Initial Problem
Start: eval_abc_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars:
Locations: eval_abc_0, eval_abc_1, eval_abc_2, eval_abc_3, eval_abc_4, eval_abc_8, eval_abc_9, eval_abc_bb0_in, eval_abc_bb1_in, eval_abc_bb2_in, eval_abc_bb3_in, eval_abc_bb4_in, eval_abc_bb5_in, eval_abc_start, eval_abc_stop
Transitions:
2:eval_abc_0(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_1(Arg_0,Arg_1,Arg_2,Arg_3)
3:eval_abc_1(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_2(Arg_0,Arg_1,Arg_2,Arg_3)
4:eval_abc_2(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_3(Arg_0,Arg_1,Arg_2,Arg_3)
5:eval_abc_3(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_4(Arg_0,Arg_1,Arg_2,Arg_3)
6:eval_abc_4(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb1_in(Arg_0,1,Arg_2,Arg_3)
13:eval_abc_8(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_9(Arg_0,Arg_1,Arg_2,Arg_3)
14:eval_abc_9(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb1_in(Arg_0,Arg_0,Arg_2,Arg_3)
1:eval_abc_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_0(Arg_0,Arg_1,Arg_2,Arg_3)
7:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb2_in(Arg_0,Arg_1,1,Arg_3):|:Arg_1<=Arg_3
8:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_3<Arg_1
9:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_2<=Arg_1
10:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3):|:Arg_1<Arg_2
11:eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2+1,Arg_3)
12:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_8(Arg_1+1,Arg_1,Arg_2,Arg_3)
15:eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_stop(Arg_0,Arg_1,Arg_2,Arg_3)
0:eval_abc_start(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3)
Preprocessing
Found invariant 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 for location eval_abc_bb2_in
Found invariant 1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 for location eval_abc_8
Found invariant 1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 for location eval_abc_bb4_in
Found invariant 1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 for location eval_abc_9
Found invariant 1<=Arg_1 for location eval_abc_bb1_in
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_1 for location eval_abc_stop
Found invariant 1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 for location eval_abc_bb3_in
Found invariant 1+Arg_3<=Arg_1 && 1<=Arg_1 for location eval_abc_bb5_in
Problem after Preprocessing
Start: eval_abc_start
Program_Vars: Arg_0, Arg_1, Arg_2, Arg_3
Temp_Vars:
Locations: eval_abc_0, eval_abc_1, eval_abc_2, eval_abc_3, eval_abc_4, eval_abc_8, eval_abc_9, eval_abc_bb0_in, eval_abc_bb1_in, eval_abc_bb2_in, eval_abc_bb3_in, eval_abc_bb4_in, eval_abc_bb5_in, eval_abc_start, eval_abc_stop
Transitions:
2:eval_abc_0(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_1(Arg_0,Arg_1,Arg_2,Arg_3)
3:eval_abc_1(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_2(Arg_0,Arg_1,Arg_2,Arg_3)
4:eval_abc_2(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_3(Arg_0,Arg_1,Arg_2,Arg_3)
5:eval_abc_3(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_4(Arg_0,Arg_1,Arg_2,Arg_3)
6:eval_abc_4(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb1_in(Arg_0,1,Arg_2,Arg_3)
13:eval_abc_8(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_9(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0
14:eval_abc_9(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb1_in(Arg_0,Arg_0,Arg_2,Arg_3):|:1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0
1:eval_abc_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_0(Arg_0,Arg_1,Arg_2,Arg_3)
7:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb2_in(Arg_0,Arg_1,1,Arg_3):|:1<=Arg_1 && Arg_1<=Arg_3
8:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_1 && Arg_3<Arg_1
9:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && Arg_2<=Arg_1
10:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && Arg_1<Arg_2
11:eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2+1,Arg_3):|:1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1
12:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_8(Arg_1+1,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1
15:eval_abc_bb5_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_stop(Arg_0,Arg_1,Arg_2,Arg_3):|:1+Arg_3<=Arg_1 && 1<=Arg_1
0:eval_abc_start(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb0_in(Arg_0,Arg_1,Arg_2,Arg_3)
MPRF for transition 13:eval_abc_8(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_9(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 of depth 1:
new bound:
2*Arg_3+1 {O(n)}
MPRF:
eval_abc_9 [Arg_2+2*Arg_3-2*Arg_1-2 ]
eval_abc_bb1_in [2*Arg_3-Arg_1 ]
eval_abc_bb3_in [2*Arg_3-Arg_1 ]
eval_abc_bb2_in [2*Arg_3-Arg_1 ]
eval_abc_bb4_in [2*Arg_3-Arg_1 ]
eval_abc_8 [Arg_2+2*Arg_3-2*Arg_1-1 ]
MPRF for transition 14:eval_abc_9(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb1_in(Arg_0,Arg_0,Arg_2,Arg_3):|:1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && 3<=Arg_0+Arg_3 && Arg_0<=1+Arg_3 && Arg_2<=1+Arg_1 && Arg_2<=Arg_0 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 4<=Arg_0+Arg_2 && Arg_0<=Arg_2 && 1+Arg_1<=Arg_0 && 1<=Arg_1 && 3<=Arg_0+Arg_1 && Arg_0<=1+Arg_1 && 2<=Arg_0 of depth 1:
new bound:
2*Arg_3+1 {O(n)}
MPRF:
eval_abc_9 [2*Arg_3-Arg_1 ]
eval_abc_bb1_in [2*Arg_3-Arg_1 ]
eval_abc_bb3_in [2*Arg_3-Arg_1 ]
eval_abc_bb2_in [2*Arg_3-Arg_1 ]
eval_abc_bb4_in [2*Arg_3+1-Arg_2 ]
eval_abc_8 [2*Arg_3+1-Arg_2 ]
MPRF for transition 7:eval_abc_bb1_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb2_in(Arg_0,Arg_1,1,Arg_3):|:1<=Arg_1 && Arg_1<=Arg_3 of depth 1:
new bound:
Arg_3+2 {O(n)}
MPRF:
eval_abc_9 [Arg_3-Arg_1 ]
eval_abc_bb1_in [Arg_3+1-Arg_1 ]
eval_abc_bb3_in [Arg_3-Arg_1 ]
eval_abc_bb2_in [Arg_3-Arg_1 ]
eval_abc_bb4_in [Arg_3-Arg_1 ]
eval_abc_8 [Arg_3-Arg_1 ]
MPRF for transition 10:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && Arg_1<Arg_2 of depth 1:
new bound:
Arg_3+2 {O(n)}
MPRF:
eval_abc_9 [Arg_3+1-Arg_0 ]
eval_abc_bb1_in [Arg_3+1-Arg_1 ]
eval_abc_bb3_in [Arg_3+1-Arg_1 ]
eval_abc_bb2_in [Arg_3+1-Arg_1 ]
eval_abc_bb4_in [Arg_3-Arg_1 ]
eval_abc_8 [Arg_3+1-Arg_2 ]
MPRF for transition 12:eval_abc_bb4_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_8(Arg_1+1,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 3<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 2<=Arg_2 && 3<=Arg_1+Arg_2 && 1+Arg_1<=Arg_2 && 1<=Arg_1 of depth 1:
new bound:
2*Arg_3+1 {O(n)}
MPRF:
eval_abc_9 [2*Arg_3-Arg_0 ]
eval_abc_bb1_in [2*Arg_3-Arg_1 ]
eval_abc_bb3_in [2*Arg_3-Arg_1 ]
eval_abc_bb2_in [2*Arg_3-Arg_1 ]
eval_abc_bb4_in [2*Arg_3-Arg_1 ]
eval_abc_8 [2*Arg_3-Arg_1-1 ]
MPRF for transition 9:eval_abc_bb2_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3):|:1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=1+Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=1+Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 && Arg_2<=Arg_1 of depth 1:
new bound:
4*Arg_3*Arg_3+8*Arg_3+4 {O(n^2)}
MPRF:
eval_abc_8 [Arg_1+1 ]
eval_abc_9 [Arg_2 ]
eval_abc_bb1_in [Arg_1 ]
eval_abc_bb4_in [Arg_1-Arg_2 ]
eval_abc_bb3_in [Arg_1-Arg_2 ]
eval_abc_bb2_in [Arg_1+1-Arg_2 ]
MPRF for transition 11:eval_abc_bb3_in(Arg_0,Arg_1,Arg_2,Arg_3) -> eval_abc_bb2_in(Arg_0,Arg_1,Arg_2+1,Arg_3):|:1<=Arg_3 && 2<=Arg_2+Arg_3 && Arg_2<=Arg_3 && 2<=Arg_1+Arg_3 && Arg_1<=Arg_3 && Arg_2<=Arg_1 && 1<=Arg_2 && 2<=Arg_1+Arg_2 && 1<=Arg_1 of depth 1:
new bound:
10*Arg_3*Arg_3+16*Arg_3+9 {O(n^2)}
MPRF:
eval_abc_8 [Arg_0+Arg_1+Arg_3-1 ]
eval_abc_9 [Arg_0+Arg_1+Arg_3-1 ]
eval_abc_bb1_in [2*Arg_1+Arg_3-2 ]
eval_abc_bb4_in [2*Arg_1+Arg_3-Arg_2-1 ]
eval_abc_bb3_in [2*Arg_1+Arg_3-Arg_2-1 ]
eval_abc_bb2_in [2*Arg_1+Arg_3-Arg_2-1 ]
All Bounds
Timebounds
Overall timebound:14*Arg_3*Arg_3+32*Arg_3+29 {O(n^2)}
2: eval_abc_0->eval_abc_1: 1 {O(1)}
3: eval_abc_1->eval_abc_2: 1 {O(1)}
4: eval_abc_2->eval_abc_3: 1 {O(1)}
5: eval_abc_3->eval_abc_4: 1 {O(1)}
6: eval_abc_4->eval_abc_bb1_in: 1 {O(1)}
13: eval_abc_8->eval_abc_9: 2*Arg_3+1 {O(n)}
14: eval_abc_9->eval_abc_bb1_in: 2*Arg_3+1 {O(n)}
1: eval_abc_bb0_in->eval_abc_0: 1 {O(1)}
7: eval_abc_bb1_in->eval_abc_bb2_in: Arg_3+2 {O(n)}
8: eval_abc_bb1_in->eval_abc_bb5_in: 1 {O(1)}
9: eval_abc_bb2_in->eval_abc_bb3_in: 4*Arg_3*Arg_3+8*Arg_3+4 {O(n^2)}
10: eval_abc_bb2_in->eval_abc_bb4_in: Arg_3+2 {O(n)}
11: eval_abc_bb3_in->eval_abc_bb2_in: 10*Arg_3*Arg_3+16*Arg_3+9 {O(n^2)}
12: eval_abc_bb4_in->eval_abc_8: 2*Arg_3+1 {O(n)}
15: eval_abc_bb5_in->eval_abc_stop: 1 {O(1)}
0: eval_abc_start->eval_abc_bb0_in: 1 {O(1)}
Costbounds
Overall costbound: 14*Arg_3*Arg_3+32*Arg_3+29 {O(n^2)}
2: eval_abc_0->eval_abc_1: 1 {O(1)}
3: eval_abc_1->eval_abc_2: 1 {O(1)}
4: eval_abc_2->eval_abc_3: 1 {O(1)}
5: eval_abc_3->eval_abc_4: 1 {O(1)}
6: eval_abc_4->eval_abc_bb1_in: 1 {O(1)}
13: eval_abc_8->eval_abc_9: 2*Arg_3+1 {O(n)}
14: eval_abc_9->eval_abc_bb1_in: 2*Arg_3+1 {O(n)}
1: eval_abc_bb0_in->eval_abc_0: 1 {O(1)}
7: eval_abc_bb1_in->eval_abc_bb2_in: Arg_3+2 {O(n)}
8: eval_abc_bb1_in->eval_abc_bb5_in: 1 {O(1)}
9: eval_abc_bb2_in->eval_abc_bb3_in: 4*Arg_3*Arg_3+8*Arg_3+4 {O(n^2)}
10: eval_abc_bb2_in->eval_abc_bb4_in: Arg_3+2 {O(n)}
11: eval_abc_bb3_in->eval_abc_bb2_in: 10*Arg_3*Arg_3+16*Arg_3+9 {O(n^2)}
12: eval_abc_bb4_in->eval_abc_8: 2*Arg_3+1 {O(n)}
15: eval_abc_bb5_in->eval_abc_stop: 1 {O(1)}
0: eval_abc_start->eval_abc_bb0_in: 1 {O(1)}
Sizebounds
2: eval_abc_0->eval_abc_1, Arg_0: Arg_0 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_1: Arg_1 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_2: Arg_2 {O(n)}
2: eval_abc_0->eval_abc_1, Arg_3: Arg_3 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_0: Arg_0 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_1: Arg_1 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_2: Arg_2 {O(n)}
3: eval_abc_1->eval_abc_2, Arg_3: Arg_3 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_0: Arg_0 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_1: Arg_1 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_2: Arg_2 {O(n)}
4: eval_abc_2->eval_abc_3, Arg_3: Arg_3 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_0: Arg_0 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_1: Arg_1 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_2: Arg_2 {O(n)}
5: eval_abc_3->eval_abc_4, Arg_3: Arg_3 {O(n)}
6: eval_abc_4->eval_abc_bb1_in, Arg_0: Arg_0 {O(n)}
6: eval_abc_4->eval_abc_bb1_in, Arg_1: 1 {O(1)}
6: eval_abc_4->eval_abc_bb1_in, Arg_2: Arg_2 {O(n)}
6: eval_abc_4->eval_abc_bb1_in, Arg_3: Arg_3 {O(n)}
13: eval_abc_8->eval_abc_9, Arg_0: 2*Arg_3+2 {O(n)}
13: eval_abc_8->eval_abc_9, Arg_1: 2*Arg_3+2 {O(n)}
13: eval_abc_8->eval_abc_9, Arg_2: 10*Arg_3*Arg_3+16*Arg_3+10 {O(n^2)}
13: eval_abc_8->eval_abc_9, Arg_3: Arg_3 {O(n)}
14: eval_abc_9->eval_abc_bb1_in, Arg_0: 2*Arg_3+2 {O(n)}
14: eval_abc_9->eval_abc_bb1_in, Arg_1: 2*Arg_3+2 {O(n)}
14: eval_abc_9->eval_abc_bb1_in, Arg_2: 10*Arg_3*Arg_3+16*Arg_3+10 {O(n^2)}
14: eval_abc_9->eval_abc_bb1_in, Arg_3: Arg_3 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_0: Arg_0 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_1: Arg_1 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_2: Arg_2 {O(n)}
1: eval_abc_bb0_in->eval_abc_0, Arg_3: Arg_3 {O(n)}
7: eval_abc_bb1_in->eval_abc_bb2_in, Arg_0: 2*Arg_3+Arg_0+2 {O(n)}
7: eval_abc_bb1_in->eval_abc_bb2_in, Arg_1: 2*Arg_3+2 {O(n)}
7: eval_abc_bb1_in->eval_abc_bb2_in, Arg_2: 1 {O(1)}
7: eval_abc_bb1_in->eval_abc_bb2_in, Arg_3: Arg_3 {O(n)}
8: eval_abc_bb1_in->eval_abc_bb5_in, Arg_0: 2*Arg_3+Arg_0+2 {O(n)}
8: eval_abc_bb1_in->eval_abc_bb5_in, Arg_1: 2*Arg_3+3 {O(n)}
8: eval_abc_bb1_in->eval_abc_bb5_in, Arg_2: 10*Arg_3*Arg_3+16*Arg_3+Arg_2+10 {O(n^2)}
8: eval_abc_bb1_in->eval_abc_bb5_in, Arg_3: 2*Arg_3 {O(n)}
9: eval_abc_bb2_in->eval_abc_bb3_in, Arg_0: 2*Arg_3+Arg_0+2 {O(n)}
9: eval_abc_bb2_in->eval_abc_bb3_in, Arg_1: 2*Arg_3+2 {O(n)}
9: eval_abc_bb2_in->eval_abc_bb3_in, Arg_2: 10*Arg_3*Arg_3+16*Arg_3+10 {O(n^2)}
9: eval_abc_bb2_in->eval_abc_bb3_in, Arg_3: Arg_3 {O(n)}
10: eval_abc_bb2_in->eval_abc_bb4_in, Arg_0: 2*Arg_3+Arg_0+2 {O(n)}
10: eval_abc_bb2_in->eval_abc_bb4_in, Arg_1: 2*Arg_3+2 {O(n)}
10: eval_abc_bb2_in->eval_abc_bb4_in, Arg_2: 10*Arg_3*Arg_3+16*Arg_3+10 {O(n^2)}
10: eval_abc_bb2_in->eval_abc_bb4_in, Arg_3: Arg_3 {O(n)}
11: eval_abc_bb3_in->eval_abc_bb2_in, Arg_0: 2*Arg_3+Arg_0+2 {O(n)}
11: eval_abc_bb3_in->eval_abc_bb2_in, Arg_1: 2*Arg_3+2 {O(n)}
11: eval_abc_bb3_in->eval_abc_bb2_in, Arg_2: 10*Arg_3*Arg_3+16*Arg_3+10 {O(n^2)}
11: eval_abc_bb3_in->eval_abc_bb2_in, Arg_3: Arg_3 {O(n)}
12: eval_abc_bb4_in->eval_abc_8, Arg_0: 2*Arg_3+2 {O(n)}
12: eval_abc_bb4_in->eval_abc_8, Arg_1: 2*Arg_3+2 {O(n)}
12: eval_abc_bb4_in->eval_abc_8, Arg_2: 10*Arg_3*Arg_3+16*Arg_3+10 {O(n^2)}
12: eval_abc_bb4_in->eval_abc_8, Arg_3: Arg_3 {O(n)}
15: eval_abc_bb5_in->eval_abc_stop, Arg_0: 2*Arg_3+Arg_0+2 {O(n)}
15: eval_abc_bb5_in->eval_abc_stop, Arg_1: 2*Arg_3+3 {O(n)}
15: eval_abc_bb5_in->eval_abc_stop, Arg_2: 10*Arg_3*Arg_3+16*Arg_3+Arg_2+10 {O(n^2)}
15: eval_abc_bb5_in->eval_abc_stop, Arg_3: 2*Arg_3 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_0: Arg_0 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_1: Arg_1 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_2: Arg_2 {O(n)}
0: eval_abc_start->eval_abc_bb0_in, Arg_3: Arg_3 {O(n)}