Start: f1
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5
Temp_Vars: G, H, I
Locations: f0, f1, f2
Transitions:
1:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> f0(Arg_0,Arg_1,Arg_2-1,G,0,H):|:1<=Arg_0 && 3<=Arg_2
2:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> f0(Arg_0-1,Arg_1,I,G,H,Arg_5):|:H+1<=0 && 1<=Arg_0
3:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> f0(Arg_0-1,Arg_1,I,G,H,Arg_5):|:1<=H && 1<=Arg_0
0:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> f2(Arg_0,G,Arg_2,Arg_3,Arg_4,Arg_5):|:Arg_0<=0
4:f1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5) -> f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5)
Eliminate variables {G,Arg_1,Arg_3,Arg_4,Arg_5} that do not contribute to the problem
Found invariant Arg_0<=0 for location f2
Start: f1
Program_Vars: Arg_0, Arg_2
Temp_Vars: H, I
Locations: f0, f1, f2
Transitions:
11:f0(Arg_0,Arg_2) -> f0(Arg_0,Arg_2-1):|:1<=Arg_0 && 3<=Arg_2
12:f0(Arg_0,Arg_2) -> f0(Arg_0-1,I):|:H+1<=0 && 1<=Arg_0
13:f0(Arg_0,Arg_2) -> f0(Arg_0-1,I):|:1<=H && 1<=Arg_0
10:f0(Arg_0,Arg_2) -> f2(Arg_0,Arg_2):|:Arg_0<=0
14:f1(Arg_0,Arg_2) -> f0(Arg_0,Arg_2)
new bound:
Arg_0 {O(n)}
MPRF:
f0 [Arg_0 ]
new bound:
Arg_0 {O(n)}
MPRF:
f0 [Arg_0 ]
Overall timebound:inf {Infinity}
10: f0->f2: 1 {O(1)}
11: f0->f0: inf {Infinity}
12: f0->f0: Arg_0 {O(n)}
13: f0->f0: Arg_0 {O(n)}
14: f1->f0: 1 {O(1)}
Overall costbound: inf {Infinity}
10: f0->f2: 1 {O(1)}
11: f0->f0: inf {Infinity}
12: f0->f0: Arg_0 {O(n)}
13: f0->f0: Arg_0 {O(n)}
14: f1->f0: 1 {O(1)}
10: f0->f2, Arg_0: 7*Arg_0 {O(n)}
11: f0->f0, Arg_0: 3*Arg_0 {O(n)}
12: f0->f0, Arg_0: 3*Arg_0 {O(n)}
13: f0->f0, Arg_0: 3*Arg_0 {O(n)}
14: f1->f0, Arg_0: Arg_0 {O(n)}
14: f1->f0, Arg_2: Arg_2 {O(n)}