: Arg_11 {O(n)}
33: eval_rank2_30->eval_rank2_31, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
33: eval_rank2_30->eval_rank2_31, Arg_2: 4*Arg_5+9 {O(n)}
33: eval_rank2_30->eval_rank2_31, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
33: eval_rank2_30->eval_rank2_31, Arg_5: Arg_5 {O(n)}
33: eval_rank2_30->eval_rank2_31, Arg_6: 12*Arg_5+27 {O(n)}
33: eval_rank2_30->eval_rank2_31, Arg_7: 8*Arg_5+18 {O(n)}
33: eval_rank2_30->eval_rank2_31, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
33: eval_rank2_30->eval_rank2_31, Arg_9: 288*Arg_5*Arg_5*Arg_5+2220*Arg_5*Arg_5+5628*Arg_5+4698 {O(n^3)}
33: eval_rank2_30->eval_rank2_31, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
33: eval_rank2_30->eval_rank2_31, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
34: eval_rank2_31->eval_rank2_32, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
34: eval_rank2_31->eval_rank2_32, Arg_2: 4*Arg_5+9 {O(n)}
34: eval_rank2_31->eval_rank2_32, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
34: eval_rank2_31->eval_rank2_32, Arg_5: Arg_5 {O(n)}
34: eval_rank2_31->eval_rank2_32, Arg_6: 12*Arg_5+27 {O(n)}
34: eval_rank2_31->eval_rank2_32, Arg_7: 8*Arg_5+18 {O(n)}
34: eval_rank2_31->eval_rank2_32, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
34: eval_rank2_31->eval_rank2_32, Arg_9: 288*Arg_5*Arg_5*Arg_5+2220*Arg_5*Arg_5+5628*Arg_5+4698 {O(n^3)}
34: eval_rank2_31->eval_rank2_32, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
34: eval_rank2_31->eval_rank2_32, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
35: eval_rank2_32->eval_rank2_bb1_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
35: eval_rank2_32->eval_rank2_bb1_in, Arg_2: 4*Arg_5+9 {O(n)}
35: eval_rank2_32->eval_rank2_bb1_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
35: eval_rank2_32->eval_rank2_bb1_in, Arg_5: Arg_5 {O(n)}
35: eval_rank2_32->eval_rank2_bb1_in, Arg_6: 4*Arg_5+9 {O(n)}
35: eval_rank2_32->eval_rank2_bb1_in, Arg_7: 8*Arg_5+18 {O(n)}
35: eval_rank2_32->eval_rank2_bb1_in, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
35: eval_rank2_32->eval_rank2_bb1_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
35: eval_rank2_32->eval_rank2_bb1_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
35: eval_rank2_32->eval_rank2_bb1_in, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
6: eval_rank2_4->eval_rank2_5, Arg_0: Arg_0 {O(n)}
6: eval_rank2_4->eval_rank2_5, Arg_1: Arg_1 {O(n)}
6: eval_rank2_4->eval_rank2_5, Arg_2: Arg_2 {O(n)}
6: eval_rank2_4->eval_rank2_5, Arg_3: Arg_3 {O(n)}
6: eval_rank2_4->eval_rank2_5, Arg_4: Arg_4 {O(n)}
6: eval_rank2_4->eval_rank2_5, Arg_5: Arg_5 {O(n)}
6: eval_rank2_4->eval_rank2_5, Arg_6: Arg_6 {O(n)}
6: eval_rank2_4->eval_rank2_5, Arg_7: Arg_7 {O(n)}
6: eval_rank2_4->eval_rank2_5, Arg_8: Arg_8 {O(n)}
6: eval_rank2_4->eval_rank2_5, Arg_9: Arg_9 {O(n)}
6: eval_rank2_4->eval_rank2_5, Arg_10: Arg_10 {O(n)}
6: eval_rank2_4->eval_rank2_5, Arg_11: Arg_11 {O(n)}
7: eval_rank2_5->eval_rank2_6, Arg_0: Arg_0 {O(n)}
7: eval_rank2_5->eval_rank2_6, Arg_1: Arg_1 {O(n)}
7: eval_rank2_5->eval_rank2_6, Arg_2: Arg_2 {O(n)}
7: eval_rank2_5->eval_rank2_6, Arg_3: Arg_3 {O(n)}
7: eval_rank2_5->eval_rank2_6, Arg_4: Arg_4 {O(n)}
7: eval_rank2_5->eval_rank2_6, Arg_5: Arg_5 {O(n)}
7: eval_rank2_5->eval_rank2_6, Arg_6: Arg_6 {O(n)}
7: eval_rank2_5->eval_rank2_6, Arg_7: Arg_7 {O(n)}
7: eval_rank2_5->eval_rank2_6, Arg_8: Arg_8 {O(n)}
7: eval_rank2_5->eval_rank2_6, Arg_9: Arg_9 {O(n)}
7: eval_rank2_5->eval_rank2_6, Arg_10: Arg_10 {O(n)}
7: eval_rank2_5->eval_rank2_6, Arg_11: Arg_11 {O(n)}
8: eval_rank2_6->eval_rank2_7, Arg_0: Arg_0 {O(n)}
8: eval_rank2_6->eval_rank2_7, Arg_1: Arg_1 {O(n)}
8: eval_rank2_6->eval_rank2_7, Arg_2: Arg_2 {O(n)}
8: eval_rank2_6->eval_rank2_7, Arg_3: Arg_3 {O(n)}
8: eval_rank2_6->eval_rank2_7, Arg_4: Arg_4 {O(n)}
8: eval_rank2_6->eval_rank2_7, Arg_5: Arg_5 {O(n)}
8: eval_rank2_6->eval_rank2_7, Arg_6: Arg_6 {O(n)}
8: eval_rank2_6->eval_rank2_7, Arg_7: Arg_7 {O(n)}
8: eval_rank2_6->eval_rank2_7, Arg_8: Arg_8 {O(n)}
8: eval_rank2_6->eval_rank2_7, Arg_9: Arg_9 {O(n)}
8: eval_rank2_6->eval_rank2_7, Arg_10: Arg_10 {O(n)}
8: eval_rank2_6->eval_rank2_7, Arg_11: Arg_11 {O(n)}
9: eval_rank2_7->eval_rank2_8, Arg_0: Arg_0 {O(n)}
9: eval_rank2_7->eval_rank2_8, Arg_1: Arg_1 {O(n)}
9: eval_rank2_7->eval_rank2_8, Arg_2: Arg_2 {O(n)}
9: eval_rank2_7->eval_rank2_8, Arg_3: Arg_3 {O(n)}
9: eval_rank2_7->eval_rank2_8, Arg_4: Arg_4 {O(n)}
9: eval_rank2_7->eval_rank2_8, Arg_5: Arg_5 {O(n)}
9: eval_rank2_7->eval_rank2_8, Arg_6: Arg_6 {O(n)}
9: eval_rank2_7->eval_rank2_8, Arg_7: Arg_7 {O(n)}
9: eval_rank2_7->eval_rank2_8, Arg_8: Arg_8 {O(n)}
9: eval_rank2_7->eval_rank2_8, Arg_9: Arg_9 {O(n)}
9: eval_rank2_7->eval_rank2_8, Arg_10: Arg_10 {O(n)}
9: eval_rank2_7->eval_rank2_8, Arg_11: Arg_11 {O(n)}
10: eval_rank2_8->eval_rank2_bb1_in, Arg_0: Arg_0 {O(n)}
10: eval_rank2_8->eval_rank2_bb1_in, Arg_1: Arg_1 {O(n)}
10: eval_rank2_8->eval_rank2_bb1_in, Arg_2: Arg_2 {O(n)}
10: eval_rank2_8->eval_rank2_bb1_in, Arg_3: Arg_3 {O(n)}
10: eval_rank2_8->eval_rank2_bb1_in, Arg_4: Arg_4 {O(n)}
10: eval_rank2_8->eval_rank2_bb1_in, Arg_5: Arg_5 {O(n)}
10: eval_rank2_8->eval_rank2_bb1_in, Arg_6: Arg_5 {O(n)}
10: eval_rank2_8->eval_rank2_bb1_in, Arg_7: Arg_7 {O(n)}
10: eval_rank2_8->eval_rank2_bb1_in, Arg_8: Arg_8 {O(n)}
10: eval_rank2_8->eval_rank2_bb1_in, Arg_9: Arg_5 {O(n)}
10: eval_rank2_8->eval_rank2_bb1_in, Arg_10: Arg_10 {O(n)}
10: eval_rank2_8->eval_rank2_bb1_in, Arg_11: Arg_11 {O(n)}
28: eval_rank2__critedge1_in->eval_rank2_26, Arg_1: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
28: eval_rank2__critedge1_in->eval_rank2_26, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
28: eval_rank2__critedge1_in->eval_rank2_26, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
28: eval_rank2__critedge1_in->eval_rank2_26, Arg_5: Arg_5 {O(n)}
28: eval_rank2__critedge1_in->eval_rank2_26, Arg_6: 4*Arg_5+9 {O(n)}
28: eval_rank2__critedge1_in->eval_rank2_26, Arg_7: 12*Arg_5+27 {O(n)}
28: eval_rank2__critedge1_in->eval_rank2_26, Arg_8: 4*Arg_5+9 {O(n)}
28: eval_rank2__critedge1_in->eval_rank2_26, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
28: eval_rank2__critedge1_in->eval_rank2_26, Arg_10: 288*Arg_5*Arg_5*Arg_5+2220*Arg_5*Arg_5+5628*Arg_5+4698 {O(n^3)}
28: eval_rank2__critedge1_in->eval_rank2_26, Arg_11: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+3132 {O(n^3)}
31: eval_rank2__critedge_in->eval_rank2_29, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
31: eval_rank2__critedge_in->eval_rank2_29, Arg_2: 4*Arg_5+9 {O(n)}
31: eval_rank2__critedge_in->eval_rank2_29, Arg_3: 288*Arg_5*Arg_5*Arg_5+2220*Arg_5*Arg_5+3*Arg_3+5628*Arg_5+4698 {O(n^3)}
31: eval_rank2__critedge_in->eval_rank2_29, Arg_5: Arg_5 {O(n)}
31: eval_rank2__critedge_in->eval_rank2_29, Arg_6: 12*Arg_5+27 {O(n)}
31: eval_rank2__critedge_in->eval_rank2_29, Arg_7: 8*Arg_5+18 {O(n)}
31: eval_rank2__critedge_in->eval_rank2_29, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
31: eval_rank2__critedge_in->eval_rank2_29, Arg_9: 288*Arg_5*Arg_5*Arg_5+2220*Arg_5*Arg_5+5628*Arg_5+4698 {O(n^3)}
31: eval_rank2__critedge_in->eval_rank2_29, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
31: eval_rank2__critedge_in->eval_rank2_29, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
1: eval_rank2_bb0_in->eval_rank2_0, Arg_0: Arg_0 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_0, Arg_1: Arg_1 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_0, Arg_2: Arg_2 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_0, Arg_3: Arg_3 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_0, Arg_4: Arg_4 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_0, Arg_5: Arg_5 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_0, Arg_6: Arg_6 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_0, Arg_7: Arg_7 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_0, Arg_8: Arg_8 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_0, Arg_9: Arg_9 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_0, Arg_10: Arg_10 {O(n)}
1: eval_rank2_bb0_in->eval_rank2_0, Arg_11: Arg_11 {O(n)}
11: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
11: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
11: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
11: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_5: Arg_5 {O(n)}
11: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_6: 4*Arg_5+9 {O(n)}
11: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_7: 8*Arg_5+Arg_7+18 {O(n)}
11: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
11: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
11: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_10+1566 {O(n^3)}
11: eval_rank2_bb1_in->eval_rank2_bb2_in, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
12: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+2*Arg_1+3752*Arg_5+3132 {O(n^3)}
12: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
12: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
12: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_5: 2*Arg_5 {O(n)}
12: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_6: 5*Arg_5+9 {O(n)}
12: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_7: 8*Arg_5+Arg_7+18 {O(n)}
12: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_8: 2*Arg_8+8*Arg_5+18 {O(n)}
12: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1877*Arg_5+1566 {O(n^3)}
12: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_10+1566 {O(n^3)}
12: eval_rank2_bb1_in->eval_rank2_bb9_in, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+2*Arg_11+7504*Arg_5+6264 {O(n^3)}
13: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
13: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
13: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
13: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_5: Arg_5 {O(n)}
13: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_6: 4*Arg_5+9 {O(n)}
13: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_7: 4*Arg_5+9 {O(n)}
13: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
13: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
13: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
13: eval_rank2_bb2_in->eval_rank2_bb3_in, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
14: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
14: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
14: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
14: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_5: Arg_5 {O(n)}
14: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_6: 4*Arg_5+9 {O(n)}
14: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_7: 4*Arg_5+9 {O(n)}
14: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
14: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
14: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
14: eval_rank2_bb3_in->eval_rank2_bb4_in, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
15: eval_rank2_bb3_in->eval_rank2__critedge_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
15: eval_rank2_bb3_in->eval_rank2__critedge_in, Arg_2: 2*Arg_2+8*Arg_5+18 {O(n)}
15: eval_rank2_bb3_in->eval_rank2__critedge_in, Arg_3: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+2*Arg_3+3752*Arg_5+3132 {O(n^3)}
15: eval_rank2_bb3_in->eval_rank2__critedge_in, Arg_5: Arg_5 {O(n)}
15: eval_rank2_bb3_in->eval_rank2__critedge_in, Arg_6: 8*Arg_5+18 {O(n)}
15: eval_rank2_bb3_in->eval_rank2__critedge_in, Arg_7: 4*Arg_5+9 {O(n)}
15: eval_rank2_bb3_in->eval_rank2__critedge_in, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
15: eval_rank2_bb3_in->eval_rank2__critedge_in, Arg_9: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+3132 {O(n^3)}
15: eval_rank2_bb3_in->eval_rank2__critedge_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
15: eval_rank2_bb3_in->eval_rank2__critedge_in, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
16: eval_rank2_bb4_in->eval_rank2_14, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
16: eval_rank2_bb4_in->eval_rank2_14, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
16: eval_rank2_bb4_in->eval_rank2_14, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
16: eval_rank2_bb4_in->eval_rank2_14, Arg_5: Arg_5 {O(n)}
16: eval_rank2_bb4_in->eval_rank2_14, Arg_6: 4*Arg_5+9 {O(n)}
16: eval_rank2_bb4_in->eval_rank2_14, Arg_7: 4*Arg_5+9 {O(n)}
16: eval_rank2_bb4_in->eval_rank2_14, Arg_8: 8*Arg_5+Arg_8+18 {O(n)}
16: eval_rank2_bb4_in->eval_rank2_14, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
16: eval_rank2_bb4_in->eval_rank2_14, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
16: eval_rank2_bb4_in->eval_rank2_14, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+7504*Arg_5+Arg_11+6264 {O(n^3)}
20: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
20: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
20: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
20: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_5: Arg_5 {O(n)}
20: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_6: 4*Arg_5+9 {O(n)}
20: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_7: 4*Arg_5+9 {O(n)}
20: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_8: 4*Arg_5+9 {O(n)}
20: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
20: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
20: eval_rank2_bb5_in->eval_rank2_bb6_in, Arg_11: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
21: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
21: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
21: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
21: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_5: Arg_5 {O(n)}
21: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_6: 4*Arg_5+9 {O(n)}
21: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_7: 4*Arg_5+9 {O(n)}
21: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_8: 4*Arg_5+9 {O(n)}
21: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
21: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
21: eval_rank2_bb6_in->eval_rank2_bb7_in, Arg_11: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
22: eval_rank2_bb6_in->eval_rank2__critedge1_in, Arg_1: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+2*Arg_1+7504*Arg_5+6264 {O(n^3)}
22: eval_rank2_bb6_in->eval_rank2__critedge1_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
22: eval_rank2_bb6_in->eval_rank2__critedge1_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
22: eval_rank2_bb6_in->eval_rank2__critedge1_in, Arg_5: Arg_5 {O(n)}
22: eval_rank2_bb6_in->eval_rank2__critedge1_in, Arg_6: 4*Arg_5+9 {O(n)}
22: eval_rank2_bb6_in->eval_rank2__critedge1_in, Arg_7: 8*Arg_5+18 {O(n)}
22: eval_rank2_bb6_in->eval_rank2__critedge1_in, Arg_8: 4*Arg_5+9 {O(n)}
22: eval_rank2_bb6_in->eval_rank2__critedge1_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
22: eval_rank2_bb6_in->eval_rank2__critedge1_in, Arg_10: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+3132 {O(n^3)}
22: eval_rank2_bb6_in->eval_rank2__critedge1_in, Arg_11: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
23: eval_rank2_bb7_in->eval_rank2_20, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
23: eval_rank2_bb7_in->eval_rank2_20, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
23: eval_rank2_bb7_in->eval_rank2_20, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
23: eval_rank2_bb7_in->eval_rank2_20, Arg_5: Arg_5 {O(n)}
23: eval_rank2_bb7_in->eval_rank2_20, Arg_6: 4*Arg_5+9 {O(n)}
23: eval_rank2_bb7_in->eval_rank2_20, Arg_7: 4*Arg_5+9 {O(n)}
23: eval_rank2_bb7_in->eval_rank2_20, Arg_8: 4*Arg_5+9 {O(n)}
23: eval_rank2_bb7_in->eval_rank2_20, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
23: eval_rank2_bb7_in->eval_rank2_20, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
23: eval_rank2_bb7_in->eval_rank2_20, Arg_11: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
27: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+3752*Arg_5+Arg_1+3132 {O(n^3)}
27: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
27: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
27: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_5: Arg_5 {O(n)}
27: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_6: 4*Arg_5+9 {O(n)}
27: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_7: 4*Arg_5+9 {O(n)}
27: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_8: 4*Arg_5+9 {O(n)}
27: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
27: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
27: eval_rank2_bb8_in->eval_rank2_bb6_in, Arg_11: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+1566 {O(n^3)}
36: eval_rank2_bb9_in->eval_rank2_stop, Arg_1: 192*Arg_5*Arg_5*Arg_5+1480*Arg_5*Arg_5+2*Arg_1+3752*Arg_5+3132 {O(n^3)}
36: eval_rank2_bb9_in->eval_rank2_stop, Arg_2: 4*Arg_5+Arg_2+9 {O(n)}
36: eval_rank2_bb9_in->eval_rank2_stop, Arg_3: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_3+1566 {O(n^3)}
36: eval_rank2_bb9_in->eval_rank2_stop, Arg_5: 2*Arg_5 {O(n)}
36: eval_rank2_bb9_in->eval_rank2_stop, Arg_6: 5*Arg_5+9 {O(n)}
36: eval_rank2_bb9_in->eval_rank2_stop, Arg_7: 8*Arg_5+Arg_7+18 {O(n)}
36: eval_rank2_bb9_in->eval_rank2_stop, Arg_8: 2*Arg_8+8*Arg_5+18 {O(n)}
36: eval_rank2_bb9_in->eval_rank2_stop, Arg_9: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1877*Arg_5+1566 {O(n^3)}
36: eval_rank2_bb9_in->eval_rank2_stop, Arg_10: 96*Arg_5*Arg_5*Arg_5+740*Arg_5*Arg_5+1876*Arg_5+Arg_10+1566 {O(n^3)}
36: eval_rank2_bb9_in->eval_rank2_stop, Arg_11: 384*Arg_5*Arg_5*Arg_5+2960*Arg_5*Arg_5+2*Arg_11+7504*Arg_5+6264 {O(n^3)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_6: Arg_6 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_7: Arg_7 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_8: Arg_8 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_9: Arg_9 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_10: Arg_10 {O(n)}
0: eval_rank2_start->eval_rank2_bb0_in, Arg_11: Arg_11 {O(n)}