Initial Problem
Start: f17
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22, Arg_23, Arg_24, Arg_25, Arg_26, Arg_27, Arg_28, Arg_29, Arg_30, Arg_31, Arg_32, Arg_33, Arg_34, Arg_35, Arg_36, Arg_37, Arg_38, Arg_39, Arg_40, Arg_41, Arg_42, Arg_43, Arg_44, Arg_45, Arg_46, Arg_47, Arg_48
Temp_Vars: A2, A3, B2, B3, C2, C3, D2, D3, E2, F2, G2, H2, I2, J2, K2, L2, M2, N2, O2, P2, Q2, R2, S2, T2, U2, V2, W2, X1, X2, Y1, Y2, Z1, Z2
Locations: f0, f10, f13, f15, f17, f9
Transitions:
27:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,F2,Arg_8,Arg_9,Arg_10,E2,Arg_12,A2,Arg_14,C2,Arg_16,D2,X1,G2,Y1,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
19:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21-1,Y1,Arg_21-1,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,A2,Arg_47,Arg_48):|:Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
20:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21-1,Y1,Arg_21-1,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,A2,Arg_47,Arg_48):|:Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
21:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21-1,Y1,Arg_21-1,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,A2,Arg_47,Arg_48):|:Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
22:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21-1,Y1,Arg_21-1,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,A2,Arg_47,Arg_48):|:Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
23:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21-1,Y1,Arg_21-1,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,A2,Arg_47,Arg_48):|:C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
24:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21-1,Y1,Arg_21-1,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,A2,Arg_47,Arg_48):|:C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
25:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21-1,Y1,Arg_21-1,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,A2,Arg_47,Arg_48):|:C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
26:f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21-1,Y1,Arg_21-1,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,A2,Arg_47,Arg_48):|:C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
38:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_22,Arg_8,Arg_21,Arg_10,0,Arg_12,Arg_22,Arg_21+1,0,Arg_16,Arg_22,X1,Arg_22,Y1,Arg_21,Arg_22,Arg_23,A2,Arg_25,E2,Arg_27,F2,Arg_29,G2,Arg_31,H2,Arg_33,I2,D2,J2,Arg_37,K2,Arg_39,B2,Arg_41,O2,Z1,P2,N2,Arg_46,Arg_47,C2):|:2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
39:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_22,Arg_8,Arg_21,Arg_10,0,Arg_12,Arg_22,Arg_21+1,0,Arg_16,Arg_22,X1,Arg_22,Y1,Arg_21,Arg_22,Arg_23,A2,Arg_25,E2,Arg_27,F2,Arg_29,G2,Arg_31,H2,Arg_33,I2,D2,J2,Arg_37,K2,Arg_39,B2,Arg_41,O2,Z1,P2,N2,Arg_46,Arg_47,C2):|:2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
40:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_22,Arg_8,Arg_21,Arg_10,0,Arg_12,Arg_22,Arg_21+1,0,Arg_16,Arg_22,X1,Arg_22,Y1,Arg_21,Arg_22,Arg_23,A2,Arg_25,E2,Arg_27,F2,Arg_29,G2,Arg_31,H2,Arg_33,I2,D2,J2,Arg_37,K2,Arg_39,B2,Arg_41,O2,Z1,P2,N2,Arg_46,Arg_47,C2):|:2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
41:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_22,Arg_8,Arg_21,Arg_10,0,Arg_12,Arg_22,Arg_21+1,0,Arg_16,Arg_22,X1,Arg_22,Y1,Arg_21,Arg_22,Arg_23,A2,Arg_25,E2,Arg_27,F2,Arg_29,G2,Arg_31,H2,Arg_33,I2,D2,J2,Arg_37,K2,Arg_39,B2,Arg_41,O2,Z1,P2,N2,Arg_46,Arg_47,C2):|:2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
1:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Arg_0,B2,Arg_2,1+Arg_14,Arg_4,Arg_16-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,1+Arg_14,Arg_15,Arg_16-1,Arg_17,X1,Arg_19,Y1,Arg_21,A2,Arg_23,A2,Arg_25,C2,Arg_27,D2,Arg_29,0,Arg_31,E2,Arg_33,F2,Arg_35,G2,Arg_37,H2,Arg_39,I2,Arg_41,J2,Arg_43,0,Arg_45,K2,Arg_48,Arg_48):|:0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
2:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Arg_0,B2,Arg_2,1+Arg_14,Arg_4,Arg_16-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,1+Arg_14,Arg_15,Arg_16-1,Arg_17,X1,Arg_19,Y1,Arg_21,A2,Arg_23,A2,Arg_25,C2,Arg_27,D2,Arg_29,0,Arg_31,E2,Arg_33,F2,Arg_35,G2,Arg_37,H2,Arg_39,I2,Arg_41,J2,Arg_43,0,Arg_45,K2,Arg_48,Arg_48):|:0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
3:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Arg_0,B2,Arg_2,1+Arg_14,Arg_4,Arg_16-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,1+Arg_14,Arg_15,Arg_16-1,Arg_17,X1,Arg_19,Y1,Arg_21,A2,Arg_23,A2,Arg_25,C2,Arg_27,D2,Arg_29,0,Arg_31,E2,Arg_33,F2,Arg_35,G2,Arg_37,H2,Arg_39,I2,Arg_41,J2,Arg_43,0,Arg_45,K2,Arg_48,Arg_48):|:0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
4:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Arg_0,B2,Arg_2,1+Arg_14,Arg_4,Arg_16-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,1+Arg_14,Arg_15,Arg_16-1,Arg_17,X1,Arg_19,Y1,Arg_21,A2,Arg_23,A2,Arg_25,C2,Arg_27,D2,Arg_29,0,Arg_31,E2,Arg_33,F2,Arg_35,G2,Arg_37,H2,Arg_39,I2,Arg_41,J2,Arg_43,0,Arg_45,K2,Arg_48,Arg_48):|:0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
5:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Arg_0,B2,Arg_2,1+Arg_14,Arg_4,Arg_16-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,1+Arg_14,Arg_15,Arg_16-1,Arg_17,X1,Arg_19,Y1,Arg_21,A2,Arg_23,A2,Arg_25,C2,Arg_27,D2,Arg_29,0,Arg_31,E2,Arg_33,F2,Arg_35,G2,Arg_37,H2,Arg_39,I2,Arg_41,J2,Arg_43,0,Arg_45,K2,Arg_48,Arg_48):|:0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
6:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Arg_0,B2,Arg_2,1+Arg_14,Arg_4,Arg_16-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,1+Arg_14,Arg_15,Arg_16-1,Arg_17,X1,Arg_19,Y1,Arg_21,A2,Arg_23,A2,Arg_25,C2,Arg_27,D2,Arg_29,0,Arg_31,E2,Arg_33,F2,Arg_35,G2,Arg_37,H2,Arg_39,I2,Arg_41,J2,Arg_43,0,Arg_45,K2,Arg_48,Arg_48):|:0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
7:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Arg_0,B2,Arg_2,1+Arg_14,Arg_4,Arg_16-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,1+Arg_14,Arg_15,Arg_16-1,Arg_17,X1,Arg_19,Y1,Arg_21,A2,Arg_23,A2,Arg_25,C2,Arg_27,D2,Arg_29,0,Arg_31,E2,Arg_33,F2,Arg_35,G2,Arg_37,H2,Arg_39,I2,Arg_41,J2,Arg_43,0,Arg_45,K2,Arg_48,Arg_48):|:0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
8:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Arg_0,B2,Arg_2,1+Arg_14,Arg_4,Arg_16-1,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,1+Arg_14,Arg_15,Arg_16-1,Arg_17,X1,Arg_19,Y1,Arg_21,A2,Arg_23,A2,Arg_25,C2,Arg_27,D2,Arg_29,0,Arg_31,E2,Arg_33,F2,Arg_35,G2,Arg_37,H2,Arg_39,I2,Arg_41,J2,Arg_43,0,Arg_45,K2,Arg_48,Arg_48):|:0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
29:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Y1,Arg_1,C2,Arg_3,A2,Arg_5,H2,Arg_7,G2,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,X1,Arg_19,E2,Arg_21,I2,Arg_23,I2,Arg_25,K2,F2,B2,Arg_29,0,Arg_31,N2,D2,O2,J2,P2,Z1,Q2,T2,R2,M2,S2,Arg_43,0,Arg_45,Arg_46,Arg_47,Arg_4):|:2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
30:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Y1,Arg_1,C2,Arg_3,A2,Arg_5,H2,Arg_7,G2,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,X1,Arg_19,E2,Arg_21,I2,Arg_23,I2,Arg_25,K2,F2,B2,Arg_29,0,Arg_31,N2,D2,O2,J2,P2,Z1,Q2,T2,R2,M2,S2,Arg_43,0,Arg_45,Arg_46,Arg_47,Arg_4):|:2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
31:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Y1,Arg_1,C2,Arg_3,A2,Arg_5,H2,Arg_7,G2,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,X1,Arg_19,E2,Arg_21,I2,Arg_23,I2,Arg_25,K2,F2,B2,Arg_29,0,Arg_31,N2,D2,O2,J2,P2,Z1,Q2,T2,R2,M2,S2,Arg_43,0,Arg_45,Arg_46,Arg_47,Arg_4):|:2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
32:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Y1,Arg_1,C2,Arg_3,A2,Arg_5,H2,Arg_7,G2,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,X1,Arg_19,E2,Arg_21,I2,Arg_23,I2,Arg_25,K2,F2,B2,Arg_29,0,Arg_31,N2,D2,O2,J2,P2,Z1,Q2,T2,R2,M2,S2,Arg_43,0,Arg_45,Arg_46,Arg_47,Arg_4):|:2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
33:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Y1,Arg_1,C2,Arg_3,A2,Arg_5,H2,Arg_7,G2,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,X1,Arg_19,E2,Arg_21,I2,Arg_23,I2,Arg_25,K2,F2,B2,Arg_29,0,Arg_31,N2,D2,O2,J2,P2,Z1,Q2,T2,R2,M2,S2,Arg_43,0,Arg_45,Arg_46,Arg_47,Arg_4):|:2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
34:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Y1,Arg_1,C2,Arg_3,A2,Arg_5,H2,Arg_7,G2,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,X1,Arg_19,E2,Arg_21,I2,Arg_23,I2,Arg_25,K2,F2,B2,Arg_29,0,Arg_31,N2,D2,O2,J2,P2,Z1,Q2,T2,R2,M2,S2,Arg_43,0,Arg_45,Arg_46,Arg_47,Arg_4):|:2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
35:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Y1,Arg_1,C2,Arg_3,A2,Arg_5,H2,Arg_7,G2,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,X1,Arg_19,E2,Arg_21,I2,Arg_23,I2,Arg_25,K2,F2,B2,Arg_29,0,Arg_31,N2,D2,O2,J2,P2,Z1,Q2,T2,R2,M2,S2,Arg_43,0,Arg_45,Arg_46,Arg_47,Arg_4):|:2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
36:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f13(Y1,Arg_1,C2,Arg_3,A2,Arg_5,H2,Arg_7,G2,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,X1,Arg_19,E2,Arg_21,I2,Arg_23,I2,Arg_25,K2,F2,B2,Arg_29,0,Arg_31,N2,D2,O2,J2,P2,Z1,Q2,T2,R2,M2,S2,Arg_43,0,Arg_45,Arg_46,Arg_47,Arg_4):|:2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
0:f15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f15(Arg_0,Arg_1,1+Arg_2,Arg_3,Arg_6,Arg_5,X1,Arg_7,Arg_6,Arg_9,Y1,Arg_11,Arg_2,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:Arg_2+1<=Arg_0 && 0<=Arg_2
37:f17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f0(A2,Arg_1,D2,Arg_3,C2,Arg_5,I2,C3,H2,Arg_9,Arg_10,B3,Arg_12,Y2,Arg_14,Z2,Arg_16,A3,Y1,D3,F2,Arg_21,0,Arg_23,J2,X1,Z1,G2,N2,Arg_29,O2,Arg_31,P2,E2,Q2,B2,R2,Arg_37,S2,Arg_39,T2,Arg_41,W2,M2,X2,L2,Arg_46,Arg_47,K2):|:U2<=0 && Y1<=0 && V2<=0
28:f17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f15(Y1,Arg_1,2,Arg_3,A2,Arg_5,C2,Arg_7,A2,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Y1,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,X1,Arg_26,A2,Arg_28,D2,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:2<=Y1
17:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,G2,Arg_8,Arg_9,Arg_10,F2,Arg_12,C2,Arg_14,D2,Arg_16,E2,X1,H2,Y1,Arg_21,A2,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:0<=Arg_9 && A2+1<=0 && 2<=X1 && Arg_11<=Arg_7 && Arg_7<=Arg_11
18:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,G2,Arg_8,Arg_9,Arg_10,F2,Arg_12,C2,Arg_14,D2,Arg_16,E2,X1,H2,Y1,Arg_21,A2,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:0<=Arg_9 && 1<=A2 && 2<=X1 && Arg_11<=Arg_7 && Arg_7<=Arg_11
9:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21,Y1,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:Arg_7+1<=A2 && 0<=Arg_9 && 2<=X1 && A2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
10:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21,Y1,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:Arg_7+1<=A2 && 0<=Arg_9 && 2<=X1 && A2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
11:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21,Y1,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:Arg_7+1<=A2 && 0<=Arg_9 && 2<=X1 && Y1+1<=A2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
12:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21,Y1,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:Arg_7+1<=A2 && 0<=Arg_9 && 2<=X1 && Y1+1<=A2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
13:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21,Y1,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:A2+1<=Arg_7 && 0<=Arg_9 && 2<=X1 && A2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
14:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21,Y1,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:A2+1<=Arg_7 && 0<=Arg_9 && 2<=X1 && A2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
15:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21,Y1,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:A2+1<=Arg_7 && 0<=Arg_9 && 2<=X1 && Y1+1<=A2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
16:f9(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48) -> f10(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Y1,Arg_14,0,Arg_16,Y1,X1,Arg_7,Arg_20,Arg_21,Y1,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_31,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47,Arg_48):|:A2+1<=Arg_7 && 0<=Arg_9 && 2<=X1 && Y1+1<=A2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
Show Graph
G
f0
f0
f10
f10
f10->f0
t₂₇
η (Arg_7) = F2
η (Arg_11) = E2
η (Arg_13) = A2
η (Arg_15) = C2
η (Arg_17) = D2
η (Arg_18) = X1
η (Arg_19) = G2
η (Arg_20) = Y1
τ = 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₉
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
η (Arg_23) = Arg_21-1
η (Arg_46) = A2
τ = Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₂₀
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
η (Arg_23) = Arg_21-1
η (Arg_46) = A2
τ = Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₂₁
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
η (Arg_23) = Arg_21-1
η (Arg_46) = A2
τ = Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₂₂
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
η (Arg_23) = Arg_21-1
η (Arg_46) = A2
τ = Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₂₃
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
η (Arg_23) = Arg_21-1
η (Arg_46) = A2
τ = C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₂₄
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
η (Arg_23) = Arg_21-1
η (Arg_46) = A2
τ = C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₂₅
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
η (Arg_23) = Arg_21-1
η (Arg_46) = A2
τ = C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₂₆
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
η (Arg_23) = Arg_21-1
η (Arg_46) = A2
τ = C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₃₈
η (Arg_7) = Arg_22
η (Arg_9) = Arg_21
η (Arg_11) = 0
η (Arg_13) = Arg_22
η (Arg_14) = Arg_21+1
η (Arg_15) = 0
η (Arg_17) = Arg_22
η (Arg_18) = X1
η (Arg_19) = Arg_22
η (Arg_20) = Y1
η (Arg_24) = A2
η (Arg_26) = E2
η (Arg_28) = F2
η (Arg_30) = G2
η (Arg_32) = H2
η (Arg_34) = I2
η (Arg_35) = D2
η (Arg_36) = J2
η (Arg_38) = K2
η (Arg_40) = B2
η (Arg_42) = O2
η (Arg_43) = Z1
η (Arg_44) = P2
η (Arg_45) = N2
η (Arg_48) = C2
τ = 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₃₉
η (Arg_7) = Arg_22
η (Arg_9) = Arg_21
η (Arg_11) = 0
η (Arg_13) = Arg_22
η (Arg_14) = Arg_21+1
η (Arg_15) = 0
η (Arg_17) = Arg_22
η (Arg_18) = X1
η (Arg_19) = Arg_22
η (Arg_20) = Y1
η (Arg_24) = A2
η (Arg_26) = E2
η (Arg_28) = F2
η (Arg_30) = G2
η (Arg_32) = H2
η (Arg_34) = I2
η (Arg_35) = D2
η (Arg_36) = J2
η (Arg_38) = K2
η (Arg_40) = B2
η (Arg_42) = O2
η (Arg_43) = Z1
η (Arg_44) = P2
η (Arg_45) = N2
η (Arg_48) = C2
τ = 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₄₀
η (Arg_7) = Arg_22
η (Arg_9) = Arg_21
η (Arg_11) = 0
η (Arg_13) = Arg_22
η (Arg_14) = Arg_21+1
η (Arg_15) = 0
η (Arg_17) = Arg_22
η (Arg_18) = X1
η (Arg_19) = Arg_22
η (Arg_20) = Y1
η (Arg_24) = A2
η (Arg_26) = E2
η (Arg_28) = F2
η (Arg_30) = G2
η (Arg_32) = H2
η (Arg_34) = I2
η (Arg_35) = D2
η (Arg_36) = J2
η (Arg_38) = K2
η (Arg_40) = B2
η (Arg_42) = O2
η (Arg_43) = Z1
η (Arg_44) = P2
η (Arg_45) = N2
η (Arg_48) = C2
τ = 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₄₁
η (Arg_7) = Arg_22
η (Arg_9) = Arg_21
η (Arg_11) = 0
η (Arg_13) = Arg_22
η (Arg_14) = Arg_21+1
η (Arg_15) = 0
η (Arg_17) = Arg_22
η (Arg_18) = X1
η (Arg_19) = Arg_22
η (Arg_20) = Y1
η (Arg_24) = A2
η (Arg_26) = E2
η (Arg_28) = F2
η (Arg_30) = G2
η (Arg_32) = H2
η (Arg_34) = I2
η (Arg_35) = D2
η (Arg_36) = J2
η (Arg_38) = K2
η (Arg_40) = B2
η (Arg_42) = O2
η (Arg_43) = Z1
η (Arg_44) = P2
η (Arg_45) = N2
η (Arg_48) = C2
τ = 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁
η (Arg_1) = B2
η (Arg_3) = 1+Arg_14
η (Arg_5) = Arg_16-1
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_18) = X1
η (Arg_20) = Y1
η (Arg_22) = A2
η (Arg_24) = A2
η (Arg_26) = C2
η (Arg_28) = D2
η (Arg_30) = 0
η (Arg_32) = E2
η (Arg_34) = F2
η (Arg_36) = G2
η (Arg_38) = H2
η (Arg_40) = I2
η (Arg_42) = J2
η (Arg_44) = 0
η (Arg_46) = K2
η (Arg_47) = Arg_48
τ = 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₂
η (Arg_1) = B2
η (Arg_3) = 1+Arg_14
η (Arg_5) = Arg_16-1
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_18) = X1
η (Arg_20) = Y1
η (Arg_22) = A2
η (Arg_24) = A2
η (Arg_26) = C2
η (Arg_28) = D2
η (Arg_30) = 0
η (Arg_32) = E2
η (Arg_34) = F2
η (Arg_36) = G2
η (Arg_38) = H2
η (Arg_40) = I2
η (Arg_42) = J2
η (Arg_44) = 0
η (Arg_46) = K2
η (Arg_47) = Arg_48
τ = 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₃
η (Arg_1) = B2
η (Arg_3) = 1+Arg_14
η (Arg_5) = Arg_16-1
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_18) = X1
η (Arg_20) = Y1
η (Arg_22) = A2
η (Arg_24) = A2
η (Arg_26) = C2
η (Arg_28) = D2
η (Arg_30) = 0
η (Arg_32) = E2
η (Arg_34) = F2
η (Arg_36) = G2
η (Arg_38) = H2
η (Arg_40) = I2
η (Arg_42) = J2
η (Arg_44) = 0
η (Arg_46) = K2
η (Arg_47) = Arg_48
τ = 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₄
η (Arg_1) = B2
η (Arg_3) = 1+Arg_14
η (Arg_5) = Arg_16-1
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_18) = X1
η (Arg_20) = Y1
η (Arg_22) = A2
η (Arg_24) = A2
η (Arg_26) = C2
η (Arg_28) = D2
η (Arg_30) = 0
η (Arg_32) = E2
η (Arg_34) = F2
η (Arg_36) = G2
η (Arg_38) = H2
η (Arg_40) = I2
η (Arg_42) = J2
η (Arg_44) = 0
η (Arg_46) = K2
η (Arg_47) = Arg_48
τ = 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₅
η (Arg_1) = B2
η (Arg_3) = 1+Arg_14
η (Arg_5) = Arg_16-1
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_18) = X1
η (Arg_20) = Y1
η (Arg_22) = A2
η (Arg_24) = A2
η (Arg_26) = C2
η (Arg_28) = D2
η (Arg_30) = 0
η (Arg_32) = E2
η (Arg_34) = F2
η (Arg_36) = G2
η (Arg_38) = H2
η (Arg_40) = I2
η (Arg_42) = J2
η (Arg_44) = 0
η (Arg_46) = K2
η (Arg_47) = Arg_48
τ = 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₆
η (Arg_1) = B2
η (Arg_3) = 1+Arg_14
η (Arg_5) = Arg_16-1
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_18) = X1
η (Arg_20) = Y1
η (Arg_22) = A2
η (Arg_24) = A2
η (Arg_26) = C2
η (Arg_28) = D2
η (Arg_30) = 0
η (Arg_32) = E2
η (Arg_34) = F2
η (Arg_36) = G2
η (Arg_38) = H2
η (Arg_40) = I2
η (Arg_42) = J2
η (Arg_44) = 0
η (Arg_46) = K2
η (Arg_47) = Arg_48
τ = 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₇
η (Arg_1) = B2
η (Arg_3) = 1+Arg_14
η (Arg_5) = Arg_16-1
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_18) = X1
η (Arg_20) = Y1
η (Arg_22) = A2
η (Arg_24) = A2
η (Arg_26) = C2
η (Arg_28) = D2
η (Arg_30) = 0
η (Arg_32) = E2
η (Arg_34) = F2
η (Arg_36) = G2
η (Arg_38) = H2
η (Arg_40) = I2
η (Arg_42) = J2
η (Arg_44) = 0
η (Arg_46) = K2
η (Arg_47) = Arg_48
τ = 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₈
η (Arg_1) = B2
η (Arg_3) = 1+Arg_14
η (Arg_5) = Arg_16-1
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_18) = X1
η (Arg_20) = Y1
η (Arg_22) = A2
η (Arg_24) = A2
η (Arg_26) = C2
η (Arg_28) = D2
η (Arg_30) = 0
η (Arg_32) = E2
η (Arg_34) = F2
η (Arg_36) = G2
η (Arg_38) = H2
η (Arg_40) = I2
η (Arg_42) = J2
η (Arg_44) = 0
η (Arg_46) = K2
η (Arg_47) = Arg_48
τ = 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₂₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_8) = G2
η (Arg_18) = X1
η (Arg_20) = E2
η (Arg_22) = I2
η (Arg_24) = I2
η (Arg_26) = K2
η (Arg_27) = F2
η (Arg_28) = B2
η (Arg_30) = 0
η (Arg_32) = N2
η (Arg_33) = D2
η (Arg_34) = O2
η (Arg_35) = J2
η (Arg_36) = P2
η (Arg_37) = Z1
η (Arg_38) = Q2
η (Arg_39) = T2
η (Arg_40) = R2
η (Arg_41) = M2
η (Arg_42) = S2
η (Arg_44) = 0
η (Arg_48) = Arg_4
τ = 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₃₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_8) = G2
η (Arg_18) = X1
η (Arg_20) = E2
η (Arg_22) = I2
η (Arg_24) = I2
η (Arg_26) = K2
η (Arg_27) = F2
η (Arg_28) = B2
η (Arg_30) = 0
η (Arg_32) = N2
η (Arg_33) = D2
η (Arg_34) = O2
η (Arg_35) = J2
η (Arg_36) = P2
η (Arg_37) = Z1
η (Arg_38) = Q2
η (Arg_39) = T2
η (Arg_40) = R2
η (Arg_41) = M2
η (Arg_42) = S2
η (Arg_44) = 0
η (Arg_48) = Arg_4
τ = 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₃₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_8) = G2
η (Arg_18) = X1
η (Arg_20) = E2
η (Arg_22) = I2
η (Arg_24) = I2
η (Arg_26) = K2
η (Arg_27) = F2
η (Arg_28) = B2
η (Arg_30) = 0
η (Arg_32) = N2
η (Arg_33) = D2
η (Arg_34) = O2
η (Arg_35) = J2
η (Arg_36) = P2
η (Arg_37) = Z1
η (Arg_38) = Q2
η (Arg_39) = T2
η (Arg_40) = R2
η (Arg_41) = M2
η (Arg_42) = S2
η (Arg_44) = 0
η (Arg_48) = Arg_4
τ = 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₃₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_8) = G2
η (Arg_18) = X1
η (Arg_20) = E2
η (Arg_22) = I2
η (Arg_24) = I2
η (Arg_26) = K2
η (Arg_27) = F2
η (Arg_28) = B2
η (Arg_30) = 0
η (Arg_32) = N2
η (Arg_33) = D2
η (Arg_34) = O2
η (Arg_35) = J2
η (Arg_36) = P2
η (Arg_37) = Z1
η (Arg_38) = Q2
η (Arg_39) = T2
η (Arg_40) = R2
η (Arg_41) = M2
η (Arg_42) = S2
η (Arg_44) = 0
η (Arg_48) = Arg_4
τ = 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₃₃
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_8) = G2
η (Arg_18) = X1
η (Arg_20) = E2
η (Arg_22) = I2
η (Arg_24) = I2
η (Arg_26) = K2
η (Arg_27) = F2
η (Arg_28) = B2
η (Arg_30) = 0
η (Arg_32) = N2
η (Arg_33) = D2
η (Arg_34) = O2
η (Arg_35) = J2
η (Arg_36) = P2
η (Arg_37) = Z1
η (Arg_38) = Q2
η (Arg_39) = T2
η (Arg_40) = R2
η (Arg_41) = M2
η (Arg_42) = S2
η (Arg_44) = 0
η (Arg_48) = Arg_4
τ = 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₃₄
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_8) = G2
η (Arg_18) = X1
η (Arg_20) = E2
η (Arg_22) = I2
η (Arg_24) = I2
η (Arg_26) = K2
η (Arg_27) = F2
η (Arg_28) = B2
η (Arg_30) = 0
η (Arg_32) = N2
η (Arg_33) = D2
η (Arg_34) = O2
η (Arg_35) = J2
η (Arg_36) = P2
η (Arg_37) = Z1
η (Arg_38) = Q2
η (Arg_39) = T2
η (Arg_40) = R2
η (Arg_41) = M2
η (Arg_42) = S2
η (Arg_44) = 0
η (Arg_48) = Arg_4
τ = 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₃₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_8) = G2
η (Arg_18) = X1
η (Arg_20) = E2
η (Arg_22) = I2
η (Arg_24) = I2
η (Arg_26) = K2
η (Arg_27) = F2
η (Arg_28) = B2
η (Arg_30) = 0
η (Arg_32) = N2
η (Arg_33) = D2
η (Arg_34) = O2
η (Arg_35) = J2
η (Arg_36) = P2
η (Arg_37) = Z1
η (Arg_38) = Q2
η (Arg_39) = T2
η (Arg_40) = R2
η (Arg_41) = M2
η (Arg_42) = S2
η (Arg_44) = 0
η (Arg_48) = Arg_4
τ = 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₃₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_8) = G2
η (Arg_18) = X1
η (Arg_20) = E2
η (Arg_22) = I2
η (Arg_24) = I2
η (Arg_26) = K2
η (Arg_27) = F2
η (Arg_28) = B2
η (Arg_30) = 0
η (Arg_32) = N2
η (Arg_33) = D2
η (Arg_34) = O2
η (Arg_35) = J2
η (Arg_36) = P2
η (Arg_37) = Z1
η (Arg_38) = Q2
η (Arg_39) = T2
η (Arg_40) = R2
η (Arg_41) = M2
η (Arg_42) = S2
η (Arg_44) = 0
η (Arg_48) = Arg_4
τ = 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₀
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
η (Arg_8) = Arg_6
η (Arg_10) = Y1
η (Arg_12) = Arg_2
τ = Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₃₇
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_8) = H2
η (Arg_11) = B3
η (Arg_13) = Y2
η (Arg_15) = Z2
η (Arg_17) = A3
η (Arg_18) = Y1
η (Arg_19) = D3
η (Arg_20) = F2
η (Arg_22) = 0
η (Arg_24) = J2
η (Arg_25) = X1
η (Arg_26) = Z1
η (Arg_27) = G2
η (Arg_28) = N2
η (Arg_30) = O2
η (Arg_32) = P2
η (Arg_33) = E2
η (Arg_34) = Q2
η (Arg_35) = B2
η (Arg_36) = R2
η (Arg_38) = S2
η (Arg_40) = T2
η (Arg_42) = W2
η (Arg_43) = M2
η (Arg_44) = X2
η (Arg_45) = L2
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₂₈
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
η (Arg_8) = A2
η (Arg_18) = Y1
η (Arg_25) = X1
η (Arg_27) = A2
η (Arg_29) = D2
τ = 2<=Y1
f9
f9
f9->f0
t₁₇
η (Arg_7) = G2
η (Arg_11) = F2
η (Arg_13) = C2
η (Arg_15) = D2
η (Arg_17) = E2
η (Arg_18) = X1
η (Arg_19) = H2
η (Arg_20) = Y1
η (Arg_22) = A2
τ = 0<=Arg_9 && A2+1<=0 && 2<=X1 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f9->f0
t₁₈
η (Arg_7) = G2
η (Arg_11) = F2
η (Arg_13) = C2
η (Arg_15) = D2
η (Arg_17) = E2
η (Arg_18) = X1
η (Arg_19) = H2
η (Arg_20) = Y1
η (Arg_22) = A2
τ = 0<=Arg_9 && 1<=A2 && 2<=X1 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f9->f10
t₉
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_22) = Y1
τ = Arg_7+1<=A2 && 0<=Arg_9 && 2<=X1 && A2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f9->f10
t₁₀
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_22) = Y1
τ = Arg_7+1<=A2 && 0<=Arg_9 && 2<=X1 && A2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f9->f10
t₁₁
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_22) = Y1
τ = Arg_7+1<=A2 && 0<=Arg_9 && 2<=X1 && Y1+1<=A2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f9->f10
t₁₂
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_22) = Y1
τ = Arg_7+1<=A2 && 0<=Arg_9 && 2<=X1 && Y1+1<=A2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f9->f10
t₁₃
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_22) = Y1
τ = A2+1<=Arg_7 && 0<=Arg_9 && 2<=X1 && A2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f9->f10
t₁₄
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_22) = Y1
τ = A2+1<=Arg_7 && 0<=Arg_9 && 2<=X1 && A2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f9->f10
t₁₅
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_22) = Y1
τ = A2+1<=Arg_7 && 0<=Arg_9 && 2<=X1 && Y1+1<=A2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f9->f10
t₁₆
η (Arg_11) = 0
η (Arg_13) = Y1
η (Arg_15) = 0
η (Arg_17) = Y1
η (Arg_18) = X1
η (Arg_19) = Arg_7
η (Arg_22) = Y1
τ = A2+1<=Arg_7 && 0<=Arg_9 && 2<=X1 && Y1+1<=A2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
Preprocessing
Cut unreachable locations [f9] from the program graph
Cut unsatisfiable transition 38: f13->f10
Cut unsatisfiable transition 41: f13->f10
Eliminate variables {A3,D3,G2,J2,N2,O2,P2,R2,S2,T2,W2,X2,Y2,Z2,Arg_1,Arg_3,Arg_5,Arg_8,Arg_9,Arg_10,Arg_12,Arg_13,Arg_15,Arg_17,Arg_18,Arg_19,Arg_20,Arg_23,Arg_24,Arg_25,Arg_26,Arg_27,Arg_28,Arg_29,Arg_30,Arg_32,Arg_33,Arg_34,Arg_35,Arg_36,Arg_37,Arg_38,Arg_39,Arg_40,Arg_41,Arg_42,Arg_43,Arg_44,Arg_45,Arg_46,Arg_47} that do not contribute to the problem
Found invariant 0<=Arg_31 for location f13
Found invariant Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 for location f15
Found invariant 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 for location f10
Problem after Preprocessing
Start: f17
Program_Vars: Arg_0, Arg_2, Arg_4, Arg_6, Arg_7, Arg_11, Arg_14, Arg_16, Arg_21, Arg_22, Arg_31, Arg_48
Temp_Vars: A2, B2, B3, C2, C3, D2, E2, F2, H2, I2, K2, L2, M2, Q2, U2, V2, X1, Y1, Z1
Locations: f0, f10, f13, f15, f17
Transitions:
143:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f0(Arg_0,Arg_2,Arg_4,Arg_6,F2,E2,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
135:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
136:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
137:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
138:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
139:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
140:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
141:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
142:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
152:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_22,0,Arg_21+1,Arg_16,Arg_21,Arg_22,Arg_31,C2):|:0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
153:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_22,0,Arg_21+1,Arg_16,Arg_21,Arg_22,Arg_31,C2):|:0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
144:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
145:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
146:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
147:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
148:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
149:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
150:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
151:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
155:f15(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Y1,C2,A2,H2,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,I2,Arg_31,Arg_4):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
156:f15(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Y1,C2,A2,H2,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,I2,Arg_31,Arg_4):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
157:f15(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Y1,C2,A2,H2,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,I2,Arg_31,Arg_4):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
158:f15(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Y1,C2,A2,H2,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,I2,Arg_31,Arg_4):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
159:f15(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Y1,C2,A2,H2,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,I2,Arg_31,Arg_4):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
160:f15(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Y1,C2,A2,H2,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,I2,Arg_31,Arg_4):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
161:f15(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Y1,C2,A2,H2,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,I2,Arg_31,Arg_4):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
162:f15(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Y1,C2,A2,H2,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,I2,Arg_31,Arg_4):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
154:f15(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f15(Arg_0,1+Arg_2,Arg_6,X1,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48):|:Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
164:f17(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f0(A2,D2,C2,I2,C3,B3,Arg_14,Arg_16,Arg_21,0,Arg_31,K2):|:U2<=0 && Y1<=0 && V2<=0
163:f17(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f15(Y1,2,A2,C2,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48):|:2<=Y1
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 144:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0 of depth 1:
new bound:
16*Arg_16+8 {O(n)}
MPRF:
f13 [Arg_16+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 145:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2 of depth 1:
new bound:
16*Arg_16+8 {O(n)}
MPRF:
f13 [Arg_16+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 146:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0 of depth 1:
new bound:
16*Arg_16+8 {O(n)}
MPRF:
f13 [Arg_16+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 147:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2 of depth 1:
new bound:
16*Arg_16+8 {O(n)}
MPRF:
f13 [Arg_16+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 148:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0 of depth 1:
new bound:
16*Arg_16+8 {O(n)}
MPRF:
f13 [Arg_16+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 149:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2 of depth 1:
new bound:
16*Arg_16+8 {O(n)}
MPRF:
f13 [Arg_16+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 150:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0 of depth 1:
new bound:
16*Arg_16+8 {O(n)}
MPRF:
f13 [Arg_16+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 151:f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f13(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,1+Arg_14,Arg_16-1,Arg_21,A2,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2 of depth 1:
new bound:
16*Arg_16+8 {O(n)}
MPRF:
f13 [Arg_16+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 135:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11 of depth 1:
new bound:
1024*Arg_21+2 {O(n)}
MPRF:
f10 [Arg_21+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 136:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11 of depth 1:
new bound:
1024*Arg_21+2 {O(n)}
MPRF:
f10 [Arg_21+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 137:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11 of depth 1:
new bound:
1024*Arg_21+2 {O(n)}
MPRF:
f10 [Arg_21+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 138:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11 of depth 1:
new bound:
1024*Arg_21+2 {O(n)}
MPRF:
f10 [Arg_21+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 139:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11 of depth 1:
new bound:
1024*Arg_21+2 {O(n)}
MPRF:
f10 [Arg_21+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 140:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11 of depth 1:
new bound:
1024*Arg_21+2 {O(n)}
MPRF:
f10 [Arg_21+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 141:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11 of depth 1:
new bound:
1024*Arg_21+2 {O(n)}
MPRF:
f10 [Arg_21+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
MPRF for transition 142:f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,Arg_11,Arg_14,Arg_16,Arg_21,Arg_22,Arg_31,Arg_48) -> f10(Arg_0,Arg_2,Arg_4,Arg_6,Arg_7,0,Arg_14,Arg_16,Arg_21-1,Y1,Arg_31,Arg_48):|:0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11 of depth 1:
new bound:
1024*Arg_21+2 {O(n)}
MPRF:
f10 [Arg_21+1 ]
Show Graph
G
f0
f0
f10
f10
f10->f0
t₁₄₃
η (Arg_7) = F2
η (Arg_11) = E2
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && 2<=X1 && 0<=Arg_21 && Arg_11<=Arg_7 && Arg_7<=Arg_11
f10->f10
t₁₃₅
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₆
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₇
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₈
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && Arg_7+1<=C2 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₃₉
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₀
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && C2+1<=Y1 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₁
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && Y1+1<=0 && Arg_11<=0 && 0<=Arg_11
f10->f10
t₁₄₂
η (Arg_11) = 0
η (Arg_21) = Arg_21-1
η (Arg_22) = Y1
τ = 0<=Arg_31 && 0<=Arg_16+Arg_31 && 0<=Arg_11+Arg_31 && Arg_11<=Arg_31 && 1+Arg_21<=Arg_14 && 0<=Arg_16 && 0<=Arg_11+Arg_16 && Arg_11<=Arg_16 && Arg_11<=0 && 0<=Arg_11 && C2+1<=Arg_7 && 0<=Arg_21 && 2<=X1 && Y1+1<=C2 && 1<=Y1 && Arg_11<=0 && 0<=Arg_11
f13
f13
f13->f10
t₁₅₂
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && 1<=Arg_22 && Arg_48<=0 && 0<=Arg_48
f13->f10
t₁₅₃
η (Arg_7) = Arg_22
η (Arg_11) = 0
η (Arg_14) = Arg_21+1
η (Arg_48) = C2
τ = 0<=Arg_31 && 2<=Q2 && 2<=X1 && 0<=Arg_16 && 0<=Arg_14 && Arg_22+1<=0 && Arg_48<=0 && 0<=Arg_48
f13->f13
t₁₄₄
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₅
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && A2+1<=0 && 1<=B2
f13->f13
t₁₄₆
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && B2+1<=0
f13->f13
t₁₄₇
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && Z1+1<=0 && 1<=A2 && 1<=B2
f13->f13
t₁₄₈
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && B2+1<=0
f13->f13
t₁₄₉
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && A2+1<=0 && 1<=B2
f13->f13
t₁₅₀
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && B2+1<=0
f13->f13
t₁₅₁
η (Arg_14) = 1+Arg_14
η (Arg_16) = Arg_16-1
η (Arg_22) = A2
τ = 0<=Arg_31 && 0<=Arg_14 && 0<=Arg_16 && 2<=X1 && 1<=Z1 && 1<=A2 && 1<=B2
f15
f15
f15->f13
t₁₅₅
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₅₆
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₅₇
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₅₈
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && M2+1<=0 && 1<=Arg_4 && 1<=I2
f15->f13
t₁₅₉
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && I2+1<=0
f15->f13
t₁₆₀
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && Arg_4+1<=0 && 1<=I2
f15->f13
t₁₆₁
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && I2+1<=0
f15->f13
t₁₆₂
η (Arg_0) = Y1
η (Arg_2) = C2
η (Arg_4) = A2
η (Arg_6) = H2
η (Arg_22) = I2
η (Arg_48) = Arg_4
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && 2<=L2 && L2<=Z1 && 2<=X1 && Arg_0<=Arg_2 && 0<=Arg_2 && 0<=Arg_31 && 1<=M2 && 1<=Arg_4 && 1<=I2
f15->f15
t₁₅₄
η (Arg_2) = 1+Arg_2
η (Arg_4) = Arg_6
η (Arg_6) = X1
τ = Arg_2<=Arg_0 && 2<=Arg_2 && 4<=Arg_0+Arg_2 && 2<=Arg_0 && Arg_2+1<=Arg_0 && 0<=Arg_2
f17
f17
f17->f0
t₁₆₄
η (Arg_0) = A2
η (Arg_2) = D2
η (Arg_4) = C2
η (Arg_6) = I2
η (Arg_7) = C3
η (Arg_11) = B3
η (Arg_22) = 0
η (Arg_48) = K2
τ = U2<=0 && Y1<=0 && V2<=0
f17->f15
t₁₆₃
η (Arg_0) = Y1
η (Arg_2) = 2
η (Arg_4) = A2
η (Arg_6) = C2
τ = 2<=Y1
All Bounds
Timebounds
Overall timebound:inf {Infinity}
135: f10->f10: 1024*Arg_21+2 {O(n)}
136: f10->f10: 1024*Arg_21+2 {O(n)}
137: f10->f10: 1024*Arg_21+2 {O(n)}
138: f10->f10: 1024*Arg_21+2 {O(n)}
139: f10->f10: 1024*Arg_21+2 {O(n)}
140: f10->f10: 1024*Arg_21+2 {O(n)}
141: f10->f10: 1024*Arg_21+2 {O(n)}
142: f10->f10: 1024*Arg_21+2 {O(n)}
143: f10->f0: 1 {O(1)}
144: f13->f13: 16*Arg_16+8 {O(n)}
145: f13->f13: 16*Arg_16+8 {O(n)}
146: f13->f13: 16*Arg_16+8 {O(n)}
147: f13->f13: 16*Arg_16+8 {O(n)}
148: f13->f13: 16*Arg_16+8 {O(n)}
149: f13->f13: 16*Arg_16+8 {O(n)}
150: f13->f13: 16*Arg_16+8 {O(n)}
151: f13->f13: 16*Arg_16+8 {O(n)}
152: f13->f10: 1 {O(1)}
153: f13->f10: 1 {O(1)}
154: f15->f15: inf {Infinity}
155: f15->f13: 1 {O(1)}
156: f15->f13: 1 {O(1)}
157: f15->f13: 1 {O(1)}
158: f15->f13: 1 {O(1)}
159: f15->f13: 1 {O(1)}
160: f15->f13: 1 {O(1)}
161: f15->f13: 1 {O(1)}
162: f15->f13: 1 {O(1)}
163: f17->f15: 1 {O(1)}
164: f17->f0: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
135: f10->f10: 1024*Arg_21+2 {O(n)}
136: f10->f10: 1024*Arg_21+2 {O(n)}
137: f10->f10: 1024*Arg_21+2 {O(n)}
138: f10->f10: 1024*Arg_21+2 {O(n)}
139: f10->f10: 1024*Arg_21+2 {O(n)}
140: f10->f10: 1024*Arg_21+2 {O(n)}
141: f10->f10: 1024*Arg_21+2 {O(n)}
142: f10->f10: 1024*Arg_21+2 {O(n)}
143: f10->f0: 1 {O(1)}
144: f13->f13: 16*Arg_16+8 {O(n)}
145: f13->f13: 16*Arg_16+8 {O(n)}
146: f13->f13: 16*Arg_16+8 {O(n)}
147: f13->f13: 16*Arg_16+8 {O(n)}
148: f13->f13: 16*Arg_16+8 {O(n)}
149: f13->f13: 16*Arg_16+8 {O(n)}
150: f13->f13: 16*Arg_16+8 {O(n)}
151: f13->f13: 16*Arg_16+8 {O(n)}
152: f13->f10: 1 {O(1)}
153: f13->f10: 1 {O(1)}
154: f15->f15: inf {Infinity}
155: f15->f13: 1 {O(1)}
156: f15->f13: 1 {O(1)}
157: f15->f13: 1 {O(1)}
158: f15->f13: 1 {O(1)}
159: f15->f13: 1 {O(1)}
160: f15->f13: 1 {O(1)}
161: f15->f13: 1 {O(1)}
162: f15->f13: 1 {O(1)}
163: f17->f15: 1 {O(1)}
164: f17->f0: 1 {O(1)}
Sizebounds
135: f10->f10, Arg_11: 0 {O(1)}
135: f10->f10, Arg_14: 7168*Arg_21+56 {O(n)}
135: f10->f10, Arg_16: 7168*Arg_16+56 {O(n)}
135: f10->f10, Arg_21: 7168*Arg_21+1 {O(n)}
135: f10->f10, Arg_31: 7168*Arg_31 {O(n)}
136: f10->f10, Arg_11: 0 {O(1)}
136: f10->f10, Arg_14: 7168*Arg_21+56 {O(n)}
136: f10->f10, Arg_16: 7168*Arg_16+56 {O(n)}
136: f10->f10, Arg_21: 7168*Arg_21+1 {O(n)}
136: f10->f10, Arg_31: 7168*Arg_31 {O(n)}
137: f10->f10, Arg_11: 0 {O(1)}
137: f10->f10, Arg_14: 7168*Arg_21+56 {O(n)}
137: f10->f10, Arg_16: 7168*Arg_16+56 {O(n)}
137: f10->f10, Arg_21: 7168*Arg_21+1 {O(n)}
137: f10->f10, Arg_31: 7168*Arg_31 {O(n)}
138: f10->f10, Arg_11: 0 {O(1)}
138: f10->f10, Arg_14: 7168*Arg_21+56 {O(n)}
138: f10->f10, Arg_16: 7168*Arg_16+56 {O(n)}
138: f10->f10, Arg_21: 7168*Arg_21+1 {O(n)}
138: f10->f10, Arg_31: 7168*Arg_31 {O(n)}
139: f10->f10, Arg_11: 0 {O(1)}
139: f10->f10, Arg_14: 7168*Arg_21+56 {O(n)}
139: f10->f10, Arg_16: 7168*Arg_16+56 {O(n)}
139: f10->f10, Arg_21: 7168*Arg_21+1 {O(n)}
139: f10->f10, Arg_31: 7168*Arg_31 {O(n)}
140: f10->f10, Arg_11: 0 {O(1)}
140: f10->f10, Arg_14: 7168*Arg_21+56 {O(n)}
140: f10->f10, Arg_16: 7168*Arg_16+56 {O(n)}
140: f10->f10, Arg_21: 7168*Arg_21+1 {O(n)}
140: f10->f10, Arg_31: 7168*Arg_31 {O(n)}
141: f10->f10, Arg_11: 0 {O(1)}
141: f10->f10, Arg_14: 7168*Arg_21+56 {O(n)}
141: f10->f10, Arg_16: 7168*Arg_16+56 {O(n)}
141: f10->f10, Arg_21: 7168*Arg_21+1 {O(n)}
141: f10->f10, Arg_31: 7168*Arg_31 {O(n)}
142: f10->f10, Arg_11: 0 {O(1)}
142: f10->f10, Arg_14: 7168*Arg_21+56 {O(n)}
142: f10->f10, Arg_16: 7168*Arg_16+56 {O(n)}
142: f10->f10, Arg_21: 7168*Arg_21+1 {O(n)}
142: f10->f10, Arg_31: 7168*Arg_31 {O(n)}
143: f10->f0, Arg_14: 43008*Arg_21+336 {O(n)}
143: f10->f0, Arg_16: 43008*Arg_16+336 {O(n)}
143: f10->f0, Arg_21: 43008*Arg_21+6 {O(n)}
143: f10->f0, Arg_31: 43008*Arg_31 {O(n)}
144: f13->f13, Arg_7: 128*Arg_7 {O(n)}
144: f13->f13, Arg_11: 128*Arg_11 {O(n)}
144: f13->f13, Arg_14: 128*Arg_14+128*Arg_16+64 {O(n)}
144: f13->f13, Arg_16: 128*Arg_16+1 {O(n)}
144: f13->f13, Arg_21: 128*Arg_21 {O(n)}
144: f13->f13, Arg_31: 128*Arg_31 {O(n)}
145: f13->f13, Arg_7: 128*Arg_7 {O(n)}
145: f13->f13, Arg_11: 128*Arg_11 {O(n)}
145: f13->f13, Arg_14: 128*Arg_14+128*Arg_16+64 {O(n)}
145: f13->f13, Arg_16: 128*Arg_16+1 {O(n)}
145: f13->f13, Arg_21: 128*Arg_21 {O(n)}
145: f13->f13, Arg_31: 128*Arg_31 {O(n)}
146: f13->f13, Arg_7: 128*Arg_7 {O(n)}
146: f13->f13, Arg_11: 128*Arg_11 {O(n)}
146: f13->f13, Arg_14: 128*Arg_14+128*Arg_16+64 {O(n)}
146: f13->f13, Arg_16: 128*Arg_16+1 {O(n)}
146: f13->f13, Arg_21: 128*Arg_21 {O(n)}
146: f13->f13, Arg_31: 128*Arg_31 {O(n)}
147: f13->f13, Arg_7: 128*Arg_7 {O(n)}
147: f13->f13, Arg_11: 128*Arg_11 {O(n)}
147: f13->f13, Arg_14: 128*Arg_14+128*Arg_16+64 {O(n)}
147: f13->f13, Arg_16: 128*Arg_16+1 {O(n)}
147: f13->f13, Arg_21: 128*Arg_21 {O(n)}
147: f13->f13, Arg_31: 128*Arg_31 {O(n)}
148: f13->f13, Arg_7: 128*Arg_7 {O(n)}
148: f13->f13, Arg_11: 128*Arg_11 {O(n)}
148: f13->f13, Arg_14: 128*Arg_14+128*Arg_16+64 {O(n)}
148: f13->f13, Arg_16: 128*Arg_16+1 {O(n)}
148: f13->f13, Arg_21: 128*Arg_21 {O(n)}
148: f13->f13, Arg_31: 128*Arg_31 {O(n)}
149: f13->f13, Arg_7: 128*Arg_7 {O(n)}
149: f13->f13, Arg_11: 128*Arg_11 {O(n)}
149: f13->f13, Arg_14: 128*Arg_14+128*Arg_16+64 {O(n)}
149: f13->f13, Arg_16: 128*Arg_16+1 {O(n)}
149: f13->f13, Arg_21: 128*Arg_21 {O(n)}
149: f13->f13, Arg_31: 128*Arg_31 {O(n)}
150: f13->f13, Arg_7: 128*Arg_7 {O(n)}
150: f13->f13, Arg_11: 128*Arg_11 {O(n)}
150: f13->f13, Arg_14: 128*Arg_14+128*Arg_16+64 {O(n)}
150: f13->f13, Arg_16: 128*Arg_16+1 {O(n)}
150: f13->f13, Arg_21: 128*Arg_21 {O(n)}
150: f13->f13, Arg_31: 128*Arg_31 {O(n)}
151: f13->f13, Arg_7: 128*Arg_7 {O(n)}
151: f13->f13, Arg_11: 128*Arg_11 {O(n)}
151: f13->f13, Arg_14: 128*Arg_14+128*Arg_16+64 {O(n)}
151: f13->f13, Arg_16: 128*Arg_16+1 {O(n)}
151: f13->f13, Arg_21: 128*Arg_21 {O(n)}
151: f13->f13, Arg_31: 128*Arg_31 {O(n)}
152: f13->f10, Arg_11: 0 {O(1)}
152: f13->f10, Arg_14: 512*Arg_21+4 {O(n)}
152: f13->f10, Arg_16: 512*Arg_16+4 {O(n)}
152: f13->f10, Arg_21: 512*Arg_21 {O(n)}
152: f13->f10, Arg_31: 512*Arg_31 {O(n)}
153: f13->f10, Arg_11: 0 {O(1)}
153: f13->f10, Arg_14: 512*Arg_21+4 {O(n)}
153: f13->f10, Arg_16: 512*Arg_16+4 {O(n)}
153: f13->f10, Arg_21: 512*Arg_21 {O(n)}
153: f13->f10, Arg_31: 512*Arg_31 {O(n)}
154: f15->f15, Arg_7: Arg_7 {O(n)}
154: f15->f15, Arg_11: Arg_11 {O(n)}
154: f15->f15, Arg_14: Arg_14 {O(n)}
154: f15->f15, Arg_16: Arg_16 {O(n)}
154: f15->f15, Arg_21: Arg_21 {O(n)}
154: f15->f15, Arg_22: Arg_22 {O(n)}
154: f15->f15, Arg_31: Arg_31 {O(n)}
154: f15->f15, Arg_48: Arg_48 {O(n)}
155: f15->f13, Arg_7: 2*Arg_7 {O(n)}
155: f15->f13, Arg_11: 2*Arg_11 {O(n)}
155: f15->f13, Arg_14: 2*Arg_14 {O(n)}
155: f15->f13, Arg_16: 2*Arg_16 {O(n)}
155: f15->f13, Arg_21: 2*Arg_21 {O(n)}
155: f15->f13, Arg_31: 2*Arg_31 {O(n)}
156: f15->f13, Arg_7: 2*Arg_7 {O(n)}
156: f15->f13, Arg_11: 2*Arg_11 {O(n)}
156: f15->f13, Arg_14: 2*Arg_14 {O(n)}
156: f15->f13, Arg_16: 2*Arg_16 {O(n)}
156: f15->f13, Arg_21: 2*Arg_21 {O(n)}
156: f15->f13, Arg_31: 2*Arg_31 {O(n)}
157: f15->f13, Arg_7: 2*Arg_7 {O(n)}
157: f15->f13, Arg_11: 2*Arg_11 {O(n)}
157: f15->f13, Arg_14: 2*Arg_14 {O(n)}
157: f15->f13, Arg_16: 2*Arg_16 {O(n)}
157: f15->f13, Arg_21: 2*Arg_21 {O(n)}
157: f15->f13, Arg_31: 2*Arg_31 {O(n)}
158: f15->f13, Arg_7: 2*Arg_7 {O(n)}
158: f15->f13, Arg_11: 2*Arg_11 {O(n)}
158: f15->f13, Arg_14: 2*Arg_14 {O(n)}
158: f15->f13, Arg_16: 2*Arg_16 {O(n)}
158: f15->f13, Arg_21: 2*Arg_21 {O(n)}
158: f15->f13, Arg_31: 2*Arg_31 {O(n)}
159: f15->f13, Arg_7: 2*Arg_7 {O(n)}
159: f15->f13, Arg_11: 2*Arg_11 {O(n)}
159: f15->f13, Arg_14: 2*Arg_14 {O(n)}
159: f15->f13, Arg_16: 2*Arg_16 {O(n)}
159: f15->f13, Arg_21: 2*Arg_21 {O(n)}
159: f15->f13, Arg_31: 2*Arg_31 {O(n)}
160: f15->f13, Arg_7: 2*Arg_7 {O(n)}
160: f15->f13, Arg_11: 2*Arg_11 {O(n)}
160: f15->f13, Arg_14: 2*Arg_14 {O(n)}
160: f15->f13, Arg_16: 2*Arg_16 {O(n)}
160: f15->f13, Arg_21: 2*Arg_21 {O(n)}
160: f15->f13, Arg_31: 2*Arg_31 {O(n)}
161: f15->f13, Arg_7: 2*Arg_7 {O(n)}
161: f15->f13, Arg_11: 2*Arg_11 {O(n)}
161: f15->f13, Arg_14: 2*Arg_14 {O(n)}
161: f15->f13, Arg_16: 2*Arg_16 {O(n)}
161: f15->f13, Arg_21: 2*Arg_21 {O(n)}
161: f15->f13, Arg_31: 2*Arg_31 {O(n)}
162: f15->f13, Arg_7: 2*Arg_7 {O(n)}
162: f15->f13, Arg_11: 2*Arg_11 {O(n)}
162: f15->f13, Arg_14: 2*Arg_14 {O(n)}
162: f15->f13, Arg_16: 2*Arg_16 {O(n)}
162: f15->f13, Arg_21: 2*Arg_21 {O(n)}
162: f15->f13, Arg_31: 2*Arg_31 {O(n)}
163: f17->f15, Arg_2: 2 {O(1)}
163: f17->f15, Arg_7: Arg_7 {O(n)}
163: f17->f15, Arg_11: Arg_11 {O(n)}
163: f17->f15, Arg_14: Arg_14 {O(n)}
163: f17->f15, Arg_16: Arg_16 {O(n)}
163: f17->f15, Arg_21: Arg_21 {O(n)}
163: f17->f15, Arg_22: Arg_22 {O(n)}
163: f17->f15, Arg_31: Arg_31 {O(n)}
163: f17->f15, Arg_48: Arg_48 {O(n)}
164: f17->f0, Arg_14: Arg_14 {O(n)}
164: f17->f0, Arg_16: Arg_16 {O(n)}
164: f17->f0, Arg_21: Arg_21 {O(n)}
164: f17->f0, Arg_22: 0 {O(1)}
164: f17->f0, Arg_31: Arg_31 {O(n)}