Initial Problem
Start: evalNestedMultiplestart
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars: F
Locations: evalNestedMultiplebb1in, evalNestedMultiplebb2in, evalNestedMultiplebb3in, evalNestedMultiplebb4in, evalNestedMultiplebb5in, evalNestedMultipleentryin, evalNestedMultiplereturnin, evalNestedMultiplestart, evalNestedMultiplestop
Transitions:
9:evalNestedMultiplebb1in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb2in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1)
5:evalNestedMultiplebb2in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb3in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_4+1<=Arg_2
4:evalNestedMultiplebb2in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb4in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_2<=Arg_4
6:evalNestedMultiplebb3in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb1in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:F+1<=0
7:evalNestedMultiplebb3in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb1in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1<=F
8:evalNestedMultiplebb3in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb4in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
10:evalNestedMultiplebb4in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb5in(Arg_0,Arg_1+1,Arg_2,Arg_4,Arg_4)
2:evalNestedMultiplebb5in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb2in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3):|:Arg_1+1<=Arg_0
3:evalNestedMultiplebb5in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplereturnin(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_0<=Arg_1
1:evalNestedMultipleentryin(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb5in(Arg_1,Arg_0,Arg_3,Arg_2,Arg_4)
11:evalNestedMultiplereturnin(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplestop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
0:evalNestedMultiplestart(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultipleentryin(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
Show Graph
G
evalNestedMultiplebb1in
evalNestedMultiplebb1in
evalNestedMultiplebb2in
evalNestedMultiplebb2in
evalNestedMultiplebb1in->evalNestedMultiplebb2in
t₉
η (Arg_4) = Arg_4+1
evalNestedMultiplebb3in
evalNestedMultiplebb3in
evalNestedMultiplebb2in->evalNestedMultiplebb3in
t₅
τ = Arg_4+1<=Arg_2
evalNestedMultiplebb4in
evalNestedMultiplebb4in
evalNestedMultiplebb2in->evalNestedMultiplebb4in
t₄
τ = Arg_2<=Arg_4
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₆
τ = F+1<=0
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₇
τ = 1<=F
evalNestedMultiplebb3in->evalNestedMultiplebb4in
t₈
evalNestedMultiplebb5in
evalNestedMultiplebb5in
evalNestedMultiplebb4in->evalNestedMultiplebb5in
t₁₀
η (Arg_1) = Arg_1+1
η (Arg_3) = Arg_4
evalNestedMultiplebb5in->evalNestedMultiplebb2in
t₂
η (Arg_4) = Arg_3
τ = Arg_1+1<=Arg_0
evalNestedMultiplereturnin
evalNestedMultiplereturnin
evalNestedMultiplebb5in->evalNestedMultiplereturnin
t₃
τ = Arg_0<=Arg_1
evalNestedMultipleentryin
evalNestedMultipleentryin
evalNestedMultipleentryin->evalNestedMultiplebb5in
t₁
η (Arg_0) = Arg_1
η (Arg_1) = Arg_0
η (Arg_2) = Arg_3
η (Arg_3) = Arg_2
evalNestedMultiplestop
evalNestedMultiplestop
evalNestedMultiplereturnin->evalNestedMultiplestop
t₁₁
evalNestedMultiplestart
evalNestedMultiplestart
evalNestedMultiplestart->evalNestedMultipleentryin
t₀
Preprocessing
Found invariant 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 for location evalNestedMultiplebb1in
Found invariant 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 for location evalNestedMultiplebb3in
Found invariant Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 for location evalNestedMultiplebb4in
Found invariant Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 for location evalNestedMultiplebb2in
Found invariant Arg_0<=Arg_1 for location evalNestedMultiplereturnin
Found invariant Arg_0<=Arg_1 for location evalNestedMultiplestop
Problem after Preprocessing
Start: evalNestedMultiplestart
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4
Temp_Vars: F
Locations: evalNestedMultiplebb1in, evalNestedMultiplebb2in, evalNestedMultiplebb3in, evalNestedMultiplebb4in, evalNestedMultiplebb5in, evalNestedMultipleentryin, evalNestedMultiplereturnin, evalNestedMultiplestart, evalNestedMultiplestop
Transitions:
9:evalNestedMultiplebb1in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb2in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1):|:1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
5:evalNestedMultiplebb2in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb3in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_4+1<=Arg_2
4:evalNestedMultiplebb2in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb4in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_2<=Arg_4
6:evalNestedMultiplebb3in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb1in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && F+1<=0
7:evalNestedMultiplebb3in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb1in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=F
8:evalNestedMultiplebb3in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb4in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
10:evalNestedMultiplebb4in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb5in(Arg_0,Arg_1+1,Arg_2,Arg_4,Arg_4):|:Arg_3<=Arg_4 && 1+Arg_1<=Arg_0
2:evalNestedMultiplebb5in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb2in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3):|:Arg_1+1<=Arg_0
3:evalNestedMultiplebb5in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplereturnin(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_0<=Arg_1
1:evalNestedMultipleentryin(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb5in(Arg_1,Arg_0,Arg_3,Arg_2,Arg_4)
11:evalNestedMultiplereturnin(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplestop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_0<=Arg_1
0:evalNestedMultiplestart(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultipleentryin(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4)
Show Graph
G
evalNestedMultiplebb1in
evalNestedMultiplebb1in
evalNestedMultiplebb2in
evalNestedMultiplebb2in
evalNestedMultiplebb1in->evalNestedMultiplebb2in
t₉
η (Arg_4) = Arg_4+1
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb3in
evalNestedMultiplebb3in
evalNestedMultiplebb2in->evalNestedMultiplebb3in
t₅
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_4+1<=Arg_2
evalNestedMultiplebb4in
evalNestedMultiplebb4in
evalNestedMultiplebb2in->evalNestedMultiplebb4in
t₄
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_2<=Arg_4
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₆
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && F+1<=0
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₇
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=F
evalNestedMultiplebb3in->evalNestedMultiplebb4in
t₈
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in
evalNestedMultiplebb5in
evalNestedMultiplebb4in->evalNestedMultiplebb5in
t₁₀
η (Arg_1) = Arg_1+1
η (Arg_3) = Arg_4
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in->evalNestedMultiplebb2in
t₂
η (Arg_4) = Arg_3
τ = Arg_1+1<=Arg_0
evalNestedMultiplereturnin
evalNestedMultiplereturnin
evalNestedMultiplebb5in->evalNestedMultiplereturnin
t₃
τ = Arg_0<=Arg_1
evalNestedMultipleentryin
evalNestedMultipleentryin
evalNestedMultipleentryin->evalNestedMultiplebb5in
t₁
η (Arg_0) = Arg_1
η (Arg_1) = Arg_0
η (Arg_2) = Arg_3
η (Arg_3) = Arg_2
evalNestedMultiplestop
evalNestedMultiplestop
evalNestedMultiplereturnin->evalNestedMultiplestop
t₁₁
τ = Arg_0<=Arg_1
evalNestedMultiplestart
evalNestedMultiplestart
evalNestedMultiplestart->evalNestedMultipleentryin
t₀
MPRF for transition 9:evalNestedMultiplebb1in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb2in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1):|:1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 of depth 1:
new bound:
Arg_2+Arg_3 {O(n)}
MPRF:
evalNestedMultiplebb1in [Arg_2-Arg_4 ]
evalNestedMultiplebb3in [Arg_2-Arg_4 ]
evalNestedMultiplebb4in [Arg_2-Arg_4 ]
evalNestedMultiplebb5in [Arg_2-Arg_3 ]
evalNestedMultiplebb2in [Arg_2-Arg_4 ]
Show Graph
G
evalNestedMultiplebb1in
evalNestedMultiplebb1in
evalNestedMultiplebb2in
evalNestedMultiplebb2in
evalNestedMultiplebb1in->evalNestedMultiplebb2in
t₉
η (Arg_4) = Arg_4+1
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb3in
evalNestedMultiplebb3in
evalNestedMultiplebb2in->evalNestedMultiplebb3in
t₅
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_4+1<=Arg_2
evalNestedMultiplebb4in
evalNestedMultiplebb4in
evalNestedMultiplebb2in->evalNestedMultiplebb4in
t₄
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_2<=Arg_4
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₆
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && F+1<=0
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₇
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=F
evalNestedMultiplebb3in->evalNestedMultiplebb4in
t₈
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in
evalNestedMultiplebb5in
evalNestedMultiplebb4in->evalNestedMultiplebb5in
t₁₀
η (Arg_1) = Arg_1+1
η (Arg_3) = Arg_4
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in->evalNestedMultiplebb2in
t₂
η (Arg_4) = Arg_3
τ = Arg_1+1<=Arg_0
evalNestedMultiplereturnin
evalNestedMultiplereturnin
evalNestedMultiplebb5in->evalNestedMultiplereturnin
t₃
τ = Arg_0<=Arg_1
evalNestedMultipleentryin
evalNestedMultipleentryin
evalNestedMultipleentryin->evalNestedMultiplebb5in
t₁
η (Arg_0) = Arg_1
η (Arg_1) = Arg_0
η (Arg_2) = Arg_3
η (Arg_3) = Arg_2
evalNestedMultiplestop
evalNestedMultiplestop
evalNestedMultiplereturnin->evalNestedMultiplestop
t₁₁
τ = Arg_0<=Arg_1
evalNestedMultiplestart
evalNestedMultiplestart
evalNestedMultiplestart->evalNestedMultipleentryin
t₀
MPRF for transition 4:evalNestedMultiplebb2in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb4in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_2<=Arg_4 of depth 1:
new bound:
Arg_0+Arg_1 {O(n)}
MPRF:
evalNestedMultiplebb1in [Arg_0-Arg_1 ]
evalNestedMultiplebb3in [Arg_0-Arg_1 ]
evalNestedMultiplebb4in [Arg_0-Arg_1-1 ]
evalNestedMultiplebb5in [Arg_0-Arg_1 ]
evalNestedMultiplebb2in [Arg_0-Arg_1 ]
Show Graph
G
evalNestedMultiplebb1in
evalNestedMultiplebb1in
evalNestedMultiplebb2in
evalNestedMultiplebb2in
evalNestedMultiplebb1in->evalNestedMultiplebb2in
t₉
η (Arg_4) = Arg_4+1
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb3in
evalNestedMultiplebb3in
evalNestedMultiplebb2in->evalNestedMultiplebb3in
t₅
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_4+1<=Arg_2
evalNestedMultiplebb4in
evalNestedMultiplebb4in
evalNestedMultiplebb2in->evalNestedMultiplebb4in
t₄
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_2<=Arg_4
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₆
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && F+1<=0
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₇
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=F
evalNestedMultiplebb3in->evalNestedMultiplebb4in
t₈
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in
evalNestedMultiplebb5in
evalNestedMultiplebb4in->evalNestedMultiplebb5in
t₁₀
η (Arg_1) = Arg_1+1
η (Arg_3) = Arg_4
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in->evalNestedMultiplebb2in
t₂
η (Arg_4) = Arg_3
τ = Arg_1+1<=Arg_0
evalNestedMultiplereturnin
evalNestedMultiplereturnin
evalNestedMultiplebb5in->evalNestedMultiplereturnin
t₃
τ = Arg_0<=Arg_1
evalNestedMultipleentryin
evalNestedMultipleentryin
evalNestedMultipleentryin->evalNestedMultiplebb5in
t₁
η (Arg_0) = Arg_1
η (Arg_1) = Arg_0
η (Arg_2) = Arg_3
η (Arg_3) = Arg_2
evalNestedMultiplestop
evalNestedMultiplestop
evalNestedMultiplereturnin->evalNestedMultiplestop
t₁₁
τ = Arg_0<=Arg_1
evalNestedMultiplestart
evalNestedMultiplestart
evalNestedMultiplestart->evalNestedMultipleentryin
t₀
MPRF for transition 5:evalNestedMultiplebb2in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb3in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_4+1<=Arg_2 of depth 1:
new bound:
Arg_0+Arg_1+Arg_2+Arg_3+1 {O(n)}
MPRF:
evalNestedMultiplebb1in [Arg_0+Arg_2-Arg_1-Arg_4-2 ]
evalNestedMultiplebb3in [Arg_0+Arg_2-Arg_1-Arg_4-2 ]
evalNestedMultiplebb4in [Arg_0+Arg_2-Arg_1-Arg_4-2 ]
evalNestedMultiplebb5in [Arg_0+Arg_2-Arg_1-Arg_3-1 ]
evalNestedMultiplebb2in [Arg_0+Arg_2-Arg_1-Arg_4-1 ]
Show Graph
G
evalNestedMultiplebb1in
evalNestedMultiplebb1in
evalNestedMultiplebb2in
evalNestedMultiplebb2in
evalNestedMultiplebb1in->evalNestedMultiplebb2in
t₉
η (Arg_4) = Arg_4+1
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb3in
evalNestedMultiplebb3in
evalNestedMultiplebb2in->evalNestedMultiplebb3in
t₅
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_4+1<=Arg_2
evalNestedMultiplebb4in
evalNestedMultiplebb4in
evalNestedMultiplebb2in->evalNestedMultiplebb4in
t₄
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_2<=Arg_4
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₆
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && F+1<=0
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₇
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=F
evalNestedMultiplebb3in->evalNestedMultiplebb4in
t₈
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in
evalNestedMultiplebb5in
evalNestedMultiplebb4in->evalNestedMultiplebb5in
t₁₀
η (Arg_1) = Arg_1+1
η (Arg_3) = Arg_4
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in->evalNestedMultiplebb2in
t₂
η (Arg_4) = Arg_3
τ = Arg_1+1<=Arg_0
evalNestedMultiplereturnin
evalNestedMultiplereturnin
evalNestedMultiplebb5in->evalNestedMultiplereturnin
t₃
τ = Arg_0<=Arg_1
evalNestedMultipleentryin
evalNestedMultipleentryin
evalNestedMultipleentryin->evalNestedMultiplebb5in
t₁
η (Arg_0) = Arg_1
η (Arg_1) = Arg_0
η (Arg_2) = Arg_3
η (Arg_3) = Arg_2
evalNestedMultiplestop
evalNestedMultiplestop
evalNestedMultiplereturnin->evalNestedMultiplestop
t₁₁
τ = Arg_0<=Arg_1
evalNestedMultiplestart
evalNestedMultiplestart
evalNestedMultiplestart->evalNestedMultipleentryin
t₀
MPRF for transition 6:evalNestedMultiplebb3in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb1in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && F+1<=0 of depth 1:
new bound:
Arg_2+Arg_3 {O(n)}
MPRF:
evalNestedMultiplebb1in [Arg_2-Arg_4-1 ]
evalNestedMultiplebb3in [Arg_2-Arg_4 ]
evalNestedMultiplebb4in [Arg_2-Arg_4 ]
evalNestedMultiplebb5in [Arg_2-Arg_3 ]
evalNestedMultiplebb2in [Arg_2-Arg_4 ]
Show Graph
G
evalNestedMultiplebb1in
evalNestedMultiplebb1in
evalNestedMultiplebb2in
evalNestedMultiplebb2in
evalNestedMultiplebb1in->evalNestedMultiplebb2in
t₉
η (Arg_4) = Arg_4+1
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb3in
evalNestedMultiplebb3in
evalNestedMultiplebb2in->evalNestedMultiplebb3in
t₅
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_4+1<=Arg_2
evalNestedMultiplebb4in
evalNestedMultiplebb4in
evalNestedMultiplebb2in->evalNestedMultiplebb4in
t₄
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_2<=Arg_4
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₆
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && F+1<=0
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₇
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=F
evalNestedMultiplebb3in->evalNestedMultiplebb4in
t₈
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in
evalNestedMultiplebb5in
evalNestedMultiplebb4in->evalNestedMultiplebb5in
t₁₀
η (Arg_1) = Arg_1+1
η (Arg_3) = Arg_4
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in->evalNestedMultiplebb2in
t₂
η (Arg_4) = Arg_3
τ = Arg_1+1<=Arg_0
evalNestedMultiplereturnin
evalNestedMultiplereturnin
evalNestedMultiplebb5in->evalNestedMultiplereturnin
t₃
τ = Arg_0<=Arg_1
evalNestedMultipleentryin
evalNestedMultipleentryin
evalNestedMultipleentryin->evalNestedMultiplebb5in
t₁
η (Arg_0) = Arg_1
η (Arg_1) = Arg_0
η (Arg_2) = Arg_3
η (Arg_3) = Arg_2
evalNestedMultiplestop
evalNestedMultiplestop
evalNestedMultiplereturnin->evalNestedMultiplestop
t₁₁
τ = Arg_0<=Arg_1
evalNestedMultiplestart
evalNestedMultiplestart
evalNestedMultiplestart->evalNestedMultipleentryin
t₀
MPRF for transition 7:evalNestedMultiplebb3in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb1in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=F of depth 1:
new bound:
Arg_2+Arg_3 {O(n)}
MPRF:
evalNestedMultiplebb1in [Arg_2-Arg_4-1 ]
evalNestedMultiplebb3in [Arg_2-Arg_4 ]
evalNestedMultiplebb4in [Arg_2-Arg_4 ]
evalNestedMultiplebb5in [Arg_2-Arg_3 ]
evalNestedMultiplebb2in [Arg_2-Arg_4 ]
Show Graph
G
evalNestedMultiplebb1in
evalNestedMultiplebb1in
evalNestedMultiplebb2in
evalNestedMultiplebb2in
evalNestedMultiplebb1in->evalNestedMultiplebb2in
t₉
η (Arg_4) = Arg_4+1
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb3in
evalNestedMultiplebb3in
evalNestedMultiplebb2in->evalNestedMultiplebb3in
t₅
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_4+1<=Arg_2
evalNestedMultiplebb4in
evalNestedMultiplebb4in
evalNestedMultiplebb2in->evalNestedMultiplebb4in
t₄
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_2<=Arg_4
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₆
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && F+1<=0
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₇
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=F
evalNestedMultiplebb3in->evalNestedMultiplebb4in
t₈
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in
evalNestedMultiplebb5in
evalNestedMultiplebb4in->evalNestedMultiplebb5in
t₁₀
η (Arg_1) = Arg_1+1
η (Arg_3) = Arg_4
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in->evalNestedMultiplebb2in
t₂
η (Arg_4) = Arg_3
τ = Arg_1+1<=Arg_0
evalNestedMultiplereturnin
evalNestedMultiplereturnin
evalNestedMultiplebb5in->evalNestedMultiplereturnin
t₃
τ = Arg_0<=Arg_1
evalNestedMultipleentryin
evalNestedMultipleentryin
evalNestedMultipleentryin->evalNestedMultiplebb5in
t₁
η (Arg_0) = Arg_1
η (Arg_1) = Arg_0
η (Arg_2) = Arg_3
η (Arg_3) = Arg_2
evalNestedMultiplestop
evalNestedMultiplestop
evalNestedMultiplereturnin->evalNestedMultiplestop
t₁₁
τ = Arg_0<=Arg_1
evalNestedMultiplestart
evalNestedMultiplestart
evalNestedMultiplestart->evalNestedMultipleentryin
t₀
MPRF for transition 8:evalNestedMultiplebb3in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb4in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4):|:1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 of depth 1:
new bound:
Arg_0+Arg_1 {O(n)}
MPRF:
evalNestedMultiplebb1in [Arg_0-Arg_1 ]
evalNestedMultiplebb3in [Arg_0-Arg_1 ]
evalNestedMultiplebb4in [Arg_0-Arg_1-1 ]
evalNestedMultiplebb5in [Arg_0-Arg_1 ]
evalNestedMultiplebb2in [Arg_0-Arg_1 ]
Show Graph
G
evalNestedMultiplebb1in
evalNestedMultiplebb1in
evalNestedMultiplebb2in
evalNestedMultiplebb2in
evalNestedMultiplebb1in->evalNestedMultiplebb2in
t₉
η (Arg_4) = Arg_4+1
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb3in
evalNestedMultiplebb3in
evalNestedMultiplebb2in->evalNestedMultiplebb3in
t₅
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_4+1<=Arg_2
evalNestedMultiplebb4in
evalNestedMultiplebb4in
evalNestedMultiplebb2in->evalNestedMultiplebb4in
t₄
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_2<=Arg_4
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₆
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && F+1<=0
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₇
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=F
evalNestedMultiplebb3in->evalNestedMultiplebb4in
t₈
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in
evalNestedMultiplebb5in
evalNestedMultiplebb4in->evalNestedMultiplebb5in
t₁₀
η (Arg_1) = Arg_1+1
η (Arg_3) = Arg_4
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in->evalNestedMultiplebb2in
t₂
η (Arg_4) = Arg_3
τ = Arg_1+1<=Arg_0
evalNestedMultiplereturnin
evalNestedMultiplereturnin
evalNestedMultiplebb5in->evalNestedMultiplereturnin
t₃
τ = Arg_0<=Arg_1
evalNestedMultipleentryin
evalNestedMultipleentryin
evalNestedMultipleentryin->evalNestedMultiplebb5in
t₁
η (Arg_0) = Arg_1
η (Arg_1) = Arg_0
η (Arg_2) = Arg_3
η (Arg_3) = Arg_2
evalNestedMultiplestop
evalNestedMultiplestop
evalNestedMultiplereturnin->evalNestedMultiplestop
t₁₁
τ = Arg_0<=Arg_1
evalNestedMultiplestart
evalNestedMultiplestart
evalNestedMultiplestart->evalNestedMultipleentryin
t₀
MPRF for transition 10:evalNestedMultiplebb4in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb5in(Arg_0,Arg_1+1,Arg_2,Arg_4,Arg_4):|:Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 of depth 1:
new bound:
Arg_0+Arg_1+1 {O(n)}
MPRF:
evalNestedMultiplebb1in [Arg_0+1-Arg_1 ]
evalNestedMultiplebb3in [Arg_0+1-Arg_1 ]
evalNestedMultiplebb4in [Arg_0+1-Arg_1 ]
evalNestedMultiplebb5in [Arg_0+1-Arg_1 ]
evalNestedMultiplebb2in [Arg_0+1-Arg_1 ]
Show Graph
G
evalNestedMultiplebb1in
evalNestedMultiplebb1in
evalNestedMultiplebb2in
evalNestedMultiplebb2in
evalNestedMultiplebb1in->evalNestedMultiplebb2in
t₉
η (Arg_4) = Arg_4+1
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb3in
evalNestedMultiplebb3in
evalNestedMultiplebb2in->evalNestedMultiplebb3in
t₅
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_4+1<=Arg_2
evalNestedMultiplebb4in
evalNestedMultiplebb4in
evalNestedMultiplebb2in->evalNestedMultiplebb4in
t₄
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_2<=Arg_4
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₆
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && F+1<=0
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₇
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=F
evalNestedMultiplebb3in->evalNestedMultiplebb4in
t₈
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in
evalNestedMultiplebb5in
evalNestedMultiplebb4in->evalNestedMultiplebb5in
t₁₀
η (Arg_1) = Arg_1+1
η (Arg_3) = Arg_4
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in->evalNestedMultiplebb2in
t₂
η (Arg_4) = Arg_3
τ = Arg_1+1<=Arg_0
evalNestedMultiplereturnin
evalNestedMultiplereturnin
evalNestedMultiplebb5in->evalNestedMultiplereturnin
t₃
τ = Arg_0<=Arg_1
evalNestedMultipleentryin
evalNestedMultipleentryin
evalNestedMultipleentryin->evalNestedMultiplebb5in
t₁
η (Arg_0) = Arg_1
η (Arg_1) = Arg_0
η (Arg_2) = Arg_3
η (Arg_3) = Arg_2
evalNestedMultiplestop
evalNestedMultiplestop
evalNestedMultiplereturnin->evalNestedMultiplestop
t₁₁
τ = Arg_0<=Arg_1
evalNestedMultiplestart
evalNestedMultiplestart
evalNestedMultiplestart->evalNestedMultipleentryin
t₀
MPRF for transition 2:evalNestedMultiplebb5in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4) -> evalNestedMultiplebb2in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_3):|:Arg_1+1<=Arg_0 of depth 1:
new bound:
Arg_0+Arg_1+1 {O(n)}
MPRF:
evalNestedMultiplebb1in [Arg_0-Arg_1 ]
evalNestedMultiplebb3in [Arg_0-Arg_1 ]
evalNestedMultiplebb4in [Arg_0-Arg_1 ]
evalNestedMultiplebb5in [Arg_0+1-Arg_1 ]
evalNestedMultiplebb2in [Arg_0-Arg_1 ]
Show Graph
G
evalNestedMultiplebb1in
evalNestedMultiplebb1in
evalNestedMultiplebb2in
evalNestedMultiplebb2in
evalNestedMultiplebb1in->evalNestedMultiplebb2in
t₉
η (Arg_4) = Arg_4+1
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb3in
evalNestedMultiplebb3in
evalNestedMultiplebb2in->evalNestedMultiplebb3in
t₅
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_4+1<=Arg_2
evalNestedMultiplebb4in
evalNestedMultiplebb4in
evalNestedMultiplebb2in->evalNestedMultiplebb4in
t₄
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0 && Arg_2<=Arg_4
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₆
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && F+1<=0
evalNestedMultiplebb3in->evalNestedMultiplebb1in
t₇
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=F
evalNestedMultiplebb3in->evalNestedMultiplebb4in
t₈
τ = 1+Arg_4<=Arg_2 && Arg_3<=Arg_4 && 1+Arg_3<=Arg_2 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in
evalNestedMultiplebb5in
evalNestedMultiplebb4in->evalNestedMultiplebb5in
t₁₀
η (Arg_1) = Arg_1+1
η (Arg_3) = Arg_4
τ = Arg_3<=Arg_4 && 1+Arg_1<=Arg_0
evalNestedMultiplebb5in->evalNestedMultiplebb2in
t₂
η (Arg_4) = Arg_3
τ = Arg_1+1<=Arg_0
evalNestedMultiplereturnin
evalNestedMultiplereturnin
evalNestedMultiplebb5in->evalNestedMultiplereturnin
t₃
τ = Arg_0<=Arg_1
evalNestedMultipleentryin
evalNestedMultipleentryin
evalNestedMultipleentryin->evalNestedMultiplebb5in
t₁
η (Arg_0) = Arg_1
η (Arg_1) = Arg_0
η (Arg_2) = Arg_3
η (Arg_3) = Arg_2
evalNestedMultiplestop
evalNestedMultiplestop
evalNestedMultiplereturnin->evalNestedMultiplestop
t₁₁
τ = Arg_0<=Arg_1
evalNestedMultiplestart
evalNestedMultiplestart
evalNestedMultiplestart->evalNestedMultipleentryin
t₀
All Bounds
Timebounds
Overall timebound:4*Arg_2+4*Arg_3+5*Arg_0+5*Arg_1+7 {O(n)}
9: evalNestedMultiplebb1in->evalNestedMultiplebb2in: Arg_2+Arg_3 {O(n)}
4: evalNestedMultiplebb2in->evalNestedMultiplebb4in: Arg_0+Arg_1 {O(n)}
5: evalNestedMultiplebb2in->evalNestedMultiplebb3in: Arg_0+Arg_1+Arg_2+Arg_3+1 {O(n)}
6: evalNestedMultiplebb3in->evalNestedMultiplebb1in: Arg_2+Arg_3 {O(n)}
7: evalNestedMultiplebb3in->evalNestedMultiplebb1in: Arg_2+Arg_3 {O(n)}
8: evalNestedMultiplebb3in->evalNestedMultiplebb4in: Arg_0+Arg_1 {O(n)}
10: evalNestedMultiplebb4in->evalNestedMultiplebb5in: Arg_0+Arg_1+1 {O(n)}
2: evalNestedMultiplebb5in->evalNestedMultiplebb2in: Arg_0+Arg_1+1 {O(n)}
3: evalNestedMultiplebb5in->evalNestedMultiplereturnin: 1 {O(1)}
1: evalNestedMultipleentryin->evalNestedMultiplebb5in: 1 {O(1)}
11: evalNestedMultiplereturnin->evalNestedMultiplestop: 1 {O(1)}
0: evalNestedMultiplestart->evalNestedMultipleentryin: 1 {O(1)}
Costbounds
Overall costbound: 4*Arg_2+4*Arg_3+5*Arg_0+5*Arg_1+7 {O(n)}
9: evalNestedMultiplebb1in->evalNestedMultiplebb2in: Arg_2+Arg_3 {O(n)}
4: evalNestedMultiplebb2in->evalNestedMultiplebb4in: Arg_0+Arg_1 {O(n)}
5: evalNestedMultiplebb2in->evalNestedMultiplebb3in: Arg_0+Arg_1+Arg_2+Arg_3+1 {O(n)}
6: evalNestedMultiplebb3in->evalNestedMultiplebb1in: Arg_2+Arg_3 {O(n)}
7: evalNestedMultiplebb3in->evalNestedMultiplebb1in: Arg_2+Arg_3 {O(n)}
8: evalNestedMultiplebb3in->evalNestedMultiplebb4in: Arg_0+Arg_1 {O(n)}
10: evalNestedMultiplebb4in->evalNestedMultiplebb5in: Arg_0+Arg_1+1 {O(n)}
2: evalNestedMultiplebb5in->evalNestedMultiplebb2in: Arg_0+Arg_1+1 {O(n)}
3: evalNestedMultiplebb5in->evalNestedMultiplereturnin: 1 {O(1)}
1: evalNestedMultipleentryin->evalNestedMultiplebb5in: 1 {O(1)}
11: evalNestedMultiplereturnin->evalNestedMultiplestop: 1 {O(1)}
0: evalNestedMultiplestart->evalNestedMultipleentryin: 1 {O(1)}
Sizebounds
9: evalNestedMultiplebb1in->evalNestedMultiplebb2in, Arg_0: Arg_1 {O(n)}
9: evalNestedMultiplebb1in->evalNestedMultiplebb2in, Arg_1: 2*Arg_0+Arg_1+1 {O(n)}
9: evalNestedMultiplebb1in->evalNestedMultiplebb2in, Arg_2: Arg_3 {O(n)}
9: evalNestedMultiplebb1in->evalNestedMultiplebb2in, Arg_3: 3*Arg_2+Arg_3 {O(n)}
9: evalNestedMultiplebb1in->evalNestedMultiplebb2in, Arg_4: 2*Arg_2+Arg_3 {O(n)}
4: evalNestedMultiplebb2in->evalNestedMultiplebb4in, Arg_0: Arg_1 {O(n)}
4: evalNestedMultiplebb2in->evalNestedMultiplebb4in, Arg_1: 2*Arg_0+Arg_1+1 {O(n)}
4: evalNestedMultiplebb2in->evalNestedMultiplebb4in, Arg_2: Arg_3 {O(n)}
4: evalNestedMultiplebb2in->evalNestedMultiplebb4in, Arg_3: 2*Arg_3+6*Arg_2 {O(n)}
4: evalNestedMultiplebb2in->evalNestedMultiplebb4in, Arg_4: 2*Arg_2+Arg_3 {O(n)}
5: evalNestedMultiplebb2in->evalNestedMultiplebb3in, Arg_0: Arg_1 {O(n)}
5: evalNestedMultiplebb2in->evalNestedMultiplebb3in, Arg_1: 2*Arg_0+Arg_1+1 {O(n)}
5: evalNestedMultiplebb2in->evalNestedMultiplebb3in, Arg_2: Arg_3 {O(n)}
5: evalNestedMultiplebb2in->evalNestedMultiplebb3in, Arg_3: 3*Arg_2+Arg_3 {O(n)}
5: evalNestedMultiplebb2in->evalNestedMultiplebb3in, Arg_4: 2*Arg_2+Arg_3 {O(n)}
6: evalNestedMultiplebb3in->evalNestedMultiplebb1in, Arg_0: Arg_1 {O(n)}
6: evalNestedMultiplebb3in->evalNestedMultiplebb1in, Arg_1: 2*Arg_0+Arg_1+1 {O(n)}
6: evalNestedMultiplebb3in->evalNestedMultiplebb1in, Arg_2: Arg_3 {O(n)}
6: evalNestedMultiplebb3in->evalNestedMultiplebb1in, Arg_3: 3*Arg_2+Arg_3 {O(n)}
6: evalNestedMultiplebb3in->evalNestedMultiplebb1in, Arg_4: 2*Arg_2+Arg_3 {O(n)}
7: evalNestedMultiplebb3in->evalNestedMultiplebb1in, Arg_0: Arg_1 {O(n)}
7: evalNestedMultiplebb3in->evalNestedMultiplebb1in, Arg_1: 2*Arg_0+Arg_1+1 {O(n)}
7: evalNestedMultiplebb3in->evalNestedMultiplebb1in, Arg_2: Arg_3 {O(n)}
7: evalNestedMultiplebb3in->evalNestedMultiplebb1in, Arg_3: 3*Arg_2+Arg_3 {O(n)}
7: evalNestedMultiplebb3in->evalNestedMultiplebb1in, Arg_4: 2*Arg_2+Arg_3 {O(n)}
8: evalNestedMultiplebb3in->evalNestedMultiplebb4in, Arg_0: Arg_1 {O(n)}
8: evalNestedMultiplebb3in->evalNestedMultiplebb4in, Arg_1: 2*Arg_0+Arg_1+1 {O(n)}
8: evalNestedMultiplebb3in->evalNestedMultiplebb4in, Arg_2: Arg_3 {O(n)}
8: evalNestedMultiplebb3in->evalNestedMultiplebb4in, Arg_3: 3*Arg_2+Arg_3 {O(n)}
8: evalNestedMultiplebb3in->evalNestedMultiplebb4in, Arg_4: 2*Arg_2+Arg_3 {O(n)}
10: evalNestedMultiplebb4in->evalNestedMultiplebb5in, Arg_0: Arg_1 {O(n)}
10: evalNestedMultiplebb4in->evalNestedMultiplebb5in, Arg_1: 2*Arg_0+Arg_1+1 {O(n)}
10: evalNestedMultiplebb4in->evalNestedMultiplebb5in, Arg_2: Arg_3 {O(n)}
10: evalNestedMultiplebb4in->evalNestedMultiplebb5in, Arg_3: 2*Arg_2+Arg_3 {O(n)}
10: evalNestedMultiplebb4in->evalNestedMultiplebb5in, Arg_4: 2*Arg_3+4*Arg_2 {O(n)}
2: evalNestedMultiplebb5in->evalNestedMultiplebb2in, Arg_0: Arg_1 {O(n)}
2: evalNestedMultiplebb5in->evalNestedMultiplebb2in, Arg_1: 2*Arg_0+Arg_1+1 {O(n)}
2: evalNestedMultiplebb5in->evalNestedMultiplebb2in, Arg_2: Arg_3 {O(n)}
2: evalNestedMultiplebb5in->evalNestedMultiplebb2in, Arg_3: 3*Arg_2+Arg_3 {O(n)}
2: evalNestedMultiplebb5in->evalNestedMultiplebb2in, Arg_4: 2*Arg_2+Arg_3 {O(n)}
3: evalNestedMultiplebb5in->evalNestedMultiplereturnin, Arg_0: 2*Arg_1 {O(n)}
3: evalNestedMultiplebb5in->evalNestedMultiplereturnin, Arg_1: 3*Arg_0+Arg_1+1 {O(n)}
3: evalNestedMultiplebb5in->evalNestedMultiplereturnin, Arg_2: 2*Arg_3 {O(n)}
3: evalNestedMultiplebb5in->evalNestedMultiplereturnin, Arg_3: 3*Arg_2+Arg_3 {O(n)}
3: evalNestedMultiplebb5in->evalNestedMultiplereturnin, Arg_4: 2*Arg_3+4*Arg_2+Arg_4 {O(n)}
1: evalNestedMultipleentryin->evalNestedMultiplebb5in, Arg_0: Arg_1 {O(n)}
1: evalNestedMultipleentryin->evalNestedMultiplebb5in, Arg_1: Arg_0 {O(n)}
1: evalNestedMultipleentryin->evalNestedMultiplebb5in, Arg_2: Arg_3 {O(n)}
1: evalNestedMultipleentryin->evalNestedMultiplebb5in, Arg_3: Arg_2 {O(n)}
1: evalNestedMultipleentryin->evalNestedMultiplebb5in, Arg_4: Arg_4 {O(n)}
11: evalNestedMultiplereturnin->evalNestedMultiplestop, Arg_0: 2*Arg_1 {O(n)}
11: evalNestedMultiplereturnin->evalNestedMultiplestop, Arg_1: 3*Arg_0+Arg_1+1 {O(n)}
11: evalNestedMultiplereturnin->evalNestedMultiplestop, Arg_2: 2*Arg_3 {O(n)}
11: evalNestedMultiplereturnin->evalNestedMultiplestop, Arg_3: 3*Arg_2+Arg_3 {O(n)}
11: evalNestedMultiplereturnin->evalNestedMultiplestop, Arg_4: 2*Arg_3+4*Arg_2+Arg_4 {O(n)}
0: evalNestedMultiplestart->evalNestedMultipleentryin, Arg_0: Arg_0 {O(n)}
0: evalNestedMultiplestart->evalNestedMultipleentryin, Arg_1: Arg_1 {O(n)}
0: evalNestedMultiplestart->evalNestedMultipleentryin, Arg_2: Arg_2 {O(n)}
0: evalNestedMultiplestart->evalNestedMultipleentryin, Arg_3: Arg_3 {O(n)}
0: evalNestedMultiplestart->evalNestedMultipleentryin, Arg_4: Arg_4 {O(n)}