Initial Problem
Start: eval_realheapsort_step2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars:
Locations: eval_realheapsort_step2_0, eval_realheapsort_step2_1, eval_realheapsort_step2_10, eval_realheapsort_step2_11, eval_realheapsort_step2_12, eval_realheapsort_step2_2, eval_realheapsort_step2_3, eval_realheapsort_step2_4, eval_realheapsort_step2_5, eval_realheapsort_step2_58, eval_realheapsort_step2_59, eval_realheapsort_step2_6, eval_realheapsort_step2_7, eval_realheapsort_step2_8, eval_realheapsort_step2_9, eval_realheapsort_step2_bb0_in, eval_realheapsort_step2_bb10_in, eval_realheapsort_step2_bb11_in, eval_realheapsort_step2_bb12_in, eval_realheapsort_step2_bb1_in, eval_realheapsort_step2_bb2_in, eval_realheapsort_step2_bb3_in, eval_realheapsort_step2_bb4_in, eval_realheapsort_step2_bb5_in, eval_realheapsort_step2_bb6_in, eval_realheapsort_step2_bb7_in, eval_realheapsort_step2_bb8_in, eval_realheapsort_step2_bb9_in, eval_realheapsort_step2_start, eval_realheapsort_step2_stop
Transitions:
2:eval_realheapsort_step2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
3:eval_realheapsort_step2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
14:eval_realheapsort_step2_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
15:eval_realheapsort_step2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
16:eval_realheapsort_step2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,0,Arg_4)
5:eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=2
4:eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
7:eval_realheapsort_step2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
8:eval_realheapsort_step2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
9:eval_realheapsort_step2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
33:eval_realheapsort_step2_58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
34:eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4)
10:eval_realheapsort_step2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
11:eval_realheapsort_step2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
12:eval_realheapsort_step2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
13:eval_realheapsort_step2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
1:eval_realheapsort_step2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
31:eval_realheapsort_step2_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4)
32:eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_58(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4)
35:eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
6:eval_realheapsort_step2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
18:eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<2+Arg_3
17:eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3+2<=Arg_1
19:eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,0,Arg_3,Arg_4)
21:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<Arg_3+3+2*Arg_2
20:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2*Arg_2+3+Arg_3<=Arg_1
23:eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2*Arg_2+3+Arg_3<Arg_1
24:eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<Arg_3+3+2*Arg_2
22:eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
25:eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
26:eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
27:eval_realheapsort_step2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1)
28:eval_realheapsort_step2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2)
29:eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
30:eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4)
0:eval_realheapsort_step2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₄
τ = Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
Preprocessing
Cut unsatisfiable transition 24: eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_12
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_5
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_6
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb6_in
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb9_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_10
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_3
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_8
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb4_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_4
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb10_in
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb11_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_9
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_bb1_in
Found invariant 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 for location eval_realheapsort_step2_58
Found invariant 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 for location eval_realheapsort_step2_59
Found invariant 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 for location eval_realheapsort_step2_bb3_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_11
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb5_in
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb7_in
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb8_in
Found invariant 3<=Arg_1 for location eval_realheapsort_step2_7
Found invariant 0<=Arg_3 for location eval_realheapsort_step2_bb2_in
Problem after Preprocessing
Start: eval_realheapsort_step2_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars:
Locations: eval_realheapsort_step2_0, eval_realheapsort_step2_1, eval_realheapsort_step2_10, eval_realheapsort_step2_11, eval_realheapsort_step2_12, eval_realheapsort_step2_2, eval_realheapsort_step2_3, eval_realheapsort_step2_4, eval_realheapsort_step2_5, eval_realheapsort_step2_58, eval_realheapsort_step2_59, eval_realheapsort_step2_6, eval_realheapsort_step2_7, eval_realheapsort_step2_8, eval_realheapsort_step2_9, eval_realheapsort_step2_bb0_in, eval_realheapsort_step2_bb10_in, eval_realheapsort_step2_bb11_in, eval_realheapsort_step2_bb12_in, eval_realheapsort_step2_bb1_in, eval_realheapsort_step2_bb2_in, eval_realheapsort_step2_bb3_in, eval_realheapsort_step2_bb4_in, eval_realheapsort_step2_bb5_in, eval_realheapsort_step2_bb6_in, eval_realheapsort_step2_bb7_in, eval_realheapsort_step2_bb8_in, eval_realheapsort_step2_bb9_in, eval_realheapsort_step2_start, eval_realheapsort_step2_stop
Transitions:
2:eval_realheapsort_step2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
3:eval_realheapsort_step2_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
14:eval_realheapsort_step2_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
15:eval_realheapsort_step2_11(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
16:eval_realheapsort_step2_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,0,Arg_4):|:3<=Arg_1
5:eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_1<=2
4:eval_realheapsort_step2_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:2<Arg_1
7:eval_realheapsort_step2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
8:eval_realheapsort_step2_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
9:eval_realheapsort_step2_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
33:eval_realheapsort_step2_58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
34:eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
10:eval_realheapsort_step2_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
11:eval_realheapsort_step2_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
12:eval_realheapsort_step2_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
13:eval_realheapsort_step2_9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
1:eval_realheapsort_step2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
31:eval_realheapsort_step2_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_4,Arg_3,Arg_4):|:0<=Arg_3
32:eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_58(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3
35:eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
6:eval_realheapsort_step2_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:3<=Arg_1
18:eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb12_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && Arg_1<2+Arg_3
17:eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && Arg_3+2<=Arg_1
19:eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,0,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
21:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
20:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
23:eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
22:eval_realheapsort_step2_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
25:eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3
26:eval_realheapsort_step2_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3
27:eval_realheapsort_step2_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+1):|:0<=Arg_3
28:eval_realheapsort_step2_bb8_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,2*Arg_2+2):|:0<=Arg_3
29:eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb10_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3
30:eval_realheapsort_step2_bb9_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_1,Arg_3,Arg_4):|:0<=Arg_3
0:eval_realheapsort_step2_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
MPRF for transition 17:eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && Arg_3+2<=Arg_1 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step2_59 [Arg_1-Arg_3 ]
eval_realheapsort_step2_58 [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb2_in [Arg_1+1-Arg_3 ]
eval_realheapsort_step2_bb3_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb11_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb5_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb6_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb7_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb8_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb10_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb9_in [Arg_1-Arg_3 ]
eval_realheapsort_step2_bb4_in [Arg_1-Arg_3 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
MPRF for transition 19:eval_realheapsort_step2_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,0,Arg_3,Arg_4):|:2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step2_59 [Arg_0+Arg_1-2*Arg_3-3 ]
eval_realheapsort_step2_58 [Arg_0+Arg_1-2*Arg_3-3 ]
eval_realheapsort_step2_bb2_in [Arg_1-Arg_3-1 ]
eval_realheapsort_step2_bb3_in [Arg_1-Arg_3-1 ]
eval_realheapsort_step2_bb11_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb5_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb6_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb7_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb8_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb10_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb9_in [Arg_1-Arg_3-2 ]
eval_realheapsort_step2_bb4_in [Arg_1-Arg_3-2 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
MPRF for transition 33:eval_realheapsort_step2_58(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step2_59 [0 ]
eval_realheapsort_step2_58 [1 ]
eval_realheapsort_step2_bb2_in [0 ]
eval_realheapsort_step2_bb3_in [0 ]
eval_realheapsort_step2_bb11_in [1 ]
eval_realheapsort_step2_bb5_in [1 ]
eval_realheapsort_step2_bb6_in [1 ]
eval_realheapsort_step2_bb7_in [1 ]
eval_realheapsort_step2_bb8_in [1 ]
eval_realheapsort_step2_bb10_in [1 ]
eval_realheapsort_step2_bb9_in [1 ]
eval_realheapsort_step2_bb4_in [1 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
MPRF for transition 34:eval_realheapsort_step2_59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb2_in(Arg_0,Arg_1,Arg_2,Arg_0,Arg_4):|:1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step2_59 [1 ]
eval_realheapsort_step2_58 [1 ]
eval_realheapsort_step2_bb2_in [0 ]
eval_realheapsort_step2_bb3_in [0 ]
eval_realheapsort_step2_bb11_in [1 ]
eval_realheapsort_step2_bb5_in [1 ]
eval_realheapsort_step2_bb6_in [1 ]
eval_realheapsort_step2_bb7_in [1 ]
eval_realheapsort_step2_bb8_in [1 ]
eval_realheapsort_step2_bb10_in [1 ]
eval_realheapsort_step2_bb9_in [1 ]
eval_realheapsort_step2_bb4_in [1 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
MPRF for transition 32:eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_58(Arg_3+1,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 of depth 1:
new bound:
Arg_1+1 {O(n)}
MPRF:
eval_realheapsort_step2_59 [0 ]
eval_realheapsort_step2_58 [0 ]
eval_realheapsort_step2_bb2_in [0 ]
eval_realheapsort_step2_bb3_in [0 ]
eval_realheapsort_step2_bb11_in [1 ]
eval_realheapsort_step2_bb5_in [1 ]
eval_realheapsort_step2_bb6_in [1 ]
eval_realheapsort_step2_bb7_in [1 ]
eval_realheapsort_step2_bb8_in [1 ]
eval_realheapsort_step2_bb10_in [1 ]
eval_realheapsort_step2_bb9_in [1 ]
eval_realheapsort_step2_bb4_in [1 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
MPRF for transition 21:eval_realheapsort_step2_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> eval_realheapsort_step2_bb11_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2 of depth 1:
new bound:
Arg_1+3 {O(n)}
MPRF:
eval_realheapsort_step2_59 [2-2*Arg_0 ]
eval_realheapsort_step2_58 [0 ]
eval_realheapsort_step2_bb2_in [2-2*Arg_3 ]
eval_realheapsort_step2_bb3_in [2-2*Arg_3 ]
eval_realheapsort_step2_bb11_in [0 ]
eval_realheapsort_step2_bb5_in [1 ]
eval_realheapsort_step2_bb6_in [1 ]
eval_realheapsort_step2_bb7_in [1 ]
eval_realheapsort_step2_bb8_in [1 ]
eval_realheapsort_step2_bb10_in [1 ]
eval_realheapsort_step2_bb9_in [1 ]
eval_realheapsort_step2_bb4_in [1 ]
Show Graph
G
eval_realheapsort_step2_0
eval_realheapsort_step2_0
eval_realheapsort_step2_1
eval_realheapsort_step2_1
eval_realheapsort_step2_0->eval_realheapsort_step2_1
t₂
eval_realheapsort_step2_2
eval_realheapsort_step2_2
eval_realheapsort_step2_1->eval_realheapsort_step2_2
t₃
eval_realheapsort_step2_10
eval_realheapsort_step2_10
eval_realheapsort_step2_11
eval_realheapsort_step2_11
eval_realheapsort_step2_10->eval_realheapsort_step2_11
t₁₄
τ = 3<=Arg_1
eval_realheapsort_step2_12
eval_realheapsort_step2_12
eval_realheapsort_step2_11->eval_realheapsort_step2_12
t₁₅
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_bb2_in
eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in
t₁₆
η (Arg_3) = 0
τ = 3<=Arg_1
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_bb12_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in
t₅
τ = Arg_1<=2
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_bb1_in
eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in
t₄
τ = 2<Arg_1
eval_realheapsort_step2_3
eval_realheapsort_step2_3
eval_realheapsort_step2_4
eval_realheapsort_step2_4
eval_realheapsort_step2_3->eval_realheapsort_step2_4
t₇
τ = 3<=Arg_1
eval_realheapsort_step2_5
eval_realheapsort_step2_5
eval_realheapsort_step2_4->eval_realheapsort_step2_5
t₈
τ = 3<=Arg_1
eval_realheapsort_step2_6
eval_realheapsort_step2_6
eval_realheapsort_step2_5->eval_realheapsort_step2_6
t₉
τ = 3<=Arg_1
eval_realheapsort_step2_58
eval_realheapsort_step2_58
eval_realheapsort_step2_59
eval_realheapsort_step2_59
eval_realheapsort_step2_58->eval_realheapsort_step2_59
t₃₃
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in
t₃₄
η (Arg_3) = Arg_0
τ = 1+Arg_3<=Arg_0 && 0<=Arg_3 && 1<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && 1<=Arg_0
eval_realheapsort_step2_7
eval_realheapsort_step2_7
eval_realheapsort_step2_6->eval_realheapsort_step2_7
t₁₀
τ = 3<=Arg_1
eval_realheapsort_step2_8
eval_realheapsort_step2_8
eval_realheapsort_step2_7->eval_realheapsort_step2_8
t₁₁
τ = 3<=Arg_1
eval_realheapsort_step2_9
eval_realheapsort_step2_9
eval_realheapsort_step2_8->eval_realheapsort_step2_9
t₁₂
τ = 3<=Arg_1
eval_realheapsort_step2_9->eval_realheapsort_step2_10
t₁₃
τ = 3<=Arg_1
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in
eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0
t₁
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb10_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb4_in
eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in
t₃₁
η (Arg_2) = Arg_4
τ = 0<=Arg_3
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in
eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58
t₃₂
η (Arg_0) = Arg_3+1
τ = 0<=Arg_3
eval_realheapsort_step2_stop
eval_realheapsort_step2_stop
eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop
t₃₅
eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3
t₆
τ = 3<=Arg_1
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in
t₁₈
τ = 0<=Arg_3 && Arg_1<2+Arg_3
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb3_in
eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in
t₁₇
τ = 0<=Arg_3 && Arg_3+2<=Arg_1
eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in
t₁₉
η (Arg_2) = 0
τ = 2+Arg_3<=Arg_1 && 0<=Arg_3 && 2<=Arg_1+Arg_3 && 2<=Arg_1
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in
t₂₁
τ = 0<=Arg_3 && Arg_1<Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb5_in
eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in
t₂₀
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb6_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in
t₂₃
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<Arg_1
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb7_in
eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in
t₂₂
τ = 0<=Arg_3 && 2*Arg_2+3+Arg_3<=Arg_1 && Arg_1<=Arg_3+3+2*Arg_2
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in
t₂₅
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb8_in
eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in
t₂₆
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb9_in
eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in
t₂₇
η (Arg_4) = 2*Arg_2+1
τ = 0<=Arg_3
eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in
t₂₈
η (Arg_4) = 2*Arg_2+2
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in
t₂₉
τ = 0<=Arg_3
eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in
t₃₀
η (Arg_2) = Arg_1
τ = 0<=Arg_3
eval_realheapsort_step2_start
eval_realheapsort_step2_start
eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in
t₀
All Bounds
Timebounds
Overall timebound:inf {Infinity}
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1: 1 {O(1)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2: 1 {O(1)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11: 1 {O(1)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12: 1 {O(1)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in: 1 {O(1)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in: 1 {O(1)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in: 1 {O(1)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4: 1 {O(1)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5: 1 {O(1)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6: 1 {O(1)}
33: eval_realheapsort_step2_58->eval_realheapsort_step2_59: Arg_1+1 {O(n)}
34: eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in: Arg_1+1 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7: 1 {O(1)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8: 1 {O(1)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9: 1 {O(1)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10: 1 {O(1)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0: 1 {O(1)}
31: eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in: inf {Infinity}
32: eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58: Arg_1+1 {O(n)}
35: eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop: 1 {O(1)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3: 1 {O(1)}
17: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in: Arg_1+1 {O(n)}
18: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in: 1 {O(1)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in: Arg_1+1 {O(n)}
20: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in: inf {Infinity}
21: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in: Arg_1+3 {O(n)}
22: eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in: inf {Infinity}
23: eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in: inf {Infinity}
25: eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in: inf {Infinity}
26: eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in: inf {Infinity}
27: eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in: inf {Infinity}
28: eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in: inf {Infinity}
29: eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in: inf {Infinity}
30: eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in: inf {Infinity}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1: 1 {O(1)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2: 1 {O(1)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11: 1 {O(1)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12: 1 {O(1)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in: 1 {O(1)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in: 1 {O(1)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in: 1 {O(1)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4: 1 {O(1)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5: 1 {O(1)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6: 1 {O(1)}
33: eval_realheapsort_step2_58->eval_realheapsort_step2_59: Arg_1+1 {O(n)}
34: eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in: Arg_1+1 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7: 1 {O(1)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8: 1 {O(1)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9: 1 {O(1)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10: 1 {O(1)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0: 1 {O(1)}
31: eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in: inf {Infinity}
32: eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58: Arg_1+1 {O(n)}
35: eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop: 1 {O(1)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3: 1 {O(1)}
17: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in: Arg_1+1 {O(n)}
18: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in: 1 {O(1)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in: Arg_1+1 {O(n)}
20: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in: inf {Infinity}
21: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in: Arg_1+3 {O(n)}
22: eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in: inf {Infinity}
23: eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in: inf {Infinity}
25: eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in: inf {Infinity}
26: eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in: inf {Infinity}
27: eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in: inf {Infinity}
28: eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in: inf {Infinity}
29: eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in: inf {Infinity}
30: eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in: inf {Infinity}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in: 1 {O(1)}
Sizebounds
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1, Arg_0: Arg_0 {O(n)}
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1, Arg_1: Arg_1 {O(n)}
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1, Arg_2: Arg_2 {O(n)}
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1, Arg_3: Arg_3 {O(n)}
2: eval_realheapsort_step2_0->eval_realheapsort_step2_1, Arg_4: Arg_4 {O(n)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2, Arg_0: Arg_0 {O(n)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2, Arg_1: Arg_1 {O(n)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2, Arg_2: Arg_2 {O(n)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2, Arg_3: Arg_3 {O(n)}
3: eval_realheapsort_step2_1->eval_realheapsort_step2_2, Arg_4: Arg_4 {O(n)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11, Arg_0: Arg_0 {O(n)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11, Arg_1: Arg_1 {O(n)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11, Arg_2: Arg_2 {O(n)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11, Arg_3: Arg_3 {O(n)}
14: eval_realheapsort_step2_10->eval_realheapsort_step2_11, Arg_4: Arg_4 {O(n)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12, Arg_0: Arg_0 {O(n)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12, Arg_1: Arg_1 {O(n)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12, Arg_2: Arg_2 {O(n)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12, Arg_3: Arg_3 {O(n)}
15: eval_realheapsort_step2_11->eval_realheapsort_step2_12, Arg_4: Arg_4 {O(n)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in, Arg_0: Arg_0 {O(n)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in, Arg_1: Arg_1 {O(n)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in, Arg_2: Arg_2 {O(n)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in, Arg_3: 0 {O(1)}
16: eval_realheapsort_step2_12->eval_realheapsort_step2_bb2_in, Arg_4: Arg_4 {O(n)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in, Arg_0: Arg_0 {O(n)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in, Arg_1: Arg_1 {O(n)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in, Arg_2: Arg_2 {O(n)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in, Arg_3: Arg_3 {O(n)}
4: eval_realheapsort_step2_2->eval_realheapsort_step2_bb1_in, Arg_4: Arg_4 {O(n)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in, Arg_0: Arg_0 {O(n)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in, Arg_1: Arg_1 {O(n)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in, Arg_2: Arg_2 {O(n)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in, Arg_3: Arg_3 {O(n)}
5: eval_realheapsort_step2_2->eval_realheapsort_step2_bb12_in, Arg_4: Arg_4 {O(n)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4, Arg_0: Arg_0 {O(n)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4, Arg_1: Arg_1 {O(n)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4, Arg_2: Arg_2 {O(n)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4, Arg_3: Arg_3 {O(n)}
7: eval_realheapsort_step2_3->eval_realheapsort_step2_4, Arg_4: Arg_4 {O(n)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5, Arg_0: Arg_0 {O(n)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5, Arg_1: Arg_1 {O(n)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5, Arg_2: Arg_2 {O(n)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5, Arg_3: Arg_3 {O(n)}
8: eval_realheapsort_step2_4->eval_realheapsort_step2_5, Arg_4: Arg_4 {O(n)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6, Arg_0: Arg_0 {O(n)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6, Arg_1: Arg_1 {O(n)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6, Arg_2: Arg_2 {O(n)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6, Arg_3: Arg_3 {O(n)}
9: eval_realheapsort_step2_5->eval_realheapsort_step2_6, Arg_4: Arg_4 {O(n)}
33: eval_realheapsort_step2_58->eval_realheapsort_step2_59, Arg_0: Arg_1+1 {O(n)}
33: eval_realheapsort_step2_58->eval_realheapsort_step2_59, Arg_1: Arg_1 {O(n)}
33: eval_realheapsort_step2_58->eval_realheapsort_step2_59, Arg_3: Arg_1+1 {O(n)}
34: eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in, Arg_0: Arg_1+1 {O(n)}
34: eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in, Arg_1: Arg_1 {O(n)}
34: eval_realheapsort_step2_59->eval_realheapsort_step2_bb2_in, Arg_3: Arg_1+1 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7, Arg_0: Arg_0 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7, Arg_1: Arg_1 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7, Arg_2: Arg_2 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7, Arg_3: Arg_3 {O(n)}
10: eval_realheapsort_step2_6->eval_realheapsort_step2_7, Arg_4: Arg_4 {O(n)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8, Arg_0: Arg_0 {O(n)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8, Arg_1: Arg_1 {O(n)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8, Arg_2: Arg_2 {O(n)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8, Arg_3: Arg_3 {O(n)}
11: eval_realheapsort_step2_7->eval_realheapsort_step2_8, Arg_4: Arg_4 {O(n)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9, Arg_0: Arg_0 {O(n)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9, Arg_1: Arg_1 {O(n)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9, Arg_2: Arg_2 {O(n)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9, Arg_3: Arg_3 {O(n)}
12: eval_realheapsort_step2_8->eval_realheapsort_step2_9, Arg_4: Arg_4 {O(n)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10, Arg_0: Arg_0 {O(n)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10, Arg_1: Arg_1 {O(n)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10, Arg_2: Arg_2 {O(n)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10, Arg_3: Arg_3 {O(n)}
13: eval_realheapsort_step2_9->eval_realheapsort_step2_10, Arg_4: Arg_4 {O(n)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0, Arg_0: Arg_0 {O(n)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0, Arg_1: Arg_1 {O(n)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0, Arg_2: Arg_2 {O(n)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0, Arg_3: Arg_3 {O(n)}
1: eval_realheapsort_step2_bb0_in->eval_realheapsort_step2_0, Arg_4: Arg_4 {O(n)}
31: eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
31: eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in, Arg_1: Arg_1 {O(n)}
31: eval_realheapsort_step2_bb10_in->eval_realheapsort_step2_bb4_in, Arg_3: Arg_1+1 {O(n)}
32: eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58, Arg_0: Arg_1+1 {O(n)}
32: eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58, Arg_1: Arg_1 {O(n)}
32: eval_realheapsort_step2_bb11_in->eval_realheapsort_step2_58, Arg_3: Arg_1+1 {O(n)}
35: eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop, Arg_0: Arg_0+Arg_1+1 {O(n)}
35: eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop, Arg_1: 2*Arg_1 {O(n)}
35: eval_realheapsort_step2_bb12_in->eval_realheapsort_step2_stop, Arg_3: Arg_1+Arg_3+1 {O(n)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3, Arg_0: Arg_0 {O(n)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3, Arg_1: Arg_1 {O(n)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3, Arg_2: Arg_2 {O(n)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3, Arg_3: Arg_3 {O(n)}
6: eval_realheapsort_step2_bb1_in->eval_realheapsort_step2_3, Arg_4: Arg_4 {O(n)}
17: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
17: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in, Arg_1: Arg_1 {O(n)}
17: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb3_in, Arg_3: Arg_1+1 {O(n)}
18: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in, Arg_0: Arg_1+1 {O(n)}
18: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in, Arg_1: Arg_1 {O(n)}
18: eval_realheapsort_step2_bb2_in->eval_realheapsort_step2_bb12_in, Arg_3: Arg_1+1 {O(n)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in, Arg_1: Arg_1 {O(n)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in, Arg_2: 0 {O(1)}
19: eval_realheapsort_step2_bb3_in->eval_realheapsort_step2_bb4_in, Arg_3: Arg_1+1 {O(n)}
20: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
20: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in, Arg_1: Arg_1 {O(n)}
20: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb5_in, Arg_3: Arg_1+1 {O(n)}
21: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in, Arg_0: 3*Arg_0+3*Arg_1+3 {O(n)}
21: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in, Arg_1: Arg_1 {O(n)}
21: eval_realheapsort_step2_bb4_in->eval_realheapsort_step2_bb11_in, Arg_3: Arg_1+1 {O(n)}
22: eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
22: eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in, Arg_1: Arg_1 {O(n)}
22: eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb7_in, Arg_3: Arg_1+1 {O(n)}
23: eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
23: eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in, Arg_1: Arg_1 {O(n)}
23: eval_realheapsort_step2_bb5_in->eval_realheapsort_step2_bb6_in, Arg_3: Arg_1+1 {O(n)}
25: eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
25: eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in, Arg_1: Arg_1 {O(n)}
25: eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb7_in, Arg_3: Arg_1+1 {O(n)}
26: eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
26: eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in, Arg_1: Arg_1 {O(n)}
26: eval_realheapsort_step2_bb6_in->eval_realheapsort_step2_bb8_in, Arg_3: Arg_1+1 {O(n)}
27: eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
27: eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in, Arg_1: Arg_1 {O(n)}
27: eval_realheapsort_step2_bb7_in->eval_realheapsort_step2_bb9_in, Arg_3: Arg_1+1 {O(n)}
28: eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
28: eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in, Arg_1: Arg_1 {O(n)}
28: eval_realheapsort_step2_bb8_in->eval_realheapsort_step2_bb9_in, Arg_3: Arg_1+1 {O(n)}
29: eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
29: eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in, Arg_1: Arg_1 {O(n)}
29: eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb10_in, Arg_3: Arg_1+1 {O(n)}
30: eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in, Arg_0: Arg_0+Arg_1+1 {O(n)}
30: eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in, Arg_1: Arg_1 {O(n)}
30: eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in, Arg_2: 2*Arg_1 {O(n)}
30: eval_realheapsort_step2_bb9_in->eval_realheapsort_step2_bb4_in, Arg_3: Arg_1+1 {O(n)}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_realheapsort_step2_start->eval_realheapsort_step2_bb0_in, Arg_4: Arg_4 {O(n)}