Initial Problem

Start: f6
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17
Temp_Vars: A1, S, T, U, V, W, X, Y, Z
Locations: f0, f12, f5, f6, f9
Transitions:
1:f5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,S,Arg_6,V,W,X,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:T+1<=U && 1<=Arg_4 && 0<=Arg_5
3:f5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,0,V,W,Arg_10,Arg_12,Arg_12,0,Arg_14,Arg_4,S,Arg_17):|:T<=X && 0<=Arg_4 && 0<=Arg_5 && Arg_13<=0 && 0<=Arg_13 && Arg_7<=0 && 0<=Arg_7
2:f5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f5(Arg_0,Arg_1,Arg_2,Arg_3,1+Arg_4,Arg_5-1,Arg_12,0,W,X,Arg_10,Arg_12,Arg_13,V,S,Arg_4,Arg_16,Arg_17):|:U<=T && 0<=Arg_4 && 0<=Arg_5 && Arg_7<=0 && 0<=Arg_7
5:f6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f9(17,1,0,S,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,V,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17)
4:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f5(Arg_0,Arg_1,Arg_2,Arg_3,1,T+Arg_2-3,S,0,U,A1,Arg_10,S,V,X,W,Arg_15,Arg_3,Arg_2-2):|:2<=Arg_2 && Arg_0<=Arg_1 && Z<=Y
0:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17) -> f9(Arg_0,1+Arg_1,1+Arg_2,S,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17):|:1+Arg_1<=Arg_0 && 0<=Arg_2

Preprocessing

Eliminate variables {A1,W,Arg_3,Arg_8,Arg_9,Arg_10,Arg_11,Arg_14,Arg_15,Arg_16,Arg_17} that do not contribute to the problem

Found invariant 0<=Arg_5 && 1<=Arg_4+Arg_5 && 16<=Arg_2+Arg_5 && Arg_2<=16+Arg_5 && 17<=Arg_1+Arg_5 && Arg_1<=17+Arg_5 && 17<=Arg_0+Arg_5 && Arg_0<=17+Arg_5 && 1<=Arg_4 && 17<=Arg_2+Arg_4 && Arg_2<=15+Arg_4 && 18<=Arg_1+Arg_4 && Arg_1<=16+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=16+Arg_4 && Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 for location f0

Found invariant Arg_7<=0 && 1+Arg_7<=Arg_4 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && 1<=Arg_4 && 17<=Arg_2+Arg_4 && Arg_2<=15+Arg_4 && 18<=Arg_1+Arg_4 && Arg_1<=16+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=16+Arg_4 && Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 for location f5

Found invariant Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 17<=Arg_0+Arg_2 && Arg_0<=17+Arg_2 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 1<=Arg_1 && 18<=Arg_0+Arg_1 && Arg_0<=16+Arg_1 && Arg_0<=17 && 17<=Arg_0 for location f9

Found invariant Arg_7<=0 && Arg_7<=Arg_5 && 1+Arg_7<=Arg_4 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && Arg_7<=Arg_13 && Arg_13+Arg_7<=0 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 0<=Arg_5+Arg_7 && 1<=Arg_4+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 0<=Arg_13+Arg_7 && Arg_13<=Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && 0<=Arg_5 && 1<=Arg_4+Arg_5 && 16<=Arg_2+Arg_5 && Arg_2<=16+Arg_5 && 0<=Arg_13+Arg_5 && Arg_13<=Arg_5 && 17<=Arg_1+Arg_5 && Arg_1<=17+Arg_5 && 17<=Arg_0+Arg_5 && Arg_0<=17+Arg_5 && 1<=Arg_4 && 17<=Arg_2+Arg_4 && Arg_2<=15+Arg_4 && 1<=Arg_13+Arg_4 && 1+Arg_13<=Arg_4 && 18<=Arg_1+Arg_4 && Arg_1<=16+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=16+Arg_4 && Arg_2<=16 && Arg_2<=16+Arg_13 && Arg_13+Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 16<=Arg_13+Arg_2 && 16+Arg_13<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_13<=0 && 17+Arg_13<=Arg_1 && Arg_1+Arg_13<=17 && 17+Arg_13<=Arg_0 && Arg_0+Arg_13<=17 && 0<=Arg_13 && 17<=Arg_1+Arg_13 && Arg_1<=17+Arg_13 && 17<=Arg_0+Arg_13 && Arg_0<=17+Arg_13 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 for location f12

Problem after Preprocessing

Start: f6
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_4, Arg_5, Arg_6, Arg_7, Arg_12, Arg_13
Temp_Vars: S, T, U, V, X, Y, Z
Locations: f0, f12, f5, f6, f9
Transitions:
13:f5(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_12,Arg_13) -> f0(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,S,Arg_6,Arg_12,Arg_13):|:Arg_7<=0 && 1+Arg_7<=Arg_4 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && 1<=Arg_4 && 17<=Arg_2+Arg_4 && Arg_2<=15+Arg_4 && 18<=Arg_1+Arg_4 && Arg_1<=16+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=16+Arg_4 && Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 && T+1<=U && 1<=Arg_4 && 0<=Arg_5
15:f5(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_12,Arg_13) -> f12(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,0,Arg_12,0):|:Arg_7<=0 && 1+Arg_7<=Arg_4 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && 1<=Arg_4 && 17<=Arg_2+Arg_4 && Arg_2<=15+Arg_4 && 18<=Arg_1+Arg_4 && Arg_1<=16+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=16+Arg_4 && Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 && T<=X && 0<=Arg_4 && 0<=Arg_5 && Arg_13<=0 && 0<=Arg_13 && Arg_7<=0 && 0<=Arg_7
14:f5(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_12,Arg_13) -> f5(Arg_0,Arg_1,Arg_2,1+Arg_4,Arg_5-1,Arg_12,0,Arg_13,V):|:Arg_7<=0 && 1+Arg_7<=Arg_4 && 16+Arg_7<=Arg_2 && Arg_2+Arg_7<=16 && 17+Arg_7<=Arg_1 && Arg_1+Arg_7<=17 && 17+Arg_7<=Arg_0 && Arg_0+Arg_7<=17 && 0<=Arg_7 && 1<=Arg_4+Arg_7 && 16<=Arg_2+Arg_7 && Arg_2<=16+Arg_7 && 17<=Arg_1+Arg_7 && Arg_1<=17+Arg_7 && 17<=Arg_0+Arg_7 && Arg_0<=17+Arg_7 && 1<=Arg_4 && 17<=Arg_2+Arg_4 && Arg_2<=15+Arg_4 && 18<=Arg_1+Arg_4 && Arg_1<=16+Arg_4 && 18<=Arg_0+Arg_4 && Arg_0<=16+Arg_4 && Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 16<=Arg_2 && 33<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 33<=Arg_0+Arg_2 && Arg_0<=1+Arg_2 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 17<=Arg_1 && 34<=Arg_0+Arg_1 && Arg_0<=Arg_1 && Arg_0<=17 && 17<=Arg_0 && U<=T && 0<=Arg_4 && 0<=Arg_5 && Arg_7<=0 && 0<=Arg_7
16:f6(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_12,Arg_13) -> f9(17,1,0,Arg_4,Arg_5,Arg_6,Arg_7,Arg_12,Arg_13)
18:f9(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_12,Arg_13) -> f5(Arg_0,Arg_1,Arg_2,1,T+Arg_2-3,S,0,V,X):|:Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 17<=Arg_0+Arg_2 && Arg_0<=17+Arg_2 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 1<=Arg_1 && 18<=Arg_0+Arg_1 && Arg_0<=16+Arg_1 && Arg_0<=17 && 17<=Arg_0 && 2<=Arg_2 && Arg_0<=Arg_1 && Z<=Y
17:f9(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_12,Arg_13) -> f9(Arg_0,1+Arg_1,1+Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_12,Arg_13):|:Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 17<=Arg_0+Arg_2 && Arg_0<=17+Arg_2 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 1<=Arg_1 && 18<=Arg_0+Arg_1 && Arg_0<=16+Arg_1 && Arg_0<=17 && 17<=Arg_0 && 1+Arg_1<=Arg_0 && 0<=Arg_2

MPRF for transition 17:f9(Arg_0,Arg_1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_12,Arg_13) -> f9(Arg_0,1+Arg_1,1+Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_12,Arg_13):|:Arg_2<=16 && 1+Arg_2<=Arg_1 && Arg_1+Arg_2<=33 && 1+Arg_2<=Arg_0 && Arg_0+Arg_2<=33 && 0<=Arg_2 && 1<=Arg_1+Arg_2 && Arg_1<=1+Arg_2 && 17<=Arg_0+Arg_2 && Arg_0<=17+Arg_2 && Arg_1<=17 && Arg_1<=Arg_0 && Arg_0+Arg_1<=34 && 1<=Arg_1 && 18<=Arg_0+Arg_1 && Arg_0<=16+Arg_1 && Arg_0<=17 && 17<=Arg_0 && 1+Arg_1<=Arg_0 && 0<=Arg_2 of depth 1:

new bound:

19 {O(1)}

MPRF:

f9 [Arg_0+1-Arg_1 ]

All Bounds

Timebounds

Overall timebound:inf {Infinity}
13: f5->f0: 1 {O(1)}
14: f5->f5: inf {Infinity}
15: f5->f12: 1 {O(1)}
16: f6->f9: 1 {O(1)}
17: f9->f9: 19 {O(1)}
18: f9->f5: 1 {O(1)}

Costbounds

Overall costbound: inf {Infinity}
13: f5->f0: 1 {O(1)}
14: f5->f5: inf {Infinity}
15: f5->f12: 1 {O(1)}
16: f6->f9: 1 {O(1)}
17: f9->f9: 19 {O(1)}
18: f9->f5: 1 {O(1)}

Sizebounds

13: f5->f0, Arg_0: 17 {O(1)}
13: f5->f0, Arg_1: 17 {O(1)}
13: f5->f0, Arg_2: 16 {O(1)}
14: f5->f5, Arg_0: 17 {O(1)}
14: f5->f5, Arg_1: 17 {O(1)}
14: f5->f5, Arg_2: 16 {O(1)}
14: f5->f5, Arg_7: 0 {O(1)}
15: f5->f12, Arg_0: 17 {O(1)}
15: f5->f12, Arg_1: 17 {O(1)}
15: f5->f12, Arg_2: 16 {O(1)}
15: f5->f12, Arg_7: 0 {O(1)}
15: f5->f12, Arg_13: 0 {O(1)}
16: f6->f9, Arg_0: 17 {O(1)}
16: f6->f9, Arg_1: 1 {O(1)}
16: f6->f9, Arg_2: 0 {O(1)}
16: f6->f9, Arg_4: Arg_4 {O(n)}
16: f6->f9, Arg_5: Arg_5 {O(n)}
16: f6->f9, Arg_6: Arg_6 {O(n)}
16: f6->f9, Arg_7: Arg_7 {O(n)}
16: f6->f9, Arg_12: Arg_12 {O(n)}
16: f6->f9, Arg_13: Arg_13 {O(n)}
17: f9->f9, Arg_0: 17 {O(1)}
17: f9->f9, Arg_1: 17 {O(1)}
17: f9->f9, Arg_2: 16 {O(1)}
17: f9->f9, Arg_4: Arg_4 {O(n)}
17: f9->f9, Arg_5: Arg_5 {O(n)}
17: f9->f9, Arg_6: Arg_6 {O(n)}
17: f9->f9, Arg_7: Arg_7 {O(n)}
17: f9->f9, Arg_12: Arg_12 {O(n)}
17: f9->f9, Arg_13: Arg_13 {O(n)}
18: f9->f5, Arg_0: 17 {O(1)}
18: f9->f5, Arg_1: 17 {O(1)}
18: f9->f5, Arg_2: 16 {O(1)}
18: f9->f5, Arg_4: 1 {O(1)}
18: f9->f5, Arg_7: 0 {O(1)}