Initial Problem
Start: start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_5, Arg_6, Arg_7, Arg_8, Arg_9, Arg_10, Arg_11, Arg_12, Arg_13, Arg_14, Arg_15, Arg_16, Arg_17, Arg_18, Arg_19, Arg_20
Temp_Vars: A1, B1, C1, V, W, X, Y, Z
Locations: f0, f13, f16, f26, f29, f33, f42, f59, f68, f74, f80, start
Transitions:
0:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f0(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_1<=Arg_0
28:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1+Arg_0<=Arg_1
3:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_2<=Arg_0
27:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1+Arg_0<=Arg_2
6:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,V,W,V+W,X,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:X+1<=0 && 1+Arg_3<=Arg_0
7:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,V,W,V+W,X,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1<=X && 1+Arg_3<=Arg_0
4:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_0<=Arg_3
5:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,V,W,V+W,0,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1+Arg_3<=Arg_0
9:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_4,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_3+1<=Arg_2
10:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_5,Arg_6,Arg_7,Arg_8,Arg_4,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1+Arg_2<=Arg_3
8:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f74(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_2<=Arg_3 && Arg_3<=Arg_2
11:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,V,W,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_9<=29
12:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,V,W,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:31<=Arg_9
13:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,30,V,W,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_9<=30 && 30<=Arg_9
14:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,V,Arg_11,W,W,1,1,0,Arg_17,Arg_18,Arg_19,Arg_20):|:0<=Arg_10
15:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,V,Arg_11,Arg_12,-W,1,1,0,W,Arg_18,Arg_19,Arg_20):|:Arg_10+1<=0
18:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,V,W,Arg_12,Arg_13,X,Z,A1,Arg_17,B1,C1,Arg_20):|:Arg_2<=Arg_1 && Y+1<=0
19:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,V,W,Arg_12,Arg_13,X,Z,A1,Arg_17,B1,C1,Arg_20):|:Arg_2<=Arg_1 && 1<=Y
16:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_1+1<=Arg_2
17:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,V,W,Arg_20):|:Arg_2<=Arg_1
26:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1+Arg_0<=Arg_20
20:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,V,Arg_19,Arg_20+1):|:Arg_20<=Arg_0
21:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
22:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_11+1<=0
23:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1<=Arg_11
24:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,0,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
25:f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f13(Arg_0,Arg_1,Arg_2+1,Arg_2,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_2<=Arg_3 && Arg_3<=Arg_2
1:f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:Arg_3+1<=Arg_2
2:f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20):|:1+Arg_2<=Arg_3
29:start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20) -> f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_5,Arg_6,Arg_7,Arg_8,Arg_9,Arg_10,Arg_11,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19,Arg_20)
Show Graph
G
f0
f0
f0->f0
t₀
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₂₈
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₃
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₂₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₆
η (Arg_3) = Arg_3+1
η (Arg_5) = V
η (Arg_6) = W
η (Arg_7) = V+W
η (Arg_8) = X
τ = X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇
η (Arg_3) = Arg_3+1
η (Arg_5) = V
η (Arg_6) = W
η (Arg_7) = V+W
η (Arg_8) = X
τ = 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₄
τ = Arg_0<=Arg_3
f16->f26
t₅
η (Arg_5) = V
η (Arg_6) = W
η (Arg_7) = V+W
η (Arg_8) = 0
τ = 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₉
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = Arg_3+1<=Arg_2
f26->f29
t₁₀
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₈
η (Arg_3) = Arg_2
τ = Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₁₁
η (Arg_10) = V
η (Arg_11) = W
τ = Arg_9<=29
f29->f33
t₁₂
η (Arg_10) = V
η (Arg_11) = W
τ = 31<=Arg_9
f29->f33
t₁₃
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₁₄
η (Arg_10) = V
η (Arg_12) = W
η (Arg_13) = W
η (Arg_14) = 1
η (Arg_15) = 1
η (Arg_16) = 0
τ = 0<=Arg_10
f33->f42
t₁₅
η (Arg_10) = V
η (Arg_13) = -W
η (Arg_14) = 1
η (Arg_15) = 1
η (Arg_16) = 0
η (Arg_17) = W
τ = Arg_10+1<=0
f59
f59
f42->f59
t₁₈
η (Arg_10) = V
η (Arg_11) = W
η (Arg_14) = X
η (Arg_15) = Z
η (Arg_16) = A1
η (Arg_18) = B1
η (Arg_19) = C1
τ = Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₁₉
η (Arg_10) = V
η (Arg_11) = W
η (Arg_14) = X
η (Arg_15) = Z
η (Arg_16) = A1
η (Arg_18) = B1
η (Arg_19) = C1
τ = Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₁₆
τ = Arg_1+1<=Arg_2
f42->f68
t₁₇
η (Arg_11) = 0
η (Arg_18) = V
η (Arg_19) = W
τ = Arg_2<=Arg_1
f59->f42
t₂₆
η (Arg_1) = Arg_1-1
τ = 1+Arg_0<=Arg_20
f59->f59
t₂₀
η (Arg_18) = V
η (Arg_20) = Arg_20+1
τ = Arg_20<=Arg_0
f68->f74
t₂₁
η (Arg_11) = 0
τ = Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₂₂
τ = Arg_11+1<=0
f68->f74
t₂₃
τ = 1<=Arg_11
f68->f74
t₂₄
η (Arg_11) = 0
τ = Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₂₅
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₁
τ = Arg_3+1<=Arg_2
f74->f16
t₂
τ = 1+Arg_2<=Arg_3
start
start
start->f0
t₂₉
Preprocessing
Eliminate variables {A1,B1,C1,Z,Arg_5,Arg_6,Arg_7,Arg_8,Arg_12,Arg_13,Arg_14,Arg_15,Arg_16,Arg_17,Arg_18,Arg_19} that do not contribute to the problem
Found invariant 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 for location f29
Found invariant 0<=Arg_4 && Arg_2<=Arg_0 for location f74
Found invariant 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 for location f42
Found invariant 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 for location f68
Found invariant 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 for location f33
Found invariant 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 for location f59
Found invariant 1+Arg_0<=Arg_2 for location f80
Found invariant 0<=Arg_4 && Arg_2<=Arg_0 for location f16
Found invariant 0<=Arg_4 && Arg_2<=Arg_0 for location f26
Problem after Preprocessing
Start: start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3, Arg_4, Arg_9, Arg_10, Arg_11, Arg_20
Temp_Vars: V, W, X, Y
Locations: f0, f13, f16, f26, f29, f33, f42, f59, f68, f74, f80, start
Transitions:
64:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f0(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:Arg_1<=Arg_0
65:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:1+Arg_0<=Arg_1
66:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_9,Arg_10,Arg_11,Arg_20):|:Arg_2<=Arg_0
67:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f80(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:1+Arg_0<=Arg_2
70:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
71:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
68:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
69:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
73:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_4,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
74:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4+1,Arg_4,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
72:f26(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f74(Arg_0,Arg_1,Arg_2,Arg_2,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
75:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V,W,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
76:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V,W,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
77:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,30,V,W,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
78:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V,Arg_11,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
79:f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V,Arg_11,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
82:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V,W,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
83:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V,W,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
80:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
81:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,0,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
85:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
84:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20+1):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
86:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,0,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
87:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
88:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
89:f68(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,0,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
92:f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f13(Arg_0,Arg_1,Arg_2+1,Arg_2,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
90:f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
91:f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
93:start(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20)
Show Graph
G
f0
f0
f0->f0
t₆₄
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₆₅
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₆₆
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₆₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₇₀
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇₁
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₆₈
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f16->f26
t₆₉
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f26->f29
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f29->f33
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f29->f33
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₇₈
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
f33->f42
t₇₉
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
f59
f59
f42->f59
t₈₂
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₈₃
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f59->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f59->f59
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f74
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f74
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f74
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f74->f16
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f0
t₉₃
MPRF for transition 64:f0(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f0(Arg_0,Arg_1+1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:Arg_1<=Arg_0 of depth 1:
new bound:
Arg_0+Arg_1+1 {O(n)}
MPRF:
f0 [Arg_0+1-Arg_1 ]
Show Graph
G
f0
f0
f0->f0
t₆₄
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₆₅
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₆₆
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₆₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₇₀
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇₁
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₆₈
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f16->f26
t₆₉
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f26->f29
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f29->f33
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f29->f33
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₇₈
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
f33->f42
t₇₉
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
f59
f59
f42->f59
t₈₂
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₈₃
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f59->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f59->f59
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f74
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f74
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f74
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f74->f16
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f0
t₉₃
MPRF for transition 66:f13(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3,0,Arg_9,Arg_10,Arg_11,Arg_20):|:Arg_2<=Arg_0 of depth 1:
new bound:
2*Arg_0+2*Arg_2+1 {O(n)}
MPRF:
f26 [Arg_0-Arg_2 ]
f29 [Arg_0-Arg_2 ]
f33 [Arg_0-Arg_2 ]
f59 [Arg_0-Arg_2 ]
f42 [Arg_0-Arg_2 ]
f68 [Arg_0-Arg_2 ]
f16 [Arg_0-Arg_2 ]
f74 [Arg_0-Arg_2 ]
f13 [Arg_0+1-Arg_2 ]
Show Graph
G
f0
f0
f0->f0
t₆₄
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₆₅
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₆₆
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₆₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₇₀
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇₁
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₆₈
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f16->f26
t₆₉
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f26->f29
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f29->f33
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f29->f33
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₇₈
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
f33->f42
t₇₉
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
f59
f59
f42->f59
t₈₂
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₈₃
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f59->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f59->f59
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f74
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f74
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f74
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f74->f16
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f0
t₉₃
MPRF for transition 70:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0 of depth 1:
new bound:
2*Arg_0+2*Arg_3 {O(n)}
MPRF:
f26 [Arg_0-Arg_3 ]
f29 [Arg_0-Arg_3 ]
f33 [Arg_0-Arg_3 ]
f59 [Arg_0-Arg_3 ]
f42 [Arg_0-Arg_3 ]
f68 [Arg_0-Arg_3 ]
f16 [Arg_0-Arg_3 ]
f74 [Arg_0-Arg_3 ]
f13 [Arg_0-Arg_3 ]
Show Graph
G
f0
f0
f0->f0
t₆₄
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₆₅
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₆₆
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₆₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₇₀
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇₁
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₆₈
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f16->f26
t₆₉
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f26->f29
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f29->f33
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f29->f33
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₇₈
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
f33->f42
t₇₉
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
f59
f59
f42->f59
t₈₂
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₈₃
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f59->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f59->f59
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f74
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f74
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f74
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f74->f16
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f0
t₉₃
MPRF for transition 71:f16(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f16(Arg_0,Arg_1,Arg_2,Arg_3+1,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0 of depth 1:
new bound:
2*Arg_0+2*Arg_3 {O(n)}
MPRF:
f26 [Arg_0-Arg_3 ]
f29 [Arg_0-Arg_3 ]
f33 [Arg_0-Arg_3 ]
f59 [Arg_0-Arg_3 ]
f42 [Arg_0-Arg_3 ]
f68 [Arg_0-Arg_3 ]
f16 [Arg_0-Arg_3 ]
f74 [Arg_0-Arg_3 ]
f13 [Arg_0-Arg_3 ]
Show Graph
G
f0
f0
f0->f0
t₆₄
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₆₅
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₆₆
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₆₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₇₀
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇₁
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₆₈
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f16->f26
t₆₉
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f26->f29
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f29->f33
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f29->f33
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₇₈
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
f33->f42
t₇₉
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
f59
f59
f42->f59
t₈₂
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₈₃
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f59->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f59->f59
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f74
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f74
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f74
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f74->f16
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f0
t₉₃
MPRF for transition 82:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V,W,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0 of depth 1:
new bound:
2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
MPRF:
f26 [Arg_1+1-Arg_2 ]
f29 [Arg_1+1-Arg_2 ]
f33 [Arg_1+Arg_4-Arg_2-Arg_9 ]
f59 [Arg_1-Arg_2 ]
f42 [Arg_1+1-Arg_2 ]
f68 [Arg_1+Arg_4-Arg_2-Arg_9 ]
f16 [Arg_1+1-Arg_2 ]
f74 [Arg_1+1-Arg_2 ]
f13 [Arg_1+1-Arg_2 ]
Show Graph
G
f0
f0
f0->f0
t₆₄
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₆₅
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₆₆
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₆₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₇₀
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇₁
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₆₈
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f16->f26
t₆₉
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f26->f29
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f29->f33
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f29->f33
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₇₈
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
f33->f42
t₇₉
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
f59
f59
f42->f59
t₈₂
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₈₃
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f59->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f59->f59
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f74
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f74
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f74
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f74->f16
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f0
t₉₃
MPRF for transition 83:f42(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V,W,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y of depth 1:
new bound:
2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
MPRF:
f26 [Arg_1+1-Arg_2 ]
f29 [Arg_1+1-Arg_2 ]
f33 [Arg_1+Arg_4-Arg_2-Arg_9 ]
f59 [Arg_1-Arg_2 ]
f42 [Arg_1+1-Arg_2 ]
f68 [Arg_1+Arg_4-Arg_2-Arg_9 ]
f16 [Arg_1+1-Arg_2 ]
f74 [Arg_1+1-Arg_2 ]
f13 [Arg_1+1-Arg_2 ]
Show Graph
G
f0
f0
f0->f0
t₆₄
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₆₅
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₆₆
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₆₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₇₀
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇₁
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₆₈
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f16->f26
t₆₉
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f26->f29
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f29->f33
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f29->f33
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₇₈
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
f33->f42
t₇₉
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
f59
f59
f42->f59
t₈₂
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₈₃
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f59->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f59->f59
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f74
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f74
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f74
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f74->f16
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f0
t₉₃
MPRF for transition 84:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20+1):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0 of depth 1:
new bound:
2*Arg_0+2*Arg_20+1 {O(n)}
MPRF:
f26 [Arg_0+1-Arg_20 ]
f29 [Arg_0+1-Arg_20 ]
f33 [Arg_0+1-Arg_20 ]
f59 [Arg_0+Arg_9+2-Arg_4-Arg_20 ]
f42 [Arg_0+Arg_4-Arg_9-Arg_20 ]
f68 [Arg_0+1-Arg_20 ]
f16 [Arg_0+1-Arg_20 ]
f74 [Arg_0+1-Arg_20 ]
f13 [Arg_0+1-Arg_20 ]
Show Graph
G
f0
f0
f0->f0
t₆₄
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₆₅
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₆₆
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₆₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₇₀
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇₁
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₆₈
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f16->f26
t₆₉
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f26->f29
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f29->f33
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f29->f33
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₇₈
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
f33->f42
t₇₉
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
f59
f59
f42->f59
t₈₂
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₈₃
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f59->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f59->f59
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f74
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f74
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f74
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f74->f16
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f0
t₉₃
MPRF for transition 85:f59(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f42(Arg_0,Arg_1-1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20 of depth 1:
new bound:
2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
MPRF:
f26 [Arg_1+1-Arg_2 ]
f29 [Arg_1+1-Arg_2 ]
f33 [Arg_1+Arg_4-Arg_2-Arg_9 ]
f59 [Arg_1+1-Arg_2 ]
f42 [Arg_1+1-Arg_2 ]
f68 [Arg_1+Arg_4-Arg_2-Arg_9 ]
f16 [Arg_1+1-Arg_2 ]
f74 [Arg_1+1-Arg_2 ]
f13 [Arg_1+1-Arg_2 ]
Show Graph
G
f0
f0
f0->f0
t₆₄
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₆₅
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₆₆
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₆₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₇₀
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇₁
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₆₈
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f16->f26
t₆₉
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f26->f29
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f29->f33
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f29->f33
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₇₈
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
f33->f42
t₇₉
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
f59
f59
f42->f59
t₈₂
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₈₃
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f59->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f59->f59
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f74
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f74
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f74
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f74->f16
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f0
t₉₃
MPRF for transition 92:f74(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f13(Arg_0,Arg_1,Arg_2+1,Arg_2,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20):|:0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2 of depth 1:
new bound:
2*Arg_0+2*Arg_2+1 {O(n)}
MPRF:
f26 [Arg_0+1-Arg_2 ]
f29 [Arg_0+1-Arg_2 ]
f33 [Arg_0+Arg_4-Arg_2-Arg_9 ]
f59 [Arg_0+Arg_4-Arg_2-Arg_9 ]
f42 [Arg_0+1-Arg_2 ]
f68 [Arg_0+Arg_4-Arg_2-Arg_9 ]
f16 [Arg_0+1-Arg_2 ]
f74 [Arg_0+1-Arg_2 ]
f13 [Arg_0+1-Arg_2 ]
Show Graph
G
f0
f0
f0->f0
t₆₄
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₆₅
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₆₆
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₆₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₇₀
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇₁
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₆₈
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f16->f26
t₆₉
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f26->f29
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f29->f33
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f29->f33
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₇₈
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
f33->f42
t₇₉
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
f59
f59
f42->f59
t₈₂
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₈₃
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f59->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f59->f59
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f74
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f74
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f74
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f74->f16
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f0
t₉₃
MPRF for transition 75:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,V,W,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29 of depth 1:
new bound:
60*Arg_0+60*Arg_2+60 {O(n)}
MPRF:
f13 [30 ]
f26 [30-Arg_4 ]
f29 [31-Arg_4 ]
f33 [30-Arg_4 ]
f59 [29*Arg_4-30*Arg_9 ]
f42 [29-Arg_9 ]
f68 [29*Arg_4-30*Arg_9 ]
f74 [30-Arg_4 ]
f16 [30-Arg_4 ]
Show Graph
G
f0
f0
f0->f0
t₆₄
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₆₅
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₆₆
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₆₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₇₀
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇₁
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₆₈
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f16->f26
t₆₉
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f26->f29
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f29->f33
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f29->f33
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₇₈
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
f33->f42
t₇₉
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
f59
f59
f42->f59
t₈₂
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₈₃
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f59->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f59->f59
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f74
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f74
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f74
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f74->f16
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f0
t₉₃
MPRF for transition 77:f29(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,Arg_9,Arg_10,Arg_11,Arg_20) -> f33(Arg_0,Arg_1,Arg_2,Arg_3,Arg_4,30,V,W,Arg_20):|:1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9 of depth 1:
new bound:
120*Arg_0+120*Arg_2+120 {O(n)}
MPRF:
f13 [60 ]
f26 [60-Arg_4 ]
f29 [61-Arg_4 ]
f33 [60-Arg_4 ]
f59 [60-Arg_4 ]
f42 [60-Arg_4 ]
f68 [60-Arg_4 ]
f74 [60-Arg_4 ]
f16 [60-Arg_4 ]
Show Graph
G
f0
f0
f0->f0
t₆₄
η (Arg_1) = Arg_1+1
τ = Arg_1<=Arg_0
f13
f13
f0->f13
t₆₅
τ = 1+Arg_0<=Arg_1
f16
f16
f13->f16
t₆₆
η (Arg_4) = 0
τ = Arg_2<=Arg_0
f80
f80
f13->f80
t₆₇
τ = 1+Arg_0<=Arg_2
f16->f16
t₇₀
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && X+1<=0 && 1+Arg_3<=Arg_0
f16->f16
t₇₁
η (Arg_3) = Arg_3+1
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1<=X && 1+Arg_3<=Arg_0
f26
f26
f16->f26
t₆₈
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_0<=Arg_3
f16->f26
t₆₉
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_3<=Arg_0
f29
f29
f26->f29
t₇₃
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f26->f29
t₇₄
η (Arg_4) = Arg_4+1
η (Arg_9) = Arg_4
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
f74
f74
f26->f74
t₇₂
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f33
f33
f29->f33
t₇₅
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=29
f29->f33
t₇₆
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 31<=Arg_9
f29->f33
t₇₇
η (Arg_9) = 30
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_9<=30 && 30<=Arg_9
f42
f42
f33->f42
t₇₈
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 0<=Arg_10
f33->f42
t₇₉
η (Arg_10) = V
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_10+1<=0
f59
f59
f42->f59
t₈₂
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Y+1<=0
f42->f59
t₈₃
η (Arg_10) = V
η (Arg_11) = W
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && 1<=Y
f68
f68
f42->f68
t₈₀
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2
f42->f68
t₈₁
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1
f59->f42
t₈₅
η (Arg_1) = Arg_1-1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && 1+Arg_0<=Arg_20
f59->f59
t₈₄
η (Arg_20) = Arg_20+1
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_1 && Arg_2<=Arg_0 && Arg_20<=Arg_0
f68->f74
t₈₆
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_1 && Arg_11<=0 && 0<=Arg_11
f68->f74
t₈₇
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_11+1<=0
f68->f74
t₈₈
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && 1<=Arg_11
f68->f74
t₈₉
η (Arg_11) = 0
τ = 1+Arg_9<=Arg_4 && 0<=Arg_9 && 1<=Arg_4+Arg_9 && Arg_4<=1+Arg_9 && 1<=Arg_4 && Arg_2<=Arg_0 && Arg_1+1<=Arg_2 && Arg_11<=0 && 0<=Arg_11
f74->f13
t₉₂
η (Arg_2) = Arg_2+1
η (Arg_3) = Arg_2
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_2<=Arg_3 && Arg_3<=Arg_2
f74->f16
t₉₀
τ = 0<=Arg_4 && Arg_2<=Arg_0 && Arg_3+1<=Arg_2
f74->f16
t₉₁
τ = 0<=Arg_4 && Arg_2<=Arg_0 && 1+Arg_2<=Arg_3
start
start
start->f0
t₉₃
All Bounds
Timebounds
Overall timebound:inf {Infinity}
64: f0->f0: Arg_0+Arg_1+1 {O(n)}
65: f0->f13: 1 {O(1)}
66: f13->f16: 2*Arg_0+2*Arg_2+1 {O(n)}
67: f13->f80: 1 {O(1)}
68: f16->f26: inf {Infinity}
69: f16->f26: inf {Infinity}
70: f16->f16: 2*Arg_0+2*Arg_3 {O(n)}
71: f16->f16: 2*Arg_0+2*Arg_3 {O(n)}
72: f26->f74: inf {Infinity}
73: f26->f29: inf {Infinity}
74: f26->f29: inf {Infinity}
75: f29->f33: 60*Arg_0+60*Arg_2+60 {O(n)}
76: f29->f33: inf {Infinity}
77: f29->f33: 120*Arg_0+120*Arg_2+120 {O(n)}
78: f33->f42: inf {Infinity}
79: f33->f42: inf {Infinity}
80: f42->f68: inf {Infinity}
81: f42->f68: inf {Infinity}
82: f42->f59: 2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
83: f42->f59: 2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
84: f59->f59: 2*Arg_0+2*Arg_20+1 {O(n)}
85: f59->f42: 2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
86: f68->f74: inf {Infinity}
87: f68->f74: inf {Infinity}
88: f68->f74: inf {Infinity}
89: f68->f74: inf {Infinity}
90: f74->f16: inf {Infinity}
91: f74->f16: inf {Infinity}
92: f74->f13: 2*Arg_0+2*Arg_2+1 {O(n)}
93: start->f0: 1 {O(1)}
Costbounds
Overall costbound: inf {Infinity}
64: f0->f0: Arg_0+Arg_1+1 {O(n)}
65: f0->f13: 1 {O(1)}
66: f13->f16: 2*Arg_0+2*Arg_2+1 {O(n)}
67: f13->f80: 1 {O(1)}
68: f16->f26: inf {Infinity}
69: f16->f26: inf {Infinity}
70: f16->f16: 2*Arg_0+2*Arg_3 {O(n)}
71: f16->f16: 2*Arg_0+2*Arg_3 {O(n)}
72: f26->f74: inf {Infinity}
73: f26->f29: inf {Infinity}
74: f26->f29: inf {Infinity}
75: f29->f33: 60*Arg_0+60*Arg_2+60 {O(n)}
76: f29->f33: inf {Infinity}
77: f29->f33: 120*Arg_0+120*Arg_2+120 {O(n)}
78: f33->f42: inf {Infinity}
79: f33->f42: inf {Infinity}
80: f42->f68: inf {Infinity}
81: f42->f68: inf {Infinity}
82: f42->f59: 2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
83: f42->f59: 2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
84: f59->f59: 2*Arg_0+2*Arg_20+1 {O(n)}
85: f59->f42: 2*Arg_2+3*Arg_1+Arg_0+2 {O(n)}
86: f68->f74: inf {Infinity}
87: f68->f74: inf {Infinity}
88: f68->f74: inf {Infinity}
89: f68->f74: inf {Infinity}
90: f74->f16: inf {Infinity}
91: f74->f16: inf {Infinity}
92: f74->f13: 2*Arg_0+2*Arg_2+1 {O(n)}
93: start->f0: 1 {O(1)}
Sizebounds
64: f0->f0, Arg_0: Arg_0 {O(n)}
64: f0->f0, Arg_1: 2*Arg_1+Arg_0+1 {O(n)}
64: f0->f0, Arg_2: Arg_2 {O(n)}
64: f0->f0, Arg_3: Arg_3 {O(n)}
64: f0->f0, Arg_4: Arg_4 {O(n)}
64: f0->f0, Arg_9: Arg_9 {O(n)}
64: f0->f0, Arg_10: Arg_10 {O(n)}
64: f0->f0, Arg_11: Arg_11 {O(n)}
64: f0->f0, Arg_20: Arg_20 {O(n)}
65: f0->f13, Arg_0: 2*Arg_0 {O(n)}
65: f0->f13, Arg_1: 3*Arg_1+Arg_0+1 {O(n)}
65: f0->f13, Arg_2: 2*Arg_2 {O(n)}
65: f0->f13, Arg_3: 2*Arg_3 {O(n)}
65: f0->f13, Arg_4: 2*Arg_4 {O(n)}
65: f0->f13, Arg_9: 2*Arg_9 {O(n)}
65: f0->f13, Arg_10: 2*Arg_10 {O(n)}
65: f0->f13, Arg_11: 2*Arg_11 {O(n)}
65: f0->f13, Arg_20: 2*Arg_20 {O(n)}
66: f13->f16, Arg_0: 2*Arg_0 {O(n)}
66: f13->f16, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
66: f13->f16, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
66: f13->f16, Arg_3: 10*Arg_0+2*Arg_3+20*Arg_2+5 {O(n)}
66: f13->f16, Arg_4: 0 {O(1)}
66: f13->f16, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
67: f13->f80, Arg_0: 4*Arg_0 {O(n)}
67: f13->f80, Arg_1: 2*Arg_2+3*Arg_0+9*Arg_1+4 {O(n)}
67: f13->f80, Arg_2: 2*Arg_0+6*Arg_2+1 {O(n)}
67: f13->f80, Arg_3: 10*Arg_0+2*Arg_3+20*Arg_2+5 {O(n)}
67: f13->f80, Arg_20: 2*Arg_0+6*Arg_20+1 {O(n)}
68: f16->f26, Arg_0: 2*Arg_0 {O(n)}
68: f16->f26, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
68: f16->f26, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
68: f16->f26, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
68: f16->f26, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
69: f16->f26, Arg_0: 2*Arg_0 {O(n)}
69: f16->f26, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
69: f16->f26, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
69: f16->f26, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
69: f16->f26, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
70: f16->f16, Arg_0: 2*Arg_0 {O(n)}
70: f16->f16, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
70: f16->f16, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
70: f16->f16, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
70: f16->f16, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
71: f16->f16, Arg_0: 2*Arg_0 {O(n)}
71: f16->f16, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
71: f16->f16, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
71: f16->f16, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
71: f16->f16, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
72: f26->f74, Arg_0: 2*Arg_0 {O(n)}
72: f26->f74, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
72: f26->f74, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
72: f26->f74, Arg_3: 4*Arg_0+8*Arg_2+2 {O(n)}
72: f26->f74, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
73: f26->f29, Arg_0: 2*Arg_0 {O(n)}
73: f26->f29, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
73: f26->f29, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
73: f26->f29, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
73: f26->f29, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
74: f26->f29, Arg_0: 2*Arg_0 {O(n)}
74: f26->f29, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
74: f26->f29, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
74: f26->f29, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
74: f26->f29, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
75: f29->f33, Arg_0: 2*Arg_0 {O(n)}
75: f29->f33, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
75: f29->f33, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
75: f29->f33, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
75: f29->f33, Arg_4: 30 {O(1)}
75: f29->f33, Arg_9: 29 {O(1)}
75: f29->f33, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
76: f29->f33, Arg_0: 2*Arg_0 {O(n)}
76: f29->f33, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
76: f29->f33, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
76: f29->f33, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
76: f29->f33, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
77: f29->f33, Arg_0: 2*Arg_0 {O(n)}
77: f29->f33, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
77: f29->f33, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
77: f29->f33, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
77: f29->f33, Arg_4: 31 {O(1)}
77: f29->f33, Arg_9: 30 {O(1)}
77: f29->f33, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
78: f33->f42, Arg_0: 2*Arg_0 {O(n)}
78: f33->f42, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
78: f33->f42, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
78: f33->f42, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
78: f33->f42, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
79: f33->f42, Arg_0: 2*Arg_0 {O(n)}
79: f33->f42, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
79: f33->f42, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
79: f33->f42, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
79: f33->f42, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
80: f42->f68, Arg_0: 2*Arg_0 {O(n)}
80: f42->f68, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
80: f42->f68, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
80: f42->f68, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
80: f42->f68, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
81: f42->f68, Arg_0: 2*Arg_0 {O(n)}
81: f42->f68, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
81: f42->f68, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
81: f42->f68, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
81: f42->f68, Arg_11: 0 {O(1)}
81: f42->f68, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
82: f42->f59, Arg_0: 2*Arg_0 {O(n)}
82: f42->f59, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
82: f42->f59, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
82: f42->f59, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
82: f42->f59, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
83: f42->f59, Arg_0: 2*Arg_0 {O(n)}
83: f42->f59, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
83: f42->f59, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
83: f42->f59, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
83: f42->f59, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
84: f59->f59, Arg_0: 2*Arg_0 {O(n)}
84: f59->f59, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
84: f59->f59, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
84: f59->f59, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
84: f59->f59, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
85: f59->f42, Arg_0: 2*Arg_0 {O(n)}
85: f59->f42, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
85: f59->f42, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
85: f59->f42, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
85: f59->f42, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
86: f68->f74, Arg_0: 2*Arg_0 {O(n)}
86: f68->f74, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
86: f68->f74, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
86: f68->f74, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
86: f68->f74, Arg_11: 0 {O(1)}
86: f68->f74, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
87: f68->f74, Arg_0: 2*Arg_0 {O(n)}
87: f68->f74, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
87: f68->f74, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
87: f68->f74, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
87: f68->f74, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
88: f68->f74, Arg_0: 2*Arg_0 {O(n)}
88: f68->f74, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
88: f68->f74, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
88: f68->f74, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
88: f68->f74, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
89: f68->f74, Arg_0: 2*Arg_0 {O(n)}
89: f68->f74, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
89: f68->f74, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
89: f68->f74, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
89: f68->f74, Arg_11: 0 {O(1)}
89: f68->f74, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
90: f74->f16, Arg_0: 2*Arg_0 {O(n)}
90: f74->f16, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
90: f74->f16, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
90: f74->f16, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
90: f74->f16, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
91: f74->f16, Arg_0: 2*Arg_0 {O(n)}
91: f74->f16, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
91: f74->f16, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
91: f74->f16, Arg_3: 12*Arg_3+44*Arg_0+80*Arg_2+20 {O(n)}
91: f74->f16, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
92: f74->f13, Arg_0: 2*Arg_0 {O(n)}
92: f74->f13, Arg_1: 2*Arg_0+2*Arg_2+6*Arg_1+3 {O(n)}
92: f74->f13, Arg_2: 2*Arg_0+4*Arg_2+1 {O(n)}
92: f74->f13, Arg_3: 10*Arg_0+20*Arg_2+5 {O(n)}
92: f74->f13, Arg_20: 2*Arg_0+4*Arg_20+1 {O(n)}
93: start->f0, Arg_0: Arg_0 {O(n)}
93: start->f0, Arg_1: Arg_1 {O(n)}
93: start->f0, Arg_2: Arg_2 {O(n)}
93: start->f0, Arg_3: Arg_3 {O(n)}
93: start->f0, Arg_4: Arg_4 {O(n)}
93: start->f0, Arg_9: Arg_9 {O(n)}
93: start->f0, Arg_10: Arg_10 {O(n)}
93: start->f0, Arg_11: Arg_11 {O(n)}
93: start->f0, Arg_20: Arg_20 {O(n)}