Initial Problem
Start: f0
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20, Arg_21, Arg_22
Temp_Vars: A1, B1, C1, X, Y, Z
Locations: f0, f16, f18, f28, f35, f37, f52, f76
Transitions:
0:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f16(1,X,Y,Z,A1,B1,C1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:Arg_0<=1 && 1<=Arg_0
3:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f28(Arg_0,X,Y,Z,A1,B1,C1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:Arg_0<=0
4:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f28(Arg_0,X,Y,Z,A1,B1,C1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:2<=Arg_0
1:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:Arg_8<=Arg_7
23:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:1+Arg_7<=Arg_8
22:f18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:1+Arg_9<=Arg_10
2:f18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f18(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_11+2,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:Arg_10<=Arg_9
5:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_7+2-Arg_8,1,0,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:Arg_8<=0 && Arg_8<=Arg_7
6:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_7+2-Arg_8,1,0,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:2<=Arg_8 && Arg_8<=Arg_7
7:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,1,Arg_9,Arg_10,Arg_11,1,1,0,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
19:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:2+Arg_0<=0 && 1+Arg_7<=Arg_8
20:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f76(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:0<=Arg_0 && 1+Arg_7<=Arg_8
21:f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f76(-1,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
18:f35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f28(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
8:f35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
17:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f35(Arg_0,Arg_1,Arg_2,Arg_3,Arg_13,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,X,Y,Arg_15,Arg_16+1,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22+2):|:1+Arg_9<=Arg_10
11:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,X,Arg_12,Arg_13,Arg_14,Arg_15,1,Y,Z,A1,B1,Arg_21,Arg_22):|:Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
12:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,X,Arg_12,Arg_13,Arg_14,Arg_15,1,Y,Z,A1,B1,Arg_21,Arg_22):|:Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
13:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,2,1,Arg_12,Arg_13,Arg_14,Arg_15,1,X,Y,Z,A1,Arg_21,Arg_22):|:1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
9:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:Arg_16<=0 && Arg_10<=Arg_9
10:f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22):|:2<=Arg_16 && Arg_10<=Arg_9
14:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_9+2-Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,X,Y,Z,A1,B1,Arg_22):|:Arg_10<=0
15:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_9+2-Arg_10,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,X,Y,Z,A1,B1,Arg_22):|:2<=Arg_10
16:f52(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22) -> f37(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,2,1,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,X,Y,Z,A1,B1,Arg_22):|:Arg_10<=1 && 1<=Arg_10
Show Graph
G
f0
f0
f16
f16
f0->f16
t₀
η (Arg_0) = 1
η (Arg_1) = X
η (Arg_2) = Y
η (Arg_3) = Z
η (Arg_4) = A1
η (Arg_5) = B1
η (Arg_6) = C1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₃
η (Arg_1) = X
η (Arg_2) = Y
η (Arg_3) = Z
η (Arg_4) = A1
η (Arg_5) = B1
η (Arg_6) = C1
τ = Arg_0<=0
f0->f28
t₄
η (Arg_1) = X
η (Arg_2) = Y
η (Arg_3) = Z
η (Arg_4) = A1
η (Arg_5) = B1
η (Arg_6) = C1
τ = 2<=Arg_0
f18
f18
f16->f18
t₁
τ = Arg_8<=Arg_7
f16->f28
t₂₃
τ = 1+Arg_7<=Arg_8
f18->f16
t₂₂
η (Arg_8) = Arg_8+1
τ = 1+Arg_9<=Arg_10
f18->f18
t₂
η (Arg_10) = Arg_10+1
η (Arg_11) = Arg_11+2
τ = Arg_10<=Arg_9
f35
f35
f28->f35
t₅
η (Arg_12) = Arg_7+2-Arg_8
η (Arg_13) = 1
η (Arg_14) = 0
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₆
η (Arg_12) = Arg_7+2-Arg_8
η (Arg_13) = 1
η (Arg_14) = 0
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₇
η (Arg_8) = 1
η (Arg_12) = 1
η (Arg_13) = 1
η (Arg_14) = 0
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₁₉
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₂₀
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₂₁
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₁₈
η (Arg_8) = Arg_8+1
τ = 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₈
τ = 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₁₇
η (Arg_4) = Arg_13
η (Arg_13) = X
η (Arg_14) = Y
η (Arg_16) = Arg_16+1
η (Arg_22) = Arg_22+2
τ = 1+Arg_9<=Arg_10
f37->f37
t₁₁
η (Arg_10) = Arg_10+1
η (Arg_11) = X
η (Arg_16) = 1
η (Arg_17) = Y
η (Arg_18) = Z
η (Arg_19) = A1
η (Arg_20) = B1
τ = Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₁₂
η (Arg_10) = Arg_10+1
η (Arg_11) = X
η (Arg_16) = 1
η (Arg_17) = Y
η (Arg_18) = Z
η (Arg_19) = A1
η (Arg_20) = B1
τ = Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₁₃
η (Arg_10) = 2
η (Arg_11) = 1
η (Arg_16) = 1
η (Arg_17) = X
η (Arg_18) = Y
η (Arg_19) = Z
η (Arg_20) = A1
τ = 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₉
τ = Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₁₀
τ = 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₁₄
η (Arg_10) = Arg_10+1
η (Arg_11) = Arg_9+2-Arg_10
η (Arg_17) = X
η (Arg_18) = Y
η (Arg_19) = Z
η (Arg_20) = A1
η (Arg_21) = B1
τ = Arg_10<=0
f52->f37
t₁₅
η (Arg_10) = Arg_10+1
η (Arg_11) = Arg_9+2-Arg_10
η (Arg_17) = X
η (Arg_18) = Y
η (Arg_19) = Z
η (Arg_20) = A1
η (Arg_21) = B1
τ = 2<=Arg_10
f52->f37
t₁₆
η (Arg_10) = 2
η (Arg_11) = 1
η (Arg_17) = X
η (Arg_18) = Y
η (Arg_19) = Z
η (Arg_20) = A1
η (Arg_21) = B1
τ = Arg_10<=1 && 1<=Arg_10
Preprocessing
Eliminate variables {A1,B1,C1,Y,Z,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_11,Arg_12,Arg_13,Arg_14,Arg_17,Arg_18,Arg_19,Arg_20,Arg_21,Arg_22} that do not contribute to the problem
Found invariant Arg_8<=Arg_7 for location f35
Found invariant Arg_8<=Arg_7 for location f37
Found invariant Arg_10<=Arg_9 && Arg_8<=Arg_7 for location f52
Found invariant Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 for location f18
Found invariant Arg_0<=1 && 1<=Arg_0 for location f16
Found invariant 1+Arg_7<=Arg_8 for location f76
Problem after Preprocessing
Start: f0
Program_Vars: Arg_0, Arg_7, Arg_8, Arg_9, Arg_10, Arg_15, Arg_16
Temp_Vars: X
Locations: f0, f16, f18, f28, f35, f37, f52, f76
Transitions:
51:f0(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f16(1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_0<=1 && 1<=Arg_0
52:f0(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f28(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_0<=0
53:f0(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f28(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:2<=Arg_0
54:f16(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f18(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
55:f16(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f28(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
57:f18(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f16(Arg_0,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
56:f18(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f18(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,Arg_16):|:Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
58:f28(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=0 && Arg_8<=Arg_7
59:f28(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:2<=Arg_8 && Arg_8<=Arg_7
60:f28(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,1,Arg_9,Arg_10,Arg_15,Arg_16):|:1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
61:f28(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f76(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:2+Arg_0<=0 && 1+Arg_7<=Arg_8
62:f28(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f76(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:0<=Arg_0 && 1+Arg_7<=Arg_8
63:f28(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f76(-1,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
65:f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f28(Arg_0,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
64:f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
71:f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16+1):|:Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
68:f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,1):|:Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
69:f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,1):|:Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
70:f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,2,Arg_15,1):|:Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
66:f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f52(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
67:f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f52(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
72:f52(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,Arg_16):|:Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
73:f52(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,Arg_16):|:Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
74:f52(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,2,Arg_15,Arg_16):|:Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 54:f16(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f18(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7 of depth 1:
new bound:
Arg_7+Arg_8+1 {O(n)}
MPRF:
f18 [Arg_7-Arg_8 ]
f16 [Arg_7+1-Arg_8 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 56:f18(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f18(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,Arg_16):|:Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9 of depth 1:
new bound:
Arg_10+Arg_9+1 {O(n)}
MPRF:
f18 [Arg_9+1-Arg_10 ]
f16 [Arg_9+1-Arg_10 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 57:f18(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f16(Arg_0,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10 of depth 1:
new bound:
Arg_7+Arg_8+1 {O(n)}
MPRF:
f18 [Arg_7+1-Arg_8 ]
f16 [Arg_7+1-Arg_8 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 58:f28(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=0 && Arg_8<=Arg_7 of depth 1:
new bound:
2*Arg_8+2 {O(n)}
MPRF:
f28 [1-Arg_8 ]
f35 [-Arg_8 ]
f52 [-Arg_8 ]
f37 [-Arg_8 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 59:f28(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:2<=Arg_8 && Arg_8<=Arg_7 of depth 1:
new bound:
2*Arg_7+2*Arg_8+2 {O(n)}
MPRF:
f28 [Arg_7+1-Arg_8 ]
f35 [Arg_7-Arg_8 ]
f52 [Arg_7-Arg_8 ]
f37 [Arg_7-Arg_8 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 60:f28(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,1,Arg_9,Arg_10,Arg_15,Arg_16):|:1<=Arg_7 && Arg_8<=1 && 1<=Arg_8 of depth 1:
new bound:
2*Arg_8+4 {O(n)}
MPRF:
f28 [2-Arg_8 ]
f35 [1-Arg_8 ]
f52 [1-Arg_8 ]
f37 [1-Arg_8 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 64:f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1 of depth 1:
new bound:
2*Arg_15+4*Arg_16+6 {O(n)}
MPRF:
f28 [Arg_15+3-2*Arg_16 ]
f35 [Arg_15+3-2*Arg_16 ]
f52 [Arg_15+1-2*Arg_16 ]
f37 [Arg_15+1-2*Arg_16 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 65:f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f28(Arg_0,Arg_7,Arg_8+1,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16 of depth 1:
new bound:
2*Arg_7+2*Arg_8+2 {O(n)}
MPRF:
f28 [Arg_7+1-Arg_8 ]
f35 [Arg_7+1-Arg_8 ]
f52 [Arg_7+1-Arg_8 ]
f37 [Arg_7+1-Arg_8 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 66:f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f52(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9 of depth 1:
new bound:
2*Arg_10+2*Arg_9+2 {O(n)}
MPRF:
f28 [Arg_9+1-Arg_10 ]
f35 [Arg_9+1-Arg_10 ]
f52 [Arg_9-Arg_10 ]
f37 [Arg_9+1-Arg_10 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 67:f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f52(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16):|:Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9 of depth 1:
new bound:
2*Arg_10+2*Arg_9+2 {O(n)}
MPRF:
f28 [Arg_9+1-Arg_10 ]
f35 [Arg_9+1-Arg_10 ]
f52 [Arg_9-Arg_10 ]
f37 [Arg_9+1-Arg_10 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 68:f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,1):|:Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16 of depth 1:
new bound:
2*Arg_10+2 {O(n)}
MPRF:
f28 [1-Arg_10 ]
f35 [1-Arg_10 ]
f52 [-Arg_10 ]
f37 [1-Arg_10 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 69:f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,1):|:Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16 of depth 1:
new bound:
2*Arg_10+4*Arg_9 {O(n)}
MPRF:
f28 [2*Arg_9-Arg_10 ]
f35 [2*Arg_9-Arg_10 ]
f52 [2*Arg_9-Arg_10 ]
f37 [2*Arg_9-Arg_10 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 70:f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,2,Arg_15,1):|:Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16 of depth 1:
new bound:
2*Arg_10+4*Arg_9 {O(n)}
MPRF:
f28 [2*Arg_9-Arg_10 ]
f35 [2*Arg_9-Arg_10 ]
f52 [2*Arg_9-Arg_10 ]
f37 [2*Arg_9-Arg_10 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 72:f52(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,Arg_16):|:Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0 of depth 1:
new bound:
2*Arg_10+4 {O(n)}
MPRF:
f28 [2-Arg_10 ]
f35 [2-Arg_10 ]
f52 [2-Arg_10 ]
f37 [2-Arg_10 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 73:f52(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10+1,Arg_15,Arg_16):|:Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10 of depth 1:
new bound:
2*Arg_10+4*Arg_9 {O(n)}
MPRF:
f28 [2*Arg_9-Arg_10 ]
f35 [2*Arg_9-Arg_10 ]
f52 [2*Arg_9-Arg_10 ]
f37 [2*Arg_9-Arg_10 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
MPRF for transition 74:f52(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f37(Arg_0,Arg_7,Arg_8,Arg_9,2,Arg_15,Arg_16):|:Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10 of depth 1:
new bound:
2*Arg_10+4*Arg_9 {O(n)}
MPRF:
f28 [2*Arg_9-Arg_10 ]
f35 [2*Arg_9-Arg_10 ]
f52 [2*Arg_9-Arg_10 ]
f37 [2*Arg_9-Arg_10 ]
Show Graph
G
f0
f0
f16
f16
f0->f16
t₅₁
η (Arg_0) = 1
τ = Arg_0<=1 && 1<=Arg_0
f28
f28
f0->f28
t₅₂
τ = Arg_0<=0
f0->f28
t₅₃
τ = 2<=Arg_0
f18
f18
f16->f18
t₅₄
τ = Arg_0<=1 && 1<=Arg_0 && Arg_8<=Arg_7
f16->f28
t₅₅
τ = Arg_0<=1 && 1<=Arg_0 && 1+Arg_7<=Arg_8
f18->f16
t₅₇
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && 1+Arg_9<=Arg_10
f18->f18
t₅₆
η (Arg_10) = Arg_10+1
τ = Arg_8<=Arg_7 && Arg_0<=1 && 1<=Arg_0 && Arg_10<=Arg_9
f35
f35
f28->f35
t₅₈
τ = Arg_8<=0 && Arg_8<=Arg_7
f28->f35
t₅₉
τ = 2<=Arg_8 && Arg_8<=Arg_7
f28->f35
t₆₀
η (Arg_8) = 1
τ = 1<=Arg_7 && Arg_8<=1 && 1<=Arg_8
f76
f76
f28->f76
t₆₁
τ = 2+Arg_0<=0 && 1+Arg_7<=Arg_8
f28->f76
t₆₂
τ = 0<=Arg_0 && 1+Arg_7<=Arg_8
f28->f76
t₆₃
η (Arg_0) = -1
τ = 1+Arg_7<=Arg_8 && Arg_0+1<=0 && 0<=1+Arg_0
f35->f28
t₆₅
η (Arg_8) = Arg_8+1
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && 2+X<=Arg_16
f37
f37
f35->f37
t₆₄
τ = Arg_8<=Arg_7 && 2*X<=Arg_15 && Arg_15+1<=3*X && Arg_16<=X+1
f37->f35
t₇₁
η (Arg_16) = Arg_16+1
τ = Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
f37->f37
t₆₈
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=0 && Arg_10<=Arg_9 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₆₉
η (Arg_10) = Arg_10+1
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && Arg_10<=Arg_9 && 2<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f37->f37
t₇₀
η (Arg_10) = 2
η (Arg_16) = 1
τ = Arg_8<=Arg_7 && 1<=Arg_9 && Arg_10<=1 && 1<=Arg_10 && Arg_16<=1 && 1<=Arg_16
f52
f52
f37->f52
t₆₆
τ = Arg_8<=Arg_7 && Arg_16<=0 && Arg_10<=Arg_9
f37->f52
t₆₇
τ = Arg_8<=Arg_7 && 2<=Arg_16 && Arg_10<=Arg_9
f52->f37
t₇₂
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=0
f52->f37
t₇₃
η (Arg_10) = Arg_10+1
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && 2<=Arg_10
f52->f37
t₇₄
η (Arg_10) = 2
τ = Arg_10<=Arg_9 && Arg_8<=Arg_7 && Arg_10<=1 && 1<=Arg_10
knowledge_propagation leads to new time bound 12*Arg_10+16*Arg_9+2*Arg_15+4*Arg_16+12 {O(n)} for transition 71:f37(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16) -> f35(Arg_0,Arg_7,Arg_8,Arg_9,Arg_10,Arg_15,Arg_16+1):|:Arg_8<=Arg_7 && 1+Arg_9<=Arg_10
All Bounds
Timebounds
Overall timebound:10*Arg_8+29*Arg_10+37*Arg_9+4*Arg_15+6*Arg_7+8*Arg_16+48 {O(n)}
51: f0->f16: 1 {O(1)}
52: f0->f28: 1 {O(1)}
53: f0->f28: 1 {O(1)}
54: f16->f18: Arg_7+Arg_8+1 {O(n)}
55: f16->f28: 1 {O(1)}
56: f18->f18: Arg_10+Arg_9+1 {O(n)}
57: f18->f16: Arg_7+Arg_8+1 {O(n)}
58: f28->f35: 2*Arg_8+2 {O(n)}
59: f28->f35: 2*Arg_7+2*Arg_8+2 {O(n)}
60: f28->f35: 2*Arg_8+4 {O(n)}
61: f28->f76: 1 {O(1)}
62: f28->f76: 1 {O(1)}
63: f28->f76: 1 {O(1)}
64: f35->f37: 2*Arg_15+4*Arg_16+6 {O(n)}
65: f35->f28: 2*Arg_7+2*Arg_8+2 {O(n)}
66: f37->f52: 2*Arg_10+2*Arg_9+2 {O(n)}
67: f37->f52: 2*Arg_10+2*Arg_9+2 {O(n)}
68: f37->f37: 2*Arg_10+2 {O(n)}
69: f37->f37: 2*Arg_10+4*Arg_9 {O(n)}
70: f37->f37: 2*Arg_10+4*Arg_9 {O(n)}
71: f37->f35: 12*Arg_10+16*Arg_9+2*Arg_15+4*Arg_16+12 {O(n)}
72: f52->f37: 2*Arg_10+4 {O(n)}
73: f52->f37: 2*Arg_10+4*Arg_9 {O(n)}
74: f52->f37: 2*Arg_10+4*Arg_9 {O(n)}
Costbounds
Overall costbound: 10*Arg_8+29*Arg_10+37*Arg_9+4*Arg_15+6*Arg_7+8*Arg_16+48 {O(n)}
51: f0->f16: 1 {O(1)}
52: f0->f28: 1 {O(1)}
53: f0->f28: 1 {O(1)}
54: f16->f18: Arg_7+Arg_8+1 {O(n)}
55: f16->f28: 1 {O(1)}
56: f18->f18: Arg_10+Arg_9+1 {O(n)}
57: f18->f16: Arg_7+Arg_8+1 {O(n)}
58: f28->f35: 2*Arg_8+2 {O(n)}
59: f28->f35: 2*Arg_7+2*Arg_8+2 {O(n)}
60: f28->f35: 2*Arg_8+4 {O(n)}
61: f28->f76: 1 {O(1)}
62: f28->f76: 1 {O(1)}
63: f28->f76: 1 {O(1)}
64: f35->f37: 2*Arg_15+4*Arg_16+6 {O(n)}
65: f35->f28: 2*Arg_7+2*Arg_8+2 {O(n)}
66: f37->f52: 2*Arg_10+2*Arg_9+2 {O(n)}
67: f37->f52: 2*Arg_10+2*Arg_9+2 {O(n)}
68: f37->f37: 2*Arg_10+2 {O(n)}
69: f37->f37: 2*Arg_10+4*Arg_9 {O(n)}
70: f37->f37: 2*Arg_10+4*Arg_9 {O(n)}
71: f37->f35: 12*Arg_10+16*Arg_9+2*Arg_15+4*Arg_16+12 {O(n)}
72: f52->f37: 2*Arg_10+4 {O(n)}
73: f52->f37: 2*Arg_10+4*Arg_9 {O(n)}
74: f52->f37: 2*Arg_10+4*Arg_9 {O(n)}
Sizebounds
51: f0->f16, Arg_0: 1 {O(1)}
51: f0->f16, Arg_7: Arg_7 {O(n)}
51: f0->f16, Arg_8: Arg_8 {O(n)}
51: f0->f16, Arg_9: Arg_9 {O(n)}
51: f0->f16, Arg_10: Arg_10 {O(n)}
51: f0->f16, Arg_15: Arg_15 {O(n)}
51: f0->f16, Arg_16: Arg_16 {O(n)}
52: f0->f28, Arg_0: Arg_0 {O(n)}
52: f0->f28, Arg_7: Arg_7 {O(n)}
52: f0->f28, Arg_8: Arg_8 {O(n)}
52: f0->f28, Arg_9: Arg_9 {O(n)}
52: f0->f28, Arg_10: Arg_10 {O(n)}
52: f0->f28, Arg_15: Arg_15 {O(n)}
52: f0->f28, Arg_16: Arg_16 {O(n)}
53: f0->f28, Arg_0: Arg_0 {O(n)}
53: f0->f28, Arg_7: Arg_7 {O(n)}
53: f0->f28, Arg_8: Arg_8 {O(n)}
53: f0->f28, Arg_9: Arg_9 {O(n)}
53: f0->f28, Arg_10: Arg_10 {O(n)}
53: f0->f28, Arg_15: Arg_15 {O(n)}
53: f0->f28, Arg_16: Arg_16 {O(n)}
54: f16->f18, Arg_0: 1 {O(1)}
54: f16->f18, Arg_7: Arg_7 {O(n)}
54: f16->f18, Arg_8: 2*Arg_8+Arg_7+1 {O(n)}
54: f16->f18, Arg_9: Arg_9 {O(n)}
54: f16->f18, Arg_10: 2*Arg_10+Arg_9+1 {O(n)}
54: f16->f18, Arg_15: Arg_15 {O(n)}
54: f16->f18, Arg_16: Arg_16 {O(n)}
55: f16->f28, Arg_0: 1 {O(1)}
55: f16->f28, Arg_7: 2*Arg_7 {O(n)}
55: f16->f28, Arg_8: 3*Arg_8+Arg_7+1 {O(n)}
55: f16->f28, Arg_9: 2*Arg_9 {O(n)}
55: f16->f28, Arg_10: 3*Arg_10+Arg_9+1 {O(n)}
55: f16->f28, Arg_15: 2*Arg_15 {O(n)}
55: f16->f28, Arg_16: 2*Arg_16 {O(n)}
56: f18->f18, Arg_0: 1 {O(1)}
56: f18->f18, Arg_7: Arg_7 {O(n)}
56: f18->f18, Arg_8: 2*Arg_8+Arg_7+1 {O(n)}
56: f18->f18, Arg_9: Arg_9 {O(n)}
56: f18->f18, Arg_10: 2*Arg_10+Arg_9+1 {O(n)}
56: f18->f18, Arg_15: Arg_15 {O(n)}
56: f18->f18, Arg_16: Arg_16 {O(n)}
57: f18->f16, Arg_0: 1 {O(1)}
57: f18->f16, Arg_7: Arg_7 {O(n)}
57: f18->f16, Arg_8: 2*Arg_8+Arg_7+1 {O(n)}
57: f18->f16, Arg_9: Arg_9 {O(n)}
57: f18->f16, Arg_10: 2*Arg_10+Arg_9+1 {O(n)}
57: f18->f16, Arg_15: Arg_15 {O(n)}
57: f18->f16, Arg_16: Arg_16 {O(n)}
58: f28->f35, Arg_0: 6*Arg_0 {O(n)}
58: f28->f35, Arg_7: 6*Arg_7 {O(n)}
58: f28->f35, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
58: f28->f35, Arg_9: 6*Arg_9 {O(n)}
58: f28->f35, Arg_10: 10*Arg_10+8*Arg_9+13 {O(n)}
58: f28->f35, Arg_15: 6*Arg_15 {O(n)}
58: f28->f35, Arg_16: 10*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}
59: f28->f35, Arg_0: 6*Arg_0 {O(n)}
59: f28->f35, Arg_7: 6*Arg_7 {O(n)}
59: f28->f35, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
59: f28->f35, Arg_9: 6*Arg_9 {O(n)}
59: f28->f35, Arg_10: 10*Arg_10+8*Arg_9+13 {O(n)}
59: f28->f35, Arg_15: 6*Arg_15 {O(n)}
59: f28->f35, Arg_16: 10*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}
60: f28->f35, Arg_0: 6*Arg_0 {O(n)}
60: f28->f35, Arg_7: 6*Arg_7 {O(n)}
60: f28->f35, Arg_8: 1 {O(1)}
60: f28->f35, Arg_9: 6*Arg_9 {O(n)}
60: f28->f35, Arg_10: 10*Arg_10+8*Arg_9+13 {O(n)}
60: f28->f35, Arg_15: 6*Arg_15 {O(n)}
60: f28->f35, Arg_16: 10*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}
61: f28->f76, Arg_0: 7*Arg_0 {O(n)}
61: f28->f76, Arg_7: 7*Arg_7 {O(n)}
61: f28->f76, Arg_8: 2*Arg_7+7*Arg_8+4 {O(n)}
61: f28->f76, Arg_9: 7*Arg_9 {O(n)}
61: f28->f76, Arg_10: 11*Arg_10+8*Arg_9+13 {O(n)}
61: f28->f76, Arg_15: 7*Arg_15 {O(n)}
61: f28->f76, Arg_16: 11*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}
62: f28->f76, Arg_0: 8*Arg_0+1 {O(n)}
62: f28->f76, Arg_7: 10*Arg_7 {O(n)}
62: f28->f76, Arg_8: 11*Arg_8+3*Arg_7+5 {O(n)}
62: f28->f76, Arg_9: 10*Arg_9 {O(n)}
62: f28->f76, Arg_10: 15*Arg_10+9*Arg_9+14 {O(n)}
62: f28->f76, Arg_15: 10*Arg_15 {O(n)}
62: f28->f76, Arg_16: 12*Arg_10+14*Arg_16+16*Arg_9+2*Arg_15+15 {O(n)}
63: f28->f76, Arg_0: 1 {O(1)}
63: f28->f76, Arg_7: 7*Arg_7 {O(n)}
63: f28->f76, Arg_8: 2*Arg_7+7*Arg_8+4 {O(n)}
63: f28->f76, Arg_9: 7*Arg_9 {O(n)}
63: f28->f76, Arg_10: 11*Arg_10+8*Arg_9+13 {O(n)}
63: f28->f76, Arg_15: 7*Arg_15 {O(n)}
63: f28->f76, Arg_16: 11*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}
64: f35->f37, Arg_0: 6*Arg_0 {O(n)}
64: f35->f37, Arg_7: 6*Arg_7 {O(n)}
64: f35->f37, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
64: f35->f37, Arg_9: 6*Arg_9 {O(n)}
64: f35->f37, Arg_10: 10*Arg_10+8*Arg_9+13 {O(n)}
64: f35->f37, Arg_15: 6*Arg_15 {O(n)}
64: f35->f37, Arg_16: 10*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}
65: f35->f28, Arg_0: 6*Arg_0 {O(n)}
65: f35->f28, Arg_7: 6*Arg_7 {O(n)}
65: f35->f28, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
65: f35->f28, Arg_9: 6*Arg_9 {O(n)}
65: f35->f28, Arg_10: 10*Arg_10+8*Arg_9+13 {O(n)}
65: f35->f28, Arg_15: 6*Arg_15 {O(n)}
65: f35->f28, Arg_16: 10*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}
66: f37->f52, Arg_0: 6*Arg_0 {O(n)}
66: f37->f52, Arg_7: 6*Arg_7 {O(n)}
66: f37->f52, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
66: f37->f52, Arg_9: 6*Arg_9 {O(n)}
66: f37->f52, Arg_10: 10*Arg_10+8*Arg_9+13 {O(n)}
66: f37->f52, Arg_15: 6*Arg_15 {O(n)}
66: f37->f52, Arg_16: 10*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}
67: f37->f52, Arg_0: 6*Arg_0 {O(n)}
67: f37->f52, Arg_7: 6*Arg_7 {O(n)}
67: f37->f52, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
67: f37->f52, Arg_9: 6*Arg_9 {O(n)}
67: f37->f52, Arg_10: 10*Arg_10+8*Arg_9+13 {O(n)}
67: f37->f52, Arg_15: 6*Arg_15 {O(n)}
67: f37->f52, Arg_16: 10*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}
68: f37->f37, Arg_0: 6*Arg_0 {O(n)}
68: f37->f37, Arg_7: 6*Arg_7 {O(n)}
68: f37->f37, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
68: f37->f37, Arg_9: 6*Arg_9 {O(n)}
68: f37->f37, Arg_10: 10*Arg_10+8*Arg_9+13 {O(n)}
68: f37->f37, Arg_15: 6*Arg_15 {O(n)}
68: f37->f37, Arg_16: 1 {O(1)}
69: f37->f37, Arg_0: 6*Arg_0 {O(n)}
69: f37->f37, Arg_7: 6*Arg_7 {O(n)}
69: f37->f37, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
69: f37->f37, Arg_9: 6*Arg_9 {O(n)}
69: f37->f37, Arg_10: 10*Arg_10+8*Arg_9+13 {O(n)}
69: f37->f37, Arg_15: 6*Arg_15 {O(n)}
69: f37->f37, Arg_16: 1 {O(1)}
70: f37->f37, Arg_0: 6*Arg_0 {O(n)}
70: f37->f37, Arg_7: 6*Arg_7 {O(n)}
70: f37->f37, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
70: f37->f37, Arg_9: 6*Arg_9 {O(n)}
70: f37->f37, Arg_10: 2 {O(1)}
70: f37->f37, Arg_15: 6*Arg_15 {O(n)}
70: f37->f37, Arg_16: 1 {O(1)}
71: f37->f35, Arg_0: 6*Arg_0 {O(n)}
71: f37->f35, Arg_7: 6*Arg_7 {O(n)}
71: f37->f35, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
71: f37->f35, Arg_9: 6*Arg_9 {O(n)}
71: f37->f35, Arg_10: 10*Arg_10+8*Arg_9+13 {O(n)}
71: f37->f35, Arg_15: 6*Arg_15 {O(n)}
71: f37->f35, Arg_16: 10*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}
72: f52->f37, Arg_0: 6*Arg_0 {O(n)}
72: f52->f37, Arg_7: 6*Arg_7 {O(n)}
72: f52->f37, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
72: f52->f37, Arg_9: 6*Arg_9 {O(n)}
72: f52->f37, Arg_10: 10*Arg_10+8*Arg_9+13 {O(n)}
72: f52->f37, Arg_15: 6*Arg_15 {O(n)}
72: f52->f37, Arg_16: 10*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}
73: f52->f37, Arg_0: 6*Arg_0 {O(n)}
73: f52->f37, Arg_7: 6*Arg_7 {O(n)}
73: f52->f37, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
73: f52->f37, Arg_9: 6*Arg_9 {O(n)}
73: f52->f37, Arg_10: 10*Arg_10+8*Arg_9+13 {O(n)}
73: f52->f37, Arg_15: 6*Arg_15 {O(n)}
73: f52->f37, Arg_16: 10*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}
74: f52->f37, Arg_0: 6*Arg_0 {O(n)}
74: f52->f37, Arg_7: 6*Arg_7 {O(n)}
74: f52->f37, Arg_8: 2*Arg_7+6*Arg_8+4 {O(n)}
74: f52->f37, Arg_9: 6*Arg_9 {O(n)}
74: f52->f37, Arg_10: 2 {O(1)}
74: f52->f37, Arg_15: 6*Arg_15 {O(n)}
74: f52->f37, Arg_16: 10*Arg_16+12*Arg_10+16*Arg_9+2*Arg_15+15 {O(n)}