Initial Problem

Start: l0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
0:l0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l1(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6)
1:l1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l1(Arg_0+Arg_1,Arg_1+Arg_2,Arg_2-1,Arg_3,Arg_4,Arg_5,Arg_6):|:1<=Arg_0
2:l1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l2(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6):|:Arg_0<=0
3:l2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l1(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:1<=Arg_3
4:l2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_3<=0

Preprocessing

Found invariant Arg_2<=Arg_6 && Arg_0<=0 for location l2

Found invariant Arg_2<=Arg_6 for location l1

Found invariant Arg_2<=Arg_6 && Arg_3<=0 && Arg_0+Arg_3<=0 && Arg_0<=0 for location l3

Problem after Preprocessing

Start: l0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6
Temp_Vars:
Locations: l0, l1, l2, l3
Transitions:
0:l0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l1(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6)
1:l1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l1(Arg_0+Arg_1,Arg_1+Arg_2,Arg_2-1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_2<=Arg_6 && 1<=Arg_0
2:l1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l2(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6):|:Arg_2<=Arg_6 && Arg_0<=0
3:l2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l1(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_2<=Arg_6 && Arg_0<=0 && 1<=Arg_3
4:l2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_2<=Arg_6 && Arg_0<=0 && Arg_3<=0

MPRF for transition 3:l2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l1(Arg_4,Arg_5,Arg_6,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_2<=Arg_6 && Arg_0<=0 && 1<=Arg_3 of depth 1:

new bound:

Arg_3+1 {O(n)}

MPRF:

l2 [Arg_3 ]
l1 [Arg_3-1 ]

MPRF for transition 2:l1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l2(Arg_0,Arg_1,Arg_2,Arg_3-1,Arg_4,Arg_5,Arg_6):|:Arg_2<=Arg_6 && Arg_0<=0 of depth 1:

new bound:

Arg_3+2 {O(n)}

MPRF:

l1 [1 ]
l2 [0 ]

MPRF for transition 1:l1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6) -> l1(Arg_0+Arg_1,Arg_1+Arg_2,Arg_2-1,Arg_3,Arg_4,Arg_5,Arg_6):|:Arg_2<=Arg_6 && 1<=Arg_0 of depth 3:

new bound:

54*Arg_3*Arg_4+54*Arg_3*Arg_5+54*Arg_3*Arg_6+55*Arg_3+81*Arg_4+81*Arg_5+81*Arg_6+110 {O(n^2)}

MPRF:

l1 [Arg_2+1 ; Arg_1+1 ; Arg_0 ]
l2 [Arg_2 ; Arg_1 ; Arg_0 ]

All Bounds

Timebounds

Overall timebound:54*Arg_3*Arg_4+54*Arg_3*Arg_5+54*Arg_3*Arg_6+57*Arg_3+81*Arg_4+81*Arg_5+81*Arg_6+115 {O(n^2)}
0: l0->l1: 1 {O(1)}
1: l1->l1: 54*Arg_3*Arg_4+54*Arg_3*Arg_5+54*Arg_3*Arg_6+55*Arg_3+81*Arg_4+81*Arg_5+81*Arg_6+110 {O(n^2)}
2: l1->l2: Arg_3+2 {O(n)}
3: l2->l1: Arg_3+1 {O(n)}
4: l2->l3: 1 {O(1)}

Costbounds

Overall costbound: 54*Arg_3*Arg_4+54*Arg_3*Arg_5+54*Arg_3*Arg_6+57*Arg_3+81*Arg_4+81*Arg_5+81*Arg_6+115 {O(n^2)}
0: l0->l1: 1 {O(1)}
1: l1->l1: 54*Arg_3*Arg_4+54*Arg_3*Arg_5+54*Arg_3*Arg_6+55*Arg_3+81*Arg_4+81*Arg_5+81*Arg_6+110 {O(n^2)}
2: l1->l2: Arg_3+2 {O(n)}
3: l2->l1: Arg_3+1 {O(n)}
4: l2->l3: 1 {O(1)}

Sizebounds

0: l0->l1, Arg_0: Arg_4 {O(n)}
0: l0->l1, Arg_1: Arg_5 {O(n)}
0: l0->l1, Arg_2: Arg_6 {O(n)}
0: l0->l1, Arg_3: Arg_3 {O(n)}
0: l0->l1, Arg_4: Arg_4 {O(n)}
0: l0->l1, Arg_5: Arg_5 {O(n)}
0: l0->l1, Arg_6: Arg_6 {O(n)}
1: l1->l1, Arg_0: 157464*Arg_3*Arg_3*Arg_3*Arg_4*Arg_4*Arg_4+157464*Arg_3*Arg_3*Arg_3*Arg_5*Arg_5*Arg_5+157464*Arg_3*Arg_3*Arg_3*Arg_6*Arg_6*Arg_6+472392*Arg_3*Arg_3*Arg_3*Arg_4*Arg_4*Arg_5+472392*Arg_3*Arg_3*Arg_3*Arg_4*Arg_4*Arg_6+472392*Arg_3*Arg_3*Arg_3*Arg_4*Arg_5*Arg_5+472392*Arg_3*Arg_3*Arg_3*Arg_4*Arg_6*Arg_6+472392*Arg_3*Arg_3*Arg_3*Arg_5*Arg_5*Arg_6+472392*Arg_3*Arg_3*Arg_3*Arg_5*Arg_6*Arg_6+944784*Arg_3*Arg_3*Arg_3*Arg_4*Arg_5*Arg_6+2125764*Arg_3*Arg_3*Arg_4*Arg_4*Arg_5+2125764*Arg_3*Arg_3*Arg_4*Arg_5*Arg_5+2143260*Arg_3*Arg_3*Arg_4*Arg_4*Arg_6+2143260*Arg_3*Arg_3*Arg_5*Arg_5*Arg_6+2160756*Arg_3*Arg_3*Arg_4*Arg_6*Arg_6+2160756*Arg_3*Arg_3*Arg_5*Arg_6*Arg_6+4286520*Arg_3*Arg_3*Arg_4*Arg_5*Arg_6+481140*Arg_3*Arg_3*Arg_3*Arg_4*Arg_4+481140*Arg_3*Arg_3*Arg_3*Arg_5*Arg_5+481140*Arg_3*Arg_3*Arg_3*Arg_6*Arg_6+708588*Arg_3*Arg_3*Arg_4*Arg_4*Arg_4+708588*Arg_3*Arg_3*Arg_5*Arg_5*Arg_5+726084*Arg_3*Arg_3*Arg_6*Arg_6*Arg_6+962280*Arg_3*Arg_3*Arg_3*Arg_4*Arg_5+962280*Arg_3*Arg_3*Arg_3*Arg_4*Arg_6+962280*Arg_3*Arg_3*Arg_3*Arg_5*Arg_6+1062882*Arg_3*Arg_4*Arg_4*Arg_4+1062882*Arg_3*Arg_5*Arg_5*Arg_5+1115370*Arg_3*Arg_6*Arg_6*Arg_6+2411532*Arg_3*Arg_3*Arg_4*Arg_4+2411532*Arg_3*Arg_3*Arg_5*Arg_5+2447172*Arg_3*Arg_3*Arg_6*Arg_6+3188646*Arg_3*Arg_4*Arg_4*Arg_5+3188646*Arg_3*Arg_4*Arg_5*Arg_5+3241134*Arg_3*Arg_4*Arg_4*Arg_6+3241134*Arg_3*Arg_5*Arg_5*Arg_6+3293622*Arg_3*Arg_4*Arg_6*Arg_6+3293622*Arg_3*Arg_5*Arg_6*Arg_6+4823064*Arg_3*Arg_3*Arg_4*Arg_5+4858704*Arg_3*Arg_3*Arg_4*Arg_6+4858704*Arg_3*Arg_3*Arg_5*Arg_6+490050*Arg_3*Arg_3*Arg_3*Arg_4+490050*Arg_3*Arg_3*Arg_3*Arg_5+490050*Arg_3*Arg_3*Arg_3*Arg_6+6482268*Arg_3*Arg_4*Arg_5*Arg_6+1594323*Arg_4*Arg_4*Arg_5+1594323*Arg_4*Arg_5*Arg_5+1633689*Arg_4*Arg_4*Arg_6+1633689*Arg_5*Arg_5*Arg_6+166375*Arg_3*Arg_3*Arg_3+1673055*Arg_4*Arg_6*Arg_6+1673055*Arg_5*Arg_6*Arg_6+2707155*Arg_3*Arg_3*Arg_4+2707155*Arg_3*Arg_3*Arg_5+2725305*Arg_3*Arg_3*Arg_6+3267378*Arg_4*Arg_5*Arg_6+3986901*Arg_3*Arg_4*Arg_4+3987225*Arg_3*Arg_5*Arg_5+4112289*Arg_3*Arg_6*Arg_6+531441*Arg_4*Arg_4*Arg_4+531441*Arg_5*Arg_5*Arg_5+570807*Arg_6*Arg_6*Arg_6+7974126*Arg_3*Arg_4*Arg_5+8099190*Arg_3*Arg_4*Arg_6+8099514*Arg_3*Arg_5*Arg_6+1004300*Arg_3*Arg_3+2178252*Arg_4*Arg_4+2178738*Arg_5*Arg_5+2286144*Arg_6*Arg_6+4356990*Arg_4*Arg_5+4464396*Arg_4*Arg_6+4464882*Arg_5*Arg_6+4942134*Arg_3*Arg_4+4942464*Arg_3*Arg_5+5015394*Arg_3*Arg_6+2020755*Arg_3+2976024*Arg_4+2976687*Arg_5+3049947*Arg_6+1355310 {O(n^6)}
1: l1->l1, Arg_1: 2916*Arg_3*Arg_3*Arg_4*Arg_4+2916*Arg_3*Arg_3*Arg_5*Arg_5+2916*Arg_3*Arg_3*Arg_6*Arg_6+5832*Arg_3*Arg_3*Arg_4*Arg_5+5832*Arg_3*Arg_3*Arg_4*Arg_6+5832*Arg_3*Arg_3*Arg_5*Arg_6+17496*Arg_3*Arg_4*Arg_5+17820*Arg_3*Arg_4*Arg_6+17820*Arg_3*Arg_5*Arg_6+5940*Arg_3*Arg_3*Arg_4+5940*Arg_3*Arg_3*Arg_5+5940*Arg_3*Arg_3*Arg_6+8748*Arg_3*Arg_4*Arg_4+8748*Arg_3*Arg_5*Arg_5+9072*Arg_3*Arg_6*Arg_6+13122*Arg_4*Arg_5+13608*Arg_4*Arg_6+13608*Arg_5*Arg_6+20844*Arg_3*Arg_4+20844*Arg_3*Arg_5+21174*Arg_3*Arg_6+3025*Arg_3*Arg_3+6561*Arg_4*Arg_4+6561*Arg_5*Arg_5+7047*Arg_6*Arg_6+12155*Arg_3+17901*Arg_4+17904*Arg_5+18567*Arg_6+12210 {O(n^4)}
1: l1->l1, Arg_2: 54*Arg_3*Arg_4+54*Arg_3*Arg_5+54*Arg_3*Arg_6+55*Arg_3+81*Arg_4+81*Arg_5+84*Arg_6+110 {O(n^2)}
1: l1->l1, Arg_3: 3*Arg_3+2 {O(n)}
1: l1->l1, Arg_4: 2*Arg_4 {O(n)}
1: l1->l1, Arg_5: 2*Arg_5 {O(n)}
1: l1->l1, Arg_6: 2*Arg_6 {O(n)}
2: l1->l2, Arg_0: 157464*Arg_3*Arg_3*Arg_3*Arg_4*Arg_4*Arg_4+157464*Arg_3*Arg_3*Arg_3*Arg_5*Arg_5*Arg_5+157464*Arg_3*Arg_3*Arg_3*Arg_6*Arg_6*Arg_6+472392*Arg_3*Arg_3*Arg_3*Arg_4*Arg_4*Arg_5+472392*Arg_3*Arg_3*Arg_3*Arg_4*Arg_4*Arg_6+472392*Arg_3*Arg_3*Arg_3*Arg_4*Arg_5*Arg_5+472392*Arg_3*Arg_3*Arg_3*Arg_4*Arg_6*Arg_6+472392*Arg_3*Arg_3*Arg_3*Arg_5*Arg_5*Arg_6+472392*Arg_3*Arg_3*Arg_3*Arg_5*Arg_6*Arg_6+944784*Arg_3*Arg_3*Arg_3*Arg_4*Arg_5*Arg_6+2125764*Arg_3*Arg_3*Arg_4*Arg_4*Arg_5+2125764*Arg_3*Arg_3*Arg_4*Arg_5*Arg_5+2143260*Arg_3*Arg_3*Arg_4*Arg_4*Arg_6+2143260*Arg_3*Arg_3*Arg_5*Arg_5*Arg_6+2160756*Arg_3*Arg_3*Arg_4*Arg_6*Arg_6+2160756*Arg_3*Arg_3*Arg_5*Arg_6*Arg_6+4286520*Arg_3*Arg_3*Arg_4*Arg_5*Arg_6+481140*Arg_3*Arg_3*Arg_3*Arg_4*Arg_4+481140*Arg_3*Arg_3*Arg_3*Arg_5*Arg_5+481140*Arg_3*Arg_3*Arg_3*Arg_6*Arg_6+708588*Arg_3*Arg_3*Arg_4*Arg_4*Arg_4+708588*Arg_3*Arg_3*Arg_5*Arg_5*Arg_5+726084*Arg_3*Arg_3*Arg_6*Arg_6*Arg_6+962280*Arg_3*Arg_3*Arg_3*Arg_4*Arg_5+962280*Arg_3*Arg_3*Arg_3*Arg_4*Arg_6+962280*Arg_3*Arg_3*Arg_3*Arg_5*Arg_6+1062882*Arg_3*Arg_4*Arg_4*Arg_4+1062882*Arg_3*Arg_5*Arg_5*Arg_5+1115370*Arg_3*Arg_6*Arg_6*Arg_6+2411532*Arg_3*Arg_3*Arg_4*Arg_4+2411532*Arg_3*Arg_3*Arg_5*Arg_5+2447172*Arg_3*Arg_3*Arg_6*Arg_6+3188646*Arg_3*Arg_4*Arg_4*Arg_5+3188646*Arg_3*Arg_4*Arg_5*Arg_5+3241134*Arg_3*Arg_4*Arg_4*Arg_6+3241134*Arg_3*Arg_5*Arg_5*Arg_6+3293622*Arg_3*Arg_4*Arg_6*Arg_6+3293622*Arg_3*Arg_5*Arg_6*Arg_6+4823064*Arg_3*Arg_3*Arg_4*Arg_5+4858704*Arg_3*Arg_3*Arg_4*Arg_6+4858704*Arg_3*Arg_3*Arg_5*Arg_6+490050*Arg_3*Arg_3*Arg_3*Arg_4+490050*Arg_3*Arg_3*Arg_3*Arg_5+490050*Arg_3*Arg_3*Arg_3*Arg_6+6482268*Arg_3*Arg_4*Arg_5*Arg_6+1594323*Arg_4*Arg_4*Arg_5+1594323*Arg_4*Arg_5*Arg_5+1633689*Arg_4*Arg_4*Arg_6+1633689*Arg_5*Arg_5*Arg_6+166375*Arg_3*Arg_3*Arg_3+1673055*Arg_4*Arg_6*Arg_6+1673055*Arg_5*Arg_6*Arg_6+2707155*Arg_3*Arg_3*Arg_4+2707155*Arg_3*Arg_3*Arg_5+2725305*Arg_3*Arg_3*Arg_6+3267378*Arg_4*Arg_5*Arg_6+3986901*Arg_3*Arg_4*Arg_4+3987225*Arg_3*Arg_5*Arg_5+4112289*Arg_3*Arg_6*Arg_6+531441*Arg_4*Arg_4*Arg_4+531441*Arg_5*Arg_5*Arg_5+570807*Arg_6*Arg_6*Arg_6+7974126*Arg_3*Arg_4*Arg_5+8099190*Arg_3*Arg_4*Arg_6+8099514*Arg_3*Arg_5*Arg_6+1004300*Arg_3*Arg_3+2178252*Arg_4*Arg_4+2178738*Arg_5*Arg_5+2286144*Arg_6*Arg_6+4356990*Arg_4*Arg_5+4464396*Arg_4*Arg_6+4464882*Arg_5*Arg_6+4942134*Arg_3*Arg_4+4942464*Arg_3*Arg_5+5015394*Arg_3*Arg_6+2020755*Arg_3+2976027*Arg_4+2976687*Arg_5+3049947*Arg_6+1355310 {O(n^6)}
2: l1->l2, Arg_1: 2916*Arg_3*Arg_3*Arg_4*Arg_4+2916*Arg_3*Arg_3*Arg_5*Arg_5+2916*Arg_3*Arg_3*Arg_6*Arg_6+5832*Arg_3*Arg_3*Arg_4*Arg_5+5832*Arg_3*Arg_3*Arg_4*Arg_6+5832*Arg_3*Arg_3*Arg_5*Arg_6+17496*Arg_3*Arg_4*Arg_5+17820*Arg_3*Arg_4*Arg_6+17820*Arg_3*Arg_5*Arg_6+5940*Arg_3*Arg_3*Arg_4+5940*Arg_3*Arg_3*Arg_5+5940*Arg_3*Arg_3*Arg_6+8748*Arg_3*Arg_4*Arg_4+8748*Arg_3*Arg_5*Arg_5+9072*Arg_3*Arg_6*Arg_6+13122*Arg_4*Arg_5+13608*Arg_4*Arg_6+13608*Arg_5*Arg_6+20844*Arg_3*Arg_4+20844*Arg_3*Arg_5+21174*Arg_3*Arg_6+3025*Arg_3*Arg_3+6561*Arg_4*Arg_4+6561*Arg_5*Arg_5+7047*Arg_6*Arg_6+12155*Arg_3+17901*Arg_4+17907*Arg_5+18567*Arg_6+12210 {O(n^4)}
2: l1->l2, Arg_2: 54*Arg_3*Arg_4+54*Arg_3*Arg_5+54*Arg_3*Arg_6+55*Arg_3+81*Arg_4+81*Arg_5+87*Arg_6+110 {O(n^2)}
2: l1->l2, Arg_3: 3*Arg_3+2 {O(n)}
2: l1->l2, Arg_4: 2*Arg_4 {O(n)}
2: l1->l2, Arg_5: 2*Arg_5 {O(n)}
2: l1->l2, Arg_6: 2*Arg_6 {O(n)}
3: l2->l1, Arg_0: 2*Arg_4 {O(n)}
3: l2->l1, Arg_1: 2*Arg_5 {O(n)}
3: l2->l1, Arg_2: 2*Arg_6 {O(n)}
3: l2->l1, Arg_3: 3*Arg_3+2 {O(n)}
3: l2->l1, Arg_4: 2*Arg_4 {O(n)}
3: l2->l1, Arg_5: 2*Arg_5 {O(n)}
3: l2->l1, Arg_6: 2*Arg_6 {O(n)}
4: l2->l3, Arg_0: 157464*Arg_3*Arg_3*Arg_3*Arg_4*Arg_4*Arg_4+157464*Arg_3*Arg_3*Arg_3*Arg_5*Arg_5*Arg_5+157464*Arg_3*Arg_3*Arg_3*Arg_6*Arg_6*Arg_6+472392*Arg_3*Arg_3*Arg_3*Arg_4*Arg_4*Arg_5+472392*Arg_3*Arg_3*Arg_3*Arg_4*Arg_4*Arg_6+472392*Arg_3*Arg_3*Arg_3*Arg_4*Arg_5*Arg_5+472392*Arg_3*Arg_3*Arg_3*Arg_4*Arg_6*Arg_6+472392*Arg_3*Arg_3*Arg_3*Arg_5*Arg_5*Arg_6+472392*Arg_3*Arg_3*Arg_3*Arg_5*Arg_6*Arg_6+944784*Arg_3*Arg_3*Arg_3*Arg_4*Arg_5*Arg_6+2125764*Arg_3*Arg_3*Arg_4*Arg_4*Arg_5+2125764*Arg_3*Arg_3*Arg_4*Arg_5*Arg_5+2143260*Arg_3*Arg_3*Arg_4*Arg_4*Arg_6+2143260*Arg_3*Arg_3*Arg_5*Arg_5*Arg_6+2160756*Arg_3*Arg_3*Arg_4*Arg_6*Arg_6+2160756*Arg_3*Arg_3*Arg_5*Arg_6*Arg_6+4286520*Arg_3*Arg_3*Arg_4*Arg_5*Arg_6+481140*Arg_3*Arg_3*Arg_3*Arg_4*Arg_4+481140*Arg_3*Arg_3*Arg_3*Arg_5*Arg_5+481140*Arg_3*Arg_3*Arg_3*Arg_6*Arg_6+708588*Arg_3*Arg_3*Arg_4*Arg_4*Arg_4+708588*Arg_3*Arg_3*Arg_5*Arg_5*Arg_5+726084*Arg_3*Arg_3*Arg_6*Arg_6*Arg_6+962280*Arg_3*Arg_3*Arg_3*Arg_4*Arg_5+962280*Arg_3*Arg_3*Arg_3*Arg_4*Arg_6+962280*Arg_3*Arg_3*Arg_3*Arg_5*Arg_6+1062882*Arg_3*Arg_4*Arg_4*Arg_4+1062882*Arg_3*Arg_5*Arg_5*Arg_5+1115370*Arg_3*Arg_6*Arg_6*Arg_6+2411532*Arg_3*Arg_3*Arg_4*Arg_4+2411532*Arg_3*Arg_3*Arg_5*Arg_5+2447172*Arg_3*Arg_3*Arg_6*Arg_6+3188646*Arg_3*Arg_4*Arg_4*Arg_5+3188646*Arg_3*Arg_4*Arg_5*Arg_5+3241134*Arg_3*Arg_4*Arg_4*Arg_6+3241134*Arg_3*Arg_5*Arg_5*Arg_6+3293622*Arg_3*Arg_4*Arg_6*Arg_6+3293622*Arg_3*Arg_5*Arg_6*Arg_6+4823064*Arg_3*Arg_3*Arg_4*Arg_5+4858704*Arg_3*Arg_3*Arg_4*Arg_6+4858704*Arg_3*Arg_3*Arg_5*Arg_6+490050*Arg_3*Arg_3*Arg_3*Arg_4+490050*Arg_3*Arg_3*Arg_3*Arg_5+490050*Arg_3*Arg_3*Arg_3*Arg_6+6482268*Arg_3*Arg_4*Arg_5*Arg_6+1594323*Arg_4*Arg_4*Arg_5+1594323*Arg_4*Arg_5*Arg_5+1633689*Arg_4*Arg_4*Arg_6+1633689*Arg_5*Arg_5*Arg_6+166375*Arg_3*Arg_3*Arg_3+1673055*Arg_4*Arg_6*Arg_6+1673055*Arg_5*Arg_6*Arg_6+2707155*Arg_3*Arg_3*Arg_4+2707155*Arg_3*Arg_3*Arg_5+2725305*Arg_3*Arg_3*Arg_6+3267378*Arg_4*Arg_5*Arg_6+3986901*Arg_3*Arg_4*Arg_4+3987225*Arg_3*Arg_5*Arg_5+4112289*Arg_3*Arg_6*Arg_6+531441*Arg_4*Arg_4*Arg_4+531441*Arg_5*Arg_5*Arg_5+570807*Arg_6*Arg_6*Arg_6+7974126*Arg_3*Arg_4*Arg_5+8099190*Arg_3*Arg_4*Arg_6+8099514*Arg_3*Arg_5*Arg_6+1004300*Arg_3*Arg_3+2178252*Arg_4*Arg_4+2178738*Arg_5*Arg_5+2286144*Arg_6*Arg_6+4356990*Arg_4*Arg_5+4464396*Arg_4*Arg_6+4464882*Arg_5*Arg_6+4942134*Arg_3*Arg_4+4942464*Arg_3*Arg_5+5015394*Arg_3*Arg_6+2020755*Arg_3+2976027*Arg_4+2976687*Arg_5+3049947*Arg_6+1355310 {O(n^6)}
4: l2->l3, Arg_1: 2916*Arg_3*Arg_3*Arg_4*Arg_4+2916*Arg_3*Arg_3*Arg_5*Arg_5+2916*Arg_3*Arg_3*Arg_6*Arg_6+5832*Arg_3*Arg_3*Arg_4*Arg_5+5832*Arg_3*Arg_3*Arg_4*Arg_6+5832*Arg_3*Arg_3*Arg_5*Arg_6+17496*Arg_3*Arg_4*Arg_5+17820*Arg_3*Arg_4*Arg_6+17820*Arg_3*Arg_5*Arg_6+5940*Arg_3*Arg_3*Arg_4+5940*Arg_3*Arg_3*Arg_5+5940*Arg_3*Arg_3*Arg_6+8748*Arg_3*Arg_4*Arg_4+8748*Arg_3*Arg_5*Arg_5+9072*Arg_3*Arg_6*Arg_6+13122*Arg_4*Arg_5+13608*Arg_4*Arg_6+13608*Arg_5*Arg_6+20844*Arg_3*Arg_4+20844*Arg_3*Arg_5+21174*Arg_3*Arg_6+3025*Arg_3*Arg_3+6561*Arg_4*Arg_4+6561*Arg_5*Arg_5+7047*Arg_6*Arg_6+12155*Arg_3+17901*Arg_4+17907*Arg_5+18567*Arg_6+12210 {O(n^4)}
4: l2->l3, Arg_2: 54*Arg_3*Arg_4+54*Arg_3*Arg_5+54*Arg_3*Arg_6+55*Arg_3+81*Arg_4+81*Arg_5+87*Arg_6+110 {O(n^2)}
4: l2->l3, Arg_3: 3*Arg_3+2 {O(n)}
4: l2->l3, Arg_4: 2*Arg_4 {O(n)}
4: l2->l3, Arg_5: 2*Arg_5 {O(n)}
4: l2->l3, Arg_6: 2*Arg_6 {O(n)}