Initial Problem
Start: eval_perfect1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: eval_perfect1_0, eval_perfect1_1, eval_perfect1_12, eval_perfect1_13, eval_perfect1_14, eval_perfect1_15, eval_perfect1_16, eval_perfect1_17, eval_perfect1_2, eval_perfect1_3, eval_perfect1_4, eval_perfect1_5, eval_perfect1_6, eval_perfect1_7, eval_perfect1_8, eval_perfect1_bb0_in, eval_perfect1_bb1_in, eval_perfect1_bb2_in, eval_perfect1_bb3_in, eval_perfect1_bb4_in, eval_perfect1_bb5_in, eval_perfect1_bb6_in, eval_perfect1_bb7_in, eval_perfect1_start, eval_perfect1_stop
Transitions:
2:eval_perfect1_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
4:eval_perfect1_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<Arg_4
3:eval_perfect1_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1
19:eval_perfect1_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
20:eval_perfect1_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_14(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<=0 && 0<=Arg_6
21:eval_perfect1_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_14(Arg_0,Arg_1,Arg_2,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<0
22:eval_perfect1_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_14(Arg_0,Arg_1,Arg_2,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_6
23:eval_perfect1_14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
24:eval_perfect1_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_16(Arg_0,Arg_1,Arg_5-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
25:eval_perfect1_16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
26:eval_perfect1_17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2,Arg_6,Arg_3)
6:eval_perfect1_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
7:eval_perfect1_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
8:eval_perfect1_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
9:eval_perfect1_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_6(Arg_4-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
10:eval_perfect1_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
11:eval_perfect1_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
12:eval_perfect1_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_0,Arg_6,Arg_4)
1:eval_perfect1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
5:eval_perfect1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
13:eval_perfect1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4,Arg_7):|:0<Arg_5
14:eval_perfect1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=0
15:eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_5<=Arg_6
16:eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_6<Arg_5
17:eval_perfect1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-Arg_5,Arg_7)
18:eval_perfect1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_12(Arg_0,Arg_7-Arg_5,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
27:eval_perfect1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<0
28:eval_perfect1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:0<Arg_7
29:eval_perfect1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=0 && 0<=Arg_7
30:eval_perfect1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
0:eval_perfect1_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
Preprocessing
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 for location eval_perfect1_12
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 for location eval_perfect1_17
Found invariant 2<=Arg_4 for location eval_perfect1_bb1_in
Found invariant 2<=Arg_4 for location eval_perfect1_3
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && Arg_1<=Arg_0 && 1<=Arg_0 for location eval_perfect1_14
Found invariant Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location eval_perfect1_7
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location eval_perfect1_bb2_in
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location eval_perfect1_bb5_in
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && Arg_1<=Arg_0 && 1<=Arg_0 for location eval_perfect1_15
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location eval_perfect1_bb3_in
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_5<=0 && 2+Arg_5<=Arg_4 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location eval_perfect1_bb6_in
Found invariant 2<=Arg_4 for location eval_perfect1_5
Found invariant Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location eval_perfect1_6
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 for location eval_perfect1_16
Found invariant Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location eval_perfect1_8
Found invariant 2<=Arg_4 for location eval_perfect1_4
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 for location eval_perfect1_13
Found invariant 2<=Arg_4 for location eval_perfect1_2
Found invariant Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 for location eval_perfect1_bb4_in
Problem after Preprocessing
Start: eval_perfect1_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7
Temp_Vars:
Locations: eval_perfect1_0, eval_perfect1_1, eval_perfect1_12, eval_perfect1_13, eval_perfect1_14, eval_perfect1_15, eval_perfect1_16, eval_perfect1_17, eval_perfect1_2, eval_perfect1_3, eval_perfect1_4, eval_perfect1_5, eval_perfect1_6, eval_perfect1_7, eval_perfect1_8, eval_perfect1_bb0_in, eval_perfect1_bb1_in, eval_perfect1_bb2_in, eval_perfect1_bb3_in, eval_perfect1_bb4_in, eval_perfect1_bb5_in, eval_perfect1_bb6_in, eval_perfect1_bb7_in, eval_perfect1_start, eval_perfect1_stop
Transitions:
2:eval_perfect1_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
4:eval_perfect1_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:1<Arg_4
3:eval_perfect1_1(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1
19:eval_perfect1_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0
20:eval_perfect1_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_14(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_6<=0 && 0<=Arg_6
21:eval_perfect1_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_14(Arg_0,Arg_1,Arg_2,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_6<0
22:eval_perfect1_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_14(Arg_0,Arg_1,Arg_2,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && 0<Arg_6
23:eval_perfect1_14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && Arg_1<=Arg_0 && 1<=Arg_0
24:eval_perfect1_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_16(Arg_0,Arg_1,Arg_5-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && Arg_1<=Arg_0 && 1<=Arg_0
25:eval_perfect1_16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0
26:eval_perfect1_17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2,Arg_6,Arg_3):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0
6:eval_perfect1_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2<=Arg_4
7:eval_perfect1_3(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2<=Arg_4
8:eval_perfect1_4(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2<=Arg_4
9:eval_perfect1_5(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_6(Arg_4-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2<=Arg_4
10:eval_perfect1_6(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0
11:eval_perfect1_7(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0
12:eval_perfect1_8(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_0,Arg_6,Arg_4):|:Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0
1:eval_perfect1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
5:eval_perfect1_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_2(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:2<=Arg_4
13:eval_perfect1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && 0<Arg_5
14:eval_perfect1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_5<=0
15:eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_5<=Arg_6
16:eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_6<Arg_5
17:eval_perfect1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-Arg_5,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0
18:eval_perfect1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_12(Arg_0,Arg_7-Arg_5,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0
27:eval_perfect1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_5<=0 && 2+Arg_5<=Arg_4 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_7<0
28:eval_perfect1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_5<=0 && 2+Arg_5<=Arg_4 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && 0<Arg_7
29:eval_perfect1_bb6_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_5<=0 && 2+Arg_5<=Arg_4 && 1+Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_7<=0 && 0<=Arg_7
30:eval_perfect1_bb7_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_stop(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
0:eval_perfect1_start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7)
MPRF for transition 19:eval_perfect1_12(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
eval_perfect1_13 [Arg_5-1 ]
eval_perfect1_14 [Arg_5-1 ]
eval_perfect1_15 [Arg_5-1 ]
eval_perfect1_16 [Arg_5-1 ]
eval_perfect1_17 [Arg_5-1 ]
eval_perfect1_bb2_in [Arg_5 ]
eval_perfect1_bb4_in [Arg_5 ]
eval_perfect1_bb3_in [Arg_5 ]
eval_perfect1_bb5_in [Arg_5 ]
eval_perfect1_12 [Arg_5 ]
MPRF for transition 20:eval_perfect1_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_14(Arg_0,Arg_1,Arg_2,Arg_1,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_6<=0 && 0<=Arg_6 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
eval_perfect1_13 [Arg_5 ]
eval_perfect1_14 [Arg_5-1 ]
eval_perfect1_15 [Arg_5-1 ]
eval_perfect1_16 [Arg_2 ]
eval_perfect1_17 [Arg_2 ]
eval_perfect1_bb2_in [Arg_5 ]
eval_perfect1_bb4_in [Arg_5 ]
eval_perfect1_bb3_in [Arg_5 ]
eval_perfect1_bb5_in [Arg_5 ]
eval_perfect1_12 [Arg_5 ]
MPRF for transition 21:eval_perfect1_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_14(Arg_0,Arg_1,Arg_2,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && Arg_6<0 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
eval_perfect1_13 [Arg_5 ]
eval_perfect1_14 [Arg_5-1 ]
eval_perfect1_15 [Arg_5-1 ]
eval_perfect1_16 [Arg_2 ]
eval_perfect1_17 [Arg_5-1 ]
eval_perfect1_bb2_in [Arg_5 ]
eval_perfect1_bb4_in [Arg_5 ]
eval_perfect1_bb3_in [Arg_5 ]
eval_perfect1_bb5_in [Arg_5 ]
eval_perfect1_12 [Arg_5 ]
MPRF for transition 22:eval_perfect1_13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_14(Arg_0,Arg_1,Arg_2,Arg_7,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_1<=Arg_0 && 1<=Arg_0 && 0<Arg_6 of depth 1:
new bound:
2*Arg_4+1 {O(n)}
MPRF:
eval_perfect1_13 [2*Arg_5-1 ]
eval_perfect1_14 [2*Arg_5-3 ]
eval_perfect1_15 [2*Arg_5-3 ]
eval_perfect1_16 [2*Arg_5-3 ]
eval_perfect1_17 [2*Arg_5-3 ]
eval_perfect1_bb2_in [2*Arg_5-1 ]
eval_perfect1_bb4_in [2*Arg_5-1 ]
eval_perfect1_bb3_in [2*Arg_5-1 ]
eval_perfect1_bb5_in [2*Arg_5-1 ]
eval_perfect1_12 [2*Arg_5-1 ]
MPRF for transition 23:eval_perfect1_14(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && Arg_1<=Arg_0 && 1<=Arg_0 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
eval_perfect1_13 [Arg_5 ]
eval_perfect1_14 [Arg_5 ]
eval_perfect1_15 [Arg_5-1 ]
eval_perfect1_16 [Arg_2 ]
eval_perfect1_17 [Arg_2 ]
eval_perfect1_bb2_in [Arg_5 ]
eval_perfect1_bb4_in [Arg_5 ]
eval_perfect1_bb3_in [Arg_5 ]
eval_perfect1_bb5_in [Arg_5 ]
eval_perfect1_12 [Arg_5 ]
MPRF for transition 24:eval_perfect1_15(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_16(Arg_0,Arg_1,Arg_5-1,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && Arg_1<=Arg_0 && 1<=Arg_0 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
eval_perfect1_13 [Arg_5 ]
eval_perfect1_14 [Arg_5 ]
eval_perfect1_15 [Arg_5 ]
eval_perfect1_16 [Arg_5-1 ]
eval_perfect1_17 [Arg_5-1 ]
eval_perfect1_bb2_in [Arg_5 ]
eval_perfect1_bb4_in [Arg_5 ]
eval_perfect1_bb3_in [Arg_5 ]
eval_perfect1_bb5_in [Arg_5 ]
eval_perfect1_12 [Arg_5 ]
MPRF for transition 25:eval_perfect1_16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
eval_perfect1_13 [Arg_5 ]
eval_perfect1_14 [Arg_5 ]
eval_perfect1_15 [Arg_5 ]
eval_perfect1_16 [Arg_2+1 ]
eval_perfect1_17 [Arg_2 ]
eval_perfect1_bb2_in [Arg_5 ]
eval_perfect1_bb4_in [Arg_5 ]
eval_perfect1_bb3_in [Arg_5 ]
eval_perfect1_bb5_in [Arg_5 ]
eval_perfect1_12 [Arg_5 ]
MPRF for transition 26:eval_perfect1_17(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_2,Arg_6,Arg_3):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_3<=Arg_7 && 1+Arg_1<=Arg_7 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && Arg_6<=Arg_2 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 0<=Arg_2+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=1+Arg_2 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 1<=Arg_2+Arg_5 && 1+Arg_2<=Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && Arg_3<=Arg_4 && 2<=Arg_2+Arg_4 && 2+Arg_2<=Arg_4 && 1+Arg_1<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && Arg_3<=1+Arg_0 && Arg_1<=Arg_3 && 1+Arg_2<=Arg_0 && 0<=Arg_2 && 1<=Arg_0+Arg_2 && Arg_1<=Arg_0 && 1<=Arg_0 of depth 1:
new bound:
2*Arg_4+1 {O(n)}
MPRF:
eval_perfect1_13 [Arg_0+Arg_5+1 ]
eval_perfect1_14 [Arg_4+Arg_5 ]
eval_perfect1_15 [Arg_0+Arg_5+1 ]
eval_perfect1_16 [Arg_0+Arg_5+1 ]
eval_perfect1_17 [Arg_0+Arg_5+1 ]
eval_perfect1_bb2_in [Arg_0+Arg_5+1 ]
eval_perfect1_bb4_in [Arg_0+Arg_5+1 ]
eval_perfect1_bb3_in [Arg_4+Arg_5 ]
eval_perfect1_bb5_in [Arg_0+Arg_5+1 ]
eval_perfect1_12 [Arg_0+Arg_5+1 ]
MPRF for transition 13:eval_perfect1_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_4,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 0<=Arg_5 && 2<=Arg_4+Arg_5 && 1<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && 0<Arg_5 of depth 1:
new bound:
2*Arg_4+1 {O(n)}
MPRF:
eval_perfect1_13 [Arg_4+Arg_5 ]
eval_perfect1_14 [Arg_0+Arg_5+1 ]
eval_perfect1_15 [Arg_4+Arg_5 ]
eval_perfect1_16 [Arg_4+Arg_5 ]
eval_perfect1_17 [Arg_4+2*Arg_5-Arg_2-1 ]
eval_perfect1_bb2_in [Arg_4+Arg_5+1 ]
eval_perfect1_bb4_in [Arg_4+Arg_5 ]
eval_perfect1_bb3_in [Arg_4+Arg_5 ]
eval_perfect1_bb5_in [Arg_4+Arg_5 ]
eval_perfect1_12 [Arg_4+Arg_5 ]
MPRF for transition 16:eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_6<Arg_5 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
eval_perfect1_13 [Arg_5-1 ]
eval_perfect1_14 [Arg_4+Arg_5-Arg_0-2 ]
eval_perfect1_15 [Arg_5-1 ]
eval_perfect1_16 [Arg_2 ]
eval_perfect1_17 [Arg_2 ]
eval_perfect1_bb2_in [Arg_5 ]
eval_perfect1_bb4_in [Arg_5 ]
eval_perfect1_bb3_in [Arg_5 ]
eval_perfect1_bb5_in [Arg_5-1 ]
eval_perfect1_12 [Arg_5-1 ]
MPRF for transition 18:eval_perfect1_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_12(Arg_0,Arg_7-Arg_5,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && 1+Arg_6<=Arg_5 && 2+Arg_6<=Arg_4 && 1+Arg_6<=Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 of depth 1:
new bound:
Arg_4 {O(n)}
MPRF:
eval_perfect1_13 [Arg_5-1 ]
eval_perfect1_14 [Arg_5-1 ]
eval_perfect1_15 [Arg_5-1 ]
eval_perfect1_16 [Arg_2 ]
eval_perfect1_17 [Arg_2 ]
eval_perfect1_bb2_in [Arg_5 ]
eval_perfect1_bb4_in [Arg_5 ]
eval_perfect1_bb3_in [Arg_5 ]
eval_perfect1_bb5_in [Arg_5 ]
eval_perfect1_12 [Arg_5-1 ]
MPRF for transition 15:eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_5<=Arg_6 of depth 1:
new bound:
2*Arg_4*Arg_4*Arg_4+5*Arg_4*Arg_4+2*Arg_4+1 {O(n^3)}
MPRF:
eval_perfect1_12 [Arg_0+Arg_7+1-Arg_1 ]
eval_perfect1_13 [Arg_4+Arg_7-Arg_1 ]
eval_perfect1_14 [Arg_0+Arg_7-Arg_1 ]
eval_perfect1_15 [Arg_0+Arg_7-Arg_1 ]
eval_perfect1_16 [Arg_0+Arg_7-Arg_1 ]
eval_perfect1_17 [Arg_0+Arg_7-Arg_1 ]
eval_perfect1_bb2_in [Arg_0+1 ]
eval_perfect1_bb5_in [Arg_0+Arg_6-Arg_4-Arg_5 ]
eval_perfect1_bb4_in [Arg_0+Arg_6+2-Arg_4-2*Arg_5 ]
eval_perfect1_bb3_in [Arg_0+Arg_6+2-Arg_4-Arg_5 ]
MPRF for transition 17:eval_perfect1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6-Arg_5,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_6 && 2<=Arg_5+Arg_6 && Arg_5<=Arg_6 && 3<=Arg_4+Arg_6 && 2<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 of depth 1:
new bound:
4*Arg_4*Arg_4+2*Arg_4 {O(n^2)}
MPRF:
eval_perfect1_12 [2*Arg_4+Arg_5-Arg_0 ]
eval_perfect1_13 [Arg_4+Arg_5 ]
eval_perfect1_14 [Arg_0+Arg_5 ]
eval_perfect1_15 [Arg_0+Arg_5 ]
eval_perfect1_16 [Arg_0+Arg_5 ]
eval_perfect1_17 [Arg_0+Arg_5 ]
eval_perfect1_bb2_in [Arg_0+Arg_5 ]
eval_perfect1_bb5_in [Arg_0+Arg_5+Arg_6-Arg_4 ]
eval_perfect1_bb4_in [Arg_6 ]
eval_perfect1_bb3_in [Arg_0+Arg_5+Arg_6-Arg_4 ]
knowledge_propagation leads to new time bound 4*Arg_4*Arg_4+4*Arg_4+1 {O(n^2)} for transition 15:eval_perfect1_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7) -> eval_perfect1_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7):|:Arg_7<=Arg_4 && Arg_7<=1+Arg_0 && Arg_6<=Arg_4 && Arg_6<=1+Arg_0 && 1<=Arg_5+Arg_6 && 2<=Arg_4+Arg_6 && 1<=Arg_0+Arg_6 && 1+Arg_5<=Arg_4 && Arg_5<=Arg_0 && 1<=Arg_5 && 3<=Arg_4+Arg_5 && 2<=Arg_0+Arg_5 && Arg_4<=1+Arg_0 && 2<=Arg_4 && 3<=Arg_0+Arg_4 && 1+Arg_0<=Arg_4 && 1<=Arg_0 && Arg_5<=Arg_6
All Bounds
Timebounds
Overall timebound:8*Arg_4*Arg_4+20*Arg_4+22 {O(n^2)}
2: eval_perfect1_0->eval_perfect1_1: 1 {O(1)}
3: eval_perfect1_1->eval_perfect1_bb7_in: 1 {O(1)}
4: eval_perfect1_1->eval_perfect1_bb1_in: 1 {O(1)}
19: eval_perfect1_12->eval_perfect1_13: Arg_4 {O(n)}
20: eval_perfect1_13->eval_perfect1_14: Arg_4 {O(n)}
21: eval_perfect1_13->eval_perfect1_14: Arg_4 {O(n)}
22: eval_perfect1_13->eval_perfect1_14: 2*Arg_4+1 {O(n)}
23: eval_perfect1_14->eval_perfect1_15: Arg_4 {O(n)}
24: eval_perfect1_15->eval_perfect1_16: Arg_4 {O(n)}
25: eval_perfect1_16->eval_perfect1_17: Arg_4 {O(n)}
26: eval_perfect1_17->eval_perfect1_bb2_in: 2*Arg_4+1 {O(n)}
6: eval_perfect1_2->eval_perfect1_3: 1 {O(1)}
7: eval_perfect1_3->eval_perfect1_4: 1 {O(1)}
8: eval_perfect1_4->eval_perfect1_5: 1 {O(1)}
9: eval_perfect1_5->eval_perfect1_6: 1 {O(1)}
10: eval_perfect1_6->eval_perfect1_7: 1 {O(1)}
11: eval_perfect1_7->eval_perfect1_8: 1 {O(1)}
12: eval_perfect1_8->eval_perfect1_bb2_in: 1 {O(1)}
1: eval_perfect1_bb0_in->eval_perfect1_0: 1 {O(1)}
5: eval_perfect1_bb1_in->eval_perfect1_2: 1 {O(1)}
13: eval_perfect1_bb2_in->eval_perfect1_bb3_in: 2*Arg_4+1 {O(n)}
14: eval_perfect1_bb2_in->eval_perfect1_bb6_in: 1 {O(1)}
15: eval_perfect1_bb3_in->eval_perfect1_bb4_in: 4*Arg_4*Arg_4+4*Arg_4+1 {O(n^2)}
16: eval_perfect1_bb3_in->eval_perfect1_bb5_in: Arg_4 {O(n)}
17: eval_perfect1_bb4_in->eval_perfect1_bb3_in: 4*Arg_4*Arg_4+2*Arg_4 {O(n^2)}
18: eval_perfect1_bb5_in->eval_perfect1_12: Arg_4 {O(n)}
27: eval_perfect1_bb6_in->eval_perfect1_bb7_in: 1 {O(1)}
28: eval_perfect1_bb6_in->eval_perfect1_bb7_in: 1 {O(1)}
29: eval_perfect1_bb6_in->eval_perfect1_bb7_in: 1 {O(1)}
30: eval_perfect1_bb7_in->eval_perfect1_stop: 1 {O(1)}
0: eval_perfect1_start->eval_perfect1_bb0_in: 1 {O(1)}
Costbounds
Overall costbound: 8*Arg_4*Arg_4+20*Arg_4+22 {O(n^2)}
2: eval_perfect1_0->eval_perfect1_1: 1 {O(1)}
3: eval_perfect1_1->eval_perfect1_bb7_in: 1 {O(1)}
4: eval_perfect1_1->eval_perfect1_bb1_in: 1 {O(1)}
19: eval_perfect1_12->eval_perfect1_13: Arg_4 {O(n)}
20: eval_perfect1_13->eval_perfect1_14: Arg_4 {O(n)}
21: eval_perfect1_13->eval_perfect1_14: Arg_4 {O(n)}
22: eval_perfect1_13->eval_perfect1_14: 2*Arg_4+1 {O(n)}
23: eval_perfect1_14->eval_perfect1_15: Arg_4 {O(n)}
24: eval_perfect1_15->eval_perfect1_16: Arg_4 {O(n)}
25: eval_perfect1_16->eval_perfect1_17: Arg_4 {O(n)}
26: eval_perfect1_17->eval_perfect1_bb2_in: 2*Arg_4+1 {O(n)}
6: eval_perfect1_2->eval_perfect1_3: 1 {O(1)}
7: eval_perfect1_3->eval_perfect1_4: 1 {O(1)}
8: eval_perfect1_4->eval_perfect1_5: 1 {O(1)}
9: eval_perfect1_5->eval_perfect1_6: 1 {O(1)}
10: eval_perfect1_6->eval_perfect1_7: 1 {O(1)}
11: eval_perfect1_7->eval_perfect1_8: 1 {O(1)}
12: eval_perfect1_8->eval_perfect1_bb2_in: 1 {O(1)}
1: eval_perfect1_bb0_in->eval_perfect1_0: 1 {O(1)}
5: eval_perfect1_bb1_in->eval_perfect1_2: 1 {O(1)}
13: eval_perfect1_bb2_in->eval_perfect1_bb3_in: 2*Arg_4+1 {O(n)}
14: eval_perfect1_bb2_in->eval_perfect1_bb6_in: 1 {O(1)}
15: eval_perfect1_bb3_in->eval_perfect1_bb4_in: 4*Arg_4*Arg_4+4*Arg_4+1 {O(n^2)}
16: eval_perfect1_bb3_in->eval_perfect1_bb5_in: Arg_4 {O(n)}
17: eval_perfect1_bb4_in->eval_perfect1_bb3_in: 4*Arg_4*Arg_4+2*Arg_4 {O(n^2)}
18: eval_perfect1_bb5_in->eval_perfect1_12: Arg_4 {O(n)}
27: eval_perfect1_bb6_in->eval_perfect1_bb7_in: 1 {O(1)}
28: eval_perfect1_bb6_in->eval_perfect1_bb7_in: 1 {O(1)}
29: eval_perfect1_bb6_in->eval_perfect1_bb7_in: 1 {O(1)}
30: eval_perfect1_bb7_in->eval_perfect1_stop: 1 {O(1)}
0: eval_perfect1_start->eval_perfect1_bb0_in: 1 {O(1)}
Sizebounds
2: eval_perfect1_0->eval_perfect1_1, Arg_0: Arg_0 {O(n)}
2: eval_perfect1_0->eval_perfect1_1, Arg_1: Arg_1 {O(n)}
2: eval_perfect1_0->eval_perfect1_1, Arg_2: Arg_2 {O(n)}
2: eval_perfect1_0->eval_perfect1_1, Arg_3: Arg_3 {O(n)}
2: eval_perfect1_0->eval_perfect1_1, Arg_4: Arg_4 {O(n)}
2: eval_perfect1_0->eval_perfect1_1, Arg_5: Arg_5 {O(n)}
2: eval_perfect1_0->eval_perfect1_1, Arg_6: Arg_6 {O(n)}
2: eval_perfect1_0->eval_perfect1_1, Arg_7: Arg_7 {O(n)}
3: eval_perfect1_1->eval_perfect1_bb7_in, Arg_0: Arg_0 {O(n)}
3: eval_perfect1_1->eval_perfect1_bb7_in, Arg_1: Arg_1 {O(n)}
3: eval_perfect1_1->eval_perfect1_bb7_in, Arg_2: Arg_2 {O(n)}
3: eval_perfect1_1->eval_perfect1_bb7_in, Arg_3: Arg_3 {O(n)}
3: eval_perfect1_1->eval_perfect1_bb7_in, Arg_4: Arg_4 {O(n)}
3: eval_perfect1_1->eval_perfect1_bb7_in, Arg_5: Arg_5 {O(n)}
3: eval_perfect1_1->eval_perfect1_bb7_in, Arg_6: Arg_6 {O(n)}
3: eval_perfect1_1->eval_perfect1_bb7_in, Arg_7: Arg_7 {O(n)}
4: eval_perfect1_1->eval_perfect1_bb1_in, Arg_0: Arg_0 {O(n)}
4: eval_perfect1_1->eval_perfect1_bb1_in, Arg_1: Arg_1 {O(n)}
4: eval_perfect1_1->eval_perfect1_bb1_in, Arg_2: Arg_2 {O(n)}
4: eval_perfect1_1->eval_perfect1_bb1_in, Arg_3: Arg_3 {O(n)}
4: eval_perfect1_1->eval_perfect1_bb1_in, Arg_4: Arg_4 {O(n)}
4: eval_perfect1_1->eval_perfect1_bb1_in, Arg_5: Arg_5 {O(n)}
4: eval_perfect1_1->eval_perfect1_bb1_in, Arg_6: Arg_6 {O(n)}
4: eval_perfect1_1->eval_perfect1_bb1_in, Arg_7: Arg_7 {O(n)}
19: eval_perfect1_12->eval_perfect1_13, Arg_0: Arg_4 {O(n)}
19: eval_perfect1_12->eval_perfect1_13, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
19: eval_perfect1_12->eval_perfect1_13, Arg_2: Arg_2+Arg_4 {O(n)}
19: eval_perfect1_12->eval_perfect1_13, Arg_3: Arg_4*Arg_4+2*Arg_4+Arg_3 {O(n^2)}
19: eval_perfect1_12->eval_perfect1_13, Arg_4: Arg_4 {O(n)}
19: eval_perfect1_12->eval_perfect1_13, Arg_5: Arg_4 {O(n)}
19: eval_perfect1_12->eval_perfect1_13, Arg_6: 2*Arg_4 {O(n)}
19: eval_perfect1_12->eval_perfect1_13, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
20: eval_perfect1_13->eval_perfect1_14, Arg_0: Arg_4 {O(n)}
20: eval_perfect1_13->eval_perfect1_14, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
20: eval_perfect1_13->eval_perfect1_14, Arg_2: Arg_2+Arg_4 {O(n)}
20: eval_perfect1_13->eval_perfect1_14, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
20: eval_perfect1_13->eval_perfect1_14, Arg_4: Arg_4 {O(n)}
20: eval_perfect1_13->eval_perfect1_14, Arg_5: Arg_4 {O(n)}
20: eval_perfect1_13->eval_perfect1_14, Arg_6: 0 {O(1)}
20: eval_perfect1_13->eval_perfect1_14, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
21: eval_perfect1_13->eval_perfect1_14, Arg_0: Arg_4 {O(n)}
21: eval_perfect1_13->eval_perfect1_14, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
21: eval_perfect1_13->eval_perfect1_14, Arg_2: Arg_2+Arg_4 {O(n)}
21: eval_perfect1_13->eval_perfect1_14, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
21: eval_perfect1_13->eval_perfect1_14, Arg_4: Arg_4 {O(n)}
21: eval_perfect1_13->eval_perfect1_14, Arg_5: Arg_4 {O(n)}
21: eval_perfect1_13->eval_perfect1_14, Arg_6: 2*Arg_4 {O(n)}
21: eval_perfect1_13->eval_perfect1_14, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
22: eval_perfect1_13->eval_perfect1_14, Arg_0: Arg_4 {O(n)}
22: eval_perfect1_13->eval_perfect1_14, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
22: eval_perfect1_13->eval_perfect1_14, Arg_2: Arg_2+Arg_4 {O(n)}
22: eval_perfect1_13->eval_perfect1_14, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
22: eval_perfect1_13->eval_perfect1_14, Arg_4: Arg_4 {O(n)}
22: eval_perfect1_13->eval_perfect1_14, Arg_5: Arg_4 {O(n)}
22: eval_perfect1_13->eval_perfect1_14, Arg_6: 2*Arg_4 {O(n)}
22: eval_perfect1_13->eval_perfect1_14, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
23: eval_perfect1_14->eval_perfect1_15, Arg_0: Arg_4 {O(n)}
23: eval_perfect1_14->eval_perfect1_15, Arg_1: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
23: eval_perfect1_14->eval_perfect1_15, Arg_2: 3*Arg_2+3*Arg_4 {O(n)}
23: eval_perfect1_14->eval_perfect1_15, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
23: eval_perfect1_14->eval_perfect1_15, Arg_4: Arg_4 {O(n)}
23: eval_perfect1_14->eval_perfect1_15, Arg_5: Arg_4 {O(n)}
23: eval_perfect1_14->eval_perfect1_15, Arg_6: 4*Arg_4 {O(n)}
23: eval_perfect1_14->eval_perfect1_15, Arg_7: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
24: eval_perfect1_15->eval_perfect1_16, Arg_0: Arg_4 {O(n)}
24: eval_perfect1_15->eval_perfect1_16, Arg_1: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
24: eval_perfect1_15->eval_perfect1_16, Arg_2: Arg_4 {O(n)}
24: eval_perfect1_15->eval_perfect1_16, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
24: eval_perfect1_15->eval_perfect1_16, Arg_4: Arg_4 {O(n)}
24: eval_perfect1_15->eval_perfect1_16, Arg_5: Arg_4 {O(n)}
24: eval_perfect1_15->eval_perfect1_16, Arg_6: 4*Arg_4 {O(n)}
24: eval_perfect1_15->eval_perfect1_16, Arg_7: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
25: eval_perfect1_16->eval_perfect1_17, Arg_0: Arg_4 {O(n)}
25: eval_perfect1_16->eval_perfect1_17, Arg_1: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
25: eval_perfect1_16->eval_perfect1_17, Arg_2: Arg_4 {O(n)}
25: eval_perfect1_16->eval_perfect1_17, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
25: eval_perfect1_16->eval_perfect1_17, Arg_4: Arg_4 {O(n)}
25: eval_perfect1_16->eval_perfect1_17, Arg_5: Arg_4 {O(n)}
25: eval_perfect1_16->eval_perfect1_17, Arg_6: 4*Arg_4 {O(n)}
25: eval_perfect1_16->eval_perfect1_17, Arg_7: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
26: eval_perfect1_17->eval_perfect1_bb2_in, Arg_0: Arg_4 {O(n)}
26: eval_perfect1_17->eval_perfect1_bb2_in, Arg_1: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
26: eval_perfect1_17->eval_perfect1_bb2_in, Arg_2: Arg_4 {O(n)}
26: eval_perfect1_17->eval_perfect1_bb2_in, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
26: eval_perfect1_17->eval_perfect1_bb2_in, Arg_4: Arg_4 {O(n)}
26: eval_perfect1_17->eval_perfect1_bb2_in, Arg_5: Arg_4 {O(n)}
26: eval_perfect1_17->eval_perfect1_bb2_in, Arg_6: 4*Arg_4 {O(n)}
26: eval_perfect1_17->eval_perfect1_bb2_in, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
6: eval_perfect1_2->eval_perfect1_3, Arg_0: Arg_0 {O(n)}
6: eval_perfect1_2->eval_perfect1_3, Arg_1: Arg_1 {O(n)}
6: eval_perfect1_2->eval_perfect1_3, Arg_2: Arg_2 {O(n)}
6: eval_perfect1_2->eval_perfect1_3, Arg_3: Arg_3 {O(n)}
6: eval_perfect1_2->eval_perfect1_3, Arg_4: Arg_4 {O(n)}
6: eval_perfect1_2->eval_perfect1_3, Arg_5: Arg_5 {O(n)}
6: eval_perfect1_2->eval_perfect1_3, Arg_6: Arg_6 {O(n)}
6: eval_perfect1_2->eval_perfect1_3, Arg_7: Arg_7 {O(n)}
7: eval_perfect1_3->eval_perfect1_4, Arg_0: Arg_0 {O(n)}
7: eval_perfect1_3->eval_perfect1_4, Arg_1: Arg_1 {O(n)}
7: eval_perfect1_3->eval_perfect1_4, Arg_2: Arg_2 {O(n)}
7: eval_perfect1_3->eval_perfect1_4, Arg_3: Arg_3 {O(n)}
7: eval_perfect1_3->eval_perfect1_4, Arg_4: Arg_4 {O(n)}
7: eval_perfect1_3->eval_perfect1_4, Arg_5: Arg_5 {O(n)}
7: eval_perfect1_3->eval_perfect1_4, Arg_6: Arg_6 {O(n)}
7: eval_perfect1_3->eval_perfect1_4, Arg_7: Arg_7 {O(n)}
8: eval_perfect1_4->eval_perfect1_5, Arg_0: Arg_0 {O(n)}
8: eval_perfect1_4->eval_perfect1_5, Arg_1: Arg_1 {O(n)}
8: eval_perfect1_4->eval_perfect1_5, Arg_2: Arg_2 {O(n)}
8: eval_perfect1_4->eval_perfect1_5, Arg_3: Arg_3 {O(n)}
8: eval_perfect1_4->eval_perfect1_5, Arg_4: Arg_4 {O(n)}
8: eval_perfect1_4->eval_perfect1_5, Arg_5: Arg_5 {O(n)}
8: eval_perfect1_4->eval_perfect1_5, Arg_6: Arg_6 {O(n)}
8: eval_perfect1_4->eval_perfect1_5, Arg_7: Arg_7 {O(n)}
9: eval_perfect1_5->eval_perfect1_6, Arg_0: Arg_4 {O(n)}
9: eval_perfect1_5->eval_perfect1_6, Arg_1: Arg_1 {O(n)}
9: eval_perfect1_5->eval_perfect1_6, Arg_2: Arg_2 {O(n)}
9: eval_perfect1_5->eval_perfect1_6, Arg_3: Arg_3 {O(n)}
9: eval_perfect1_5->eval_perfect1_6, Arg_4: Arg_4 {O(n)}
9: eval_perfect1_5->eval_perfect1_6, Arg_5: Arg_5 {O(n)}
9: eval_perfect1_5->eval_perfect1_6, Arg_6: Arg_6 {O(n)}
9: eval_perfect1_5->eval_perfect1_6, Arg_7: Arg_7 {O(n)}
10: eval_perfect1_6->eval_perfect1_7, Arg_0: Arg_4 {O(n)}
10: eval_perfect1_6->eval_perfect1_7, Arg_1: Arg_1 {O(n)}
10: eval_perfect1_6->eval_perfect1_7, Arg_2: Arg_2 {O(n)}
10: eval_perfect1_6->eval_perfect1_7, Arg_3: Arg_3 {O(n)}
10: eval_perfect1_6->eval_perfect1_7, Arg_4: Arg_4 {O(n)}
10: eval_perfect1_6->eval_perfect1_7, Arg_5: Arg_5 {O(n)}
10: eval_perfect1_6->eval_perfect1_7, Arg_6: Arg_6 {O(n)}
10: eval_perfect1_6->eval_perfect1_7, Arg_7: Arg_7 {O(n)}
11: eval_perfect1_7->eval_perfect1_8, Arg_0: Arg_4 {O(n)}
11: eval_perfect1_7->eval_perfect1_8, Arg_1: Arg_1 {O(n)}
11: eval_perfect1_7->eval_perfect1_8, Arg_2: Arg_2 {O(n)}
11: eval_perfect1_7->eval_perfect1_8, Arg_3: Arg_3 {O(n)}
11: eval_perfect1_7->eval_perfect1_8, Arg_4: Arg_4 {O(n)}
11: eval_perfect1_7->eval_perfect1_8, Arg_5: Arg_5 {O(n)}
11: eval_perfect1_7->eval_perfect1_8, Arg_6: Arg_6 {O(n)}
11: eval_perfect1_7->eval_perfect1_8, Arg_7: Arg_7 {O(n)}
12: eval_perfect1_8->eval_perfect1_bb2_in, Arg_0: Arg_4 {O(n)}
12: eval_perfect1_8->eval_perfect1_bb2_in, Arg_1: Arg_1 {O(n)}
12: eval_perfect1_8->eval_perfect1_bb2_in, Arg_2: Arg_2 {O(n)}
12: eval_perfect1_8->eval_perfect1_bb2_in, Arg_3: Arg_3 {O(n)}
12: eval_perfect1_8->eval_perfect1_bb2_in, Arg_4: Arg_4 {O(n)}
12: eval_perfect1_8->eval_perfect1_bb2_in, Arg_5: Arg_4 {O(n)}
12: eval_perfect1_8->eval_perfect1_bb2_in, Arg_6: Arg_6 {O(n)}
12: eval_perfect1_8->eval_perfect1_bb2_in, Arg_7: Arg_4 {O(n)}
1: eval_perfect1_bb0_in->eval_perfect1_0, Arg_0: Arg_0 {O(n)}
1: eval_perfect1_bb0_in->eval_perfect1_0, Arg_1: Arg_1 {O(n)}
1: eval_perfect1_bb0_in->eval_perfect1_0, Arg_2: Arg_2 {O(n)}
1: eval_perfect1_bb0_in->eval_perfect1_0, Arg_3: Arg_3 {O(n)}
1: eval_perfect1_bb0_in->eval_perfect1_0, Arg_4: Arg_4 {O(n)}
1: eval_perfect1_bb0_in->eval_perfect1_0, Arg_5: Arg_5 {O(n)}
1: eval_perfect1_bb0_in->eval_perfect1_0, Arg_6: Arg_6 {O(n)}
1: eval_perfect1_bb0_in->eval_perfect1_0, Arg_7: Arg_7 {O(n)}
5: eval_perfect1_bb1_in->eval_perfect1_2, Arg_0: Arg_0 {O(n)}
5: eval_perfect1_bb1_in->eval_perfect1_2, Arg_1: Arg_1 {O(n)}
5: eval_perfect1_bb1_in->eval_perfect1_2, Arg_2: Arg_2 {O(n)}
5: eval_perfect1_bb1_in->eval_perfect1_2, Arg_3: Arg_3 {O(n)}
5: eval_perfect1_bb1_in->eval_perfect1_2, Arg_4: Arg_4 {O(n)}
5: eval_perfect1_bb1_in->eval_perfect1_2, Arg_5: Arg_5 {O(n)}
5: eval_perfect1_bb1_in->eval_perfect1_2, Arg_6: Arg_6 {O(n)}
5: eval_perfect1_bb1_in->eval_perfect1_2, Arg_7: Arg_7 {O(n)}
13: eval_perfect1_bb2_in->eval_perfect1_bb3_in, Arg_0: Arg_4 {O(n)}
13: eval_perfect1_bb2_in->eval_perfect1_bb3_in, Arg_1: 3*Arg_4*Arg_4+6*Arg_4+Arg_1 {O(n^2)}
13: eval_perfect1_bb2_in->eval_perfect1_bb3_in, Arg_2: Arg_2+Arg_4 {O(n)}
13: eval_perfect1_bb2_in->eval_perfect1_bb3_in, Arg_3: Arg_4*Arg_4+2*Arg_4+Arg_3 {O(n^2)}
13: eval_perfect1_bb2_in->eval_perfect1_bb3_in, Arg_4: Arg_4 {O(n)}
13: eval_perfect1_bb2_in->eval_perfect1_bb3_in, Arg_5: Arg_4 {O(n)}
13: eval_perfect1_bb2_in->eval_perfect1_bb3_in, Arg_6: 2*Arg_4 {O(n)}
13: eval_perfect1_bb2_in->eval_perfect1_bb3_in, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
14: eval_perfect1_bb2_in->eval_perfect1_bb6_in, Arg_0: Arg_4 {O(n)}
14: eval_perfect1_bb2_in->eval_perfect1_bb6_in, Arg_1: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
14: eval_perfect1_bb2_in->eval_perfect1_bb6_in, Arg_2: Arg_4 {O(n)}
14: eval_perfect1_bb2_in->eval_perfect1_bb6_in, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
14: eval_perfect1_bb2_in->eval_perfect1_bb6_in, Arg_4: Arg_4 {O(n)}
14: eval_perfect1_bb2_in->eval_perfect1_bb6_in, Arg_5: 0 {O(1)}
14: eval_perfect1_bb2_in->eval_perfect1_bb6_in, Arg_6: 4*Arg_4 {O(n)}
14: eval_perfect1_bb2_in->eval_perfect1_bb6_in, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
15: eval_perfect1_bb3_in->eval_perfect1_bb4_in, Arg_0: Arg_4 {O(n)}
15: eval_perfect1_bb3_in->eval_perfect1_bb4_in, Arg_1: 3*Arg_4*Arg_4+6*Arg_4+Arg_1 {O(n^2)}
15: eval_perfect1_bb3_in->eval_perfect1_bb4_in, Arg_2: Arg_2+Arg_4 {O(n)}
15: eval_perfect1_bb3_in->eval_perfect1_bb4_in, Arg_3: Arg_4*Arg_4+2*Arg_4+Arg_3 {O(n^2)}
15: eval_perfect1_bb3_in->eval_perfect1_bb4_in, Arg_4: Arg_4 {O(n)}
15: eval_perfect1_bb3_in->eval_perfect1_bb4_in, Arg_5: Arg_4 {O(n)}
15: eval_perfect1_bb3_in->eval_perfect1_bb4_in, Arg_6: 2*Arg_4 {O(n)}
15: eval_perfect1_bb3_in->eval_perfect1_bb4_in, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
16: eval_perfect1_bb3_in->eval_perfect1_bb5_in, Arg_0: Arg_4 {O(n)}
16: eval_perfect1_bb3_in->eval_perfect1_bb5_in, Arg_1: 3*Arg_4*Arg_4+6*Arg_4+Arg_1 {O(n^2)}
16: eval_perfect1_bb3_in->eval_perfect1_bb5_in, Arg_2: Arg_2+Arg_4 {O(n)}
16: eval_perfect1_bb3_in->eval_perfect1_bb5_in, Arg_3: Arg_4*Arg_4+2*Arg_4+Arg_3 {O(n^2)}
16: eval_perfect1_bb3_in->eval_perfect1_bb5_in, Arg_4: Arg_4 {O(n)}
16: eval_perfect1_bb3_in->eval_perfect1_bb5_in, Arg_5: Arg_4 {O(n)}
16: eval_perfect1_bb3_in->eval_perfect1_bb5_in, Arg_6: 2*Arg_4 {O(n)}
16: eval_perfect1_bb3_in->eval_perfect1_bb5_in, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
17: eval_perfect1_bb4_in->eval_perfect1_bb3_in, Arg_0: Arg_4 {O(n)}
17: eval_perfect1_bb4_in->eval_perfect1_bb3_in, Arg_1: 3*Arg_4*Arg_4+6*Arg_4+Arg_1 {O(n^2)}
17: eval_perfect1_bb4_in->eval_perfect1_bb3_in, Arg_2: Arg_2+Arg_4 {O(n)}
17: eval_perfect1_bb4_in->eval_perfect1_bb3_in, Arg_3: Arg_4*Arg_4+2*Arg_4+Arg_3 {O(n^2)}
17: eval_perfect1_bb4_in->eval_perfect1_bb3_in, Arg_4: Arg_4 {O(n)}
17: eval_perfect1_bb4_in->eval_perfect1_bb3_in, Arg_5: Arg_4 {O(n)}
17: eval_perfect1_bb4_in->eval_perfect1_bb3_in, Arg_6: 2*Arg_4 {O(n)}
17: eval_perfect1_bb4_in->eval_perfect1_bb3_in, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
18: eval_perfect1_bb5_in->eval_perfect1_12, Arg_0: Arg_4 {O(n)}
18: eval_perfect1_bb5_in->eval_perfect1_12, Arg_1: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
18: eval_perfect1_bb5_in->eval_perfect1_12, Arg_2: Arg_2+Arg_4 {O(n)}
18: eval_perfect1_bb5_in->eval_perfect1_12, Arg_3: Arg_4*Arg_4+2*Arg_4+Arg_3 {O(n^2)}
18: eval_perfect1_bb5_in->eval_perfect1_12, Arg_4: Arg_4 {O(n)}
18: eval_perfect1_bb5_in->eval_perfect1_12, Arg_5: Arg_4 {O(n)}
18: eval_perfect1_bb5_in->eval_perfect1_12, Arg_6: 2*Arg_4 {O(n)}
18: eval_perfect1_bb5_in->eval_perfect1_12, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
27: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_0: Arg_4 {O(n)}
27: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_1: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
27: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_2: Arg_4 {O(n)}
27: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
27: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_4: Arg_4 {O(n)}
27: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_5: 0 {O(1)}
27: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_6: 4*Arg_4 {O(n)}
27: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
28: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_0: Arg_4 {O(n)}
28: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_1: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
28: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_2: Arg_4 {O(n)}
28: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
28: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_4: Arg_4 {O(n)}
28: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_5: 0 {O(1)}
28: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_6: 4*Arg_4 {O(n)}
28: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_7: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
29: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_0: Arg_4 {O(n)}
29: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_1: 3*Arg_4*Arg_4+6*Arg_4 {O(n^2)}
29: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_2: Arg_4 {O(n)}
29: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_3: Arg_4*Arg_4+2*Arg_4 {O(n^2)}
29: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_4: Arg_4 {O(n)}
29: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_5: 0 {O(1)}
29: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_6: 4*Arg_4 {O(n)}
29: eval_perfect1_bb6_in->eval_perfect1_bb7_in, Arg_7: 0 {O(1)}
30: eval_perfect1_bb7_in->eval_perfect1_stop, Arg_0: 3*Arg_4+Arg_0 {O(n)}
30: eval_perfect1_bb7_in->eval_perfect1_stop, Arg_1: 9*Arg_4*Arg_4+18*Arg_4+Arg_1 {O(n^2)}
30: eval_perfect1_bb7_in->eval_perfect1_stop, Arg_2: 3*Arg_4+Arg_2 {O(n)}
30: eval_perfect1_bb7_in->eval_perfect1_stop, Arg_3: 3*Arg_4*Arg_4+6*Arg_4+Arg_3 {O(n^2)}
30: eval_perfect1_bb7_in->eval_perfect1_stop, Arg_4: 4*Arg_4 {O(n)}
30: eval_perfect1_bb7_in->eval_perfect1_stop, Arg_5: Arg_5 {O(n)}
30: eval_perfect1_bb7_in->eval_perfect1_stop, Arg_6: 12*Arg_4+Arg_6 {O(n)}
30: eval_perfect1_bb7_in->eval_perfect1_stop, Arg_7: 2*Arg_4*Arg_4+4*Arg_4+Arg_7 {O(n^2)}
0: eval_perfect1_start->eval_perfect1_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_perfect1_start->eval_perfect1_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_perfect1_start->eval_perfect1_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_perfect1_start->eval_perfect1_bb0_in, Arg_3: Arg_3 {O(n)}
0: eval_perfect1_start->eval_perfect1_bb0_in, Arg_4: Arg_4 {O(n)}
0: eval_perfect1_start->eval_perfect1_bb0_in, Arg_5: Arg_5 {O(n)}
0: eval_perfect1_start->eval_perfect1_bb0_in, Arg_6: Arg_6 {O(n)}
0: eval_perfect1_start->eval_perfect1_bb0_in, Arg_7: Arg_7 {O(n)}